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Abstract: This paper proposes a fault-tolerant energy management algorithm for microgrid
systems composed of several agents. The method stems from the necessity to design an algorithm
that takes explicitly into account the possibility of faults and their consequences to avoid
solutions which are excessively conservative. A tree of possible fault scenarios is built in a
completely distributed way by all the agents of the network; then the resulting optimization
problem is solved through a distributed algorithm which not only does not require a high
computational power for each agent, but keeps also private all local data and decision variables.
The effectiveness of the proposed method is proved through simulation results.
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1. INTRODUCTION

In this paper we propose a novel distributed and fault-
tolerant method for energy management in microgrid sys-
tems. The Energy Management System (EMS), as a part
of the microgrid tertiary control layer, is the controller
that computes the power flows to provide a stable delivery
of power to loads, while optimizing energy production
and other operational goals (Yoldag et al. (2017)). Mul-
tiple variants of optimization-based algorithms for energy
management have been proposed, in particular, methods
based on Model Predictive Control (MPC) are very suc-
cessful thanks to their ability to efficiently compensate
uncertainty and handle constraints. Although being easier
to implement than decentralized algorithms, centralised
MPC schemes may not be suitable for large-scale systems
due to communication and computational constraints or
in the case agents do not want to share their performance
indices and decision variables with a central unit. Indeed,
in recent years privacy issues have become increasingly im-
portant: for example, sharing the load demand profile can
reveal details of a manufacturing process as illustrated in
Mak et al. (2019). Instead, our method allows a distributed
implementation of the MPC controller preserving privacy
of load and generation profiles, local decision variables,
objective functions and constraints. Distributed methods
have been proposed not only to increase the privacy but
also to distribute the computation among the agents of
a network. Examples of distributed algorithms for EMS
design can be found in Dehghani-Pilehvarani et al. (2019),
Zheng et al. (2017). The main drawback of such methods
is that either they are not fully distributed or they do
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not guarantee privacy. Instead, the method we propose
does not require any coordination unit, nor the exchange
of power profiles and sensitive information. Panteli and
Mancarella (2015) clearly show the importance of a reliable
electrical infrastructure. Control algorithms can increase
the resilience of electrical systems to deal with the un-
certainties that characterize microgrid operation, such as
renewable power production, as explained in Hussain et al.
(2019). A resilient controller not only has to predict possi-
ble faults and take their effects into account, but also has
to ensure that the system is in appropriate safe conditions
when the fault occurs to deal with its evolution. Although
there is an extensive literature on energy management,
a few papers consider the possible occurrence of faults.
Jongerden et al. (2016), Ghasemieh et al. (2015), Haessig
et al. (2019) and Prodan et al. (2015) propose to store a
certain amount of backup energy in the storage system to
sustain the system operation during fault events. The main
drawback of such centralised methods is that a certain
amount of stored energy is always committed to fault
tolerance, hence the storage capacity cannot be used for
economic goals or peak shaving/valley filling. On the other
hand, in this paper we propose a method to deal with faults
which is based on a distributed scenario-based stochas-
tic MPC (SMPC) which allows to deal with uncommon
events and uncertainty avoiding excessively conservative
solutions. In particular, scenario-based SMPC, proposed
by Calafiore and Campi (2006) and Bernardini and Be-
mporad (2009), has been used in Hans et al. (2015) to
schedule the microgrid operation taking into account the
stochastic nature of renewable generators. However, they
do not consider the possible presence of faults and be-
ing the method centralized, it suffers from computational
complexity issues. In this paper instead, by leveraging
distributed optimization algorithms, it is possible to deal
with the complexity which is typical of scenario optimiza-
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tion. A distributed scenario-based approach is proposed
in Long et al. (2014), for house temperature control, and
in Velarde et al. (2019), for water resources management.
In particular, in the last paper a scenario tree is built in a
centralized way and then each local controller considers its
relevant scenario only. Unfortunately such approach can-
not be implemented in microgrids since in these systems
each scenario affects the operation of all agents. Moreover,
the aforementioned distributed algorithms do not con-
sider privacy related issues, fundamental for microgrids.
Scenario-based MPC has already been exploited by Bg
and Johansen (2014) to design fault tolerant controllers
in centralized frameworks. This paper builds on recent
preliminary work (Casagrande et al. (2021)). Differently
from existing scenario-based SMPC approaches, in this
paper we propose a new method for each agent to compute
a scenario tree in a distributed way and we leverage the
distributed algorithm proposed in Falsone et al. (2017) to
solve the resulting optimization problem. There are several
advantages in the proposed method. Firstly, a potentially
large-scale optimization problem is solved in parallel by
a number of processors, requiring a small computational
power. Secondly, it allows to keep private local information
(as opposed to Long et al. (2014) and Velarde et al.
(2019)). Thirdly, stochastic methods allow to obtain less
conservative solutions of the control problem than the
aforementioned robust methods (e.g. Prodan et al. (2015)),
allowing to store an amount of energy to sustain the
microgrid during faults based on the fault probability of
occurrence. The controller is reconfigured at each time
step to take into account the effects of the fault after its
occurrence. The remainder of the paper is organized as
follows. In Section 2 the microgrid model, the communi-
cation network and the possible faults are described. In
Section 3 the proposed energy management algorithm is
presented. Finally, in Sections 4 and 5 simulation results
are given and conclusions are drawn.

2. SYSTEM MODEL

We assume that the microgrid system is composed of
four types of agents: loads, renewable generators, storage
systems and connections to the main grid. Each agent
is assumed to be equipped with a local controller with
computation and communication capabilities.

Microgrid — FEach load agent is characterized by a power
demand at each time step ¢ which is composed of a critical
and a non-critical part:

di*(t) < Pa(t) < d (1) 1)
where P, ;(t) is the power drawn by load i at time ¢,
d?(t) is the minimum (or critical) load demand and
dM(t) is the target power demand. Each load agent will
try to draw the target power demand depending on the
power availability in the microgrid, hence the finite horizon
objective function of each load is set to:
t+T—1 )

> wi [Pilk) — d} (k)] (2)
k=t
where T is the time horizon and wy ; is a weight term used
to balance all the objectives.

Jii(t) =

Renewable generator agents produce the power P, ; that is
injected in the microgrid. The maximum amount of power

that can be injected is bounded by the maximum produced
power P% :
0< Pri(t) < P (1) (3)
The goal of each renewable generator agent is to maximise
the power sold to the other agents, hence its objective
function can be written as:
t+T—1

Jr,i(t) = Z wr,i’yk [Pr,i(k') - P%(k)f ’ (4)
k=t

where w;.; is a weight term used to balance the objective
functions, T is the time horizon and v € [0;1] is a weight
used to reduce progressively the importance of time steps
that are more uncertain.

Storage systems are used along with renewable generators
to compensate their intermittence and to prevent load
fluctuations. For energy management purposes the specific
employed storage technology is not significant, hence we
model the storage system as in Prodan et al. (2015) and
Parisio et al. (2014) as a first order linear system:
si(t+1) = 54(t) + pi,c/aTs Ps (1), (5)
where s;(t) is the state of charge of storage i, j; c/q is the
energy conversion efficiency for charging and discharging
(tie < 0 and p;q > 0), T, is the sample time of the
controller and Ps,(t) is the power exchanged with the
microgrid. The amount of energy which can be stored in a
storage system is limited by a maximum and a minimum
value:
57" < sift) < 57 (6)
In order to increase the battery lifetime and avoid a quick
degradation of its performance the lower limit of charge is
higher than zero (the usable energy is typically between
80% and 95% of the total energy). The maximum value of
p(;\\}/er that can be exchanged with the grid is denoted by
P
—Pl < Pyi(t) < P (7)
The objective of the storage system agent is expressed in
terms of power and state of charge:
t+T—1 )

JS,i(t) = Z wp, ; [PS,i(k) - PS,i(k)] +
k=t

wei [si(k) — 5: (k)]
where wp, , and w, ; are weighting parameters and Py (k)

and 5;(k) are the target values. Such objective function
allows to penalise the battery setting P; ;(k) to zero.

(8)

Typically, a microgrid is connected to the main distribu-
tion grid in one or more points so that power can be bought
or sold. The amount of power which flows through the
utility grid connection is limited by a maximum and a
minimum value:

PJ(t) < Pylt) < Pi(t). (9)
The power is assumed to be negative when the microgrid
absorbs it from the utility grid. The goal of the external
tie agent is to maximise the profit due to energy trading
while meeting the requirement of the microgrid:

t+T—1
Tga(t) = = D Ag(k)Pyik),
k=t

where A\, (t) is the electricity price at time ¢ and T is the
time horizon. The minus sign is introduced since the power

(10)
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sign is positive when energy is sold to the utility grid, hence
we penalize buying.

All the components of the microgrid are coupled by the
power balance constraint, that is, the sum of powers
exchanged with the microgrid has to be equal to zero. Such
constraint is expressed as follows:

N, N, Ny N,
Zm(t) + ZPS’i(t) + ZP A(t) = me(t), (11)

where N, is the number of renewable generators, IV; is the
number of loads, Ny is the number of storage systems and
N, is the number of connections to the utility grid.

Communication network — Agents communicate with each
other through the communication network which is mod-
elled as a undirected graph G(V, ) in which V is the set
of nodes and & is the set of edges. Each node represents
an agent of the network, hence the total number of agents
of the network denoted by N = |V| = N, + N; + N, + N,.

Faults  We consider distribution grid faults and renew-
able generator faults. In the first case, the maximum power
that flows through the microgrid connection to the utility
grid is reduced. This can happen for example, in the case
of a damage on the transformer that interconnects the
microgrid with the utility grid or, in the case of a power
outage, thus making the microgrid operate in island mode.
This can be mathematically modelled by introducing two
factors ay, B; € [0;1] in the constraint (9):

aiPyi(t) € Pya(t) < BiPpi(t), ¥ te |mrl) (12)

where 7. ; and 7'7{‘ , are the time steps in which the utility

grid fault starts and ends respectively.

In the second case, the maximum amount of power that
can be supplied by the renewable generator decreases. This
can be modelled by introducing a factor €; € [0;1] in
constraint (3):

0< Pu(t) SePM(t) ¥ te [rlurh],

T80 'y

(13)

where Tf,,i and Trjj , are the time steps in which the renew-
able generator fault starts and ends, respectively.

3. ENERGY MANAGEMENT SYSTEM

In this section the novel SMPC-based algorithm employed
to solve the energy management problem is described.

3.1 Scenario-based SMPC

In the SMPC framework the objective is to obtain less con-
servative results with respect to robust MPC algorithms
when dealing with uncertainties, by taking advantage of
known probability distribution of the disturbances. In
particular, at each time step a stochastic optimal control
problem is solved in which the goal is to minimize the
expected performance over the prediction horizon T

t+T—1
> J(k:)] :
k=t
The scenario-based SMPC framework requires first to
build a scenario tree which is composed of several nodes

E (14)

from the root (corresponding to the current time step)
to the leaves where each edge corresponds to a possible
scenario. Before delving into the algorithm some useful
definitions and notation regarding scenario trees are pre-
sented. The tree in Figure 1 is used as an example. The
index k denotes the time step in the prediction horizon
kelt,t+1,...T+t—1]. The set of all nodes of the tree

Fig. 1. Example of a scenario tree. The node ID index j is
written inside each node, whereas probabilities p; are
the probabilities to reach node j.

is denoted by S, whereas the set of nodes related to time
step k is denoted as Si. The nodes are numbered from
the root node (node 0 for k = t) to the leaves nodes (at
k =t+T —1), hence the set Sy = {0} in the example
in Figure 1. The set (), denotes the set of children of
node m, for example, referring to Figure 1, C; = {3,4}.
A probability p; is associated to each node j of the tree.
In this work we model the transition probability to pass
from one node to the next as a discrete time Markov
process. Hence, the expected performance (14) is expressed
as a sum over all the possible nodes of the scenario tree
weighted by the probability to reach the node:

t+T1T—1
S pidik), (15)
k=t jES,

where J; is the cost associated to node j.
3.2 Scenario tree generation

In this paragraph, the novel algorithm employed by the
agents of the network to compute the scenarios is outlined.
Differently to Bg and Johansen (2014) where a centralized
architecture is considered, the scenario tree is built by a
network of interconnected agents based on the local fault
states and transition probabilities.

Assumption 1. Each agent ¢ of the microgrid is provided
with a unique identification number and its functionality
is characterized by a current fault state f;(¢) € F;. The set
F; is the set of the n; possible fault states associated to

agent i: L .
Fi={¢i, 0%, 07"} (16)

where j € [1,...n;] is the fault state index and ¢} may
represent the healthy state, different faults or increasingly
serious levels of faults. Moreover, we assume that each local
fault state model is known by agent i, i.e. variables «;, 5;
(for each external tie agent) and e; (for each renewable

generator agent) corresponding to each fault state <pg .

Assumption 2. The transition probability between fault
states can be modelled as a discrete time Markov process.
Furthermore, we assume that the probability matrix of
agent 4, whose entries are the time varying transition
probabilities between the current and the future fault
states, is known to agent ¢ and it is denoted by P;(t) €

R’I’Li X1y .
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The algorithm that is used by each agent ¢ to locally
build the scenario tree needed for the proposed distributed
SMPC is now explained, considering the perspective of
agent ¢ at time step t.

(1) Agent ¢ shares with the network: (i) its identification
number ¢; (ii) its current transition probability matrix
P;(t); (iil) the index j € [1,...n;] corresponding to its
current fault state f;(t) of set F;. Such information
can be shared, for example, running the flooding
algorithm described in Tanenbaum (2006).

(2) Once all the previous information is received from all
the agents of the network, agent ¢ computes:

e the combinations of failure states labels F', as the
Cartesian product of the set of possible failure
states labels F' = Fy x Fy x --- x Fy. The sets
F,,n=1...N,only contain the indexes or labels
of the fault states and are identified by a bar
because the real sets F; are not shared. However
the cardinality of set F; can be inferred by the
number of rows (or columns) of the matrix P;
(which is shared).

e the global transition probability matrix P(t), as
the Kronecker product of the transition probabil-
ities:

P(t)=Pi(t) ® P2(t) ® -~ @ Py (t) (17)
Remark 1. The constraints corresponding to the fault
state are implemented locally by each agent via
equations (12) and (13) hence keeping information
about the current fault state private.

Remark 2. The identification number transmitted at
step 1 ensures that all agents compute the Kronecker
product (which is not commutative) of (17) in the
correct order.

(3) Agent i builds the scenario tree, given the MPC
prediction horizon length 7', the set of combinations
of possible failure states labels F' and the transition
probability matrix of the current time step P(¢). In
particular, the probability to reach node [ € C,,, from
node m can be computed applying the recursive rule
Pt = PmPle;q) where P.q) is the entry of matrix P that

represents Py = Pr[f(k+1) = ¢°|f(k) = ] in

which @7/, j = 1,...,|F|, are the elements of F.
For the root node we set (probability to reach the
current node): pg = 1. Clearly such scenario tree

has two properties: (i) the sum of the probabilities
to reach any of the nodes at the optimisation step
k is one: ZjESk p; = 1; (ii) the probability to reach
any children node of m from node m is equal to the
probability to reach node m itself: > jec,, Pi = Pm.

Remark 3. The fault state index transmitted at step
1 is required to use the correct line of the matrix P to
compute the transition probabilities from the current
fault state.

Once the scenario tree is built, each agent uses the proba-
bilities to reach each node as weights in their local objec-
tive function.

3.3 Distributed optimization-based MPC

The energy management problem is formulated as an
SMPC problem to be solved using a distributed op-

timization algorithm. At each time step the following
constrained-coupled optimization problem (Notarstefano
et al. (2019)) is solved:

N
min (% 18a
I R DL (182)
s.t. x; € X, (18b)
N
> gi(xi) <0. (18¢)
=1

The local decision variable x; is the future power profile of
agent ¢ over the prediction horizon for all the nodes j € .S
of the scenario tree (realizations of the faults):

x; = {P’(t),... P/(t + k),... P (t+ T —1)}  (19)
The global objective function to minimize is the expected
value of the sum of local objective functions of all agents:

N N, N, N, N,
S Fix)=ED) T+ > Jit+ D> it Y g
i=1 i=1 i=1 i=1 i=1

(20)

The coupling constraint (18c) is used to model the mi-
crogrid interconnection (which is equation (11)) and it is
expressed through the function g; that has to be specified
for each agent. Clearly this constraint has to be enforced
for all the nodes of the scenario tree, hence the number
coupling constraints is equal to the number of decision
variables ng, of each agent. The optimization problem is
solved using the distributed algorithm proposed in Falsone
et al. (2017). The details of the algorithm are not given
due to space constraints, however it consists of three steps
from the perspective of agent i: (1) to gather the dual
variables of the optimization problem from the neighbours;
(2) to compute the local primal variable x; by minimizing
the i-th part of the Lagrangian; (3) to update the local
estimate of the dual variable.

8.4 On the computational complexity

The number of nodes of the scenario tree grows with the
number of fault states combinations ¢/ € F' and with the
MPC prediction horizon length. Hence, in order to set the
MPC prediction horizon and the number of fault states
one has to consider the computational power available to
each agent. The number of nodes of the scenario tree,
which corresponds to the number of optimization variables

that each agent has to compute, can be calculated as
T

Ny = Z |F|’, in which |F| denotes the cardinality of set
i=0

F. An alternative approach to reduce the complexity of the
optimization problem is to adopt a threshold so that, if the
probability of a failure state is lower than the threshold,
then such faulty state is not considered (for example, if the
transition between faulty state ”a” and ”b” occurs with a
probability 0.05 and the threshold is set to 0.1).

4. SIMULATION RESULTS

In this section the results obtained by applying the pro-
posed stochastic EMS algorithm is applied to the mi-
crogrid of Zafeiratou (2020) which is composed of four
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Fig. 2. Electricity price profile

components: (i) agent 1 is the external tie; (ii) agent 2 is
the renewable generator; (iii) agent 3 is the load; (iv) agent
4 is the storage system. The proposed stochastic MPC
controller considers in its scenario tree that fault might
occur in the future on the external tie or the renewable
generator agent. The sets F; and the matrices P; are set

as: F1 = F2 = {n, d}, F3 = F4 = {TL}, P1 = P2 = |:005 015:|
and P3 = Py, = m Intuitively, setting P; and P, as
above means that, if the system is ”n” (normal functioning
state), there is a 50% probability that it will be damaged
(i.e. pass to state ”d”) at the next time step and, if the
system is faulty, it will remain faulty in the optimization
horizon. This controller, denoted as C1, will be compared
with other two controllers. Controller 2 (denoted as C2),
which is the controller presented in Casagrande et al.
(2021), is a MPC controller based on distributed opti-
mization which does not consider the possible occurrence
of a fault. Controller 3 (denoted as C3) is a robust MPC
controller designed to maintain a minimum charge in the
storage systems at each time step sufficient to supply the
load demand for a certain number of future time steps.
In particular, we define 7,(t) = Et;:;_l Tod™(7) as the
critical energy demand of the loads for the next v time
steps. The following constraint is then added to the local
optimization problem of the storage agent:

st+k)y>m(t+k) ¥V kel0,T—1] (21)
As soon as a fault is detected, such constraint is deacti-
vated in order to allow energy to flow from the storage
to the load. Controller C3 is robust since it maintains the
minimum charge level 7, (t) regardless the fault occurrence
probability and it assumes that the storage will be the only
component that can support the load operation during
faults. Using C2 and C3 each agent has to compute one
optimization variable for each step of the prediction hori-
zon. The main simulation parameters and the electricity
price profile are given in Table 1 and Figure 2.

Param. | Value | Param. | Value | Param. Value
T 4 Wg 0 v 4
Ts 1h wp, 0.1 Hic/d 0.98/1.02
0 0.9 Wy 1 wy 1
o; 0 Bi 0 € 0

Table 1. Simulation parameters.

The following performance indices are defined to compare
the aforementioned controllers:

e energy delivered to loads during fault events with

respect to the maximum load demand: El% = % X

100, where Ej is the energy supplied to loads ddring
faults (i.e. in the time interval ¢t € {Tg}“ TgJ‘;Z-:| ) and EM
is the maximum demand of loads during faults;

e cnergy drawn from the renewable generator with

respect to the total available energy: E;% = g;v', X

100, where E, is the energy drawn by renewable
generators and EM is the maximum energy produced
by the renewable generators over the whole simulation
period;

e battery utilization over the simulation period: |Py| =
Zil Ziio P, ;(k)|. Since repeated charges and dis-
charges of the battery decrease its lifetime, a con-
troller with low battery utilization is to be preferred;

e total energy cost: C = vaz"l i?):o Ag(k)Py i (K),.

For this simulation we enabled 4 out of 6 communica-
tion links. Simulations were implemented using DISROPT
Python package (Farina et al. (2019)) and the number of
iterations of the distributed optimization algorithm has
been set to 1500. A distribution grid fault is simulated
between time steps t = 18 and ¢ = 21, the fault interval is
highlighted in gray in Figure 3. At ¢ = 18, when the fault
occurs, controller C1 has stored a greater amount of energy
than C2 and C3. When the fault occurs power cannot be
exchanged with the utility grid anymore (top left plot).
Since the renewable power production is close to zero,
the load can draw energy only from the storage system.
All the controllers manage to supply the critical power
demand to the load, however since the C1 and C2 stored
a greater amount of energy would be able to supply the
load for longer time. Since constraint (21) is deactivated
during faults, the storage energy drops below the lower
limit 7,(¢) (bottom plot of Figure 3) for C3. Table 2
highlights the main differences of the three controllers. The
amount of energy supplied to the load during the fault
event is similar for C2 and C3 and it is lower than the
one supplied by C1. Energy provided by the renewable
generator is similar for the three controllers. The main
difference is clearly in the battery utilization and in the
total energy price. Although C2 allows to achieve the
results with a lower energy price, the battery utilization
using C1 is significantly lower. Moreover, the amount of
stored energy at the end of the fault is higher using C1 than
other controllers, hence allowing it to continue to provide
energy in case of persistent faults. It is clear that all the

EMS | E/* (%] | EF (%] | |Ps| [W] | C [€]
C1 30.6 97.8 2937 2.20
C2 25.8 95.6 3949 1.96
C3 26.6 93.3 3648 2.14

Table 2. Numerical results.

controllers offer advantages and disadvantages which have
to be taken into consideration when designing the EMS.
While the C2 offers economical benefit in the short-term
in the considered scenario, since the total energy cost is
lower, in the long-term C1 may be beneficial since it allows
a lower battery usage and thus an increased expected
battery lifetime. For the sake of clarity the matrices P;
are assumed to be constant for C1 over the simulation,
however such variable may change at each time step de-
pending on the situation of each agent. Hence, when a
fault is improbable, the behaviour of C1 would be similar
to the C2, whereas, when the fault probability is high, it
behaves accordingly combining the advantages of both the
controllers.
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Fig. 3. Power profiles of scenario 2. The fault interval is
highlighted in gray.

5. CONCLUSION

In this paper a distributed fault-tolerant algorithm for mi-
crogrid energy management has been presented. Such al-
gorithm is based on scenario-based SMPC and it computes
the future control actions based on the current probability
of fault occurrence. The algorithm is fully distributed
hence allowing to deal with possibly large-scale problems
with a lot of involved agents while maintaining private
local information. As a future work, we will investigate
methods to reduce the number of nodes of the scenario
tree to allow the increase of the prediction horizon and the
number of faulty states without incurring in computational
issues.
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