BRITISH M) Check for updates

JOURNAL of
MANAGEMENT

British Journal of Management, Vol. 0, 1-23 (2022)
DOI: 10.1111/1467-8551.12653

Rise of the Androids: The Reflection of
Developers’ Characteristics in Computerized
Systems

BRITISH ACADEMY
OF MANAGEMENT

B/M

Daphne Sobolev

School of Management, University College London, One Canada Square, London, E14 5AA, UK
Corresponding author email: d.sobolev@ucl.ac.uk

Due to their speed and accuracy, computerized decision-making and data-analysis
systems are often perceived to be close to the ideal of unbounded rationality. Challenging
this perception, this study explores the possibility that computerized systems reflect the in-
dividual characteristics of the developers who have designed and realized them. Through
the analysis of interviews with high-frequency trading system developers and a survey
of software developers working in diverse industries, it shows that developers’ charac-
teristics, which have been related to bounded rationality (e.g. experience and expertise),
influence their codes’ performance and errors. Computer codes also reflect the personal
circumstances of the developers (e.g. deadlines and stress), and their values. However,
whereas some developers value code characteristics that are congruent with the ideal of
unbounded rationality, including speed and accuracy, others aim to achieve characteris-
tics that could be incongruent with it (e.g. code readability and modularity). Developers’
roles and organizational practices, such as testing procedures and code reviews, limit the
expression of their characteristics in their codes. Nevertheless, developers can be often
identified by reading the codes. Highlighting that developers transfer some of their char-
acteristics to their codes, this study identifies elements of bounded rationality in decision-
making systems and extends organizational decision-making research.

Introduction

Bounded rationality theories postulate that hu-
man decision-making processes are subject to
biases that often result in suboptimal choices
and performance (Koumakhov and Daoud, 2021;
Simon, 1947/1997, p. 115). These biases have
been attributed to a wide range of human char-
acteristics, including experience (Croce, Ughetto
and Cowling, 2020), expertise (Adams and Jiang,
2017), education (Anderson, 2013), personality
traits, emotions (Delgado-Garcia, De La Fuente-
Sabaté and De Quevedo-Puente, 2010), limita-
tions on the data volumes that people can process
(Barber and Odean, 2008) and limitations on
their processing speed (Kiss, Rodriguez-Lara and
Rosa-Garcia, 2020). By contrast, computers are
capable of processing greater amounts of data ef-

ficiently, accurately, and at ever-increasing speeds.
Therefore, computerized decision-making and
analysis systems have been perceived to be closer
to the ideal of unbounded rationality (Lindebaum
and den Hond, 2020). The capabilities of modern
computers have led to their use in many industries,
including finance (Chaboud et al., 2014; MacKen-
zie, 2018a), healthcare (El-Bouri, Gue and Lip,
2021; Wang et al., 2019), and business manage-
ment (Hajli ez al., 2022; Nguyen and Malik, 2022).
But are computerized systems indeed close to the
ideal of bounded rationality? Or do they reflect
their developers’ characteristics, which have been
associated with bounded rationality?

The objective of this study is to explore how
developers’ characteristics influence the codes
(computer programs or software) that they write.
Thus, it examines how developers’ characteristics,

© 2022 The Authors. British Journal of Management published by John Wiley & Sons Ltd on behalf of British Academy

of Management.

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs
License, which permits use and distribution in any medium, provided the original work is properly cited, the use is
non-commercial and no modifications or adaptations are made.

https://orcid.org/0000-0001-8290-6110
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1111%2F1467-8551.12653&domain=pdf&date_stamp=2022-08-30

2

which have been linked to human bounded ratio-
nality (e.g. experience, expertise and education),
impact their code performance. Drawing on the
literature about algorithmic biases (Kordzadeh
and Ghasemaghaei, 2022), the relationship be-
tween developers’ personality and performance in
the software industry (Gomez and Acuna, 2014),
and the recognition of individual differences
(Orehek and Human, 2017), it asks which per-
sonal characteristics the developers transfer to
their codes. In addition, it asks how organiza-
tional practices interact with this transference
process, and what the results of this process are.
To answer these questions, this study qualita-
tively examines computerized system development
in the high-frequency trading (HFT) industry
(Study 1) and in a range of other financial, health-
care, and business management industries (Study
2). It focuses on HFT because HFT provides an
extreme case for the investigation of the expression
of human characteristics in codes. In HFT firms,
practitioners develop decision-making codes that
trade with stock exchange computers thousands of
times faster than people do. For example, the time
required for HFT codes to react to news ranges
between microseconds and nanoseconds, whereas
the blink of a human eye takes 400 ms (Manahov,
2016). Hence, once the codes are launched, devel-
opers can only monitor their performance or stop
them. However, HFT codes trade without direct
human intervention. In addition, HFT is highly in-
fluential. In fact, it accounts for more than 50% of
the USA trading volume (Hoffmann, 2014; Zhou
and Olivari, 2013). It significantly affects mar-
ket efficiency (Conrad, Wahal and Xiang, 2015)
and liquidity (Jarnecic and Snape, 2014).! Fur-
thermore, it has high, persistent revenues (Baron
et al., 2019), and its returns are especially large
in times of great volatility, such as during the
COVID-19 pandemic (Patterson and Osipovich,
2020). As HFT comprises influential automated
decision-making codes, it provides an edge case
for the analysis of the transference of developers’
characteristics. In addition to HFT, this paper ex-
amines code development in a range of industries
in order to obtain insights about computerized sys-

'"Market efficiency refers to the extent to which price
movements resemble a random walk (Conrad, Wahal and
Xiang, 2015), whereas liquidity provision refers to the
submission of orders at multiple prices to stock exchange
books (Jarnecic and Snape, 2014).

D. Sobolev

tems in wider contexts. Study 1 draws on a series of
interviews with HFT code developers, and Study
2 comprises a survey of developers in healthcare
firms, management firms, and additional firms.

Overall, the results suggest that the individual
characteristics of HFT code-developers, including
experience, expertise, and education, influence
their code performance and errors. A proportion
of firms employ practices, such as coding rules,
code reviews, and testing procedures, that restrict
the expression of developers’ individual charac-
teristics in their systems. Nevertheless, developers’
characteristics can often be identified by reading
their codes. Furthermore, also in industries other
than HFT, the individual characteristics of the
developers are reflected in their codes, and this re-
sult holds when developers consider their roles in
the development of the codes and their knowledge
of the whole system. Moreover, the codes reflect
the personal circumstances of the developers.
Finally, developers value both code characteristics
that are congruent with the ideal of unbounded
rationality (e.g. efficiency, speed, and accuracy)
and code characteristics that are incongruent
with it (e.g. code readability, ease of maintenance,
and elegance). Thus, they sometimes deliberately
develop codes that are partially incongruent with
the ideal of unbounded rationality.

This study contributes to the literature on the
relationship between individuals’ characteristics
and organizational decision-making in three ma-
jor ways. First, this study extends its scope to
computerized decision-making. Previous research
has contributed important insights into the way
in which individuals’ characteristics influence
organizational decision-making (Delgado-Garcia,
De La Fuente-Sabaté and De Quevedo-Puente,
2010; Hillenbrand ez al., 2020) but has focused on
organizational decision-making, which is carried
out by people. Understanding the relationship
between developers’ characteristics and comput-
erized decision-making is important because, in
modern industries, a large proportion of decision-
making is carried out by computers or based on
the results of computerized data analysis.

Second, this study suggests that developers
transfer some of their characteristics to decision-
making systems, so that, for instance, those who
are more experienced develop faster and more ac-
curate codes than those who are less experienced,
and those who are risk-seeking develop codes that
take more risks than those who are risk-averse.

© 2022 The Authors. British Journal of Management published by John Wiley & Sons Ltd on behalf of British

Academy of Management.

Rise of the Androids

Previous research has examined the effects of
developers’ characteristics on algorithmic biases
(Fazelpour and Danks, 2021; Kordzadeh and
Ghasemaghaei, 2022) and on system performance
(Gomez and Acuia, 2014). However, it has been
limited and separate. In particular, studies on al-
gorithmic biases have focused on gender and racial
discrimination, whereas studies on system perfor-
mance have focused on the developers’ big five
personality traits. Both of these research streams
have disregarded important developers’ character-
istics such as experience and expertise. Taking a
qualitative approach, this study suggests that these
factors, as well as additional characteristics that
have not been studied before in organizational
contexts (e.g. developers’ code-related values and
error-handling skills), influence the codes and
hence organizational decision-making.

Third, this study identifies organizational
practices that limit the extent to which develop-
ers’ individual characteristics are expressed in
decision-making software. Research has examined
the impact of organizational practices and charac-
teristics on performance (Bozec, Dia and Bozec,
2010; Eisenbeill and Boerner, 2013; Kellard et al.,
2017) but has not investigated how organizational
practices influence the expression of developers’
characteristics in their codes. Establishing that
firm practices, including testing procedures, code
reviews, and job rotations encourage code ho-
mogeneity, this study highlights that certain firm
procedures constrain the expression of individual
differences between developers. Hence, it identifies
boundary conditions of the effects of developers’
characteristics on their codes.

The results of this study have applications for
managers, the media, and the public. In particular,
they could be used to improve hiring decision
processes and training programs in firms that aim
to produce efficient and accurate decision-making
codes (e.g. financial, healthcare, and business
management firms). Specifically, they highlight
that system failures could be the result of the
employment of developers who have an inade-
quate attitude towards error-handling. Failures
of decision-making systems can negatively impact
individuals, firms, and markets. For example, the
flash crashes attributed to computerized trading
systems erase billions of dollars (Galouchko,
Torsoli and Ekblom, 2022; Kirilenko et al., 2017).
In addition, the results provide the media and the
public with information about the codes’ nature.

3

The unprecedented reliance on computerized
systems has sparked a debate about their use. For
instance, in the context of HFT, media articles
have asked ‘men or machines: who runs the mar-
kets?” (Moore, 2013), warned that ‘the rise of the
machines leaves markets exposed’ (Kawa, 2018),
and concluded that ‘machines are driving Wall
Street’s wild ride, not humans’ (Isidore, 2019). This
is especially disconcerting to many, given that HFT
markets are forecasted to grow (MarketWatch,
2022). Providing information about the human
aspects of computerized systems could contribute
to the ongoing public debate about them.

Theoretical background and research
questions

Effects of developers’ characteristics

Two streams of research have examined phe-
nomena that are related to the aim of this study:
research on algorithmic biases (Fazelpour and
Danks, 2021; Kordzadeh and Ghasemaghaei,
2022), and research on software performance
(Acuna, Goémez and Juristo, 2009; Gomez and
Acuiia, 2014). The first stream has suggested that
individual characteristics, such as trust in tech-
nology and the need for cognition, could impact
system adoption (Kordzadeh and Ghasemaghaei,
2022). The second stream has shown that certain
personality traits (e.g. extraversion) are related
to software product quality (Acuiia, Gémez and
Juristo, 2009; Gomez and Acufia, 2014), developer
creativity (Amin et al., 2020), and developer team
performance (Yilmaz et al., 2017).

However, research on algorithmic biases has
investigated social biases such as gender and
race discrimination and has not focused on other
code characteristics such as speed or accuracy
(Kordzadeh and Ghasemaghaei, 2022). Moreover,
no study has investigated how developers’ char-
acteristics impact these social biases. Research
on code performance (Acuna, Gomez and Ju-
risto, 2009; Amin et al., 2020; Gomez and Acuiia,
2014) has focused on developers’ big-five person-
ality traits (extraversion, openness to experience,
consciousness, agreeableness, and neuroticism)
but has neglected other important characteris-
tics such as expertise, experience, education, and
error-handling. Specifically, studies about the
relationship between developers’ personality and
code performance investigated non-professional

© 2022 The Authors. British Journal of Management published by John Wiley & Sons Ltd on behalf of British

Academy of Management.

4

students’ performance in lab conditions (Gomez
and Acuna, 2014) and hence could not yield in-
sights on experience. However, code developers
often have diverse programming experience and
fields of expertise. For instance, HFT system de-
velopment requires interdisciplinary knowledge of
finance, mathematics, and engineering in addition
to computer science expertise (Davis, Kumiega and
Van Vliet, 2013). Furthermore, a priori — before
conducting this study — it had been unclear which
additional characteristics affected the systems.
Hence, this study investigated the question:

RQI: How do developers’ characteristics affect
their codes?

Effects of organizational practices

Research has shown that work practices and rules
influence performance aspects in many industries
(Bar, Kempf and Ruenzi, 2011; Evans, Prado and
Zambrana, 2020). Similarly, in software firms,
work practices affect code characteristics. For in-
stance, code reviews® improve codes by detecting
code failures and making them clearer and easier
to modify (Méntylda and Lassenius, 2009). In
particular, formal code reviews, which follow strict
rules, improve code quality significantly more than
do modern code reviews, which have no guidelines
(Mclntosh et al., 2016). Social dominance, status,
and group dynamics have been found to play
major roles in software development processes,
too (Bosu et al., 2017; Metiu, 2006).

Although the effects of a range of firm practices
and rules have been investigated, no study has ex-
amined how they influenced the extent to which
developers’ characteristics were reflected in their
codes. However, rules could limit people’s freedom
to act according to their will. Therefore, this study
asked whether firm rules and practices served as
boundary conditions, limiting the expression of
developers’ characteristics in their codes:

RQ2. How do organizational practices and rules
affect the reflection of developers’ charac-
teristics in their codes?

2Code reviews are organizational processes that aim to
find defects in codes or improve them. Code reviews of-
ten comprise several stages, including a feedback meeting,
defect correction, and a follow-up meeting (Ciolkowski,
Laitenberger and Biffl, 2003).

D. Sobolev

Identification of developers’ characteristics

The possibility that codes carry information about
their developers, which enables the identification
of the developers’ characteristics, has not been
investigated. However, in contexts other than
code development, research has established that
people’s individual characteristics can be reliably
inferred from their writings (Tskhay and Rule,
2014). For example, by reading authors’ stories,
people can identify some of the authors’ person-
ality traits (Kiifner et al, 2010). Characteristics
such as impulsivity, self-esteem, and agreeableness
can be inferred from social media messages of
up to 140 characters (Orehek and Human, 2017
Qiu et al, 2012). A few personality traits can
be identified even from people’s personal email
addresses (Back, Schmukle and Egloft, 2008).

People’s ability to identify writers’ personality
based on their texts has been attributed to the
writers’ motivation to provide cues about them-
selves. Research has suggested that people provide
such cues both deliberately and automatically
through many communication channels, including
their writings (Hirschmiiller ez al, 2013; Kiifner
et al., 2010). Thus, people’s writings encapsulate
aspects of their individual characteristics.

A priori, it had been unclear whether the indi-
vidual characteristics of code developers could be
inferred from their codes. On the one hand, codes
were often long and hence had more potential to
capture information about the developers than
did 140-character-long messages. On the other
hand, unlike messages or stories that addressed
people, computer codes consisted of variable def-
initions and sequences of computer commands,
which were based on mathematical logic. Hence,
developers’ ability to express their characteris-
tics through their codes could be limited. Thus,
the third research question that this study asked
was:

RQ3: Which developers’ characteristics can be
identified by reading their codes?

Study 1

Study 1 examined how HFT developers’ charac-
teristics and firm practices influenced HFT codes
through the analysis of an interview series. As
HFT uses extremely fast automated decision-
making systems (Manahov, 2016) and is highly

© 2022 The Authors. British Journal of Management published by John Wiley & Sons Ltd on behalf of British

Academy of Management.

Rise of the Androids

influential (Baron et al., 2019; Conrad, Wahal and
Xiang, 2015), it constitutes an extreme case for
the investigation of the expression of developers’
characteristics in their codes.

Method

A large body of research has incorporated inter-
views in the study of organizational and financial
behaviour (D’hont, Doern and Delgado Gar-
cia, 2016; Sonenshein, 2014; Kellard et al., 2017;
Stoian, Dimitratos and Plakoyiannaki, 2018; Tilba
and Wilson, 2017). Recently, it has been acknowl-
edged that interviews could provide rich insights
into HFT (Mackenzie, 2018a, 2018b). Therefore,
I used interviews to study the research questions.
Specifically, I used the HFT practitioner interview
series of Sobolev (2020).

Interview series. Sobolev (2020) conducted a
series of interviews with HFT practitioners. Each
interview comprised three parts. In the first part,
practitioners were asked about their daily work
experience; in the second, about the way in which
their personality affected their systems; and in
the third, about their perceptions of the ethicality
of their profession. Sobolev (2020, p. 106) used
solely the third part of each interview to show that
practitioners’ ethics perceptions are determined
by their choice of stakeholder reference groups
and that their ethics perceptions influence their
well-being. In this study, I drew on the second
part of each interview to examine how developers’
characteristics impacted their codes.

Participants. A total of 30 HFT system devel-
opers, including computer programmers, quan-
titative strategists, algorithm developers, traders,
consultants, and managers of HFT companies,
participated in the interviews. The participant
group included 29 men and one woman. They
worked in the UK, the USA, Sweden, Australia, or
China. They were approached through LinkedIn
(https://www.linkedin.com/). Participants were
not paid for their participation. However, they
were asked if they wanted to receive the results of
the study. Additional details about the participants
are given in Sobolev (2020).

Participants’ professional diversity within the
HFT industry fitted the aim of this study because
it provided insights into a wide cross-section
of system developers. Research has emphasized
that practitioners from many disciplines develop
HFT systems (Davis, Kumiega and Van Vliet,

5

2013). The number of participants fitted the aim
of this study, too, as it satisfied the data satura-
tion criterion (Guest, Bunce and Johnson, 2006;
Robinson, 2014; Sobolev, 2020). Furthermore, a
study concluded that it is suitable to include 30
participants in interview studies (Saunders and
Townsend, 2016). Interview studies have often
involved similar numbers of participants (e.g.
Stoian, Dimitratos and Plakoyiannaki, 2018;
Tilba and Wilson, 2017).

Procedure. A total of 28 participants were in-
dividually interviewed in face-to-face meetings,
Skype video meetings (https://www.skype.com/
en/), or over the phone. Two participants preferred
to fill in questionnaires. Most interviews were
recorded, and a few were summarized according to
participants’ requests. The interviews were on av-
erage 72.63 minutes long (std. dev.: 29.00 minutes;
minutes: 26.30 minutes; max: 132 minutes).

The interviews were semi-structured. In semi-
structured interviews, the interviewers pre-define
topics or questions for discussions. However, they
can fit the specific questions to each participant
during the interview. Semi-structured interviews
are considered natural, informative, and pleasant
for the participants (Coolican, 1995).

Each interview had three parts (Sobolev, 2020,
p. 106). In the second part, participants were asked
whether their trading strategies or codes reflected
their personalities and were given the freedom to
interpret the question as they wanted. They were
encouraged to provide elaborated answers. De-
pending on the nature of their answers, they were
asked what differentiated between the strategies
or codes that they and their colleagues wrote, or
additional questions.

Data Analysis. 1 transcribed participants’ an-
swers. Then, I analysed the transcriptions using
content analysis methods (Corbin and Strauss,
2008). Thus, I started by formulating concepts,
describing the ideas or notions that participants
expressed. I then grouped concepts into themes,
and themes into dimensions, according to their
contents (Gioia, Corley and Hamilton, 2013).
I analysed the data using Atlas.ti, a content
analysis software.

Findings

In their answers, participants referred to many
individual and organizational characteristics.
Hence, content analysis of the interviews yielded

© 2022 The Authors. British Journal of Management published by John Wiley & Sons Ltd on behalf of British

Academy of Management.

https://www.linkedin.com/
https://www.skype.com/en/
https://www.skype.com/en/

Themes and concepts Dimensions

~

Developers exhibit general code-related individual differences
These differences include: experience, expertise, education,
intelligence, age, self-confidence, coding preferences, style,
readability, the use of coding languages, code automation
preferences, optimization preferences, comment style, elegance,
Kvisual aspect preferences, and risk propensity j

Developers exhibit individual differences in error-handling

These differences include: debugging skills, the importance that they
attribute to error-handling, failure likelihood assessment, code
defensiveness, and the extent to which they rely on the
defensiveness of team members’ codes

G

Developers’
characteristics

/
Developers’ characteristics affect their codes \
These characteristics include: experience, education, age,

intelligence or sophistication, methodology, perfectionism, the

ability to write fast codes, writing style, desire for short term results,
interests, tidiness, code automation preference, approach to error-
handling and precision, risk propensity, code-related values (e.g.
Kreadability), and personal circumstances.

/

Certain organizational practices and rules encourage code
similarities

The practices include: testing procedures, code reviews, code
integration, job rotations, code writing rules, teaching and
inspiration, regulation controls and hiring procedures

Organizational
practices and
rules

Certain organizational practices and rules do not encourage code
similarities

In particular: not all HFT firms employ code reviews, a proportion of
practitioners work by themselves, and code reviews are affected by

D. Sobolev

Ksocial dynamics processes

their codes

-

Developers or their characteristics can be identified by reading

One can identify code writers or their characteristics based on their
coding style or their use of programming languages

Developer
identification

Figure 1. Study 1: Summary of the main themes, concepts, and dimensions

three main dimensions: ‘developers’ character-
istics’, ‘organizational practices and rules’, and
‘developer identification’. Figure 1 summarizes
the main dimensions, themes, and concepts. Ta-
bles 1-3 in the Appendix present related concepts
and exemplifying developer quotations. Below, |
describe the concepts and themes that led to the
formulation of each dimension. The data analysis
and presentation format used in this study draw
on qualitative studies about innovative industries,
including Sobolev (2020) and Sonenshein (2014,
pp. 828-832).

Developers’ characteristics. The dimension ‘de-
velopers’ characteristics’ answered the first research

question (‘How do developers’ characteristics af-
fect their codes?’). It emerged through the analysis
from three themes: ‘developers exhibit general
code-related individual differences’, ‘developers
exhibit individual differences in error-handling’,
and ‘developers’ characteristics affect their codes’
(see Figure 1). All the quotations referred to in this
section are presented in Table 1 in the Appendix.
Developers exhibit general code-related individ-
ual differences. Participants expressed the belief
that many developers’ characteristics, which were
related to their codes’ performance (e.g. speed),
distinguished between them. These general char-
acteristics included the developers’ experience,

© 2022 The Authors. British Journal of Management published by John Wiley & Sons Ltd on behalf of British

Academy of Management.

Rise of the Androids

expertise (quotation Q1.1), education (Q1.2), intel-
ligence (Q1.3), age or generation (Q1.4), and self-
confidence (Q1.5). For instance, a senior software
engineer considered experience to be an important
characteristic, distinguishing between developers:

‘It all depends on what you have experienced your-
self, like, even between two seniors, you might say,
well, I handle things one way, because I was once
in this situation, and the best way to handle it was
this [...] And the other person has the opposite
experience. Even [though] they are at the expert
level, people who designed the language, they have
arguments over what is the best way to do things][...]
It depends on individual experiences’.

In particular, she suggested that developers’
experience influenced the speed of their codes:

“You can get people starting off, who will be really
interested in speed, and they will straight away start
looking at those techniques, and then, they can
use them. But, am... [most] people starting off are
writing large amounts of [slow] code’.

Participants also referred to individual differ-
ences in coding preferences, style and readability
(Q1.6-Q1.8), the use of coding languages (e.g.
the use of functions and structures), their code
automation preferences (the extent to which de-
velopers could interfere with the codes while they
were running), and the importance that they at-
tributed to code optimization. For example, an
HFT trader and programmer explained that devel-
opers differed in their readability and optimization
preferences:

‘Good people don’t only care about what they are
writing [...] Some coders just want something that
works, right, and they are just writing code at, you
know, a very fast pace and they are like, you know,
“let it run, oh it works, ok, fine, I am not touching
that anymore.” [...] I would like to do that, because,
it’s, you know, it is easy to tick, right, “I have done it,
it runs fine”. But [...] even if it runs right, I will try
to go back into it and see whether I could optimize
it and make it better, either more understandable or
more reliable’.

Participants also referred to differences in their
comment style, elegance (e.g. the extent to which
the code was concise), and preferences regarding
the visual aspects of the codes (e.g. variable and
function names). In addition, they suggested that
there were differences in their risk propensity. For

7

instance, a senior software developer reported
that developers differed in their code-related risk
aversion:

‘[T am] reasonably risk-averse, more so than a lot of
people I worked with’.

Developers exhibit individual differences in error-
handling. 1 refer by ‘code error-handling’ to code
error identification and correction (code debug-
ging), the preparation of the code to unusual
situations, and code testing. Error-handling is di-
rectly related to code accuracy. Many participants
considered error-handling to be a central aspect
of their work. However, they identified individual
differences in developers’ debugging skills. For
instance, a lead quantitative HFT infrastructure
developer stated that:

‘Debugging is a very critical thing. It’s a very specific
skill set. I am not good at it. Some people are
amazing debuggers’.

Participants also identified individual differ-
ences in the importance that developers attributed
to error-handling (Q1.9), failure likelihood assess-
ment (Q1.10), code defensiveness (Q1.11), and the
extent to which they relied on the defensiveness of
other team members’ codes (Q1.12).

Developers’ characteristics affect their codes.
Beyond merely identifying individual differences
between developers, many participants reported
that their codes’ performance, including the
codes’ speed and accuracy, reflected the develop-
ers’ characteristics. Specifically, they mentioned
the developers’ experience (QIl.13), education
(Q1.14), age or maturity (Q1.15), intelligence and
sophistication (Q1.16), methodology (Q1.17), per-
fectionism (Q1.18), the ability to write codes that
are fast (Q1.19), writing style (Q1.20 and Q1.21),
the desire for short-term results (Q1.22), interests
(Q1.23), tidiness (Q1.24), and code automation
preferences. They perceived HFT codes to reflect
also the developers’ approach to error-handling
and precision (Q1.25 and Q1.26). Participants
also suggested that the risk level of their codes re-
flected developers’ risk propensity, and sometimes
resulted in codes that were not in line with their
firms’ rules (Q1.27).

It is important to note that developers’ code-
related values affected their codes, too. For
instance, an HFT software developer stated that:

© 2022 The Authors. British Journal of Management published by John Wiley & Sons Ltd on behalf of British

Academy of Management.

‘My solution may differ [...] based on my past expe-
riences and what I value as a developer, what I think
is the key attribute to a good system, compared to
someone who has, maybe, grown up in a different
environment with different constraints’.

In particular, several participants reported that
they valued code readability. Similarly, personal
circumstances, such as deadlines, as well as mar-
ket conditions and opportunities, influenced the
codes. For instance, to realize profit opportunities,
which requires quick code adaptation, developers
sometimes intentionally wrote codes that could
include errors, and did not follow the regular code
testing procedures (Q1.28). Thus, code-related val-
ues, personal circumstances and market conditions
influenced HFT codes. Furthermore, developers’
abilities affected the software’s profits and losses.

Organizational practices and rules. The dimen-
sion ‘organizational practices and rules’ answered
the second research question (‘How do organi-
zational practices and rules affect the reflection
of developers’ characteristics in their codes?’). It
emerged from the themes: ‘certain organizational
practices and rules encourage code similarities’
and ‘certain organizational practices do not en-
courage code similarities’ (see Figure 1). All the
quotations referred to in this section are presented
in Table 2 in the Appendix.

Certain organizational practices and rules en-
courage code similarities. A proportion of partic-
ipants stated that there were similarities between
codes written by different developers. Participants
attributed these similarities to HFT firm practices,
including testing procedures, code reviews (Q2.1),
integration of codes written by independent de-
veloper teams (Q2.2), and job rotations (Q2.3).
In particular, testing procedures and code reviews
were often perceived as practices that limited the
presence of bounded rationality elements in the
codes. For example, a senior HFT software engi-
neer highlighted the impact of testing procedures:

‘Because the strategies that you develop, first of all,
they are not over-night [...] — it’s a research process
that extends over weeks or months. Sometimes, for
years [...] Before you [use any system] you back-test
it, it’s a real scientific method [...] So, if there is any
emotional component there, I think it is taken out
by the rigor of the process’.

Moreover, some HFT developers explained that
their firms had strict rules, standardizing coding

D. Sobolev

styles. The use of a uniform coding style encour-
aged developers to adapt their coding style to that
of the existing system (Q2.4). Developers also ex-
pressed the will to learn or to be inspired by other
developers (Q2.5 and Q2.6). Employing methods
and strategies used by others could increase their
prevalence and hence homogenize HFT. Further-
more, a few participants noted that their firms reg-
ulated the risk level of the codes. In their firms, in-
dividual risk propensity could not be fully reflected
in the codes (Q2.7). Finally, a few participants
attributed HFT strategy and code similarities to
developer homogeneity. The latter was related to
HFT firm hiring procedures (Q2.8 and Q2.9).

Certain organizational practices do not encour-
age strategy and code similarities. In a proportion
of HFT firms, developers worked by themselves
and no code reviews were conducted (Q2.10). Fur-
thermore, in firms that employed code reviews, the
discussions were often affected by social dynamics
(Q2.11). Therefore, code reviews often focused on
superficial characteristics of the code (e.g. variable
names; Q2.12) and did not affect its accuracy or
speed.

Developer identification. The dimension ‘devel-
oper identification’ answered the third research
question (“‘Which developers’ characteristics can
be identified by reading their codes?’). It was
related to the theme ‘developers or their charac-
teristics can be identified by reading their codes’
(see Figure 1). The quotations mentioned in this
section are given in Table 3 in the Appendix.

Developers or their characteristics can be iden-
tified by reading their codes. Several participants
stated that they could identify developers or their
characteristics by recognizing their coding style
(Q3.1) or their use of the programming languages
(Q3.2). For example, a senior HFT software expert
stated that he could identify code developers by
reading their codes:

‘You can read somebody’s code and see their
thumbprint on it [...] You know who has written
the code even if they haven’t necessarily put their
name on the top [...] It’s just like reading somebody’s
handwriting. If you work with somebody regularly,
you know, you can see [their style]’.

Discussion

Contributing to the literature on the expression of
individual differences in organizational decision-
making (Adams and Jiang, 2017; Hillenbrand

© 2022 The Authors. British Journal of Management published by John Wiley & Sons Ltd on behalf of British

Academy of Management.

Rise of the Androids

et al., 2020) and going beyond research on algo-
rithmic biases (Kordzadeh and Ghasemaghaei,
2022) and code characteristics (Gomez and Acuia,
2014), Study 1 suggested that HFT developers’
characteristics influenced their codes in many
ways. In particular, they affected the codes’ speed
and accuracy and could therefore distance the
codes from the ideal of unbounded rationality. Al-
though certain organizational practices, rules, and
regulations limited the extent to which these indi-
vidual characteristics were reflected in the codes,
HFT systems carried specific information about
their developers. Moreover, Study 1 suggested that
developers’ values and personal circumstances
influenced their codes, although they could be
incongruent with this ideal.

Study 2

Study 1 showed that in the HFT industry, codes re-
flected developers’ characteristics. However, it did
not examine industries other than HFT. Extending
Study 1, Study 2 investigated code development
in a range of companies, including additional
finance, healthcare and business management
firms. Furthermore, it systematically examined the
differences between developers’ codes and identi-
fied developers’ values. In addition, it investigated
the effects of personal circumstances, market con-
ditions, and regulations. As developers’ roles and
familiarity with the software could influence their
codes, it considered the effects of these factors,
too. Study 2 consisted of an individual, online
qualitative survey.

Method

Participants. Thirty-five code developers residing
in the UK, the USA, or Canada participated in
the study. They were recruited through Prolific
(https://app.prolific.co). As three participants sub-
mitted incomplete or unusable questionnaires, the
analysis drew on the answers of 32 participants.
The sample satisfied the data saturation criterion
(Guest, Bunce and Johnson, 2006; Robinson,
2014). It included 21 men, 10 women, and one
non-binary participant. Participants’ mean age
was 25.91 years (std. dev.: 8.12 years, min: 19 years,
max: 53 years). Five of the participants had a post-
graduate degree, and 10 had an undergraduate
degree. Participants worked in finance/accounting

9

firms, medical/healthcare firms, business man-
agement/administration firms, or other firms.
Accordingly, their coding outputs were diverse, in-
cluding, for example, machine-learning codes for
the analysis of cancer genomic data, healthcare
doctor appointment websites, storefront pages
for client purchases, payroll and tax calculation
systems, and computer antivirus software. Par-
ticipants worked as interns, software developers,
senior software developers, or lead programmers
at their firms. Eleven participants worked in large
companies (more than 1000 employees), and eight
participants worked at small firms (50 or fewer
employees). Participants were paid £3.50 for their
participation.

Materials. The questionnaire was designed to
obtain qualitative insights about developers’ code-
writing processes. Therefore, participants were
asked to explain their answers. The questionnaire
included questions about the topics listed below.

Work description. Participants were asked to
confirm that they were writing computer codes
to develop software and to describe their main
work responsibilities. Participants were also asked
to describe the codes that they developed and to
indicate the main application field of their codes.

Differences in codes, code-related values, and
error-handling procedures. To enable participants
to express their perceptions and avoid biasing their
answers, participants were first asked whether their
codes exhibited a particular style (‘Do you think
that your codes (design and implementation)
exhibit a particular style? If yes, please describe
some of the unique characteristics of your codes.
If not, please explain why’). Only afterwards were
they asked whether there were differences between
their codes and other developers’ codes, written for
the same or a similar purpose, and to explain their
answers. Participants were further asked whether
there were differences between them and their
colleagues in code-related values and in the ways
in which they debugged and tested their codes.

Sources of inspiration and influences on the codes.
Participants were asked to describe their sources
of inspiration. They were also asked to report
whether and how their codes were influenced by
personal circumstances, market conditions (e.g.
the COVID-19 pandemic), and regulation. In
addition, participants were asked whether their
firms had been involved in regulatory infrac-
tions, and whether such infractions affected their
codes.

© 2022 The Authors. British Journal of Management published by John Wiley & Sons Ltd on behalf of British

Academy of Management.

https://app.prolific.co

10

The extent to which the style of the codes re-
flected aspects of the developer’s self. Participants
were asked: “To what extent does the style of your
codes (design and implementation) reflect aspects
of yourself? Please explain your answer’. Then,
they were encouraged to consider their role in
the firm (‘Software is often developed by many
individuals. Do you have a central role in the de-
velopment of your firm’s software as a whole? If
yes, in which ways is your role central? In any case,
please explain your answer’) and familiarity with
the details of their firms’ software that they did not
develop. Following these questions, participants
were asked: ‘Considering your role in the devel-
opment of your firm’s software as a whole and
your knowledge of its details, are your individual
characteristics reflected in the software that you
work on? If yes, how? If not, does the software you
work on reflect the individual characteristics of
other people? How?” Participants were also asked
whether their codes reflected their ethical or moral
standards.

Participants’ demographic details and firms’
details. Participants were asked to report their
gender, age, highest level of education and degree
field, nationality, their firm’s location (city and
country), and the size of the firm, expressed as an
estimate of the number of employees.

The questionnaire included additional ques-
tions. It is given in the supplementary material file.

Findings

As with Study 1, I analysed participants’ answers
using content analysis methods. The themes,
concepts and dimensions that arose though the
analysis are summarized in Figure 2. Quotations,
exemplifying some of the obtained concepts are
presented in Tables 4-6 in the Appendix.

Differences in developers’ codes, code-related
values, and error-handling procedures. All the quo-
tations referred to in this section are presented in
Table 4 in the Appendix.

Code differences. Many participants reported
that their codes had a particular style, and over
half of the participants indicated that there were
differences between the codes that they and other
developers wrote for the same or a similar purpose.
Participants identified differences in their code
efficiency (Q4.1), accuracy, logic, readability, user-
friendliness (Q4.2), and external code character-
istics, such as variable names and comment style.

D. Sobolev

For example, a participant who developed data
analysis software for a bioinformatics firm wrote:

“Yes, I think my code is significantly more readable
and easy to learn from than others who may be
working on accomplishing a similar task’,

whereas a participant who developed buying
and selling service platforms wrote:

“Yes, other people’s code is much better, cleaner and
more efficient and logical than mine’.

As with HFT practitioners, differences in code
efficiency were often attributed to experience.
For instance, a participant who developed data
analysis software wrote:

“Yes, definitely. I'm not an extremely experienced
programmer, so the work I do is not always extremely
optimized and as efficient as possible’.

Participants who did not identify differences
between their codes and others’ codes often at-
tributed this uniformity to the necessity to follow
their firms’ protocols, rules, or guidelines, or to
similarities in developers’ experiences and educa-
tion. For instance, one of the participants wrote:

‘No, we produce our code tightly to our company
guidelines and everyone’s style will eventually end up
the same through a combination of our formatters,
style guides and linters’.

Differences in code-related values. Participants
had diverse code-related values, including effi-
ciency (Q4.3), accuracy (Q4.4), computational
speed, logical consistency, readability (Q4.5), ease
of maintenance, flexibility, reusability, modularity,
elegance, simplicity, conciseness, neatness, inno-
vation, novelty, creativity, and uniqueness (Q4.6).
For instance, one of the participants wrote:

‘Definitely. Some people value functionality over all
style and some people value style almost entirely over
functionality. I very much like my code to be read-
able and I like stylistically nice code [...] One of my
colleagues absolutely does not care for form at all’.

Differences in error-handling. About half of the
participants reported that there were differences
between their and other developers’ debugging
procedures (Q4.7) and testing procedures (Q4.8).
The rest of the participants either were unsure
about error-handling differences between them
and other developers, or reported that there were
none.

© 2022 The Authors. British Journal of Management published by John Wiley & Sons Ltd on behalf of British

Academy of Management.

Rise of the Androids 11
Themes and concepts Dimensions
4 N\
There are differences between codes written by different developers
These differences include: the codes’ efficiency, accuracy, logic,
readability, user-friendliness, and external characteristics Ve ~
N\ J
~ Differences in
There are differences in developers’ code-related values developers’
Developers’ code-related values include: efficiency, accuracy, codes, code-
computational speed, logical consistency, readability, ease of Ly related
maintenance, flexibility, reusability, modularity, elegance, simplicity, values, and
conciseness, neatness, innovation, novelty, creativity, and uniqueness error-handling
procedures
e N
There are differences in developers’ error-handling procedures \ J
Developers use a range of debugging and testing procedures
N
Personal circumstances affect developers’ codes
These circumstances include: stress, deadlines, and work environment
J
N Sources of
. . ,
Regulation arfd firm ruI.es affect 'developers codes ' inspiration
These regulations and firm rules include: healthcare regulations, and

regulation, and coding standards

general data protection regulation (GDRP), consumer protection

influences on
Y the codes

~
Developers draw on existing codes and learning experience

The existing codes include: code libraries, coders’ web sites and
communities, books, academic papers, and codes that they or their
colleagues have written)

Codes reflect developers’ characteristics

writing readable codes for knowledge sharing)

N

The reflected characteristics include: experience, passion, relationship
with colleagues, efficiency, logic, and moral standards (writing codes
that help others and do not harm them, are not used for malicious
purposes, using coding standards, preserving clients’ privacy and

~

Reflection of
developers’
/ characteristics

in their codes

characteristics of its developers

-

Considering the role in the development of the firms’ software and
the knowledge of the software details, software often reflects the

J

Figure 2. Study 2: Summary of main themes, concepts and dimensions

Sources of inspiration and influences on the
codes. The quotations referred to in this section
are given in Table 5 in the Appendix.

In line with the ideal of unbounded rationality
in codes, about half of the participants stated that
personal circumstances did not affect their codes
(Q5.1 and Q5.2). For example, a participant who
worked on security protocols and programs for
the NHS wrote:

‘No. I try to keep my work life separate from my
home’.

However, in disagreement with this ideal, other
participants suggested that their personal circum-

stances influenced their codes. Specifically, devel-
opers highlighted that stress, deadlines (Q5.3),
and work environment (Q5.4) could impact the
accuracy of their codes. For instance, one of the
participants wrote:

‘My codes can be influenced by personal circum-
stances because sometimes it might get messy or I
might make more mistakes based on if I'm in a rush
to finish or I'm just stressed out’.

Most participants reported that regulations did
not impact their codes. Nevertheless, several par-
ticipants noted that healthcare regulation, general
data protection regulation (GDRP), or consumer

© 2022 The Authors. British Journal of Management published by John Wiley & Sons Ltd on behalf of British

Academy of Management.

12

protection regulation impacted their codes. Par-
ticipants suggested that firm rules influenced their
codes, too. A single participant reported that his
firm had been involved in regulatory infractions.

Most participants reported that market con-
ditions did not affect their codes. Only few
participants indicated that during the COVID-19
pandemic their workload increased due to mar-
ket demand. Furthermore, during the pandemic,
working from home reduced the amount of feed-
back that they received from others and limited
the sharing of ideas.

Many developers reported that they drew their
inspiration from existing codes, including code
libraries, coders’ websites and communities (Stack
Exchange, GitHub, Reddit), books, academic
papers, and codes that they had written before.
Developers also mentioned their colleagues’ work
and the feedback they obtained from them as
sources of inspiration. Learning experiences were
perceived to affect the codes, too (Q5.5).

Reflection of developers’ characteristics in their
codes. All quotations in this section refer to Table 6
in the Appendix.

Participants exhibited diversity with respect to
the reflection of their characteristics in their codes.
Participants who reported that their codes did not
reflect aspects of themselves attributed this to the
lack of ability to express their personality (Q6.1)
or the lack of a need to do so (Q6.2). However,
over half of the participants reported that their
codes reflected aspects of themselves, including
their experience, passion (Q6.3), relationships
with colleagues (Q6.4), efficiency (Q6.5), and
logic (Q6.6). For instance, one of the participants
expressed the idea that his codes reflected his
experience as follows:

‘I think as my code gets more automatic it reflects
my growth as a programmer. Implementation-wise
as it gets more efficient [it] reflects my betterment in
computational thinking’.

Over a third of the participants considered their
role to be central. That was especially the case
for participants who were code developers or lead
programmers. The rest of the participants thought
that their roles were not central due to the nature
of their work or because they were a part of a
team (e.g. ‘No, if I work in a team it’s usually in
an equally distributed role’). A similar proportion
of participants reported that they were highly

D. Sobolev

familiar with the parts of the software that they
had not written. The reasons for their familiarity
included code management review responsibilities
(e.g. ‘1 manage almost all of the development
my research lab does, which means I do regular
code and functionality reviews. [Therefore,] I'm
quite familiar with almost all of the software my
lab produces’), reading code documentation and
meetings (e.g. “Yes, aware through reading docu-
mentation and hearing about work in meetings’),
or training (‘[Yes, because] this is a requirement
when training’). Other participants reported that
they had partial knowledge of the software, or
that they were not familiar with it (e.g. because of
non-disclosure agreements).

Considering their role in the development of the
firms’ software and their knowledge of the soft-
ware details, a proportion of participants reported
that their codes did not reflect any individual’s
characteristics. These participants held that the
software reflected their team efforts (Q6.7) and
firm rules or standards (Q6.8 and Q6.9). However,
over half of the participants reported that their
firms’ software reflected their individual charac-
teristics or the characteristics of other individuals.
In particular, participants suggested that the
software reflected their educational background
(Q6.10), perfectionism (Q6.11), readability aims,
error-handling and testing approach (Q6.12),
efficiency, and accuracy. Furthermore, one of the
participants highlighted that developers could be
identified through their codes:

“You can usually tell who wrote what parts by the
way it’s written’.

Participants who suggested that the code re-
flected the individual characteristics of other
people emphasized that it reflected the character-
istics of those who had created the main parts of
the software, including the team lead, the system’s
architect (Q6.13), colleagues, product managers
(Q6.14) or their clients (Q6.15). For instance, a
participant wrote:

‘It doesn’t reflect my character particularly. But,
it reflects my team lead’s characteristics. He is
very knowledgeable and organized. Our software
is mostly developed by him, so our code is so
organized’.

Some of the participants asserted that their
codes did not reflect their ethical or moral

© 2022 The Authors. British Journal of Management published by John Wiley & Sons Ltd on behalf of British

Academy of Management.

Rise of the Androids

standards. These participants did not justify
their answer (e.g. wrote only ‘No’), expressed the
belief that ethics had no relevance to their work
(Q6.16), or transferred the moral responsibility
to the user (Q6.17). For instance, one of the
participants wrote:

‘No. Code has nothing to do with one’s belief”.

One of the participants indicated that there
was variance in developers’ moral conduct and
that not all developers acted ethically (Q6.18).
However, many of the participants reported that
their codes reflected their ethical or moral stan-
dards. In particular, participants expressed their
ethicality by writing codes that helped others
and did not harm them (Q6.19), by developing
codes that served their declared purposes and
abstaining from using the codes for malicious
purposes (Q6.20), by following coding standards
such as the IEEE standard, by preserving clients’
privacy, and by writing readable codes (Q6.21 and
Q6.22). The latter was considered ethical because
it enabled knowledge-sharing on programmers’
websites. For example, one of the participants
wrote:

‘Sure. Things like developing a UI [user interface]
that intentionally preys on those that are not as
technologically literate would go against my morals
and so I don’t code that way’.

Discussion

The results of Study 2 extended many of the find-
ings of Study 1 from the HFT industry to a wider
range of industries. In particular, they highlighted
that developers’ characteristics (e.g. their experi-
ence) influenced their codes’ properties, including
the codes’ efficiency. In addition, they supported
this result also when developers considered their
role in the organizational software development
and their knowledge of software details. Personal
circumstances could affect the software, too, and
especially its accuracy. Furthermore, developers
had diverse code-related values. Whereas some of
their values (efficiency, accuracy, computational
speed, and logical consistency) were in line with
the ideal of unbounded rationality, other values
(e.g. readability, ease of maintenance, reusability,
elegance, innovation, creativity, and uniqueness)

13

suggested that developers did not always aim to
write unboundedly rational codes.

General discussion

Research on unbounded rationality has suggested
that certain computerized systems ‘appear as the
ultimate means to reach the apex of rationality —
a state in which bounded rationality is upended
and rationality has become unbounded for the
sake of efficiency and control’. Furthermore, it
has emphasized that ‘rationality is a value in and
of itself’ (Lindebaum and Den Hond, 2020, p.
259). Contributing to the literature on organiza-
tional decision-making (Delgado-Garcia, De La
Fuente-Sabaté and De Quevedo-Puente, 2010;
Hillenbrand et al., 2020), this study establishes
that elements of bounded rationality are embed-
ded in state-of-the-art computerized financial
decision-making systems, such as HFT systems, as
well as in codes that have applications in health-
care, business management, and other fields. These
elements of inefficiency or inaccuracy arise due
to developers’ characteristics, which have been
linked to bounded rationality, and are reflected
in the codes. In addition, they arise because de-
velopers value many code characteristics other
than rationality and try to optimize their codes
accordingly.

Investigating how developers’ characteristics in-
fluence their codes (research question 1), this study
identifies many characteristics that affect system
efficiency and accuracy, including code-related
characteristics (e.g. the ability to write codes that
run fast) and error-handling characteristics (e.g.
debugging skills). Personal circumstances, such as
deadlines and stress, could impact code accuracy,
too. Exploring how organizational practices and
rules affect the reflection of developers’ char-
acteristics in their codes (research question 2),
this study suggests that testing procedures, code
reviews, and code-writing rules can inhibit the
expression of developers’ characteristics in their
codes. Furthermore, the reflection of develop-
ers’ characteristics depends also on their roles.
Hiring procedures can reduce developer diver-
sity. Exploring the extent to which developers’
characteristics can be identified from their codes
(research question 3), this study shows that certain
developers’ characteristics (e.g. experience and
age) can be often inferred by examining the codes’
style, methods, and use of programming language.

© 2022 The Authors. British Journal of Management published by John Wiley & Sons Ltd on behalf of British

Academy of Management.

14

Management applications

The results of this study could be used to im-
prove hiring and training procedures in a wide
range of technology companies that aim to de-
velop accurate codes. Computerized system errors
can harm firms, employees, and clients. For in-
stance, HFT errors can cause mini or major flash
crashes (Braun et al., 2018; Kirilenko et al., 2017).
Similarly, certain healthcare machine-learning
algorithms can lead to dangerous diagnoses
(Richens, Lee and Johri, 2020). This study sug-
gests that developers’ error-handling skills and
attitudes are highly diverse. Furthermore, there
are differences in the extent to which developers
value error-handling. Hence, code errors may be
the result of inadequate hiring or training proce-
dures. Specifically, this study highlights the need
to assess job applicants’ error-handling skills and
perceptions and to develop appropriate training
programs.

The findings of this study can also be used to
improve firm practices. For instance, some HFT
developers suggested that, in their firms, code re-
views were influenced by personal considerations
and hence were not always efficient. Participants
working at other firms (e.g. management software
developers) reported that deadlines and stress
could impact the accuracy of their codes. There-
fore, this study suggests that careful examination
of firm practices could be beneficial.

Applications for the public debate on computerized
systems

The media has extensively debated the use of com-
puterized systems. For instance, in the context of
HFT, an article titled ‘March of the machines: The
stockmarket is now run by computers, algorithms
and passive managers’ (The Economist, 2019) sug-
gested that ‘the rise of financial robotisation [...]
raises questions about the function of markets’.
It pointed out that it is essential to understand
how HFT functions because ‘stockmarkets are
central to modern economies [...] How they op-
erate has big implications for financial stability
and corporate governance’. It concluded that it
was ‘significant that algorithms untethered from
human decision-making are starting to call the
shots’. Similarly, in the context of the healthcare
industry, the media has debated whether computer
diagnoses should be trusted (Ellis, 2020).

D. Sobolev

Highlighting that code developers transfer some
of their characteristics to their systems, this study
provides the media and the public with informa-
tion about the nature of computerized systems.
Furthermore, it suggests that the distinction be-
tween human and computer decision-making is
blurred. As a result, it emphasizes code develop-
ers’ accountability for both the positive aspects of
their systems and the negative ones.

Limitations and future research

Drawing on a large body of research (Kellard
et al., 2017; Mackenzie, 2018b; Tilba and Wil-
son, 2017), this study answered the key research
questions through the use of qualitative research
methods. It used research recommendations
(Saunders and Townsend, 2016) as well as the
data saturation criterion (Guest, Bunce and John-
son, 2006; Robinson, 2014) to choose participant
sample size, and aimed to formulate questions
that enabled participants to express a wide range
of perceptions. Nevertheless, as with any qualita-
tive study, sample size and question formulation
could influence the findings. Hence, it could be
beneficial to complement this study by the use of
quantitative research methods.

In both Study 1 and Study 2, participant
samples included fewer women than men. This
distribution is in line with the worldwide statis-
tics, according to which over 90% of software
developers are men and only about 5% of them
are women (Vailshery, 2022). It is also in ac-
cord with research showing that business services
favour male employment over women employment
(Johan and Valenzuela, 2021), that social networks
could hinder the recruitment of women (Allemand
et al., 2022), and that hiring committees exhibit
gender biases (Mengel, 2021). However, gender
homogeneity may influence code characteristics.
Future research examining how gender diversity
among developers influences code characteristics,
and in particular its accuracy and speed, could
improve computerized decision-making systems.

This study focused on developers’ cognitive
characteristics and on firm practices. However,
research has suggested that emotional traits have
an important role in organizational performance
(e.g. Delgado-Garcia, De La Fuente-Sabaté and
De Quevedo-Puente, 2010). In the context of
computerized decision systems, I hypothesize that
developers’ emotional traits could impact their

© 2022 The Authors. British Journal of Management published by John Wiley & Sons Ltd on behalf of British

Academy of Management.

Rise of the Androids

ability to deal with code errors. Future research
could explore this hypothesis.

Finally, regulation and its enforcement have
been shown to influence practitioners’ conduct
(Cumming, Groh and Johan, 2018; Cumming,
Hou and Wu, 2018). However, the results of
this study show that only a proportion of de-
velopers believe that regulation affects their
codes. That raises questions about the extent
to which regulation impacts ethical code de-
velopment and developers’ perceptions of the
regulation. Investigating these questions could
have important applications in highly regulated
industries, including the financial and healthcare
industries.

Appendix

15
Conclusion

This study shows that computerized systems
include idiosyncrasies of their developers. Fur-
thermore, it highlights the role of organizational
practices and rules in computerized systems de-
velopment. Thus, it suggests that computerized
systems comprise elements of bounded rationality.

Acknowledgement
I would like to thank Professor Matrin Kilduff

(The School of Management, University College
London) for his helpful insights and support.

Table 1. Study 1: Themes, concepts, and exemplifying quotations related to the dimension ‘developers’ characteristics’

Themes and concepts Exemplifying quotations

Developers exhibit
general code-related
individual differences

Expertise. Q1.1. ‘On the coding side, there are very different skill levels. [...] The [...] proportion of
people who can actually write good C++ code is actually fairly small.”
Education. Q1.2. ‘If, I would say, someone has a pure maths background, he will opt for techniques

that are theoretically correct, right. Whereas when you have an engineering background, you
know, not aiming for mathematical correctness, but for, you know, “it works well enough™.

Intelligence. Q1.3. “The only conclusion I can think is, yes. Why would [...] one person come up with
a certain idea and another person not come up with an idea? Even though that they are both [...]
thinking about the same problem. [...] There is, more or less, the same problem. So, yeah [...]
maybe one person is cleverer than the other person is’.

Age or generation. Q1.4. ‘Now there is a new generation of coders [...] [They] come from a much
stronger background. So — I learnt on the job [...] When I was a kid, I didn’t even know what
Goldman Sachs was [...] There is a new generation that are maths PhDs [...] One of my colleagues
has a PhD in maths from Stanford and Post-Doc in maths from Harvard [...] It’s a much stronger
generation [...] So, [HFT becomes] faster’.

Self-confidence. Q1.5. “Yes, my colleagues are slightly, like, more daring than me [...] so, they may
have new methodologies that I haven’t yet from a class that [am not confident with’.

Coding preferences. Q1.6. ‘So, for example, am, I don’t use open-source code, I write everything
myself [...] [Bank name] takes the code from open source, then they put their name on it’.

Style. Q1.7. “We all have our own style of writing code, and the things we are used to and things we

are considering beautiful code’.

Readability. Q1.8. ‘Code, in my very strong opinion, is not just about what the computer will do, it is
what’s written for people to understand and improve upon it. [...] I am trying to write code that
people can read and can understand [...] I am trying to make the code such that the relations
between parts are visible [...] On the other hand, I have colleagues who just write flow of many
many lines of code just to achieve a goal, which they do, but then it’s pretty tricky to understand
how they got [to] that point [...] It’s a really different kind of thinking about code’.

Developers exhibit
individual differences
in error-handling

The importance attributed to error-handling. Q1.9. ‘My personality has influence on the code, from
the perspective, that I have a very high commitment on correctness and stability. So, when I write
code, the code must be correct. I apply a lot of techniques in order to make sure that the code is

correct [...] So, this is my personality. Some people, they are not like that’.

© 2022 The Authors. British Journal of Management published by John Wiley & Sons Ltd on behalf of British

Academy of Management.

16

Table 1. (Continued)

D. Sobolev

Themes and concepts

Exemplifying quotations

Developers’
characteristics affect
their codes

Failure likelihood assessment. Q1.10. ‘Because people are very different, and one person’s test for
something may not be exactly as good as it should be [...] All probabilities in code about testing
are really anecdotal probabilities. They are what a person decides is [...] the probability, personal
probability of a failure. So [...] you want to make sure that you get as many views on that as
possible. Otherwise, [...] they might have a [...] lower probability of their interpretation of the
likelihood of failure than is reality. Just because they are more risk-averse or less risk-averse
person’.

Code defensiveness. Q1.11. ‘1 guess mistakes are a part of the personality [...] because some people
would be more pessimistic than others [...] So someone would think to himself “well, this kind of
scenario can happen, I can code for that”, other people would think: “oh no, that could never
happen, that’s just too unlikely, that’s just too catastrophically wrong, it can’t possibly happen”,
and they are not going to code for that. [...] Defensive coding [...] it’s called’.

Reliance on the defensiveness of team members’ codes. Q1.12. ‘Some people rely on the safety net of
other people’s ability to write code which will catch a failure scenario. And they lost hundred
millions in five minutes, and that’s a painful loss [...] I guess that’s another aspect of personality,
isn’t it, your belief that you are a part of a team, and that, maybe, that team, that you thought, is
probably more defensive than you are, would bail you out’.

Experience. Q1.13. “You also see people’s background in code as well. [...] If you have got someone
who has been doing a lot of coding in computer games and moved into [...] high-frequency
trading, then you will see tricks that they used in computer games in terms of bit flipping [...] to
speed things up [...]. So, ammm, yeah, absolutely. So, ah, and there are other people who are used
[to] very — I am going to say ‘Microsoft way’ of doing things [...] They follow all the logical steps,
and it’s very ordered [...] You can see it’.

Education. Q1.14. “Throughout my years of experience I have definitely found methods and
methodology [...] that I find particularly pleasing to use. So, [...] I guess you could say that it
reflects my personality, but it is based on what I have learnt’.

Age or maturity. Q1.15. ‘[am able to distinguish between codes written by] people who worked in
HFT from people who didn’t. It’s — glancing, I will tell you whether this person has worked in the
industry before or not, and I can get the age by 5 or 10 years, because [...] there is a certain
maturity that goes in code [...] In the beginning [...] there is a certain tendency to [...] show off.
And later, it’s stripping down to bare essence. You know, you don’t have to flourish [...] I
rediscovered ballet dancers recently. In the beginning it is all about raising the leg as high as
possible. But then it becomes the movement of a finger, the nuance of the fingers [...] It is
something to do with the craft after a certain number of years’.

Intelligence or sophistication. Q1.16. “The code that I write [...] [is] tricky [...] Just one example is, you
might be able to say, OK, when the market ticks up, I am going to run this calculation and decide
whether I am buying. Or, someone [could] say before the market has ticked up, I am actually going
to do a calculation [...] to say if the market goes up, or if it stays, or it goes down, what am I going
to do. So, you basically run through some scenarios in advance, so that when it happens, you have
got the answers [...] If you are then competing against another algorithm, which isn’t doing that,
well, you are going to beat it. Every time’.

Methodology. Q1.17. ‘1 would say that the way I think things out [...] is reflected [in my code]. I am
quite methodical in my approach to things, so, I hope that [it] shows in the code as well, that it is
methodical’.

Perfectionism. Q1.18. ‘I think that it reflects that I always try to do things perfectly’.

The ability to write fast codes. Q1.19. “Yes! Yes, there is! There is a lot of variations in development.
In our company we have a lot of junior developers and senior developers. So, there will be obvious
differences. [The juniors] may not know the right way or the fast way to do something [...] They
may not always know the performance techniques. So, there [are] slow areas in their code.’

Writing style. Q1.20. ‘Different people have different ways of, ah, writing code. And yes, you can see
that, you can see that’.

Q1.21. ‘My friend told me [laughing] [...] “oh you write code in so violent way” [...] My friend likes
elegant codes, and I like codes that go straight [...] You can see clearly what I want to do in the
codes [...] Writing codes in C++ is art! It’s just like you are painting, you are drawing a picture, it’s
not like [taking a] photo [...] C++ is a language, it’s art! [...] In C++ [...] some codes are really
beautiful, and my code looks like a man with muscles [...] If you are coding in C++ [...] you can
definitely tell the difference between these different code styles’.

© 2022 The Authors. British Journal of Management published by John Wiley & Sons Ltd on behalf of British

Academy of Management.

Rise of the Androids

Table 1. (Continued)

17

Themes and concepts

Exemplifying quotations

The desire for short term results. Q1.22. ‘I usually focus on short-term profit [...] yeah, so it reflects
my personality [...] because I want to see the short-term results instead of waiting years. For
example, in hedge funds [...] you always [wait] for years or half years’.

Interests. Q1.23. ‘I really find this subject really, really fascinating. This is why I am here; this is why I
crossed the ocean to be here’.

Tidiness. Q1.24. ‘I try to make my code organized. And my desk is actually pretty organized as well
[...] So, at least in some aspects of life I try to be organized and that includes code’.

Approach to error-handling and precision. Q1.25. ‘1 would say [...] it reflects my analytic side, to be
very thorough with what I am doing and not making any mistakes’.

Q1.26. ‘I prefer second-order accuracy or fourth-order accuracy of the numerical method [...] My
friend, he said: “come on, it’s the finance world! For the dynamics you just need the first order”
[...] Second-order accuracy [...] is really good [...] It’s good heart’.

Risk propensity. Q1.27. ‘[Some developers are like] ‘cowboys’[...] They [...] tend to take huge risks in
their algorithms even if they sometimes break the corporate policy. For example, you have a [...]
risk probability [of] 1%, they normally break it in their code. [Other developers] are much [more]
risk-intolerant, and they are very careful’.

Personal circumstances. Q1.28. ‘[Implementing] some change that a trader wants to incorporate into
the system, am [costs] a certain amount of [...] time and material, developer resources and so on.
Now, often [...] if I wasn’t operating [in HFT] environment, I was just a part of the technology
organization, I may say: “this is the best way to do it, and it’s going to cost you three months,” and
I would just get on and do that work. But when you are sitting with them you see that there are
opportunities which are only there today, you need to [...] take those opportunities, and even if
there is a risk of failure [...] I always think in terms of, I want to build my software so that it will
never fail, but sometimes, to build very fast software, you have to compromise and make it fragile.
And it can fail. But it’s ok, so long as it’s working within a controlled environment, where failure is
managed’.

Table 2. Study 1: Themes, concepts and exemplifying quotations related to the dimension ‘organizational practices and rules’

Themes and concepts

Exemplifying quotations

Certain organizational
practices and rules
encourage code
similarities

Code reviews. Q2.1. ‘“There is a lot of effort put into making things consistent, lots of peer
reviews, so before any change goes on to the Master [...] which is the one which finds its
way to production, [...] there are tight controls [...] People are going over it, asking
questions, [...] and that [...] encourages people to have a consistent style’.

Code integration. Q2.2. “To get rid of personality in code [...] you will have redundant
systems written by different people [...] So, for instance, I had two risk engines on my
front end, one written in one language by one set of developers, and one written in
another language by a different set of developers, and they were in series. So, for this very
important part of the code, which is the risk engine for the execution, it had two checks
by independent [codes]. [...] So that’s how you get rid of personality in code. But there is
always personality in code’.

Job rotations. Q2.3. ‘In previous work we rotated on modules of a system a lot and as a
result, different modules were similar’.

Code writing rules. Q2.4. °If they [code writers] are good, they should be fitting to the
surrounding code, they adapt like chameleons to the code that surrounds them. They will
say: “OK, on this project we use some kind of style, I will do my best to fit in’”.

Teaching and inspiration. Q2.5. “You learn something from somebody else, who says, “that’s
not a good way to do it”. So, you think, oh yeah, the way you have just explained is
better. So, therefore, you implement that yourself”.

Q2.6. ‘I try not to invent algorithms by myself. I always include mathematicians and quants
into that, because they often have something very interesting to say and teach me a lesson
or two’.

© 2022 The Authors. British Journal of Management published by John Wiley & Sons Ltd on behalf of British

Academy of Management.

18

Table 2. (Continued)

D. Sobolev

Themes and concepts

Exemplifying quotations

Certain organizational
practices and rules do
not encourage code
similarities

Regulation controls. Q2.7. ‘Crossing above your risk level in [...] [bank name] is — I would
say it, ah, without any doubt: impossible. The amount of different layers within the
organization that prohibits you [from] going beyond that risk level is so robust [...] that
it’s almost boring in some ways’.

Hiring procedures. Q2.8. ‘Typically, [...] you get hired because of your similarity to the other
people [who are] already in the firm. That’s a part of the culture. So [...] if the hiring
manager likes to risk, and does not think defensively, then the odds are that he is going to
employ more and more people like that’.

Q2.9. ‘I think, to a large degree, we are very similar personality-wise. It is a very
homogeneous workplace. I mean, not [only] ethnic, even ethnic or gender-wise, but also
mind-set-wise. Because [...] the system you are working on — it’s a very good filter, it, kind
of, homogenizes the workforce, [so that practitioners have] very specific skills and
mind-sets’.

Q2.10. [In] the bank [...] it was very much the case, that you would write a piece of software
and it was up to you to test it and you take full responsibility. So, the code very much
reflected your personality, your ability and inability to think logically’.

Q2.11. ‘“There may be egos involved [in code reviews.] [...] One thing where this shows is that
you think that everyone else’s code is rubbish, except for your own. [...] So, when I see
actually code, I say — “well, actually it’s not rubbish [...] I should respect [it]”. But, in
addition to that, [...] I almost always want to touch someone else’s code, as in, change this
or change that [...] and I receive the same from the other people. Like, when they see my
code, they say: “OK, it’s decent, but I will change this or change that™.

Q2.12. “It’s a pity, really, because, you know, either you [should] confess that you don’t
understand [if] you are not afraid, or you [should] make sensible comments, like “oh, be
aware, cause that’s going to break something, right, that functionality should not be
written like that, that should be different”[...] And the comments that I get are just like
“oh, I don’t really like that variable name, could you make it [different]?” [...] [I answer:]

993

“OK, I will do it if it makes you more comfortable. But please pay attention to the logic’™.

Table 3. Study 1: Concepts and exemplifying quotations related to the dimension ‘developer identification’

Concepts

Exemplifying quotations

Developers or their
characteristics can be
identified by reading
their codes

One can identify code writers or their characteristics based on their coding style. Q3.1.
‘Different people have different coding styles, and [...], at least [in] my team, it is very easy
to tell which code is mine. The style is very clear. Maybe the whole structure [...],
architecture of the system, if you consider it as a building, it’s solid, it has some rules, but
inside, how you decorate your own room, it’s quite different. So, I can easily tell, ok, this
part of the code is written by who’.

One can identify code writers or their characteristics based on their use of programming
languages. Q3.2. ‘1 can read code and tell the mood of the [code writers] [...] And their
state of mind [...] — whether they have been interested in the code, whether they have been
really safe [...] For me, coding is poetry [...] [I can] guess his age [...] So, for example, you
have got a language like Java [...] There is a certain style of coding — Java promotes that
coding. If you are older, like I am, I mean, I first learnt how to code in Assembly
language. So, the code I write is much more like C++ than Java. So, as soon as I see a bit
of code, I know [whether] this person is experienced in Java. Therefore, that person, is
typically between 30 and 35. And I can tell how much experience the person has got as
well, because there are certain shortcuts you make [...] I can tell if someone is as old as
me, because they will probably write in a similar style’.

© 2022 The Authors. British Journal of Management published by John Wiley & Sons Ltd on behalf of British

Academy of Management.

Rise of the Androids

19

Table 4. Study 2. Concepts and exemplifying quotations related to the dimension ‘differences in developers’ codes, code-related values, and

error-handling procedures’

Concepts

Exemplifying quotations

There are differences
between codes written
by different
developers

There are differences in
developers’
code-related values

There are differences in
developers’
error-handling
procedures

Efficiency. Q4.1. “‘Most of the programmers have their own quirks and approach to
structuring code, and I have noticed their use of more efficient methods [...] I attribute
this to experience, and the length of time served within our company’.

User-friendliness. Q4.2. ‘1 always see who will use this software before starting and make it
easier accordingly. More user-friendly’.

Efficiency. Q4.3. “Yes some people are more focused on making it as short / efficient as
possible’.

Accuracy. Q4.4. ‘1 value testing and error correcting a great deal more than most’.

Readability. Q4.5. ‘Some people don’t value coherency in code as much as I do. When I
code, I want new readers to be able to tell what is going on without having to spend hours
looking at the code’.

Uniqueness. Q4.6. ‘1 think I tend to value uniqueness and cool-factor a lot more than others
[and] to make my code as interesting as possible. Innovation is extremely cool to explore
when efficiency-chasing is not a priority!’

Debugging procedures. Q4.7. ‘Some of the senior programmers can identify the likely cause
of the website or app not performing as intended simply from what does and doesn’t
work; I am not yet at that level. I will break up the affected section of code and identify
working elements before running through line by line to debug any issues, starting with
the more obvious mistakes (typos in variable or operation names, missing parentheses or
semicolons etc)’.

Testing procedures. Q4.8. ‘1 take a very scientific and rigorous approach to testing (unless
I'm 100% logically sure that my code is correct [...]). Some people don’t follow the
scientific method quite so closely and take the approach of just testing enough until
they’ve convinced themselves that their code works. In any case, it just depends on how
high you set the bar for your personal testing standards’.

Table 5. Study 2: Concepts and exemplifying quotations related to the dimension ‘sources of inspiration and influences on the codes’

Concepts

Exemplifying quotations

Personal circumstances
do not affect
developers’ codes

Personal circumstances
affect developers’
codes

Learning experience
affects developers’
codes

Q5.1. “No. Regardless of what’s going on in my life or how I’'m feeling my code is still the
generic code it takes to get the job done’.

Q5.2. “No, I tend to stick to more conventional coding styles which keeps me on track
without much influence from my personal circumstances’.

Deadlines. Q5.3. ‘Sometimes yeah. I guess when I am in a hurry or I have a deadline to
meet, then I can’t test my code thoroughly which sometimes results in poor code or error’.

Work environment. Q5.4. “Yes. By myself I find my code takes longer to produce, but with
less mistakes. However, in a faster paced environment surrounded by my co-workers my
code is produced much quicker; however mistakes are likely to slip in’.

Q5.5. “No, they are not influenced by personal circumstances. I'd rather say they are
influenced by the progress that I have made in [my] journey on learning to code’.

© 2022 The Authors. British Journal of Management published by John Wiley & Sons Ltd on behalf of British

Academy of Management.

20

D. Sobolev

Table 6. Study 2: Concepts and exemplifying quotations related to the dimension ‘reflection of developers’ characteristics in their codes’

Concepts

Exemplifying quotations

Codes do not reflect
developers’
characteristics

Codes reflect
developers’
characteristics

Considering the role in
the development of
the firms’ software
and the knowledge of
the software details,
the software does not
reflect developers’ or
other people’s
characteristics

Considering the role in
the development of
the firms’ software
and the knowledge of
the software details,
the software reflects
developers’ or other
people’s
characteristics

Software does not
reflect the developers
moral standards

Software reflects the
developers’ moral
standards

i

Q6.1. ‘Not much because I don’t think I'm a very good developer so it’s not really an
indication of aspects of myself’.

Q6.2. ‘Not really at all. At the end of the day, I am an engineer trying to solve a problem,
not show my personality’.

Passion. Q6.3. ‘A great deal of my passion and thought-process is reflected within my
software’.

Relationship with colleagues. Q6.4. ‘1 think my coding style definitely reflects some aspects
of myself. I like to make sure my peers learn and work with me, instead of desperately
trying to keep up with me as I forge ahead. I'm also eager to learn, and make sure my
code reflects possible improvements that can be made’.

Efficiency. Q6.5. ‘1 like things to be efficient, simple and uncomplicated, I also prefer this in
life with most things at least’.

Logic. Q6.6. ‘I am a very logical thinker, and prefer not to be ambiguous in both my actions
and use of language, whether written or spoken. I don’t rush important tasks to ensure I
produce the best work that I am capable of. My code reflects my working attitude quite
closely’.

Q6.7. ‘No as my work is always part of a team or larger group and we work with clearly
defined processes’.

Q6.8. “We have to follow [the] same rules or styles to develop any software. So it [is] basically
companies characteristics that [it] reflect[s]’.

Q6.9. ‘No, it does not reflect individual characteristics of other people. It’s an industry
format’.

The codes reflect the participants’:

Educational background. Q6.10. ‘A lot of my methods in medicine are reflected within my
software’.

Perfectionism. Q6.11. ‘My characteristics are reflected in the software because you can tell
that I put a lot of work into it and that I made sure it [is] the best work that I could do’.

Error-handling and testing approach. Q6.12. “Yes, to an extent, as [...] I would think of all
possible situations that could create an error or a situation where the code would not
work and fix that up before the final step, however some others just write the code
because it’s their job’.

The codes reflect other individuals

Q6.13. “We work towards the lead architect’s vision and structure, so it more reflects his
characteristics’.

Q6.14. “It’s a functional product that reflects the decisions of project managers, product
managers and developers’.

Q6.15. “We build software for other companies, so we follow the client’s requests’.

Q6.16. ‘No. It does not come into play’.

Q6.17. ‘No, I am the writer, what they do with it is [on] them’.

Q6.18. ‘I ensure my code is as legible and clearly documented as I can make it to enable the
client to carry out alterations either by themselves or, if they desire, another development
firm. I have seen several cases of poor documentation or unclear code that suggests
others purposefully obscure their code from clients’.

Q6.19. “Yes, [it’s] clean code that only serves to help the company and the people that access
our services’.

Q6.20. ‘I keep security in mind at all time and do not inject anything malicious doing what
the app is not supposed to do to serve my purpose / other parties’ interest’.

Q6.21. “Yes, I think my code does reflect my ethical standards. I try to write for readability,
to make sure knowledge is shared as much as possible’.

Q6.22. ‘I hope so: it’s reproducible and open-source (published on GitHub)’.

© 2022 The Authors. British Journal of Management published by John Wiley & Sons Ltd on behalf of British

Academy of Management.

Rise of the Androids

References

Acuia, S. T., M. Gémez and N. Juristo (2009). ‘How do per-
sonality, team processes and task characteristics relate to job
satisfaction and software quality?’, Information and Software
Technology, 51, pp. 627-639.

Adams, M. and W. Jiang (2017). ‘Do chief executives’ traits affect
the financial performance of risk-trading firms? Evidence from
the UK insurance industry’, British Journal of Management,
28, pp. 481-501.

Allemand, 1., J. Bédard, B. Brullebaut and J. Deschénes (2022).
‘Role of old boys’” networks and regulatory approaches in se-
lection processes for female directors’, British Journal of Man-
agement, 33, pp. 784-805.

Amin, A., S. Basri, M. Rahman, L. Z. Capretz, R. Akbar, A.
R. Gilal and M. F. Shabbir (2020). ‘The impact of personality
traits and knowledge collection behavior on programmer cre-
ativity’, Information and Software Technology, 128, p. 106405.

Anderson, A. (2013). ‘Trading and under-diversification’, Review
of Finance, 17, pp. 1699-1741.

Back, M. D., S. C. Schmukle and B. Egloff (2008). ‘How ex-
traverted is honey.bunny77@hotmail.de? Inferring personality
from e-mail addresses’, Journal of Research in Personality, 42,
pp. 1116-1122.

Bir, M., A. Kempf and S. Ruenzi (2011). ‘Is a team different from
the sum of its parts? Evidence from mutual fund managers’,
Review of Finance, 15, pp. 359-396.

Barber, B. M. and T. Odean (2008). ‘All that glitters: the effect
of attention and news on the buying behavior of individual
and institutional investors’, The Review of Financial Studies,
21, pp. 785-818.

Baron, M., J. Brogaard, B. Hagstromer and A. Kirilenko (2019).
‘Risk and return in high-frequency trading’, Journal of Finan-
cial and Quantitative Analysis, 54, pp. 993-1024.

Bosu, A., J. C. Carver, C. Bird, J. Orbeck and C. Chockley (2017).
‘Process aspects and social dynamics of contemporary code
review: insights from open source development and industrial
practice at Microsoft’, IEEE Transactions on Software Engi-
neering, 43, pp. 56-75.

Bozec, R., M. Dia and Y. Bozec (2010). ‘Governance—
performance relationship: a re-examination using technical
efficiency measures’, British Journal of Management, 21,
pp. 684-700.

Braun, T., J. A. Fiegen, D. C. Wagner, S. M. Krause and T. Guhr
(2018). ‘Impact and recovery process of mini flash crashes: an
empirical study’, Plos One, 13, pp. 1-11.

Chaboud, A. P, B. Chiquoine, E. Hjalmarsson and C. Vega
(2014). ‘Rise of the machines: algorithmic trading in the for-
eign exchange market’, The Journal of Finance, 69, pp. 2045~
2084.

Ciolkowski, M., O. Laitenberger and S. Biffl (2003). ‘Software
reviews: the state of the practice’, IEEE Software, 20, pp. 46—
51.

Conrad, J.,, S. Wahal and J. Xiang (2015). ‘High-frequency quot-
ing, trading, and the efficiency of prices’, Journal of Financial
Economics, 116, pp. 271-291.

Coolican, H. (1995). Introduction to Research Methods and
Statistics in Psychology. London: Hodder & Stoughton.

Corbin, J. and A. Strauss (2008). Basics of Qualitative Research:
Techniques and Procedures for Developing Grounded Theory.
London: Sage.

21

Croce, A., E. Ughetto and M. Cowling (2020). ‘Investment mo-
tivations and UK business angels’ appetite for risk taking: the
moderating role of experience’, British Journal of Manage-
ment, 31, pp. 728-751.

Cumming, D., A. P. Groh and S. Johan (2018). ‘Same rules,
different enforcement: market abuse in Europe’, Journal of
International Financial Markets, Institutions and Money, 54,
pp. 130-151.

Cumming, D., W. Hou and E. Wu (2018). ‘Exchange trad-
ing rules, governance, and trading location of cross-listed
stocks’, The European Journal of Finance, 24, pp. 1453—
1484.

Davis, M., A. Kumiega and B. Van Vliet (2013). ‘Ethics, finance,
and automation: a preliminary survey of problems in high fre-
quency trading’, Science and Engineering Ethics, 19, pp. 851—
874.

Delgado-Garcia, J., J. De La Fuente-Sabaté and E. De Quevedo-
Puente (2010). “Too negative to take risks? The effect of the
CEO’s emotional traits on firm risk’, British Journal of Man-
agement, 21, pp. 313-326.

D’hont, L., R. Doern and J. Delgado Garcia (2016). ‘The
role of friendship in the formation and development of en-
trepreneurial teams and ventures’, Journal of Small Business
and Enterprise Development, 23, pp. 528-561.

EisenbeiB3, S. and S. Boerner (2013). ‘A double-edged sword:
transformational leadership and individual creativity’, British
Journal of Management, 24, pp. 54-68.

El-Bouri, W. K., Y. X. Gue and G. Y. H. Lip (2021). ““Rise of
the machines”: the next frontier in individualized medicine’,
Cardiovascular Research, 117, pp. e129-e131.

Ellis, R. (2020). ‘As artificial intelligence proves as effective
as doctors at reading scans, we ask... would you trust a
computer to diagnose your illness?’, Daily Mail. Avail-
able at https://www.dailymail.co.uk/health/article-8067601/
Would-trust-computer-diagnose-illness.html.

Evans, R. B., M. P. Prado and R. Zambrana (2020). ‘Competi-
tion and cooperation in mutual fund families’, Journal of Fi-
nancial Economics, 136, pp. 168-188.

Fazelpour, S. and D. Danks (2021). ‘Algorithmic bias: senses,
sources, solutions’, Philosophy Compass, 16, pp. 1-16. Avail-
able at https://compass.onlinelibrary.wiley.com/doi/full/10.
1111/phc3.12760.

Galouchko, K., A. Torsoli and J. Ekblom (2022). °Citi’s
painful flash crash highlights risks from algo trades’,
Bloomberg. Available at https://www.bloomberg.com/news/
articles/2022-05-03/citi-s-painful-flash-crash-highlights-market-
risks-from-algos.

Gioia, D. A., K. G. Corley and A. L. Hamilton (2013). ‘Seek-
ing qualitative rigor in inductive research’, Organizational Re-
search Methods, 16, pp. 15-31.

Gomez, M. N. and S. T. Acufa (2014). ‘A replicated quasi-
experimental study on the influence of personality and team
climate in software development’, Empirical Software Engi-
neering: An International Journal, 19, pp. 343-377.

Guest, G., A. Bunce and L. Johnson (2006). ‘How many inter-
views are enough? An experiment with data saturation and
variability’, Field Methods, 18, pp. 59-82.

Hajli, N., U. Saeef, M. Tajvidi and F. Shirazi (2022). ‘Social bots
and the spread of disinformation in social media: the chal-
lenges of artificial intelligence’, British Journal of Manage-
ment, 33, pp. 1238-1253.

© 2022 The Authors. British Journal of Management published by John Wiley & Sons Ltd on behalf of British

Academy of Management.

https://www.dailymail.co.uk/health/article-8067601/Would-trust-computer-diagnose-illness.html
https://www.dailymail.co.uk/health/article-8067601/Would-trust-computer-diagnose-illness.html
https://compass.onlinelibrary.wiley.com/doi/full/10.1111/phc3.12760
https://compass.onlinelibrary.wiley.com/doi/full/10.1111/phc3.12760
https://www.bloomberg.com/news/articles/2022-05-03/citi-s-painful-flash-crash-highlights-market-risks-from-algos
https://www.bloomberg.com/news/articles/2022-05-03/citi-s-painful-flash-crash-highlights-market-risks-from-algos
https://www.bloomberg.com/news/articles/2022-05-03/citi-s-painful-flash-crash-highlights-market-risks-from-algos

22

Hillenbrand, C., A. Saraeva, K. Money and C. Brooks (2020).
“To invest or not to invest? The roles of product information,
attitudes towards finance and life variables in retail investor
propensity to engage with financial products’, British Journal
of Management, 31, pp. 688-708.

Hirschmiiller, S., B. Egloff, S. Nestler and M. D. Back (2013).
‘The dual lens model: a comprehensive framework for un-
derstanding self—other agreement of personality judgments at
zero acquaintance’, Journal of Personality and Social Psychol-
ogy, 104, pp. 335-353.

Hoffmann, P. (2014). ‘A dynamic limit order market with fast and
slow traders’, Journal of Financial Economics, 113, pp. 156
169.

Isidore, C. (2019). ‘Machines are driving Wall Street’s wild
ride, not humans’, CNN Business (February 6). Available
at https://money.cnn.com/2018/02/06/investing/wall-street-
computers-program-trading/index.html.

Jarnecic, E. and M. Snape (2014). ‘The provision of liquid-
ity by high-frequency participants’, The Financial Review, 49,
pp- 371-394.

Johan, S. and P. Valenzuela (2021). ‘Business advisory services
and female employment in an extreme institutional context’,
British Journal of Management, 32, pp. 1082-1096.

Kawa, L. (2018). ‘Goldman warns the rise of the machines
leaves markets exposed’, Bloomberg (May 23). Available at
https://www.bloombergquint.com/markets/goldman-warns-
the-rise-of -the-machines-leaves-markets-exposed#gs.3rue3o.

Kellard, N., Y. Millo, J. Simon and O. Engel (2017). ‘Close com-
munications: hedge funds, brokers and the emergence of herd-
ing’, British Journal of Management, 28, pp. 84-101.

Kirilenko, A., A. S. Kyle, M. Samadi and T. Tuzun (2017). ‘The
flash crash: high-frequency trading in an electronic market’,
The Journal of Finance, 72, pp. 967-998.

Kiss, H. J., I. Rodriguez-Lara and A. Rosa-Garcia (2020). ‘Does
response time predict withdrawal decisions? Lessons from
a bank-run experiment’, Review of Behavioral Finance, 12,
pp. 200-222.

Kordzadeh, N. and M. Ghasemaghaei (2022). ‘Algorithmic bias:
review, synthesis, and future research directions’, European
Journal of Information Systems, 31(3), pp. 388-409. Available
at https://www.tandfonline.com/doi/full/10.1080/0960085X.
2021.1927212.

Koumakhov, R. and A. Doud (2021). ‘Decisions and structures:
a dialogue between Herbert Simon and critical realists’, British
Journal of Management, 32, pp. 1404-1420.

Kifner, A. C. P, M. D. Back, S. Nestler and B. Egloff (2010).
“Tell me a story and I will tell you who you are! Lens model
analyses of personality and creative writing’, Journal of Re-
search in Personality, 44, pp. 427-435.

Lindebaum, D. and F. den Hond (2020). ‘Insights from “the ma-
chine stops” to better understand rational assumptions in al-
gorithmic decision making and its implications for organiza-
tions’, The Academy of Management Review, 45, pp. 247-263.

MacKenzie, D. (2018a). ‘Material signals: a historical sociology
of high-frequency trading’, The American Journal of Sociol-
ogy, 123, pp. 1635-1683.

MacKenzie, D. (2018b). “Making’, ‘taking’ and the material po-
litical economy of algorithmic trading’, Economy and Society,
47, pp. 501-523.

Manahov, V. (2016). ‘Front-running scalping strategies and
market manipulation: why does high-frequency trading need
stricter regulation?’, The Financial Review, 51, pp. 363-402.

D. Sobolev

Mintyla, M. V. and C. L. Lassenius (2009). “What types of de-
fects are really discovered in code reviews?’, IEEE Transactions
on Software Engineering, 35, pp. 430-448.

MarketWatch. (2022). ‘High-frequency trading market growth
2022 to 2027’. Available at https://www.marketwatch.com/
press-release/high-frequency-trading-market-growth-2022-to-
2027-share-global-industry-size-trends-emerging-factors-
demands-key-players-emerging-technologies-and-potential-
of-industry-2022-03-28.

Mclntosh, S., Y. Kamei, B. Adams and A. E. Hassan (2016). ‘An
empirical study of the impact of modern code review practices
on software quality’, Empirical Software Engineering, 21, pp.
2146-2189.

Metiu, A. (2006). ‘Owning the code: status closure in distributed
groups’, Organization Science, 17, pp. 418-435.

Mengel, F. (2021). ‘Gender bias in opinion aggregation’, Interna-
tional Economic Review, 62(3), pp. 1055-1080.

Moore, E. (2013). “‘Men or machines: who runs the markets?’,
Financial Tmes, (March 15). Available at http://ig-legacy.
ft.com/content/15f4631c-486d-11e2-alc0-00144feab49a#axzz
SII6NEYAM

Nguyen, T. M. and A. Malik (2022). ‘A two-wave cross-lagged
study on Al service quality: the moderating effects of the
job level and job role’, British Journal of Management, 33,
pp. 1221-1237.

Orehek, E. and L. J. Human (2017). ‘Self-expression on social
media: do tweets present accurate and positive portraits of im-
pulsivity, self-esteem, and attachment style?’, Personality and
Social Psychology Bulletin, 43, pp. 60-70.

Patterson, S. and A. Osipovich (2020). ‘High-frequency traders
feast on volatile market: profits climb sharply with help from
sophisticated computer algorithms and strategies that take
advantage of rips and dips; ‘a quarter for the record books”,
Wall Street Journal, Available at https://www.wsj.com/articles/
high-frequency-traders-feast-on-volatile-market-11585310401.

Qiu, L., H. Lin, J. Ramsay and F. Yang (2012). “You are
what you tweet: personality expression and perception on
Twitter’, Journal of Research in Personality, 46, pp. 710—
718.

Richens, J. G., C. M. Lee and S. Johri (2020). ‘Improving the
accuracy of medical diagnosis with causal machine learning’,
Nature Communications, 11, pp. 1-9.

Robinson, O. C. (2014). ‘Sampling in interview-based qualita-
tive research: a theoretical and practical guide’, Qualitative Re-
search in Psychology, 11, pp. 25-41.

Saunders, M. N. K. and K. Townsend (2016). ‘Reporting and
justifying the number of interview participants in organization
and workplace research’, British Journal of Management, 27,
pp. 836-852.

Simon, H. A. (1947/1997). Administrative Behavior. A Study of
Decision-Making Processes in Administrative Organizations.
New York, NY: Free Press.

Sobolev, D. (2020). ‘Insider information: the ethicality of the
high frequency trading industry’, British Journal of Manage-
ment, 31, pp. 101-122.

Sonenshein, S. (2014). ‘How organizations foster the creative use
of resources’, Academy of Management Journal, 57, pp. 814—
848.

Stoian, M., P. Dimitratos and E. Plakoyiannaki (2018). ‘SME in-
ternationalization beyond exporting: a knowledge-based per-
spective across managers and advisers’, Journal of World Busi-
ness, 53, pp. 768-779.

© 2022 The Authors. British Journal of Management published by John Wiley & Sons Ltd on behalf of British

Academy of Management.

https://money.cnn.com/2018/02/06/investing/wall-street-computers-program-trading/index.html
https://money.cnn.com/2018/02/06/investing/wall-street-computers-program-trading/index.html
https://www.bloombergquint.com/markets/goldman-warns-the-rise-of-the-machines-leaves-markets-exposed#gs.3rue3o
https://www.bloombergquint.com/markets/goldman-warns-the-rise-of-the-machines-leaves-markets-exposed#gs.3rue3o
https://www.tandfonline.com/doi/full/10.1080/0960085X.2021.1927212
https://www.tandfonline.com/doi/full/10.1080/0960085X.2021.1927212
https://www.marketwatch.com/press-release/high-frequency-trading-market-growth-2022-to-2027-share-global-industry-size-trends-emerging-factors-demands-key-players-emerging-technologies-and-potential-of-industry-2022-03-28
https://www.marketwatch.com/press-release/high-frequency-trading-market-growth-2022-to-2027-share-global-industry-size-trends-emerging-factors-demands-key-players-emerging-technologies-and-potential-of-industry-2022-03-28
https://www.marketwatch.com/press-release/high-frequency-trading-market-growth-2022-to-2027-share-global-industry-size-trends-emerging-factors-demands-key-players-emerging-technologies-and-potential-of-industry-2022-03-28
https://www.marketwatch.com/press-release/high-frequency-trading-market-growth-2022-to-2027-share-global-industry-size-trends-emerging-factors-demands-key-players-emerging-technologies-and-potential-of-industry-2022-03-28
https://www.marketwatch.com/press-release/high-frequency-trading-market-growth-2022-to-2027-share-global-industry-size-trends-emerging-factors-demands-key-players-emerging-technologies-and-potential-of-industry-2022-03-28
http://ig-legacy.ft.com/content/15f4631c-486d-11e2-a1c0-00144feab49a#axzz5jl6NEYAM
http://ig-legacy.ft.com/content/15f4631c-486d-11e2-a1c0-00144feab49a#axzz5jl6NEYAM
http://ig-legacy.ft.com/content/15f4631c-486d-11e2-a1c0-00144feab49a#axzz5jl6NEYAM
https://www.wsj.com/articles/high-frequency-traders-feast-on-volatile-market-11585310401
https://www.wsj.com/articles/high-frequency-traders-feast-on-volatile-market-11585310401

Rise of the Androids

Tilba, A. and J. Wilson (2017). “Vocabularies of motive and tem-
poral perspectives: examples of pension fund engagement and
disengagement’, British Journal of Management, 28, pp. 502—
518.

Tskhay, K. O. and N. O. Rule (2014). ‘Perceptions of personal-

ity in text-based media and OSN: a meta-analysis’, Journal of

Research in Personality, 49, pp. 25-30.

The Economist. (2019). “‘March of the machines: the stockmarket
is now run by computers, algorithms and passive managers’.
Available at https://www.economist.com/briefing/2019/10/05/
the-stockmarket-is-now-run-by-computers-algorithms-and-
passive-managers.

Vailshery, S. J. (2022). ‘Software developer gender distribu-
tion worldwide as of 2021°, Statista, Available at https://

23

www.statista.com/statistics/1126823/worldwide-developer-
gender/.

Wang, Y., L. Kung, S. Gupta and S. Ozdemir (2019). ‘Leveraging
big data analytics to improve quality of care in healthcare or-
ganizations: a configurational perspective’, British Journal of
Management, 30, pp. 362-388.

Yilmaz, M., R. V. O’Connor, R. Colomo-Palacios and P. Clarke
(2017). ‘An examination of personality traits and how they im-
pact on software development teams’, Information and Soft-
ware Technology, 86, pp. 101-122.

Zhou, W. and N. Olivari (2013). ‘EBS take new step to
rein in high-frequency traders’, Reuters Newswire, August
23. Available at https://www.reuters.com/article/us-markets-
forex-hft-idUSBRE97MO0YJ20130823.

Finance dissertation module.

Daphne Sobolev has a PhD in Psychology and a PhD in Applied Mathematics. She works as a Lecturer
(Education) and an Honorary Research Associate at the School of Management, University College
London. Daphne specializes in decision-making, behavioural finance, and ethics. Her work has been
published in leading journals, including the British Journal of Management and Risk Analysis: An
International Journal. At the School, Daphne teaches behavioural finance and leads the Master in

Supporting Information

Additional supporting information can be found online in the Supporting Information section at the end

of the article.

Supporting Information

© 2022 The Authors. British Journal of Management published by John Wiley & Sons Ltd on behalf of British

Academy of Management.

https://www.economist.com/briefing/2019/10/05/the-stockmarket-is-now-run-by-computers-algorithms-and-passive-managers
https://www.economist.com/briefing/2019/10/05/the-stockmarket-is-now-run-by-computers-algorithms-and-passive-managers
https://www.economist.com/briefing/2019/10/05/the-stockmarket-is-now-run-by-computers-algorithms-and-passive-managers
https://www.statista.com/statistics/1126823/worldwide-developer-gender/
https://www.reuters.com/article/us-markets-forex-hft-idUSBRE97M0YJ20130823
https://www.reuters.com/article/us-markets-forex-hft-idUSBRE97M0YJ20130823

