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Abstract

This thesis introduces and analyses a new model of time-periodic (Floquet) dynamics

in a quantum spin systems. This model is implemented via a time-periodic quantum

circuit with local Clifford gates. All the results of this thesis are rigorous mathe-

matical proofs, which use tools and methods from quantum information science

to study problems in many-body quantum systems and condensed-matter physics.

This includes proofs of a form of dynamical mixing of Pauli operators in the case of

local interactions, and conditions under which the evolution operator can resemble a

random unitary. The scrambling time is of critical importance to these results, and in

the case of non-local interactions, a slightly larger than logarithmic scrambling time

is found. Also, the model analysed in this thesis has the peculiarity that it displays a

strong form of localisation in one spatial dimension and the absence of localisation in

two dimensions. There is no previously known model with these features, hence, this

research is important to characterise the landscape of many-body quantum physics.



Impact Statement

With the possibility of quantum simulators [1, 2], and so the artificial synthesis of

quantum matter without “unphysical” Hamiltonians, a deep and thorough under-

standing of the landscape of possible phenomena in many-body quantum systems is

essential. In this thesis, I contribute to this through an exploration of time-periodic

quantum circuits with Clifford gates, which are well-known from the stabiliser

formalism in quantum computation. Time-periodic dynamics, also known as Flo-

quet dynamics, are of increasing interest in the physics community. In particular,

the results of this thesis are relevant and of interest to a variety of fields within

academia: quantum information theory, many-body quantum systems, condensed

matter physics, and mathematical physics (random matrix theory and percolation

theory). Importantly, new tools to study time-periodic random quantum circuits are

developed in this thesis.

Outside of academia, the results of this thesis may be of interest to those

concerned with using the sampling of pseudo-random unitaries to demonstrate the

computational advantage of quantum computers (for certain tasks). The most notable

example of this is the recent experiment in reference [2], which measures the output

of the generated quantum circuits using Pauli measurements.
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Chapter 1

Introduction

The study of time-periodic (Floquet) dynamics has provided a deeper understanding

of the rich landscape of observable behaviour in many-body quantum systems, and

of non-equilibrium phase transitions. This is equally true of the study of quantum

system with disorder, with examples of phenomena including: single-particle (An-

derson), and many-body localisation. Although despite this, the importance and

role of disorder in many-body quantum systems is still far from being conclusively

resolved, which is particularly the case for the definition of quantum chaos.

In this thesis, I will investigate the role of disorder in time-periodic (Floquet)

quantum circuits. In chapter 2 I will present results concerning the mixing of Pauli

operators (when evolving according to the Heisenberg picture), and which investigate

the question: how much do local and time-periodic dynamics appear to resemble

a random unitary? In chapter 3 I will present results concerning localisation. The

rest of this chapter is an overview and discussion of literature relevant to the results

in this thesis. I have endeavoured to make this survey broad. In each section I will

draw attention to how the discussed ideas and insights from the literature serve as

motivations for the results I will present in subsequent chapters, and clearly indicate

the specific chapter and section. Moreover within these chapters I will discuss further

how the results presented relate to previous work in the field.
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1.1 Quantum chaos and random matrix theory

The distinction between chaotic and integrable quantum dynamics [3] plays a central

role in many areas of physics, for example in the study of equilibration [4], thermali-

sation [5], and related topics such as the eigenstate thermalisation hypothesis [6, 7],

quantum scars [8], and the generalised Gibbs ensemble [9]. This distinction is

also important in the characterisation of many-body localisation and in arguments

concerning the black-hole information paradox, both of which will be discussed later

in this chapter in sections 1.5 and 1.3 respectively. In this section, I will discuss the

notions of ergodicity and chaos in quantum systems, which is particularly relevant to

the results in chapter 2.

Despite thorough research, the precise definitions of quantum chaos and inte-

grability are still being debated [10–12]. In the case of classical systems, there is

a defining feature of chaos; the (exponential) divergence of trajectories in phase

space under a perturbation. Unfortunately however, this definition does not extend

to the case of quantum systems. For all (unitary) dynamics of a quantum system,

the distance or distinguishability, as quantified for example by the trace distance

(1-norm) or just the overlap, of two (different) quantum states of the Hilbert space

remains constant for all times.

However, through the field of random matrix theory, it is well established that the

dynamics of chaotic quantum systems share important features with (typical) random

unitary matrices [13]. It is worth remarking that historically the study of random

matrix theory was first used to model heavy nuclei and their spectral properties, and

the field itself is a highly important and influential area of physics. The most notable

signature of quantum chaos is the structure of the eigenvalues of the Hamiltonian.

In particular, the distribution of the spacing between (consecutive) eigenvalues,

∆E = Ei−Ei+1, follows a distribution of the form P(∆E)∼ ∆Ee−∆E2
, which as ∆E

tends to zero gives zero probability; this is known as eigenvalue repulsion [6, 14–16].

This feature of eigenvalue repulsion and the distribution of eigenvalue spacing has

been identified as the same distribution as that of a typical random unitary matrix

sampled uniformly (according to the Haar measure) from the unitary group; this is
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known as the circular unitary ensemble. It should be noted that the exact form of this

distribution of eigenvalue spacing does depend on the underlying symmetry of the

system, and this fact is also reflected by the random matrices which must satisfy some

additional symmetry. For example, the case of random unitary matrices corresponds

to systems with no symmetry, but for systems which exhibit time reversal symmetry

then the random matrices are restricted to random orthogonal matrices. Whereas,

for integrable quantum systems the distribution of eigenvalue spacing does not

exhibit repulsion, and instead the signature of integrability is a Poisson distribution,

P(∆E)∼ exp(−∆E), for the distribution of eigenvalue spacing [17].

There are of course many other notable signatures of quantum chaos in physi-

cally relevant systems that are commonly identified with aspects of random unitaries.

Some of these include: fast decay of out-of-time order correlators [18–20], entangle-

ment spreading [21], operator entanglement [22], entanglement spectrum [23, 24],

linear growth of the spectral form factor [25–27], and Loschmidt echo [28].

1.1.1 Relevance to results in thesis

The study of quantum chaos and of ergodicity in quantum many-body systems is

of particular relevance to the results I will present in chapter 2. In chapter 2, I will

explore a time-periodic random quantum circuit and discuss mathematical results

concerning the mixing of Pauli operators and how the dynamics of the system appear

to resemble that of a random unitary.

1.2 Quantum information theory and unitary

designs
In the field of quantum information, there is a prominent study of randomness as

a resource for a variety of quantum information processing tasks. This itself is in

direct analogy with the study of randomised algorithms in classical computing. In

some cases the use of randomness is essential to the performance of the algorithm,

for example in cryptography, whereas in other cases the use of randomness is

instead useful for improving the efficiency of the algorithm, for example finding the
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minimum-cut of a given graph. Similarly, some quantum information processing

tasks which utilise randomness include: data-hiding [29], quantum state decoupling

[30], entanglement distillation [31], quantum error correction [32, 33], quantum

process tomography [34], and randomised benchmarking [35]. In this section, I

will outline exactly what is meant by using randomness as a resource, introducing

the quantum information notion of a unitary design, which is central to this work,

and discuss the literature surrounding this topic. However, I will not delve into a

discussion of the algorithms which make use of randomness, and in particular the

discussion will focus on the construction of unitary designs.

Early in the history of the field, it was realised that to implement a (Haar)

random unitary (a random unitary sampled uniformly from the unitary group [36])

on n qubits using two qubit gates was not efficient, in particular the circuit depth

required is (doubly) exponential in the number of qubits, n [37–40]. This itself poses

a problem, since a quantum algorithm as part of its procedure can not make use

of such an inefficient operation. The solution to this comes in the form of unitary

designs. In essence the idea behind unitary designs is that rather than implement a

(Haar) random unitary, it suffices to instead implement a unitary which resembles a

(Haar) random unitary to some degree of accuracy, in particular it resembles the first

k statistical moments. (As an aside, a related notion exists in classical computation,

where instead the object of interest are random permutations [41, 42].) In more

operational terms, a set of unitaries U ⊂ SU(2n) forms a k-design if, despite having

access to k copies of a given unitary U , we cannot discriminate between the case

where U is sampled from U or uniformly (Haar) from the entire unitary group

SU(2n). Mathematically, the definition of a unitary designs [43, 44] is as follows

Definition 1.1. Unitary k-design. A distribution of unitaries U ⊂ SU(2n) is a

unitary k-design if the following holds

EUU⊗k
ρU†⊗k =

∫
SU(2n)

dUU⊗k
ρU†⊗k , (1.1)

for all density operators ρ of the k-fold tensor product Hilbert space (dimension 2nk).
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We can also define an approximate version of unitary designs.

Definition 1.2. Approximate unitary k-design. A distribution of unitaries U ⊂

SU(2n) is an ε-approximate unitary k-design if for the twirling maps

Ξ
(k)
U (ρ) = EUU⊗k

ρU†⊗k , (1.2)

and

Ξ
(k)
SU(2n)

(ρ) =
∫

SU(2n)
dUU⊗k

ρU†⊗k , (1.3)

the following holds ∣∣∣∣∣
∣∣∣∣∣Ξ(k)

U −Ξ
(k)
SU(2n)

∣∣∣∣∣
∣∣∣∣∣
�

≤ ε ,

where ρ is any density operator of the total (tensor product) Hilbert space, and where

ε > 0. Equivalently, a distribution of unitaries U ⊂ SU(2n) is an ε-approximate

unitary k-design if

= sup
d,ρ

∣∣∣∣∣
∣∣∣∣∣EU (U⊗1d)

⊗k
ρ (U⊗1d)

†⊗k−
∫

SU(2n)
(U⊗1d)

⊗k
ρ (U⊗1d)

†⊗k dU

∣∣∣∣∣
∣∣∣∣∣
1

≤ ε (1.4)

Operationally, this approximate version is equivalent to allowing some error

tolerance ε in the discrimination process. For an explanation of the diamond or

operator norm used in the definition of approximate unitary k-designs consult the

references [45, 46]. But to briefly summarise, when discriminating between unitaries

(or quantum channels) it is possible to increase the distinguishability by entangling

the probe with an arbitrary ancilla.

To clearly illustrate the concept of unitary design we consider the following

example. We have a collection of n-qubits and we wish to apply a unitary which

resembles a Haar random unitary up to the first moment (mean), so a 1-design.

To do this, we apply to each of the n qubits independently a random single qubit

Pauli operator (I,σX ,σY ,σZ) selected with uniform probability (1/4). Unfortunately,
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while this construction of a unitary 1-design is straight-forward and moreover easy to

implement, it appears that for most practical purposes designs of order 2 and higher

are required. For example, the quantum information processing tasks I have already

mentioned require: data-hiding (2-design), quantum state decoupling (2-design),

randomised benchmarking (2-design), and state discrimination (4-design). Finally, it

should be noted that an (exact or approximate) unitary k-design is also an (exact or

approximate) unitary k−1-design, which can be seen by considering the state ρ to

be the identity on one of the k-fold tensor product Hilbert spaces.

In the rest of this section, the discussion will focus on the construction of uni-

tary designs, both exact and approximate. I will first present and discuss results in

the literature concerning discrete time dynamics and unitary designs. The discrete

time dynamics are generated by a random quantum circuit: quantum circuits in

which the gates are selected at random according to some distribution. Early work

focussed initially on constructing both exact and approximate unitary 2-designs.

This was demonstrated in numerous works. Initially work required highly struc-

tured random quantum circuits with specific choices of gate set [39, 47], but they

did indeed demonstrate (efficient) algorithms for implementing both exact and ap-

proximate unitary 2-designs. The circuits required a number of gates polynomial

in the number of qubits. Later work [44, 48, 49] improved upon this by showing

an approximate 2-design can be implemented by applying in series a polynomial

number of independent and uniformly selected two qubit random unitaries, where

the pair of qubits acted upon is also selected independent and uniformly. It is worth

noting some recent work [50] that studies a notion called anti-concentration, which

is a weaker but related condition than a unitary 2-design. The results of this work

demonstrate that anti-concentration occurs for depth only logarithmic in the number

of qubits. Another recent result concerning approximate unitary 2-designs is found in

reference [51], which notably uses techniques from condensed matter and statistical

mechanics, demonstrates that a local time-dependent random quantum circuit forms

an approximate 2-design in a time linear in the number of qubits.

As discussed, higher than unitary 2-designs are required for many practical
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applications. I will now focus on results concerning k-designs for any arbitrary k,

some of which are generalisations and extensions of references already discussed. In

particular, it was shown in references [33, 52] that a one-dimensional system of n

qubits in which a series of independent and uniformly selected two qubit random

unitaries are applied to (random) pairs of neighbouring qubits, forms an approximate

k-design when O(n2k10) gates are applied. Moreover, later work has focussed on

studying higher spatial dimensions and shown a similar result [53].

In general, less is known of the case of exact unitary designs. One particular

instance of exact unitary designs is well known from references [54, 55]. In these

works, the results focus upon a sub-group of unitaries known as the Clifford group.

The Clifford group is the group of unitaries which transform n-qubit Pauli operators

to n-qubit Pauli operators. (The Clifford group is central to all of the results of this

thesis, and hence I leave a detailed presentation until later, see appendix A.) It is

found that applying to a (uniformly selected) random Clifford unitary to n qubits

implements an exact 3-design, and it should be noted that any Clifford unitary on n

qubits can be applied using a polynomial number of single and two qubit Clifford

unitaries. Also, in these works it is also shown that the Clifford group can not form

any higher order exact k-design. (Although, recent work has extended the analysis of

Clifford group based unitary designs to show that approximate designs of any order

k can be constructed by also including a polynomial (in k) number of non-Clifford

two qubit unitaries [56].)

There has also been some work investigating the construction of unitary k-

designs with continuous time dynamics, so how close the time evolution operator,

given by the exponential of a Hamiltonian, resembles a (Haar) random unitary.

However, it would be fair to say that in this instance the discrete-time case has

received more attention. One of the main contributions in this direction can be

found in reference [57]. In this work, a one dimensional spin chain of n qubits

with dynamics generated by time-dependent local (nearest-neighbour) stochastic

Hamiltonians (Brownian quantum circuits) is studied. It is found that in this case an

approximate k-design is formed after a running time that is linear in n and polynomial
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in k, for any arbitrary k. Another notable work is reference [58], that presents a

Hamiltonian with periodically changing interactions that forms an approximate

k-design after a minimum run time.

Finally, there are some results concerning unitary designs in which there are

also some added conservation laws [59, 60]. The models considered are random

quantum circuits, with the conservation laws ensured by imposing that all local

random unitaries commute with a fixed operator, Q. It is found that these random

circuits also generate approximate k-designs in the operator space orthogonal to Q,

with k increasing as time passes.

1.2.1 Relevance to results in thesis

The results I have presented from the literature concerning unitary designs focus on

time-dependent dynamics. This serves as the primary motivation for the results in

chapter 2 in particular section 2.1. In this section, I will present a model of a time-

periodic random quantum circuit with local interactions and discuss mathematical

results connected with the notion of approximate unitary designs. Additionally the

Clifford group, which was discussed in the context of exact 3-designs, is central to

all of the results of this thesis. (To reiterate, a detailed discussion of the Clifford

group is given in appendix A.) It is also worth noting that many of the mathematical

results and notation introduced in section 2.1 are also made use of in later sections

(section 2.2).

1.3 Quantum information theory and black holes
The application of ideas and tools from quantum information to the study of highly

chaotic quantum system, in particular investigating the physics of black holes, is

particularly striking. The research along these lines has provided a useful new

perspective and given further physical insight, while also presenting new research

questions to investigate. In this section I will mainly focus on the results of Hayden

and Preskill in the reference [61], and work which builds on this further.

Broadly speaking the question of interest is: using the tools and techniques of

quantum information theory what can we learn about what happens to the (quantum)
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information deposited and contained within a black hole? In particular in the work of

Hayden and Preskill, the question is: using the perspective of quantum information

theory what can we learn about what is the fate of the quantum information contained

in a fixed number of qubits which are absorbed by a black hole? A toy model for the

dynamics of a black hole is to use a (Haar) random unitary to model the dynamics,

which is also a typical model used to study highly chaotic quantum dynamics.

(This perspective was also taken earlier in the references [62, 63], in which the

entanglement between a black hole and its environment was studied.) The results

using this model are striking. Consider N qubits, which are maximally entangled

with another N qubits acting as a reference system. These N qubits are then absorbed

into the black hole, modelled as described as a (Haar) random unitary. If the black

hole has already aged past half of its life-time then after the black hole has radiated

away a further N qubits, then the total radiation from the black hole is maximally

entangled with the N qubit reference system. (If the black hole is not aged past half

its life time, then all that is required is to wait for this to occur.) In other words, the

quantum information thrown into the black hole is almost immediately expelled and

encoded within the total radiation from the black hole. (Subsequent work has found

a decoding algorithm [64], which curiously has connections with the out of time

order correlator studied extensively in the context of quantum chaos.)

In this work, the discussion then focuses on the implementation of this random

unitary via a (random) quantum circuit, noting that a unitary 2-design is sufficient.

Recalling from the previous section (1.2), it has been shown that implementing a

2-design on n qubits can be done with a (time dependent) random quantum circuit of

depth polynomial in logn.

This leads to what is known as the fast scrambling conjecture [65, 66]. This

conjecture states the following that: the most rapid scramblers take a time logarithmic

in the number of degrees of freedom, matrix quantum mechanics saturate the bound,

and black holes are the fastest scramblers in nature. This conjecture, from the

quantum information perspective, provides additional motivation for the continued

study of unitary designs and random quantum circuits. Namely that one research
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objective is to find/demonstrate a physically well-motivated random quantum circuit

which implements a unitary design which has a circuit depth that is logarithmic in

the number of qubits.

Progress in this direction has already been made by studying what is known

as decoupling [30, 67]. In these works, it has been shown that random quantum

circuits with non-local few-body (time-dependent) dynamics can in poly-logarithmic

depth implement (approximately) the same process described as for the model black

hole. Additionally, it is worth recalling (from section 1.2) that a related notion

known as anti-concentration, which is a weaker condition than a 2-design, has been

shown to occur in logarithmic depth for local (time-dependent) random quantum

circuits [50]. Finally, it is briefly worth noting related studies of the growth of circuit

complexity [68–70],

1.3.1 Relevance to results in thesis

The results that will be discussed in chapter 2 section 2.2 draw their primary mo-

tivation from the ideas presented in this section. That is to say, the high chaotic

(quantum) dynamics of a black hole are modelled as a (Haar) random unitary. How-

ever, physically one would expect the dynamics to be time-independent. Hence, we

study a time-periodic model, which share important features with time independent

dynamics, and investigate the limit of the scrambling speed, by allowing interactions

to be non-local although still few-body.

1.4 Single-particle (Anderson) localisation
In this section, I will discuss the phenomenon of Anderson (single-particle) local-

isation. This phenomenon was first studied by Anderson in 1958 [71], and was

initially proposed as a model to investigate spin diffusion in materials with impurites.

Anderson localisation itself is now extremely well studied [72–74], and a great deal

is understood, with many elaborations, refinements, and extensions of the original

model. In this section, I will give a general overview, which will provide context and

motivation for the following section on many-body localisation (section 1.5) and also

for our results in chapter 3, which concerns localisation in time-periodic systems.
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Anderson localisation has been studied in many spatial dimensions. I will

present the one-dimensional model, from which analogous higher spatial dimensional

models can be inferred. Although I will still discuss and compare the phenomenology

in higher dimensions, in particular since the differences in the observable behaviour

between spatial dimensions is relevant and a motivation both for many-body locali-

sation (section 1.5) and the results in chapter 3 (section 3.2).

In one spatial dimension the model consists of L sites arranged on a line,

with open boundary conditions, so the lattice Z. Using the language of second

quantisation, on this chain of L sites there are (non-interacting) particles which can

occupy a site or hop from one site to one of the two adjacent sites. Each site has

a particle occupation energy of εi, and the hopping amplitude between sites is λ .

Therefore, the Hamiltonian of this model is given by

Ĥ =
L

∑
i=1

εic
†
i ci +λ

L

∑
i=1

c†
i+1ci + c†

i ci+1 , (1.5)

where c†
i ,ci are the creation/annihilation operators for a single particle at site i, εi

is the on site particle occupation energy. Crucially for the Anderson model, in

order to model disorder, the on-site energy εi terms are taken to be independent

random variables. Originally, each εi is taken to be uniformly distributed in some

interval [−W,W ], with each εi identically and independently distributed (i.i.d.). In

this model the particles are non-interacting, and hence the model is also referred to

as single-particle localisation. The question now is: what effect does this disorder

(in the on-site energy) have on the dynamics and observed behaviour of the system?

Firstly, we shall (briefly) comment on the two different extreme cases: zero

disorder (W = 0) and infinite disorder (W → ∞). In the case of zero disorder,

so W = 0, the spin chain exhibits (discrete) translation invariance, and hence the

eigenvectors are plane waves of the (discrete space) spin chain. In the case of infinite

disorder, (W → ∞), the hopping between sites is in effect absent and hence we

have particles that are confined to a single site for all times. These two extreme

cases are not particularly of interest, and naturally the main regime of focus and
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interesting physics is between these two extremes (so, finite W > 0). Interestingly,

for any non-zero disorder strength (W > 0) the system displays what is now known

as Anderson or single-particle localisation; a particle remains fixed (localised) on its

initial site or the surrounding sites for all times. By this we mean that, for a particle

initially (at t = 0) located at site i0 the probability that the particle is found on any

site i, at any later time is given by

P(particle at i at time t|particle initially at i0) ∝ exp
{
−|i− i0|

lloc

}
, (1.6)

where lloc is known as the localisation length scale, which depends on the disorder

strength W (and its ratio to the hopping amplitude λ ). Crucially, this exponential

localisation occurs for all non-zero disorder strengths, W > 0 (although the associated

length scale of the localisation will vary). Anderson localisation therefore is a classic

example of disorder causing observable changes in the behaviour of system.

The landscape of the observed behaviour of this model becomes more rich

and interesting (and the mathematics more complex) when considered in higher

spatial dimensions. In two spatial dimensions, it is strongly believed that for any

non-zero disorder (W > 0) the system again displays localisation (in the manner

described in one dimension) [75–78]. The reason for lack of certainty is twofold:

some papers claim these results are not exact for very small disorder strengths [79],

although they are certainly corroborated by numerical results, while other works

claim that the localisation length scale associated with very small disorder can be

extremely large, and hence potentially difficult to observe in experiments [75]. In

three spatial dimensions, the situation is different once again. It is well established

that localisation (in the manner described in one dimension) does indeed occur,

however this is after the disorder exceeds some minimum threshold, so W >Wcritical.

In fact generally speaking, it has been shown that in any number of spatial dimensions

greater than or equal to three there exists a finite (and non-zero) threshold for the

disorder strength such that the system exhibits localisation [80]. Therefore, it should

be emphasised that the number of spatial dimensions is an important consideration

when studying localisation phenomenon. Below this threshold, so for small disorder,
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a particle is not localised and so the system then has a phase transition from a

delocalised to localised phase [81].

Finally, I will briefly remark on some of the refinements and elaborations of the

model. In the particular model present, the hopping term is between neighbouring

sites of the lattice only. The more general case of extending the model to include

more long-range hopping has been studied. In this instance long range can be

for example: hopping amplitudes which decay exponentially [82] or according to

some power law [83], or including hopping to next-nearest neighbours (or further)

also [84–86]. Additionally, the case of more general or varied distributions for

the on-site energy has been investigated, for example where the distribution is

Gaussian [87], and moreover the situation where there is some correlation between

the distributions for each on-site energy [88–91], so they are no longer independent.

This by no means represents the entirety of the elaborations and further studies of

Anderson localisation, although certainly gives some introduction to the landscape,

however the articles in references [75, 78, 79, 92–94] should provide a good place

to continue investigations. These references are also good resources to understand

the mathematical and numerical techniques commonly used, neither of which I have

discussed in detail, preferring instead to give a broad overview and introduction to

the phenomenon of Anderson localisation. Finally, I should point out that I have

not commented specifically on results concerning the classification of the spectrum

of the Hamiltonian in terms of its pure-point/continuous and its interpretation in

relation to the observation of localisation, however this is discussed within many of

the references themselves.

1.4.1 Relevance to results in thesis

Of course one reason for presenting and discussing the phenomenon of single-particle

localisation is to introduce the discussion in the next section (section 1.5) of many-

body localisation. Importantly however, single-particle localisation is also pertinent

to our results (chapter 3) and their interpretation. In particular in chapter 3 section

3.1 I will discuss results of a time-periodic model, which in one regime of dynam-

ics exhibits a localisation effect which is in some ways reminiscent of Anderson
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localisation. More over in 3 section 3.2, in part motivated by the observation of the

importance of the number of spatial dimensions to single-particle localisation, I will

present results from investigating an analogous time-periodic model in higher (two)

spatial dimensions, which in no way exhibits the same localisation effect.

1.5 Many-body localisation
In this section, I will discuss the interesting topic of many-body localisation and

give a general overview, which will provide context and motivation for the results

in chapter 3, which concerns localisation in time-periodic systems. The starting

point for the study of many-body localisation is, as already hinted at previously, the

study of single-particle localisation (section 1.4). As discussed already, in Anderson

localisation there is no form of interaction between the particles in the model, and

in essence it is a single-particle system. Naturally, the extension is to consider an

analogous model in which the particles interact in some manner, and hence the

investigation is of a many-body quantum system. Immediately, one might expect that

once interactions are included the landscape of observable behaviour becomes more

rich and varied, and of course requires more techniques and tools to gain insight into

what can be a more complicated system.

In one spatial dimension, one standard model used to study many-body localisa-

tion is a spin chain with dynamics given by the Heisenberg XXX model with onsite

disorder, so

Ĥ =
L

∑
i=1

εiσ
Z
i + J

L

∑
i=1

(
σ

X
i σ

X
i+1 +σ

Y
i σ

Y
i+1 +σ

Z
i σ

Z
i+1
)
, (1.7)

where εi is the onsite disorder which is uniformly distributed in the region [−W,W ]

independently and identically for all sites, and J the interaction strength (which is

commonly taken to be one), and where σ
X ,Y,Z
i are the Pauli X ,Y,Z matrices for the

site i [95–98]. Without the onsite disorder (∀i : εi = ε), this model is a one dimension

spin chain with (discrete) translation invariance, and is a well known example of an

integrable model exactly solved using the Bethe ansatz [99, 100]. (There are many

other models considered to study many-body localisation. For example, there is the



1.5. Many-body localisation 24

note worthy reference [101], and also references [79, 102–104].)

It is now well established, both numerically [95,105,106] and analytically [107]

(under some reasonable assumption about the spectrum), that there exists a threshold

disorder strength such that spin chain is not ergodic and instead exhibits many-body

localisation. What is it that I mean when I say a system is many-body localised?

Generally speaking the key aspect of many-body localisation is the absence of

thermalisation, by which I mean that some aspects of an initial spin configuration

remain constant throughout its time evolution for arbitrarily long times. Moreover,

the distribution of eigenvalue spacing does not exhibit repulsion and instead follows

a Poisson distribution. The many-body localised system can be understood as an

emergent integrable system, and in this phase the Hamiltonian can be rewritten with

local integrals of motion in a classical form

Ĥ = ∑
i

ε
′
i τ

Z
i +∑

i, j
J′i, jτ

Z
i τ

Z
j + ∑

i, j,k
J′i, j,kτ

Z
i τ

Z
j τ

Z
k + . . . , (1.8)

where τZ
i is a quasi-local operator, which is a dressed version of the Pauli matrix

σZ
i , such that τZ

i =U†σZ
i U with U a unitary acting in a (small) region centred upon

site i of the spin chain, and where the onsite energy ε ′i is a modified onsite energy

εi, and where the coupling terms between sites decay exponentially with distance,

for example J′i, j ∝ exp(−|i− j|) [103, 107–109]. This conjectured effective model

captures the phenomenology of the many-body localised phase, and gives a great

deal of insight in to the physics.

There are many other well established features of many-body localisation. The

dynamics and structure of the entanglement is a key signature of many-body locali-

sation. When considering some region, for example the left-half, of the spin chain

then it has been well established that for an initially product state the entanglement

entropy grows logarithmically with time [110–112]. This slow growth of entangle-

ment also differentiates many-body from single particle localisation. Another key

signature concerns the time evolution of initially local operators; operators which

are only supported on one site of the spin chain. It has been shown that under the
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many-body localisation dynamics the support of initially local operators grows only

logarithmically with time [113–115]. Both the slow growth of entanglement and slow

growth of local operators differentiates many-body from single particle localisation.

Additionally, below this threshold disorder strength for the onset of many-body

localisation, it is also well established that the many-body quantum system is ergodic

[106, 116], which for example is characterised by the observation of eigenvalue

repulsion. Naturally then there is also much interest and research focussing on the

(non-equilibrium) phase transition between the ergodic and many-body localised

phases [95, 117, 118], particularly into the entanglement structure of the eigenstates

of the many-body quantum system (volume/area law transitions). However, it is fair

to say that there remains to be a full understanding of the ergodic to many-body

localised phase transition.

Finally, the discussion of many-body localisation in this section so far has

focussed on one spatial dimension. However in the case of single particle localisa-

tion, as discussed in section 1.4, the number of spatial dimensions is an important

factor determining the threshold disorder strength for localisation. Therefore, in

the case of many-body localisation there is also much interest and work studying

higher dimensional models [97, 119]. But, it is not yet settled either numerically

or analytically whether there exists a stable many-body localised phase in spatial

dimensions greater than one.

1.5.1 Relevance to results in thesis

The study of many-body localised systems, and the broad overview given in this

section, is of particular relevance to the results found in chapter 3, both in terms of

motivation and context. In particular in chapter 3 section 3.1 I will discuss results

of a time-periodic model, which is an interacting many-body system with disorder,

and which in one regime of dynamics exhibits a localisation effect which is in some

ways reminiscent of many-body localisation. But, as already noted, this localisation

effect is also in some ways reminiscent of single-particle localisation, and so seems

to challenge the existing classification . More over in chapter 3 section 3.2, in part

motivated by the fact that there is yet to be a detailed understanding or consensus
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regarding many-body localisation in higher (than one) spatial dimensions, I will

present results from investigating an analogous time-periodic model in two spatial

dimensions, which exhibits in a strong (and precise) sense an absence of localisation.

1.6 General outline of thesis
Throughout this chapter, for all the topics covered, I have mentioned how they

directly motivate and relate to the results in this thesis. I will now briefly comment

on the structure and format of this thesis. In the second chapter, I will present and

discuss results concerning the scrambling of quantum information and the mixing

of Pauli operators in random quantum circuits. In the third chapter, I will present

and discuss results concerning the localisation of quantum information in random

quantum circuits. In both chapters, I will first clearly describe the models studied and

then present and broadly explain the (mathematical) results obtained, initially with an

emphasis on the more general side and the meaning of the results. Finally, I will then

delve into a detailed discussion and derivation of the mathematical results. Then, in

the final section I will discuss the results again, give possibilities for future work, and

end with reflections and conclusions. In this thesis there are several appendices. The

material in each appendix is additional detail that is not essential for understanding

the results in the thesis, but does give a more thorough understanding, and hence is

included for these reasons.

The work contained in the second and third chapters are from research projects

undertaken during my doctoral studies, and I have significantly contributed to all the

results. For the instances in which I cannot claim to have contributed significantly to

the particular results I shall make this explicit and clearly state the attribution.



Chapter 2

Scrambling and Mixing

In the introduction of this thesis (chapter 1), I discussed the importance of random

unitaries both in the study of quantum chaos and within the field of quantum infor-

mation theory - for applications in a variety of quantum information processing tasks

and as a toy model for black holes. In this chapter, I will present results investigating

the question of scrambling and mixing (of Pauli operators) in time-periodic random

quantum circuits. In the first section of this chapter (section 2.1), I will present

a model of a time-periodic random quantum circuit with local interactions. I will

show rigorous results that demonstrate that the dynamics can display mixing (of

Pauli operators), and prove that under certain conditions the dynamics appear to

resemble that of a (Haar) random unitary, with precise definitions of these statements.

In the second section of this chapter (section 2.2), I will investigate an analogous

time-periodic random quantum circuit model with interactions that are still few-body

but are no longer local. I will show results which demonstrate that the circuit depth

corresponding to the scrambling time is (at-most) poly-logarithmic in the size of the

system.

In both of the sections the structure is as follows: firstly I will give a gen-

eral overview of the results including a brief discussion, then I will give detailed

derivations of these results, and finally I will more fully discuss the results.
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2.1 Time periodic local dynamics
As discussed in the introduction (chapter 1 section 1.1), the dynamics of chaotic

quantum systems share important features with random unitaries, with signatures

of quantum chaos identified with aspects of random unitaries. In this section, I

will take a more operational perspective and investigate instead when the time

evolution operator is physically indistinguishable from a random unitary. This notion

of physically indistinguishable is captured by the quantum information notion of

unitary design, which was discussed in the introduction (chapter 1 section 1.2). In

this section, I will present and analyse a Floquet model with disorder, characterised

by a family of local, time-periodic, random quantum circuits in one spatial dimension.

I will prove rigorous results demonstrating that under certain conditions: the time

evolution of Pauli operators can display a form of mixing (which will be defined

precisely), which is given in results 2.1, 2.2, and 2.3, and that the time evolution

operator cannot be distinguished from a (Haar) random unitary (when measurements

are restricted to Pauli operators only), which is given in result 2.4. In other words

in this section, I will investigate the question: how much do local, disordered,

time-periodic dynamics resemble a random unitary?

Finally, it is worth mentioning that the work in this section has been published

as a pre-print [120].

2.1.1 Overview

Firstly, I will present the model analysed in this section. The model is a one-

dimensional spin chain composed of L sites, where each site contains N qubits or

modes, and with periodic boundary conditions. The dynamics of the model are

time-periodic, with the first dynamical period consisting of two half-steps. In the

first half-step each even site interacts with its right neighbour with a random Clifford

unitary and in the second half-step each odd site interacts with its right neighbour

via a random Clifford unitary. As mentioned in the introduction (chapter 1 section

1.2), the Clifford group is the group of unitaries which transform N-qubit Pauli

operators to N-qubit Pauli operators. In appendix A there is a detailed description of

the Clifford group [121–123]. Each of the L Clifford unitaries are independent and
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Nqubits inputs

Figure 2.1: Time-periodic local dynamics. This figure illustrates the physical model anal-
ysed in this work. The circles on the top represent lattice sites, each of which
consists of N qubits. Each coloured block represents a two-site unitary, with
different colours representing that the unitaries are drawn independently and
uniformly from the Clifford group, and hence there is spatial disorder. After the
first two half time-steps, the dynamics repeats itself.

sampled uniformly from the 2N-qubit Clifford group. Every subsequent period of the

dynamics are repetitions of the first period; this is illustrated in figure 2.1. Denoting

the (random) Clifford unitary which acts on sites x and x+1 by Ux (recalling that

there are periodic boundary conditions, so that modulo L), then the evolution operator

after an integer time t is

W (t) =
[
(U1⊗U3⊗·· ·⊗UL−1)(U0⊗U2⊗·· ·⊗UL−2)

]t (2.1)

= (UoddUeven)
t = (Uchain)

t ,

and after a half-integer time t is

W (t) =Ueven (Uchain)
t−1/2 . (2.2)

This evolution operator can also be generated by a time-periodic Hamiltonian H(t)

with nearest-neighbour interactions

W (t) = T e−i
∫ t

0 dτH(τ) , (2.3)
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Figure 2.2: Time-dependent local dynamics. In this figure, in contrast to figure 2.1, the
pictured circuit is time-dependent and not periodic in time. So, the Clifford
unitaries in every time-step are sampled independently.

where T is the time-ordering operator. This type of dynamics is called Floquet

[10, 21, 22, 26, 27, 124, 125] or quantum cellular automaton [126, 127] with disorder.

It is worth emphasising that this time-periodic model is very different from the

far more studied case of time-dependent random quantum circuits, an illustration

of which is given in figure 2.2. Since one would expect the dynamics of physical

systems to be time-independent, the case of time-periodic circuits is more relevant to

physics, albeit more difficult to analyse.

One essential tool for understanding and analysing the dynamics of this time-

periodic circuit is the phase space representation of the Clifford group. As I have

already noted, in appendix A there is a detailed exposition of the Clifford group and

its phase space representation, but I will now give a summary of this phase space

representation, so that the results and following rigorous proofs can be followed.

An N-qubit Pauli operator is the (N-fold) tensor product of Pauli sigma matrices,

including the one-qubit identity, multiplied by a global phase λ ∈ {1, i,−1,−i}.

Ignoring the global phase, each N-qubit Pauli operator can be represented by a binary

vector u = (q1, p1,q2, p2, . . . ,qn, pn) ∈ {0,1}2N as

σu =
n⊗

i=1

(σqi
x σ

pi
z ) . (2.4)

By ignoring the global phase λ , the product of Pauli operators can be written as
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σuσu′ = λ σu+u′ , where addition in the vector space Z2n
2 is modulo 2. The N-

qubit Clifford group CN ⊆ SU(2N) is the set of unitaries U which map each Pauli

operator onto another Pauli operator UσuU† = λ σu′ . Each Clifford unitary U can

be represented by a 2N× 2N symplectic matrix S with entries in Z2 such that its

action on Pauli operators can be calculated in phase space

UσuU† = λ σSu , (2.5)

where the matrix product Su is defined modulo 2. Due to the analogy with quasi

free-bosons, in which dynamics are also linear and symplectic, the binary vectors

u ∈ {0,1}2N are known as the phase space representation of the N-qubit Pauli

operator σu. Furthermore, it is worth noting that the definition of the group of N-

qubit Pauli operators can be understood as the discrete analogue of the Weyl group,

which are also known in quantum optics as displacement operators.

Hence, the time-periodic model can be reinterpreted using this phase space

description. The corresponding phase space of the L-site lattice with periodic

boundary conditions can be written as

Vchain =
⊕
x∈ZL

Vx , (2.6)

where Vx ∼= Z2N
2 is the phase space of site x ∈ ZL. A local Pauli operator σu at site x,

so non-identity only on site x, is represented by a phase space vector contained in

the corresponding subspace u ∈ Vx ⊆ V chain, with the zero vector corresponding to

the identity operator. The time evolution operator W (t), defined in equations 2.1 and

2.2, has a corresponding phase space representation S(t), which is a (Z2) symplectic

matrix acting on the phase space Vchain .

The time evolution operator W (t) maps each Pauli operator σu to another Pauli

operator via σu′ = λW (t)†σuW (t). Since the Clifford unitaries U0,U1, . . . ,UL−1

which define W (t) are random, the mapping of Pauli operators u→ u′ is probabilistic,
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and in particular the probability that u after a time t evolves to u′ is

Pt(u′|u) = E
{Ux}

∣∣∣2−NL tr
(

σu′W (t)σuW (t)†
)∣∣∣ , (2.7)

where the orthogonality of Pauli operators tr(σu′σu) = 2NLδu′u is used. Since the

dynamics in this model are local (as illustrated in figure 2.1), then only operators

which are inside the light-cone of the initial operator σu have non zero probability.

For example, if the initial operator σu is non-identity only at the origin (x = 0), then

after a time t, the evolved operator σu′ can only be non-identity inside the light cone

−2t +1≤ x≤ 2t. Therefore, the corresponding phase space vector u′ is non-identity

only within the light-cone with subspace given by

u′ ∈
⊕

x∈[−2t+1,2t]

Vx . (2.8)

The scrambling time, by which I mean the minimum time t for which the light-cone

of any initially local operator become the whole spin chain, is tscr = L/4. The

scrambling time is a crucial quantity for all of the results in this section

Throughout this section, I will use the following definition for the mixing of

Pauli operators: a dynamical system is Pauli mixing if any initial (non-identity)

Pauli operator P through its time evolution W †(t)PW (t) is transformed to any (non-

identity) Pauli operator with uniform probability. It is worth noting that since the

dynamics of the time-periodic model considered in this section is generated by

Clifford unitaries, an initial Pauli operator remains a Pauli operator for all times.

In the following rigorous result, I will precisely state how an initially local Pauli

operator exhibits an approximate form of Pauli mixing. That is to say, the probability

distribution for the time evolution of a Pauli operator, Pt(u′|u) (equation 2.7) is

approximately uniformly distribution inside the light-cone.

Result 2.1 (Approximate Pauli mixing). If the initial Pauli operator σu is only non-

identity at site x = 0 then the probability distribution for its evolution σu′ , Pt(u′|u)



2.1. Time periodic local dynamics 33

(equation 2.7), is close to uniform inside the light cone

∑
u′

∣∣Pt(u′|u)−Qt(u′)
∣∣ ≤ 130× t2 2−N , (2.9)

for any integer or half-integer time t ∈ [1/2,2tscr], where Qt(u′) denotes the uniform

distribution over all non-zero vectors u′ within the light-cone (equation 2.8), and

where it is understood that after the scrambling time (t ≥ tscr) the light-cone is the

total phase space of the spin chain, Vchain. An analogous statement holds for any

other initial location x 6= 0.

This result, as well as all other results in this section, is meaningful in the limit

of large N (N � logL). I will investigate the opposite regime, where N � logL,

in chapter 3 section 3.1. In this result, the mixing of Pauli operators appears to

be weaker as time progresses, which is primarily due to temporal correlations and

dynamical recurrences. These dynamical recurrences occur periodically due to the

fact that the time-evolution operator is a Clifford unitary, and since the Clifford

group is finite, there exists a recurrence time such that W (t) = 1. Although, the

time required for these recurrences is far larger than twice the scrambling time, 2tscr,

which is the time after which this result (and others in this section) does not hold.

This is in contrast to the observed behaviour in time-dependent quantum circuits,

as discussed in chapter 1 section 1.2, in which the error or difference capturing the

proximity to uniformity decreases with time.

The approximate Pauli mixing result (2.1) applies to local operators only. In

the next result, I will present a more general result which applies to a large class of

non-local initial operators. Unfortunately, I have only been able to analyse initial

operators which are non-identity inside a (continuous) regionR= {1, . . . ,Ls} ⊂ ZL

only.

Result 2.2. Consider an initial vector u0 ∈ Vchain which is non-identity only on all

lattice sites x ∈ ZL. Denote by ut
R the projection onto the subspace VR =

⊕
x∈RVx

of the evolved vector ut = S(t)u0 in the region R = {1, . . . ,Ls} with even size Ls.



2.1. Time periodic local dynamics 34

When averaging over circuits, this projection is approximately uniform,

∑
v∈VR

∣∣∣prob{v = ut
R}−

1
|VR|

∣∣∣≤ 34× t 2c|R|−N , (2.10)

at times t ∈ [1, L−|R|
4 ], where we define the constant c = log2

√
3.

A stronger set of results can be proven for the case of half-integer times. This

is due to the fact that the evolution operator of the model W (t) at half-integer time

has an extra symmetry. I will discuss this feature in detail in due course. Hence, the

following results apply more generally to any initial Pauli operator.

Result 2.3. Let σu′ = λW (t)σuW (t)† be the evolution of any initial Pauli operator

σu 6= 1. At any half-integer time t larger than the scrambling time, in the interval

t ∈ [tscr,2tscr] the probability distribution (equation 2.7) for the evolved operator σu′

is close to uniform

∑
u′

∣∣Pt(u′|u)−Qt(u′)
∣∣ ≤ 33× t L2−N . (2.11)

It is worth noting that the fact that mixing is more prominent at half-integer

times is not restricted to Clifford dynamics, since it applies to a large class of periodic

random quantum circuit or Floquet dynamics with disorder. Specifically, this fact

holds for any quantum circuit in which the two-site interactions Ux also include

single site random gates that are 1-designs.

As a consequence of the previous result, it is possible to prove that at half-integer

times a Haar-random unitary is hard to distinguish from the time evolution operator

W (t), when the only measurements available to distinguish between the two are

Pauli operators. More precisely, imagine that one is given a unitary transformation

V which has been sampled from either the set of evolution operators {W (t)} or

the full unitary group SU(2NL). The task is to choose the optimal state ρ , process

the state according to the given transformation ρ 7→ V ρV †, and then measure the

transformed state with a Pauli operator σu, and finally use this measurement to guess

whether the sampled V belongs to the set of evolution operators {W (t)} or the full
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unitary group SU(2NL). In order to enhance this discrimination procedure, two uses

of the transformation V are allowed, which therefore allows one to input half of

an entangled state ρ into each of the transformations. In the following result, it is

shown that in the large-N limit the optimal guessing probability to distinguish the

transformations is almost as good as a random guess.

Result 2.4. Discriminating between two copies of W (t) and two copies of a Haar-

random unitary can be done with success probability

pguess =
1
2
+

1
4

max
ρ,u,v

tr

(
σu⊗σv

[
E

W (t)
W (t)⊗2

ρ W (t)⊗2†−
∫

SU(d)
dU U⊗2

ρ U⊗2†

])
≤ 1

2
+8 tL2−N , (2.12)

provided measurements are restricted to Pauli operators, for (half-integer) times

t ∈ [tscr,2tscr].

If in this result the measurements were not restricted to Pauli operators, then

W (t) would be an (8 tL2−N)-approximate unitary 2-design. Hence, the indistin-

guishability quantified in result 2.4 is a weaker variant notion of approximate unitary

2-design. Moreover, I should point out that the precise definition of approximate

2-design includes the use of an ancillary system in the discrimination process [47],

which has not been included in result 2.4 as it does not provide any advantage.

2.1.2 Details and derivations

In this section, I will give detailed proofs for the stated results. Since the series of

rigorous results which culminate in the proofs for the stated results are quite involved

and require many stages, I will first give a broad outline of the general approach and

methods used, and in this way provide an index for the proofs in this section.

As already mentioned, the main tool used in all of our results is the phase

space description of the dynamics; a detailed description is given in appendix A.

The phase space description allows the dynamics generated by the time evolution

operator W (t) to be studied instead by investigating linear dynamics generated

by the (Z2) symplectic matrix, S(t). I will first give a description of phase space
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EUj

U2U0

U−1 U1 U3

= EUj

V ′0 V ′1 V ′2 V ′3

U0 U2

V0 V1 V2 V3

V †0 V †1 V †2 V †3

U−1 U1 U3

V ′†0 V ′†1 V ′†2 V ′†3

= EUj

V ′0 V ′1 V ′2 V ′3

U0 U2

U−1 U1 U3

V ′†0 V ′†1 V ′†2 V ′†3

Figure 2.3: Twirling technique. This figure illustrates the fact that the statistical properties
of the evolution operator are invariant under local transformations. In the image
on the left there is a section of the circuit shown in figure 2.1. The middle image
follows from noting that for any any pair of local (single-site) Clifford unitaries
Vx,Vx+1, the random two-site Clifford unitary (Vx⊗Vx+1)Ux(V ′x ⊗V ′x+1) has the
same probability distribution than Ux. Finally, in the image on the right, all
of the local unitaries except for the those at the initial and final times cancel.
This invariance property of W (t) is different for integer and half-integer times
t, which is specified in equations 2.14 and 2.16 respectively. This figure was
produced by a collaborator, Daniele Toniolo.

description of the model, and then in lemmas 2.1 - 2.6 I will prove some properties of

random symplectic matrices. The study of random symplectic matrices is an essential

ingredient in the proofs of this section. In particular, for a random symplectic matrix

S which is decomposed in block form as

S =

 A B

C D

 , (2.13)

where A,B,C,D are all square matrices of equal size. I will characterise the prob-

ability distribution for the rank of a “quarter” submatrix C (in lemma 2.4), and

generalise this distribution to the rank of a product Cr · · ·C2C1 of independently

sampled C-submatrices (in lemma 2.5).

Additionally, as already mentioned, the (random) time evolution operator W (t)

has an extra symmetry (lemma 2.7). This symmetry has been used previously in the

reference [125] to obtain analytical results on localisation. This symmetry, which is
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illustrated in figure 2.3, means that the time evolution operator W (t) at any integer

time t is invariant under the transformation

W (t) 7→
(⊗

xV
′
x
)†W (t)

(⊗
xV
′
x
)
, (2.14)

for any choice of local (single-site) Clifford unitaries V ′1, . . . ,V
′
L ∈ CN . Consequently,

for the probability distribution Pt(u′|u), which describes the probability that after

a time t an initial Pauli operator u evolves to the Pauli operator u′, this symmetry

means that

Pt

(
[
⊕

xS−1
x ]u′

∣∣∣[⊕xSx]u
)
= Pt(u′|u) , (2.15)

for any choice of local (singe-site) symplectic matrices S1, . . . ,SL. Moreover, at

half-integer times t the evolution operator displays a still higher degree of symmetry.

In particular, the time evolution operator W (t) for half-integer times is invariant

under the transformation

W (t) 7→ (
⊗

xVx)W (t)
(⊗

xV
′
x
)
, (2.16)

for any choice of local (single-site) Clifford unitaries V1,V ′1, . . . ,VL,V ′L ∈ CN . Hence,

analogously the probability distribution is such that

Pt

(
[
⊕

xS′x]u
′
∣∣∣[⊕xSx]u

)
= Pt(u′|u) , (2.17)

for any choice of local (singe-site) symplectic matrices S1,S′1, . . . ,SL,S′L.

I will then use and combine the proof of the additional symmetries of the

evolution operator, and its implications for the probability distribution Pt(u′|u), with

the proven results concerning probability distribution of the rank of the product of

independently sampled C-submatrices. In particular, I will proceed to prove a series

of results (lemmas 2.8 and 2.9), which are then used (in lemma 2.6) to calculate a

bound for the probability that any initial non-identity Pauli operator u evolves to a

Pauli operator u′ which is non-identity at every site of the spin chain.

With this I will give the proofs which justify both half-integer time results
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(results 2.3 and 2.4). I will first prove (lemma 2.11) that conditioned on the evolved

Pauli operator being non-identity at every site of the spin chain, then the evolved

Pauli operator is approximately uniformly distributed over all non-identity Pauli

operators. Using this, I will then finally justify result 2.3 with a rigorous proof

(lemma 2.12) and after justify result 2.4 also with a rigorous proof (lemma 2.13).

After this, I will then focus on the proofs which justify the results which apply

to both integer and half-integer times (result 2.1 and 2.2). I will first prove a very

general result, which describes the form of the probability distribution of the evolved

Pauli operator (lemma 2.14). Then, after proving another pair of results (lemma

2.15 and 2.16), I will (in lemma 2.17) give the rigorous proof which justifies result

2.1. Finally, I will prove a rather involved result (lemma 2.15) which itself is a

generalisation of another (lemma 2.15), for the case of the initial Pauli operator being

non-identity only a continuous sub-set of sites of the spin chain. Then, I will (using

lemma 2.18) give the proof which justifies result 2.2.

Also, I would like to reemphasise that all of the results in this section are

meaningful only in the regime in which N, the number of qubits per site of the spin

chain, is large (N� logL).

Phase space description and random symplectic matrices

It is worth briefly describing again with more detail the phase space description of the

model. An N-qubit Pauli operator is the (N-fold) tensor product of Pauli sigma matri-

ces, including the one-qubit identity, multiplied by a global phase λ ∈ {1, i,−1,−i}.

Ignoring the global phase, each N-qubit Pauli operator can be represented by a binary

vector u = (q1, p1,q2, p2, . . . ,qN , pN) ∈ {0,1}2N as

σu =
N⊗

i=1

(σqi
x σ

pi
z ) (2.18)

and the product of Pauli operators can be written as σuσu′ = λ σu+u′ , where addition

in the vector space Z2N
2 is modulo 2. The N-qubit Clifford group CN ⊆ SU(2N) is

the set of unitaries U which map each Pauli operator onto another Pauli operator

UσuU† = λ σu′ . Each Clifford unitary U can be represented by a 2N×2N symplectic
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matrix S with entries in Z2 such that its action on Pauli operators can be calculated

as a linear transformation of the binary vector, so

UσuU† = λ σSu , (2.19)

where the matrix product Su is defined modulo 2. Due to the analogy with quasi

free-bosons, in which dynamics are also linear and symplectic, the binary vectors

u ∈ {0,1}2N are known as the phase space representation of the N-qubit Pauli

operator σu, and similarly the symplectic matrices S are known as the phase space

representation of the N-qubit Clifford unitary U .

Since any Pauli operator for the whole chain, σu, can be represented by a binary

vector u, the whole chain of L sites with N-qubits per site has the phase space

Vchain =
⊕

xVx ∼= Z2NL
2 , (2.20)

where Vx∼=Z2N
2 is the phase space of the single site x. It is worth emphasising that the

tensor product of Hilbert spaces becomes a direct sum in phase space. Additionally,

each Clifford unitary Ux, which acts on two sites of the spin chain, has the phase

space representation given by the symplectic matrix Sx ∈ S2N , which acts on two

sites of the phase space given by the subspace Vx⊕Vx+1, and which has elements in

Z2. Moreover, by using this direct sum decomposition, each symplectic matrix, Sx,

can be written in the form

Sx =

 Ax Bx

Cx Dx

 , (2.21)

where Ax,Bx,Cx,Dx are 2N × 2N matrices, with Ax : Vx → Vx, Bx : Vx+1 → Vx,

Cx : Vx→Vx+1, Dx : Vx+1→Vx+1. Therefore, since every Clifford unitary Ux has

the phase space representation Sx, the (Clifford) unitary which acts on the whole

chain, U chain, has the phase space representation

Schain = (
⊕

xoddSx)(
⊕

xevenSx) , (2.22)
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which act on the entire phase space Vchain. Hence, the time evolution operator

W (t) has the corresponding phase space representation, S(t), which for integer and

half-integer times is given by

S(t) =

 (Schain)
t integer t

(
⊕

xevenSx)(Schain)
t−1/2 half-integer t

. (2.23)

Before proceeding to the mathematical proofs concerning uniformly distributed

symplectic matrices, I shall briefly note some features of symplectic matrices (for

greater detail see appendix A). The group of symplectic matrices, SN , is the set of

matrices S : Z2N
2 → Z2N

2 such that

〈Su,Su′〉= 〈u,u′〉= uT Ju′ = uT
N⊕

i=1

 0 1

1 0

 u′ (2.24)

for all u,u′ ∈ Z2N
2 , and where addition is defined modulo 2. This condition is

equivalent to the condition ST JS = J mod 2. Another equivalent way of writing

these conditions is in terms of the columns of the matrix. So the columns of the

matrix S = (u1,v1,u2,v2, . . . ,uN ,vN) satisfy

〈ui,u j〉= 〈vi,v j〉= 0 , (2.25)

〈ui,v j〉= δi j . (2.26)

This perspective and set of conditions on the columns of the symplectic matrix

is important for all of the proofs in this section. With this in mind, in the following

lemma I will prove an algorithm for uniformly sampling a symplectic matrix (from

the group SN). In the lemma after I will upper-bound and lower-bound the order of

the (Z2) symplectic group, and then in the lemma after that prove that a uniformly

random symplectic matrix acting on a binary vector has a random output.

Lemma 2.1. The following algorithm allows to uniformly sample from the symplec-

tic group SN .

1. Generate u1 by picking any of the (22N−1) non-zero vectors in Z2N
2 .
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2. Generate v1 by picking any of the 22N−1 vectors satisfying 〈u1,v1〉= 1.

3. Generate u2 by picking any of the (22N−2− 1) non-zero vectors satisfying

〈u1,u2〉= 〈v1,u2〉= 0.

4. Generate v2 by picking any of the 22N−3 vectors satisfying 〈u1,v2〉 =

〈v1,v2〉= 0 and 〈u2,v2〉= 1.

5. Continue generating u3,v3, . . . ,uN ,vN in analogous fashion, completing the

matrix S = (u1,v1,u2,v2, . . . ,uN ,vN).

Proof. We first look at the number of vectors (u1,v1,u2,v2, . . . ,uN ,vN), as stated

above, that ensures S symplectic.

The first column, u1, can be any non-zero vector in Z2N
2 , of which there are

22N − 1 possible choices. The second column, v1 must have 〈u1,v1〉 = 1. This

imposes one constraint on the 2N components of v1, and hence the number of

independent components is 2N− 1, each of which belongs to Z2. Therefore the

number of vectors v1 equals 22N−1, where it is worth noting that we need not account

for v1 being the zero vector, since this is captured by the condition 〈u1,v1〉 = 1.

This completes the argument for the first pair of columns u1,v1, and the proof

proceeds in a similar manner. The column u2 must now satisfy two constraints, being

linearly independent of the previous columns. Hence, u2 has 2N−2 independent

components, and hence neglecting the zero vector, therefore there are 22N−2 possible

choices of u2. The next column v2 must satisfy 〈u2,v2〉= 1 and moreover be linearly

independent of the previous column u1,v1, for which there are a total of 22N−3

possible choices. Hence, this argument proceeds in a similar manner again for the

next pair of columns.

The argument made in this proof does not depend on the particular choice of

any column. Therefore, if we select each column uniformly from all the possible

choices satisfying the constraints explained, then the resulting matrix from the 2N

choices of column is also uniformly distributed.
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Lemma 2.2. The order of the symplectic group is

|SN |= (22N−1)22N−1(22N−2−1)22N−3 · · ·(22−1)21 , (2.27)

and it satisfies

a(N)22N2+N ≤ |SN | ≤ b(N)22N2+N (2.28)

with 0.64 < a(N)< b(N)< 0.78.

Proof. We start considering ln |SN |.

ln |SN |= ln

[
N

∏
i=1

(22i−1)
N

∏
j=1

22 j−1

]

=
N

∑
i=1

ln
(
22i−1

)
+

N

∑
j=1

ln22 j−1

=
N

∑
i=1

ln
[
22i(1−2−2i)

]
+

N

∑
j=1

(2 j−1) ln2

=
N

∑
i=1

2i ln2+
N

∑
i=1

ln
(
1−2−2i)+ N

∑
j=1

(2 j−1) ln2

= N(N +1) ln2+
N

∑
i=1

ln
(
1−2−2i)+N2 ln2

= N(2N +1) ln2+
N

∑
i=1

ln
(
1−2−2i). (2.29)

We use x
1+x < ln(1+ x)< x, with x 6= 0 and x >−1, to upper and lower bound the

logarithm in equation 2.29. The corresponding bounds on |SN | are obtained after

exponentiating

N

∑
i=1

ln
(
1−2−2i)<− N

∑
i=1

2−2i =−
N

∑
i=1

1
4i =−

1
3

(
1− 1

4N

)
(2.30)

b(N) is defined to be b(N)≡ e−
1
3 (1−

1
4N ), moreover b(N)< b(1) = e−

1
4 < 0.78.
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To obtain the lower bound of |SN |, from 2.29 we have:

N

∑
i=1

ln
(
1−2−2i)>− N

∑
i=1

2−2i

1−2−2i

and a(N)≡ e−∑
N
i=1

2−2i

1−2−2i < b(N). We observe that:

a(N)≡ e−∑
N
i=1

1
22i−1 ≥ e−

1
3 ∑

N−1
i=0

1
22i > e−

4
9 > 0.64 (2.31)

In the next lemma, I will show that uniformly distributed symplectic matrix

have random outputs.

Lemma 2.3 (Uniform output). If S ∈ SN is uniformly distributed, then for any pair

of non-zero vectors u,u′ ∈ Z2N
2 we have

prob{u′ = Su}= (22N−1)−1 . (2.32)

Proof. Let us first consider the case u = (1,0, . . . ,0)T . If we follow the algorithm

of Lemma 2.1, then the image of (1,0, . . . ,0)T is uniformly distributed over the

(22N−1) non-zero vectors, and hence, it follows the probability distribution given

in equation 2.32. To show this distribution holds for any given u, take any S0 ∈ SN

such that S0u = (1,0, . . . ,0)T , and note that, if S is uniformly distributed then so is

SS0.

With these results concerning random symplectic matrices, and in particular

this approach based on columns of symplectic matrices, I will now prove a result

concerning the probability distribution of the rank of a submatrix of a symplectic

matrix (equation 2.21). Also, I would like to point out that in the phase space

description of the model each random symplectic matrix, which represents a Clifford

unitary, acts on two subspaces and hence is a 4N×4N symplectic matrix (Sx ∈ S2N).

Hence, for the rest of this section I will consider 4N×4N symplectic matrix (with

elements in Z2) only.
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Lemma 2.4. Any given S ∈ S2N can be written in block form

S =

 A B

C D

 , (2.33)

according to the local decomposition Z4N
2 = Z2N

2 ⊕Z2N
2 . If S is uniformly distributed

this then induces a distribution on the sub-matrices A,B,C,D. For each of them

(E = A,B,C,D) the induced distribution satisfies

prob
{

rankE ≤ 2N− k
}
≤ min{2k,4} 2−k2

(1−2−2N)k ≈ 4×2−k2
. (2.34)

Proof. We proceed by studying the rank of C and later generalizing the results to

A,B,D. In the following, we will also analyse the case where kge1, since the result

in equation 2.34 is trivial for k = 0. Let us start by counting the number of matrices

S ∈ S2N with a sub-matrix C satisfying Cu = 0 for a given (arbitrary) non-zero vector

u ∈ Z2N
2 . Let r denote the position of the last “1" in u, so that it can be written as:

u =
(

u1, . . . ,ur−1︸ ︷︷ ︸
r−1

,1,0, . . . ,0︸ ︷︷ ︸
2N−r

)T
, (2.35)

where u1, . . . ,ur−1 ∈ {0,1}. Then, the constraint Cu = 0 can be written as

Ci,1 = 0, if r = 1, with1≤ i≤ 2N

Ci,r = ∑
r−1
j=1Ci, j u j, if r > 1, with1≤ i≤ 2N

(2.36)

where Ci, j are the components of C. The statement in equation 2.36 is a constraint

on the r-th column of the matrix C.

Next, we follow the algorithm introduced in lemma 2.1 for generating a matrix

S ∈ S2N column by column (from left to right) and in addition to the symplectic

constraints we include equation 2.36. The conditions in equation 2.36 can be imposed

by ignoring the constraints during the generation of columns 1, . . . ,r−1, completely

fixing the rows 2N < i≤ 4N of the r column that corresponds to the r-th column of
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the matrix C, and ignoring the constraints again during the generation of columns

r+1, . . . ,4N. By counting as in lemma 2.2, we obtain that the number of matrices

S ∈ S2N satisfying Cu = 0 follows

|{S ∈ S2N : Cu = 0}| (2.37)

≤ (24N−1)(24N−1) · · ·(24N−(r−2)−|α−1|)(22N−(r−1)−α)(24N−r−|α−1|) · · ·21 ,

where α = 1 if r is odd and Ci,r = 0 for all i; and α = 0 otherwise. In the case of

r = 1, equation 2.37is the following equality

|{S ∈ S2N : Cu = 0}|= (22N−1)(24N−1)(24N−2−1) · · ·21 .

For some values of the first r− 1 columns of S and the r-th column of C, it is

impossible to complete the r-th column of A satisfying the symplectic constraints

(equations 2.25 and 2.26), and hence equation 2.37 is an inequality.

The probability that a random S satisfies Cu = 0 is

prob{Cu = 0}= |{S ∈ S2N : Cu = 0}|
|S2N |

. (2.38)

By noting that all factors in equation 2.37 are the same as in equation 2.27 except for

the factor at position r, we obtain

prob{Cu = 0} ≤ 22N−(r−1)−α

24N−(r−1)−α ′
≤ 22N−(r−1)

24N−(r−1)−1

=
2−2N

1−2(r−1)−4N
≤ 2−2N

1−2−2N , (2.39)

where α ′ = 1 if r is odd and α ′ = 0 otherwise. The last inequality above follows

from r ≤ 2N. The bound in equation 2.39 is correct also for r = 1. The fact that

bound in equation 2.39 is independent of r is crucial for the rest of the proof.

Next, we generalise bound in equation 2.39 to the case where Cui = 0 for k

given linearly-independent vectors ui ∈ {u1, . . . ,uk}. To do this, we take the 2n× k

matrix [u1, . . . ,uk] and perform Gauss-Jordan elimination, operating on the columns,
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to obtain a matrix [v1, . . . ,vk] having column-echelon form. {Cu1 = 0, . . . ,Cuk = 0}

is equivalent to {Cv1 = 0, . . . ,Cvk = 0}, in fact only two operations are performed on

the set {u1, . . . ,uk} to obtain the set {v1, . . . ,vk}: changing the order of the vectors

{u1, . . . ,uk}, replacing a vector u j with the sum of u j with another vector ul . If we

denote by ri the position of the last “1" of vi, then column-echelon form amounts to

r1 < r2 < · · ·< rk. Now we proceed as above to generate each column of S satisfying

the symplectic and the Cvi = 0 constraints. This gives

prob{Cu1 = 0, . . . ,Cuk = 0} ≤ 22N−(r1−1)−α1

24N−(r1−1)−α ′1

22N−(r2−1)−α2

24N−(r2−1)−α ′2
· · · 2

2N−(rk−1)−αk

24N−(rk−1)−α ′k
,

(2.40)

where αi,α
′
i ∈ {0,1}. Similarly as in equation 2.39, we obtain

prob{Cu1 = 0, . . . ,Cuk = 0} ≤ 2−2Nk

(1−2−2N)k . (2.41)

Multiplying the above bound by the number N 2N
k of k-dimensional subspaces of

Z2N
2 (see appendix B), then we obtain

prob{rank(C)≤ 2N− k}=N 2N
k prob{Cu1 = 0, . . . ,Cuk = 0}

≤min{2k,4} 22Nk

2k2

2−2Nk

(1−2−2N)k ,

= min{2k,4} 2−k2

(1−2−2N)k , (2.42)

where in the last inequality we used the upper-bound proven in lemma B.2 of

appendix B.

I will now demonstrate that this argument applies to any of the four sub-matrices

A,B,C,D. Consider the symplectic matrix

M =

0 1

1 0

 , (2.43)
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and its left and right action on the symplectic matrix S

SM =

B A

D C

 , MS =

C D

A B

 , (2.44)

so M permutes the block matrix S by swapping the rows and columns. Since, the

product of symplectic matrices is also a symplectic matrix, we have that the argument

above for the case of C = 0 applies to any of the four sub-matrices A,B,C,D. With

this the proof of equation 2.34 is complete.

I will now generalise this result to include the product of multiple independent

symplectic matrices, and in particular to the probability distribution for the rank of a

product Cr · · ·C2C1 of (r) independently sampled C-submatrices.

Lemma 2.5. Let the random matrices S1,S2, . . . ,Sr ∈ S2N be independent and uni-

formly distributed, which induces a distribution for the sub-matrices

Si =

 Ai Bi

Ci Di

 . (2.45)

For any choice Ei ∈ {Ai,Bi,Ci,Di} for each i ∈ {1, . . . ,r}, we have

prob
{

rank(Er · · ·E1)≤ 2N− k} ≤ 2k

(1−2−2N)k

(
k+ r−1

k

)
2−

1
2 k2

. (2.46)

Proof. Before analysing the rank of the product of r independent random matrices

Cr · · ·C1, we start by studying a simpler problem. Analysing the rank of the product

CF where C follows the usual C-distribution and F is a fixed 2N×2N matrix with

rank(F) = 2N− k1. Noting that the input space of C has dimension 2N− k1, using

the result in lemma 2.4, with k2 ≡ k− k1 ≥ 0, we obtain

prob
{

rank(CF)≤ 2N− k
}
≤N 2N−k1

k2
prob{Cu1 = 0, . . . ,Cuk2 = 0}

≤min{2k2,4} 2(2N−k1)k2

2k2
2

2−2Nk2

(1−2−2N)k2

≤ 2k2−k1k2−k2
2

(1−2−2N)k2
, (2.47)
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Proceeding in a similar fashion, we can analyse the product of two independent

C-matrices. To do so, we multiply two factors of equation 2.47 and sum over all

possible intermediate kernel sizes k1, obtaining

prob
{

rank(C2C1)≤ 2N− k
}
≤

k

∑
k1=0

2k2−k2k1−k2
2

(1−2−2N)k2

2k1−k2
1

(1−2−2N)k1

=
k

∑
k1=0

2k−k2k1−k2
1−k2

2

(1−2−2N)k , (2.48)

where again k2 = k− k1. Analogously, we can bound the rank of a product of r

independent random C-matrices as

prob
{

rank(Cr · · ·C1)≤ 2N− k
}
≤ ∑
{ki}

r

∏
i=1

2ki−ki ∑
i
j=1 k j

(1−2−2N)ki

=
2k

(1−2−2N)k ∑
{ki}

2−∑
r
i=1 ki ∑

i
j=1 k j , (2.49)

where the sum ∑{ki} runs over all sets of r non-negative integers {k1, . . . ,kr} such

that ∑
r
i=1 ki = k. In other words, this is all the possible ways of sharing k units among

r distinguishable parts. The number of all these sets can be bounded (see lemma B.3

in appendix B) as

∑
{ki}

1 =

(
k+ r−1

r−1

)
=

(
k+ r−1

k

)
≤ (1+ r)k ≤ (2r)k . (2.50)

Finally, for any set {k1, . . . ,kr} we have

k2 =
r

∑
i=1

r

∑
j=1

kik j ≤
r

∑
i=1

i

∑
j=1

kik j +
r

∑
i=1

r

∑
j=i

kik j

= 2
r

∑
i=1

i

∑
j=1

kik j . (2.51)

Substituting equations 2.50 and 2.51 back in to equation 2.49 we obtain

prob
{

rank(Cr · · ·C1)≤ 2N− k
}
≤ 2k

(1−2−2N)k

(
k+ r−1

k

)
2−

1
2 k2

. (2.52)
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Using the same argument as in the proof of lemma 2.4, this proof applies to all

products of submatrix E ∈ {A,B,C,D}.

As I have discussed already, in the phase space description of the dynamics

the Clifford unitaries are represented by symplectic matrices, which act on and map

binary vectors, which represent Pauli operators. Hence, to study the probabilistic

transformation of Pauli operators by the time evolution operator, in the next lemma I

will, using lemma 2.5, prove an upper-bound to the probability that a random binary

vector u is mapped to the zero vector by the product Cr · · ·C2C1 of (r) independently

sampled C-submatrices. This next lemma is an essential component in the proof of

all of the main results (results 2.1,2.2,2.3, and 2.4).

Lemma 2.6. If the random variables S1,S2, . . . ,Sr ∈ S2N and u ∈ Z2N
2 are indepen-

dent and uniformly distributed it follows that

prob
{

Er · · ·E1u = 0
}
≤ 8r 2−N . (2.53)

being E j ∈ {A j,B j,C j,D j} the subblocks of the symplectic matrices S1, ...,Sr.

Proof. If M is a fixed 2N× 2N matrix with rank M = 2N− k and u ∈ Z2N
2 is uni-

formly distributed, then

prob
{

Mu = 0
}
=

2k

22N . (2.54)

Also, if rank M > 2N− k then

prob
{

Mu = 0
}
≤ 2k−1

22N . (2.55)

This inequality is useful for the following bound

prob
{

Cr · · ·C1u = 0
}

= prob
{

Cr · · ·C1u = 0 and rank(Cr · · ·C1)> 2N− k
}

+prob
{

Cr · · ·C1u = 0 and rank(Cr · · ·C1)≤ 2N− k
}

≤ prob
{

Cr · · ·C1u = 0
∣∣ rank(Cr · · ·C1)> 2N− k

}
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+prob
{

rank(Cr · · ·C1)≤ 2N− k
}

≤ 2k−1−2N +
2k

(1−2−2N)k (1+ r)k2−
1
2 k2

, (2.56)

where the last inequality uses equation 2.55 and lemma 2.5 (and additional lemma

B.3 in the appendix B).

Using

1
(1−2−2N)k ≤

1
(1−2−2N)2N =

(
1+

1
22N−1

)2N

=

(
1+

1
2
(
22N−1− 1

2

))2N

≤
(

1+
1

4N

)2N

≤
√

e < 2 , (2.57)

we obtain

prob
{

Cr · · ·C1u = 0
}
≤ 2k−2N +2(4r)k 2−

1
2 k2

= ε , (2.58)

where the last equality defines ε . Note that the left-hand side above is independent of

k. Hence, for each value of k we have a different upper bound. We are interested in

the tightest one of them. Therefore, we need to find a value of k ∈ [1,2N] that makes

the upper bound in equation 2.58 have a small enough value. This can be done by

equating each of the two terms to ε/2 as

2k−2N = 2(4r)k 2−
1
2 k2

=
ε

2
. (2.59)

Isolating k from the first and second terms gives

k = 2N− log2
2
ε
, (2.60)

k = log2 4r+

√
log2

2 4r+ log2
2
ε
+1 , (2.61)

where we only keep the positive solution. Equating the above two identities for k we
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obtain

N =
1
2

(
log2 4r+ log2

2
ε
+

√
log2

2 4r+ log2
2
ε
+1

)

≤ 1
2

(
log2 4r+ log2

2
ε
+ log2 4r+

√
log2

2
ε
+1

)
≤ log2 4r+ log2

2
ε
, (2.62)

which implies

ε ≤ 8r 2−N . (2.63)

Substituting this into equation 2.58 we finish the proof of this lemma.

Additional symmetry

I will now demonstrate another key tool in the proof of the main results of this section.

I will now present what is referred to as the twirling technique in the work [125]

and discuss how it applies to the random Clifford circuit model we consider. Before

stating the lemma itself, it is worthwhile recalling that the definition of the evolution

operator after an integer time t is:

W (t)≡
[
(U1⊗U3⊗·· ·⊗UL−1)(U0⊗U2⊗·· ·⊗UL−2)

]t
= (UoddUeven)

t = (Uchain)
t ,

and after a half-integer time t is:

W (t)≡Ueven (Uchain)
t−1/2 .

Lemma 2.7. Consider a set of 2L single-site Clifford unitaries Vx,V ′x ∈ CN , these

unitaries are fixed. At integer time t, the random evolution operator W (t), as defined

above, has identical statistical properties to(
L−1⊗
x=0

V ′†x

)
W (t)

(
L−1⊗
x=0

V ′x

)
. (2.64)
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Similarly, at half-integer time t the evolution operator W (t) has identical statistical

properties to (
L−1⊗
x=0

Vx

)
W (t)

(
L−1⊗
x=0

V ′x

)
. (2.65)

Proof. First, we note that any uniformly distributed two-site Clifford unitary Ux ∈

C2N has identical statistical properties to the unitary (Vx⊗Vx+1)Ux(V ′x ⊗V ′x+1) for

any arbitrary choice of Vx,Vx+1,V ′x ,V
′
x+1 ∈ CN ; this is known as single-site Haar

invariance. Hence, we introduce the primed notation for the random two-site Clifford

unitary Ux

U ′x ≡ (Vx⊗Vx+1)Ux(V ′x⊗V ′x+1) for even x ∈ ZL , (2.66)

U ′x ≡ (V ′x⊗V ′x+1)
−1Ux(Vx⊗Vx+1)

−1for odd x ∈ ZL , (2.67)

where Vx,Vx+1,V ′x ,V
′
x+1 ∈ CN are any arbitrary choice of single-site Clifford unitary.

Consequently, the primed version of the global dynamics for integer t becomes

W ′(t) =

(
L−1⊗
x=0

V ′†x

)
W (t)

(
L−1⊗
x=0

V ′x

)
, (2.68)

and for half-integer t

W ′(t) =

(
L−1⊗
x=0

Vx

)
W (t)

(
L−1⊗
x=0

V ′x

)
. (2.69)

The single-site Haar invariance of the probability distributions of the primed and

not-primed evolution operators are identical, this proves the result.

Binary vector time evolution

With the two mathematical results proven in lemma 2.6 and lemma 2.7, I will now

prove a series of results which culminate in bounding the probability that any (non-

zero) initial binary vector of the total phase space (of the spin chain) u ∈ Z2NL
2 is

through its time evolution mapped to a binary vector which is non-zero at every site

of the phase space Vx. In other words, I will bound the probability that the initial

Pauli operator after a time t evolves to another Pauli operator which is non-identity
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at every site of the spin chain.

Before this, I will first define some notation. The time evolution of an initial

vector u0 ∈Vchain at time t is denoted by ut = S(t)u0. If the initial vector is supported

only at the origin u0 ∈ V0 then, as time t increases, the evolved vector ut is supported

on the light-cone

x ∈ {−(2t−1),−(2t−2), . . . ,2t} ⊆ ZL . (2.70)

It is worth recalling that the scrambling time, the minimum time such that any

initially local operator spreads throughout the entire spin chain, in this model is

tscr =
L
4 . Finally, we denote the projection of u on the local subspace Vx by ux.

In the next lemma, I will bound the probability distribution of the evolved binary

vector ut being zero or non-zero on the boundary of the light-cone for an initial an

initial vector which is non-zero only on a single-site.

Lemma 2.8. Consider a non-zero vector located at the origin u0 ∈ V0 and its time

evolution ut for any t ∈ {1/2,1,3/2, . . .}. The projection of ut at the rightmost site

of the lightcone x = 2t follows the probability distribution

P(ut
2t) =


1−qt

22N−1 if ut
2t 6= 0

qt if ut
2t = 0

, (2.71)

where qt ≤ 2 t 2−2N . The projection onto the second rightmost site ut
2t−1 also obeys

distribution given in equation 2.71.

Proof. After half a time step the evolved vector u1/2 is supported on sites x ∈ {0,1}

and it is determined by

u1/2
0 ⊕u1/2

1 = S0(u0
0⊕0) . (2.72)

Lemma 2.3 tells us that the vector u1/2
0 ⊕ u1/2

1 is uniformly distributed over all

non-zero vectors in V0⊕V1. This implies that the vectors u1/2
0 and u1/2

1 satisfy

prob{u1/2
x = 0}= 22N−1

24N−1
≤ 2−2N , (2.73)
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and have probability distribution of the form given in equation 2.71 with t = 1/2. In

the next time step we have

u1
1⊕u1

2 = S1(u
1/2
1 ⊕0) . (2.74)

Hence, if u1/2
1 = 0 then u1

1 = u1
2 = 0. Also, applying again lemma 2.3 we see that,

if u1/2
1 6= 0, then u1

1⊕u1
2 is uniformly distributed over all non-zero values. Putting

these things together we conclude that u1
1 and u1

2 satisfy

prob{u1
x = 0}= prob{u1/2

1 = 0}+prob{u1/2
1 6= 0}prob{u1

x = 0|u1/2
1 6= 0}

≤ prob{u1/2
1 = 0}+prob{u1/2

1 6= 0}2−2N

≤ 2×2−2N , (2.75)

and have probability distribution of the form given in equation 2.71 with t = 1.

We can proceed as above, applying lemma 2.3 to each evolution step

ut
2t−1⊕ut

2t = S2t−1(u
t−1/2
2t−1 ⊕0) , (2.76)

for t = 1/2,1,3/2,2, . . . This gives us the recursive equation

prob{ut
2t = 0}= prob{ut−1/2

2t−1 = 0}+prob{ut−1/2
2t−1 6= 0}prob{ut

2t = 0|ut−1/2
2t−1 6= 0}

≤ 2t×2−2N . (2.77)

And the same for ut
2t−1. Also, lemma 2.3 implies that ut

2t−1 and ut
2t follow the

probability distribution in equation 2.71 for all t = 1/2,1,3/2,2, . . .

With this proof, I will in the following lemma prove a similar result for the case

where the initial binary vector u0 is non-zero at every site Vx. This proof, along

with the previous lemma, will then be used to generalise further to any arbitrary

(non-zero) initial vector u0 ∈ Vchain.

Lemma 2.9. If the initial vector u0 ∈ Vchain is non-zero on all lattice sites (u0
x 6= 0
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for all x) then the projection of its evolution ut onto any site x ∈ ZL satisfies

prob
{

ut
x 6= 0

}
≥ 1−16 t 2−N , (2.78)

for all t ∈ {1/2,1,3/2, . . .}.

Proof. To prove this lemma we proceed similarly as in lemma 2.8. However, here,

the recursive equation 2.76 need not have a 0-input in the right system

ut
2t−1⊕ut

2t = S2t−1(u
t−1/2
2t−1 ⊕ut−1/2

2t ) . (2.79)

This difference in the premises does not change the conclusion in equation 2.73, due

to the fact that the bound in equation 2.32 is independent of u0
1 being zero or not.

This gives equation 2.71 for t = 1/2. Also, using

prob{u1
x = 0}= prob{u1/2

1 ⊕u1/2
2 = 0}+prob{u1/2

1 ⊕u1/2
2 6= 0 and u1

x = 0}

≤ prob{u1/2
1 = 0}+prob{u1

x = 0
∣∣u1/2

1 ⊕u1/2
2 6= 0}

≤ 2×2−2N , (2.80)

we obtain equation 2.71 for t = 1. However, here there is a very delicate point. As

can be seen in figure 2.4, the vector u1
2 is partly determined by S2, and hence, it is not

independent. Crucially, the bound given in equation 2.75 for u1
2 holds regardless of

the right input u1/2
2 , and hence, it is independent of S2. This fact can be summarized

with the following bound

P(u1
2|S2) =


1−q1

22N−1 if u1
2 6= 0

q1 if u1
2 = 0

, (2.81)

for any S2, where q1 ≤ 22−2N . That is, the correlation between u1
2 and S2 can only

happen through small variations of q1.

For t > 1, the inputs in equation 2.79 are not independent of the matrix S2t−1,

as illustrated in figure 2.4, and hence, lemma 2.3 cannot be applied. If we restrict
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u0
0 u0

1 u0
2 u0

3 u0
4 u0

5

u
1/2
1 u

1/2
2 u

1/2
3 u

1/2
4

u1
2 u1

3

S0 S2 S4

S1 S3

S2

Figure 2.4: This figure shows that the causal past of u1
2 is partly determined by S2. Hence,

at t = 3/2, the input u1
2 of S2 is not independent of S2. This makes the exact

probability distribution of ut very complicated. However, we prove that u1
2 is

approximately independent of S2. This figure was produced by a collaborator,
Daniele Toniolo.

equation 2.79 to the rightmost output (x = 2t) then we obtain

ut
2t =C2t−1ut−1/2

2t−1 +D2t−1ut−1/2
2t

=C2t−1ut−1/2
2t−1 +vt−1/2 , (2.82)

where the vector vt−1/2 = Dt−1/2ut−1/2
2t ∈Z2N

2 is not independent of Ct−1/2. Expand-

ing this recursive relation we obtain

ut
2t =C2t−1C2t−2ut−1

2t−2 +C2t−1vt−1 +vt−1/2

=C2t−1 · · ·C2u1
2 +wt , (2.83)

where the random vector

wt =C2t−1 · · ·C3v1 + · · ·+C2t−1C2t−2vt−3/2 +C2t−1vt−1 +vt−1/2 (2.84)

is not independent of the matrices C2t−1, . . . ,C2. Crucially, the bound in equation

2.81 for the distribution of u1
2 is independent of all these matrices. This bound can
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be equivalently stated as follows: with probability q = q1− 1−q1
22N−1 we have u1

2 = 0,

and with probability 1−q the random variable u1
2 is uniformly distributed over all

vectors in Z2N
2 including zero. This allows to write the following identity

prob{ut
2t = 0}= q+(1−q)prob{C2t−1 · · ·C2u = wt} , (2.85)

where the random variable u ∈ Z2N
2 is uniform (including zero) and independent of

wt and Ci for all i ∈ {2t−1, . . . ,2}. Clearly, we can write

prob{C2t−1 · · ·C2u = wt}= E
Ci,wt

E
u

δ
[
C2t−1 · · ·C2u = wt] . (2.86)

Now consider the average Eu δ [C2t−1 · · ·C2u = wt ] for a fixed value of the variables

wt and Ci. If the vector wt is not in the range of the matrix (C2t−1 · · ·C2) then the

average is zero. If the vector wt is in the range of the matrix (C2t−1 · · ·C2) then there

is a vector w̃ such that wt = (C2t−1 · · ·C2)w̃. Then we can write the average as

E
u

δ
[
C2t−1 · · ·C2u = wt]= E

u
δ [C2t−1 · · ·C2(u+ w̃) = 0] (2.87)

= E
u

δ [C2t−1 · · ·C2u = 0] , (2.88)

where the last equality follows from the fact that the random variable u+ w̃ is

uniform and independent of Ci, likewise u. Combining together the two cases for wt

we can write

prob{C2t−1 · · ·C2u = wt} ≤ E
Ci
E
u

δ [C2t−1 · · ·C2u = 0]

= prob{C2t−1 · · ·C2u = 0}

≤ 8(2t−2)2−N , (2.89)

where the last step follows from lemma 2.6. Substituting this back into equation 2.85

and using q≤ (22N−1)−1 we obtain

prob{ut
2t = 0} ≤ q+(1−q)16(t−1)2−N ≤ 16 t 2−N . (2.90)
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It is worth noting that lemma 2.6 implies that the same bound also holds for ut
2t−1.

Also, since the premises of this lemma are invariant under translations in the chain

ZL, then the conclusions hold for all x ∈ ZL.

The previous two proofs analyse two specific cases of the initial vector u0. In

the following lemma, I will prove a similar result for the more general case in which

the initial vector u0 ∈ Z2NL
2 is any non-zero vector. Also, I would like to comment

that while I did contribute significantly to the proof of the following lemma, the

proof in its current form I primarily credit to my supervisor, Lluis Masanes, and

collaborator, Daniele Toniolo.

Lemma 2.10. After the scrambling time t ∈ [tscr,2tscr], with t integer or half-integer,

the evolved vector ut = S(t)u0 is non-zero at each lattice site with probability

prob
{

ut
x 6= 0,∀x ∈ ZL

}
≥ 1−16 t L2−N , (2.91)

for any initial non-zero vector u0 ∈ Vchain.

Proof. Let F(u0)⊆ ZL×N be the set of spacetime points consisting of the causal

future of the sites x′ ∈ ZL where the initial vector u0 has support (u0
x′ 6= 0). For

example, if the initial vector is supported in the origin of the chain u0 ∈ V0 then the

causal future is given by the light cone (equation 2.70).

The main objective in this proof is to bound the probability of ut
x 6= 0 for any

fixed site x ∈ ZL and time t ∈ [tscr,2tscr]. For the sake of simplicity, let us start by

considering the case of x odd and t integer. In this case, the left-most spacetime

points in the causal past of (x, t) that are also contained in F(u0) are

(x−1, t−1/2), . . . ,(x−n, t−n/2), . . . ,(xe, te) . (2.92)

We have that either te = 0 or te > 0. In the first case (te = 0) we have that u0 has

support on xe or xe +1. And we can prove

prob{ut
x = 0} ≤ 16 t 2−N , (2.93)
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by applying the same procedure as in lemma 2.9. It is worth noting that the possibility

that u0
x′ = 0 for x′ > xe +1 does not affect the argument.

In the second case (te > 0), the sequence 2.92 can be continued by including

the following points from F(u0),

(xe, te−1/2), . . . ,(xe+n, te−1/2−n/2), . . . ,(x0−1,1/2),

 (x0−1,0)

(x0,0)
, (2.94)

where the last element is chosen so that it belongs toF(u0). If u0 has support on both

(x0−1,0) and (x0,0) then the choice is arbitrary. Here, for the sake of concreteness,

we assume that u0
x0
6= 0 and take (x0,0) as the last point of the sequence. The sub-

index “e” stands for “elbow", because it labels the point where the sequence 2.92

changes direction to the sequence 2.94 (see figure 2.5).

Now we can write our chosen vector ut
x as

ute−1/2
xe = Bxe · · ·Bx0−2Bx0−1u0

x0
, (2.95)

ute
xe
= Dxe−1ute−1/2

xe , (2.96)

ut
x =Cx−1 · · ·Cxe+1Cxeu

te
xe
+w , (2.97)

where the random vector w is correlated with Bxe, . . . ,Bx0−1 and Cx−1, . . . ,Cxe but

not with Dxe−1. Vector w is analogous to wt , defined in equation 2.84. Note also that

the random matrices Bxe, . . . ,Bx0−1 are not independent from Cx−1, . . . ,Cxe , but that

Dxe−1 is independent from all the rest. (Figure 2.5 contains an example where the

gates associated to Bxe, . . . ,Bx0−1 are in blue, those of Cx−1, . . . ,Cxe in red, and that

of Dxe−1 in yellow.)

Now we can start constructing our bound as

prob{ut
x = 0}= prob{ut

x = 0 and ute−1/2
xe = 0}+prob{ut

x = 0 and ute−1/2
xe 6= 0}

≤ prob{ute−1/2
xe = 0}+prob{ut

x = 0 and ute−1/2
xe 6= 0} (2.98)
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u0
1

u
3/2
�1

u3
2

S0

S�1

S�2

S�1

S0

S1

Figure 2.5: This figure represents the evolution of an initially local operator u0 ∈ V1 at site
x = 1. The figure only displays gates Sx that are in the intersection of the causal
future of the initial location x = 1 and the causal past of the chosen point u3

2. The
probability of u3

2 = 0 is bounded by analysing the sequence of coloured gates,
which has an “elbow" at location (xe, te) = (−1,3/2). The analysis of blue gates
uses lemma 2.8, and that of red gates uses lemma 2.9. The key feature of the
bound is that the yellow gate S−2 only appears once. This figure was produced
by a collaborator, Daniele Toniolo.

Using lemma 2.8, the first term can be upper-bounded by

prob{ute−1/2
xe = 0} ≤ 2(te−1/2)2−2N . (2.99)

The second term can be bounded by using the independence of Dxe−1, the fact that

ute−1/2
xe is not zero, and proceeding in a manner similar to lemma 2.9. Therefore,

we again introduce the uniformly distributed random vector u ∈ Z2N
2 , which is

independent of all gates Sxe,Sxe+1, . . . ,Sx−1.
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The statistical distance between ute
xe

and u, conditioned on ute−1/2
xe 6= 0, is

d(ute
xe
,u) = ∑

ute
xe

∣∣∣P(ute
xe
|ute−1/2

xe 6= 0)−2−2N
∣∣∣

=
(
22N−1

)∣∣∣∣ 22N

24N−1
−2−2N

∣∣∣∣+ ∣∣∣∣22N−1
24N−1

−2−2N
∣∣∣∣

≤ 21−4N , (2.100)

where we have used lemma 2.3. Once again, continuing using the proof technique of

lemma 2.9 (in particular equation 2.85) we find that

prob{ut
x = 0 and ute−1/2

xe 6= 0}

= prob{Cx−1 · · ·Cxeu
te
xe
= w and ute−1/2

xe 6= 0}

≤ d(ute
xe
,u)+prob{Cx−1 · · ·Cxeu = w and ute−1/2

xe 6= 0}

≤ 21−4N +prob{Cx−1 · · ·Cxeu = w} . (2.101)

This upper-bound makes use of the fact that that w and u are independent, giving

prob{Cx−1 · · ·Cxeu = w} ≤ 8(x− xe)2−N = 8(t− te)2−N . (2.102)

Putting all things together we obtain

prob{ut
x = 0} ≤ 2(te−1/2)2−2N +21−4N +8(t− te)2−N ≤ 8 t 2−N . (2.103)

Finally, we use the union bound to conclude that

prob{∃x ∈ ZL : ut
x = 0

}
≤ 8 t L2−N , (2.104)

which is equivalent to the statement in equation 2.91.

The result in lemma 2.10 demonstrates that in the regime N� logL an initial

non-zero vector u0 is mapped by the time evolution operator to an evolved vector

ut which is non-zero at every site of the lattice (with probability close to one). This



2.1. Time periodic local dynamics 62

lemma is key for the proof of the main results of this section.

Half-integer time results: proof of results 2.3 and 2.4

With the mathematical tools developed in this section so far, I will now show the

rigorous proofs for results 2.3 and 2.4. These results concern half-integer times only.

I am focussing on the proof of the half-integer time results first, because they require

fewer steps than the integer time results, but use the same approach. Therefore, the

proof of the half-integer time results can serve as an informative guide to the more

involved results for integer times, which require a few extra lemmas and proofs.

In the next lemma, I will prove that for any evolved vector ut which is non-zero

at every site the probability distribution is uniformly distributed over all possible

vectors, for any half-integer time after the scrambling time.

Lemma 2.11. At half-integer t ≥ tscr the probability distribution of the evolved

vector ut = S(t)u0 conditioned on the evolved vector being non-zero at every site is

uniform:

prob{ut = v|ut
x 6= 0,∀x ∈ ZL}=

1
(22N−1)L , (2.105)

for all vectors v that are non-zero at every site vx 6= 0,∀x ∈ ZL.

Proof. The proof of this lemma follows from the twirling technique discussed and

proven in lemma 2.7. The probability distribution of the evolved vector ut = S(t)u0

has identical statistical properties to

ut =
(⊕L−1

x=0 Xx
)

S(t)
(⊕L−1

x=0Yx
)

u0, (2.106)

where Xx,Yx ∈ SN are arbitrary single-site symplectic matrices. Hence, since the

choice of each Xx is arbitrary, each Xx is independent and uniformly distributed

over all single-site symplectic matrices. Therefore, imposing the condition that the

evolved vector is non-zero on every site, then, since the twirling matrices Xx are

independent and uniform, the probability distribution of the evolved vector at each

site is independent and uniformly distributed over all non-zero vectors. Applying

lemma 2.3 the stated conditional probability in equation 2.105 is obtained.
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With this uniformly distributed conditional probability, I will now give the proof

of result 2.3, which states that at any half-integer time in the interval t ∈ [tscr,2tscr] the

probability distribution of the evolved operator is close to uniform, when N� logL.

Lemma 2.12. For any initial non-zero vector u0 ∈ Vchain, the probability distribution

of the time evolved vector ut = S(t)u0, at any half-integer time after the scrambling

time, is approximately uniformly distributed over all non-zero vectors of the total

system, and bounded by

∑
v

∣∣∣∣prob{ut = v}− 1
22NL−1

∣∣∣∣≤ 32 tL2−N +L2−2N . (2.107)

Proof. Defining q ≡ prob{ut
x 6= 0,∀x ∈ ZL}, the probability prob{ut = v} can be

rewritten in the following way

prob{ut = v}= qprob{ut = v|ut
x 6= 0,∀x ∈ ZL}

+(1−q)(prob{ut = v|∃y ∈ ZL : ut
y = 0}).

Adding and subtracting q
22NL−1 in the sum and then applying the triangle inequality,

we find that:

∑
v

∣∣∣∣prob{ut = v}− 1
22NL−1

∣∣∣∣≤∑
v

q
∣∣∣∣prob{ut = v|ut

x 6= 0∀x}− 1
22NL−1

∣∣∣∣
+(1−q)∑

v

∣∣∣∣prob{ut = v|∃y ∈ ZL : ut
y = 0}− 1

22NL−1

∣∣∣∣ .
We can upper bound the first term with q≤ 1 and apply lemma 2.11 to find that

q∑
v

∣∣∣∣prob{ut = v|ut
x 6= 0∀x}− 1

22NL−1

∣∣∣∣≤ L2−2N . (2.108)

To bound the second term, notice that the maximum value of the sum is 2, so

(1−q)∑
v

∣∣∣∣prob{ut = v|∃y ∈ ZL : ut
y = 0}− 1

22NL−1

∣∣∣∣
≤ (1−q)∑

v

(
prob{ut = v|∃y ∈ ZL : ut

y = 0}+ 1
22NL−1

)
= 2(1−q)
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and then using the result of lemma 2.10 to find that

(1−q)≤ 16tL2−N , (2.109)

gives the stated result.

This concludes the proof of result 2.3. In the next lemma, I will give the proof

of result 2.4, which shows that the time evolution operator W (t) is an approximate

2-design in the weak sense that I defined - when measurements are are restricted to

Pauli operators only.

Lemma 2.13. At half integer times after the scrambling time, t ≥ tscr, the dynamics

W (t) give rise to an approximate 2-design with respect to two-Pauli measurements.

That is to say, for any state ρ the following holds

tr

(
σu⊗σv

[
E

W (t)
W (t)⊗2

ρ W (t)⊗2†−
∫

SU(d)
dU U⊗2

ρ U⊗2†

])
≤ 33 tL2−N

δu,v .

(2.110)

Proof. Let us consider a general state describing two copies of the system

ρ = ∑
u,v

αu,v σu⊗σv , (2.111)

where α0,0 = 2−2NL by normalisation, and the coefficients αu,v must satisfy the

following

αu,v 22NL = tr(ρ σu⊗σv) ∈ [−1,1] . (2.112)

Applying the average dynamics to ρ we obtain

E
W (t)

W (t)⊗2
ρ W (t)⊗2† = 2−2NL

1⊗1+ ∑
u,v6=0

αv,vprob{v = S(t)u}σu⊗σu .

(2.113)

The fact that terms αu,u′ and σu⊗σu′ with u 6= u′ are not present in the above

expression follows from the fact that W (t) has an additional symmetry at half-integer

times (referred to as the twirling technique), which is described and proven in lemma
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2.7. Recall that at half-integer t we have the time-reversal symmetry

prob{v = S(t)u}= prob{u = S(t)v} . (2.114)

Applying the Haar twirling on ρ we obtain

∫
SU(d)
dU U⊗2

ρ U⊗2† = 2−2NL
1⊗1+ ∑

u,v6=0
αv,v γ σu⊗σu , (2.115)

where γ = (22NL−1)−1 is the uniform distribution over non-zero vectors in Vchain.

Substituting equations 2.113 and 2.115 into equation 2.110 we obtain

tr

(
σu⊗σv

[
E

W (t)
W (t)⊗2

ρ W (t)⊗2†−
∫

SU(d)
dU U⊗2

ρ U⊗2†

])
(2.116)

= δu,v ∑
w6=0

αw,w (prob{u = S(t)w}− γ)22NL (2.117)

≤ δu,v ∑
w6=0
|prob{u = S(t)w}− γ| ≤ 33 tL2−N

δu,v , (2.118)

where the last two inequalities follow from equations 2.112 and 2.114, and lemma

2.12.

Integer and half-integer time results: proof of results 2.1 and 2.2

With the mathematical tools proven previously in this section, I will now show the

rigorous proofs for results 2.1 and 2.2. These results apply to both integer and

half-integer times. The proof of these two results make use of the same tools and

argument as the proofs for the two results that apply to half-integer times only.

However, a few extra and more involved proofs will be required, since at integer

times the time evolution operator has a more restricted additional symmetry than in

the half-integer case - as proven in lemma 2.7.

First, I will prove a general result (lemma 2.14) , which is not specific to integer

times (or quantum circuits), but is primarily used in the all proofs related to integer

time results. Then, I will give a pair of proofs (lemma 2.15 and 2.16), which will

conclude with the proof justifying result 2.1. After, I will then proceed to the proof
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justifying result 2.2 (lemma 2.19), which first requires an involved derivation (lemma

2.18).

Lemma 2.14. Let u be a fixed non-zero element of Z2N
2 . Let the probability distri-

bution P(v) over v ∈ Z2N
2 have the property that P(Sv) = P(v) for any S ∈ SN such

that Su = u. Then it must be of the form

P(v) =



q1 if v = 0

q2 if v = u

q3 if 〈v,u〉= 0 and v 6= 0,u

q4 if 〈v,u〉= 1

, (2.119)

where the positive numbers qi are constrained by the normalization of P(v).

Proof. We initially consider that u = (1,0, . . . ,0)T , and the subgroup of Sn that

leaves u unchanged. If v = 0 or u, then the action of this subgroup has no effect,

and hence we require a parameter for each in the distribution, q1 and q2 respectively.

This is not the case for all other choices of v, since the action of the subgroup will

transform v into some other vector in Z2N
2 . This transformation is constrained by the

symplectic form:

〈v,u〉= 〈Sv,Su〉= 〈Sv,u〉 , (2.120)

and hence the subgroup is composed of two subgroups, which transform v into

another vector in Z2N
2 that has the same value for the symplectic form. Furthermore,

the two subgroups are such they can map any vector to any other vector with the

same value for the symplectic form.

This can be seen by considering the case where v = (0,1, . . . ,0)T , so 〈u,v〉= 1.

The subgroup that keeps u = (1,0, ...,0)T unchanged consists of all the elements of

SN with u as the first column of the matrix. Hence, by lemma 2.1, we can select the

second column of the matrix to be any vector which has symplectic form of 1 with

the first column, which is u. Thus, we can map v to any other vector with symplectic

form one with u, which is also unchanged. Then, by noting that the product of

symplectic matrices is a symplectic matrix, the subgroup can map any vector with



2.1. Time periodic local dynamics 67

symplectic form of one with u to any other. Similarly, this argument applies to the

other case where the symplectic form has a value of zero.

Then since P(Sv) = P(v), all vectors that give the same value for 〈v,u〉 have

the same probability. Thus, we get the probability distribution in equation 2.119.

Finally, since via a symplectic transformation u can be mapped to any other

vector in Z2N
2 , and that the product of two symplectic matrices is symplectic, this

result applies for any u ∈ Z2N
2 .

This rather general result demonstrates that at integer times the symplectic form

of the initial vector at one particular site u0
x with the evolved vector at the same

particular site ut
x is a crucial factor in the form of the probability distribution. In the

next lemma, I will address the question of bounding the symplectic form for the case

of an initially local operator u0 and its time evolution ut .

Lemma 2.15. For an initial vector u0 ∈ V0 which is non-zero only at site x = 0,

the probability that the value of the symplectic form between the evolved vector

ut = St
chainu0, with integer t, and the initial vector, 〈ut ,u0〉= 〈ut

0,u
0
0〉 is equal to s

has an s-independent upper bound given by:

prob{〈ut
0,u

0
0〉= s} ≤ 8t2−N +

1
2
. (2.121)

Furthermore, this result is independent of the initial site at which the initial vector

u0 in non-zero.

Proof. The approach of this proof is similar to the proof of lemma 2.9. That is to

say, we consider a sequence of gates which are in the causal past of ut
0, as shown for

example in figure 2.5. Mathematically, we write ut
0 as

ut/2
1−t = B1−t · · ·B−2B−1A0u0

0 , (2.122)

ut/2+1/2
1−t = D−tu

t/2
1−t , (2.123)

ut
0 =C−1 · · ·C2−tC1−tu

t/2+1/2
1−t +w , (2.124)

where, crucially, the random vector w is independent of the random matrix D−t . This



2.1. Time periodic local dynamics 68

vector w is defined in a way similar to equation 2.84 (of lemma 2.9). To proceed

further, we can follow similar steps to those in equations 2.98 to 2.103, so

prob
{
〈u0

0,u
t
0〉= s

}
= prob

{
〈u0

0,u
t
0〉= s and ut/2

1−t = 0
}
+prob

{
〈u0

0,u
t
0〉= s and ut/2

1−t 6= 0
}

≤ prob
{

ut/2
1−t = 0

}
+prob

{
〈u0

0,u
t
0〉= s and ut/2

1−t 6= 0
}

. (2.125)

The first term can be upper-bounded using lemma 2.8, so

prob
{

ut/2
1−t = 0

}
≤ 2 t 2−2N . (2.126)

To upper-bound the second term, following the method of lemma 2.9, we introduce

two uniformly distributed random vectors u,u′ ∈ Z2N
2 , which importantly are inde-

pendent of the gates S1−t ,S2−t , . . . ,S−2. Hence, this probability term can be written

as

prob
{
〈u0

0,u
t
0〉= s and ut/2

1−t 6= 0
}

= prob
{

u0T
0 JC−1 · · ·C1−tu

t/2+1/2
1−t = s+ 〈u0

0,w〉 and ut/2
1−t 6= 0

}
≤ d
(

ut/2+1/2
1−t ,u

)
+prob

{
u0T

0 JC−1 · · ·C1−tu = s+ 〈u0
0,w〉 and ut/2

1−t 6= 0
}

≤ d
(

ut/2+1/2
1−t ,u

)
+prob

{
u0T

0 JC−1 · · ·C1−tu = s+ 〈u0
0,w〉

}
≤ d
(

ut/2+1/2
1−t ,u

)
+d
(
JCT
−1Ju0

0,u
′)+prob

{
u′T JC−2 · · ·C1−tu = s+ 〈u0

0,w〉
}
,

(2.127)

where d(·, ·) denotes the statistical distance between the two probability distribution.

These two statistical distance terms can be bounded in the same way as equation

2.100, so

d
(

ut/2+1/2
1−t ,u

)
≤ 21−4N , (2.128)

d
(
JCT
−1Ju0

0,u
′)≤ 21−4N . (2.129)
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To bound the third term of equation 2.127, note that for any non-zero a ∈ Z2N
2

then prob{u′T a = s}= 1/2, for both s = 0,1, and hence therefore

prob
{

u′T JC−2 · · ·C1−tu = s+ 〈u0
0,w〉

}
= prob

{
u′T JC−2 · · ·C1−tu = s+ 〈u0

0,w〉 and C−2 · · ·C1−tu 6= 0
}

+ prob
{

u′T JC−2 · · ·C1−tu = s+ 〈u0
0,w〉 and C−2 · · ·C1−tu = 0

}
.

Next we bound the first term by using the fact that the uniformly distributed vector

u′ is independent of a := JC−2 · · ·C1−tu and 〈u0
0,w〉, as

prob
{

u′T a = s+ 〈u0
0,w〉 and a 6= 0

}
≤ prob

{
u′T a = s+ 〈u0

0,w〉
∣∣a 6= 0

}
=

1
2
.

The second term can be upper-bounded by applying lemma 2.6 to find Combining

these bounds, it is found that

prob
{

u′T JC−2 · · ·C1−tu = s+ 〈u0
0,w〉

}
≤ 1

2
+8(t−2)2−N . (2.130)

Finally, with all of the terms accounted for and upper-bounded, we arrive at

prob
{
〈u0

0,u
t
0〉= s

}
≤ 2 t 2−2N +42−4N +

1
2
+8(t−2)2−N

≤ 1
2
+8 t 2−N , (2.131)

which is the stated result.

By combining the previous two results (lemmas 2.14 and 2.15), I will now prove

a similar statement to lemma 2.11. That is to say, for an initially local operator u0

and an evolved vector ut , which is non-zero at every site, the probability distribution

of the evolved vector ut is uniformly distributed over all possible vectors (within the

light-cone).

Lemma 2.16. For an initial vector u0 which is non-zero only on site x = 0 the prob-

ability distribution of the evolved vector ut = St
chainu0 at integer times, conditioned

on the evolved vector being non-zero at every site and different from the initial
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single-site non-zero vector, ut
x 6= 0 ∀x ∈ ZL and ut

0 6= u0
0, after the scrambling time

tscr is of the form

prob{ut |ut
x 6= 0 ∀x ∈ZL,ut

0 6= u0
0} ≤

1
(22N−1)L−1


8t2−N+1/2

22N−1−2 if 〈ut
0,u

0
0〉= 0

8t2−N+1/2
22N−1 if 〈ut

0,u
0
0〉= 1

,

and before the scrambling time for all sites within the causal light-cone the probability

distribution is of the form

prob{ut |ut
x 6= 0 ∀x ∈ [−2t +1,2t],ut

0 6= u0
0}

≤ 1
(22N−1)4t−1


8t2−N+1/2

22N−1−2 if 〈ut
0,u

0
0〉= 0

8t2−N+1/2
22N−1 if 〈ut

0,u
0
0〉= 1

. (2.132)

Furthermore, this result is independent of the initial site which the initial vector u0

in non-zero.

Proof. The proof of this lemma uses the twirling technique discussed in lemma 2.7.

The probability distribution of the evolved vector ut = (Schain)
tu0 at integer times

has identical statistical properties to

ut =
(⊕L−1

x=0 Xx
)

St
chain

(⊕L−1
x=0 X−1

x
)

u0

=
(⊕L−1

x=0 Xx
)

St
chain

(
X−1

0 u0
0
⊕L−1

x=1 0
)

(2.133)

where Xx ∈ SN are arbitrary single-site symplectic matrices. Equation 2.133 follows

from the fact that it has been assumed that u0 is non-zero at x = 0, and therefore(⊕L−1
x=0 X−1

x
)

u0 is supported at x = 0 as well. If we restrict X0 to the elements of

SN that satisfy X0u0
0 = u0

0, then the probability distribution of ut is identical to(⊕L−1
x=0 Xx

)
ut . Since the choice of symplectic matrices

⊕L−1
x=0 Xx with which to twirl

is arbitrary, we can take each single-site matrix to be independent and uniformly

distributed over all single-site symplectic matrices, except for X0 which is uniformly

distributed over the restricted set satisfying X0u0
0 = u0

0. Then, we condition on the

evolved vector being non-zero at all sites x and different for the initial single-site
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non-zero vector, ut
x 6= 0 ∀x ∈ ZL and ut

0 6= u0
0. Therefore under this condition, the

evolved vector at each site is independent and uniformly distributed over all non-

zero vectors (lemma 2.3) apart from the initial vector u0
0. For the vector space

V0 we invoke lemma 2.14, and hence the evolved vector ut
0 ( 6= 0,u0

0) at x = 0 is

uniformly distributed over all the vectors with the same symplectic form with u0
0,

〈ut
0,u

0
0〉. Hence, using lemma 2.15, which gives an upper bound for the probability

of 〈ut
0,u

0
0〉 ∈ {0,1}, we get the stated result.

With this uniformly distributed conditional probability, I will now give the

proof of result 2.1. This result states that at any integer or half-integer time in the

interval t ∈ [1/2,2tscr] the probability distribution of the evolved operator ut is close

to uniform, when N� logL, when the initial vector u0 is non-zero on a single site

only.

Lemma 2.17. For an initial vector which is non-zero at x = 0 only, the evolved

vector ut = St
chainu0, at integer times, is approximately uniformly distributed over

all non-zero vectors within the light-cone. With t ≤ tscr within the causal light-cone

x ∈ [−2t +1,2t] we have:

∑
v∈Z8Nt

2

∣∣∣∣prob{ut = v}− 1
28Nt−1

∣∣∣∣≤ 32t(4t +1)2−N +4t2−2N (2.134)

With t ≥ tscr it holds:

∑
v∈Z2NL

2

∣∣∣∣prob{ut = v}− 1
22NL−1

∣∣∣∣≤ 32t(L+1)2−N +L2−2N (2.135)

Additionally, we note that this result holds for any choice of single site at which the

initial vector is non-zero.

Proof. The proof of this result is similar to that of lemma 2.12 . I will first consider

the case t ≥ tscr first. Defining q≡ prob{ut
x 6= 0∀x∈ZL∧ut

0 6= u0
0}, the prob{ut = v}
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can be rewritten in the following way

prob{ut = v}= qprob{ut = v|ut
x 6= 0∀x ∈ ZL∧ut

0 6= u0
0}

+(1−q)(prob{ut = v|∃x ∈ ZL such thatut
x = 0∨ut

0 = u0
0}) ,

Adding and subtracting the term q
22NL−1 into the sum over v and using the

triangle inequality we find that

∑
v

∣∣∣∣prob{ut = v}− 1
22NL−1

∣∣∣∣
≤ q∑

v

∣∣∣∣prob{ut = v|ut
x 6= 0∀x ∈ ZL,ut

0 6= u0
0}−

1
22NL−1

∣∣∣∣
+(1−q)∑

v

∣∣∣∣prob{ut = v|∃x ∈ ZL such thatut
x = 0∨ut

0 = u0
0}−

1
22NL−1

∣∣∣∣ .
We can bound the first term using q≤ 1 and apply lemma 2.16 to find that

q∑
v

∣∣∣∣prob{ut = v|ut
x 6= 0∀x ∈ ZL,ut

0 6= u0
0}−

1
22NL−1

∣∣∣∣≤ 16t2−N +(L+1)2−2N .

To evaluate the second term above, we upper bound the sum with its maximum value

of 2 and use the result of lemma 2.10 to find that

(1−q)∑
v

∣∣∣∣prob{ut = v|∃x ∈ ZL such thatut
x = 0∨ut

0 = u0
0}−

1
22NL−1

∣∣∣∣≤ 32t(L+1)2−N .

Combining, this gives the stated result for integer times after the scrambling time.

To derive the results for integer times before the scrambling time, note that the

derivation is identical with the substitution L→ 4t, which agree when t = tscr (and

after this time).

This concludes the proof of result 2.1, which finally leaves the proof which

justifies result 2.2. In this result, I will consider a subsystem of the spin chain

comprising Ls consecutive sites, where Ls is even. Without loss of generality,

this subsystem is chosen to be {1,2, . . . ,Ls} ⊆ ZL. I will analyse the state of this
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subsystem at times

t ≤ L−Ls

4
, (2.136)

which ensures that the left boundary of the light-cone of ut
1 and the right boundary

of the light-cone of ut
Ls

do not collide and intersect. In the next lemma, I will prove

a generalisation of the result in lemma 2.15. Specifically, I will prove that joint

probability of the symplectic form between the initial vector u0 and the evolved

vector ut evaluated between each and every site of the Ls region is approximately

uniformly distributed (once again, in the regime of large N).

Lemma 2.18. Consider an initial vector u0 ∈ Vchain supported on all lattice sites

(u0
x 6= 0 for all x ∈ ZL), and its evolution at time t, ut . Define the random variable

sx = 〈ut
x,u0

x〉 at each site of the region x ∈ {1, . . . ,Ls} ⊆ ZL, where Ls is even. Then

we have

P(s1, . . . ,sLs)≤ 2−Ls +32 t 3
Ls
2 +1 2−N , (2.137)

as long as t ≤ (L−Ls)/4.

Proof. The value of the random vectors ut
1, . . . ,u

t
Ls

is only determined by the random

matrices S2−2t , . . . ,SLs+2t−2. The rest of matrices Sx are not contained in the causal

past of the region under consideration {1,2, . . . ,Ls}. In order to simplify this proof,

we will replace S2−2t , . . . ,SLs+2t−2 by a new set of random variables defined in what

follows.

Let us label by y ∈ {1, . . . ,Ls/2} the pair of neighbouring sites {2y−1,2y} ⊆

{1, . . . ,Ls}. For each pair y we consider a given non-zero vector ay ∈ Z4N
2 and define

the random variables

by = S−1
2y−1ay , (2.138)

hy =
〈
ay,ut

2y−1⊕ut
2y
〉
=
〈

by,u
t−1/2
2y−1 ⊕ut−1/2

2y

〉
. (2.139)

The left-most random contribution to hy is the matrix S2y−2t , or equivalently the
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u0
2−2t u

0
2−2t . . . u0

Ls−2tu
0
Ls+1−2t

w1 w2 wLs/2

b1 bLs/2

ut
1 ut

2
. . . ut

Ls−1u
t
Ls

a1 aLs/2

S−2 S0 S2 S4 S6 S8

S−1 S1 S3 S5 S7

S0 S2 S4 S6

S1 S3 S5

Figure 2.6: This figure represents the region {1,2, . . . ,6} at time t = 2, and its causal past
back to t = 0. (Hence Ls = 6.) All the random matrices S−2, . . . ,S8 contribute
to the value of the vectors ut

1, . . . ,u
t
6. The left-most contribution to the vector ut

1
is the matrix S−2, or equivalently the vector w1. The given vector ay associated
to the pair of neighbouring sites y, and its 1/2-step backwards time translations
by, are also represented. This figure was produced by a collaborator, Daniele
Toniolo.

vector wy, defined through

w̃y⊕wy = S2y−2t(u0
2y−2t⊕u0

2y−2t+1) . (2.140)

We note that wy ∈ V2y−2t+1. This contribution and others are illustrated in figure

2.6. The contribution of the vector wy to hy (and ut−1/2
2y−1 ) is “transmitted through" the

matrices S2y−2, S2y−3, . . ., S2y−2t+2, S2y−2t+1. More precisely, wy is mapped via the

matrix product

Fy =C2y−2C2y−3 · · ·C2y−2t+2C2y−2t+1 , (2.141)

where we have used decomposition in equation 2.21. We denote by vy all contribu-

tions to ut−1/2
2y−1 that are not Fywy,

vy = (ut−1/2
2y−1 +Fywy)⊕ut−1/2

2y . (2.142)



2.1. Time periodic local dynamics 75

We remark that vy ∈ V2y−1⊕V2y. The last random variable that we need to define is

gy = 〈by,vy〉, which together with equation 2.139 allows us to write

hy =
〈
by,Fywy +vy

〉
=
〈
by,Fywy

〉
+gy . (2.143)

Note the slight abuse of notation in that we write Fywy instead of Fywy⊕0.

In summary, we have replaced the variables S2−2t , . . . ,SLs+2t−2 by the variables

wy,by,Fy,gy for y = 1, . . . ,Ls/2. (We are not using vy, w̃y any more.) These variables

are not all independent, but they satisfy the following independence relations:

• w1,b1, . . . ,wLs/2,bLs/2 are independent.

• wy is independent of gy′ for all y′ ≥ y.

• Fy is independent of wy′ and by′′ for all y′ ≤ y and y′′ ≥ y.

To continue with the proof it is convenient to introduce the following notation:

u≥y = (uy,uy+1, . . . ,uLs/2) , (2.144)

u≤y = (u1,u2, . . . ,uy) , (2.145)

and analogously for >,< and the rest of variables by,Fy,gy. This allows us to write

the joint probability distribution of h1, . . . ,hLs/2 as

P(h≥1) = ∑P(w≥1,b≥1,F≥1,g≥1)∏
y

δ
(
hy,
〈
by,Fywy

〉
+gy

)
. (2.146)

Note that we can write the above distribution P(w≥1,b≥1,F≥1,g≥1) as

P(w≥1,b≥1,F≥1,g≥1) = ∑
S0,S1,...,SL−1

P(S0)P(S1) · · ·P(SL−1)×

×
Ls/2

∏
y=1

δ
(
wy−S2y−2t [u0

2y−2t⊕u0
2y−2t+1]

)
×δ

(
by−S−1

2y−1ay

)
×

×δ
(
Fy−C2y−2 · · ·C2y−2t+1

)
×δ

(
gy−

〈
by,(u

t−1/2
2y−1 +Fywy)⊕ut−1/2

2y

〉)
.

(2.147)
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The following sum-rule is repeatedly exploited below

∑
w1

P(w1)δ (h1,〈b1,F1w1〉+g1) =

 δ (h1,g1) if (F1⊕02N)
T Jb1 = 0 ,

1/2 otherwise.
(2.148)

Using δ (h,h′)≤ 1 for all h,h′ we can write

P(h≥1) = ∑P(w1)P(w≥2,b≥1,F≥1,g≥1)∏
y

δ
(
hy,
〈
by,Fywy

〉
+gy

)
≤ prob{(F1⊕02N)

T Jb1 = 0}+ 1
2 ∑P(w≥2,b≥2,F≥2,g≥2)∏

y≥2
δ
(
hy,
〈
by,Fywy

〉
+gy

)
where in the last term we extended the sum over b1,F1 from the values satisfying

(F1⊕02N)
T Jb1 6= 0 to all values. Since the variables b1,F1,g1 do not appear in any

of the remaining δ -functions, we can trace them out. Subsequently we repeat the

above process by summing over w2, using the analog of equation 2.148 for y = 2,

and summing over w2,F2,g2, obtaining

P(h≥1) = ε +
1
2

(
ε +

1
2 ∑P(w≥3,b≥3,F≥3,g≥3)∏

y≥3
δ
(
hy,
〈
by,Fywy

〉
+gy

))
,

(2.149)

where we define ε = prob{(F1⊕02N)
T Jb1 = 0}. Continuing in this fashion yields

P(h1, . . . ,hLs/2) = ε

Ls/2−1

∑
k=0

2−k +2−Ls/2 ,

≤ 2ε +2−Ls/2 . (2.150)

We now wish to turn this bound from a distribution of hy to the distribution of

sx ≡ 〈ut
x,u0

x〉 (recalling that x ∈ {1,2, . . .Ls} and y ∈ {1, ...,Ls/2}), that is to say we

want P(s1,s2, . . . ,sLs). I would like to point out here that the rest of the proof of this

lemma I attribute to a collaborator, Daniele Toniolo. The bound in equation 2.150

extends to the case where rather than the values of hy ≡ s2y−1 + s2y are fixed, the

values of certain hy and of certain sx are fixed. For concreteness, let us first consider
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the case Ls = 4, in which equation 2.150 entails 36 (not necessarily independent)

bounds corresponding to the categories:

h1 fixed, h2 fixed

h1 fixed, s3 or s4 fixed

h2 fixed, s1 or s2 fixed

s1 or s2 fixed, s3 or s4 fixed .

For example there are four inequalities arising from the category h1 fixed, h2 fixed.

Setting h1 = 0,h2 = 0 we obtain the following inequality in terms of the distribution

P(s1,s2,s3,s4)

1
4
−6ε ≤P(0,0,0,0)+P(1,1,0,0)+P(0,0,1,1)+P(1,1,1,1)≤ 1

4
+2ε , (2.151)

similarly setting h1 = 1,h2 = 0 we obtain

1
4
−6ε ≤P(1,0,0,0)+P(0,1,0,0)+P(1,0,1,1)+P(0,1,1,1)≤ 1

4
+2ε , (2.152)

with h1 = 0,h2 = 1 we obtain

1
4
−6ε ≤P(0,0,1,0)+P(0,0,0,1)+P(1,1,1,0)+P(1,1,0,1)≤ 1

4
+2ε , (2.153)

with h1 = 1,h2 = 1

1
4
−6ε ≤P(1,0,1,0)+P(1,0,0,1)+P(0,1,1,0)+P(0,1,0,1)≤ 1

4
+2ε , (2.154)

where the lower bounds follow from normalisation. To make proceeding further

easier, we make the upper and lower bounds similar by replacing 2ε with 6ε in the

upper bound. The overall idea is that through specific linear combinations of bounds

such as those in equations 2.151-2.154 one can obtain lower and upper bounds on

the distribution P(s1,s2,s3,s4). The tightest set of bounds for P(s1,s2,s3,s4) in the

case Ls = 4 (and all the higher orders Ls ≥ 2) can be obtained by tensor products of
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the matrix

A≡



1 0 0 1

0 1 1 0

1 1 0 0

0 0 1 1

1 0 1 0

0 1 0 1


↔



h1 = 0

h1 = 1

s1 = 0

s1 = 1

s2 = 0

s2 = 1


. (2.155)

The reason for this is that each row of A comes with a label given by the inequalities

for the probabilities that it generates. So, the tensor product A⊗A has rows associated

with a couple of labels. For example the first row of the tensor product A⊗A, that

has label (h1 = 0,h2 = 0) will give rise to the inequality in equation 2.151. Since A

is a full rank matrix and the rank of a tensor product is the product of the ranks, then

A⊗A is full rank.

We will now show that by taking linear combinations of specific bounds, such

as those in equation 2.151, which is equivalent to linear combinations of rows of

A⊗A, we can obtain bounds on the distribution P(s1,s2,s3,s4). Since the bounds

for the probabilities P(s1,s2,s3,s4) correspond to rows of the tensor product A⊗A

this implies that:

1
4
(a3 +a5−a2)⊗ (a3 +a5−a2) ·P = P(0,0,0,0) , (2.156)

where aj denotes row j of matrix A, and the tensor product of two rows is meant to be

the corresponding row of the tensor product A⊗A, and where P denotes the vector

of all possible choice of P(s1,s2,s3,s4). The equation 2.156 involves nine bounds,

since there are nine terms in the tensor product (a3 +a5−a2)⊗ (a3 +a5−a2) , and

so
1

16
−56ε ≤ P(0,0,0,0)≤ 1

16
+56ε . (2.157)

Note that the error 56ε arises as the product of the error associated with each bound in

equation 2.151 and the number of inequalities that is 9. Any choice of P(s1,s2,s3,s4)

can be found through a linear combination of three inequalities for each pair of
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sites, and hence the bound applies in general to P(s1,s2,s3,s4). To generalise this to

arbitrary Ls, we just consider further tensor products of A, and hence

2−Ls−2 3
Ls
2 +1

ε ≤ P(s1, ...,sLs)≤ 2−Ls +2 3
Ls
2 +1

ε . (2.158)

Using this proof, in the following lemma I will show the proof which justifies

result 2.2.

Lemma 2.19. Consider an initial vector u0 ∈ Vchain with non-zero support in all

lattice sites (u0
x 6= 0 for all x ∈ ZL). Consider the evolved vector ut = S(t)u0 inside

a region x ∈ {1, . . . ,Ls} ⊆ ZL where Ls is even and the time is t ≤ L−Ls
4 . If ut

[1,Ls] is

the projection of ut in the subspace
⊕Ls

x=1Vx then

∑
v∈Z2NLs

2

∣∣∣∣prob{v = ut
[1,Ls]}−

1
22NLs

∣∣∣∣≤ 32 t 2−N(2Ls +3
Ls
2 +1)+4L2−2N . (2.159)

Proof. First, we re-state prob{v = ut} in the following way

prob{v = ut}= qprob{v = ut |ut
x 6= 0,u0

x ∀x ∈ ZLs}

+(1−q)(1−prob{v = ut |ut
x 6= 0,u0

x ∀x ∈ ZLs}) ,

where x ∈ {1, . . . ,Ls} ⊆ ZL with Ls is even, q is the probability of distribution

prob{ut
x 6= 0,ut

x∀x∈ZLs}, and similarly with the complement. Then using convexity

we find that

∑
v∈Z2NLs

2

∣∣∣∣prob{v = ut}− 1
22NLs

∣∣∣∣≤ q ∑
v∈Z2NLs

2

∣∣∣∣prob{v = ut |ut
x 6= 0,u0

x ∀x}−
1

22NLs

∣∣∣∣
+(1−q) ∑

v∈Z2NLs
2

∣∣∣∣1−prob{v = ut |ut
x 6= 0,u0

x ∀x}−
1

22NLs

∣∣∣∣ .
We can evaluate the first term using the upper bound q ≤ 1 and use lemma 2.14
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combined with lemma 2.18 to find that

q ∑
v∈Z2NLs

2

∣∣∣∣prob{v = ut |ut
x 6= 0,u0

x ∀x ∈ ZLs}−
1

22NLs

∣∣∣∣≤ 32 t3
Ls
2 +12−N +L22−2N .

(2.160)

To evaluate the second term, we can upper bound the sum by its maximum value, 2,

and use the result of lemma 2.10 to upper bound (1−q) to find that

(1−q) ∑
v∈Z2NLs

2

∣∣∣∣1−prob{v = ut |ut
x 6= 0,u0

x ∀x ∈ ZLs}−
1

22NLs

∣∣∣∣≤ 64Lst2−N .

(2.161)

Combining these two terms we get the stated result.

This concludes the proof which justifies result 2.2, and moreover the proof of all

results concerning the time-periodic random quantum circuit model I have presented.

2.1.3 Discussion

To summarise, I have shown and proven a selection of results concerning the mixing

of Pauli operators in the time-periodic random quantum circuit model in the regime

of large N (N � logL). Moreover, the indistinguishability result (result 2.4) is a

weaker, variant notion of approximate 2-design, which requires measurements to be

restricted to Pauli operators only. The results in this section contrast with the case

of time-dependent random quantum circuits (discussed in chapter 1 section 1.2), in

which, for example, the resemblance to a (Haar) random unitary increases with the

time evolution. The question of whether local and time-independent or time-periodic

dynamics can generate a 2 (or higher) approximate unitary design remains open.

However, results in references [10, 21, 22, 26, 27] suggest that further results in this

direction are possible.

All of the results I have proven in this are relevant only in the regime of large

N (N � logL). Naturally, one might wonder about the opposite regime of small

N, when there is only one or a few qubits per site of the spin chain. I will discuss

and prove results in this regime in chapter 3 section 3.1, in which a strong form of

localisation is observed. In the final chapter of this thesis (chapter 4), I will discuss
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more generally Clifford dynamics and why they are an interesting model with which

to study the landscape of quantum many-body phenomena.

Also, I would like to point out that there is a different interpretation of the

model in this section, which is a spin chain of L sites, with N qubits per site, and

nearest-neighbour interactions. Instead, equivalently the model could be presented

as a spin chain with LN sites, with a single qubit per site, and interactions of range

2N. This modification uses the fact that any Clifford gate acting on 2N qubits can be

rewritten as a circuit of depth O(N2/ logN) [122, 123], and so the dynamical period

of the LN-site spin chain decomposes into a circuit with O(N2/ logN) elementary

time steps.

The scrambling time tscr has been of great importance to the results I have

presented in this section. This is because the (strict) causality imposed by local

dynamics means that time evolution of at least the scrambling time is required for an

initially local operator to evolve to a completely non-local operator. Additionally,

all of the results of presented in this section hold only up until a maximum time

of 2tscr, which is a consequence of the proof technique. Moreover, in all of the

result I have discussed the proximity to the uniform distribution and resemblance

to a random unitary decrease with time. However, this is also the case for a (Haar)

random unitary. For example, the powers U t of a (Haar) random unitary U ∈ SU(d)

lose their resemblance to a (Haar) random unitary as t increases, as quantified by

the spectral form factor. In the model I have considered, the time evolution operator

is composed of, and is itself, a Clifford unitary. So, since the Clifford group is

finite, this means that there is a recurrence time, trec, such that the time evolution

operator is trivial, W (trec) = 1. Therefore, it is reasonable to expect that the time at

which the time evolution operator W (t) resembles as closely as possible a random

unitary, is the smallest time such that recurrences are avoided, but also larger than

the scrambling time.

Additionally, I would like to briefly comment on the role of the boundary

conditions of the model. For instance, the periodic boundary conditions mean that

the minimum time for the light-cone of any initially local operator to contain the
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whole spin chain does not depend on the site at which the initially local operator

is non-identity, and so the scrambling time is tscr = L/4. However, if instead one

considered a modified version of the model with closed boundary conditions this

would not be the case. The proofs of all the results in this section make use of the

fact that the model has periodic boundary conditions, specifically from lemma 2.8

onwards. Nonetheless, I expect that the proof method used in this section can be

adapted and applied to versions of the model with different boundary conditions,

and believe that similar mixing results can be obtained. Although, the results with

modified boundary conditions may not hold over the same timescales, and may

depend more strongly on the initial operator, and which particular sites of the spin

chain the operator is initially non-identity.

2.2 Non-local few-body dynamics

The scrambling time is an important timescale when studying mixing (of Pauli

operators) and scrambling. As discussed in the introduction (chapter 1 section 1.3),

this is particularly the case for studying the dynamics of highly chaotic quantum

systems, such as black holes which are often modelled with (Haar) random unitaries.

This model is often justified by the fact that local random quantum circuits generate

unitary designs. However, as I have noted in the introduction, these circuits are time

dependent, while physically one would expect the dynamics to be time-independent

[66]. In this section, I will present a time-periodic model, which shares important

features with time independent dynamics, and in which the interactions are non-local

but few-body. I will investigate the circuit depth corresponding to the scrambling

time. I will show that this model approaches the circuit depth corresponding to

the scrambling time postulated in the fast scrambling conjecture, logarithmic in the

number of qubits, but does not reach it. Unlike in the previous section (2.1), I will not

present results about how closely the dynamics resemble a (Haar) random unitary, or

any other results concerning Pauli mixing. I leave this important question for future

work.
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Ucycle

x = 1

x = 2

x = 3

x = 4

x = 5

x = 6

x = 7

x = 8

x = 9

x = 10

x = 11

Depth 1 Depth 2 Depth 5

1

Figure 2.7: This is an example of the evolution operator Ucycle, as enclosed by the dashed-
box, acting on eleven sites (L = 11), with N qubits per site. The circuit itself is
of depth 5, with increases denoted by vertical dashed lines. Each interaction of
two sites, signified by two crosses connected by a (vertical) line, is a Clifford
unitary sampled from the Clifford group of 2N qubits according to the uniform
distribution. It is worth noting that while the depicted quantum circuit is one-
dimensional, the interactions are not local.

2.2.1 Overview

I will first describe the physical model analysed in this section. The model considered

is a spin system composed of L sites. Each site is labeled by x ∈ ZL and situated

on each site there are N qubits. Hence, the (local) Hilbert space of each site has

dimension 2N and the total Hilbert space for the entire system has dimension 2NL.

The dynamics of the spin system is discrete in time, and so is characterised by a

unitary Ucycle. Since, we consider time-periodic dynamics, each evolution time cycle

is characterised by the same unitary Ucycle, and hence |ψ(t)〉=
(
Ucycle

)t |ψ(0)〉 for

all t ∈ Z.

The unitary Ucycle, which is implemented via a quantum circuit, is generated



2.2. Non-local few-body dynamics 84

through the following random process:

1. A random pair of (different) sites (x,y) are selected uniformly from the spin

system, x,y ∈ ZL.

2. Then, for this selected pair of sites, a random Clifford unitary is applied to the

2N qubits.

3. Repeat from step 1 again independently M times.

I will denote this sequence, which generates the quantum circuit, by Scycle. The

variable M is a free parameter which is chosen such that, with high probability, the

random quantum circuit has gates applied to every site of the L-site spin chain and is

a connected graph. By connected graph, I mean that every site of the spin system is

(via the interactions) causally connected to all other sites of the spin chain.

Hence, the sequence Scycle produced by this random process, and so the quantum

circuit which implements the random unitary Ucycle, has two sources of randomness:

gates and location. Figure 2.7 illustrates one particular instance of the random unitary

Ucycle. Therefore, the random unitary Ucycle can be written as

Ucycle =
M

∏
i=1

U(xi,yi) , (2.162)

where (xi,yi) is the random pair of (different) sites selected in trial i (of total M in the

sequence Scycle), and U(xi,yi) denotes the random Clifford unitary applied to the 2N

qubits of this pair of different sites, where it is understood that this Clifford unitary

is in tensor product with the identity operator on all other sites of the spin system.

Since in this model the dynamics are not generated by nearest-neighbour inter-

actions, there is no sense of locality. However, the interactions, while not local, are

still between two-sites only. In this section, I will investigate the scrambling time,

and the corresponding circuit depth, of the model I have described.

Definition 2.20. In this model, I will call the scrambling time the (minimum) number

of repetitions of the quantum circuit of Ucycle, as generated by the sequence Scycle of

gates, such that any initially local operator (non-identity on a single site at t = 0),
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Ucycle Ucycle Ucycle
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1

Figure 2.8: In this figure, there is an illustration of an example quantum circuit to clarify the
definition of scrambling time. The quantum circuits in this example is the same
as illustrated in figure 2.7, and is repeated three times, so U3

cycle. In this example,
I consider the initial operator to be non-identity on site 1 only. Each blue box,
surrounding an interacting pair of sites, highlights when the operator evolving
via the quantum circuit spreads and its support grows to a new site. After three
repetitions of the driving unitary, the initial operator has spread through the
entire system. The scrambling time is the number of repetitions such that this
occurs for any initial operator which is non-identity on any single site.

through its time evolution, to grow and spread throughout the entire system. To

clarify this, there is an illustration of an example in figure 2.8.

In this model, the scrambling time itself is also a random variable, which can

vary between particular instances of the random quantum circuit. Hence, statements

made about the scrambling time in this model are probabilistic.

The quantum circuit of the time evolution operator (Ucycle)
t generated by the

sequence Scycle has two contributions towards the circuit depth corresponding to the

scrambling time; one contribution comes from the depth of the quantum circuit of

the random unitary (Ucycle), which is made up of M independent unitary gates, and

the other from the number of repetitions of this driving unitary, in other words the

scrambling time tscr. Generally speaking, two consecutive Clifford unitaries that

make up the time evolution operator Ucycle will not act upon any of the same sites,

and hence the two unitaries commute.

In the following result, I will bound the probability that the circuit depth
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corresponding to the scrambling time is at most ∼ (logL)2, which is given by

tscr ∼ logL time cycles of the quantum circuit, which itself is composed of ∼ L logL

independently selected random gates, that has depth ∼ logL.

Result 2.5. The quantum circuit of the random unitary Ucycle generated by the

sequence Scycle, which is composed of M = 6L logL independent gates, where L≥ 70,

has with probability close to one a circuit depth of at most ∼ logL and scrambling

time of at most ∼ logL. More precisely,

prob
{

depth(Scycle)≤ 24logL
}
> 1− L−5

4
, (2.163)

and

prob
{

tscr(Scycle)≤
2log(L−1)

log logL

}
> 1−L−6logL−12L−1 . (2.164)

where depth(Scycle) denotes the depth of the quantum circuit generated by the se-

quence Scycle, and tscr(Scycle) the scrambling time.

2.2.2 Details and derivation

I will now give the detailed proofs which justify result 2.5. Firstly, I will define some

notation (definitions 2.21 - 2.25), to make the mathematical proofs more concise

and understandable. Then, I will (in lemmas 2.26 - 2.28) bound the probability for

the minimum number of gates, M, such that the unitary Ucycle acts upon every site

at least once. Using these results as a guide, (in lemmas 2.30 - 2.32) I will bound

the probability for the number of gates, M, such that the random unitary Ucycle is a

connected graph. Then, I will prove (lemmas 2.33 - 2.35) that the random unitary

Ucycle with the number of gates M is a quantum circuit of a certain depth, with high

probability.

To prove the number of required time cycles tscr of the random unitary Ucycle

and hence justify result 2.5, I will use the perspective and tools of random graph

theory. First, I will precisely state I mean by the scrambling time in the context of

the model considered (definitions 2.36 - 2.39). Then, I will introduce and define
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two related models of random graphs, which are of particular relevance (definitions

2.41 and 2.42), and reproduce two well-known proofs of their relationship (lemmas

2.43 and 2.45). In order to apply well-known results of random graph theory, I will

(in lemma 2.46) bound the probability that the number of gates M in the quantum

circuit has a certain number of repeated (independent) choices of pairs of sites. Then,

I will (in lemma 2.50) reproduce and expand upon a well known result concerning

the diameter of sparse random graphs. Finally, in lemma 2.51 I will combine these

proofs and hence justify result 2.5.

Circuit connectivity

First, I will define some notation, for the purposes of making the proofs slightly more

concise. Then, I will present results which concern the random process of picking

pairs of sites of the spin chain, to form the unitary Ucycle, and in particular bound the

probability that the random unitary is a connected graph after M gate selections.

Definition 2.21. The (uniformly sampled) random pair of (different) sites selected

in trial i (of M) is denoted by αi = (xi,yi), where x,y are different elements of ZL.

Definition 2.22. A sequence of M independent choices of random pairs of sites is

denoted by SM = (α1, . . . ,αM).

Definition 2.23. The set of points of a given sequence S= {(x1,y1),(x2,y2), . . . ,(xk,yk)}

is denoted by set(SM) = {x1,y1,x2,y2, . . . ,xk,yk} ⊆ ZL, and its cardinality by

|set(SM)|.

Definition 2.24. The depth of the quantum circuit formed from a sequence of gates

on random pairs SM is denoted by depth(SM). (A sequence of disjoint pairs has unit

depth.)

Definition 2.25. For any given sequence SM we denote by cl(SM) ⊆ SM the sub-

sequence of random pairs which “grow” from the initial element α1 - referred to as a

cluster. That is:

1. α1 ∈ cl(SM)



2.2. Non-local few-body dynamics 88

x = 1

x = 2

x = 3

x = 4

x = 5

x = 6

x = 7

x = 8

x = 1

x = 2

x = 3

x = 4

x = 5

x = 6

x = 7

x = 8

1

Figure 2.9: This figure is to illustrate the concept of a cluster introduced in definition
2.25. The left hand image contains an example of a sequence S9, for a system
consisting of a total of eight sites. The right hand image shows the cluster
cl(S9), which is the sequence S9 with the second, fifth, and eighth elements (so
α3,α5,α8) removed.

2. αi = (xi,yi) ∈ cl(SM) if and only if either xi or yi belongs to set(cluster(Si−1))

but not both, for i = 2, . . . ,M.

Figure 2.9 shows an illustrative example of the definition of a cluster (definition

2.25).

With these definitions, I will now commence with the proofs, which culminate

in bounding the probability for the random unitary Ucycle being fully connected after

M selections of pairs of sites. In the following, I will find the probability for the

random choice of a pair of sites to be a particular pair, which is important for all of

the proofs in this section.

Lemma 2.26. The probability of picking a particular pair of sites x,y ∈ ZL is

prob{αi = (x,y)}=
(

L
2

)−1

. (2.165)

Proof. The total number of distinct choices of pairs of sites of the spin chain is
(L

2

)
.

Hence, since we are selecting uniformly from this set of choices, we get the stated

probability.

I will now prove an upper-bound to the probability that a single particular site

is never selected in any of the M independent trials of pairs of sites.
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Lemma 2.27. The probability that a single site x∈ZL is not selected after M random

choices of pairs is given by

prob{x /∈ set(SM)}=
(

1− 2
L

)M

≤ e
−2M

L . (2.166)

Proof. Using the result from lemma 2.26, the probability that a random pair αi does

not include a specific site x ∈ ZL is given by

prob{x /∈ set(αi)}=
(L−1

2

)(L
2

) = 1− 2
L
. (2.167)

Hence, since each choice of pairs of sites of the spin chain αi in the sequence SM is

independent and uniformly distributed, we get the stated (exact) probability.

The upper bound follows from the inequality

(1+ k)c ≤ eck , (2.168)

for k,c ∈ R and 1+ k > 0, c > 0.

With this result, I will now prove a bound on the probability that every site

has been selected at least once. This does not imply that the quantum circuit of

the unitary Ucycle is a connected graph, however it does serve as a useful guide and

perspective for later results.

Lemma 2.28. The probability that, after M random pairs, all sites have been selected

at least once is given by

prob{set(SM) = ZL} ≥ 1−L
(

1− 2
L

)M

≥ 1−Le
−2M

L . (2.169)

Proof. To prove this lemma, we study the complementary event

prob{set(SM)⊂ ZL}= 1−prob{set(SM) = ZL} . (2.170)
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Using the union bound, and the result from lemma 2.27, we have that

prob{set(SM)⊂ ZL} ≤ ∑
x∈ZL

prob{x /∈ set(SM)} , (2.171)

≤ L
(

1− 2
L

)M

≤ Le
−2M

L . (2.172)

This gives the result stated in the lemma.

Broadly speaking, this proof implies that for M ∼ L logL every single site has

been selected, and therefore a random Clifford unitary has been applied, at least

once, with probability close to one. I will now consider the more involved question

of the quantum circuit being a connected graph. To do this, I will make use of the

notion of a cluster, of which there is a precise definition in definition 2.25. This

notion of cluster is useful as if the cluster contains every single site then the quantum

circuit is a connected graph. Before proceeding to any proofs, I will first introduce

another random variable.

Definition 2.29. Consider a sequence SM with |cl(SM)|= i. We define the random

variable µi as the number of pairs generated until the cluster increases by one:

|cl(SM)|= |cl(SM+1)|= · · ·= |cl(SM+µi−1)|= i and |cl(SM+µi)|= i+1.

In the next lemma, I will prove the form of the probability distribution of

this newly defined random variable µi. In particular, the fact that the probability

distribution is a geometric distribution, is of particular importance.

Lemma 2.30. The probability distribution of the random variable µi is given by

prob{µi = k}= (1− γi)
k−1

γi =

(
1− i(L− i)(L

2

) )k−1
i(L− i)(L

2

) , (2.173)

where i ∈ [2,L−1] and γi =
i(L−i)
(L

2)
. This is a geometric distribution with p = γi.

Proof. First, we note that the probability that the size of the cluster increases from i
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to i+1 after a single choice of a pair of sites, α j, is given by

prob{µi = 1}= prob{|cl(SM+1)|= i+1
∣∣ |cl(SM)|= i} , (2.174)

=
i(L− i)(L

2

) = γi . (2.175)

To extend this to k > 1, we note that all choices of pairs of sites apart from the final

choice must not increase the size of the cluster. Hence, since all choices of pairs of

sites are independent, then we get the stated result.

I will use this proof in the following two lemmas. First, I will find the expected

number of choices M such that the cluster contains every site. Then, I will bound the

probability that the cluster contains every site after a (minimum) number of choices

M ∼ L logL.

Lemma 2.31. The expected number of independent choices E(M) such that the

cluster reaches all of the spin chain, that is to say set(cl(SM)) = ZL, is

E(M) = 1+
L−1

2
(HL−1 +HL−2−1) , (2.176)

where Hn is the n-th harmonic number, which can be bounded as

0.5L log(L)≤ E(M)≤ 2L log(L) . (2.177)

Proof. The expected number of independent choices such that set(cl(SM)) = L is

given by

E

(
L−1

∑
i=2

µi

)
+1 = 1+

L−1

∑
i=2

E(µi) , (2.178)

where the equality follows from the linearity of the expected value, and the +1

term follows from the fact that the very first choice of pairs of sites, α1, initially

defines the cluster. Since, the probability distribution prob{µi = k} is a geometric

distribution, the expected value is given by

E(µi) =
1
γi
=

(L
2

)
i(L− i)

. (2.179)
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So,

E

(
L−1

∑
i=2

µi

)
+1 = 1+

L−1

∑
i=2

(L
2

)
i(L− i)

= 1+
(

L
2

)L−1

∑
i=2

1
i(L− i)

(2.180)

= 1+
(

L
2

)L−1

∑
i=2

(
1
Li

+
1

L(L− i)

)
(2.181)

= 1+
L−1

2
(HL−1 +HL−2−1) , (2.182)

where Hn is the n-th harmonic number. This gives the exact result, which can be

bounded to a region, using the bounds log(n)+n−1 ≤ Hn ≤ log(n)+1,

L log(L)− log(L)− L
2
+1≤E

(
L−1

∑
i=2

µi

)
+1≤ L log(L)+

L
2
+1− log(L) . (2.183)

Lemma 2.32. The probability that the cluster contains every site of the spin chain,

that is to say set(cl(SM)) = L, when the number of independent choices M ≥ (1+

ε)L logL, is bounded by

prob{set(cl(S1+M)) = L} ≤ L−ε . (2.184)

Proof. In this lemma, I will move from the expected value, as found in lemma 2.31,

to a bound on the probability. To do this, we first note that the random variables µi

are all independent, and hence we can apply the Chernoff bound (see appendix B),

which states that

prob

{
L−1

∑
i=2

µi ≥ a

}
≤ e−ta

L−1

∏
i=2

E
(
et µi
)
, (2.185)

for any t > 0. The quantity E(et µi) is the generating function, which in the case of a

geometric distribution is given by

E
(
et µi

)
=

γiet

1− (1− γi)et . (2.186)
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We now will evaluate the product

L−1

∏
i=2

E
(
et µi
)
=

L−1

∏
i=2

γiet

1− (1− γi)et =
L−1

∏
i=2

γi

e−t− (1− γi)
. (2.187)

Let t = L−1 and hence exp
(
−L−1)≥ 1−L−1, then the product can be upper bound

as

L−1

∏
i=2

γiet

1− (1− γi)et ≤
L−1

∏
i=2

γiL
γiL−1

=
L−1

∏
i=2

2i(L− i)
2i(L− i)− (L−1)

(2.188)

= 2L−2(L−1)!(L−2)!
L−1

∏
i=2

1
2i(L− i)− (L−1)

(2.189)

= (−1)L−2(L−1)!(L−2)!
L−1

∏
i=2

1
(i2−Li+0.5(L−1))

. (2.190)

The term inside the product can be factorised as

1
(i2−Li+0.5(L−1))

=
1

(i− L
2 −

1
2

√
L2−2L+2)(i− L

2 +
1
2

√
L2−2L+2)

,

(2.191)

which, using the bounds L−1 ≤
√

L2−2L+2 ≤ L, allows us to upper bound the

product as

L−1

∏
i=2

γiet

1− (1− γi)et ≤ (−1)L−2(L−1)!(L−2)!
L−1

∏
i=2

1
i−L

1
i− 1

2

(2.192)

≤ (L−1)!(L−2)!
L−1

∏
i=2

1
L− i

1
i−1

(2.193)

= (L−1)!(L−2)!
1

(L−2)!(L−2)!
≤ L (2.194)

Therefore,

prob

{
L−1

∑
i=2

µi ≥ a

}
≤ Lexp

(
−a

L

)
, (2.195)

and so if a = (1+ ε)L logL, then, we get the stated upper bound. For the same

reasons as in lemma 2.31, we must include an additional +1 term to the number of

independent random choices.
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In other words, I have shown that for M ∼ L logL the quantum circuit of the

random unitary Ucycle is a connected graph with probability close to one. In the rest

of this section, I will focus only on this scenario.

Circuit depth

I will now prove a series of results, which culminate in demonstrating that the

quantum circuit of the random unitary Ucycle made up of M ∼ L logL independently

selected and applied Clifford gates has a depth ∼ logL. In the following lemma,

I will give a proof for the probability that for M < L choices of pairs of sites, the

quantum circuit is of maximum depth, so circuit depth of M.

Lemma 2.33. The probability that M < L random choices of pairs of sites forms a

quantum circuit of depth M is given exactly by

prob{depth(SM) = M}=

(
4
L
−
(

L
2

)−1
)M−1

=

(
4
L
− 2

L(L−1)

)M−1

. (2.196)

Proof. We start by noting that the probability prob{depth(SM) = M} is equal to

prob{depth(SM) = M}= (prob{depth(SM−1) = M−1}× (2.197)

prob{depth(SM) = M|depth(SM−1) = M−1}) .

This equality also applies in a similar fashion to the term prob{depth(SM−1) = M−

1}, and hence we will now analyse the term prob{depth(SM) = M|depth(SM−1) =

M−1}. We note that when adding another pair of sites, αM to the sequence SM−1,

which is of depth M−1, the only way to increase the depth (by one) is if αM shares

a site (or both) with the previous choice αM−1. Therefore, we have that

prob{depth(SM) = M|depth(SM−1) = M−1}= 2(L−1)−1(L
2

) , (2.198)

where the negative term arises from avoiding double counting for the case αM =
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αM−1. So, we have that

prob{depth(SM) = M}= 2(L−1)−1(L
2

) prob{depth(SM−1) = M−1} (2.199)

=

(
4
L
−
(

L
2

)−1
)

prob{depth(SM−1) = M−1} . (2.200)

Therefore, by making the same argument for the term prob{depth(SM−1) = M−1},

we find that

prob{depth(SM) = M}=

(
4
L
−
(

L
2

)−1
)M−1

, (2.201)

which is the stated result.

Using this, I will now prove a general result upper-bounding the probability

that the depth is at least D after M random (independent) choices of pairs of site.

Finally, I will make use of this proof and upper-bound the probability further for the

particular case of M = (1+ ε)L logL, which as was demonstrated in lemma 2.32 is

the region of M for which the quantum circuit is a connected graph.

Lemma 2.34. The probability that M random choices of pairs of sites forms a

quantum circuit with a depth of at least D is bounded by

prob{depth(SM)≥ D} ≤
(

M
D

)(
4
L
−
(

L
2

)−1
)D−1

. (2.202)

Proof. The proof of this result is as follows

prob{depth(SM)≥ D}= prob{∃SD ⊆ SM : depth(SD) = D} , (2.203)

where by SD ⊆ SM we mean a selection of D (different) elements from the sequence

SM. By using the union bound becomes

prob{depth(SM)≥ D} ≤
(

M
D

)
prob{depth(SD) = D} , (2.204)

and hence using the result in lemma 2.33 we get the stated result.
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Lemma 2.35. The probability that for M = (1+ ε)L logL the depth of the circuit

exceeds D = e(1+δ )(1+ ε) logL, is bounded by

prob{depth(SM)≥ e(1+δ )(1+ ε) logL} ≤ 1
4

L1−e(1+ε)(1+δ ) log(1+δ ) , (2.205)

where δ > 0.

Proof. In this lemma, we are essentially upper-bounding the result of lemma 2.34,

for the case of M = (1+ ε)L logL. This is done in the following way

prob{depth(SM)≥ D} ≤
(

M
D

)(
4
L
−
(

L
2

)−1
)D−1

, (2.206)

≤
(

e(1+ ε)L logL
D

)D(4
L

)D−1

, (2.207)

≤ L
4

(
e(1+ ε) logL

D

)D

, (2.208)

where the second line follows from using the inequality
(N

k

)
≤ (eN

k )k. Therefore, if

D = e(1+δ )(1+ ε) logL, where δ > 0, then we find that

prob{depth(SM)≥ e(1+δ )(1+ ε) logL} ≤ L
4
(1+δ )−e(1+δ )(1+ε) logL , (2.209)

≤ 1
4

L1−e(1+ε)(1+δ ) log(1+δ ) , (2.210)

which gives the stated result.

Therefore, In general, the quantum circuit of the random unitary Ucycle for

M = (1+ ε)L logL gates has a depth of at most ∼ logL, with probability close to

one.

Random graphs and the scrambling time

To summarise, so far I have demonstrated that the quantum circuit of the random

unitary Ucycle after M = (1+ ε)L logL random gates applied to independently se-

lected pairs of sites is a connected graph, and has a depth of at most ∼ logL, with

probability close to one. I will now investigate how many time cycles, t, of the time
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evolution operator, so U t
cycle, are required such that any initially local operator or

perturbation spreads throughout the entire system - in other words the scrambling

time tscr. Before this, I will define some notation and rigorously state what the

scrambling time, tscr, is in the context of this model.

Definition 2.36. For the sequence SM, a path from site x to site y, path(x,y), is a

sub-set of SM such that the pairs of selected sites αi can be arranged in a (new)

sequence of the form ((x,v1),(v1,v2),(v2,v3), . . . ,(vl,y)), where vi are all different

choices of sites. It is worth noting that path(x,y) is one possible choice of path from

the set of all possible paths.

Definition 2.37. We define the length of a path in the following manner:

• the first element, αi, of the sequence path(x,y) increases the length of path(x,y)

(from 0) by +1,

• If the next element of (the sequence) path(x,y) occurs chronologically (as

defined by SM) after the previous element then the length remains the same,

otherwise the length of the path increases again by +1,

• this calculation proceeds in the same way for the next element again.

For an example of this notion of length of a path, which will hopefully make the

definition more clear, please refer to figure 2.10. It is worth noting that the definition

of length of a path is not (necessarily) symmetric (under exchange of sites x and y),

which is also illustrated in figure 2.10.

Definition 2.38. For the sequence SM, the distance from site x to site y, d(x,y), is

the shortest length path, path(x,y). If the sequence SM is such that sites x and y are

disjoint, in other words no path connects them, then we say d(x,y) = d(y,x) = ∞.

Definition 2.39. The scrambling time, tscr, is the maximum distance between pairs

of sites, tscr = maxx,y∈ZL d(x,y).

In order to clarify these definitions further, in figure 2.11, there is an illustration

of two examples of different paths from the same initial to the same final site.
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Figure 2.10: This figure is to help illustrate the notion of path length. The two images
illustrate two different possible choices of the sequence S6, a sequence of six
interaction pairs in this case on eight sites. In the left-hand image, the length of
the path path(1,8) is 4, whereas in the right-hand image, the length of the path
path(1,8) is 1. In both images, the numbers next to each pair indicate the order
of the pair in the sequence path(1,8). The length of a path is not symmetric,
which can be seen in both images. In the left-hand image the length of the path
path(8,1) is 3, and in the right-hand image the length of the path path(8,1) is
6.

Since the process which generates the quantum circuit of the random unitary

Ucycle is itself random, the scrambling time is also a random variable, which can vary

between instances of the quantum circuit. In the following lemma, I prove a fairly

straight-forward result that the scrambling time cannot be increased by adding more

gates into the unitary U t
cycle.

Lemma 2.40. The scrambling time is a non-increasing function of M, and hence

prob{SM′ : tscr ≥ b} ≤ pr{SM : tscr ≥ b} , (2.211)

for M ≤M′.

Proof. If the random quantum circuit, SM, has some scrambling time tscr, then if we

select another pair of sites independently (so go from SM to SM+1) this additional

selection can not increase the distance between any sites at all. The scrambling time

can either stay the same or decrease if an additional selection of pairs of sites is made.

Since each selection of sites is independent, this argument applies to any number of
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Figure 2.11: In this figure, there is an illustration of two examples of different paths from
site 6 to site 1, so path(6,1). The evolution operator, Ucycle, in these examples
is the same as illustrated in figure 2.7, and is repeated three times, so U3

cycle
. The blue squares surrounding a pair of sites highlights each element in the
sequence path(6,1). In the top image, path(6,1) is made up of four elements,
or choices of pairs of sites, and has a path length of 3. In the bottom image,
path(6,1) is made up of more (five) elements, but has a path length of 2. Hence,
it is found that d(6,1) = 2.
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additional selections of pairs of sites. Thus, we get the stated result.

In order to prove statements about the scrambling time in this model, I will use

the perspective and results from random graph theory (see references [128–130]). In

the study of random graphs there are two well studied models which are of particular

relevance: the G(n, p) model and the G(n,M). These are defined in the following

way.

Definition 2.41. A G(n, p) random graph is a graph with n vertices, in which every

possible edge occurs independently with probability p.

Definition 2.42. A G(n,M) random graph is a graph chosen uniformly at random

from the set of graphs with n vertices and M edges.

These models are related, and proving properties of one model can be translated

into proofs for the other. In the following two lemmas, I will reproduce two well-

known results in the field of random graph theory, which can be found in references

such as [128, 129]. (In the case of the following lemma see, for example, chapter 2

theorem 2.2 in the reference [129]).

Lemma 2.43. For any graph property P , and p = M
(n

2)
∈ [0,1], where p(1− p)

(n
2

)
→

∞ when n→ ∞, then

prob{G(n,M) has P} ≤
√

2πMprob{G(n, p) has P} . (2.212)

Proof. We first note that we can rewrite the probability, prob{G(n, p) has P}, in the

following way

prob{G(n, p) has P}=
(n

2)

∑
k=0

prob{G(n, p) has P|En,p = k}prob{En,p = k} ,

(2.213)

where En,p is a random variable denoting the number of edges in the G(n, p) random

graph. Hence, since prob{G(n, p) has P|En,p = k} = prob{G(n,k) has P}, where

G(n,k) is a G(n,M) random graph with k edges, and since in the G(n, p) random
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graph each edge is independent and identically distributed (with probability p) we

find that

prob{G(n, p) has P}=
(n

2)

∑
k=0

((n
2

)
k

)
pk(1− p)(

n
2)−kprob{G(n,k) has P} . (2.214)

This sum can be lower bounded by considering a single term only, and hence we find

prob{G(n, p) has P} ≥
((n

2

)
M

)
pM(1− p)(

n
2)−Mprob{G(n,M) has P} . (2.215)

Using the two inequalities

√
2πx

(x
e

)x
< x! <

√
2πx

(x
e

)x
e1/(12x) , (2.216)

to lower bound the binomial coefficient, and that p = M
(n

2)
, we find that

prob{G(n, p) has P} ≥ 1√
2πM

prob{G(n,M) has P} , (2.217)

which is the stated result.

With this lemma, one can use the the G(n, p) model to prove results for the

G(n,M) model. An improvement of this result can be made for what is known as

monotone graph properties. First, I will define what a monotone increasing graph

property is and then reproduce a well-known proof (for example see chapter 1,

lemma 1.3 of reference [128]).

Definition 2.44. A monotone increasing graph property is a property which is

preserved when an additional edge is added to the graph. Example: Connectivity

and existence of a Hamiltonian path.

Lemma 2.45. For any monotone increasing graph property Pm.i., and p = M
(n

2)
∈

[0,1/2] such that limn→∞ p
(n

2

)
→ ∞, limn→∞(1− p)

(n
2

)
/
√

p
(n

2

)
→ ∞, we have that

prob{G(n,M) has Pm.i.} ≤ 8 prob{G(n, p) has Pm.i.} . (2.218)
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Proof. The proof of this result follows on from the proof of lemma 2.43, and uses

the fact that for a monotone graph increasing property Pm.i.

prob{G(n,M) has Pm.i.} ≤ prob{G(n,M′) has Pm.i.} , (2.219)

for M < M′. Therefore, for a monotone graph increasing property Pm.i.

prob{G(n, p) has Pm.i.} ≥ prob{G(n,M) has Pm.i.}
(n

2)

∑
k=M

((n
2

)
k

)
pk(1− p)(

n
2)−k .

(2.220)

To proceed we shall now lower bound this sum.

First, we will denote the summand by ak =
((n

2)
k

)
pk(1− p)(

n
2)−k and from lemma

2.43 we have that aM > 1/
√

2πM. We can now lower bound the ratio between

consecutive terms in the series by

aM+t+1

aM+t
=

p
1− p

( (n
2)

M+t+1

)
( (n

2)
M+t

) =
1− t

(n
2)−M

1+ t+1
M

, (2.221)

≥ exp

(
−t +1

M
− t(n

2

)
−M− t

)
, (2.222)

where t ≥ 0, for the second equality we have used that p = M
(n

2)
, and for the inequality

we have used that ∀x 1+ x≤ ex and for −1 < x < 0 then 1− x≥ exp
( −x

1−x

)
. Using

this inequality on ratio of consecutive terms, we can lower bound the summation by

(n
2)

∑
k=M

((n
2

)
k

)
pk(1− p)(

n
2)−k >

1√
2πM

1+
(n

2)−M−1

∑
k=0

exp

(
k

∑
t=0
−t +1

M
− t(n

2

)
−M− t

) ,
(2.223)

>
1√

2πM

(n
2)−M−1

∑
k=0

exp

(
−(k+1)(k+2)

2M
−

k

∑
t=0

t(n
2

)
−M− t

)
(2.224)

If we impose that M < 1
2

(n
2

)
(so p≤ 1/2), and then lower-bound the sum further by

decreasing the range of k from
[
0,
(n

2

)
−M

]
to
[
0,
√

M
]
, then we can lower bound
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the sum further as

(n
2)

∑
k=M

((n
2

)
k

)
pk(1− p)(

n
2)−k >

1√
2πM

√
M

∑
k=0

exp
(
−(k+1)(k+2)

2M
−1
)

. (2.225)

Then, since the sum is a decreasing function, we can lower bound the sum using an

integral, which itself is like a Gaussian integral in the region
[
0,
√

M
]
. Hence, we

find that,

(n
2)

∑
k=M

((n
2

)
k

)
pk(1− p)(

n
2)−k >

1
8
. (2.226)

Hence, with the lower bound of this sum, we have the stated result.

An analogous definition and result can be found in the case of monotonically

decreasing graph properties. With these definitions of two random graph models,

and some proofs which show how they are connected, I will now discuss how they

relate to the problem of finding the scrambling time of the random quantum circuit.

The random quantum circuit of the unitary Ucycle can be viewed as a graph by

representing the sequence SM as a graph - in other words removing the ordering,

and projecting the circuit into the plane. That is to say, the sites ZL form the

vertices of the graph, which are connected by the edges αi ∈ SM. The random graph

corresponding to SM is similar to the G(n,M) model. However, in the G(n,M) model

there are no repeated edges within the graph, whereas in the sequence SM repetitions

of selections are allowed, and hence in the random graph corresponding to SM there

can be repeated edges. Hence, before making use of the tools and results of random

graphs, I will first bound the probability of the number of repeated choices in the

sequence SM, which is given in the following proof.

Lemma 2.46. The probability that after M = (1+ ε)L logL independent selections

of pairs of sites there are at least R repetitions is upper-bounded by

prob{SM : Nrepetitions ≥ R} ≤
(
(1+ ε)L logL

R

)(
(1+ ε)L logL−R(L

2

) )R

, (2.227)
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where Nrepetitions denotes the total number of repeated choices of pairs of sites. Hence,

we find that

prob{SM : Nrepetitions ≥ 2e(1+ ε)2(1+ω)(logL)2} ≤ L−2e(1+ε)2ω logL , (2.228)

for ω > 0.

Proof. We will first derive the bound on the probability, and then we will upper-

bound this derived quantity further for some specific choice of number of repetitions.

First, we note that the number of choices M = (1+ ε)L logL is made up D

distinct choices and R repeated choices of pairs of sites: so, M = D+ R. The

probability that a single selection αi is a repetition depends on the number of distinct

selections up until this point. However, we can upper-bound the probability that any

selection is a repetition with

prob{SM : αi = α j for j < i} ≤ D(L
2

) . (2.229)

Hence, using the fact that there are
(M

R

)
ways of the M selections having R repetitions,

then we can upper-bound the probability that the number of repetitions is at least R

by

prob{SM : Nrepetitions ≥ R} ≤
(

M
R

)(
R(L
2

))R

, (2.230)

To evaluate this bound further, we first note that
(N

k

)
≤ (eN/k)k, and so

(
(1+ ε)L logL

R

)(
(1+ ε)L logL−R(L

2

) )R

≤
(

2e(1+ ε) logL
R(L−1)

((1+ ε)L logL−R)
)R

.

(2.231)

We now wish to find the minimum number of repetitions, R, such that the upper bound

is small (and tends to zero for large L). For this to be the case, we require that the term

within the bracket is smaller than 1, and this is satisfied when R = 2e(1+ ε)2(1+

ω)(logL)2 for ω > 0. Evaluating the upper-bound for R= 2e(1+ε)2(1+ω)(logL)2,
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we find that

(
(1+ ε)L logL

R

)(
(1+ ε)L logL−R(L

2

) )R

≤
(

L−2e(1+ ε)(1+ω)

(1+ω)(L−1)

)2e(1+ε)2(1+ω)(logL)2

≤ (1+ω)−2e(1+ε)2(1+ω)(logL)2
(2.232)

≤ L−2e(1+ε)2(1+ω) logL log(1+ω) , (2.233)

which by using the inequality log(1+ x)> x
1+x we get the stated result.

To briefly summarise, I have demonstrated how the quantum circuit is related

to the G(n,M) random graph model, which also is in turn related to the G(n, p)

random graph model. In the following lemma, I will reproduce a well-known proof

of the diameter of sparse random graphs [131, 132] (and chapter 10 theorem 10.17

of reference [129], also references [128, 133]). The derived bound on the diameter

of the (sparse) random graph G(n, p), for a specific range of values of p, will then

be used to bound the scrambling time of the random circuit model. First, I will

introduce the following notation.

Definition 2.47. We denote by Γk(v) as the set of sites at distance k from a specific

site v, so Γk(v) = {w ∈ ZL : d(v,w) = k}.

Definition 2.48. We call the neighbourhood Nk(v) as the set of sites within a distance

k of a specific site v, so Nk(v) =
⋃ j=k

j=1 Γ j(v).

Definition 2.49. The diameter of a graph G is such that diamG ≤ d if and only if

Nd(v) =V (G) for every vertex v, with V (G) denoting the set of all vertices of the

graph G. This implies that diamG ≥ d if and only if it exists a vertex w such that

Nd−1(w) 6=V (G).

Once again, I would like to emphasise that the following result and rigorous

proof is well established [128, 129, 131–133]. The primary modifications and exten-

sions I have made are to include more details and steps, such that the proof is easier

to follow, and to state the probability bound explicitly.
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Lemma 2.50. For the random graph G(n, p), when p = c logn
n−1 for some constant

c > 4, the probability that the diameter of the random graph, diam(G(n, p)), is

o(logn), in the sense specified below, for large n is upper bounded by

prob
{

diam(G(n, p))>
2log(0.8(n−1))

log(2c logn)
+1
}
≤ 1.5n2−0.5c , (2.234)

provided that c logn≥ 32.

Proof. The initial stage of the proof of this result is to consider a fixed vertex v and

bound the probability distribution of |Γk(v)|. Firstly, we will bound |Γ1(v)| and then

expand from there. The probability distribution of the random variable |Γ1(v)| is a

binomial distribution with probability p and n−1 total trials. Using the Chernoff

bounds (appendix B result B.2), we can bound this distribution to find that

prob{|Γ1(v)| ≥ γc logn} ≤ n
c

ln2 (γ−1−γ lnγ) , (2.235)

where γ > 1, and

prob{|Γ1(v)| ≤ νc logn} ≤ n
c

ln2 (ν−1−ν lnν) , (2.236)

with ν < 1. Hence, setting γ = 2 and ν = 1/4, we have that

prob{|Γ1(v)| ≥ 2logn} ≤ n−0.5c , (2.237)

prob
{
|Γ1(v)| ≤

1
4

c logn
}
≤ n−0.58c ≤ n−0.5c . (2.238)

To bound the probability distribution of |Γk(v)| we note that conditional on

|Γ j(v)| for j ∈ [1,k−1] the distribution is binomial with probability p′ = 1− (1−
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p)|Γk−1(v)| and number of trials n−1−|Nk−1(v)|, so

prob{|Γk(v)|= ik||Γk−1(v)|= ik−1, . . . , |Γ1(v)|= i1}

=

(
n−1−|Nk−1(v)|

ik

)(
1− (1− p)|Γk−1(v)|

)ik (
(1− p)|Γk−1(v)|

)(n−1−|Nk−1(v)|−ik)
.

(2.239)

Once again we will use the Chernoff bounds to bound this probability distribution.

We will first focus on the upper-tail, and demonstrate that

prob{|Γk(v)| ≥ (2c logn)k |
j=k−1⋂

j=1

l j ≤ |Γ j(v)| ≤ (2c logn) j} ≤ n−0.5c(2c logn)k−1
,

(2.240)

where l j denotes the lower tail of |Γk(v)|, which we will investigate and determine

next. Applying the Chernoff bound to the probability distribution of |Γk(v)|, recalling

that with the conditioning the distribution is binomial (equation 2.239), we find that

prob{|Γk(v)| ≥ (2c logn)k |
j=k−1⋂

j=1

l j ≤ |Γ j(v)| ≤ (2c logn) j}

≤min
t>0

exp
(
−t (2c logn)k +(n−1−|Nk−1(v)|)(et−1)(1− (1− p)|Γk−1(v)|)

)
,

(2.241)

≤min
t>0

exp
(
−t (2c logn)k +(n−1)(et−1)p|Γk−1(v)|

)
, (2.242)

≤min
t>0

exp
(
−t (2c logn)k +(et−1)c logn(2c logn)k−1

)
, (2.243)

≤ exp
(

2c logn(2c logn)k−1(− ln2+1/2)
)
≤ n−0.5c(2c logn)k−1

, (2.244)

which gives that stated result of equation 2.240, and moreover agrees with the

calculation for the case k = 1 in equation 2.237. We shall now investigate the lower
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tail (denoted above by lk), and demonstrate a similar result

prob

{
|Γk(v)| ≤

(c
4

logn
)k
∣∣∣∣ j=k−1⋂

j=1

(c
4

logn
) j
≤ |Γ j(v)| ≤ (2c logn) j

}

≤ n−0.5c( c
4 logn)

k−1

, (2.245)

with the condition that k is such that

1− 2(2c logn)k−1

n−1

(
1+ c logn

((c/4) logn)k−1

n−1

)−1

≥ 0.95 , (2.246)

which essentially imposes a maximum value upon k, and roughly means that |Γk(v)|

is not in the region of ∼ n−1. The proof of this again makes use of the Chernoff

bound to bound the |Γk(v)|, recalling that with the conditioning the distribution is

binomial (equation 2.239), we find that

prob

{
|Γk(v)| ≤

(c
4

logn
)k
∣∣∣∣ j=k−1⋂

j=1

(c
4

logn
) j
≤ |Γ j(v)| ≤ (2c logn) j

}

≤min
t>0

exp
(

t ((c/4) logn)k− (n−1−|Nk−1(v)|)(1− e−t)(1− (1− p)|Γk−1(v)|)
)
,

(2.247)

using |Nk−1(v)| ≤ 2(2c logn)k−1, |Γk−1(v)| ≥
( c

4 logn
)k−1, and the fact that (1−

(1− p)|Γk−1(v)|)≥ p|Γk−1(v)|(1+ p|Γk−1(v)|)−1, then we can upper bound further

to find

≤min
t>0

exp

((c/4) logn)k−1 c logn

 t
4
− (1− exp(−t))

1− 2(2c logn)k−1

n−1

1+ c logn ((c/4) logn)k−1

n−1

 .

(2.248)

Imposing the condition given in equation 2.246, and taking the minimum over t > 0,

we find that the upper bound gives

≤ n−0.52c( c
4 logn)

k−1

, (2.249)
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and hence we have the stated result given in equation 2.245.

The condition given in equation 2.246 imposes an upper bound on k such

that the probability bound in equation 2.245 holds. Provided that c logn≥ 32 this

condition (equation 2.246) is satisfied for

k ≤ log(0.8(n−1))
log(2c logn)

. (2.250)

However, we should note that this upper-bound on k is more restricted than the

condition in equation 2.246.

The result in equation 2.240, which hold for all k that satisfy the condition in

equation 2.250, and the result in equation 2.245, which holds without any such condi-

tion on k, are conditional probabilities. We will now upper-bound the unconditioned

probabilities using the equations themselves, and then use this result to address the

main question of this proof (the diameter of G(n, p)). Using the abbreviated notation

u = 2c logn and l = c
4 logn to make the equations more compact, we upper-bound in

the following manner

prob
{
|Γk(v)| ≥ uk

⋃
|Γk(v)| ≤ lk

}
≤ prob

{
|Γk(v)| ≥ uk

⋃
|Γk(v)| ≤ lk

∣∣∣∣ j=k−1⋂
j=1

l j ≤ |Γ j(v)| ≤ u j

}

+

(
1−prob

{
j=k−1⋂

j=1

l j ≤ |Γ j(v)| ≤ u j

})
. (2.251)
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We can upper-bound the second term as follows

(
1−prob

{
j=k−1⋂

j=1

l j ≤ |Γ j(v)| ≤ u j

})

≤

(
1−prob

{
j=k−2⋂

j=1

l j ≤ |Γ j(v)| ≤ u j

})

+prob

{
|Γk−1(v)| ≥ uk−1

⋃
|Γk−1(v)| ≤ lk−1

∣∣∣∣ j=k−2⋂
j=1

l j ≤ |Γ j(v)| ≤ u j

}
.

(2.252)

Therefore by performing this procedure repeatedly on the 1−prob{· · ·} term, we

find that the unconditioned probability can be upper-bounded by

prob
{
|Γk(v)| ≥ uk

⋃
|Γk(v)| ≤ lk

}
≤

j=k

∑
j=1

prob

{
|Γ j(v)| ≥ u j

⋃
|Γ j(v)| ≤ l j

∣∣∣∣ j−1⋂
i=1

li ≤ |Γi(v)| ≤ ui

}
, (2.253)

which is just the sum of the conditional probabilities we have upper-bounded previ-

ously (equations 2.240 and 2.245). Evaluating this sum, we find that

prob
{
|Γk(v)| ≥ uk

⋃
|Γk(v)| ≤ lk

}
≤ 2

1−n−0.5c n−0.5c (2.254)

recalling that u = 2c logn and l = c
4 logn.

At last, we can address the main question. Firstly, we note that when k takes

the maximum value allowed by the condition in equation 2.250, then

∣∣∣∣Γ log(0.8(n−1))
log(2c logn)

(v)
∣∣∣∣≥ (c

4
logn

) log(0.8(n−1))
log(2c logn) ≥

√
0.8(n−1) , (2.255)

once again recalling that c logn > 32. We now consider two fixed different ver-

tices v and w, and consider their neighbourhoods up to this maximum value of k

(equation 2.250), Nkmax(v) = N log(0.8(n−1))
log(2c logn)

(v) and Nkmax(w) = N log(0.8(n−1))
log(2c logn)

(w). Clearly,

if Nkmax(v)∧Nkmax(w) = /0 then d(v,w) > 2kmax. Moreover, if there are no edges
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connecting any vertices of Γkmax(v) and Γkmax(w), then d(v,w)> 2kmax +1. Hence,

we can upper-bound the probability that d(v,w)> 2kmax +1 by

prob
{

d(v,w)>
2log(0.8(n−1))

log(2c logn)
+1
}

≤ prob{Γkmax(v) 6↔ Γkmax(w)
∣∣lkmax ≤ |Γkmax(v)| ≤ ukmax, lkmax ≤ |Γkmax(w)| ≤ ukmax}

+2(1−prob{lkmax ≤ |Γkmax(v)| ≤ ukmax}) (2.256)

where the notation Γkmax(v) 6↔ Γkmax(w) means that there are no edges connecting any

vertices of Γkmax(v) and Γkmax(w). Using results found earlier in this proof (equations

2.254 and 2.255), we can evaluate this upper bound

prob
{

d(v,w)>
2log(0.8(n−1))

log(2c logn)
+1
}

≤ (1− p)|Γkmax |2 +2prob
{
|Γk(v)| ≥ uk

⋃
|Γk(v)| ≤ lk

}
(2.257)

≤
(

1− c logn
n−1

)( log(0.8(n−1))
log(2c logn)

)2

+
2

1−n−0.5c n−0.5c , (2.258)

≤ exp

(
−c logn

n−1

(
log(0.8(n−1))

log(2c logn)

)2
)
+

2
1−n−0.5c n−0.5c , (2.259)

≤ n−0.8c +
2

1−n−0.5c n−0.5c ≤ 3n−0.5c . (2.260)

Finally, the proof so far has only considered two fixed different sites, and the

diameter is the maximum distance between two sites of the random graph. Therefore

we use the union bound (appendix B result B.1) and sum over n(n−1)/2 possible

pairs of sites, and hence get the stated result.

With this proof, I am now in a position rigorously prove result 2.5. In the

following lemma, I will use and combine the previous proofs in order to bound the

scrambling time, and the depth of the quantum circuit of Ucycle.

Lemma 2.51. The quantum circuit of the random unitary, Ucycle, as described by

the sequence SM, with M = (1+ ε)L logL, has circuit depth corresponding to the
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scrambling time ∼ (logL)2, with high probability. In particular,

prob{SM : depth(SM)< (e+1)(1+ ε) logL and tscr ≤
2log(0.8(L−1))

log(2(1+ ε) logL)
+1}

≥ 1− 1
4

L−ε −L−(1+ε) logL−12L2−0.5(1+ε) (2.261)

with M = (1+ ε)L logL, and with the conditions

(1+ ε) logL≥ 32 and
logL

L
≤ 1+ ε

4e(1+ ε)+2
, (2.262)

and the implied condition that ε > 3.

Proof. In the first part of this proof, I will first proof an upper-bound to the scram-

bling time of the random quantum circuit. In lemma 2.50 there is a proof bounding

the probability that the diameter of a G(n, p) random graph is at least a certain

value, for the case of sparse random graphs p∼ (logn)(n−1)−1. This property is

a monotonically decreasing graph property. By combining lemma 2.50, with the

analogous version of lemma 2.45 for the case of monotonically decreasing graph

properties, the statement made for the G(n, p) random graph model can be applied

to the G(n,M) random graph model. Hence,

prob
{

diam
(
G(n,M′)

)
>

2log(0.8(n−1))
log(2c logn)

+1
}
≤ 12n2−0.5c , (2.263)

where M′ = 0.5cn logn, where we recall that c is a constant, and there is the require-

ment that c logn≥ 32.

We now wish to use this result for the diameter of the G(n,M) random graph

model to understand the scrambling time of the random circuit, given by the sequence

SM. We can relate the two in the following way, using lemma 2.46. First, we can

rewrite the probability prob{SM : tscr > T}, where T is an arbitrary time, in the
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following way

= prob{SM : tscr > T}

= prob{SM : tscr > T |Nrepetitions ≥ R}prob{SM : Nrepetitions ≥ R}

+prob{SM : tscr > T |Nrepetitions < R}prob{SM : Nrepetitions < R} , (2.264)

where Nrepetitions and R are the same as in lemma 2.46. This can be upper-bounded

by

prob{SM : tscr > T} ≤ prob{SM : Nrepetitions ≥ R}+prob{SM : tscr > T |Nrepetitions < R} .

(2.265)

The region of M in which we are interested in is M = (1+ ε)L logL, applying the

proof in lemma 2.46, and using ω = (2e(1+ ε))−1 > 0, then this probability can be

upper-bounded further by

prob{SM : tscr > T} (2.266)

≤ L−(1+ε) logL +prob{SM : tscr > T |Nrepetitions < (2e(1+ ε)+1)(logL)2} .

To upper-bound further, we note that the scrambling time is a non-increasing function

of M (see lemma 2.40), and hence

prob{SM : tscr > T |Nrepetitions < (2e(1+ ε)+1)(logL)2}

≤ prob{S∗M−(2e(1+ε)+1)(logL)2 : tscr > T} , (2.267)

where S∗M−(2e(1+ε)+1)(logL)2 denotes the sequence SM in which all of the (2e(1+

ε)+1)(logL)2 repetitions have been omitted. Now that we have this new sequence,

in which there are no repetitions, we can use the G(n,M) random graph model

to understand the scrambling time. In particular, we can understand the sequence

S∗
(1+ε)L logL−(2e(1+ε)+1)(logL)2 as a graph, by using each element of the sequence (αi)

as an edge drawn on a graph of L vertices - in other words by ignoring the ordering
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of each element of the sequence. The diameter of this (random) graph is larger than

(or equal to) the scrambling time of the sequence, which follows from the definitions

2.36 - 2.39. Therefore,

prob{S∗M−(2e(1+ε)+1)(logL)2 : tscr > T} (2.268)

≤ prob
{

diam
(
G(L,(1+ ε)L logL− (2e(1+ ε)+1)(logL)2)

)
> T

}
,

which we can upper-bound further, using again the fact that the diameter is monoton-

ically decreasing graph property, by

prob{S∗M−(2e(1+ε)+1)(logL)2 : tscr > T} ≤ prob{diam(G(L,0.5(1+ ε)L logL)> T} ,

(2.269)

with the added condition that

logL
L
≤ 1+ ε

4e(1+ ε)+2
. (2.270)

Hence, using bound on the diameter of the G(n,M) random graph in equation 2.263,

and c = (1+ ε), we find that

prob{SM : tscr >
2log(0.8(L−1))

log(2(1+ ε) logL)
+1} (2.271)

≤ L−(1+ε) logL +prob{S∗M−(2e(1+ε)+1)(logL)2 : tscr >
2log(0.8(L−1))

log(2(1+ ε) logL)
+1} ,

≤ L−(1+ε) logL +12L2−0.5(1+ε) , (2.272)

with the conditions

(1+ ε) logL≥ 32 and
logL

L
≤ 1+ ε

4e(1+ ε)+2
. (2.273)

Finally, using the value M = (1+ ε)L logL and the result for the depth of the
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quantum circuit in lemma 2.35, with δ = 1/e > 0, we find that

prob{depth(SM)≥ (e+1)(1+ ε) logL} ≤ 1
4

L−ε , (2.274)

and applying the union bound, the stated result is obtained.

This concludes all of the proofs required to justify result 2.5.

2.2.3 Discussion

In summary, in this section I have presented a model with time-periodic dynamics and

non-local but few-body interactions. I have demonstrated with rigorous proofs that

the circuit depth corresponding to the scrambling time in this model is ∼ (logL)2,

where L is the number of sites of the system. However, unlike in the previous

section (section 2.1), I have not analysed the question of how closely the dynamics

appear to be Pauli mixing, or if under some circumstances can resemble a random

unitary. This is an important question that requires answering. Despite the model

I presented having interactions given by random Clifford unitaries, none of the

proofs in this section are specific to or require this feature. However, to make use

of the techniques and proofs from the previous section (section 2.1), the fact that

the interactions are random Clifford unitaries will be essential. In fact, this aspect

of the model is only relevant for results investigating how closely the dynamics

can exhibit Pauli mixing. Hence, result 2.5 applies more generally. Additionally, I

would like to emphasise that while I consider a time-periodic model with Clifford

dynamics in order to make use of the mathematical results in the previous section,

Clifford dynamics will not fully capture the highly chaotic dynamics of black holes.

As discussed in the introduction, the Clifford group can at most form a 3-design,

and does not therefore exhibit all features of highly chaotic quantum systems. For

instance the exponential decay of out-of-time order correlators [19, 134], which is

a well-studied diagnostic feature of quantum chaos, is not observed in the case of

Clifford dynamics In fact, for any Clifford unitary W and two Pauli operators σu,σv

the out-of-time order correlator at infinite temperature takes the maximum (absolute)

value | 1d tr
(
σuWσvW †σuWσvW †) |= 1.
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As discussed in the introduction (chapter 1 section 1.3), the main motivation for

the work in this section is drawn from the study of black holes and the fast scrambling

conjecture. Highly chaotic quantum systems are often modelled with (Haar) random

unitaries, which is justified by the fact that local random quantum circuits generate

unitary designs. However, these circuits are time dependent, while physically one

would expect the dynamics to be time-independent. In the fast scrambling conjecture,

the main object of interest is finding a random quantum circuit which scrambles

quantum information in a depth that is logarithmic in the number of qubits. It is

worth considering then whether the model in this section may, with further work

and improved proof techniques, approach this limit. The proofs in this section, in

particular bounding the scrambling time, make use of well-known results from the

study of random graphs. In fact, further results from the study of random graphs

prove that with probability close to one the scrambling time is upper-bounded and

lower-bounded by ∼ logL for the case where M ∼ L logL. Moreover, to achieve a

faster scrambling time of, for example, a constant independent of the system size L,

would require the driving unitary Ucycle to have a much larger number of constituent

gates (M), and hence a larger circuit depth. For this reason, I believe that to achieve

the desired result of a scrambling time reached in circuit depth logarithmic in the

number of qubits, a different (random) circuit generation model is necessary.

Finally, I would also like to draw attention again to results in the references

[30, 67], in which it is proven that a random quantum circuit acting on n qubits of

depth ∼ (logn)3 can implement a decoupling process. The model I have presented

and analysed in this section is in essence a time-periodic model analogous to the

model studied in the references [30, 67].



Chapter 3

Localisation

In the introduction of this thesis (chapter 1), I discussed the important role that

disorder can have in preventing the onset of thermalisation in quantum systems, in

particular in sections 1.4 and 1.5 which discussed single-particle and many body

localisation respectively. In this chapter, I will present results investigating the

question of localisation in time-periodic random quantum circuits. The main feature

I will use to identify the phenomenon of localisation is the time evolution of local

operators, which was one of a variety of signatures of localisation discussed in

the introduction. In the previous chapter (chapter 2 section 2.1), I presented a

model of a time-periodic random quantum circuit in one spatial dimension, and

demonstrated that the model can exhibit the mixing of Pauli operators in one regime

of the dynamics. In the first section of this chapter (3.1) I will present results

for the opposite regime of dynamics, which exhibits a novel type of localisation.

In the second section, motivated both by the importance of the number of spatial

dimensions in single-particle localisation and by the fact that there is yet to be a

detailed understanding or consensus regarding many-body localisation in two or more

spatial dimensions, I will present work studying an analogous two dimensional model.

I will present a result which shows that a model of a time-periodic quantum circuit

in two spatial dimensions does not exhibit localisation, unlike in one dimension, in a

strong and precise sense.

In both of the sections the structure is as follows: firstly I will give a gen-

eral overview of the results including a brief discussion, then I will give detailed
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Figure 3.1: Time-periodic local dynamics. This figure illustrates the physical model anal-
ysed in this work. The circles on top represent lattice sites, each consisting of N
qubits. Coloured blocks represent two-site unitaries, and different colours stand
for independently and identically distributed Clifford unitaries, representing the
spatial disorder. After the first two half time-steps the dynamics repeats.

derivations of these results, and finally I will more fully discuss the results.

3.1 Strong localisation in one dimension
In chapter 2 section 2.1 I presented results demonstrating that time-periodic random

quantum circuits with local interactions, given by random Clifford unitaries, in one

regime exhibits Pauli mixing and can in some situations resemble a (Haar) random

unitary. This regime of dynamics required that the local spin dimension of each site

was larger than the logarithm of the number of sites of the spin chain. In this section,

we will investigate the opposite regime when the local spin dimension is small, so

the spin chain contains one or only a few qubits per site of the spin chain. I will show

that in this regime the time-periodic dynamics results in a novel and strong form of

localisation, which means that local operators are strictly confined to a fixed region

of the spin-chain at all times. This observed localisation is characterised in terms of

one-sided “walls”, across which the spreading of perturbations is prevented.

3.1.1 Overview

Firstly, I will describe the model (discussed in chapter 2) once more, so that this

section can be followed in a self-contained manner without reference to the previous

chapter. The system is a spin chain with L sites and periodic boundary conditions,

where each site contains N modes or qubits. The first dynamical period consists of
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two half-steps. In the first half-step each even site interacts with its right neighbour

with a random Clifford unitary (for the definition and exposition of the Clifford group

see appendix A) and in the second half-step each odd site interacts with its right

neighbour with a random Clifford unitary. These L Clifford unitaries are independent

and uniformly sampled from the 2N-qubit Clifford group. The subsequent periods

of the dynamics are repetitions of the first period, as illustrated in figure 3.1. If we

denote by Ux the above-mentioned unitary action on sites x and x+1 (modulo L due

to periodic boundary conditions) then the evolution operator after an integer time t is

W (t) =
[
(U1⊗U3⊗·· ·⊗UL−1)(U0⊗U2⊗·· ·⊗UL−2)

]t (3.1)

= (UoddUeven)
t = (Uchain)

t .

As discussed in the previous chapter, this model exhibits the mixing of Pauli

operators in the regime N � logL, and hence in this section the focus is instead

on the opposite regime of N � logL, which in particular includes the case of a

single qubit per site N = 1. In this section, the feature used to study and identify

the phenomenon of localisation is the time evolution of initially local operators,

A(t) = W (t)†AW (t), whereby initially local operator I mean an operator which at

t = 0 is supported (non-identity) on a single site of the spin chain. This model

has the property that specific combinations of unitaries acting on consecutive sites,

Ux,Ux+1, . . . ,Ux+l , generate left or right sided “semi-permeable” walls. By “semi-

permeable” wall I mean the following: a right-sided “semi-permeable” wall at site

x prevents the growth of the support of any operator from the left of x towards the

right of x, but it does not necessarily stop the growth of any operator from the right

to the left of x. An analogous definition applies for left-sided walls. This effect,

and how it produces localisation, is well demonstrated in figure 3.2. In this figure,

the time evolution of the initial operator σz at site x = 1 is shown to initially spread

linearly until colliding with both left and right sided walls, which prevents further

propagation for all times.

The one-sided walls have some penetration length l into a forbidden region. To

illustrate this, consider a specific realisation of W (t) with a right-sided wall at site
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Figure 3.2: This figure displays the Heisenberg evolution of the initial operator σz at site
x = 1. Each lattice site consists of one qubit (N = 1) with first-neighbour
interactions. After a phase of linear growth the lateral wings collide with left-
and right-sided walls with penetration length l = 1, that confine the evolution for
all times. This confinement affects all (not necessarily local or Pauli) operators
between the two walls. Inside the confined region, the evolution seems to
mix Pauli operators. This figure was produced by a collaborator, Álvaro M.
Alhambra, who also performed the required numerics.

x = 0 with penetration length l. Any operator which is supported (non-identity) only

on sites x ≤ 0 evolves in time, mapped by W (t), to an operator supported only on

sites x≤ l, and not supported (so non-identity) on sites x > l for all t ≥ 1. Whereas, it

should be noted that, if the initial operator was supported on the region of sites given

by the interval x ∈ [1, l] it is possible that the time evolution allowed the operator to

be mapped to an operator with support on sites x > l.

This property of combinations of Clifford unitaries generating walls can be

most clearly seen in the case of a single unitary Ux, which forms a wall with zero

penetration length l = 0 and hence is in fact a two-sided wall. These walls occur
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when a single unitary Ux is of product form Ux =Vx⊗Vx+1, wich is equivalent to a

non-interacting unitary. I will refer to this case as trivial localisation, as in essence

is equivalent to the spin chain being split at site x into two completely independent

parts. The following result gives the probability of these trivial (l = 0) walls.

Result 3.1. The probability that a Clifford unitary U ∈ C2N is of product form is

1
2

2−4N2
≤ prob{U is product } ≤ 2−4N2

. (3.2)

The more interesting case is considering combinations of more than one unitary,

which through one-sided walls produce non-trivial localisation. I shall now charac-

terise pairs of gate Ux, Ux+1, which act on the pair of sites {x,x+1} and {x+1,x+

2} respectively, that produce a right-sided wall at site x with penetration length l ≤ 1.

I shall again use the phase-space representation of Clifford unitaries, which has been

discussed in chapter 2 and in more detail in appendix A. The unitaries Ux, Ux+1 have

phase-space representations Sx, Sx+1, for which subsystems are decomposed with

direct sums rather than tensor products. Hence, Sx, Sx+1 (symplectic matrices with

entries in Z2) decompose in to 2N-dimensions blocks

Sx =

 Ax Bx

Cx Dx

 . (3.3)

The growth of the support of an operator caused by Sx, which can also be referred to

as the flow of information, can be understood by considering the action of Sx on a

(Z2) vector (ux,ux+1)
T

 Ax Bx

Cx Dx

  ux

ux+1

 =

 Axux +Bxux+1

Cxux +Dxux+1

 . (3.4)

So, the blocks Ax and Dx represent local dynamics at sites x and x+1 respectively.

Whereas, Cx (and analogously for Bx) represents interactions between sites x and

x+1, and in particular the propagation of the operator from site x to x+1. This idea

is illustrated in figure 3.3.
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Figure 3.3: Information flow. The flow of information in phase space according to eq. (3.4)
is illustrated in the particular case u0

x = u0
x+2 = 0, where ut

x denotes the projection
of the phase-space vector ut = S(t)u0 onto the subspace Vx of site x. For
graphical convenience we write the inputs (ux,ux+1) to each symplectic block
matrix Sx inside the block. Note that the input at time t = 1

2 at site x+1 (x+2)
is equal to the output given by Sx (Sx+2) at the site x+1 (x+2). This figure is
based on another figure which was produced by a collaborator, Daniele Toniolo.

For the pair of unitaries, Ux,Ux+1 to form a right-sided wall it must be imposed

that no operator can spread to the site x+2 (from site x) at any time. For the first

time-step (t = 1), this is equivalent to the following condition on the phase-space

representation: Cx+1Cx = 0, and more generally for any integer number of time-steps

t > 0 this requires imposing the conditions

C1(D0A1)
tC0 = 0 . (3.5)

For the simplest case of N = 1, a spin chain of qubits, this infinite family of con-

ditions in equation 3.5 reduces to only two conditions (t = 0 and t = 1). Whereas

for the case N > 1 this infinite family of conditions is instead implied by the cases

t = 0,1, . . . ,(4N2−1). The conditions in equation 3.5 can be understood as charac-

terising a pattern of destructive interference due to disorder which causes localisation.

To illustrate this more clearly, I present the following example for the case of N = 1
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for a pair of Clifford unitaries Ux,Ux+1

Ux =
1√
2


i 0 0 −i

0 i −i 0

1 0 0 1

0 1 1 0

 , Ux+1 =
1
2


1 −1 1 1

−1 1 1 1

1 1 1 −1

1 1 −1 1

 , (3.6)

which have phase-space representations

S0 =


1 1 0 1

0 1 0 1

1 0 1 0

0 0 0 1

 , S1 =


1 0 0 1

0 1 0 0

0 1 1 0

0 0 0 1

 . (3.7)

which as a pair of matrices do satisfy the conditions in equation 3.5, and hence

produce a wall.

The probability of this type of one-sided wall, those with penetration length

l ≤ 1 is bounded in the following result. The inverse of this probability is comparable

to the average distance between walls, and so can be understood as the localisation

length scale.

Result 3.2. The probability that a pair of gates Ux,Ux+1 ∈ C2N generates a right-sided

wall with penetration length l ≤ 1 is

prob{∀t ≥ 0,Cx+1 (DxAx+1)
t Cx = 0} ≤ 4N 2−2N(N−1) . (3.8)

For N = 1 the exact probability is

prob{Cx+1DxAx+1Cx = 0 and Cx+1Cx = 0}= 0.12 . (3.9)

By symmetry, left-sided walls have the same probabilities.

Both results demonstrate an exponential dependence on N, and hence suggests

that the distance between walls increases rapidly with increasing N. Unfortunately,
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I have only been able to characterise and calculate the probability for walls with

penetration length l ≤ 1. I expect that walls with penetration length l = 0, so trivial

localisation, are less likely than walls with penetration length l ≥ 1, which would

allow for a regime of L and N in which the system does not display trivial localisation.

However, this is a conjecture. Although, one could instead consider an equivalent

model in which the Clifford unitaries are sampled uniformly, excluding those which

are of product form.

Finally, it is worth emphasising that since these walls prevent the propagation

of all Pauli operators, then they also prevent the propagation of all operators, because

the Pauli operators form a basis. Hence, all initially local operators are confined to a

fixed and finite region of the spin chain.

3.1.2 Details and derivation

In this section, I will give in detail the mathematical derivations for both result 3.1

and result 3.2. The proof for result 3.1 is given in lemma 3.1. The set of proofs

which give result 3.2 are given in lemmas 3.2 and 3.3.

The case of trivial localisation, described in result 3.1, occurs when a Clifford

unitary is of product form, and so the two sites upon which the unitary acts do not

interact. Since the quantum circuit is time-periodic this non-interacting Clifford

unitary is repeated periodically, and so the two sites never interact at all, and hence

there is a wall. The product form of the unitary, U , has an equivalent phase-space

description, in which the corresponding symplectic matrix S is written in the form

of a direct sum, so S = T ⊕T ′, which when S is written in block matrix form is

equivalent to B =C = 0. The following lemma bounds the probability of a uniformly

sampled (Z2) symplectic matrix being in direct sum form.

Lemma 3.1. Any given S ∈ S2N can be written in block form

S =

 A B

C D

 , (3.10)

according to the decomposition Z4N
2 = Z2N

2 ⊕Z2N
2 , and if S is uniformly distributed
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then this induces a distribution on the sub-matrices A,B,C,D. For each of the

sub-matrices (E = A,B,C,D) the induced distribution satisfies

2−4N2

2
≤ prob{E = 0}= |SN |2

|S2N |
≤ 2−4N2

, (3.11)

with the implied additional property that prob{A = 0|D = 0} = prob{D = 0|A =

0}= prob{B = 0|C = 0}= prob{C = 0|B = 0}= 1.

Proof. First consider the case where C = 0. Following the algorithm for generating a

symplectic matrix in lemma 2.1, we see that A must be (2N×2N) symplectic matrix.

Hence, any choice for the columns of B will have symplectic form of one with at

least one column of the matrix A. Therefore, to fulfil the symplectic constraints for

the entire matrix S, the corresponding column of D must have symplectic form of

one with a column of C. However, this is not possible since C = 0, therefore B = 0

and both A and D are (2N× 2N) symplectic matrices. Again using the counting

algorithm in lemma 2.1, the number of choices of S with C = 0 is given exactly by

|{S ∈ S2N : C = 0}|= |SN ||SN |= |SN |2 . (3.12)

Finally, dividing by the total number of choices for S gives the probability.

I will now demonstrate that this argument applies to any of the four sub-matrices

A,B,C,D. Consider the symplectic matrix

M =

0 1

1 0

 , (3.13)

and its left and right action on the symplectic matrix S

SM =

B A

D C

 , MS =

C D

A B

 , (3.14)

so M permutes the block matrix S by swapping the rows and columns. Since, the

product of symplectic matrices is also a symplectic matrix, we have that the argument
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above for the case of C = 0 applies to any of the four sub-matrices A,B,C,D.

Finally, the upper and lower bounds for the probability are found using lemma

2.2.

This lemma includes the statement of result 3.1 for the case where C = 0. As I

have already mentioned, this trivial form of localisation is equivalent to having the

spin chain split into independent parts. In the rest of this section, I will investigate

other conditions for localisation which are not trivial, and occur due to interacting

dynamics. The following two lemmas together constitute the proof for result 3.2.

The first lemma gives a full justification for the infinite set of conditions which result

in a pair of Clifford unitaries (Ux,Ux+1) forming a wall of penetration length l ≤ 1.

In this lemma, it is also found that the infinite family of conditions can in fact be

reduced to a set of 4N2 conditions.

Lemma 3.2. The conditions

Cx+1 (DxAx+1)
k Cx = 0, (3.15)

for all k ∈ N, are sufficient for preventing all right-wards propagation past position x

at any time. The probability of this is upper-bounded by

prob{Cx+1 (DxAx+1)
k Cx = 0,∀k ∈ N} ≤ 2N +1

(1−2−2N)2N 22N−2N2
, (3.16)

Proof. This proof is clearer with reference to figure 3.1. The condition Cx+1Cx = 0

prevents right-wards propagation for a single time-step, however (unless Cx = 0)

then Ax+1Cx 6= 0 and hence in subsequent time-steps there could be right-wards prop-

agation. In the next time-step, the only way for possible right-ward propagation to

occur that would not be blocked by the condition Cx+1Cx = 0 is Cx+1DxAx+1Cx, and

so the additional requirement Cx+1DxAx+1Cx = 0 prevents right-ward propagation.

Once again the same argument applies for subsequent time-steps, and hence we

require that Cx+1 (DxAx+1)
k Cx = 0 for k ≥ 2 (k ∈ N).
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Finally, to obtain the upper-bound for the probability, first note that

prob{Cx+1 (DxAx+1)
k Cx = 0,∀k ∈ N} ≤ prob{Cx+1Cx = 0} , (3.17)

and hence by applying the result in lemma 2.5 we get the stated result.

I would like to point out that this lemma gives a sufficient condition, and there

are other potential conditions and mechanisms by which right-wards propagation can

be prevented. For example, one could instead consider conditions such that three or

more Clifford unitaries prevent right-wards propagation (l ≥ 2 penetration length).

This lemma applies for any general choice of N. In the following lemma I will

consider the particular case of N = 1, a spin chain with a single qubit per site, and

demonstrate that the family of conditions actually reduces to just two conditions, and

give exactly the probability of these two conditions being satisfied. The following

lemma, combined with the previous lemma, are the justification for result 3.2.

Lemma 3.3. For N = 1 the conditions

Cx+1 (DxAx+1)
k Cx = 0, (3.18)

for k = 0,1,2, . . . are implied by the two conditions

Cx+1Cx = 0 and Cx+1DxAx+1Cx = 0 . (3.19)

Furthermore the probability of this is given exactly by

prob{Cx+1Cx = 0,Cx+1DxAx+1Cx = 0}= 0.12 , (3.20)

which includes trivial localisation.

Proof. In this result we are concerned only in the case N = 1, for which Sx, Sx+1

are 4×4 symplectic matrices and the sub blocks A,B,C,D are 2×2 matrices. We

first note that if Cx = 0 and/or Cx+1 = 0, which is trivial localisation, then it is clear

that the conditions for all k are satisfied. Hence, we now focus only on the cases
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where Cx 6= 0 and Cx+1 6= 0. Moreover, we note that we will only focus on the cases

where Rank(Cx) = Rank(Cx+1) = 1, since if either of Cx or Cx+1 are full rank then

to satisfy Cx+1Cx = 0 the other of the C matrices must be the zero matrix.

When Rank(Cx+1) = 1 the columns of Cx+1 have symplectic form of zero

with themselves, or in other words CT
x+1JCx+1 = 0. Therefore, by the symplectic

conditions, this implies that Ax+1 is a 2×2 symplectic matrix. This argument also

applies to Cx, and so Dx is also a 2×2 symplectic matrix.

Therefore, since the product of symplectic matrices is also a symplectic matrix,

for N = 1 neglecting the cases of trivial localisation (Cx = 0 and/or Cx+1 = 0) the

conditions become

Cx+1SkCx = 0, (3.21)

where S is a generic 2×2 symplectic matrix. For 2×2 symplectic matrices, there

exists α, β ∈ Z2 such that the following holds

S2 = αI+βS , (3.22)

which can be verified by a direct check. So, if Cx+1Cx = 0 and Cx+1SCx = 0 both

hold then Cx+1SkCx = 0 for all k > 1. Hence, we have the stated result for N = 1.

The exact result for the probability for the case of N = 1 follows from directly

counting the number of symplectic matrices that satisfy the two conditions.

Unfortunately, it has not been possible to prove for the cases N > 1 a similar

reduction of the family of conditions to some smaller number. Indeed, one can

construct many counter examples for the case N = 2 which shows that more than

two conditions (k = 0,1) are required.

3.1.3 Discussion

To summarise, I have shown that the time-periodic quantum circuit considered in the

regime of small N (N� logL), one or a few qubits per site of the spin chain, exhibits

localisation. This novel form of localisation, which I have characterised in terms of

“semi-permeable” (one-sided) walls, is demonstrated by observing that all initially
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local (only non-identity on a single site) operators over their time evolution are only

supported on the same fixed finite region of the spin chain. This finite region, in

terms of one-sided walls, is the space between a left-sided wall and a right-sided

wall.

Firstly, I will clarify in what sense this form of localisation is novel. In the

introduction, I discussed both Anderson localisation (chapter 1 section 1.4) and

many-body localisation (chapter 1 section 1.5). In many-body localised systems,

the support of initially local operators grows logarithmically with time. Whereas in

Anderson localisation, operators are confined to a finite region for all times, with

exponentially decaying tails beyond the region. The form of localisation I have

described and characterised is novel in that operators are localised to the same fixed

and finite region of the spin chain. This strict localisation is reminiscent of Anderson

localisation, however, the model considered is an interacting many-body quantum

system which cannot be understood as a system of free or weakly interacting particles,

and so is unlike Anderson localisation. Additionally, the localisation does not behave

in the same manner as many-body localisation, and hence seems to challenge the

existing classification.

Naturally, the results in this section give impetus to further research. In particu-

lar, a full characterisation of this novel type of localisation is required. Moreover,

it is not clear if this phenomenon is robust against perturbations, as one would

expect for a phase of matter. By this I mean: does the observed phenomenon persist

when one considers the more general case by including non-Clifford unitaries in the

time-periodic dynamics?

In the next section, I will investigate a related question: in two spatial dimen-

sions does an analogous model still demonstrate this novel type of localisation?

3.2 Absence of localisation in two dimensions

The number of spatial dimensions is of critical importance to both single particle

and many-body localisation. This was discussed in chapter 1 sections 1.4 and 1.5.

Importantly, for many-body localisation it is not yet fully resolved whether the
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Quasi-free systems Clifford dynamics Chaotic many-body
Phase-space rep. X X ×
1D localisation X X X
2D localisation High disorder × ?
Order of design 0 3 ∞

Table 3.1: This table broadly illustrates the comparison between observable physical be-
haviour in quasi-free systems (bosons/fermions), systems with Clifford dynamics,
and chaotic many-body quantum systems.

phenomenon persists in greater than one spatial dimension. Whereas, in the case of

Anderson localisation the role of the number of spatial dimensions in determining

the observed behaviour is well understood. In the previous section (section 3.1), I

presented results demonstrating a novel type of localisation for a one-dimensional

spin chain with dynamics generated via a time-periodic random quantum circuit.

In this section, I will present results from investigating an analogous model in two

spatial dimensions. I will show that in fact there is a strong and precise sense in

which there is an absence of localisation. In table 3.1, I have briefly summarised

a comparison between the observed physical behaviour of systems with quasi-free

bosons or fermions and systems with Clifford dynamics. This comparison will be

discussed in greater detail in the final chapter.

3.2.1 Overview

Initially, I will define precisely what I mean by the absence of localisation, where

again the perspective taken is the time evolution of initially local operators. Then, I

will present a model, which is a two-dimensional analogue of the model previously

considered (chapter 2 section 2.1 and chapter 3 section 3.1) with N = 1 and four site

interactions, and show a result demonstrating the absence of localisation.

The restricted growth of initially local operators with the evolution of time is

a well established feature indicating localisation. That is to say, if an initially local

operators grows for some time before eventually remaining confined to some finite

region, then there is localisation. Additionally, if an initially local operator grows

indefinitely but at a very slow rate (such as logarithmically), then again I would

identify this as localisation. Whereas, if an initially local operator grows in some
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Figure 3.4: This figure gives an illustration of an example of light-speed operator growth,
which implies the absence of localisation, in two spatial dimensions, where
each black circle represents a qubit. Consider an operator which initially (at
t = 0) is only non-identity on the qubit highlighted by the (blue) circle. At time
t = 1 according to the circuit described in figure 3.5, this initially local operator
has some light-cone represented by the dashed red line. If, for example, at this
specific time, t, the operator is non-identity on all the sites within the region
indicated by the continuous black line, then this operator displays light-speed
growth given in definition 3.4, which implies the absence of localisation

direction indefinitely at linear rate, there is no localisation. With this in mind, I

propose the following definition, which will be used throughout this section.

Definition 3.4. Light-speed operator growth: Consider an initially (t = 0) local

operator (non-identity only on a single site). If for all times t ∈ Z, the time evolu-

tion of this initially local operator has non-trivial support (so non-identity) on the

boundary of the light-cone then the operator has light-speed growth in (at least) one

direction.

In figure 3.4, there is an example to illustrate this definition. I would like to

emphasise that this definition implies an absence of localisation, and indeed light-

speed operator growth is a sufficient condition for a system to display the absence of

localisation. This definition while extreme, has the benefit of being uncontroversial.

However, I should note that since this definition only concerns what happens on

the boundary of the causal light-cone, if the condition in the definition is violated it

does not imply that the system displays localisation. For example, if at all times the

time-evolved version of the initially local operator is supported on all sites except



3.2. Absence of localisation in two dimensions 132

those on the boundary of the light-cone, then the system can not be said to display

localisation. In other words, some initially local operators can grow in some direction

indefinitely at a linear, but not maximal, rate. However, I will not investigate or prove

anything about operators that grow in this way. In this section I will present results

showing that in both models considered, there is a light-speed operator growth, which

implies the absence of localisation, with some constant minimum probability, which

can also be interpreted as a lower bound on the fraction of operators which grow in

some direction indefinitely at a linear rate.

The model consider in this section is an L×L square lattice of qubits. Each site

of the lattice is labelled by (x,y) where x,y ∈ ZL. Hence, the total Hilbert space for

the entire system has dimension 2L2
. The dynamics of the spin system is discrete

in time, and so is characterised by a unitary Wcycle (and not a Hamiltonian). Since

the dynamics are time-periodic, each evolution time-step is characterised by the

same unitary Wcycle, and hence |ψ(t)〉 =
(
Wcycle

)t |ψ(0)〉 for all t ∈ Z. Locality is

imposed by the fact that the unitary Wcycle is generated via four-qubit interactions in

the following way

Wcycle =

( ⊗
x odd,y odd

W(x,y)

)( ⊗
x even,y even

W(x,y)

)
, (3.23)

where the unitary W(x,y) acts on the sites (x,y),(x+1,y),(x,y+1), and (x+1,y+1).

This expression indicates that each time cycle decomposes into two half time-steps,

which is illustrated in figure 3.5. Therefore, note that alternatively I will refer to the

number of layers in the quantum circuit, l, as the duration of the time evolution, so

l = 2t. Furthermore, each unitary W(x,y) is selected independently from the uniform

distribution over the Clifford group (acting on four qubits).

Result 3.3. Consider a Pauli operator which is non-identity on only one site at t = 0.

With probability at least 0.4, the time evolution of this initial operator for the model

with time-periodic dynamics as described in equation 3.23 is non-identity on some

qubits on the boundary of the light-cone at all times t ∈ {1/2,1,3/2,2,5/2, . . .}.

Hence, this model displays light-speed operator growth, which implies the absence
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1

t = 1/2 t = 1

Figure 3.5: This figure illustrates the model we are considering, in which the driving circuit
is depth 2; it is composed of two half time-steps. All unitaries, which are
represented by blue squares, act upon 4 qubits, which are represented by dots.

of localisation.

In summary, in this model there is an absence of localisation, which is implied

by the light-speed operator growth established in definition 3.4; a significant fraction

of initially local operators grow at the maximum linear rate in some direction

indefinitely. Crucially, this lower bound for the probability is independent of the

size of the system and the time. Although, I should point out that for finite systems

these results only hold for the initial spreading of the local operator, so t ∼ L, since

after this time the causal light-cone of the initially local operator is the entire system.

Nonetheless despite this, it is fair to conclude that there is an absence of localisation.

Strikingly, this result holds in the thermodynamic limit, L→ ∞, and so the majority

of local operators grow indefinitely.

3.2.2 Details and derivation

I will now give the arguments and mathematical details which justify result 3.3,

which is given in lemmas 3.5, 3.7, 3.8, and 3.9 .

Firstly, I will describe how the spreading of an initially local operator due to

the time-periodic dynamics, as described in equation 3.23 and illustrated in figure

3.5, can be interpreted as a directed graph, when considering only the boundary of
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the light-cone. For an initially local operator (supported on a single site at t = 0),

the shape of the light-cone boundary at any time t ∈ {1/2,1,3/2,2, . . .} is a square

centred upon the initial site, with 4(4t−1) qubits on this boundary (perimeter). The

state of the operator on the light-cone boundary at any time t depends only on the

state of the operator on the light-cone boundary at time t− 1/2, and importantly

does not on the operator inside the “bulk” of the light-cone. Hence, the main reason

for focussing on the boundary of the light-cone is that at each time-step the random

Clifford unitaries are statistically independent from all previous random unitaries,

which makes it mathematically tractable.

The evolution of the light-cone boundary from one half time-step to the next

proceeds in the following general way, an illustrative example of which is depicted

in figure 3.6. The four qubits situated on the four corners of the square light-cone

boundary at time t each interact with their three nearest neighbours outside of the

light-cone via a random Clifford unitary. Each set of three qubits outside of the

light-cone boundary at time t are qubits on the light-cone boundary at time t +1/2.

One qubit in each of the four sets of three qubits form the corners of the square

light-cone boundary at time t +1/2, and the other two qubits in each of the sets are

qubits on the edge of the light-cone boundary at time t +1/2. The qubits situated

on the edges of the square light-cone boundary at time t each interact with one

of their nearest neighbours within the light-cone boundary at time t, and the two

nearest qubits outside the light-cone boundary, via a random Clifford unitary. The

two interacting qubits on the outside of the light-cone boundary become qubits on

the light-cone boundary at time t +1/2. This interaction pattern for the light-cone

boundary can be translated into a directed graph in the following way. Each random

Clifford unitary is represented by a vertex, and each qubit which becomes a qubit

on the boundary of the light-cone in the following half time-step is represented as

an outwards arrow from the corresponding vertex. So, unitaries which act on the

corners of the light-cone boundary become a vertex with one inwards arrow and three

outwards arrows, and similarly unitaries which act on the edges of the light-cone

boundary become a vertex with two inwards arrows and two outwards arrows. All of
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t = 1
2

t = 1

t = 3
2

1

Figure 3.6: This figure illustrates how the light-cone boundary grows up to t = 3/2 for
the model described in equation 3.23. The images in the column on the left
show the quantum circuit at each time-step, with black dots representing qubits,
where the qubit highlighted with a black circle is the qubit upon which the
initially local operator is non-identity, and the blue rectangles represent the
random Clifford unitaries. The red dashed line represents the rectangular region
corresponding to the light-cone; qubits on the edges of the rectangle are on the
boundary of the light-cone. The images in the column on the right show the
directed graph corresponding to the light-cone boundary. Arrows in the directed
graph represent qubits on the boundary of the light cone at a particular time,
where as the vertices represent the random Clifford unitaries which act on four
qubits and cause the growth of the initially local operator.
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Figure 3.7: This figure illustrates the directed graph which corresponds to the boundary
of the causal light-cone up to t = 3/2 for the model shown in figure 3.5 and
described in equation 3.23.

these outwards arrows themselves then point to another vertex, which corresponds

to a Clifford unitary acting on the light-cone boundary at the next half-time step.

The growth of the light-cone boundary, and its interpretation as a directed graph, is

illustrated in figure 3.6.

In summary, we can study the growth of an initially local operator and investi-

gate if it is non-identity on the light-cone boundary at any time by using a directed

graph. Translating the problem in this manner to studying a directed graph is in itself

noteworthy, and I shall now explain the benefit of studying the problem in this way.

I should reiterate that we are only interested in whether an operator is non-identity

on a qubit situated on the boundary of the light-cone or not. Consequently, this can

be represented by the arrows from a vertex being present, indicating the operator has

support, or absent, indicating that the operator is not supported on this site (qubit).

Since each vertex is a random Clifford unitary, the outwards arrows have a joint

probability distribution. Hence, if there exists from the origin a directed path along

the arrows to the square boundary centred on the origin, representing the light-cone

boundary at a certain time, then we can conclude that the operator is supported on

the light-cone boundary at this time. This event has some probability, and I will

demonstrate that for any time t this probability is (lower-bounded by) a non-zero
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constant. In other words, using the random directed graph I will prove a lower bound

for the probability

prob{light-speed operator growth at time t}= prob{G has ω2t} , (3.24)

where ω2t is a path from the origin along the arrows in the directed graph of length 2t,

and where G denotes the random directed graph representing the light-cone boundary

that we have discussed and shown examples of in figures 3.6and 3.7. I would like to

emphasise that G is a random directed graph, in which some of the arrows are absent

and others are present according to a probability distribution, the form of which will

be proven in lemma 3.5, and hence is one particular instance of Grand, the set of all

directed graphs representing the light-cone boundary. So for example, the directed

graph shown in figure 3.7 is one instance of the random directed graph G (of Grand),

in which all arrows are present.

In the rest of this section, I will prove a series of rigorous results which lower

bound prob{light-speed operator growth at time t} and hence give the statement in

result 3.3.

There is one minor point to consider. Firstly, if a vertex has no inwards arrows,

which corresponds to the evolved operator having no support on the sites which a

random Clifford unitary acts, then strictly speaking it should not have any outwards

arrows also. However, since I am considering a directed paths from the origin, this is

not a problem. That is to say, if there are no inwards arrows to a vertex, the presence

or absence of outwards arrows is irrelevant since a directed path from the origin

using these erroneous arrows could not be made anyway. Therefore, in the directed

graph picture, when we are only interested in paths from the origin, we can consider

the presence of outwards arrows from a vertex independently of whether inwards

arrows are present or not.

In the next lemma, I will give the probability distribution for the pres-

ence/absence of outwards arrows for the three types of vertex in this directed graph.

Lemma 3.5. For the vertex with four outwards arrows, the probability distribution
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for the outwards arrows is given by

P(x1,x2,x3,x4) =

0 if x1 = x2 = x3 = x4 = 0,

3x1+x2+x3+x4
255 otherwise ,

(3.25)

where xi = 0 indicates that the ith arrow is absent, and xi = 1 indicates that the

ith arrow is present. For the vertices with three outwards arrows, the probability

distribution for the outwards arrows is given by

P(x1,x2,x3) =
1

255

3 if x1 = x2 = x3 = 0,

4×3x1+x2+x3 otherwise ,

(3.26)

where xi are defined in the same manner. For the vertices with two outwards arrows,

the probability distribution for the outwards arrows is given by

P(x1,x2) =
1

255

15 if x1 = x2 = 0,

24×3x1+x2 if otherwise ,

(3.27)

where xi are again defined in the same manner.

Proof. We recall that presence of an arrow represents that the operator is supported

on the qubit site, and that each vertex is an independent and uniformly distributed

random Clifford unitary. We will first look at the case of a vertex with four out-

wards arrows. In essence, we are interested in the probability distribution of the

transformation

U†(P⊗1⊗1⊗1)U , (3.28)

where U is a (uniformly distributed) random Clifford unitary. Since the random Clif-

ford unitary is uniformly distributed, then the transformed Pauli operator is uniformly

distributed over all (non-identity) Pauli operators on four qubits. Immediately, we can

see from this that the probability that all arrows are absent, so the operator on all four

qubit sites is the identity, is zero. For each present arrow, the operator on the qubit

site is one of the three non-identity Pauli operators (σX ,σY ,σZ). Hence, since the
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distribution is uniform over all non-identity Pauli operators, for each present arrow

we must include a factor of 3, and dividing by the total number of non-identity Pauli

operators on four qubits, 44−1 = 255, we get the stated probability distribution.

Using the distribution for four outwards arrows, we can find the probability

distribution for three and two outwards arrows as marginal distributions, in effect

summing over a single or two outwards arrows. So, to obtain the distribution of three

outwards arrows, we sum over the fourth arrow (x4), and to obtain the distribution

for two outwards arrows, we sum over the third and forth arrow (x3,x4). Hence, we

get all three stated probability distributions.

I will now use this directed graph picture to lower bound the probability

prob{light-speed operator growth at time t}= prob{G has ω2t} , (3.29)

where, to reiterate, G is a random directed graph, in which some of the arrows are

absent and others are present according to the probability distribution proven in

lemma 3.5. To do this, I will introduce the following definition, which concerns

paths in the directed graph.

Definition 3.6. In the (random) directed graph G, an l-path is a path starting at the

origin along l arrows, and so of total length l. (In figure 3.8 there is an illustration of

an example.)

Using these definitions, we can rewrite prob{light-speed operator growth at time t},

in the following way

prob{light-speed operator growth at time t}

= 1−prob{G has no 2l−path} . (3.30)

Hence, in order to establish a lower-bound to prob{light-speed operator growth at time t},

I will now investigate the upper-bound of prob{G has no 2l−path}.

In the next lemma, I will demonstrate that one can upper bound the probability

prob{G has no 2l−path} by considering one quadrant of the directed graph, which



3.2. Absence of localisation in two dimensions 140

1

Figure 3.8: This figure illustrates an example of an l-path, a description of which is given in
definition 3.6. The directed graph corresponding to the outer boundary of the
causal light-cone up to t = 3/2 is shown in the figure, with one example of an
l-path, with l = 3, highlighted with blued dashed arrows.

1

Figure 3.9: This figure illustrates one quadrant of the directed graph, which is shown in
figure 3.7.

is illustrated in figure 3.9.

Lemma 3.7. The probability that in the directed graph G there is no l-path is upper

bounded by

prob{G has no l−path} ≤ prob{G4 has no l−path} , (3.31)

where G4 is one quadrant of the (random) directed graph G, an illustration of which

is given in figure 3.9
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Proof. The proof of this lemma is quite direct. First, we note that for the random

directed graph G, we can upper-bound prob{G has no l−path} by neglecting l-paths

which terminate at any choice of vertex, or set of vertices. Hence, we can upper-

bound prob{G has no l−path} by considering only one quadrant of the (random)

directed graph, G4. This single quadrant of the directed graph (figure 3.7) is

illustrated in figure 3.9.

One might wonder: why just study one quadrant of the directed graph? As

I have already mentioned, the probability distribution for arrows emerging from

the same vertex, as given in lemma 3.5, is not an independent distribution. In the

following lemma, I will show that by studying one quadrant of the directed graph

one can upper-bound further and replace the probability distribution for arrows, as

given in lemma 3.5, by an independent and identical distribution.

Lemma 3.8. The probability that for one quadrant of the directed graph, G4, there

is no l-path can be upper-bounded by

probp{G4 has no l−path} ≤ probp′{G4 has no l−path} , (3.32)

where probp{·} indicates that the probability distribution for the two outwards

arrows from each vertices in the quadrant is given by equation 3.27 (lemma 3.5 ),

and where probp′{·} indicates that the probability distribution for each outwards

arrow is independent and given by

P(xi) =


21
85 + ε for xi = 0,

64
85 − ε for xi = 1 ,

, (3.33)

where xi indicates if the ith arrow is absent (xi = 0) or present (xi = 1), and ε =

1
170(43−

√
1785)≈ 0.00441612 .

Proof. Firstly, we note that the probability distribution of outwards arrows from

different vertices are independent, and hence we focus on only a single vertex with

two outwards arrows. We can rewrite the probability distribution for the vertices
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with two outwards arrows, given in equation 3.27 (lemma 3.5 ), in a matrix form asprob{0,0} prob{0,1}

prob{1,0} prob{1,1}

=

 1
17

16
85

16
85

48
85

 . (3.34)

We can modify the distribution to make it more less likely that a path exists

from the origin, by making more probable that the two outwards arrows are absent

and less probable that the two outwards arrows are present, soprob{0,0}+ ε prob{0,1}

prob{1,0} prob{1,1}− ε

 , (3.35)

where ε ≥ 0, and where we note that this modification preserves normalisation.

Hence, we get an upper bound to the probability

probp{G4 has no l−path} . (3.36)

Since we are interested in this distribution being an independent distribution,

which is equivalent to selecting an ε such that∣∣∣∣∣∣prob{0,0}+ ε prob{0,1}

prob{1,0} prob{1,1}− ε

∣∣∣∣∣∣= 0 . (3.37)

This relation can be solved to find that ε = 1
170(43−

√
1785)≤ 0.00441612. Hence

taking marginals of this new independent distribution we get the stated result.

Finally, the following lemma establishes an upper bound to the probability

prob{G4 has no 2l−path} and hence provides the lower bound which justifies the

statement given in result 3.3 .

Lemma 3.9. The probability that for one quadrant of the directed graph, G4, there

is no l-path is be upper-bounded by

prob{G4 has no l−path} ≤ 0.6 . (3.38)
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Figure 3.10: This figure illustrates the dual of a single quadrant of the directed graph shown
in figure 3.9. It is worth noting that the dual graph is not directed, since the
edges in the dual correspond to absence of arrows in the directed graph.

Proof. Firstly, we note the following inequality

prob{G4 has no l−path} ≤ prob{G4 has no (l +1)−path} , (3.39)

in other words the probability is increasing with increasing path length.

The proof of this result makes use of the notion of the dual graph of the directed

graph, G?, which I will now introduce. The vertices of the dual graph corresponding

to the directed graph quadrant (G4) are located within the faces of the squares in the

directed graph. The edges in the dual graph are not directed. The presence of an edge

in the dual graph corresponds to the absence of an arrow it intersects in the regular

directed graph. In other words, an edge in the dual graph severs the corresponding

arrow it crosses in the directed graph. Therefore, the edges in the dual and the arrows

in the regular graph are related and complementary, so if an arrow in the directed

graph is present with probability p then the corresponding edge in the dual is absent

with probability 1− p. Figure 3.10 illustrates an example of a dual graph of the

directed graph quadrant shown in figure 3.9.

In analogy with the definition of l-paths (definition 3.6), a d-wall in the dual

graph G? is a set of d edges (and hence has length d) in the dual graph which creates

a path connecting the left side of the quadrant with the right side of the quadrant.

The presence of a d-wall in the dual graph means that in the directed graph G4 there

is a boundary which no outwards arrows cross, and hence also a boundary which no

l-paths cross.

Therefore, using the union bound and the upper-bound given in lemma 3.8 it is
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d N (d−walls)
2 1
3 2
4 3
5 6
6 18

Table 3.2: This table shows the exact number of possible d-walls in the dual graph, G?, for
d = 2,3,4,5,6.

found that

prob{G4 has no l−path} ≤
∞

∑
d=2

N (d−walls)
(

21
85

+ ε

)d

, (3.40)

where N (d−walls) denotes the total number of d-walls.

We can be upper-bounded the number of d-walls, N (d−walls), by

N (d−walls)≤
(

3d−2(d−3)+2
)

(3.41)

However, for shorter paths (d = 2,3,4,5,6) we are able to count the number of

possible d-walls, N (d−walls), exactly - the values for which are shown in table

3.2. A better upper-bound is obtained by incorporating these terms exactly and using

the upper bound for N (d−walls) for d > 6. The upper bound for N (d−walls) in

equation 3.41 can be obtained in the following way.

This upper-bound can be seen in the following way, which is most clear with

reference to the illustration in figure 3.10. Consider a d-wall starting at a specific

vertex position on the left side of the dual graph G?. For the choice of the first edge

in this path there is only one possible choice, for the next d−2 there are at most 3

possible choices, and for the final edge in the path there is a single choice. Hence,

we can upper-bound the number of d-walls starting at a specific choice of vertex on

the left side of the dual graph G? with 3d−2. It is worth noting that this upper-bound

includes paths which do not connect the left and right sides of the quadrant of the

dual graph, and hence do not actually form d-walls. Now, for a d-wall the total

number of vertices which can be the initial specific vertex on the left side of the
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quadrant is d−1. Hence, we can upper-bound N (d−walls) by the product of the

total number of starting positions of the d-wall with the upper-bound for the total

number of d-walls starting at a specific vertex. Moreover, for any d-wall when the

starting vertex on the left side is either the 1st or (d−1)th from the top, then there is

only one possible choice of d-wall. So, to incorporate this correction, we can change

the factor accounting for the total number of starting vertices from d−1 to d−3 and

instead add +2, resulting in the stated upper-bound.

The stated result follows from evaluating this sum.

3.2.3 Discussion

To summarise, I have shown that for the time-periodic quantum circuit model con-

sidered there is a non-zero constant minimum probability of an initially local Pauli

operator being supported on the boundary of its light-cone at all times. In this sense,

there is an absence of localisation in this models. This result is notable since in the

previous section 3.1 the one-dimensional version of the models considered displayed

strong localisation. Also, I expect that this result holds more generally for any

non-fine-tuned initial operator.

It is worth noting a few points. Firstly, since the definition of absence of locali-

sation used only concerns the boundary of light-cone, as do all of the mathematical

derivations, then all of the results also apply to a time-dependent version of the

model analysed. However, this is not the case for the interior of the light-cone, which

has not been studied. Indeed, it would be interesting to study the interior of the

light-cone, but this would not be amenable using the same mathematical tools. This

is because the proofs rely on the fact that when studying only the light-cone boundary

all of the random Clifford unitaries are independent, whereas if we consider the

interior of the light-cone this is not the case, since the dynamics are time-periodic.

Additionally, in the model we have considered there is only a single qubit situated

on each lattice site, but one could also have considered the case where the number of

qubits per lattice site is larger, N > 1. When the number of qubits per site is N the

Hilbert space of the L×L square lattice has dimension 2NL2
and the local random

unitaries U(x,y) are selected independently from the uniform distribution over the



3.2. Absence of localisation in two dimensions 146

Clifford group of 4N qubits, C4N . In this case, the same mathematical approach

could be used, and I expect that the lower bound for the probability is larger; the

probability that an operator localises is smaller.

In the model I have considered the random unitaries are sampled uniformly

from the Clifford group, which is a sub-group of the unitary group. It would be

interesting to consider instead the case where the random circuit is composed of

unitaries sampled from the unitary group. In the case of time-dependent circuits

this has been well studied in references such as [53, 59, 135], and discussed in the

introduction of this thesis (chapter 1). Whereas, as mentioned in chapter 1, the

case of time-periodic quantum circuits in one spatial dimension has been studied in

references such as [22, 26, 27, 125].

Finally, I would like to comment on connections between the mathematical

approach in this section and directed percolation theory [136]. Both cases analyse the

presence of infinitely long paths which start at the origin in random directed graphs.

But in the case of the model in this section the arrows that emerge from the same

vertex are not statistically independently, while in directed percolation theory they

are. In this sense, the results here study a variant of (directed) percolation theory.



Chapter 4

General Conclusions

In summary, in this thesis I have analysed time-periodic quantum circuits and proven

results concerning mixing and localisation. Initially, in the first chapter, I discussed

a selection of topics which are relevant to the results of this thesis. In the first

section of the second chapter, I analysed a time-periodic quantum circuit with local

interactions given by random Clifford unitaries, and demonstrated with mathematical

proofs that the dynamics can, under certain conditions, display (approximately) the

mixing of Pauli operators and appear to resemble a (Haar) random unitary. I have

stated precisely the conditions under which these results hold - a large (N� logL)

local spin dimension and at times in the region of the scrambling time (tscr). Then,

motivated by these results, in the second section I analysed an analogous version of

the same model in which the interactions are no longer local, but remain two-body. I

demonstrated that the time-periodic random quantum circuit has a poly-logarithmic

(∼ (logL)2) circuit depth corresponding to the scrambling time. For now, I have

left the important question of whether or how closely the dynamics of this model

appear to resemble a random unitary, or exhibit Pauli mixing, unanswered. This

is an important avenue for further work, and one which is of great importance for

the study of highly chaotic quantum systems, and in particular the fast scrambling

conjecture. The results in both of these sections are markedly different from the

more studied case of time-dependent random quantum circuits.

In the third chapter I presented a series of results concerning localisation.

In the first section, I analysed the same time-periodic quantum circuit with local
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interactions given by Clifford unitaries as in the second chapter. I demonstrated that

in the opposite case of a small local spin dimension, so one or a few qubits per site

of the spin chain, the system exhibits a novel form of localisation. I characterised

this form of localisation, in which initially local operators are confined to fixed finite

regions of the spin chain for all time. Then, motivated by these results, in the second

section I presented (two) analogous time-periodic quantum circuits in two spatial

dimensions and investigated the growth of initially local (Pauli) operators, in order

to gain an understanding of localisation. Remarkably, this problem can be recast

in terms of a directed graph, and the question of localisation studied as a form of

percolation. Hence, using these tools, I gave rigorous proofs that the system displays

an absence of localisation. The meaning of this was stated precisely; with some

minimum constant probability, independent of the system-size, an initially local

operator grows at the maximum (linear) rate in some directions. Moreover, since

these results are independent of the system size, they hold in the thermodynamic

limit, L→ ∞.

The dynamics of all of the models analysed in this thesis arise from interactions

given by Clifford unitaries. It is worthwhile summarising now some interesting

features of Clifford dynamics, which demonstrate that they are a worthwhile lens

with which to study many-body quantum systems. One major tool I have made use

of throughout this thesis is the phase space description of the dynamics. Clifford

unitaries can be represented as symplectic transformations in phase space, which

crucially has an exponentially smaller dimension than the Hilbert space. One major

consequence of this fact is that it is efficient to simulate the evolution (under Clifford

dynamics) of Pauli operators on a classical computer [122]. Equally however, due to

the symplectic matrices having entries in Z2, there are no eigen-modes and one cannot

use many tools from quasi-free bosons/fermions. Another feature is that Clifford

dynamics with disorder can, as I have discussed, display a strong form of localisation.

This strong form of localisation is both reminiscent of Anderson localisation, but

also not understandable in terms free particles. Indeed, typical Clifford dynamics

cannot be understood in terms of free or interacting particles. Although some specific
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cases of Clifford dynamics do have gliders, which are understood as discrete time

analogues of free particles, in the case of translation-invariant Clifford dynamics

the time evolution of operators have fractal patterns [127, 137]. In fact, there is an

even more extreme case of fully non-local integrals of motion [138]; operators which

commute with the time evolution operator act on an extensive number of sites of

the system. However, on the other hand, we have seen that Clifford dynamics do

display signatures of chaos also. Indeed, as I mentioned in the introduction (chapter

1 section 1.2), Clifford dynamics can (in the non-local case) generate (at most) a

unitary 3-design.

Finally, I will now comment further on the scope for future work. Of course, one

question that is still unanswered is: can local and time-periodic or time-independent

dynamics generate a unitary 2-design? In terms of the result I have presented in

this thesis, this would mean removing the restriction of the measurements in the

discrimination process. This is of particular importance to the study of high chaotic

quantum systems, in which the dynamics are modelled with a (Haar) random unitary.

Since one would expect that the dynamics of physical systems are time-independent,

the results in this thesis (chapter 2 section 2.1) have provided some justification for

the use of (Haar) random unitaries as a model for chaotic quantum systems. On the

localisation side, one important question that is worth investigating further is whether

the strong localisation in one spatial dimension I have analysed (chapter 3 section

3.1) is robust against perturbations. Moreover, it is worth considering the results

in this thesis from the perspective that it is now possible to implement quantum

circuits on small quantum devices. One notable example is the recent experiment

in reference [139], which investigates a quantum many-body system with Floquet

dynamics. Both the mixing results in chapter 2 section 2.1 and the localisation results

of chapter 3 section 3.1 could be suitable for study on current quantum devices. In

particular, investigating the question of strong localisation and whether it is robust to

perturbations seems suitable, since it can be investigated using only a short quantum

circuit on a small number of qubits, and would provide insight into the landscape of

many-body phenomena.



Appendix A

Clifford dynamics and discrete phase

space

In this section, we first define the Pauli and Clifford groups and then present the

phase-space description of Clifford dynamics. This description is known from

previous works [121–123] and we include it here for completeness and clarity.

The Pauli sigma matrices together with the identity {1,σx,σy,σz} form a basis

of the space of operators of one qubit C2. Also, the sixteen matrices obtained by

multiplying {1,σx,σy,σz} times the coefficients {1, i,−1,−i} form a group. This is

called the Pauli group of one qubit and it is denoted by P1. The generalization to n

qubits is the following.

Definition A.1. The Pauli group of n qubits Pn is the set of matrices iuσu where

σu =
n⊗

i=1

(σqi
x σ

pi
z ) ∈ U(2n) , (A.1)

for all phases u∈Z4 and vectors u= (q1, p1,q2, p2, . . . ,qn, pn)∈Z2n
2 . We also define

P̄n = Pn/{1, i,−1,−i} which satisfies P̄n ∼= Z2n
2 .

Here Z2n
2 stands for a 2n-dimensional vector space with addition and multiplication

operations defined modulo 2. Using the identity σzσx =−σxσz and the definition
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β (u,u′) = ∑
n
i=1 piq′i we obtain the multiplication and inverse rules

σuσu′ = (−1)β (u,u′)
σu+u′ , (A.2)

σ
−1
u = (−1)β (u,u)

σu . (A.3)

The Pauli group A.1 is the discrete version of the Weyl group, or the displacement

operators used in quantum optics. Concretely, if Q̂ and P̂ are quadrature operators

(satisfying the canonical commutation relations [Q̂, P̂] = i) then we can write the

analogy as

σ
q
x σ

p
z ←→ eiP̂qeiQ̂p , (A.4)

where the phase space variables (q, p) take values in Z2
2 on the left of A.4, and in R2

on the right. This analogy also extends to the set of transformations that preserve the

phase space structure. Before characterizing these transformations let us define the

phase space associated to the Pauli group.

Definition A.2. The discrete phase space of n qubits Z2n
2 is the 2n-dimensional

vector space over the field Z2, endowed with the symplectic (antisymmetric) bilinear

form

〈u,u′〉= uT Ju′ , where J =
n⊕

i=1

 0 1

1 0

 , (A.5)

for all u,u′ ∈ Z2n
2 . Note that the form is indeed antisymmetric 〈u,u′〉 = 〈u′,u〉 =

−〈u′,u〉 mod 2, which implies 〈u,u〉= 0.

Using the symplectic form A.5 and the rules (A.2-A.3) we can write the commutation

relations of the Pauli group as

σu σu′ σ
−1
u σ

−1
u′ = (−1)〈u,u

′〉 . (A.6)

In analogy with the continuous (bosonic) phase space, in the following two definitions

we introduce the transformations that preserve the symplectic form A.5 and the Pauli

group, respectively.
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Definition A.3. The symplectic group Sn is the set of matrices S : Z2n
2 → Z2n

2 such

that

〈Su,Su′〉= 〈u,u′〉 , (A.7)

for all u,u′ ∈ Z2n
2 . This is equivalent to the condition ST JS = J mod 2.

Definition A.4. The Clifford group of n qubits Cn is the subset of unitaries U ∈

U(2n) which map the Pauli group onto itself

UσuU† ∈ Pn for all u. (A.8)

Since adding a global phase eiθU does not change the map A.8, we identify all

unitaries {eiθU : ∀θ ∈ R} with the same element of Cn. In other words, Cn is the

quotient of the centralizer of Pn by the group U(1).

Lemma A.5. [Structure of Cn] Each Clifford transformation U ∈ Cn is characterized

by a symplectic matrix S ∈ Sn and a vector s ∈ Z2n
2 so that

UσuU† = iα[S,u] (−1)〈s,u〉σSu , (A.9)

where the function α takes values in Z4. More precisely we have Cn ∼= P̄n nSn.

Proof. In this work the function α does not play any role, hence, we do not provide

a characterization. Moving to the proof, for each U ∈ Cn there are two functions

s : Z2n
2 → Z4 , (A.10)

S : Z2n
2 → Z2n

2 , (A.11)

such that

UσuU† = is[u]σS[u] . (A.12)

Note that, at this point, we do not make any assumption about these functions, such
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as linearity. Using A.2 we obtain the equality between the following two expressions

Uσuσu′U
† = (−1)β (u,u′)Uσu+u′U

†

= (−1)β (u,u′) is[u+u′]
σS[u+u′] , (A.13)

UσuU†Uσu′U
† = (is[u]σS[u])(i

s[u′]
σS[u′])

= (−1)β (Su,Su′) is[u]+s[u′]
σS[u]+S[u′] , (A.14)

which implies the Z2-linearity of the S function. Hence, from now on, we write its

action as a matrix S[u] = Su. Next, if we impose the commutation relations of the

Pauli group A.6 as follows

(−1)〈u,u
′〉 =Uσu σu′ σ

−1
u σ

−1
u′ U−1

= (is[u]σSu)(is[u
′]
σSu′)(i

s[u]
σSu)

−1 (is[u
′]
σSu′)

−1

= (−1)〈Su,Su′〉 , (A.15)

we find that the matrices S are symplectic. Conversely, it has been proven [121, 140–

142] that for each symplectic matrix S ∈ Sn there is U ∈ Cn such that UσuU† ∝ σSu

for all u.

Now, let us obtain the set of pairs (S,s) associated to the subgroup P̄n ⊆ Cn.

Using A.6 we see that the Clifford transformation σv ∈ P̄n has S = 1 and s[u] =

2〈v,u〉, for any v ∈ Z2n
2 . Next, let us prove the converse. By equating A.13 and

A.14 with S = 1, we see that any Clifford transformation U with S = 1 has a phase

function s satisfying

s[u+u′] = s[u]+ s[u′] , (A.16)

for all pairs u,u′. Also, since the map σu→UσuU† preserves the Hermiticity or anti-

Hermiticity of σu, the phase function in UσuU† = is[u]σu has to satisfy s[u] ∈ {0,2}

for all u. Combining this with A.16 we deduce that, if S = 1 then s[u] = 2〈v,u〉

for some vector v ∈ Z2n
2 . In summary, an element of the Clifford group belongs

to the Pauli group if, and only if, there is a vector v ∈ Z2n
2 such that S = 1 and

s[u] = 2〈v,u〉.
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Now let us show that Cn/P̄n∼=Sn. By definition, any Clifford element UP̄nU†⊆

P̄n satisfies UP̄n = P̄nU , hence P̄n ⊆ Cn is a normal subgroup. This allows us to

allocate each element U ∈ Cn into an equivalence class UP̄n ⊆ Cn, and define a

group operation between classes. In order to prove the isomorphism Cn/P̄n ∼= Sn,

we need to check that two transformations U,U ′ are in the same equivalence class

(∃v : U =U ′σv) if and only if they have the same symplectic matrix S = S′. Identity

A.6 tells us that U =U ′σv implies S = S′. To prove the converse, let us assume that

U,U ′ have symplectic matrices S = S′. Due to the fact U−1 has symplectic matrix

S−1, the product U−1U ′ has symplectic matrix S−1S = 1. As proven above, this

implies that U−1U ′ ∈ P̄n, and therefore both are in the same class.

Finally, for each symplectic matrix S we define α[S,u] = s[u] where s is the

phase function of an arbitrarily chosen element in the equivalence class defined by S.

The phase function of the other elements in the class S is s[u] = α[S,u]+2〈v,u〉 for

all v ∈ Z2n
2 .



Appendix B

Miscellaneous mathematical results

In this section, we collate a variety of mathematical results which are used within the

proofs written in the main body of the thesis. Some of these results are well-known,

such as the Chernoff bound, others are minor and particular, such as a specific

upper-bound for the binomial coefficient, but all are collected in this appendix so

that the proofs written in the main body are understandable and at the same time

concise. The mathematical results contained in this section which are well-known

are provided without proof, since these are easily found, whereas the results which

are more particular are given with proofs.

Result B.1. The union bound states that for a (countable) set of events A1, . . . ,An

P

(
n⋃

i=1

Ai

)
≤

n

∑
i=1

P(Ai) . (B.1)

Result B.2. The Chernoff bounds for a random variable X state that

prob{X ≥ a} ≤min
t>0

e−ta E
(
etX) , (B.2)

and

prob{X ≤ a} ≤min
t>0

eta E
(
e−tX) . (B.3)

Lemma B.1. The number of k-dimensional subspaces of Zn
2 is

N n
k =

k−1

∏
i=0

2n−2i

2k−2i . (B.4)
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Proof. Let us start by counting how many lists of k linearly independent vectors

(u1, . . . ,uk) are in Zn
2. The first vector u1 can be any element of Zn

2 except the zero

vector 0, giving a total of (2n−1) possibilities. Following that, u2 can be any element

of Zn
2 that is not contained in the subspace generated by u1, which is {0,u1}, giving

(2n−2) possibilities. Analogously, u3 can be any element of Zn
2 that is not contained

in the subspace generated by {u1,u2}, which is {0,u1,u2,u1+u2}, giving (2n−22)

possibilities. Following in this fashion we arrive at the following conclusion. The

number of lists of k linearly independent vectors is

Ln
k = (2n−20)(2n−21)(2n−22) · · ·(2n−2k−1) . (B.5)

It is important to note that many lists (u1, . . . ,uk) generate the same subspace. So, in

order to obtain N n
k , we have to divide Ln

k by the number of lists which generate that

same subspace.

First, we note that a list (u1, . . . ,un) is a basis of Zn
2 with its vectors in a

particular order. Hence, Ln
n is the number of basis (in particular order) of Zn

2. Second,

we use the fact that the subspace of Zn
2 generated by the list (u1, . . . ,uk) is isomorphic

to Zk
2, so that, the number of basis (in a particular order) generating that subspace is

Lk
k. Putting things together, we obtain N n

k = Ln
k/L

k
k, as in equation B.4

Lemma B.2. LetN n
k be the number of k-dimensional subspaces of Zn

2; then we have

2(n−k)k(1−2k−n)k ≤ N n
k ≤ 2(n−k)k min{2k,4} . (B.6)

Proof. Taking lemma B.1 and neglecting the negative terms in the numerator gives

N n
k =

k−1

∏
i=0

2n−2i

2k−2i ≤
k−1

∏
i=0

2n

2k−2i (B.7)

=
2nk

2k2

k−1

∏
i=0

1
1−2i−k = 2(n−k)k

k

∏
j=1

1
1−2− j (B.8)

≤ 2(n−k)k
∞

∏
j=1

1
1−2− j , (B.9)
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where in the last inequality we have extended the product to infinity. It turns out that

this infinite product is the inverse of Euler’s function φ evaluated at 1/2, which has

the value

φ(1/2) =
∞

∏
j=1

(1−2− j)≈ .28≥ 1
4
. (B.10)

Combining the two above inequalities we obtain

N n
k ≤ 2(n−k)k4 . (B.11)

For the cases where k = 0,1, we can improve this bound. When k = 0 the coefficient

is 1 by definition, and when k = 1 the product ∏
k−1
i=0 (1− 2i−k)−1 evaluates to 2.

Hence, for k = 0,1 we can replace 4 by 2k, and therefore this improvement is

captured concisely by changing 4 to min{2k,4}.

We obtain the lower bound by instead neglecting the negative terms in the

denominator

N n
k ≥

k−1

∏
i=0

2n−2i

2k =
2nk

2k2

k−1

∏
i=0

(1−2i−n) . (B.12)

The remaining product can be bounded using by

k−1

∏
i=0

(1−2i−n)≥
k−1

∏
i=0

(1−2k−n)≥ (1−2k−n)k , (B.13)

since n≥ k > i, and hence we get the final lower bound.

Lemma B.3. The binomial coefficient can be bounded by

(
k+ r−1

k

)
≤ (1+ r)k ≤ (2r)k . (B.14)

Proof. We start with the bound

(
k+ r−1

k

)
=

k

∏
i=1

r+ k− i
i

≤
k

∏
i=1

1+
r
i
. (B.15)
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Using the AM-GM inequality, we find that

(
k+ r−1

k

)
≤

k

∏
i=1

1+
r
i
≤
(

1+
rHk

k

)k

≤ (1+ r)k ≤ (2r)k . (B.16)
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