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Abstract
1.	 As a key parameter in population genetics, relatedness has found wide appli-

cations in molecular ecology, evolutionary biology, conservation, forensics and 
in studies of human inheritable diseases. It is defined as the probability that 
two individuals share an allele due to recent common ancestry. Many estimators 
have been developed to estimate relatedness from genotype data. However, 
they are invariably biased when a sample is small or contains a high proportion of 
close relatives, because allele frequencies required for inferring relatedness are 
poorly estimated in both cases under the impracticable and yet indispensable 
assumption of a large sample of unrelated genotypes.

2.	 In this study, I develop a likelihood method to estimate relatedness and allele 
frequencies jointly from a sample of multilocus genotypes. I propose an expec-
tation maximization (EM) algorithm to update allele frequencies and the nine 
condensed identical by descent (IBD) coefficients (Δi , i = 1, 2, … , 9) of each pair 
of sampled individuals iteratively till convergence. Relatedness between and in-
breeding coefficients of individuals is then calculated from the estimated nine 
IBD coefficients. The EM algorithm is also implemented in the reduced non-
inbreeding model (Δi ≡ 0, i = 1, 2, … , 6) to estimate three condensed IBD coef-
ficients (Δi , i = 7, 8, 9) and relatedness.

3.	 Using simulated and empirical data, I show that the new method is much less 
biased and more accurate than previous methods, providing almost unbiased 
relatedness and inbreeding estimates, when the sampled individuals are few or/
and contain many close relatives. The EM algorithm for the likelihood estimator 
is fast enough to handle a sample with thousands of individuals and millions of 
markers, thanks to the parallelization using openMP and MPI. The method is 
implemented in a software package, EMIBD9, that runs on all major computer 
platforms.

4.	 This study shows allele frequencies and relatedness, although highly correlated 
and difficult to disentangle from each other when the only information available 
is a sample of multilocus genotypes, can be estimated jointly from genotype data 
of diallelic and multiallelic markers in a likelihood framework. The new method 
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1  |  INTRODUC TION

Two individuals are genetically related when they share recent com-
mon ancestors (Wright,  1922). The extent of relatedness is deter-
mined by the number of common ancestors and their distances (in 
generations) to the two individuals, as calculated by a path analy-
sis of pedigree data (Wright, 1922). It can also be measured by the 
proportion of alleles shared between individuals that are identical 
by descent (IBD, Malécot,  1948), which are replicas of the same 
ancestral alleles (Lynch & Ritland,  1999). More precisely and fre-
quently, it is quantified by coancestry coefficient or kinship coeffi-
cient (Harris, 1964; Jacquard, 1972), the probability that two alleles, 
one taken at random from each individual, are IBD (Ritland, 1996). 
According to this definition, outbred individuals have relatedness 
of 0.25 when they are parent–offspring or full sibs, 0.125 when 
they are half sibs and 0.0625 when they are first cousins (FC) 
(Jacquard, 1972).

With the rapid development of various genetic markers, many 
relatedness estimators have been proposed to estimate relatedness 
from genotype data (Wang, 2017). Invariably, these estimators as-
sume known allele frequencies which define the reference popula-
tion structure against which relatedness is measured. This is true no 
matter the estimators are based on likelihood or allele frequency mo-
ments, and no matter they are developed for use in a homogeneous 
population (e.g. Lynch & Ritland, 1999; Ritland, 1996; Wang, 2002) 
or a heterogeneous population with subpopulation structure and 
with admixture (e.g. Conomos et al., 2016; Manichaikul et al., 2010; 
Moltke & Albrechtsen, 2014; Thornton et al., 2012). The reality is 
that, however, allele frequencies are rarely known. Frequently, they 
must be deduced from the sample of individuals whose relatedness 
is being estimated.

Estimating both allele frequencies and relatedness from the 
same sample of individuals could lead to highly biased estimates 
of relatedness, because allele frequencies and relatedness are cor-
related in determining the genotype data (Wang, 2017). First, sam-
pled individuals must be assumed unrelated and noninbred such that 
simple allele counting can be used for estimating allele frequencies. 
The assumption is frequently violated, resulting in poorly estimated 
allele frequencies and thus underestimates of relatedness between 
close relatives and overestimates of relatedness between unrelated 
or loosely related individuals. For example, many (n) full siblings (FS) 
from a single parent pair might be included in a sample of N (>n) 
individuals for relatedness analysis. This is possible when early-life 
stage individuals (e.g. eggs or juveniles) are sampled from a high 

fecund species (e.g. fish and frogs). If the parental genotypes at a 
locus are AA and BB, then the n FS will show the same genotype 
AB. With simple allele counting without recognizing and account-
ing for the sibship structure, the frequencies of A, B or both will be 
overestimated from the sample. The same is true with other parental 
genotypes. The overestimated frequencies of parental alleles of the 
full-sib family lead inevitably to underestimated relatedness of these 
FS (<0.25) and overestimated relatedness of other sampled individ-
uals. The problem cannot be alleviated using many genomic markers 
and deteriorates with an increasing proportion of relatives included 
in the sample.

Second, even in the ideal (for estimating allele frequencies) case 
of all sampled individuals being outbred and unrelated, the estimates 
of powers and products of allele frequencies are still biased 
(Weir, 1996), although estimates of allele frequencies are expected 
to be unbiased, when sample size is small. For example, the fre-
quency of allele A is estimated as p̂ = m∕(2N) when a sample of N 
diploid genotypes contains m copies of allele A. Estimator p̂ is unbi-
ased irrespective of sample size N, as its expectation is E

[
p̂
]
= p 

where p is the population allele frequency. However, E
[
p̂
k
]
≠ pk 

when k > 1 (Weir, 1996) and E
[
p̂q̂

]
≠ pq (where q̂ and q are estimated 

and parametric frequency of another allele). The problem of biased 
estimates of allele frequency powers and products deteriorates with 
a decreasing sample size. Unfortunately, all relatedness estimators 
use powers and products of allele frequencies and can yield poor 
estimates of relatedness when applied to a small sample 
(Wang, 2017). The problem becomes severe with a decreasing sam-
ple size.

Wang (2017) tackled the small sample size problem by modify-
ing the estimator of Lynch (1988) and Li et al. (1993) and the estima-
tor of Wang (2002). He showed that, using the unbiased estimators 
of allele frequency powers and products, the two estimators be-
come much less biased than the original estimators and other es-
timators which do not correct for small sample sizes (Wang, 2017). 
However, there have been no attempts made to estimate allele fre-
quencies by accounting for the relatedness structure of sampled 
individuals. As a result, when relatives are included in a sample, 
both allele frequency and relatedness estimates will be inevitably 
biased. Ironically, inclusion of related individuals in a sample is ex-
actly why we are interested in knowing the relatedness structure 
of the sample.

In this study, I propose a likelihood method for estimating both 
allele frequencies and relatedness jointly and iteratively from the 
same sample of multilocus genotypes, accounting for small sample 

and software are especially useful for analysing small samples (such as ancient 
samples from museums, or samples from endangered species) and samples with 
a strong genetic structure.
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sizes and allowing for the presence of inbreeding. From genotype 
data of markers with each having more than three alleles, the es-
timator infers the nine condensed IBD coefficients (Harris,  1964; 
Jacquard, 1972) reliably for each pair of sampled individuals, which 
are then used to calculate relatedness and inbreeding coefficients. 
From genotype data of markers with each having two or three al-
leles, the estimator infers accurately summary IBD statistics such as 
relatedness and inbreeding coefficients, although it is unable to infer 
each of the nine condensed IBD coefficients reliably (Csűrös, 2014). 
I develop an expectation maximization (EM) algorithm to maximize 
the likelihood function for estimates of IBD coefficients and allele 
frequencies. Using simulated and empirical data, I compare the ac-
curacy of relatedness obtained from the new estimator, estimators 
accounting for small sample size only (Wang, 2017) and estimators 
accounting for neither small sample sizes nor the presence of rela-
tives in a sample.

2  |  MATERIAL S AND METHODS

2.1  |  IBD and relatedness

Two individuals are genetically related because they have common 
ancestors (e.g. sibs) or one is the ancestor of the other (e.g. parent–
offspring) in their recent genealogy. This means that, at each locus, 
related individuals tend to share genes IBD, which are the replicas 
of the same gene from a common ancestor (Malécot, 1948). Barring 
mutations which are rare in the small time-scale of recent ancestry, 
genes IBD are always identical in state (IIS), showing an identical al-
lele or an identical sequence of DNA. As a result, related individuals 
(or relatives) have similar genotypes. The IIS patterns (or modes) be-
tween the genotypes of two individuals, X and Y, observed at some 
marker loci can thus be used to infer the underlying IBD patterns 
and thus relatedness between X and Y, given the population marker 
allele frequencies which act as the reference in distinguishing proba-
bilistically IIS due to IBD and due to chance. These inferences re-
flect the realized IBD and relatedness at the particular marker loci 
(Wang, 2016). When the markers are regarded as a random sample 
from the genome, the inferences would on average signify the re-
alized genomic relatedness due to shared genealogy (Wang, 2016).

There are 15 mutually exclusive and exhaustive IBD modes 
(Jacquard, 1972) among the two genes from diploid individual X and 
the two genes from diploid individual Y. When paternal and mater-
nal genes are not distinguished, these 15 modes reduce to 9 con-
densed IBD modes (Harris, 1964; Jacquard, 1972; Wang, 2011a), Di 
(i = 1, 2, …, 9), as depicted in Figure 1. The relatedness between X 
and Y is fully described by Di. Unfortunately, Di is not observable 
directly and cannot be ascertained in general even when X and Y 
have known pedigrees and known genotypes (Wang,  2007; Weir 
et al.,  2006). However, the probability of Di, Δi, called condensed 
IBD coefficients, can be deduced from the genotypes (or IIS modes, 
Si) of X and Y, given the allele frequencies of the population from 
which X and Y come. The genetic structure of X and Y can then be 
fully quantified by the vector Δ = {Δ1, Δ2, Δ3, Δ4, Δ5, Δ6, Δ7, Δ8, Δ9}. 
Apparently as probabilities, 0 ≤ Δi ≤ 1 and 

∑9

i=1
Δi ≡ 1. For full sibs 

(FS), half sibs (HS), parent–offspring (PO), unrelated (UR) and full 
sibs whose parents are full sibs (FSFS), Δ  = 
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, respectively (Jacquard, 1972). In the absence 

of inbreeding (i.e. both X and Y are outbred, such as FS, HS, PO, UR), 
only three IBD coefficients (Δ7, Δ8 and Δ9) are necessary, and the 
remaining six coefficients are always zero (Δi ≡ 0 for i = 1, 2, …, 6).

In many applications of conservation biology, evolutionary biol-
ogy and quantitative genetics, only some simple summary statistics 
of Δ are necessary. These include inbreeding (F) and coancestry (ϴ) 
coefficients. Given Δ between X and Y, the F of and ϴ between X 
and Y are calculated by

Thus, FX is the probability that the two homologous genes at a locus 
of X are IBD. It is equivalent to the coancestry coefficient between 
the parents of X. FY is similarly defined and interpreted. �XY is the 
probability that two homologous genes, one taken at random from 
X and one from Y, are IBD. It quantifies the degree of relatedness 
between X and Y, from 0 (unrelated, sharing no genes IBD, when 
Δ1 = Δ3 = Δ5 = Δ7 = Δ8 = 0) to 1 (completely inbred and related, 
when Δ1 = 1 and Δi = 0 for i = 2, 3, …, 9). When X and Y are FS, HS, 

(1)

FX =Δ1+Δ2+Δ3+Δ4,

FY =Δ1+Δ2+Δ5+Δ6,

�XY=�YX=Δ1+
1

2

(
Δ3+Δ5+Δ7

)
+
1

4
Δ8

F I G U R E  1  Nine condensed identical 
by descent (IBD) modes. Each mode is 
represented by two pairs of dots, with 
the top pair representing the two genes 
in individual X and the bottom pair 
representing the two genes in individual Y. 
Genes connected by lines are IBD. Genes 
of X or Y are not ordered.
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PO, FC, UR and FSFS, �XY = 0.25, 0.125, 0.25, 0.0625, 0 and 0.375, 
respectively. For non-inbred individuals X and Y (i.e. FX = FY = 0), the 
maximal value of �XY is 0.5 when X and Y are identical twins or when 
X ≡ Y (i.e. self coancestry, �XX = �YY = 0.5). When inbreeding is pres-
ent, the maximal value of �XY is 1 when completely inbred (FX = FY = 1)  
individuals X and Y are identical twins or when X ≡ Y.

2.2  |  Probability of a pair of genotypes

Suppose a locus in a population has k codominant alleles {Ai} of fre-
quencies p = {pi}, with index i = 1, 2, …, k. An individual W (=X or 
Y) from the population would have one of the k(k + 1)∕2 possible 
(ordered) genotypes, GW = {AiAj} for j ≥ i = 1, 2, …, k. The frequency 
of GW = {AiAj} is QW =p2

i
+ FWpi

(
1 − pi

)
 when i = j (i.e. homozygote) 

and QW = 2pipj
(
1 − FW

)
 when i ≠ j (i.e. heterozygote), where FW is the 

inbreeding coefficient of W. The frequency of the joint genotypes 
GX and GY, QXY, is not equal to the product of QX and QY in general, 
except in the special case that X and Y are unrelated (i.e. �XY = 0 
which implies Δ1 = Δ3 = Δ5 = Δ7 = Δ8 = 0). Relatedness between X 
and Y (i.e. 𝜃XY > 0) will cause them to share similar genotypes, with 
QXY > QXQY when GX is similar to GY and QXY < QXQY when other-
wise. The joint genotypes (IIS modes) of X and Y observed at marker 
loci can thus be used to infer Δ, which can then be used to calculate 
�XY between and FX and FY of X and Y.

QXY given parameters Δ and p can be calculated from 
Harris'  (1964) genotypic array of pairs of individuals, or more con-
veniently from Table  1 (Anderson & Weir,  2007; Milligan,  2003; 
Wang, 2011a) by considering the nine IIS modes, S = {S1, S2, …, S9}, 
separately. Note that while a locus with four or more alleles has nine 
IIS modes, a locus with 2 and 3 alleles has a set of 5 and 8 possible 
IIS modes, S = {S1, S2, S3, S5, S7} and S = {S1, S2, S3, S4, S5, S6, S7, S8}, 
respectively. This means that not all of the nine Δ coefficients are 
estimable from a marker with fewer than four alleles. As shown by 
Csűrös (2014), ‘biallelic genotypes, however, do not convey enough 
information about the generic IBD structure, since different iden-
tity coefficients can generate the same joint genotype distribution’. 
Fortunately, several summary statistics of Δ  = {Δ1,Δ2, … ,Δ9}, in-
cluding ϴ and F in (1), can still be estimated from diallelic marker 
data (Csűrös, 2014) as verified by my simulations below. I will discuss 
the issue more in the Discussion part.

2.3  |  Likelihood function for Δ

Given parameter Δ describing the (probabilistic) genetic structure 
of individuals X and Y, and the known parameter pl describing the 
baseline genetic structure at locus l of the population from which X 
and Y are drawn, the probability of the observation Sl of X and Y is 
equal to the likelihood of Δ,

The observation Slj in Sl =
{
Sl1,Sl2, … ,Sl9

}
 is 1 when the genotypes of 

X and Y at locus l are observed to be in IIS mode j and is 0 when oth-
erwise. Equation (2) is conveniently calculated using Table 1. For L loci 
in linkage and identity equilibria, the multilocus likelihood is simply the 
product of single locus likelihood calculated by Equation (2).

Maximizing the likelihood function with respect to Δ leads to 
the maximum likelihood estimates (MLEs) of Δ. This estimation pro-
cedure can be carried out for each pair of sampled individuals in-
dependently for their estimates of Δ, from which more interesting 
summary quantities such as inbreeding (F) and coancestry (ϴ) coef-
ficients can be calculated.

In the absence of inbreeding (i.e. FX = FY = 0), Equation (2) is 
greatly simplified because six out of the nine Δ coefficients are zero 
(Δj ≡ 0 for j = 1, 2,…, 6) and only three Δ coefficients (Δ7,Δ8, Δ9) need 
to be estimated. The coancestry between X and Y is simply calcu-
lated as �XY = Δ7 +

1

4
Δ8. It is worth noting that, in this special case of 

no inbreeding, even diallelic markers afford the estimation of each of 
the three Δ coefficients (Δ7,Δ8 and Δ9), because more IIS modes (5) 
than IBD modes (3) exist.

2.4  |  Likelihood function for both p and Δ

Like previous likelihood or moment methods (Wang,  2017), the 
likelihood approach described above assumes that population al-
lele frequencies, p, are known, and IBD coefficients Δ are the sole 
parameters to be estimated from the genotype data and allele fre-
quency data. The definition and calculation of Δ from either pedi-
gree or genotype data require a reference population in which all 
homologous genes within and between individuals are assumed 
non-IBD or in which all individuals are assumed non-inbred and un-
related. For a marker-based analysis, it is the population whose allele 
frequencies are used as p that acts as the reference (Wang, 2016, 
2017). The meaning and thus value of Δ between two individuals 
are expected to vary with a change in the reference. This change 
could be simply a substitution of the population (e.g. from a global to 
a continental population) whose allele frequencies are used as p in 
marker-based analysis.

In a practical marker-based relatedness analysis, p is rarely 
known. Frequently, the only data available is a sample of multilocus 
genotypes. In such a situation, three possible approaches are ad-
opted in relatedness and inbreeding coefficient estimation. The first 
is to estimate sample allele frequencies by simple allele counting 
under the assumption of non-inbred and unrelated individuals, and 
then to use them as p for inferring the subset of Δ = {Δ7, Δ8,Δ9} by 
assuming the absence of inbreeding (e.g. Lynch & Ritland,  1999; 
Ritland,  1996; Wang,  2002) or the full set of Δ  = {Δ1, Δ2,… ,Δ9} 
(Wang, 2007). This approach effectively uses the sample as reference 

and tends to estimate ��
XY

=
�XY − �0

1− �0
 as the relatedness between indi-

viduals X and Y, where �0 is the probability of a pair of genes taken at 
random from the sample being IBD (Wang, 2014). For a sample of N 
individuals, we have �0 =

4

N(2N− 1)

∑N

i=1

∑N

j=i+1
�ij +

1

N(2N− 1)

∑N

i=1
Fi. (2)

(
�|Sl ,pl

)
= Prb

(
Sl|� ,pl

)
=

9∑

j=1

Prb
(
Sl|Δj ,pl

)
Δj .
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When the sample is large and has no or weak IBD structure such that 
�0 is close to zero, �′

XY
 is a good estimate of �XY, which is of the pri-

mary interest as defined in (1). Otherwise, �′
XY

 tends to underesti-
mate �XY when 𝜃XY > 𝜃0 and to overestimate �XY when 𝜃XY < 𝜃0, with 
the estimation bias increasing with an increasing difference between 
�XY and �0, and with an increasingly strong genetic structure of the 
sample measured by �0.

The second is to use the sample explicitly as the reference in es-

timating � (Goudet et al., 2018; Weir & Goudet, 2017) and F (Zhang 

et al., 2022). Their formulation of the estimators avoids estimating 

and using p explicitly. However, like the first option, they are esti-

mating ���XY =
�XY − �1

1− �1
 as the relatedness between individuals X and Y 

and F��

X
=

FX − �1

1− �1
 as the inbreeding coefficient of individual X, where �1 

is the average coancestry of the N sampled individuals, 
�1 =

2

N(N− 1)

∑N

i=1

∑N

j=i+1
�ij. Except for a very small N, �1 is close to �0 

and thus �′′
XY

 is close to �′
XY

 in expectation. When a sample contains 

five FS sharing the same pair of parents and five individuals unre-

lated among themselves and with the siblings, for example, �0 and �1 

are expected to be 0.0526 and 0.0555, respectively, �′
XY

 and �′′
XY

 are 

expected to be 0.2084 and 0.2059 for each of the 10 full-sib pairs 

and are expected to be −0.0555 and −0.0588 for each of the other 

pairs (which are UR) in the 10 individual sample.
The third is to estimate p and IBD jointly from the sample. 

Depending on the depth of the sample's underlying pedigree, this 
approach can vary enormously in complexity in statistical method-
ology and computation. The simplest is a zero-generation pedigree 
where all individuals are unrelated to each other but are potentially 
inbred. In such a situation, Bayesian (Ayres & Balding,  1998; Vogl 
et al., 2002) and likelihood (Hall et al., 2012) methods were developed 
to estimate p and F jointly. For a sample known to contain simple one-
generation (siblings) and two-generation (siblings as well as their par-
ents) related individuals, the pedigree and p can be inferred jointly 
by a likelihood approach (Wang, 2004; Wang & Santure, 2009). For 
a general and more complex pedigree, however, it becomes tremen-
dously difficult to reconstruct (Cannings et al., 1978; Cowell, 2009; 
Elston & Stewart, 1971) from marker data with known p, let alone to 

estimate pedigree and p jointly. Unfortunately, we have to deal with 
a general pedigree in IBD estimation because in practice a sample 
can have any pedigree structure.

Herein, I will refine the likelihood function and propose al-
gorithms to estimate p and Δ jointly from a sample of genotypes. 
Although Δ is of the primary interest, p and its higher-order mo-
ments must be estimated accurately in an iterative process to ac-
count for both the small size and the genetic structure of a sample.

When allele frequencies are estimated from the sample being 
analysed for relatedness, the likelihood functions summarized 
in Table 1 must be modified to reduce biases due to small sample 
size. Suppose c1 copies of allele A1 are observed in the N sampled 
genotypes at a locus. Assuming the absence of genetic structure, 
p̂1 = c1 ∕(2N) provides the best unbiased (i.e. E

(
p̂1

)
= p1) estimate of 

p1. However, 
(
p̂1

)m is a poor estimate of pm
1

 for m > 1 (Weir, 1996). It 
overestimates pm

1
 in expectation, with the overestimation increasing 

with a decreasing sample size. It can be shown (Appendix  1) that 
the unbiased estimators of allele frequency powers and products are

Likelihood function (2) as detailed in Table 1 is applicable to a small 
sample when the parametric values of allele frequency powers and 
products are replaced by the unbiased estimators (3). However, the 
approach accounts for small sample size only and can still lead to bi-
ased IBD estimates when the sample contains related or/and inbred 
individuals. Ideally, both the small size and the relatedness/inbreed-
ing of a sample should be accounted for in inferring p, which is then 
used in inferring Δ. This requires that both p and Δ are estimated 

(3)

p̂
m

i
=

m−1�

n=0

ci−n

2N−n
, (m=1, 2, 3, 4)

p̂
m

i
p̂
k

j
=

�∏m−1

n=0

�
ci−n

���∏k−1

n=0

�
cj−n

��

∏m+k−1

n=0
(2N−n)

, (m=1, 2, 3; k=1, 2)

p̂
m

i
p̂j p̂k =

cjck

2N(2N−1)

m−1�

n=0

ci−n

(2N−2−n)
, (m=1, 2)

p̂i p̂j p̂k p̂l =
cicjckcl

2N(2N−1)(2N−2)(2N−3)

TA B L E  1  Probability of identity-in-state modes Sl given identity-by-descent modes Dl

IIS mode Allelic state

IBD modes

D1 D2 D3 D4 D5 D6 D7 D8 D9

S1 AiAi,AiAi pi p2
i

p2
i

p3
i

p2
i

p3
i

p2
i

p3
i

p4
i

S2 AiAi,AjAj 0 pipj 0 pip
2

j
0 p2

i
pj 0 0 p2

i
p2
j

S3 AiAi,AiAj 0 0 pipj 2p2
i
pj 0 0 0 p2

i
pj 2p3

i
pj

S4 AiAi,AjAk 0 0 0 2pipjpk 0 0 0 0 2p2
i
pjpk

S5 AiAj,AiAi 0 0 0 0 pipj 2p2
i
pj 0 p2

i
pj 2p3

i
pj

S6 AjAk,AiAi 0 0 0 0 0 2pipjpk 0 0 2p2
i
pjpk

S7 AiAj,AiAj 0 0 0 0 0 0 2pipj pipj

(
pi + pj

)
4p2

i
p2
j

S8 AiAj,AiAk 0 0 0 0 0 0 0 pipjpk 4p2
i
pjpk

S9 AiAj,AkAl 0 0 0 0 0 0 0 0 4pipjpkpl

Note: Alleles with different subscripts are distinct.
Abbreviations: IBD, identical by descent; IIS, identical in state.
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jointly, iteratively refining p by accounting for Δ and estimating Δ 
using refined p.

To estimate p and Δ jointly, Δ can no longer be estimated in-
dependently for each pair of individuals, as formulated in (2) and 
all previous likelihood and moment methods. Suppose N individuals 
are sampled and genotyped at L loci in linkage and identity equilib-
ria, and the genotypes of individuals X and Y are observed to have 
IIS mode SXYl ∈ S at locus l (=1, 2, …, L). Assuming the probabilities 
of pairs of genotypes are independent, the likelihood function 
becomes

where � includes 9N2 IBD coefficients (i.e. 9 for each of N2 pairs of 
individuals, including self-pairs), and p =

{
p1,p2, … ,pL

}
 has 

∑L

l=1
nl al-

lele frequencies where nl is the number of alleles at locus l. Strictly, 
Equation (4) is not a proper likelihood function, because its compo-
nent marginal likelihoods are not truly independent. The probabilities 
of pairs of genotypes are not independent because one individual is 
involved in N pairs and because the sample IBD structure can involve 
more than two related individuals (e.g. three half siblings (HS) sharing 
the same parent). More appropriately, Equation (4) is a composite likeli-
hood function (Varin et al., 2011). Similar composite likelihood method 
was used to reconstruct simple one-generation and two-generation 
pedigrees, yielding results only slightly less accurate than a likelihood 
method (Wang, 2012).

For the non-inbreeding model, Equation (4) is greatly simplified 
because only 3

2
N(N − 1) of the 9N2 IBD coefficients need to be esti-

mated. For each pair of individuals X and Y (X ≠ Y), only 
{
Δ7,Δ8,Δ9

}
 

need to be estimated and Δj ≡ 0 for j = 1, 2, …, 6. There are 1
2
N(N − 1) 

such (ordered) pairs of individuals, because Δ for X with Y is the same 
as Δ for Y with X in the absence of inbreeding and thus they are not 
distinguished. For each of the N self-pairs (e.g. X with X), we have 
{
Δ7,Δ8,Δ9

}
≡ {1, 0, 0} and Δj ≡ 0 for j = 1, 2, …, 6.

2.5  |  EM algorithm

For the simple case of a non-inbred population (i.e. Δj ≡ 0 
for j  =  1, 2, …, 6), several studies (e.g. Anderson & Weir,  2007; 
Milligan,  2003) used simplex algorithms and Choi et al.  (2009) 
used the EM algorithm (Dempster et al.,  1977; Wu,  1983) in 
searching for the MLE of {Δ7, Δ8, Δ9}. For the general case of an in-
bred population, Wang (2007, 2011a) used Powell's quadratically 
convergent method (Press et al., 1996) for estimating the entire 
set of nine IBD coefficients, Δ = {Δj} for j = 1, 2, …, 9. In this study, 
I will develop an EM algorithm for MLE of Δ = {Δ1, Δ2,… ,Δ9} from 
likelihood functions (2) and (4). The same algorithm also applies 
to the much reduced non-inbreeding model (by setting Δj ≡ 0 for 
j = 1, 2,…, 6).

The variables to be estimated in function (4), 9N2 IBD coefficients 
and 

∑L

l=1
nl allele frequencies, are inter-dependent and numerous 

even in the simple case of a small sample of individuals (N) and loci 
(L). As a result, it is difficult to estimate them jointly from the geno-
type data. I develop an EM algorithm (Dempster et al., 1977) to solve 
(4) for MLEs of both p and Δ. The algorithm is similar to that of Hall 
et al. (2012) for estimating p and F, assuming unrelated individuals. 
However, it is necessarily more complicated as the assumed genetic 
structure (the presence of both relatedness and inbreeding) is more 
complicated. Details of the algorithm are described in Appendix 2.

2.6  |  Comparison with other estimators

The new relatedness estimators (2) and (4) described above and 
implemented for the full model (with inbreeding) and the reduced 
model (without inbreeding) are compared with previous estimators 
that account for small sample sizes only (Wang, 2017) and those that 
account for neither small sizes nor relatedness structures of a sam-
ple. These previous estimators assume the absence of inbreeding. As 
numerous estimators are available that accommodate neither small 
size nor relatedness of a sample, I choose the popular Lynch and 
Ritland  (1999) estimator, denoted as r̂LR hereafter, as an example. 
In fact, in the case of a small sample size which is the focus of this 
study, all estimators in this category behave similarly, yielding highly 
biased estimates (Wang,  2017). Two estimators in the first cate-
gory that accommodates small sample size only were developed by 
Wang (2017) and were shown to be unbiased regardless of N when 
all N sampled individuals are unrelated (Wang, 2017). One estimator 
is based on that of Lynch (1988) improved by Li et al. (1993), and the 
other is based on that of Wang  (2002). Both estimators are modi-
fied using unbiased estimators of allele frequency powers as shown 
in Equation (3). The two estimators behave similarly in comparison 
with other estimators when sample sizes are small (Wang,  2017). 
However, the one based on Wang (2002) affords estimation of both 
Δ7 and Δ8, as well as relatedness (=1

2
Δ7 +

1

4
Δ8). In the present study, I 

will consider this estimator, denoted as r̂W hereafter, as an example.
It is worth noting that although I focus on comparing the ac-

curacy of different estimators for relatedness, the new estimators 
offer much more. They give estimates of nine condensed IBD coef-
ficients, {Δ1, Δ2,… ,Δ9}, for each pair of individuals. Each IBD coeffi-
cient is reliably estimated when a marker has more than three alleles. 
For markers with each having two or three alleles, they can still yield 
estimates of {Δ1, Δ2, …, Δ9}, although individually Δj ( j = 1, 2, …, 9) 
might be poorly estimated. However, thanks to the negative correla-
tions among estimates of {Δ1, Δ2,… ,Δ9}, these estimates can still be 
combined to yield reliably various summary statistics, including the 
most frequently used relatedness and inbreeding coefficients. For 
relatedness estimation, the new estimators allow for inbreeding, a 
property that only a couple of relatedness estimators (e.g. Loiselle 
et al.,  1995; Ritland,  1996) possess. Alternatively, diallelic or trial-
lelic markers can be used in the reduced non-inbreeding models (2) 
and (4) to estimate {Δ7, Δ8, Δ9} just like previous estimators, but with 

(4)
(�,p|S)=

N∏

X=1

N∏

Y=1

L∏

l=1

Prb
(
SXYl|�,p

)

=

N∏

X=1

N∏

Y=1

L∏

l=1

9∑

j=1

Prb
(
SXYl|ΔXYj,pl

)
ΔXYj,
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improvements in accommodating the small sizes and relatedness of 
sampled individuals.

Hereafter, the new likelihood estimator (4) jointly estimating 
IBD and allele frequencies is denoted as r̂EM1, and the new likeli-
hood estimator (2) estimating IBD only is denoted as r̂EM2. The cor-
responding estimators in the reduced non-inbreeding models are 
denoted by r̂EM1(3) and r̂EM2(3), respectively (the subscript ‘3’ means 
only 3 coefficients, Δ7, Δ8 and Δ9, are estimated). The four estima-
tors are computed by the EM algorithm described in Appendix 2. 
They are implemented in a new computer program, EMIBD9, that 
runs on Windows, linux and Mac platforms. The program can be 
downloaded from webpage https://www.zsl.org/scien​ce/softw​are/
EMIBD9 and Zenodo at https://doi.org/10.5281/zenodo.6672390. 
The simulated and empirical datasets described below are anal-
ysed by EMIBD9 for estimators r̂EM1, r̂EM2, r̂EM1(3) and r̂EM2(3), and by 
COANCESTRY (Wang, 2011b) for estimators r̂LR and r̂W.

2.7  |  Simulations and accuracy assessment

2.7.1  |  Simulations

Simulated data are generated and analysed to investigate the new 
estimators' statistical behaviour in estimating {Δ1, Δ2,… ,Δ9} and 
the summary statistics of relatedness and inbreeding coefficients, 
and to understand the relative accuracy of the new estimators in 
comparison with previous estimators when samples are small or/and 
contain a substantial proportion of close relatives.

In simulation 1, I investigated the behaviour of estimator r̂EM1 for 
the inbreeding model in estimating {Δ1, Δ2, … ,Δ9} and of estimator 
r̂EM1(3) for the non-inbreeding model in estimating {Δ7, Δ8, Δ9} when 
each marker locus has 2, 3 or 4 alleles. I considered a sample con-
sisting of 498 non-inbred and unrelated individuals and one pair of 
related individuals, X and Y. X and Y are full sibs from a pair of full-sib 
parents (FSFS, Δ = { 1

16
, 1
32

,1
8
, 1
32

,1
8
,
1

32
,
7

32
,
5

16
,
1

16
}) or are outbred full sibs 

(FS, Δ = {0,0,0,0,0,0,1
4
,1
2
,1
4
}). For both FS and FSFS types of samples, 

I calculated relatedness from Δ estimates. For FSFS samples, I also 
calculated several additional summary statistics from Δ estimates. 
These include inbreeding coefficient as calculated by (1), the proba-
bility that at least one pair of alleles among three randomly selected 
ones from two individuals are IBD,

the probability that three randomly chosen alleles from two individuals 
are IBD,

and the difference in probabilities of some inbred IBD modes,

as defined by Csűrös (2014). Correlation coefficients among Δj (j = 1, 2, 
…, 9) estimates from r̂EM1 were also calculated.

In simulation 2, I considered a small sample of individuals of 
the same familial relationship. Specifically, I simulated N individuals 
(N = 2, 3, 4, 5, 6, 7, 8, 10, 12, 14, 16) of familial relationship FS, HS or 
FC. FS share both parents. HS share the same father but have differ-
ent mothers. FC share the same paternal grandparents. All parents 
or grandparents are non-inbred and unrelated such that FS, HS and 
FC have expected relatedness of � = 0.25, 0.125, 0.065, respectively. 
The simulated data were analysed by estimators r̂EM1, r̂EM2, r̂W and 
r̂LR to compare their accuracy and to investigate the effect of jointly 
estimating allele frequencies and relatedness.

In simulation 3, I simulated a small sample of individuals of mixed 
familial relationships. Specifically, I considered four types of related-
ness structure of a sample of individuals, reflecting different types 
and proportions of close relatives and varying sample sizes. A sam-
ple contains two individuals related as FSFS, FS or FC, or unrelated 
(UR). Additionally, it also contains a varying number n of unrelated 
individuals, with n = 0, 1, 2, …, 10. The simulated data were analysed 
comparatively by estimators r̂EM1, r̂EM2, r̂W and r̂LR for relatedness. 
For the mixed samples containing an FSFS dyad and unrelated in-
dividuals (i.e. n > 0), the inbreeding coefficients of each of the n + 2 
individuals were also estimated by r̂EM1, r̂EM2, the estimator of Li 
and Horvitz  (1953) (denoted by FLH) and the estimator derived by 
Wang  (2011c, equation [9]) following the approach of Lynch and 
Ritland (1999) (denoted by FLR). Both FLH and FLR are implemented in 
software COANCESTRY (Wang, 2011b).

For all sets of simulations, each sampled individual was geno-
typed at L loci, with each locus having a fixed number of k codom-
inant alleles in a uniform frequency distribution in the population. 
In simulation 1, L = 10,000 and k = 2, 3 and 4. In simulations 2 and 
3, L = 100,000 and k = 2. The marker loci were assumed to be in 
Hardy–Weinberg and linkage equilibria. For each parameter combi-
nation defined by the type of relatedness structure and values of 
N, L and k, a number of 1000 (when L is large) or 10,000 (when L is 
small) replicate datasets were simulated and comparatively analysed 
by different estimators. For each dataset, all sampled individuals 
were used to calculate allele frequencies and relatedness.

2.7.2  |  Accuracy assessment

A relatedness estimator was assessed by its bias, precision measured 
by standard deviation (SD), and accuracy measured by root mean 
squared errors (RMSE),

(5)�3 = Δ1 + Δ2 + Δ3 + Δ5 + Δ7 +
(
Δ4 + Δ6 + Δ8

)
∕2,

(6)�3:3 = Δ1 +
(
Δ3 + Δ5

)
∕2,

(7)�6 =
(
Δ4 − Δ6

)
∕2,

(8)�5 =
(
Δ3 − Δ5

)
∕2,

(9)Bias =
1

RM

R∑

i=1

M∑

j=1

(
r − r̂ij

)
,

SD =

(
1

RM

R∑

i=1

M∑

j=1

(
r− r̂ij

)2
)0.5

,

(10)
RMSE =

(
1

RM

R∑

i=1

M∑

j=1

(
r− r̂ij

)2
)0.5

,

https://www.zsl.org/science/software/EMIBD9
https://www.zsl.org/science/software/EMIBD9
https://doi.org/10.5281/zenodo.6672390
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where R is the number of replicates (=1,000 or 10,000) and M is 
the number of pairs of focal relationship in a replicate dataset (e.g. 
M = 6 in a dataset containing 4 full sibs where the focal relationship 
is FS), r = 1

RM

∑R

i=1

∑M

j=1
r̂ij is the mean estimate, and r and r̂ij are the 

parameter value and estimate for the jth focal pair in the ith repli-
cate. The quality of an estimator for inferring other parameters such 
as inbreeding coefficients and Δj ( j = 1, 2, …, 9) is evaluated similarly 
to relatedness.

2.8  |  Empirical data analysis

2.8.1  |  CEPH data

The genotype data of 65 CEPH reference families (https://cephb.
fr/famil​les_CEPH.php) from different populations were analysed by 
r̂EM1, ̂rEM2, ̂rLR and ̂rW. Each family has 2 parents with 5 or more full sib 
children and between 0 and 4 grandparents. I choose both parents 
and the first two full-sib children from each family for the study of 
their relatedness. Therefore, the 65 datasets were analysed inde-
pendently, each consisting of four persons in a nuclear family. Among 
the 6 dyads in each of the 65 datasets, 1 is unrelated (between the 
parents), 4 are parent–offspring and 1 is full sibs. Although genomic 
data are available, they are highly sparse with many missing data in 
these families. For each dataset, I choose loci at which at least three 
of the four persons have genotype data and show two or more al-
leles. Because of the sparse nature and the small sample size (only 
four persons), the number of usable loci is small and is highly vari-
able, from 11 to 9,614 loci with an average of 2,342 and a SD of 2,121 
among the 65 datasets. Also because of the small sample size (4 per-
sons) and high relatedness (a single nuclear family), many selected 
loci have only two alleles although they are microsatellites and have 
many more alleles in the original large sample of individuals.

2.8.2  |  Ant data

Hammond et al.  (2001) sampled individuals from an ant species, 
Leptothorax acervorum, and genotyped them at six microsatellite loci 
to study the mating system. A number of 9, 7, 47, 45, 45, 45, 45, 45, 
44 and 45 diploid workers were sampled from 10 colonies, consti-
tuting a sample of 377 individuals. For this species, we know that 
each colony is headed by a single diploid queen mated with a single 
haploid male. Therefore, workers from the same colony are full sibs 
and workers from different colonies are non-sibs. Full sibs are ex-
pected to have Δ7 = Δ8 = 0.5, Δ9 = 0 and � = 0.375 in the absence of 
any background relatedness in this haplo-diploid species. Since the 
sample size of 377 individuals is large, we might expect that it makes 
little difference whether to update allele frequencies or not in esti-
mating IBD coefficients and relatedness. However, the few colonies 
and the large colony sizes of the sample mean a strong genetic struc-
ture of the sample, and thus allele frequencies could be poorly esti-
mated by assuming a non-inbred and unrelated sample. Therefore, I 

made a comparative analysis of the sample using estimators r̂EM1 and 
r̂EM2 with and without updating allele frequencies.

2.8.3  |  Human Genome Diversity Panel data

Li et al.  (2008) studied the worldwide human population structure 
using 938 individuals sampled from 51 populations of the Human 
Genome Diversity Panel (HGDP). The data were later expanded to 
include genotypes of 1,043 individuals, each genotyped at 644,258 
single nucleotide polymorphisms (SNPs), available from http://www.
cephb.fr/en/hgdp_panel.php#based​onnees. In this study, I analyse 
the expanded data by estimators r̂EM1 and r̂EM2 for IBD coefficients 
and relatedness.

3  |  RESULTS

3.1  |  Simulation 1: Marker polymorphisms

For inbred and related dyads FSFS (Table 2), Δ1, Δ2,…, Δ9 are all well 
estimated when nl = 4 but some of them are poorly estimated (with 
a large bias and a large SD) when nl = 3 or nl = 2. The estimates are 
particularly poor for Δ3, Δ5, Δ7, Δ8 and Δ9 when nl = 2, and for Δ3, Δ5 , 
Δ8 and Δ9 when nl = 3. However, the estimable summary statistics 
(� , FX, FY, �3, �3:3, �6 and �5) as identified by Csűrös (2014) are all very 
well estimated no matter the markers have 2, 3 or 4 alleles. At nl = 2 
or nl = 3, estimates of these summary statistics are little biased, but 
have slightly higher SDs and thus slightly higher RMSEs than those 
at nl = 4. This is expected as at the same number of L = 10,000 loci 
and the same allele frequency distribution, markers with more al-
leles (nl = 4) are more informative about IBD coefficients than mark-
ers with fewer alleles (nl = 2 or 3). These summary statistics should 
be better estimated using more diallelic markers than markers with 
4 or more alleles.

For non-inbred FS dyads (Table 3), all nine IBD coefficients, Δ1 , 
Δ2, …, Δ9, are well estimated by r̂EM1, regardless of the number of 
alleles (2, 3, 4) per locus. The six Δ coefficients involving IBD within 
individuals, Δ1, Δ2,…, Δ6, are accurately estimated to be close to the 
simulated (expected) value of zero when nl is 2, 3 or 4. When con-
strained to non-inbreeding (i.e. Δj ≡ 0 for j = 1, 2, …, 6), estimator 
r̂EM1(3) yields estimates of Δ7, Δ8 and Δ9 qualitatively very similar to 
those from inbred estimator r̂EM1 without the constraint. For diallelic 
markers (nl = 2), r̂EM1(3) should be able to estimate Δ7, Δ8 and Δ9 re-
liably because there are 5 possible IIS modes against 3 IBD modes. 
Yet, the estimates are almost identical to those from r̂EM1, indicating 
that r̂EM1 affords accurate estimates of Δ1, Δ2,…, Δ9 in the absence of 
inbreeding even when diallelic markers are used.

A complicated correlation structure was found among Δ es-
timates from estimator r̂EM1 using markers with nl = 2, nl = 3 and 
nl = 4 (Supplementary Appendix 1) alleles. Consistently across rela-
tionships FS and FSFS and across numbers of alleles per locus, highly 
negative correlations were found between Δ̂7 and Δ̂8 and between 

https://cephb.fr/familles_CEPH.php
https://cephb.fr/familles_CEPH.php
http://www.cephb.fr/en/hgdp_panel.php#basedonnees
http://www.cephb.fr/en/hgdp_panel.php#basedonnees
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Δ̂8 and Δ̂9, with their correlation coefficients varying from −0.48 to 
−0.81. Consistently negative correlations were found between Δ̂3 
and Δ̂8 and between Δ̂5 and Δ̂8, with correlation coefficients varying 
from −0.16 to −0.69.

3.2  |  Simulation 2: Identical familial relationships

The estimator inferring p and Δ jointly, r̂EM1, is the least biased for 
all relationships simulated (Figure 2), yielding an average �̂ close 

TA B L E  2  Estimates of Δ and some summary statistics for FSFS dyads

Parameter Truth

nl = 2 nl = 3 nl = 4

Mean SD RMSE Mean SD RMSE Mean SD RMSE

Δ1 0.06250 0.048 0.010 0.018 0.050 0.009 0.015 0.060 0.007 0.007

Δ2 0.03125 0.017 0.005 0.015 0.039 0.005 0.009 0.033 0.004 0.004

Δ3 0.12500 0.173 0.014 0.050 0.145 0.011 0.023 0.128 0.008 0.008

Δ4 0.03125 0.015 0.007 0.018 0.014 0.006 0.018 0.027 0.006 0.007

Δ5 0.12500 0.173 0.012 0.050 0.146 0.011 0.024 0.129 0.007 0.008

Δ6 0.03125 0.014 0.007 0.018 0.013 0.006 0.020 0.028 0.006 0.006

Δ7 0.21875 0.280 0.011 0.062 0.234 0.011 0.019 0.223 0.008 0.008

Δ8 0.31250 0.063 0.020 0.251 0.242 0.025 0.075 0.301 0.017 0.020

Δ9 0.06250 0.217 0.021 0.156 0.117 0.015 0.056 0.072 0.011 0.015

� 0.37500 0.376 0.007 0.007 0.373 0.005 0.005 0.375 0.004 0.004

FX 0.25000 0.253 0.011 0.012 0.248 0.009 0.009 0.248 0.008 0.008

FY 0.25000 0.253 0.012 0.012 0.248 0.008 0.008 0.249 0.008 0.008

�3 0.71875 0.737 0.014 0.019 0.749 0.009 0.009 0.750 0.006 0.006

�3:3 0.18750 0.221 0.009 0.034 0.196 0.007 0.011 0.188 0.006 0.006

�4 0.00000 0.000 0.005 0.005 0.001 0.004 0.004 0.001 0.003 0.003

�5 0.00000 0.000 0.008 0.008 −0.001 0.006 0.006 0.000 0.005 0.005

Notes: Each sampled individual is genotyped at 10,000 loci, and each locus has an equal number of either nl = 2, nl = 3 or nl = 4 alleles with 
frequencies in a uniform distribution. Estimates of Δ =

{
Δ1,Δ2, … ,Δ9

}
 are obtained from r̂EM1, and the summary statistics are calculated from Δ 

estimates.
Abbreviations: FSFS, full sibs whose parents are full sibs; RMSE, root mean squared error.

TA B L E  3  Estimates of Δ and θ for FS dyads

Estimator � Truth

nl = 2 nl = 3 nl = 4

Mean SD RMSE Mean SD RMSE Mean SD RMSE

r̂EM1 Δ1 0.000 0.002 0.001 0.002 0.002 0.001 0.002 0.001 0.001 0.002

Δ2 0.000 0.002 0.001 0.002 0.002 0.001 0.002 0.001 0.001 0.001

Δ3 0.000 0.008 0.005 0.009 0.003 0.002 0.004 0.003 0.002 0.004

Δ4 0.000 0.003 0.002 0.004 0.004 0.003 0.004 0.004 0.002 0.004

Δ5 0.000 0.008 0.005 0.009 0.003 0.002 0.004 0.003 0.002 0.004

Δ6 0.000 0.003 0.002 0.004 0.004 0.001 0.002 0.004 0.002 0.004

Δ7 0.250 0.260 0.013 0.016 0.258 0.010 0.012 0.259 0.008 0.012

Δ8 0.500 0.489 0.026 0.028 0.502 0.017 0.017 0.503 0.014 0.014

Δ9 0.250 0.225 0.018 0.031 0.224 0.014 0.030 0.222 0.012 0.030

� 0.250 0.262 0.005 0.013 0.259 0.004 0.010 0.260 0.004 0.011

r̂EM1(3) Δ7 0.250 0.252 0.013 0.013 0.260 0.009 0.014 0.263 0.007 0.015

Δ8 0.500 0.499 0.023 0.023 0.502 0.016 0.016 0.505 0.012 0.013

Δ9 0.250 0.249 0.017 0.017 0.239 0.012 0.016 0.232 0.010 0.020

� 0.250 0.251 0.005 0.005 0.255 0.004 0.006 0.258 0.003 0.008

Note: Each sampled individual is genotyped at 10,000 loci, and each locus has an equal number of either nl = 2, nl = 3 or nl = 4 alleles with 
frequencies of a uniform distribution.
Abbreviations: FS, full sibling; RMSE, root mean squared error.
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to the expected value, which is 0.25, 0.125 and 0.0625 for FS, HS 
and FC, respectively. It consistently overestimates � slightly when 
it is small (HS and FC), and underestimates � slightly when it is 
large (FS). Estimator r̂W always underestimates �, with the extent 
of underestimation decreasing with a decreasing true value of �. 
r̂EM2 is always 0 (for HS and FC), or close to zero (for FS), while r̂LR 
is always negative with values widely ranged from −0.5 to −0.05. 
In terms of overall accuracy measured by RMSE, r̂EM1 is the best, 
followed by r̂W, and r̂EM2 and r̂LR are the least accurate estimators. 
The differences between r̂EM1 and r̂W tend to decrease with a de-
creasing true � value. This is expected as the main problem with 
r̂W is its biasness caused by poor allele frequency estimates due to 

the inclusion of relatives in a sample, which tends to decrease to 
zero as � decreases to zero.

With fewer markers than those in Figure 2, the accuracy advan-
tages of r̂EM1 over other estimators largely remain (Supplementary 
Appendix 2). Only when the number of loci is small (i.e. L < 2,000) 
does r̂EM1 performs similarly to r̂W.

3.3  |  Simulation 3: Mixed familial relationships

For relationship involving inbreeding (FSFS), r̂EM1 is the least bi-
ased and the most accurate estimator, regardless of the proportion 

F I G U R E  2  Mean and root mean squared error (RMSE) of �̂ estimated by r̂EM1 , r̂EM2, r̂LR and r̂W for relationships full sibling (FS), half 
sibling (HS) and first cousin (FC) as a function of the number of individuals (x axis) in a sample. All individuals in a sample are of the same 
relationship, FS, HS or FC with an expected � value of 0.25, 0.125 or 0.0625 shown by the horizontal dotted lines. A number of L = 100,000 
single nucleotide polymorphisms (SNPs) with allele frequencies in a uniform distribution are genotyped for each individual.
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of close relatives (FSFS) included in a sample (Figure  3). As ex-
pected, r̂EM2 approaches r̂EM1 with an increasing proportion of un-
related individuals in a sample. r̂LR and r̂W assume non-inbreeding, 
and thus always underestimate the relatedness for FSFS dyads 
substantially.

Without inbreeding, r̂EM1 outperforms the other estimators sub-
stantially only when a sample contains a high proportion of close rel-
atives (FS). Otherwise, it has a performance almost indistinguishable 
from that of r̂W. Although both r̂EM2 and r̂W account for the small size 
only (not the genetic structure) of a sample, r̂EM2 underestimates the 
relatedness for relatives more than r̂W, perhaps because it attempts 
to estimate 9 (Δ1, Δ2,…, Δ9) while r̂W estimates 3 (Δ7, Δ8, Δ9) IBD co-
efficients per dyad.

Comparing inbreeding coefficient estimates of a mixed sam-
ple containing two FSFS individuals and N-2 (N  =  3, 4, …, 10) 
unrelated individuals from diallelic marker data (Supplementary 
Appendix  4), it is clear that r̂EM1 is much less biased and much 
more accurate than the other three estimators for both non-
inbred individuals (expected F = 0) and the FSFS inbred individ-
uals (expected F  =  0.25). By accounting for both the small size 
and the IBD structure of a sample, r̂EM1 yields highly accurate F 
estimates even when a sample has only three individuals (2 are 
FSFS). In contrast, the other three estimators are increasingly bi-
ased with a decreasing sample size N. The two moment estima-
tors yield negative F estimates for non-inbred individuals, and for 
FSFS individuals as well when N is small (i.e. N < 6). r̂EM2 is better 
than the two moment estimators for both inbred and non-inbred 
individuals and regardless of sample size, because it accounts for 
small sample sizes.

3.4  |  Analysis of the CEPH data

For UR, r̂EM1 and r̂EM2 yield perfect estimates of Δ̂7, Δ̂8, and θ 
(Figure  4). This is because the expected values, in the absence of 
background relatedness, are Δ̂7 = Δ̂8 = � = 0, and likelihood estima-
tors are lower bounded by 0. In contrast, moment estimators r̂LR and 
r̂W give consistently negative estimates of Δ8 and Δ7, respectively. As 
a result, they yield negative estimates of θ.

For PO, r̂EM1 and r̂EM2 give 0 or close to 0 estimates of Δ7 which 
has an expected value of 0. However, while Δ̂8 estimates from r̂EM1 
are close to the expected value of 1, Δ̂8 estimates from r̂EM2 are scat-
tered around 0. Therefore, �̂ is well estimated by r̂EM1 with an av-
erage of 0.24, but is much underestimated by r̂EM2 with an average 
of 0.002. Estimator r̂W gives negative estimates of Δ7 and positive 
estimates of Δ8. Both Δ̂7 and Δ̂8 are highly scattered, especially Δ̂8 . 
Because Δ̂7 and Δ̂8 are negatively correlated, r̂W still yields good es-
timates of θ, which are only slightly lower on average than the ex-
pected value of 0.25. Δ̂7 and Δ̂8 from r̂LR are both less scattered than 
those from r̂W. However, Δ̂7 and Δ̂8 are highly negatively correlated, 
and both tend to be negative. As a result, �̂ is also negative, with an 
average of −0.1.

For FS, r̂EM1 underestimates both Δ̂7 and Δ̂8 slightly and thus �̂ 
slightly. The average �̂ is 0.16. If allele frequencies are not updated, 
however, Δ̂7, Δ̂8 and �̂ are all severely underestimated by r̂EM2. r̂W 
yields positive estimates of Δ̂7, Δ̂8 and �̂, with an average �̂ of 0.16. 
However, Δ̂8 is consistently overestimated and Δ̂7 is consistently un-
derestimated. r̂LR gives positive Δ̂7 but highly negative Δ̂8 and �̂, with 
an average �̂ of −0.25.

r̂EM1 also yields estimates of Δ1, Δ2,…, Δ9 as listed in Table 4. All 
of the six Δ coefficients involving within individual IBD, Δ1, Δ2,…, Δ6 , 
are estimated to be close to zero for all of the three relationships 
(UR, PO and FS).

The best estimates are obtained obviously from estimator r̂EM1. 
It yields the least biased Δ̂7, Δ̂8 and �̂ across the three relationships. 
For a small sample of four highly related individuals as is the case 
of this dataset, updating allele frequencies by accounting for the in-
ferred relatedness structure of the sample and accommodating the 
small sample size by using unbiased estimates of allele frequency 
powers and products prove important for accurate estimates of 
relatedness.

3.5  |  Analysis of the ant data

Both r̂EM1 and r̂EM2 reveal the 10-colony structure of the sampled 
377 individuals (Figure 5) using genotype data from just 6 micros-
atellites (with a high rate of missing data). However, by estimating 
allele frequencies and IBD coefficients jointly, estimator r̂EM1 also 
reveals inter colony genetic structures which are absent or quite 
vague when allele frequencies are not updated by estimator r̂EM2. 
For example, colonies 1 and 3 (counting from bottom up, or from left 
to right), colonies 2 and 4, and colonies 3 and 4 are related according 
to estimator r̂EM1. However, this is not true according to estimator 
r̂EM2. This inter-colony structure is expected from the ant reproduc-
tion nature of budding.

Estimates of Δ1, Δ2, …, Δ9 were obtained from estimator r̂EM1 
for each dyad in the sample of 377 ant workers. Similar to �̂ shown 
in Figure  5, Δ̂7, Δ̂8 and Δ̂9 display clearly the 10-colony structure 
(Supplementary Appendix 3). Estimates of each of the remaining IBD 
coefficients, Δj for j = 1, 2, …, 6, do not show this colony structure, 
but still have vaguely the colony block structure. Colony 10 (on the 
top right corner of the heatmaps) is much more inbred than other 
colonies as it has higher Δ1, Δ3 and Δ5 estimates (Supplementary 
Appendix 3).

3.6  |  Analysis of the HGDP data

By updating allele frequencies jointly with IBD coefficients, r̂EM1 
reveals the population structure measured by pairwise relatedness 
(Figure 6) much more clearly than r̂EM2, a structure in broad agree-
ment with that inferred by a model-based admixture analysis by 
PopCluster (Wang, 2022a, 2022b) assuming K = 5 populations.
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4  |  DISCUSSION

Genetic relatedness and inbreeding coefficients are relative quanti-
ties defined and measured with a reference population (Wang, 2016; 
Weir et al., 2006) in which all homologous alleles are assumed non-
IBD or equivalently all individuals are assumed non-inbred and unre-
lated. When measured from pedigree data, the reference is the set 
of founders of the pedigree who have no parental information and 
are thus assumed unrelated with each other and non-inbred. When 
calculated from marker data, the reference is the population whose 
allele frequencies are used in inferring relatedness (Wang, 2014; Weir 
et al.,  2006). However, allele frequencies in real-world populations 
are rarely known but are frequently estimated from the same geno-
type data that are used in calculating relatedness. Invariably in the 
literature, all sampled individuals are assumed non-inbred and unre-
lated a priori in estimating allele frequencies. When a sample contains 
a substantial proportion of close relatives, however, the assumption 
is violated, leading to poor allele frequency estimates and thus poor 
relatedness inferences as demonstrated by this study. Because some 
alleles in close relatives are IBD but assumed non-IBD, the frequency 
of an allele tends to be overestimated and underestimated when it 
is and is not found in the genotypes of the relatives, respectively. 
These distorted allele frequency estimates lead, in turn, to an un-
derestimation of relatedness of close relatives and an overestima-
tion of relatedness of unrelated individuals. These biased relatedness 
estimates can cause serious problems in a downstream analysis. For 
example, first-degree relatives might be inferred as second-degree 
ones. Unfortunately, using more markers does not help to ease the 
problem, and the poor relatedness inferences persist even when 
genomic markers are used. In fact, more markers make the problem 
more acute as bias (rather than precision) could become the dominat-
ing factor in determining the overall estimation accuracy.

Two approaches can be used to reduce or eliminate the problem. 
Experimentally, one should avoid non-probability sampling such as 
convenience sampling. This is especially important for sampling in-
dividuals of early-life stages in highly fecund species, such as eggs 
or fries of fish and tadpoles of frogs (Hansen et al., 1997). Avoiding 
clusters of close relatives included in a sample will ensure unbiased 
allele frequency estimation and thus unbiased relatedness estimation 
from the sampled genotype data. Statistically, one should estimate 
allele frequencies by accounting for the genetic structure (inbreed-
ing and relatedness) of the sample. The composite likelihood method 
proposed in this study is the first to estimate allele frequencies and 
relatedness jointly without imposing any ad hoc pedigree structure to 
a sample. The EM algorithm developed in this study updates allele fre-
quencies and IBD coefficients in alternative iterations such that each 

is estimated by accounting for the other. The method ( r̂EM1) yields less 
biased and more accurate relatedness estimates than other methods 
when a high proportion of close relatives are included in a sample, as 
shown by simulations and analysis of several real datasets.

In the same spirit, relatedness estimation for admixed or non-
admixed individuals in a heterogeneous population with subpopula-
tion structure warrants special attention when we are interested in 
the most recent familial relationships within a subpopulation. In such 
a situation, subpopulation-specific or individual-specific allele fre-
quencies must be calculated from the heterogenous sample of indi-
viduals, which are then used in estimating relatedness (e.g. Conomos 
et al., 2016; Manichaikul et al., 2010; Moltke & Albrechtsen, 2014; 
Thornton et al., 2012). The methods developed so far invariably take 
a two-step approach. First, a population admixture analysis is con-
ducted, using STRUCTURE (Pritchard et al., 2000) like programs, to 
obtain estimates of the admixture proportions of each sampled in-
dividual and estimates of subpopulation allele frequencies. Second, 
individual-specific allele frequencies, calculated from individual ad-
mixture estimates and subpopulation allele frequency estimates, 
are then used for calculating relatedness by a moment or likelihood 
estimator (Conomos et al., 2016; Manichaikul et al., 2010; Moltke & 
Albrechtsen,  2014; Thornton et al.,  2012). All of these estimators 
assume the absence of inbreeding to estimate {Δ7,Δ8,Δ9} only. In 
principle, however, it is possible to remove the assumption from the 
likelihood estimator (e.g. Moltke & Albrechtsen, 2014) to estimate 
all nine IBD coefficients, and thus both inbreeding and relatedness.

Also in the same spirit, Bayesian (Ayres & Balding,  1998; Vogl 
et al., 2002) and likelihood (Hall et al., 2012) methods were devel-
oped to estimate allele frequencies p and inbreeding coefficients F 
jointly from the multilocus genotype data of a sample of unrelated 
individuals. However, the simulation by Hall et al.  (2012) showed 
that it did not matter much to estimate F with p estimated by either 
sophisticated methods (i.e. estimating F and p jointly by likelihood or 
Bayesian methods) or simple allele counting under the assumption of 
no inbreeding. This conclusion is not too surprising as inbreeding is 
expected to have a minor effect on p estimates except when sample 
size N is extremely small. Consider a sample of N diploid individuals. 
The number of within-individual allele pairs is N, while the number 
of between-individual allele pairs is 2N(2N − 1)∕2 − N = 2N(N − 1). 
Even with a small sample of N = 20 individuals, only 20 out of 780 
pairs of alleles reside within individuals and are thus potentially af-
fected by inbreeding in estimating p, while 760 out of 780 pairs of al-
leles are from between individuals and are thus potentially affected 
by relatedness in estimating p. When individuals are unrelated as 
assumed in these studies, therefore, inbreeding has little effect on 
p estimation and thus on F estimation, as found by Hall et al. (2012). 

F I G U R E  3  Mean and root mean squared error (RMSE) of �̂ estimated by r̂EM1 , r̂EM2, r̂LR and r̂W for relationships full sibs whose parents are 
full sibs (FSFS), full sibling (FS), first cousin (FC) and unrelated (UR) as a function of the number of unrelated individuals (x axis) in a sample. 
The total number of individuals in a sample is 2 related (or unrelated in the case of UR) individuals plus the number of unrelated individuals 
shown on x-axis. The expected � values for FSFS, FS, FC and UR are 0.375, 0.25, 0.0625 and 0 shown by the horizontal dotted lines. A 
number of L = 100,000 single nucleotide polymorphisms (SNPs) with allele frequencies in uniform distribution are genotyped for each 
individual.
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In contrast, the above analysis also shows that relatedness could 
potentially have a large impact on the estimation of p. How to esti-
mate p, either by simple allele counting (by assuming non-inbred and 
unrelated individuals) or by estimating p and IBD jointly, can be thus 

important in estimating IBD and summary statistics like relatedness 
and inbreeding.

The above argument about the differential effects of inbreeding 
and relatedness on the estimation of p can also be understood by 
considering the effective sample size, ESS. For a sample of N diploid 

F I G U R E  4  Estimated Δ7 (x axis) and Δ8 (y axis) of each of 6 dyads in each of 65 nuclear (2 parents with two full-sib children) families of 
the CEPH data by estimators r̂EM1, r̂EM2, r̂LR and r̂W. The expected values of Δ7 and Δ8 are {0, 0} for unrelated (UR, denoted by red star and 
arrow), {0, 1} for parent–offspring (PO, denoted by green star and arrow), and {0.25, 0.5} for full sibs (FS, denoted by blue star and arrow). 
The bottom is the box whisker chart of θ estimates by the four estimators. The orange horizontal lines indicate the expected values of θ for 
UR (0), and PO and FS (0.25).
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TA B L E  4  Estimates of Δ by r̂EM1 for dyads in 65 nuclear families of the CEPH data

Relationship Statistics �1 �2 �3 �4 �5 �6 �7 �8 �9

UR X 0.000 0.001 0.001 0.002 0.001 0.004 0.001 0.003 0.987

SD 0.001 0.001 0.002 0.004 0.003 0.014 0.001 0.006 0.031

PO X 0.001 0.001 0.003 0.002 0.004 0.003 0.006 0.895 0.087

SD 0.003 0.002 0.008 0.004 0.017 0.012 0.019 0.141 0.127

FS X 0.002 0.001 0.002 0.005 0.004 0.002 0.185 0.276 0.522

SD 0.002 0.004 0.003 0.025 0.008 0.004 0.063 0.140 0.146

Notes: X and SD are the mean and standard deviation of the estimates. Without background IBD, relationship UR, PO and FS are expected to have {
Δ1,Δ2, … ,Δ9

}
 = {0,0,0,0,0,0,0,0,1}, {0,0,0,0,0,0,0,1,0} and {0,0,0,0,0,0,0.25,0.5,0.25}, respectively.

Abbreviations: FS, full sibling; IBD, identical by descent; PO, parent–offspring; UR, unrelated.

F I G U R E  5  Relatedness of 377 ant workers. The upper panel 
shows relatedness estimated by updating both relatedness and 
allele frequencies by the expectation maximization (EM) algorithm 
( r̂EM1), while the lower panel shows relatedness estimated by 
updating relatedness only by the EM algorithm ( r̂EM2) with allele 
frequencies estimated by assuming unrelated and non-inbred 
individuals in the sample. Both x and y axes show ordered 
individuals 1–377, with individuals 1–9 from colony 1, 10–16 from 
colony 2, 17–63 from colony 3, 64–108 from colony 4, 109–153 
from colony 5, 154–198 from colony 6, 199–243 from colony 7, 
244–288 from colony 8, 289–332 from colony 9, and 333–377 from 
colony 10.

F I G U R E  6  Genetic structure of 1,043 human individuals 
genotyped at 644,258 single nucleotide polymorphisms (SNPs) 
(644,199 polymorphic) of the Human Genome Diversity Panel (HGDP). 
The upper and middle panels show heatmaps of relatedness estimated 
by not updating (by r̂EM2) and updating (by r̂EM1) allele frequencies, 
respectively. The lower panel shows the admixture at K = 5 estimated 
by PopCluster. The x-axes of the upper, middle and lower panels and 
the y-axes of the upper and middle panels list ordered individuals.
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individuals, the maximum ESS is 2N when all individuals are non-
inbred and unrelated. The minimum ESS is N when all individuals are 
completely inbred (F = 1) but are unrelated, and is only 2 when all 
individuals are completely related but are non-inbred. For a sample of 
N (≥2) FS whose parents are non-inbred and unrelated, the ESS is only 
4, despite of a potentially large N value. Indeed, Figures 2 and 3 show 
that, in the presence of relatedness structure in a sample of individ-
uals, how to estimate p has a large impact on the estimation of IBD.

Another problem in estimating relatedness stems from a small 
sample size (Wang, 2017). When only a small number of individu-
als are sampled and genotyped for relatedness analysis, allele fre-
quencies can still be estimated unbiasedly albeit with low precision 
(i.e. with a large sampling variance). However, all relatedness esti-
mators use powers and products of allele frequencies in the esti-
mation, which are unfortunately biased if calculated directly from 
the unbiased allele frequency estimates when sample size is small 
(Wang, 2017; Weir, 1996). As shown before (Wang, 2017) and herein, 
estimators assuming known allele frequencies or a large sample size 
to ignore sampling effects (say, N > 100, Ritland, 1996) can lead to 
severely biased estimates of relatedness between individuals in a 
small sample. The likelihood estimators developed herein, r̂EM1 and 
r̂EM2, allow for small sample sizes by using unbiased estimators of the 
powers and products of allele frequencies (Appendix  1). They are 
demonstrated to work better than other estimators and are almost 
unbiased even when only two individuals are sampled for analysis 
of relatedness (Figures 2 and 3). Small samples in the real world are 
surprisingly common, such as ancient samples (e.g. museum samples, 
excavated fossil bones), mixed samples of unknown sources (e.g. 
confiscated animal products, victims of a disaster) and samples from 
highly endangered species. Samples for genomic studies can also be 
small due to cost and other restrictions. With a high rate of missing 
data typical of next-generation sequencing, the effective sample 
sizes can even be smaller because it is the number of complete gen-
otypes (not individuals) that counts.

It is encouraging that by estimating IBD and allele frequencies 
jointly and by accounting for small sample sizes, the likelihood esti-
mator r̂EM1 can yield reasonably accurate estimates of relatedness for 
individuals of various genealogical relationships in a small sample or in 
a sample containing a high proportion of close relatives (Figures 2–4; 
Supplementary Appendix 2). r̂EM1 works well even in the extreme case 
of a sample of two close relatives, from which both allele frequencies 
and relatedness must be deduced. The estimator is thus especially 
useful when genomic data are available for just a few individuals sam-
pled from, say, museum or excavated fossil bones. However, the esti-
mator is also valuable for a large sample with hundreds of individuals 
when the sample is highly genetically structured, as demonstrated by 
the ant and the human datasets (Figures 5 and 6).

Except for a couple of exceptions (e.g. Wang,  2007), previous 
likelihood estimators of IBD or relatedness assume the absence 
of inbreeding (i.e. Δ1 = Δ2 = Δ3 = Δ4 = Δ5 = Δ6 = 0) and estimate 
{Δ7,Δ8,Δ9} only. The estimation complexity and computation are 
greatly reduced because only 3 out of the 9 IBD coefficients for a 
dyad need to be estimated. However, inbreeding is likely to occur 

whenever relatedness occurs. This is true even when mating is at 
random with respect to ancestry. For small populations or large pop-
ulations with regular close relative mating such as selfing, inbreed-
ing is frequent and should be taken into account in measuring and 
estimating relatedness. Furthermore, genomic marker data provide 
sufficient information to delineate the detailed IBD relationships be-
tween a pair of individuals. Both estimators developed in this study, 
r̂EM1 and r̂EM2, allow for inbreeding in estimating relatedness, and can 
estimate accurately the nine detailed IBD coefficients of a dyad as 
well when markers have more than three alleles. In the same situ-
ations of a small sample or a highly structured sample, r̂EM1 yields 
good estimates of F (Supplementary Appendix 4).

Estimators r̂EM1 and r̂EM2 are developed for estimating the 
nine detailed IBD coefficients of a dyad from their genotype data. 
However, a locus with 2 or 3 alleles (i.e. nl < 4) has fewer IIS modes 
than IBD modes, and therefore does not afford sufficient informa-
tion to distinguish and estimate all nine IBD coefficients, as proved 
by Csűrös (2014). The issue persists even when many two- or three-
allele loci are used in an analysis. Fortunately, the most widely ap-
plied summary IBD statistics, including coancestry � and inbreeding 
coefficient F, are still estimable from diallelic (Csűrös, 2014) or trial-
lelic markers. The simulation results in Tables 2 and 3 confirm that, 
for inbred relationships (i.e. Δ1 + Δ2 + Δ3 + Δ4 + Δ5 + Δ6 > 0) such 
as FSFS, some IBD coefficients are poorly estimated by r̂EM1 from 
diallelic or triallelic marker data. However, the most commonly used 
summary IBD statistics, � and F, are still accurately calculated by r̂EM1 
(Tables 2 and 3). The much higher accuracy of r̂EM1 over other esti-
mators for estimating � from a small sample of individuals (Figures 2 
and 3) further consolidate the conclusion. For non-inbred relation-
ships (i.e. Δ7 + Δ8 + Δ9 ≡ 1) such as FS, all nine IBD coefficients are 
well estimated by r̂EM1, regardless of the number of alleles per locus 
(Table 3). Therefore, it can be concluded in general that estimators 
r̂EM1 and r̂EM2 are applicable to diallelic as well as multiallelic markers 
for estimating both � and F, although they may provide poor esti-
mates of some of the nine IBD coefficients for inbred relationships 
when markers are diallelic or triallelic.

Why diallelic markers do not afford reliable estimates of all 
nine IBD coefficients but these estimates could still be combined 
to yield accurate estimates of summary IBD statistics such as � and 
F, as demonstrated by the present study? Fundamentally, diallelic 
markers provide sufficient information only for some summary 
statistics but not for the detailed components of the summary sta-
tistics. Although some Δj (for j = 1, 2, …, 9) may not be accurately 
estimated by r̂EM1 from diallelic markers, these estimates are inher-
ently constrained, as verified by the complicated correlation struc-
tures found in simulated data (Supplementary Appendix 1). Some 
of these Δj estimates are highly negatively correlated that a linear 
combination of them leads to a much better estimate of a summary 
IBD statistic. Let us take inbreeding coefficient, F, as an example. 
Diallelic markers afford accurate delineation of individual F. The 
relative homozygosity across diallelic loci of an individual X lends a 
good estimate of FX. For two individuals X and Y, r̂EM1 (implement-
ing likelihood Equation (4)) may not give good estimates of Δ1, Δ2,  
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Δ3 and Δ4. However, these estimates are inherently correlated 
when FX  >0, especially between Δ2 and Δ4 and between Δ3 and 
Δ4 which show negative correlations (Supplementary Appendix 1). 
Therefore, when estimated by (1) as Δ1 + Δ2 + Δ3 + Δ4, FX is still 
accurately inferred.

For a pairwise relatedness estimator, the number of dyads and 
thus computational time increase quadratically with sample size. 
Using an EM algorithm to estimate iteratively both allele frequencies 
and pairwise IBD coefficients, the ̂rEM1 estimator is much more compli-
cated and runs much slower than other estimators, such as likelihood 
estimator r̂EM2. For genomic marker data with hundreds of thousands 
of loci, it could handle a sample with hundreds of individuals if MPI and 
openMP parallel runs are conducted on a cluster with many cores. It 
is developed for and suits to the analysis of a small sample or a sam-
ple containing a high proportion of close relatives. For a large sample 
deemed to contain a small proportion of close relatives, it is better to 
use r̂EM2 or moment estimators. I used Dempster et al.'s (1977) EM al-
gorithm in both r̂EM1 and r̂EM2 estimators. The algorithm can be further 
accelerated by various methods, such as the squared iterative method 
(Varadhan & Roland, 2008) and Aitken acceleration method (Chow & 
Kay,  1984). How to improve the EM algorithm in r̂EM1 estimator by 
adopting these accelerations deserves further studies.
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APPENDIX 1

Expectations of allele frequency powers and products
Suppose N diploid individuals were sampled at random from a large 
random mating population and genotyped at a locus with n ob-
served codominant alleles {A1, A2, …, An}. The frequency of allele A i 
(i = 1, 2, …, n) in the population is pi. We are interested in estimating 
allele frequency powers, such as p2

1
, and allele frequency products, 

such as p2
1
p2
2
, from the sample of N genotypes. As an example, con-

sider the estimation of p2
1
. Under the above assumption, the num-

ber of copies of A1 in the sample of 2N genes, x1, follows a binomial 
distribution with parameters 2  N and p1. The expected value of (
x1

2N

)2

is

When p1 is replaced by its unbiased estimator, p̂1 = x1 ∕(2N), and 

E

(
x1

2N

)2

 is replaced by its observation 
(

x1

2N

)2

, (A1.1) reduces to the 

estimator of p2
1
,

Similarly, the expected value of 
(

x1

2N

)3

 is

When p1 and p2
1
 are replaced by their unbiased estimators, 

p̂1 = x1 ∕(2N) and (A1.2), and E
(

x1

2N

)3

 is replaced by its observation 
(

x1

2N

)3

, (A1.3) reduces to the estimator of p3
1
,

Other estimators of allele frequency moments listed in (3) can be 
derived similarly.

(A1.1)

E

(
x1

2N

)2

=

2N∑

j=0

(2N) !

j ! (2N − j) !
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j

1
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)2N−j
(

j

2N
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p1 + (2N − 1)p2
1

2N
.

(A1.2)p̂
2

1
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(
x1 − 1

)

2N(2N − 1)
.
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1
+ (2N − 1)(2N − 2)p3

1
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.
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3
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2N(2N − 1)(2N − 2)
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APPENDIX 2

EM algorithm for estimating p and Δ
To facilitate the description and implementation of the EM algo-
rithm, I introduce an auxiliary indicator variable Z. The indicator 
variables for the IBD modes for individuals X and Y at locus l are 
ZXYl = {ZXYli} for i =  1, 2, …, 9, where Zxyli = 1 when the IBD mode 
for X and Y at locus l is Di and Zxyli = 0 when otherwise. As the nine 
IBD modes are mutually exclusive, we have 

∑9

i=1
ZXYli ≡ 1. We are not 

interested in these 9LN2 auxiliary variables but use them in an EM 
algorithm to infer both p and Δ. If ZXYl were known, the MLEs of the 
IBD coefficients between X and Y would simply be Δ̂XYi =

1

L

∑L

l=1
ZXYli 

for i = 1, 2, …, 9. However, it is impossible to know for sure whether 
ZXYli = 0 or ZXYli = 1 from the genotype data SXYl and allele frequen-
cies pl in general. What we can do is to infer the expected value of 
ZXYli, E[ZXYli] or �XYli for simple notation, which is equivalent to the 
probability that the IBD mode for individuals X and Y at locus l is Di. 
Therefore, �XYli can act as a single locus estimate of ΔXYi. Given �XYli, 
the estimate of ΔXYi for i = 1, 2, …, 9 is

Allele frequencies can also be refined using �XYli. Suppose individuals X 
and Y have genotypes AiAi and AiAj, respectively, at a locus l. The num-
ber of non-IBD copies is 1 for allele j, irrespective of �XYli. However, it is 
a random variable for allele i, varying between 1 and 3 when all three 
copies of allele i are IBD and non-IBD, respectively. Conditional on �XYli, 
the expected number of non-IBD copies of allele i is

as calculated from Table 1. Similarly, the expected number of non-
IBD copies of an allele in any pair of genotypes of X and Y given �

XYli (for i = 1, 2, …, 9) can be derived, as listed in Table A2.1.

For an individual X with itself (i.e. X with X), the expected number 
of non-IBD copies of allele Ai is 1 when X is a heterozygote of Ai, and 
is �XXl1 + 2�XXl7 when X is a homozygote of Ai at locus l.

The total number of non-IBD copies of allele Ai at locus l across 
the N2 pairs of individuals is

where qXYli is listed in Table A2.1 for each IIS mode (type of pairs of 
genotypes of X and Y). qXXli is calculated as described above.

For locus l with nl alleles, the frequency of allele Ai is estimated by

The key to inferring both p and Δ lies therefore in calculating �XYli , 
the expected value of ZXYli (for i = 1, 2, …, 9) for a pair of individuals X 
and Y at a locus l (=1, 2, …, L). �XYli can be estimated from estimates of p 
and Δ and genotype data, using Table 1. For individuals X and Y with 
genotypes AjAj and AjAk, respectively (i.e. IIS mode S3), at locus l, for 
example, �XYli = Ci ∕C where Ci = 0 for i = 1, 2, 5, 6 and 7, C3 = pjpkΔXY3,  
C4 = 2p2

j
pkΔXY4, C8 = p2

j
pkΔXY8, C9 = 2p3

j
pkΔXY9 and C =

∑9

i=1
Ci. Since 

allele frequencies are unknown, the expected values of the powers and 
products of estimated allele frequencies, as calculated by (3) from sam-
ple allele counts, should be used in calculating �XYli. For other IIS modes 
or genotype pairs, �XYli can be calculated similarly, using Table 1.

Based on the above, I propose the following EM algorithm for 
MLEs of both p and Δ from a sample of N multilocus genotypes.

1.	 Initialization

By assuming non-inbred and unrelated individuals, I calculate the ini-
tial non-IBD allele counts q(0) = {q(0)

l
} for each locus l (=1, 2, …, L) by simple 

allele counting in genotype data, where q(0)
l

=

{
q
(0)

li

}
 with q(0)

li
 being the 

count of non-IBD copies of allele i at locus l. These initial and updated 

(A2.1)Δ̂XYi = (1∕L)

L∑

l=1

�XYli.

qXYli = �XYl3 + 2�XYl4 + 2�XYl8 + 3�XYl9

(A2.2)qli =

N∑

X=1

N∑

Y=1

qXYli,

(A2.3)p̂li = qli ∕

(∑nl

j=1
qlj

)
.

IIS mode Allelic state

Expected number of non-IBD copies of allele

i j k l

S1 AiAi,AiAi �1+2
(
�2+�3+�5+�7

)

+3
(
�4+�6+�8

)
+4�9

0 0 0

S2 AiAi,AjAj �2 + �4 + 2�6 + 2�9 �2 + 2�4 + �6 + 2�9 0 0

S3 AiAi,AiAj �3 + 2�4 + 2�8 + 3�9 1 0 0

S4 AiAi,AjAk �4 + 2�9 1 1 0

S5 AiAj,AiAi �5 + 2�6 + 2�8 + 3�9 1 0 0

S6 AjAk,AiAi �6 + 2�9 1 1 0

S7 AiAj,AiAj �7 + pj�8 ∕
(
pi + pj

)
+ 2�9 �7 + pi�8 ∕

(
pi + pj

)
+ 2�9 0 0

S8 AiAj,AiAk �8 + 2�9 1 1 0

S9 AiAj,AkAl 1 1 1 1

Notes: �i, shortened from �XYli, is the expected value of ZXYli, which is the auxiliary variable for the 
ith (i = 1, 2, …, 9) IBD mode for individuals X and Y (Y ≠ X) at locus l. ZXYli takes value 1 when the IBD 
mode is Di and value 0 when otherwise.
Abbreviation: IBD, identical by descent.

TA B L E  A 2 . 1  The expected number of 
non-IBD alleles in a pair of genotypes
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(below) allele counts are used in calculating expected values of allele fre-
quency powers and products as detailed in (3), which are used in all com-
putations in the EM algorithm. Under the same assumption, the initial 

IBD coefficients are Δ(0) = {�(0)

XY
} for X,Y = 1, 2, …, N, with �(0)

XY
=

{
Δ

(0)

XYi

}
 

for i = 1, 2, …, 9. For two different individuals X and Y, we set Δ(0)

XYi
= u for 

i = 1, 2, …, 8 and Δ(0)

XY9
= 1 − 8u , where u is a small positive value such as 

0.001. For an individual X with itself, we set Δ(0)

XXi
= u for i = 1, 2, …, 6 and 

8 and 9, and Δ(0)

XY7
= 1 − 8u. This means, essentially, we assume all indi-

viduals are non-inbred and unrelated initially in the EM process.

2.	 Iteration

We use values of q(t) and Δ(t) at the current iteration, t (≥0), to 
calculate those at the next iteration, t + 1.

(2.1) Expectation, �(t+1)
XYli

. For the pair of genotypes of X and Y at 
locus l, calculate the expected value, �(t+1)

XYli
, of auxiliary variable ZXYli. 

The calculation uses q(t)
l

 and �(t)

XY
 as well as the observed genotypes 

(IIS mode) of X and Y at locus l, as described and exemplified above. 
�
(t+1)

XYli
 is calculated for each of N2 pairs of individuals at each of L loci.

(2.2) Update of IBD coefficients, Δ(t+1). For individuals X and Y, the 
IBD coefficients are updated to Δ(t+1)

XYi
=

1

L

∑L

l=1
�
(t+1)

XYli
 for i = 1, 2, …, 9.

(2.3) Update of non-IBD allele counts, q(t+1). For a pair of geno-
types of individuals X and Y at locus l, the expected count of non-

IBD copies of allele Ai, q
(t+1)

XYli
, can be calculated from �(t+1)

XYl
=

{
ε
(t+1)

XYlj

}
 

for j = 1, 2, …, 9, as listed in Table A2.1. The total number of non-IBD 
copies of allele Ai of locus l across the N2 pairs of individuals is 

q
(t+1)

li
=

�
1

2N

�∑N

X=1

∑N

Y=1
q
(t+1)

XYli
.

3.	 Termination

The iteration described above is repeated until convergence is 
reached. At the end of each iteration, I calculate the quantity

to measure the extent of convergence. The EM is deemed converged 
when 𝜏 < 𝜏t, where �t is the threshold value of error tolerance. In this 
study, I use �t = 0.00001. On convergence, the iteration is terminated 
and the final values Δ(T) are taken as the MLEs of Δ, and the final values 
q(T) are used to calculate the MLEs of allele frequencies, p. For locus l 
with nl alleles, for example, the MLE of the frequency of allele i, pli, is 
calculated by p̂li = q

(T)

li
∕
∑nl

j=1
q
(T)

lj
.

Because of the complexity of the likelihood function, 
Equation  (4), with so many variables, and the nature of the 
EM algorithm (e.g. Wu,  1983), the above described iterations 
could converge to a local maximum rather than a global one. 
It is therefore suggested to repeat the EM algorithm several 
times using different initial values of Δ. Random values of 
�
(0)

XY
 for a random set of individuals (or all individuals) can be 

generated and used to initiate the EM iterations. Multiple EM 
repeats serve two purposes. One is to check whether the algo-
rithm converges to a global maximum or not. When it does, all 
repeats with different �(0)

XY
 values should lead to the same maxi-

mum likelihood and the same MLE of both Δ and p. The other is 
that, in case the algorithm converges to different local maxima, 
we can choose the results from the repeat with the best local 
maximum likelihood. They should be better than results from a 
single random repeat.

The EM algorithm is slow when N and L are large. The number 
of parameters, 9N2 IBD coefficients and 

∑L

l=1
nl allele frequen-

cies, increases quadratically with N and linearly with L. When 
N is large and the relatives are few in the sample such that al-
lele frequencies are well estimated by assuming non-inbred and 
unrelated individuals, we can use likelihood function (2) in place 
of (4) to estimate Δ only. The EM algorithm runs much faster as 
allele frequencies are not updated and IBD coefficients are esti-
mated independently for each pair of individuals. To speed up the 
computation no matter allele frequencies are updated (likelihood 
function (4)) or not (likelihood function (2)), I use openMP and 
MPI to employ hyperthreads and multiple cores of multiple nodes 
in a computer cluster with shared and distributed memories for 
parallel computation.

(A2.4)� =
1

9N2

N∑

X=1

N∑

Y=1

9∑

i=1

∣ Δ
t+1
XYi

− Δ
t

XYi
∣

(
Δ
t+1
XYi

+ Δ
t

XYi

)
∕2

.
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