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Abstract 

In studies of molecular ecology, conservation biology and evolutionary biology, the current 

or recent effective size (Ne) of a population is frequently estimated from the marker 

genotype data of two or more temporally spaced samples of individuals taken from the 

population. Despite the developments of numerous Bayesian, likelihood and moment 

estimators, only a couple of them can use both temporally and spatially spaced samples of 

individuals to estimate jointly the effective size (Ne) of and the migration rate (m) into a 

population. In this note I describe new implementations of these joint estimators of Ne and 

m in software MLNe which runs on multiple platforms (Windows, Mac, Linux) with or 

without a graphical user interface (GUI), has an integrated simulation module to simulate 

genotype data for investigating the impacts of various factors (such as sample size and 

sampling interval) on estimation precision and accuracy, exploits both Message Passing 

Interface (MPI) and openMP for parallel computations using multiple cores and nodes to 

speed up analysis. The program does not require data pre-processing and accepts multiple 

formats of a file of original genotype data and a file of parameters as input. The GUI 

facilitates data and parameter inputs and produces publication-quality output graphs, while 

the non-GUI version of software is convenient for batch analysis of multiple datasets as in 

simulations. MLNe will help advance the analysis of temporal genetic marker data for 

estimating Ne of and m between populations, which are important parameters that will help 

biologists for the conservation management of natural and managed populations. MLNe can 

be downloaded free from the website http://www.zsl.org/science/research/software/.  
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Introduction 

Effective population size, Ne, is a key concept in population genetics introduced by Wright 

(1931) and developed by many others, mainly Crow and Kimura (1970). It is defined as the 

size of an idealized Wright–Fisher population (Fisher 1930; Wright 1931), which would give 

the same rate of inbreeding or genetic drift in allele frequencies as in the population in 

question (Crow and Kimura 1970). It not only determines the genetic stochasticity of a 

population, but also affects the efficacy of all systematic evolutionary forces (such as 

migration and selection) acting on a population. Therefore, this pivotal parameter has found 

wide applications in studies in evolutionary biology, molecular ecology, conservation biology 

and selective breeding of domesticated species. In the conservation management of 

endangered species, for example, measuring Ne and its trend over time helps to monitor the 

genetic status and its changes (Schwartz et al. 2007) and thus to inform effective 

management of the species. 

 Many methods have been developed to estimate the current, historical and ancient 

effective population size from marker genotype data (Wang 2005). For conservation, the 

most relevant is usually the current or recent effective size, which largely explains the 

genetic variation within and between the current populations of a species and is informative 

about the conservation planning and management of the species. Among the various 

methods proposed for estimating the current Ne (Luikart et al. 2010; Wang et al. 2016), 

temporal methods are the first developed (Krimbas and Tsakas 1971), well tested and 

widely applied methods. They are so named because they measure and use the allele 

frequency changes between temporally spaced samples as information for the strength of 

genetic drift and thus the average Ne of the population during the temporal interval. The 

methods were subsequently further developed by many others (e.g. Nei and Tajima 1981; 

Pollak 1983; Waples 1989), and were extended to use more powerful statistical techniques 

such as likelihood or Bayesian methods (Williamson and Slatkin 1999; Anderson et al. 2000; 

Wang 2001; Berthier et al. 2002; Beaumont 2003; Laval et al. 2003; Hui and Burt 2015). 

These sophisticated methods are more flexible (e.g. in allowing for any number of temporal 

samples), can use marker information more efficiently (e.g. in handling rare alleles), and 

thus usually provide more accurate Ne estimates than the simple moment methods (Wang 

2001). 

 The temporal approach was also extended to analyse both temporally and spatially 

separated samples from a metapopulation for estimates of both effective size of and 

migration rate between populations in both moment and likelihood frameworks (Wang and 

Whitlock 2003). The changes in allele frequencies of a population over time due to genetic 

drift (finite Ne) and migration are distinguishable because drift-caused changes are purely at 

random while migration-caused changes are systematic (directional). Although moment 

(e.g. Do et al. 2014) or likelihood (e.g. Hui and Burt 2015) estimators of Ne from temporal 

genotype data were implemented in software available for empirical data analysis, they all 
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assume a single isolated population. The software MLNe implements multiple moment 

estimators (Nei and Tajima 1981; Wang and Whitlock 2003) and likelihood methods (Wang 

2001; Wang and Whitlock 2003) for estimating Ne for a single isolated population and for 

estimating Ne and migration rate (m) jointly for a metapopulation. The software was 

published online for free download, but no document describing the software was 

published. 

 In this computer note, I describe MLNe in a new version (2.0) much improved over 

the original version (1.0). I will focus on introducing the new features of the new version, 

leaving the methodological details in the original publications (Wang 2001; Wang and 

Whitlock 2003). 

Graphical User Interface (GUI) 

A graphical user interface in Visual Basic is added to MLNe version 2.0. It helps Windows 

users of MLNe to input data, to set parameter values, to conduct data analysis, and to 

visualize analysis results in tables and publication-quality graphs. The GUI for setting up a 

new project for analysing an empirical dataset is shown in Figure 1, and an example profile 

log-likelihood curve drawn by MLNe is shown in Figure 2. Similarly, it also draws profile log-

likelihood curves for migration rate if the migration model is opted for. For both isolation 

and migration models, it also draws stacked bar charts for estimated allele frequencies at 

each locus of each temporal sample. These and other analysis results can also be viewed in 

tables. 

 Although GUI has many advantages, it also has some disadvantages. For example, 

GUI is inconvenient for making analysis of multiple datasets in a batch mode. In a simulation 

study, however, usually many replicate datasets need to be analysed and it is desirable to 

call MLNe directly from a program for conducting the analyses. In the new version of MLNe, 

the code for the computational kernel is in Fortran 2003 and has been compiled for 

platforms linux, Mac and Windows 10. It can be run in the x-terminal of linux and Mac, and 

in MS-DOS of Windows. When ran in non-GUI mode, MLNe reads a genotype data file and a 

corresponding parameter file, runs the analysis, and outputs the results in a few files. 

 A hurdle in applying the previous version (1.0) of MLNe is that it requires the counts 

of each allele at each locus in each temporal sample as the data. This means the raw 

genotype data must be pre-processed in two steps. First, the unique alleles observed for 

each locus across temporal samples must be identified from the genotype data. Second, the 

copies of each unique allele at each locus of each temporal sample must be counted. Both 

processes need some coding except for an extremely small dataset. The new version 2.0 

completes the data pre-processing automatically. It accepts the raw genotype data in three 

optional formats (i.e. a genotype is encoded by two integer numbers, by integers 0, 1 or 2 

indicating the number of reference alleles for diallelic markers, and by the GenePop format) 

and an input file for analysis parameters. 
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Simulations 

MLNe has a built-in simulation module that can be used to simulate genotype data with 

user-defined parameters such as the isolation or migration models, true value of Ne, number 

of individuals sampled at each time point, the sampling interval for temporal samples, and 

number and polymorphisms of marker loci. On obtaining values of these parameters 

through the GUI (Figure 3), MLNe initiates an individual based forward simulation in the 

Wright-Fisher model to generate genotype data and outputs them to a file. It also generates 

a corresponding input file of parameters for analysing the genotype data. The two files are 

then used by MLNe to get estimates of Ne (and m for the migration model). 

 In addition to investigating factors affecting the power and accuracy of the temporal 

approaches, simulations are also valuable to optimizing the experimental design. It is useful, 

for example, to determine the suitable sample intensities (number of markers, number and 

the temporal interval of samples, and sample sizes) to yield accurate Ne estimates. Before 

initiating a project, one can use simulations to generate data in conditions similar to those 

of the conceived project, and to analyse the simulated data to get a feel of the estimation 

power and accuracy. For this same reason, simulations are also valuable for training and 

educational purposes. 

 The simulation module is capable of simulating genotype data for hundreds of 

thousands of individuals at hundreds of thousands of loci (see an example below). However, 

it is worth noting that the simulation assumes free recombination among loci, which is 

apparently violated when many genomic markers are simulated for any species. In the 

presence of linkage, temporal methods could yield estimated 95% confidence intervals that 

are too conservative (i.e. too narrow), although they are expected to yield good point 

estimates of Ne regardless of the linkage among markers. 

Flexible models and multiple methods 

Methods under two population genetics models, isolation and migration, are implemented 

in MLNe. The isolation model is the one assumed in nearly all temporal methods since the 

seminal work of Krimbas and Tsakas (1971). In this model, a population is assumed to be 

isolated without immigration from other populations during the period between the first 

and last sample taken from it. Therefore, the changes in allele frequency at a neutral marker 

locus in the relatively short sampling period (thus mutations are negligible) would come 

solely from genetic drift and reflect the average Ne of the population during the period. 

Using both a moment estimator (Nei and Tajima 1981) and a likelihood estimator (Wang 

2001), MLNe analyses the data and yields Ne estimates with 95% confidence interval 

estimates as demonstrated in Figure 2. 

 The migration model removes the restrictive assumption of a single isolated 

population and considers a metapopulation consisting of a small (focal) population and an 
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infinitely large source population providing immigrants into the focal population (Wang and 

Whitlock 2003). The methods are robust to violations of the assumption and can be applied 

approximately to a finite source population composing of one or more small subpopulations 

(Wang and Whitlock 2003). MLNe implements a moment estimator and a likelihood 

estimator developed in Wang and Whitlock (2003) to estimate the Ne of and the 

immigration rate (m) into the focal population jointly. 

 For both models, MLNe allows for and uses any number of temporal samples in the 

estimation. For more than 2 samples, the average Ne and m over the entire sampling period 

are estimated directly by the likelihood method, while Ne and m for each sampling period 

are estimated by the moment estimator and their harmonic and arithmetic means over 

multiple sampling periods are reported respectively. 

Parallel computation 

When genomic data of many markers are used to estimate Ne of a large (say, Ne in tens of 

thousands) population, the likelihood estimator becomes computationally demanding and 

may take a long time to complete an analysis. This is especially so for a metapopulation in 

the migration model, where both Ne and m are inferred jointly. To speed up the analysis, 

MLNe uses both Message Passing Interface (MPI) and openMP to make parallel runs of the 

data with multiple processes and multiple threads per process. Both numbers of MPI 

processes and openMP threads per process are determined by a user according to the data 

size and computer capacity. While MPI processes use multiple nodes of a computer with 

distributed memory or multiple cores of a computer with shared memory, openMP threads 

use cores of a single node with shared memory. Roughly, the computational efficiency 

depends on the total number of parallel threads, which is the product of the number of MPI 

processes and the number of openMP threads per MPI process. 

 To demonstrate the computational speedup of applying MPI and openMP and the 

capacity of MLNe to handle large genomic data sampled from a large population, I simulated 

data from an isolated large population of Ne=60000 using the simulation module. Two small 

samples separated by 10 generations, each containing only 50 individuals, were taken from 

the population and each sampled individual was genotyped at 100000 SNP loci. The data 

were analysed by MLNe with a maximal Ne set at 100000, using 2,3,4,5,6 nodes of a linux 

cluster. Each node of the cluster has two 20-core Intel Xeon Gold 6248 2.5GHz processors 

with 192 gigabytes of 2933MHz DDR4 RAM, and each physical core has two logical cores by 

hyperthreading. Therefore, each node has 2×20×2=80 logical cores, which are used as 

openMP threads in MLNe. The total number of parallel threads used in analysing the data is 

thus 80n, where n (=2,3,4,5,6) is the number of nodes or the number of MPI processes. The 

time taken for analysing the data using different number of nodes (threads) is compared in 

Figure 4. 

https://ark.intel.com/content/www/us/en/ark/products/192446/intel-xeon-gold-6248-processor-27-5m-cache-2-50-ghz.html
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  The example in Figure 4 shows that (1) MLNe has the capacity to handle genomic 

data in estimating Ne of an extremely large population and (2) running time decreases with 

an increase in the total number of parallel threads used in an analysis. The speedup by 

parallelization does not increase linearly with an increasing number of threads, perhaps due 

to the communication cost among threads (openMP) and processes (MPI).  

Conclusion 

MLNe is a powerful software implementing multiple population genetics models (migration 

and isolation) and multiple statistical methods of each model for estimating Ne (and m for th 

emigration model) from any number of temporally spaced samples of individuals, with each 

individual genotyped at either a few microsatellite loci or many thousands of SNPs. It can be 

run on multiple computer platforms with or without a GUI, and has a built-in simulation 

module for generating simulated temporal genotype data. It uses both MPI and openMP for 

parallel computation to use multiple computer nodes of distributed memory and multiple 

cores within a node of shared memory. As a result, it can handle genomic data for 

estimating the Ne and migration rate of very large populations. It could hopefully become a 

valuable tool for conservation genetics research and teaching. 
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Figure 1. New project wizard. 
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Figure 2. Profile log-likelihood curve generated by MLNe for a simulated data set. It shows 

the maximum likelihood estimate of Ne is 121, and the 95% confidence interval is {65, 241}. 
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Figure 3. New simulation project wizard. 
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Figure 4. Running time (minutes) as a function of the number of parallel threads (x axis) for 

an example dataset. 
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