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Abstract: We propose the application of geometric deep learning techniques to the challenging
leak detection and isolation problem in water distribution networks (WDNs). Specifically, we
train two Chebyshev polynomial kernel Graph Convolutional Networks for the task of prediction,
and reconstruction of nodal pressures in a WDN. Comparing the two network outputs (a
predicted healthy model state with a reconstructed observation) a residual signal is obtained
and analysed to detect leakages. By exploiting topological properties in the proposed approach,
leakage isolation is also performed. We benchmark our method on the BattLeDIM 2020 dataset.
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1. INTRODUCTION

Water is commonly supplied to households through a Wa-
ter Distribution Network (WDN). Kingdom et al. (2006)
found that globally on average, around 35% of produced
water is lost during distribution, with strong societal and
economic implications. It is therefore fundamental to de-
velop efficient techniques for the prompt detection and
isolation of leakages in WDNs. However, major obstacles
are represented by the scarcity of measurements and the
uncertainty in demand, making the leakage isolation prob-
lem a very challenging one.

Methods for detecting the presence of leaks in WDNs can
be classified as passive and active. Passive leak detec-
tion systems are those that require maintenance person-
nel to survey a particular site in search of leaks (Chan
et al. (2018)). These will thus not be helpful in reducing
awareness times of hidden leakages with any significance,
although they remain very valid for locating faults once
detected. Active systems are those which use continuous
monitoring of signals from the network to detect leakages
in an automated manner. These may be further classified
into model-based and data-driven approaches as described
by Chan et al. (2018). Model-based approaches for leak
detection, rely on the creation of hydraulic mathematical
models that simulate the water distribution network, and
are used for estimating expected conditions at a given
point in the network, e.g., Wu et al. (2018); Soldevila
et al. (2016). This model can be learned exploiting the
topological structure of the network, as done by Vrachimis
et al. (2021), where a node’s hydraulic state is determined
by modelling the WDN as a graph with nodes representing
junctions, water demand locations, reservoirs and tanks,
and edges representing pipes. This method obtained strong
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detection performance and good localisation for significant
leaks, but it relies on historical demand data, which may
not be accessible everywhere, as some utilities bill cus-
tomers from their property’s size, rather than by meter.

On the other hand, data-driven approaches learn to detect
leaks given historical data from the WDN. WDN sen-
sor measurements are commonly collected in supervisory
control and data acquisition (SCADA) systems and have
historically been constrained to few, sparse measurements
points. These methods however require large amounts of
data Chan et al. (2018). Their development is further
hampered by leak data being a minority in the data
collected Mounce et al. (2010), and measurement noise.
Romero et al. (2020) introduces a data-driven method that
exploits pressure measurements. The complete network
state estimation is achieved by linear interpolation by
solving an optimisation problem. However the method is,
i) only applied to densely monitored regions of the WDN,
ii) topology-agnostic, which might result in limited predic-
tion especially in sparsely monitored regions or in highly
data-hungry learning models. Thus, the importance of
developing methodologies that are topology-(graph-)aware
is apparent.

A model-transient-based approach that utilises deep-
learning for leak identification was proposed by Kang et al.
(2018), where graph-based search was used for leak lo-
calisation. Specifically, the proposed method detects leaks
as transient oscillations in the vibration signals, using a
convolutional neural network (CNN). After leak detection,
a localisation algorithm is proposed using the graph-based
wavelet method introduced in Srirangarajan et al. (2013),
showing good performance. However, the latter has been
carried out with engineered tests at night, resulting in
unrealistic test conditions Wu and Liu (2017). Despite this,
their graph-based method was accurate in localisation.

In this paper, we propose a novel active method for
leakage detection and isolation that combines data-driven
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Fig. 1. Proposed architecture, two GNNs reconstruct and predict complete pressure scenes, ŷ(t)
r and ŷ

(t)
p , from a sparse

graph signal, x(t)
G , and a set thereof, X(t−T :t−1)

G = [x
(t−T )
G ,x

(t−T+1)
G , ...,x

(t−1)
G ], respectively. The difference between

the two, r̂(t)V , represents a per-node prediction error, which is translated to a per-edge basis r̂
(t)
E , such that fault

detection methods applied to the signal directly returns a leaky pipe candidate, in line with benchmark objectives.

techniques to learn a WDN model, with a model-based
approach for detection. Similarly to Romero et al. (2020),
we aim to estimate the complete network state from
data, but we consider a topology-aware approach. Namely,
where Romero et al. (2020) use linear-graph interpolation
to obtain the complete network state based on the sparse
sensor measurements, we adopt a Graph Neural Network
(GNN) with a Chebyshev kernel to predict the complete
state of the network. In more detail, we propose a novel
method based on GNNs, that exploit the topology of the
WDN to reconstruct and predict nodal pressures where
measurements are not available. The GNN regressors are
trained on a hydraulic simulation of the WDN in a healthy
state before being applied to sparse pressure measurement
data. From the reconstructed (observed) and predicted
(expected) pressure states, a discrepancy is calculated, on
which a statistical fault detection method is applied to
locate anomalies such as leaks.

This work thereby addresses the leakage localisation prob-
lem with relatively few priors, and is not dependant on
demand or flow data. Beyond being topology-aware, our
method differs from existing ones in the residual gener-
ation. While Romero et al. (2020) analyse least square
distances to the best line fitted through the point cloud
formed by comparing the inferred network state with the
nominal state, we convert nodal prediction errors to resid-
ual signals on the edges (corresponding to the pipes of
a WDN), and evaluate their moving averages against a
statistical threshold, to identify leak candidates. For the
graph-based inference, we build on contributions by Ha-
jgató et al. (2021) for nodal pressure reconstruction, by
1) extending the learning objective for nodal pressure
prediction; 2) analysing different edge-weight assignment
of the graph, and 3) introducing a new graph constructions
from the WDN based on self-loops to sensor nodes, which
led to better detection.

Looking at works that adopted GNNs, Hajgató et al.
(2021) recently published their findings on their applica-
tion for nodal pressure signal reconstruction. Their inputs
are nodal observations, i.e., hydraulic states of the mon-
itored nodes, and their outputs are the pressures of all
nodes. Values proportional to the hydraulic loss in the
network’s pipes, and logarithmic variants thereof, were

assigned to the adjacency matrix but not found to yield im-
provements over a binary one. Our paper exploits instead
the nodal reconstruction logic proposed in Hajgató et al.
(2021) and extends it for the purpose of leakage detection
and isolation. While GNNs have been applied to model
WDNs in the work of Garzón et al. (2021), to the best of
our knowledge this is the first work exploiting GNNs for
leakage detection and localisation.

2. PROPOSED METHODOLOGY

We now introduce our proposed solution to the problem
of leakage detection and localisation, aimed at identifying
leakages from a partly observed WDN. To address it, the
hydraulic state of the WDN is estimated at every inter-
section by processing physical time-series signals from the
network in conjunction with topological information about
the piping system. As depicted in Fig. 1, we design two
deep learning models trained under non-leaky conditions,
i) a reconstructor, that infers nodal pressure for the current
time step given sparse sensor measurements, and ii) a
predictor, that predicts nodal pressure for the next time
step, given a window of previous measurements.

We denote the data observed at time t on node v of the
WDN by x

(t)
v . The signal observed at time t at all nodes

is denoted by x
(t)
G = [x

(t)
1 , x

(t)
2 , . . . , x

(t)
N ], with x

(t)
v =NaN

if the data is not observed at that location at time t.
We assume a sparse signal such that the time-varying
data is observed only at a few locations, meaning that
the majority of x

(t)
v will be NaN. Given x

(t)
G as input,

the reconstructor infers the pressure for all missing nodes;
which we denote by ŷ

(t)
r . The predictor instead predicts

the complete nodal pressures given historical data ob-
served over a time-widow of T instants and denoted by
X

(t−T :t−1)
G = [x

(t−T )
G ,x

(t−T+1)
G , . . .x

(t−1)
G ]. The output of

the predictor, namely ŷ
(t)
p , is compared with ŷ

(t)
r to gen-

erate a residual. The node residual is then converted into
edge-residual and analysed to localise leakages. Following
is a description of how we construct the graph from the
WDN topology, and how we identify the problem of in-
ference as a graph signal processing (GSP) method. We
then describe, i) the architecture that we propose for the
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Fig. 1. Proposed architecture, two GNNs reconstruct and predict complete pressure scenes, ŷ(t)
r and ŷ

(t)
p , from a sparse

graph signal, x(t)
G , and a set thereof, X(t−T :t−1)

G = [x
(t−T )
G ,x

(t−T+1)
G , ...,x

(t−1)
G ], respectively. The difference between

the two, r̂(t)V , represents a per-node prediction error, which is translated to a per-edge basis r̂
(t)
E , such that fault

detection methods applied to the signal directly returns a leaky pipe candidate, in line with benchmark objectives.

techniques to learn a WDN model, with a model-based
approach for detection. Similarly to Romero et al. (2020),
we aim to estimate the complete network state from
data, but we consider a topology-aware approach. Namely,
where Romero et al. (2020) use linear-graph interpolation
to obtain the complete network state based on the sparse
sensor measurements, we adopt a Graph Neural Network
(GNN) with a Chebyshev kernel to predict the complete
state of the network. In more detail, we propose a novel
method based on GNNs, that exploit the topology of the
WDN to reconstruct and predict nodal pressures where
measurements are not available. The GNN regressors are
trained on a hydraulic simulation of the WDN in a healthy
state before being applied to sparse pressure measurement
data. From the reconstructed (observed) and predicted
(expected) pressure states, a discrepancy is calculated, on
which a statistical fault detection method is applied to
locate anomalies such as leaks.

This work thereby addresses the leakage localisation prob-
lem with relatively few priors, and is not dependant on
demand or flow data. Beyond being topology-aware, our
method differs from existing ones in the residual gener-
ation. While Romero et al. (2020) analyse least square
distances to the best line fitted through the point cloud
formed by comparing the inferred network state with the
nominal state, we convert nodal prediction errors to resid-
ual signals on the edges (corresponding to the pipes of
a WDN), and evaluate their moving averages against a
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Looking at works that adopted GNNs, Hajgató et al.
(2021) recently published their findings on their applica-
tion for nodal pressure signal reconstruction. Their inputs
are nodal observations, i.e., hydraulic states of the mon-
itored nodes, and their outputs are the pressures of all
nodes. Values proportional to the hydraulic loss in the
network’s pipes, and logarithmic variants thereof, were

assigned to the adjacency matrix but not found to yield im-
provements over a binary one. Our paper exploits instead
the nodal reconstruction logic proposed in Hajgató et al.
(2021) and extends it for the purpose of leakage detection
and isolation. While GNNs have been applied to model
WDNs in the work of Garzón et al. (2021), to the best of
our knowledge this is the first work exploiting GNNs for
leakage detection and localisation.

2. PROPOSED METHODOLOGY

We now introduce our proposed solution to the problem
of leakage detection and localisation, aimed at identifying
leakages from a partly observed WDN. To address it, the
hydraulic state of the WDN is estimated at every inter-
section by processing physical time-series signals from the
network in conjunction with topological information about
the piping system. As depicted in Fig. 1, we design two
deep learning models trained under non-leaky conditions,
i) a reconstructor, that infers nodal pressure for the current
time step given sparse sensor measurements, and ii) a
predictor, that predicts nodal pressure for the next time
step, given a window of previous measurements.

We denote the data observed at time t on node v of the
WDN by x

(t)
v . The signal observed at time t at all nodes

is denoted by x
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G = [x
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1 , x

(t)
2 , . . . , x
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N ], with x
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if the data is not observed at that location at time t.
We assume a sparse signal such that the time-varying
data is observed only at a few locations, meaning that
the majority of x

(t)
v will be NaN. Given x

(t)
G as input,

the reconstructor infers the pressure for all missing nodes;
which we denote by ŷ

(t)
r . The predictor instead predicts

the complete nodal pressures given historical data ob-
served over a time-widow of T instants and denoted by
X

(t−T :t−1)
G = [x

(t−T )
G ,x

(t−T+1)
G , . . .x
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G ]. The output of

the predictor, namely ŷ
(t)
p , is compared with ŷ

(t)
r to gen-

erate a residual. The node residual is then converted into
edge-residual and analysed to localise leakages. Following
is a description of how we construct the graph from the
WDN topology, and how we identify the problem of in-
ference as a graph signal processing (GSP) method. We
then describe, i) the architecture that we propose for the

Fig. 2. Undirected graph construction from topological
information about the WDN. Data collected over time
at sensor location represents the signal on graph.

two networks (reconstructor and predictor), and ii) the
conversion and analysis of the residual.

2.1 Topological Graph Construction

We start with modeling a WDN (topological objects of
junctions connected by pipe segments) using a graph, as
shown in Fig. 2.

Given an undirected graph G = (V, E), V is a set of nodes
where each v ∈ V denotes a node on the graph (junctions
of the WDN) and we consider N nodes (i.e., |V| = N);
E ⊆ V × V is a set of edges with eij ∈ E connecting node
i and node j. It is worth noting that water in WDNs
is characterised by a certain direction of flow, calling
for directed graphs; instead in this paper we consider
an undirected graph. Using undirected graphs was shown
to yield satisfactory results for pressure reconstruction
in Hajgató et al. (2021) and will thus be adapted here
as it has more applicability for real-life situations. As
novel contribution in the graph construction, we introduce
self-loops for the node sensors. This increases the node
degree of pressure sensor nodes in the WDN, amplifying
the influence of the sensor nodes during reconstruction.
Experimentally, higher node degrees graph yield to lower
detection errors than graphs without self-loops.

While G captures the topological structure of the network,
the relation of a given junction to its neighbours is de-
scribed by the adjacency matrix, A. The latter reveals
the connectivity between the nodes of a graph, which can
reflect multiple factors, such as the length of the pipe
separating them, its diameter, the pipe coefficient and
the direction of flow. Three primal weight assignments are
investigated, namely, i) unweighted edges, ii) pipe length-
based weights and variants thereof, and iii) hydraulic loss-
based weights for the pipe segments.

Unweighted edges is the most elementary approach, which
assumes binary weight value assignment as Avu =
1 if evu ∈ E, 0 otherwise. For a pipe length weighted adja-
cency matrix, Avu = lvu, if evu ∈ E, 0 otherwise, with lvu
being the length of the pipe between node u and node v.
Finally, a hydraulic loss weighted graph assumes the edge
weight as an estimated head, or energy loss for the pipe
segment calculated empirically using the Hazen-Williams
equation, Avu = 4.727 · C1.852

vu · d4.871vu /lvu, if evu ∈ E, 0
otherwise( Hajgató et al. (2021)). The different modes of
weight assignment are treated as a hyperparameter when

training the GNNs, with pipe-length ones found to yield
lowest reconstruction- and prediction errors.

The last step is to define the signal on the graph. Each
node holds a T -dimensional feature vector, which repre-
sents the hydraulic state of the node v over time. The sig-
nal observed at time t at the different nodes on the graph
is denoted by X

(t)
G = [x

(t)
1 , x

(t)
2 , . . . , x

(t)
N ], with x

(t)
v =NaN

if the data is not observed at that location at time t.
Hence, reconstructing and predicting the pressure mea-
surements in the WDN is cast as a problem of graph signal
processing. Given a partly observed WDN, its hydraulic
state is estimated at every intersection of the network by
processing the physical time-series signals in conjunction
with topological information about the piping system. This
effectively describes a graph-signal reconstruction problem
and can be addressed with the application of GNNs. In
the following section, we first introduce the field of GNNs,
motivating our architectural choices. We then conclude the
section with the proposed methodology.

2.2 Graph Signal Reconstruction and Prediction

Graph Neural Networks GNNs are neural network archi-
tectures that can process geometrical data (non-Euclidean)
with the goal of extracting node features combined with
graph topology to solve tasks such as prediction, forecast-
ing and classification (Ortega et al. (2018)). In the litera-
ture, their architectures can be classified into spatial- and
spectral-based GNNs. The former, implement a message-
passing process along the graph at each graph-convolution
operation, which corresponds to the multiplication of a
convolution kernel with the corresponding node feature
vectors, followed by a sum or a mean rule. These method-
ologies are very simple and adapt to different network
topologies, however they suffer from a well known over-
smoothing problem. In the case of deep networks with
many hidden layers, the extracted features assimilate
across the graph. The latter, spectral-based architectures,
build on multiple hidden layers, each one performing
spectral convolutions, defined from a GSP point of view.
GSP provides a notion of frequency and a graph Fourier
transform, allowing for filtering operation in the spectral
(frequency) domain. As a consequence, a graph convolu-
tional layer, can be written by a sum of filtered signals
followed by an activation function, where each filter is
defined in the graph spectral domain (using an eigen-
decomposition of a graph Laplacian). These networks alle-
viate the oversmoothing effect, while suffering from a large
computational burden induced by the forward/inverse
graph Fourier transform. To simplify the computational
complexity, some approaches based on parameterisation
using Chebyshev polynomials Defferrard et al. (2017) have
been proposed, known as the ChebNet model.

Our Architecture For a very sparsely monitored WDN,
as the one in our work, a deeper network, consisting of
more hidden layers, might be needed. At the same time,
to ensure a localisation of the leakage, we need to preserve
as much as local information as possible. Oversmoothing
would not allow us to preserve high-frequency (hence local)
information, thus we adopt spectral-based architectures.
Our initial ChebNet model is based on the one provided
by Hajgató et al. (2021) for the WDN of Richmond, which



664	 Garðar Örn Garðarsson  et al. / IFAC PapersOnLine 55-6 (2022) 661–666

Fig. 3. ChebNet model for graph signal reconstruction.
The predictor (Fig. 1) has the same structure but the
input channel chin, has a depth of 3 time periods.

has a similar number of junctions and pipes as the WDN
we benchmark our model on. The model consists solely of
Chebyshev convolutional layers, which are regularised by
the weight decay of the gradient descent optimiser. Layer
weights are initialised by the Xavier normal distribution
(Glorot and Bengio (2010)) and biases set to zero. The
hidden layers are activated with a SiLU sigmoid linear
unit (Hendrycks and Gimpel (2016)) and the output layer
is passed through a sigmoid activation. The ADAM opti-
miser (Kingma and Ba (2015)) is used due to its properties
of having an adaptive learning rate with momentum, that
adjusts to the function to be optimised.

An exhaustive ablation study to optimise hyper parame-
ters was provided by Hajgató et al. (2021) leading to the
following architecture for the WDN of Richmond: 4 Cheby-
shev spectral graph convolutional layers with the degree of
the polynomial in the hidden layers set to [K1,K2,K3, ] =
[240, 120, 20], and filter sizes [F1, F2, F3] = [120, 60, 30].
This forms the basis of our architecture, depicted in Fig. 3.
The input channel size, chin, here refers to the depth of
the input; in the case of the reconstructor, this will then
equal one, as a single input graph is used to generate the
output, whereas for the predictor, this will be equivalent
to the T number of time step used to generate the out-
put prediction. From this basis, we optimised the graph
construction methodologies (weights assignment, signal
scaling methodologies, and with or without self-loop for
observed nodes) as motivated in Sec. 2.1, and the window
size for the predictor.

Detection and Localisation Methodology We now for-
malise the proposed method with Algorithm 1 and focus
on i) the estimation error, ii) the conversion from node
to edge error (or residual), iii) fault detection and leakage
localisation.

Node Estimation Error Evaluation The outputs of the
predictor and reconstructor are compared, by evaluating
at each iteration the difference between the reconstructed
pressure at time t with the predicted one, which was
generated at t − 1 using past information. The difference
is the prediction error or residual signal, namely rrr(t) =

[r1(t), r2(t), . . . , rN (t)] = ŷyy(t)p − ŷyy(t)r . Under nominal non-
faulty conditions, the residual error should have stationary
behavior and should be caused mainly by the presence
of random noise. When this residual does not display a
stationary behavior anymore, this implies a change in the
underlying model describing the behaviour of the WDN.
In this paper, we identify this change as the presence of a
leakage.

Algorithm 1 Leak detection pseudocode
1: for every_timestep : t do
2: readings ← readPressureSensors()
3: if first_run then
4: next_prediction ← GNN_1.predict(readings)
5: else
6: // Calculate prediction error
7: last_prediction ← next_prediction
8: reconstruction ← GNN_2.predict(readings)
9: node_err ← reconstruction− last_prediction

10: // Convert nodal error to edge error
11: for connected_nodes : i, j in node_error do
12: edge_err ← node_err(i)− node_err(j)
13: end for
14: // Assess fault condition
15: for each_edge : v in edge_err do
16: thresh ← α× edge_err(v).rolling(m).std()
17: mv_avg ← |edge_err(v).rolling(m).mean()|
18: if mv_avg > thresh then
19: Leak detected, log edge, v.
20: end if
21: end for
22: // Filter duplicate alarms
23: for faulty_edges : v do
24: for neighbour in k-hop distance of v do
25: if neighbour has fault in the past n steps then
26: Suppress fault alarms from edge
27: end if
28: end for
29: end for
30: next_prediction ← GNN_1.predict(readings)
31: end if
32: Raise alarm for edges v that are in alarm state
33: end for

Edge error evaluation Instead of considering the residual
signal at each node, a novel way to process the residuals
is proposed, whereby the signals are considered on a per-
edge basis, rather than a node one. This stems from the
notion that leaks commonly happen along a pipe rather
than at a junction, and for it being directly applicable
to the benchmark dataset. In the case of an edge euv,
connecting the two neighbouring nodes v and u, we would
consider its residual as r

(E)
uv (t) as r

(E)
uv (t) = rv(t)− ru(t).

Assess fault condition. Once the edge error is evaluated,
we need to detect possible faulty conditions. The strategy
consists of calculating the moving average of the residual
signal r

(E)
uv (t) of a given edge uv in the network, for a

window of size m at observation time t, 1 as per r̄(E)
uv (t) =

1/m
∑m−1

j=0 r
(E)
uv (t− j) and in defining a detection logic as:

FD =

{
0 if |r̄(E)

uv (t)| < ρ̄uv(t)

1 otherwise
(1)

where, ρ̄uv(t) = ασ̄uv(t), and α is a parameter that allows
to tune the acceptable false alarm rate based on Chebyshev
inequalities, with σ̄

(t)
uv being the rolling standard deviation

of the residual signal for a window of size m. This test
is then individually applied on each residual signal at
every time step to obtain a classification of whether the
signal is deemed indicative of a leak being present in its
neighbourhood or not.

1 For the sake of notation simplicity, we omit the dependence on m.
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Fig. 3. ChebNet model for graph signal reconstruction.
The predictor (Fig. 1) has the same structure but the
input channel chin, has a depth of 3 time periods.

has a similar number of junctions and pipes as the WDN
we benchmark our model on. The model consists solely of
Chebyshev convolutional layers, which are regularised by
the weight decay of the gradient descent optimiser. Layer
weights are initialised by the Xavier normal distribution
(Glorot and Bengio (2010)) and biases set to zero. The
hidden layers are activated with a SiLU sigmoid linear
unit (Hendrycks and Gimpel (2016)) and the output layer
is passed through a sigmoid activation. The ADAM opti-
miser (Kingma and Ba (2015)) is used due to its properties
of having an adaptive learning rate with momentum, that
adjusts to the function to be optimised.

An exhaustive ablation study to optimise hyper parame-
ters was provided by Hajgató et al. (2021) leading to the
following architecture for the WDN of Richmond: 4 Cheby-
shev spectral graph convolutional layers with the degree of
the polynomial in the hidden layers set to [K1,K2,K3, ] =
[240, 120, 20], and filter sizes [F1, F2, F3] = [120, 60, 30].
This forms the basis of our architecture, depicted in Fig. 3.
The input channel size, chin, here refers to the depth of
the input; in the case of the reconstructor, this will then
equal one, as a single input graph is used to generate the
output, whereas for the predictor, this will be equivalent
to the T number of time step used to generate the out-
put prediction. From this basis, we optimised the graph
construction methodologies (weights assignment, signal
scaling methodologies, and with or without self-loop for
observed nodes) as motivated in Sec. 2.1, and the window
size for the predictor.

Detection and Localisation Methodology We now for-
malise the proposed method with Algorithm 1 and focus
on i) the estimation error, ii) the conversion from node
to edge error (or residual), iii) fault detection and leakage
localisation.

Node Estimation Error Evaluation The outputs of the
predictor and reconstructor are compared, by evaluating
at each iteration the difference between the reconstructed
pressure at time t with the predicted one, which was
generated at t − 1 using past information. The difference
is the prediction error or residual signal, namely rrr(t) =

[r1(t), r2(t), . . . , rN (t)] = ŷyy(t)p − ŷyy(t)r . Under nominal non-
faulty conditions, the residual error should have stationary
behavior and should be caused mainly by the presence
of random noise. When this residual does not display a
stationary behavior anymore, this implies a change in the
underlying model describing the behaviour of the WDN.
In this paper, we identify this change as the presence of a
leakage.

Algorithm 1 Leak detection pseudocode
1: for every_timestep : t do
2: readings ← readPressureSensors()
3: if first_run then
4: next_prediction ← GNN_1.predict(readings)
5: else
6: // Calculate prediction error
7: last_prediction ← next_prediction
8: reconstruction ← GNN_2.predict(readings)
9: node_err ← reconstruction− last_prediction

10: // Convert nodal error to edge error
11: for connected_nodes : i, j in node_error do
12: edge_err ← node_err(i)− node_err(j)
13: end for
14: // Assess fault condition
15: for each_edge : v in edge_err do
16: thresh ← α× edge_err(v).rolling(m).std()
17: mv_avg ← |edge_err(v).rolling(m).mean()|
18: if mv_avg > thresh then
19: Leak detected, log edge, v.
20: end if
21: end for
22: // Filter duplicate alarms
23: for faulty_edges : v do
24: for neighbour in k-hop distance of v do
25: if neighbour has fault in the past n steps then
26: Suppress fault alarms from edge
27: end if
28: end for
29: end for
30: next_prediction ← GNN_1.predict(readings)
31: end if
32: Raise alarm for edges v that are in alarm state
33: end for

Edge error evaluation Instead of considering the residual
signal at each node, a novel way to process the residuals
is proposed, whereby the signals are considered on a per-
edge basis, rather than a node one. This stems from the
notion that leaks commonly happen along a pipe rather
than at a junction, and for it being directly applicable
to the benchmark dataset. In the case of an edge euv,
connecting the two neighbouring nodes v and u, we would
consider its residual as r

(E)
uv (t) as r

(E)
uv (t) = rv(t)− ru(t).

Assess fault condition. Once the edge error is evaluated,
we need to detect possible faulty conditions. The strategy
consists of calculating the moving average of the residual
signal r

(E)
uv (t) of a given edge uv in the network, for a

window of size m at observation time t, 1 as per r̄(E)
uv (t) =

1/m
∑m−1

j=0 r
(E)
uv (t− j) and in defining a detection logic as:

FD =

{
0 if |r̄(E)

uv (t)| < ρ̄uv(t)

1 otherwise
(1)

where, ρ̄uv(t) = ασ̄uv(t), and α is a parameter that allows
to tune the acceptable false alarm rate based on Chebyshev
inequalities, with σ̄

(t)
uv being the rolling standard deviation

of the residual signal for a window of size m. This test
is then individually applied on each residual signal at
every time step to obtain a classification of whether the
signal is deemed indicative of a leak being present in its
neighbourhood or not.

1 For the sake of notation simplicity, we omit the dependence on m.

Fig. 4. Sparse, unseen pressure measurement (left) and its reconstructed pressure scene (right). The measurements are
normalised to the interval [0, 1], but operating pressure in L-Town is normally between ∼ 20− 70 m.

3. SIMULATION RESULTS

We validate our method on the BattLeDIM, Battle of
the Leakage Detection and Isolation Methods, challenge
(Vrachimis et al. (2020)). Its dataset comes from the hy-
pothetical L-Town, with a WDN spanning a total pipe
length of 42, 6 km. The network is segmented into three
areas and composed of 782 nodes. The WDN is further
instrumented with, one tank level sensor, three flow sen-
sors, and 33 pressure sensors. The competition objective
is to detect as many of the leaks that occurred in the 2019
dataset as possible. For this, researchers are provided with
a nominal model of the WDN, contained in an EPANET
hydraulic simulation input file, which has ±10% inherent
uncertainties, due to demand and topological ambiguity.
This nominal model is used for the training of the GNN
reconstructor and predictor, as per Sec. 2.2. Competitors
are further given sensor measurements from the WDN’s
control system related to the year of 2018, along with
a documented leakage dataset for 2018, of when a leak
occurred in the network, when it was fixed and its es-
timated size. The considered leakages include background
leaks measuring 1−5% of the network inflow, medium pipe
bursts representing 5− 10% of the average system inflow,
and large pipe bursts of entity > 10%. The average inflow
of the system is ∼ 180m3/h. Both abrupt and incipient
leakages occur in the dataset. A scoring function is further
supplied in the challenge to evaluate the accuracy of the
methods, converting the scores into Euros saved from
non-revenue water and reparation costs, by the assessed
detection method. The sooner a leak is detected and the
closer it is to the actual source, the higher the economic
reward. True positives are defined as detection alarms
raised during the lifetime of a leakage and within a distance
of 300 m from the leakage location.

Equipped with this competition dataset and model, the
proposed GNN reconstructor has been trained. For what

Fig. 5. Residual signal of node 1 for the year 2018.

concerns the predictor GNN, a window of past partially
observed measurements is needed for the inference of nodal
pressures at the next time step. The size of the window T
has been selected during the training phase, considering
values of T = [1, 2, 3, 6, 12, 24], corresponding to windows
of 5 min up to 2 hr being used as the input to the GNN,
since the data is sampled at 5 min intervals. A value of
T = 3 was then selected.

The model is then tested on unseen data from the his-
torical pressure measurements of 2019. Fig. 4 shows one
inferred pressure scene for the 782 nodes, from a single
observation of 33 measurements. We then analysed node
residual signals rv(t) at each node v, which are computed
at every timestep. An example can be seen for node 1
in Fig. 5. The edge-wise residual signals of pipes in the
neighbourhood of a leak in pipe 31 is shown in Fig. 6.

As evident from Fig. 6, the signal mean values are not
equal to zero. We deduct the mean value computed at
each single pipe only from observations when the pipe
is known to be in a non-faulty state, and its neighbors
too. Edge-wise residual analysis is then performed on the
moving averages of the signals for leak detection. The
rolling means r̄v(t) are calculated described in the previous
section and the detection depends on the condition in
Eq. 1. There are two parameters that need to be set in the
detection method: α the false alarm rate parameter that
scales the detection threshold, and the size of the window
for calculating the moving average and threshold.

A window size of m = 7 days and a false alarm rate
parameter α = 1.0 are chosen. The leakage candidates
are filtered, so that no more than a single detection
may be returned on a given day in a neighborhood of
6 hops. The reasoning behind this approach is the in-
tuition that information of the leakage propagates the
network from the leakage origin, thus causing false-alarms
in areas non-related to the leakage. The simulation results
obtained with this configuration led to an Economic score
of e326.521, 19 True positives, 138 False positives, and
4 False negatives, as shown in Table 1. It is worth noting
that with respect to the teams in the BattleDIM challenge,
our method only uses pressure measurements, while other
entries also used flow measurements and smart meter mea-
surements. We recognise that the proposed method suffers
from false positives, with 138 false alarms given over the
year. By an initial analysis, we have observed a strong
dependency of the rate from both the topology and the
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Team Name Score TPR FP
Proposed method e326.521 82,61% 138

Tongji-Team e264.873 56,52% 3
Under Pressure e260.562 65,22% 4

IRI Romero et al. (2020) e210.772 43,47% 1
Leakbusters e195.490 47,83% 7
Tsinghua e167.981 47,83% 5
UNIFE e127.626 43,47% 4

Table 1. Performance comparison in terms of
economic score, true positive rate and false

positives.

Fig. 6. Edge-wise residual signal of 1-hop neighbours to
the leak in pipe 31.

parameters, leading to propose as future works a graph-
based processing for reducing the false alarms.

4. CONCLUSIONS

In this work, a novel approach for leakage detection and
localisation in WDNs has been proposed, combining data-
driven techniques and model-based logic, where GNNs
are used to reconstruct and predict pressure values. The
discrepancy in the two models’ outputs describes a resid-
ual signal, which is statistically analysed for changes for
leakage detection, and the embedded topological infor-
mation in the graph neural networks models is exploited
for leakage localisation. The approach is evaluated on the
BattLeDIM benchmark and obtains the highest economic
score among the contestants that competed in the chal-
lenge in 2020. The method however suffers from false
positives, resulting by the leakage effect propagating the
network. Still, the impressive economic score suggests that
the method is sensibly detecting leakages, and thus future
effort will be devoted to improve the analysis of the resid-
ual signals, to overcome this limitation. To this end, other
statistical methods for change detection, as well as neural
networks classifiers will be investigated. A strategy will
then be developed to translate the node-wise detections
into edges.
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