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Efficiently identifying the most important communities and key transition nodes in weighted
and unweighted networks is a prevalent problem in a wide range of disciplines. Here we focus
on the optimal clustering using variational kinetic parameters, linked to Markov processes
defined on the underlying networks, namely the slowest relaxation time and the Kemeny
constant. We derive novel relations in terms of mean first passage times for optimizing
clustering via the Kemeny constant, and show that the optimal clustering boundaries have
equal round-trip times to the clusters they separate. We also propose an efficient method that
first projects the network nodes onto a 1D reaction coordinate and subsequently performs
a variational boundary search using a parallel tempering algorithm, where the variational
kinetic parameters act as an energy function to be extremized. We find that maximization
of the Kemeny constant is effective in detecting communities, while the slowest relaxation
time allows for detection of transition nodes. We demonstrate the validity of our method on
several test systems, including synthetic networks generated from the stochastic block model
and real world networks (Santa Fe Institute collaboration network, a network of co-purchased
political books, and a street network of multiple cities in Luxembourg). Our approach is
compared with existing clustering algorithms based on modularity and the Robust Perron
Cluster Analysis and the identified transition nodes are compared with different notions of
node centrality.

I. INTRODUCTION

Networks1–8 (or graphs) are a powerful tool to model
systems of many variables, with complex patterns of in-
teractions. Examples are found in virtually every field,
ranging from biology9–14 to finance15–18, from social
sciences19–25 to law26,27 and literature28,29.

Coarse-grained representations of large complex net-
works are often used to gain intuition, which usually re-
quire the identification of clusters (or communities)30–34.
Algorithms for cluster detection in unweighted networks
typically rely on topological features of the network, i.e.,
they depend only on the usually static connection pat-
terns and not on the processes which are taking place
in the networks. Exact approaches consider all the dif-
ferent partitions into sub networks and optimize suitable
quantities such as the so-called modularity35,36. How-
ever, these scale poorly with the size of the system: when
clustering a network with N nodes into a coarse-grained
one with m nodes, there are mN possible partitions.
Many clustering problems therefore require a search in
an exponentially increasing space with the system size,
leading to non-deterministic polynomial-time (NP) hard
problems37,38. Local, incremental, and/or deterministic
search algorithms therefore may be unable to identify
the global optimum, such as most versions of the popu-
lar k-means clustering39, and thus more advanced global
search algorithms are needed.
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Such complexity also arises when performing kinetic
clusterings of Markov processes. These are memoryless
dynamical processes evolving on a finite set of states,
which can be seen as weighted networks, where the nodes
represent the Markov states and the edge weights are
given by the transition rates. In molecular sciences, the
states of such kinetic networks typically represent se-
lected conformational states of the system, e.g. local
minima and saddle points of an energy landscape, and
transition rates between them are defined in terms of
their energy barriers30,40–45. More recently, such dynam-
ical networks are derived from molecular dynamics (MD)
simulations by defining appropriate Markov State Models
(MSMs)46–50. Markov processes have recently become a
prominent tool for modelling and interpreting large simu-
lation data-sets of complex kinetic systems in many other
domains of academia and industry51–53.

Different coarse-graining techniques can be used to
reduce the dimensionality of MSMs. One option is
to group microstates of the system (nodes) together
into macrostates (clusters). These clusters are nor-
mally taken as the metastable states of the system, i.e.,
sets of microstates between which the system is slow
to move. Hence many algorithms for kinetic cluster-
ing are related to maximizing the metastability of the
clusters54–65. Alternative approaches can be used e.g.
spectral matching66,67.

In this work we focus on optimal coarse-graining based
on lumping microstates into clusters. Such clusters are
then used to define coarse-grained versions of the original
system, where the nodes (or states) are the clusters and
the original kinetics is approximated by effective transi-
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tions between clusters68. This leads to a transition rate
matrix in coarse-grained space, whose eigenvalues and
eigenvectors will differ from those of the original tran-
sition matrix, thus resulting in different kinetics. An
alternative to maximizing the metastability of the clus-
ters is to maximize the timescales of the eigenprocesses
in the clustered system, aiming to variationally preserve
the slowest relaxation times.

The Kemeny constant69 describes the expected time
to reach any target microstate, averaged over all mi-
crostates. It can be expressed as the sum of the
timescales of all the eigenprocesses, defined by the eigen-
values of the transition rates matrix. It was shown that a
coarse-grained MSM satisfies a variational principle with
respect to the Kemeny constant70. Hence, the Kemeny
constant is an obvious candidate as a variational parame-
ter to be maximised when performing clustering, as con-
jectured in recent literature71–73.

In addition to clusters, the notion of transition states is
of particular importance in the context of MSMs: these
are bottleneck states which the system passes through
while moving between the metastable clusters. A re-
lated notion in network science is the one of node cen-
trality. Different measures of node centrality have been
introduced to characterise nodes linking between two or
more clusters, e.g., betweeness74 and closeness75 central-
ity, however these are based on topological features of
the network and disregard kinetics information, hence
their use to automatically identifying transition states
in kinetic and, more in general, weighted networks, re-
mains unclear. In earlier work, it was demonstrated
that the slowest timescale in kinetic networks can be
used as a variational parameter for finding transition
states effectively76,77, however the algorithm developed
in Ref. 76 was inefficient when scaled to high-dimensional
systems.

In this work, building on the framework developed in
Refs. 70 and 76, we propose a new clustering method
based on the optimization of the Kemeny constant of the
coarse-grained system, which satisfies a variational prin-
ciple with respect to the original dynamics and is effec-
tive in finding metastable clusters. We derive properties
of the optimal boundary positions in terms of mean first
passage times (MFPTs). We find that in the optimal
clustering of large complex networks each node belongs
to its nearest cluster measured via round-trip times dis-
tance.

Our novel implementation aims at accelerating the
search for optimal clustering using parallel temper-
ing78–80, which is an efficient global and stochastic op-
timisation based on interpreting the target function to
optimize as a physical energy and coupling the optimiza-
tion process to several artificial heat baths in parallel81,82.
Our algorithm can similarly be applied to optimize other
objective functions, including the slowest timescale used
in Ref. 76 to detect transition states. In this way, we
provide a computationally efficient way to automatically
detect communities as well as transition clusters in com-
plex networks, based on kinetic properties of network
processes.

In section II we lay down the theoretical framework
of the present work by describing the concepts of net-

work clustering for kinetic and unweighted networks. In
section III we present new analytical expressions for the
derivative of the Kemeny constant with respect to the
cluster boundary positions for arbitrary number of states,
and show that the optimal boundaries correspond to
equal round-trip times between the clusters they sep-
arate. We also present a clustering algorithm, that
we name the ”parallel tempering variational clustering”
(PTVC), for optimizing clusters using arbitrary objec-
tive functions on complex networks, based on the parallel
tempering method used in statistical physics. Finally in
section III D we compare clustering resulting from opti-
mizing different objective functions i.e. Modularity, Sta-
bility, and Kemeny constant, as well as using the Perron
cluster analysis on synthetic and real-world networks.

II. THEORY

A. Clustering in complex networks

When working with large or complex networks, one of-
ten encounters problems with visualisation and interpre-
tation of observations due to the absence of a low dimen-
sional space to project the graph onto. Often, it is help-
ful to convert a large network into a smaller one, while
preserving the features of interest from the original net-
work. This conversion is known as network clustering,83

coarse-graining84, or graph partitioning85, and is equiva-
lent to assigning each node of the graph to a community
(cluster)86.

The clustering of an N -node network into m clusters
can be formally defined by a rectangular N × m crisp
assignment matrix S, where each entry SiI ∈ {0, 1} indi-
cates whether (1) or not (0) node i ∈ {1, . . . , N} belongs
to cluster I ∈ {1, . . . ,m}, satisfying

∑m
I=1 SiI = 1.

Choosing S optimally usually entails maximizing or
minimizing a certain objective function, which depends
on the partitioning itself. It has been widely accepted
that the objective function to use depends on the system
modelled by the network and the exact task at hand,
hence many metrics have been introduced to quantify
clustering quality,87,88 which can be separated into two
classes: topology-based and kinetics-based. Kinetic clus-
tering uses kinetic properties of Markov processes and
it is widely used to cluster kinetic networks, whereas
topology-based clustering relies on structural properties
of the network and it is more common with unweighted
networks.

1. Kinetic networks

Any finite Markov process can be modelled as a
weighted directed network, also called kinetic network,
where nodes represent the discrete states of the Markov
process and edge weights represent the transition rates
between different states. The state occupancy proba-
bilities evolve according to the Master equation, which
relates their rate of change to the difference in the prob-
ability flux in and out of the states
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dpj(t)

dt
=
∑
i( 6=j)

[
Kjipi(t)−Kijpj(t)

]
(1)

where pj(t) is the occupancy probability of state j and
Kji is the transition rate from state i to state j, with
Kjj = −

∑
i(6=j)Kij being the rate of exits from state j.

Inserting this definition into Eq. (1) one arrives at the
matrix form

dp

dt
= Kp . (2)

All of the kinetic information of the system is encoded
in the eigenvalues λn of the rate matrix K, where n ∈
{1, . . . , N} for a system with N states, and their corre-
sponding (right and left) eigenvectors.

If the Markov process is irreducible, one of the eigen-
values will be zero and the rest will all have a negative
real part. We will focus on systems satisfying detailed
balance, where the eigenvalues are guaranteed to be real
and can be ordered as follows

0 = λ1 > λ2 ≥ ... ≥ λN (3)

From Eq. (2) it can be seen that the stationary (equi-
librium) distribution π is given by the right eigenvector
corresponding to the zero eigenvalue λ1. The other eigen-
values are related to the timescales τn with which the rate
matrix moves probability density between the oppositely
signed regions of the corresponding eigenvector89

τn = − 1

λn
n ∈ {2, . . . , N} . (4)

When the Markov process evolves at discrete times
t = nτ (n ∈ N), the evolution of the state occupancy
probabilities is formulated in terms of the Markov chain

p(n) = Mn(τ)p(0) (5)

where p(n) is the probability at time step n and M(τ)
is the matrix of transition probabilities between pairs of
states over the lagtime τ . Trivially Eq. (5) is equivalent
to Eq. (2) when identifying M(τ) = eKτ .

2. Unweighted networks

Unweighted networks are defined by an adjacency ma-
trix A, where each entry Aij ∈ {0, 1} determines whether
(1) or not (0) an edge is present between nodes i and j,
for i, j ∈ {1, . . . , N}. In general a network may be di-
rected. For undirected networks the adjacency matrix is
symmetric, i.e., Aij = Aji ∀ i, j.

It is possible to define a diffusion process on an un-
weighted network to transforms it into a kinetic network.
This allows for the application of kinetic clustering meth-
ods. For diffusion processes on unweighted networks, the
rate matrix K is given by the random walk normalized

Laplacian matrix L90 via K ≡ −L. The matrix L is
defined by

L ≡ I−A∆−1 (6)

where I is the identity matrix and ∆ is a diagonal matrix

with elements ∆ij = diδij , where di =
∑N
j=1Aij is the

degree of node i.
Alternatively, one can define a discrete-time random

walk on the network links, by means of the transition
matrix

M(τ) =
(
A∆−1

)τ
(7)

for an arbitrary integer lagtime τ .
Since the Laplacian (or, equivalently, the transition

matrix given in Eq. (7)) is fully determined by the ad-
jacency matrix, kinetic clustering based on diffusion or
random walks is to make contact with topology-based
clustering, relying purely on network structure.

B. Modularity

A popular metric to assess the quality of a cluster
assignment S in unweighted networks, is the network
modularity.35,91 For undirected networks, the modular-
ity Q is defined as

Q(S) =
1

Nd̄

m∑
J=1

∑
i,j

SiJ

(
Aij −

didj
Nd̄

)
SjJ (8)

where

d̄ = N−1
N∑
i=1

di

is the average degree of the network.
The most widely used methods to cluster unweighted

networks aim at finding the assignment matrix S that
maximizes the network modularity Q, and several greedy
optimization algorithms have been developed to handle
large networks with over 100 million nodes92,93.

However, the modularity suffers from a well-known res-
olution limit94 which prevents it from resolving small
communities, and it has been recently criticised as a met-
rics for information recovery in a network95. Moreover,
modularity is only based on structural properties of net-
works, hence it does not take into account the kinetic
process that a network may support. However, it has
been shown to be equivalent to a kinetic clustering qual-
ity metric named stability96, when applied to diffusion
processes on unweighted networks.

C. Kinetic clustering

Optimizing kinetic clustering by lumping together mi-
crostates and defining the best cluster assignment S can
be achieved via appropriate objective functions, which
are designed to enforce desired kinetic properties in the
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coarse-grained system. Usually they depend on the spec-
tral properties of the Markov process (or Markov chain)
defined in the original state space. A prominent example
is the popular Perron cluster-cluster analysis (PCCA)56,
and its improved version PCCA+, introduced by Deufl-
hardt and Weber62,97–99. An alternative approach is to
optimize objective functions that encode spectral prop-
erties of the coarse-grained dynamics83,100. An advan-
tage of this method is that certain spectral quantities of
the coarse-grained dynamics satisfy a variational princi-
ple with respect to the original dynamics70,101, and thus
provide a framework for performing a clustering that is
variationally optimal.

Below, we review these methods and, building on the
framework presented in Ref. 70, we propose a new clus-
tering method based on the optimization of the Kemeny
constant of the coarse-grained system.

1. Coarse-grained Markovian processes

Coarse-graining a Markov process formally corre-
sponds to projecting the Markovian dynamics onto a
lower dimensional space, which generally introduces
memory effects and consequently loss of the Marko-
vian property. Hence a question arises as to what the
best Markovian approximation is of the resulting non-
Markovian dynamics.

For a given clustering S, it has been shown that pro-
jections preserving detailed balance are those for which
the Laplace transformed equilibrium correlation matrix

Ĉ(s) =

∫ ∞
0

C(τ)e−sτdτ (9)

in the original and clustered systems satisfy the following
relation77

ĈCG
JI (s) =

N∑
ij=1

Ĉji(s)SiISjJ . (10)

The entries of the correlation matrix C(τ) are the equilib-
rium connected correlation functions Cij(τ) of the state
occupancy for every pair of states (i, j), in the original
Markovian system, defined as

Cji(τ) = Mji(τ)πi − πiπj (11)

and CCGJI (τ) is the equilibrium connected correlation
function of the cluster occupancy for the pair of clusters
(I, J), in the coarse-grained system.

The definition of an effective Markovian dynamics in
the lower dimensional space requires approximations in
which Eq. (10) is only satisfied in specific limits. Dif-
ferent definitions have been considered for an effectively
Markovian coarse-grained dynamics, which correspond to
different requirements on the correlation function of the
coarse-grained system. These include the local equilib-
rium (LE), and the recently introduced Hummer-Szabo
(HS)102 method.

The local equilibrium (LE) reduction method is a pop-
ular choice, with numerically stable implementations also

available via graph transformation103. It consists in
equating the correlation matrices at a specific finite value
of τ

CLEJI (τ) =

N∑
ij=1

Cji(τ)SiISjJ . (12)

Note that this means that the correlation matrices will
depend on the lagtime τ and that, depending how the
correlation is used to obtain a clustering S, the optimum
result may depend on τ . The equation reads, in matrix
form,

CLE(τ) = STC(τ)S (13)

Hence, it corresponds to the s → ∞ limit of Eq. (10).
Equation (13), by using Eq. (11) and a corresponding

one for CLE(τ), provides a relation for the transition
matrix MLE(τ) of the coarse-grained dynamics

MLE(τ)DΠ = STM(τ)DπS (14)

where Dπ and DΠ are diagonal matrices with the station-
ary distributions of the original and coarse-grained sys-
tems on the diagonal, respectively. Thus, DΠ = STDπ.

On the other hand, the Hummer-Szabo (HS) method
equates the integral of the correlation matrices over all
lagtimes τ and thus it corresponds to the s→ 0 limit of
Eq. (10):∫ ∞

0

CHSJI (τ)dτ =
∑
i∈I

∑
j∈J

∫ ∞
0

Cji(τ)dτ (15)

In matrix form, we have

ĈHS = ST ĈS (16)

where we have used the short-hand notation Ĉ = Ĉ(0)
to denote the time-integrated connected correlation func-
tion.

Equation (16) provides a different definition of the
coarse-grained dynamics with respect to Eq. (13), for the
same clustering S, and it leads to a formulation of the
coarse-grained dynamics, that in continuous time is given
in terms of the rate matrix104

KHS = STπ1Tm −DΠ(ST (π1N −K)−1DπS)−1 (17)

where 1m is a vector of length m with entries equal to
one. The HS method is known to provide numerically
equivalent results to the LE method at long lagtimes, in
many model systems105.

In the present work we will use the HS definition of
the coarse-grained dynamics, as it does not require the
choice of a specific lag-time, it guarantees that MFPTs
in the clustered dynamics match the weighted MFPTs
of the microscopic dynamics70 and it has been shown to
replicate the dynamics of the original system more closely
than the LE method104.

Below, we review different methods to identify the clus-
ter assignment S.
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2. Stability

The approach proposed by Barahona et. al.96,106 to
perform a kinetic clustering, is to maximize a quantity
called stability, defined as the sum of the connected au-
tocovariances of the clusters J at a specific lagtime τ

ΩS(τ) ≡
m∑
J=1

CLEJJ (τ) = Tr(CLE(τ)) (18)

where CLE is calculated using the LE method as in
Eq. (13). The authors have shown that, for a random
walk on an unweighted non-directed network, such that
M is given in Eq. (7) and πi = di/Nd̄, this quantity
is equivalent to the network modularity when the time
parameter τ is set to one

ΩS(1) =

m∑
J=1

∑
i,j∈J

(
Aji
di

di
Nd̄
− di
Nd̄

dj
Nd̄

)
= Q (19)

The authors of the method have proposed to optimize the
quantity defined in Eq. (18) over the assignment matrix
S for varying values of τ .

Since the optimal number of clusters decreases mono-
tonically when increasing τ , this approach introduces a
dependence of the optimal clustering on the parameter
τ , which controls the resolution of the clustering. This
allows for the identification of multiple clusterings, with
finer or coarser structure, for a single network, but it
increases the overall computational cost by requiring to
optimize the clustering for each value of τ , to identify the
relevant number of clusters96.

3. Perron clustering

The Perron cluster-cluster analysis (PCCA) is a
method for identifying communities or clusters in nearly
uncoupled Markov chains56. It exploits the fact that
in uncoupled Markov chains, characterized by a block-
diagonal transition matrix, the entries of the left eigen-
vectors are constant on each cluster. This allows to re-
group nodes following the sign structure of the left eigen-
vectors. The assumption is that this sign structure re-
mains stable under small perturbations, i.e. the transi-
tion matrix remains block-diagonal dominant, so that a
similar regrouping is possible in nearly uncoupled Markov
chains.

The original method has been shown to suffer from
lack of robustness, and the PCCA+ has been developed
to use in practical applications62. The main difference
from PCCA is the introduction of a soft (fuzzy) assign-

ment matrix Ŝ, where each node i is assigned a cluster-
ing vector of length m (number of clusters) satisfying the
conditions of positivity and partition of unity

ŜiI ∈ [0, 1] ∀ i, I (20)
m∑
I=1

ŜiI = 1 ∀ i (21)

hence interpretable as the probability of node i to belong
to each cluster99.

The main assumption of PCCA+ is that the assign-
ment matrix Ŝ can be related to the eigenvectors of the
transition matrix of the original system, by a transfor-
mation matrix T ∈ Rm×m via

Ŝ = XT (22)

where X = [ΨL
1 , ...,Ψ

L
m] ∈ Rn×m and ΨL

k is the left
eigenvector of the transition matrix associated to the
k-th largest eigenvalue, normalised in such a way that
XTDπX = I. The clustering problem then consists in
finding the matrix T that optimizes an objective func-
tion under the constraints defined in Eq. (22), Eq. (20)
and Eq. (21). Optimizing T, rather than S, leads to a re-
duction of the number of variables to be optimised from
(n×m) to (m2).

Weber originally proposed the objective function, here
denoted as ΩPCCA+W ,

ΩPCCA+W ≡ Tr
(
ŜTM(τ)DπŜD−1

Π

)
(23)

which can be written, for crisp assignment S, as the trace
of the coarse-grained transition matrix obtained using the
LE method defined in Eq. (14)97.

However, it was noted in Ref. 98 that the interpreta-
tion of ΩPCCA+W as the trace of a coarse-grained tran-
sition matrix is not valid for soft assignment matrices, so
Roblitz proposed a new objective function99

ΩPCCA+R ≡ Tr
(
ŜTDπŜD−1

Π

)
= Tr

(
TTTD−1

Π

)
(24)

where the second equality uses Eq. (22) and normaliza-
tion of the eigenvectors matrix X. Given the property of
Ŝ stated in Eq. (21), the matrix ŜTDπŜD−1

Π is stochas-
tic, hence its trace is upper bounded by its dimension m,
with the value m being attained by any crisp clustering
S. Thus, maximizing ΩPCCA+R is equivalent to making
the clustering Ŝ as crisp as possible.

As the maximization of Eq. (24) over the entries of
T is subject to the constraints Eq. (22), Eq. (20) and
Eq. (21), the optimal T will depend on the eigenvectors
of the transition matrix M(τ), through X. Since in a
truly Markovian system the eigenvectors of the transi-
tion matrix are independent of the lagtime τ , there is, in
principle, no need to optimize over different values of τ ,
as in the stability method. However, it has to be noted
that molecular simulations often exhibit non-Markovian
behavior, hence a dependence on the lagtime is expected
in practice, when Markov matrices are constructed using
simulation data.

In most applications, the PCCA+ objective function
defined in Eq. (24) is used. In our implementation of the
PCCA+ method, we made the same choice and used the
efficient Schur decomposition to compute X, following
Weber et al.107,108.

4. Slowest timescale

Recently, a variational kinetic clustering has been pro-
posed in Ref. 76, that uses crisp assignment matrices and
aims to maximize the second largest eigenvalue of the
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clustered dynamics. It was shown that this method is
effective in identifying transition states, alongside to key
metastable states.

This approach has been shown to be variationally op-
timal in Ref. 77, where it was proven that the slowest
timescale of the clustered system is always smaller or
equal to the one of the original network

τorig2 ≥ τCG2 (25)

regardless of the protocol (LE or HS) used to coarse-grain
the dynamics.

However, the method has only been tested on sys-
tems that contain either a small number of metastable
states, or a spectral gap between the slowest and second
slowest timescales. The performance of this method on
systems with several metastable states, where τn ≈ τ2
for n > 2, remains to be investigated. The existence
of multiple slow processes of similar timescale may re-
quire a variational parameter which incorporates multi-
ple timescales. An interesting generalization of the slow-
est timescale would be considering an objective function
that is the sum of the largest relaxation times

ΩSum(h) ≡
h+1∑
i=2

τCGi (26)

where h is the number of timescales considered.

5. Kemeny Constant

In Markovian systems the sum of all timescales is
known as the Kemeny constant, which is also equivalent
with the weighted sum of all mean first passage times
(MFPTs) tji from a selected state i to all other states j,
where the weights are the equilibrium populations πj of
the target states j70,109,110

ζorig ≡
N∑
n=2

τn =
N∑
j=1

πjtji (27)

Remarkably, the result is independent of the choice of the
initial state i69.

Since the MFPTs in a Markovian system can
be expressed in terms of time-integrated correlation
functions70, the Kemeny constant can be expressed as
the trace of a matrix called ”deviation matrix” or ”fun-
damental matrix”, which is related to the time-integrated
correlation matrix:111

ζorig = Tr(ĈD−1
π ) . (28)

The Kemeny constant of the coarse-grained system can
be written similarly, and it will depend on the protocol
used to coarse-grain the dynamics. For the HS method,

ζHS = Tr(ST ĈSD−1
Π ) . (29)

In Ref. 70, it was shown that the Kemeny constant of the
system clustered according to the HS method is bounded
by the value of the Kemeny constant in the original sys-
tem. In particular, the Kemeny constant of the initial

and clustered systems are related by a transparent rela-
tion, when the HS reduction method is applied70

ζHS = ζorig −
m∑
J=1

1

ΠJ

∑
j∈J,i∈J

πjtjiπi (30)

The second term on the right-hand side represents the
expectation value of the MFPTs if two states are drawn
from within the same cluster with their equilibrium prob-
abilities. This term vanishes when each cluster consists
of only one node (i.e. no clustering is performed) and, for
a fixed number of clusters, it becomes smaller as the clus-
ters become increasingly metastable, i.e., intra-cluster
dynamics is fast as compared to all time scales. The
relation above shows that maximizing the Kemeny con-
stant of the clustered system, for a fixed number of clus-
ters, leads to a variationally optimal partitioning, aimed
at identifying the clusters with fastest intra-cluster (and
the slowest inter-cluster) dynamics.

In conclusion, the Kemeny constant appears to be an
objective function that quantifies the metastability of the
coarse-grained system, similarly to the modularity, sta-
bility, and PCCA+W, however, it has a few advantages
when compared to the other measures. One advantage
is that it accounts for the information about the system
dynamics at all lagtimes, via the integrated correlation
function Ĉ, so that it does not rely on the choice of a
particular lagtime τ . In addition, it is variationally opti-
mal and it has a simple interpretations in terms of other
kinetic quantities, such as the system timescales and the
mean first passage times. Such relations allow for the
derivation of explicit formulae for the optimal position of
the cluster boundaries that maximize the Kemeny con-
stant in simple systems, e.g., diffusive processes on 1D
potential, as shown in Sec. III A. These features make
the Kemeny constant an attractive quantity for the de-
tection of metastable clusters in both, kinetic and un-
weighted networks.

D. Parallel tempering

Considering the case of clustering a network with N
nodes into a coarse-grained one with m nodes, results
in mN possible partitionings. Hence exact clustering al-
gorithms scale poorly with the size of the system, with
most clustering problems known to be NP-hard38, there-
fore one often uses approximate algorithms to obtain a
solution efficiently.

One approach, known as the Louvain method,92,112 is
to iteratively join clusters together until the objective
function (modularity) is maximized. Although this ap-
proach is fast to execute, it is not readily applicable to
many objective functions, such as the Kemeny constant,
which always decreases when joining clusters together,
following Eq. (30).

Another approach to reducing the complexity of the
cluster assignment, consists in defining an ordering for
the nodes in the network, i.e., in projecting the nodes
onto a one-dimensional space. Subsequently, the task of
finding m optimally selected subsets in a network of N
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nodes, is reduced to finding m−1 separating boundaries.
Two spaces that have been used for the projections are
the eigenvector associated to the slowest process, and
the committor probability with respect to the two most
“distant” nodes in the network, often defined as the pair
(i, j) with the largest MFPT, tij . This however requires
the computation of the MFPTs for all the nodes in the
network, which has a large computational cost for large
networks.

The problem of extremizing a function dependent on
the cluster assignment of the nodes in a network is very
common in statistical physics. In particular, assigning a
cluster to a node is equivalent to assigning a spin value
to a node in the Potts model113–115, hence one can apply
methods devised in statistical physics to simulate large
physical systems for the task at hand.

Parallel tempering78,79,116–118 is a simulation
method119 that was developed for the purpose of
studying physical systems coupled to a heat bath over
extended temperature intervals, in particular down to
small temperatures. It consists in running s parallel
simulations of the same system, i.e., different replicas,
each at a different temperature120 and allows replicas
to be exchanged between neighbouring temperatures.
This results in the high temperature replicas exploring
the configuration space freely while the low temperature
replicas exploring the low energy regions more exten-
sively, hence overall reducing the time to escape from a
local minimum of the energy. When concentrating on
the sampled configurations of replicas while being at the
very low temperatures, the approach was in particular
used to find the global minimum energy configurations of
complex physical systems, for example for spin glasses,
which is NP-hard.121 Clearly, any objective function
of a system to be optimized can be considered as an
”energy” which allows one to use parallel tempering as
a general-purpose optimization method81,82.

Here, we use the algorithm to obtain clusterings, there-
for we use a corresponding notation. In detail, every
simulation of a replica α evolves according to a standard
Metropolis-Hastings algorithm. This means, one gener-
ates a Markov chain S(0) → S(1) → . . . of clustering con-
figurations (we omit the α here for brevity), which is not
to be confused with the Markov chains of the MSM. For
a given clustering S = S(l) at ”time” l, exhibiting energy
E = E(S(l)), a trial configuration S′ is randomly con-
structed, where the corresponding energy is denoted as
E′. Typically S′ is obtained by a random small change to
S. The construction probability that S′ is obtained from
S is denoted as C(S → S′). Often this is constant, but
not always. Now, the trial configuration will become the
next configuration in the Markov chain, i.e., S(l+1) = S′

with the acceptance probability p
(α)
acc that depends on the

difference between the energies E and E′ and on the tem-
perature T (α) of the replica α

p(α)
acc = min

(
1, e(E−E

′)/kBT (α) C(S′ → S)

C(S→ S′)

)
(31)

where kB is the Boltzmann constant. Otherwise, with

probability 1 − p
(α)
acc , the current configuration will be

kept, i.e. S(l+1) = S(l). Note that the fraction is one

if the construction probability is constant. This choice
for the acceptance probability ensures detailed balance
between neighboring configurations at the same temper-
ature, hence leads to convergence to the Boltzmann equi-
librium measure. A standard time unit in this standard
simulation is a sweep. Within a sweep, each degree of
freedom is allowed to be changed on average once within
a trial configuration.

At regular time intervals, typically after a sweep for
each replica is performed, configurations at different tem-
peratures (in different replicas) are interchanged with a
probability

pαβ = min

(
1, e

(E(α)−E(β))
(

1

kBT
(α)
− 1

kBT
(β)

))
(32)

where α and β are the indices of the simulations being
interchanged and E(α,β) are the energies of the config-
urations in replicas α and β, respectively. Here again
detailed balance is guaranteed, hence the simulation will
equilibrate with respect to the product measure of two
neighboring replicas. In practice, one usually only con-
siders moves between replicas where the temperatures
are direct neighbours in the ordered list of temperatures.
This applies to all pairs of (neighboring) temperatures,
i.e., for the full system.

The temperature set {Tα} needs to be specified. A
standard rule of thumb is that the empirical acceptance
frequency of an exchange between neighbouring temper-
atures should be roughly 0.5. Usually one performs short
test simulations for various sets of temperatures. Thus,
if the observed frequency is too small, one would move
the respective two temperatures closer to each other, pos-
sibly one has to increase the number s of temperatures.
For very high acceptance frequencies, it is opposite. Typ-
ically, this results in sets where at low temperatures the
differences between neighbouring temperatures are small,
while at high temperatures, the differences are large. In
the present work, we follow the same main idea, but use
a different protocol as explained in Sec. III B.

III. RESULTS

A. Analytic maximization of the Kemeny constant

In this work we propose to use the Kemeny constant
of the coarse-grained dynamics as the objective function
to maximize, in order to identify the optimal clustering.
Given that the Kemeny constant is related to MFPTs by
a simple relation, it turns out that for systems diffusing in
a 1D potential, one can calculate analytically the position
of the optimal boundaries between clusters.

1. Diffusion in 1D symmetric potential: 3-state clustering

In this section we consider a 1D system diffusing in
a symmetric potential U(x). We first consider cluster-
ing the system into three clusters. Since the potential is
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FIG. 1: Three-state clustering of system diffusing on symmetric 1D double well (a) and triple well (b)
potentials (black line, y axes on right in kcal/mol units). The dashed lines show the boundary positions

corresponding to maxima of the relaxation time τCG
2 (red diamonds, dashed red line) and Kemeny constant ζCG

(blue squares, dashed blue line) in the clustered system. Symbols highlight the end points of these lines. ∆ζ
(blue curve with squares) defined via the relation in Eq. (35) and ∆τ2 (red curve with diamonds) defined via

Eq. (43) are plotted against the boundary position. The zeros of ∆ζ and of ∆ζ yield the corresponding optimum
boundary positions, respectively. The inset shows ζCG (blue squares) and τCG

2 (red diamonds).

FIG. 2: Three-state (a) and four-state (b) clustering of system diffusing on symmetric (a) and asymmetric (b) 1D potentials

(black line, y axes on right in kcal/mol units), respectively. Colored dashed lines show the boundary positions corresponding

to the global maximum of ζCG, found by exhaustive search. Dashed lines show ∂ζCG/∂bJ with each color (blue, red or green)

and associated symbol (square, diamond and x) corresponding to a different value of J (1, 2, 3, respectively), were computed

using Eq. (45) for all possible positions of bJ ∈ (bJ−1, bJ+1) when the optimal positions bI for all I 6= J are kept fixed.

symmetric, we assume that the position of the bound-
aries separating the clusters are also symmetric, and po-
sitioned at −a and a, where 0 is the center of the 1D
space. It is the aim of the clustering to determine the
most suitable cluster boundary a.

Considering the definition of the Kemeny constant in
Eq. (27), taking the central cluster, denoted ”2” and con-
taining the region (−a, a), as the starting state, and using
the symmetry of the boundaries, we obtain



Variational Kinetic Clustering of Complex Networks 9

ζCG = 2Π1t
CG
12 (33)

where Π1 is the equilibrium occupation probability of
cluster 1, which is equal to Π3 by symmetry, and tCG12 is
the MFPT from I = 2 to J = 1 in the coarse-grained sys-
tem. In Ref. 70 we have derived an expression for tCGJI for
discrete-state Markov processes. By replacing summa-
tions with integrals in that expression, we can similarly
write, for Markov processes in continuous space,

tCGJI =
1

ΠIΠJ

∫
I

dx

∫
J

dy π(y)tyxπ(x) (34)

− 1

Π2
J

∫
J

dx

∫
J

dy π(y)tyxπ(x)

where π(x) = e−U(x)/kT /Z is the Boltzmann distribution
and Z =

∫
dx e−U(x)/kT is the partition function.

Both Π1 and tCG12 are dependent on a, and one can
maximize ζCG with respect to the position of the bound-
ary a, by equating ∂ζCG/∂a to zero, which results in the
following relation (see Appendix A)

Π1t−aa − t̄a2 +
Π2

Π1
t̄−a1 = 0 (35)

where

t̄xI =

∫
I

dy
txyπ(y)

ΠI
(36)

denotes the MFPT from cluster I to a single position x.
Moreover, we can write (see derivation in Appendix A)

∂ζCG

∂a
= 2π(a)[tRT3a − tRT2a ] (37)

where

tRTJα = t̄αJ + t̂Jα (38)

represents the round-trip time122,123 between the single
position of the boundary α and the cluster J , with t̂Jα
defined in Eq. (A16). This quantity naturally provides a
distance metric based on mean first passage times, as it
satisfies the symmetry property tRTIJ = tRTJI and the tri-
angle inequality. Interestingly, the round-trip times for
two-state systems have been related to the flux between
the two states124. Moreover, round-trip times, also called
commute times, have been previously considered for
clustering125,126 and applied for image classification127.

From Eq. (37), it is clear that the optimal position of
the boundary a is such that the round-trip times from
the clusters that it separates are equal:

∂ζCG

∂a
= 0 ⇔ tRT3a = tRT2a (39)

By symmetry, −a makes the round-trip times tRT1−a and

tRT2−a equal.
To test the result in Eq. (35) on numerical examples,

we consider systems diffusing in 1D double- and triple-
well potentials of mean force (PMF), given by

U(X) = cos(α(X + π)) + e−X
2

X ∈ [−π;π] (40)

where α = 2, 3 is the number of wells (local minima).
To map the continuous motion in 1D to a Markov pro-

cess on a linear chain, we discretize the configuration
space X in N bins, that we label with i. We define the
transition rates governing the motion between the bins
as Kji = 0 for j 6= i± 1 and

K(i±1)i = Ae−[U(i±1)−U(i)]/2kBT (41)

where A is a constant set to 1, T is the temperature of
the system, set to 298 Kelvin in our examples.

Then the MFPT matrix t is obtained from the transi-
tion rates matrix K using the formula70

tji =
1

πj

[
(π1Tn −K)−1

jj − (π1Tn −K)−1
ji

]
. (42)

From these, ζCG is computed by using the definition of
the Kemeny constant ζCG =

∑
J 6=I ΠJ t

CG
JI and Eq. (34)

for the coarse-grained MFPTs. In addition, the LHS of
Eq. (35), denoted as ∆ζ, is computed for each value of
the boundary position a, using Eq. (42).

Fig. 1 shows ∆ζ as a function of the boundary posi-
tion a and the position of the boundaries for which ζCG

is maximized, for α = 2 panel (a) and α = 3 panel (b) re-
spectively. At these positions, ∆ζ vanishes as expected.
For comparison, the optimal boundary position resulting
from the maximization of the slowest timescale of the
clustered system, τCG2 , are shown in the same plot. We
compute τCG2 for each value of a using the relation101

τCG2 = Π1t−aa + t̄−a1. The boundary position that max-
imizes τCG2 is known to satisfy101:

Π1t−aa − t̄−a1 = 0 (43)

The left hand side of Eq. (43), denoted with ∆τ2, is seen
to vanish at the positions that maximize τCG2 , as ex-
pected.

When the number of potential wells (i.e. metastable
states) is lower than the number of clusters, both meth-
ods identify a transition cluster, which is broader when
the Kemeny constant is maximized. Conversely, when
the number of potential wells is greater or equal than the
number of clusters, the two methods lead to very similar
boundaries positions, which are found around the top of
the potential barriers (Fig. 5). The approach presented
here assumes a symmetric potential and symmetrically
placed optimal boundaries. In the next section, we relax
these assumptions and develop a more general method,
applicable to an arbitrary number of boundaries and clus-
ters.

2. Diffusion in 1D potential: m-state clustering

Next, we consider coarse-graining a system diffusing in
a 1D asymmetric potential into m states. When consid-
ering motion in a continuous one-dimensional space, with
clusters defined by the positions of the separating barriers
bL, we can compute the derivative of the coarse-grained
Kemeny constant with respect to any barrier position bL:

∂ζCG

∂bL
= π(bL)

[
tRTbL(L+1) − t

RT
bLL

]
(44)
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Where π(x) is the probability density function of the po-
sition in space, and tRT

Jα is the round-trip time given in
Eq. (38). See the full derivation of the result in Ap-
pendix B.

From Eq. (44), it is clear that the position of the barrier
bL maximises the coarse-grained Kemeny constant when
bL is at equal round-trip distance from cluster L and
cluster L+ 1.

3. Random walk on linear chain: m-state clustering

In the case of a 1D lattice, or linear chair, we can
obtain a computationally efficient formula for the finite
difference ∆ζCG when moving each boundary position
bJ , J = 1, ...,m − 1 from cluster J + 1 to J (that is the
discrete-space analogue of the partial derivatives of the
Kemeny constant with respect to the barrier positions).
This is found to be (see Appendix C for details):

∆ζCG(bJ , J + 1→ J) =

πbJ ×

∑S<J ΠS

Π2
J

∑
j∈J

πjtjbJ −
∑
S≥J ΠS

Π2
J

∑
i∈J

πitbJ i

+

∑
S≤J+1 ΠS

Π2
J+1

∑
i∈J+1

πitbJ i −
∑
S>J+1 ΠS

Π2
J+1

∑
j∈J+1

πjtjbJ


(45)

The optimal boundary positions correspond to the set of
boundaries where ∆ζCG(bJ , J + 1→ J) is closest to 0.

To test the results of Eq. (45) on analytical poten-
tials, we first identify the optimal solution by exhaustive
search, represented by the vector b∗ = (b∗1, b

∗
2, ..., b

∗
m−1).

We then compute the values of ∆ζCG(bJ , J + 1→ J) for
all possible positions of bJ between the optimal bound-
aries b∗J−1 and b∗J+1, where the remaining boundaries

b∗(J) = (b∗1 . . . b
∗
J−1, b

∗
J+1 . . . b

∗
m−1) are kept constant. To

this purpose, we considered the symmetric three-well po-
tential defined by Eq. (40) with α = 3, and an asym-
metric four-well potential with barriers of varying height,
defined by

U(X) = 0.1X(cosX − 1) ∀X ∈ [0, 8π] (46)

For the symmetric three-well potential (Fig. 2a) the
boundary positions that maximize ζ are found at the two
local maxima of the potential, consistently with results
from Fig. 1a. This is also the case in the asymmetric four-
well potential (Fig. 2b), where the optimal boundary is
identified at the top of the barrier. In both examples,
the optimal positions coincide with the locations where
the numerical derivative given in Eq. (45) is theoretically
predicted to vanish (Fig. 2 colored curves with symbols).

4. Random walks on complex networks: m-state clustering

The result provided in Eq. (44) extends to higher di-
mensional lattices and complex networks. Several im-
portant processes can be modelled as random walks on

complex networks. These include diffusive processes in
higher dimensions: upon discretizing the configuration
space of such systems in N states, there are in general
multiple paths between two states i and j, as described
by the links of a networks.

Using the assumption that the population of the se-
lected node is small compared to the cluster populations,
πα � ΠA and πα � ΠB , we find that the change in
the coarse-grained Kemeny constant upon moving node
α from cluster A to B is given as:

∆ζCG(α,A→ B) = πα
[
tRTαA − tRTαB

]
(47)

where πα is the equilibrium probability of node α (see
derivation in Appendix D). We note that in contrast to
linear chains, in complex networks there is no natural 1D
ordering of nodes, hence the analytical expressions given
by Eq. (45) do not hold as they rely on relations of the
type tba = tbj+tja ∀ j ∈ (a, b), which are valid only when
all transitions between a and b go via the intermediate
state j.

Based on our final results from Eq. (47), the optimal
assignment of node α will be the closest cluster as mea-
sured via the round trip time distance (assuming that the
individual population of α is small compared to those of
the clusters). Otherwise, we could increase the Kemeny
constant by moving α from its current cluster to another
one, to which its round trip time is smaller. Therefore,
in an optimal clustering of a large complex network that
maximizes the Kemeny constant, each node belongs to its
nearest cluster measured by the round trip time distance.

B. Parallel Tempering Variational Clustering

Here we propose to use a parallel tempering approach
for finding the clustering that optimizes an arbitrary ob-
jective function.

In the context of network clustering, we replace the
energy term Eα in Eq. (31) and Eq. (32) by the objective
function one aims to optimize. The temperature Tαi is
a parameter that governs the acceptance probability of
a change in clustering assignments, such that the larger
Tαi , the higher the probability of accepting a move that
does not improve the objective function.

To generate an initial starting configuration for the
parallel tempering algorithm, we generate an easy to ob-
tain clustering. Therefore, we first find a one-dimensional
ordering of the nodes of the network. For this purpose,
we consider a kinetic process on the network, character-
ized by the rate matrix K, and we determine the first
and the last nodes of the ordering, i and j respectively,
as those with the largest MFPT tij . Although the MF-
PTs are not symmetric, this definition of first and last
nodes, that we will refer to as ”extreme nodes” (red nodes
in Fig. 3), allows for a meaningful projection as a start-
ing point of our simulation, while remaining applicable
to any system. The remaining nodes are then ordered
based on their committor probabilities, i.e., the probabil-
ity to first reach one state before the others. With this
1D ordering of the states, different clusterings are gen-
erated randomly, by placing boundaries randomly along
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FIG. 3: Illustration of PTVC algorithm. Extreme nodes (having maximal MFPT values) are indicated with red.
Clusters are indicated with blue and yellow colors, selected bordering nodes indicated with green.

the 1D coordinate. The clustering with the highest value
of the objective function is selected, among those ran-
domly generated, as the starting configuration for the
PTVC algorithm.

After initialization of replicas at different tempera-
tures, the PTVC algorithm will no longer be constrained
to the 1D projection. Then for each replica, at each time-
step of the simulation, we find all the border nodes in
the networks and we sample uniformly at random one
node i∗ from this set, and then among the neighbouring
clusters of i∗, a cluster J∗ is sampled uniformly again.
Finally assigning node i∗ to cluster J∗ is proposed as a
trail clustering. We define a node i /∈ J as border note
of cluster J if there exist a node j such that AijSjJ = 1.
We define a cluster I to be neighbour of a cluster J if
there are two nodes i, j such that AijSjJSiI = 1.

The value of the objective function for the clustering
after assigning node i∗ to cluster J∗ is calculated, and
the move is accepted or rejected following the acceptance
probability in Eq. (31).

The method outlined above (and summarised in Fig. 3)
can be applied to arbitrary parameters considered as ob-
jective function or energy E. We will use the Kemeny
constant and the slowest timescale of the coarse-grained
system, respectively, with the purpose of identifying both
stable clusters and key transition states.

Other methods in the field of network cluster identifi-
cation have employed the idea of introducing the con-
cept of temperature to accelerate a variational search
through conformations84, typically presented as ”simu-

lated annealing” methods. These simulated annealing
approaches have been shown to find optimized parame-
ter values but are slow. Our method differs from these
existing methods in a number of important respects.

Simulated annealing progressively heats and cools the
systems to explore configurations. In contrast, parallel
tempering runs parallel simulations at multiple temper-
atures and interchanges configurations at neighbouring
temperatures.

Our method employs the kinetic timescales of the sys-
tem as the variational parameter to identify transition
states, as opposed to modularity, and we introduce a ki-
netically motivated initial ordering of the states to en-
hance the quality of the starting clustering.

C. PTVC algorithm implementation details

Following Eq. (31), the Metropolis-Hastings
acceptance probability shall be pαacc =

min(1, e(E−E′)/kT (α) C(S′→S)
C(S→S′) ) to ensure detailed balance,

i.e., equilibrium sampling over all temperatures T (α).
Usually, the number of border nodes and neighbour
clusters will differ before and after the proposed move,

hence the term C(S′→S)
C(S→S′) is not constant. Nevertheless we

set this term to 1 in our applications as the preservation
of detailed balance is not required for the optimization
task, hence lowering the computational cost.

One practical consideration that requires discussion is
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the choice of temperature to be used, which has no phys-
ical motivation here and exists only to control the proba-
bility of accepting proposed switches for different simula-
tions. To determine the temperature to use, we propose
to initialise the s simulations at equally spaced increasing
temperatures values T = T (i) where i ∈ {1, ..., s}, with
T (1) < T (2) < ... < T (s). We note that it is also pos-
sible to optimize the temperature range and spacing us-
ing various objectives,128,129 e.g., to achieve faster round
trip times or possibly more relevant relaxation times in
the system130,131. In our applications presented here, we
have used s = 50 simulations, and initial temperatures
bounded by T (1) = 0.001 and T (s) = 1.

This effectively enforces that at first mostly the pro-
posed moves which optimize the parameter are accepted.
From here, we can then increase the temperatures un-
til the average acceptance probability reaches a desired
value, that we set to 50%. We achieve this by the comput-
ing the proportion of accepted moves since the latest tem-
perature update (pa) every 10 sweeps, and then update

the temperatures using the formula Tnew = T × log(pa)
log(0.5)

This ensures that temperatures are high enough for the
system to explore the whole configuration space, but not
high enough to cause the algorithm to accept every pro-
posed move.

The value of the objective functions was monitored
over simulations of 20000 sweeps, with s = 50 different
temperatures, and the clustering with the highest objec-
tive function was chosen.

D. Clustering results

We use the PTVC algorithm in five test systems to
maximize three different parameters: (i) the modular-
ity (Eq. (8)), (ii) the Kemeny constant (Eq. (30)), and
(iii) the slowest timescale τ2 (Sec. II C 4). We compare
the resulting clusterings with that of PCCA+. Our test
systems consist of a diffusion process in a 1D potential,
a synthetic network generated from the stochastic block
model132 and three real-world networks.

1. One-dimensional energy profile

Before applying the method to complex networks, we
test the PTVC method on a simple 1D model, where
results can be easily interpreted and compared to an ex-
haustive search for the global maximum.

We consider a potential with four wells of varying
depth, defined by Eq. (S1). When clustering into three
states, we obtain identical clusters for PCCA+, the Ke-
meny constant and τ2 clustering (Fig. 4). These cor-
respond to the three most stable local minima on the
potential energy profile separated by the top of the bar-
riers. However, modularity clusters the coordinate space
into three equal clusters, independently on the underly-
ing free energy profile. This is expected as all networks
corresponding to a 1D profile have the same tridiagonal
connectivity.

The optimal 4-state clustering on the same potential
(Fig. 5 and Table I) also results in the same clusters
for PCCA+ and the Kemeny constant, identifying all
four local minima. Analogously as for 3-state clustering,
modularity identifies an equal spacing of the reaction co-
ordinate into 4 parts, which does not take into account
the free energy profile. Interestingly, however, τ2 cluster-
ing results in a fourth state that is a transition state (TS),
suggesting that the highest energy local minimum is less
important for the slowest timescale of the process, and
a cluster with the TS node is more optimal to maximize
τ2. Therefore, the number of metastable clusters can
be determined by observing the first time the maximiza-
tion of ζCG and τCG2 yield different results. Analogously,
the eigenvalue spectrum also suggests three metastable
states for this system (Fig. S1a). In general, once we
move beyond the number of metastable states, the Ke-
meny constant identifies smaller metastable states, and
τ2 finds a cluster with very small population around the
dominant barrier.

TABLE I: One-dimensional Potential Energy Surface
reduced to four clusters as shown in Fig. (5). Values of
each objective function: the Kemeny constant, τ2 and

Modularity (columns) for each clustering method
PCCA+, objective functions Kemeny constant, τ2 and

Modularity (rows) are shown. The largest value for each
objective function is highlighted in bold.

Clustering method Kemeny τ2 Modularity
PCCA+ 53185 41780.6 0.41716
Kemeny 53185 41780.6 0.41716
τ2 52308 41781.3 0.38043
Modularity 52865 41660.2 0.42234

2. Stochastic block model

To analyze more complex networks beyond the one-
dimensional connectivity, we generated 3-state random
networks using the stochastic block model (SBM) (Fig.
6). The adjacency matrix of a random SBM network is
constructed according to Eq. (48).

P (Aij = 1) =
cW (Xi, Xj)

NP (Xi)P (Xj)
(48)

where Xi ∈ 1, ...,m indicates the cluster of node i, P (X)
is the probability of a node being in cluster X, W (X,X ′)
is the probability of a link existing between cluster X and
X ′, N is the total number of nodes in the network, and
c = 4 is the average connectivity of the network. In our
applications we have used the uniform distribution for
P (X) = 1/m, with m = 3 clusters, N = 99 nodes in
total, and intra-cluster and inter-cluster edge existence
probability of W (X,X) = 0.7 for all X and W (X,X ′) =
0.005 for all X 6= X ′, respectively.

For SBM networks there is no notion of dynamics,
hence we consider a random walk on the network, with
the Laplacian introduced in Eq. (6). Therefore, the dy-
namics of an unbiased walker is characterized by frequent
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FIG. 4: Clustering a 1D multi-well potential into three clusters (blue circles, red triangles, and green squares
symbols with black vertical lines showing the boundaries) using PTVC with the three different target functions:

Modularity (b), the Kemeny constant (c) and τ2 (d), respectively. PCCA+ clustering (a) also shown for comparison.

FIG. 5: Clustering a 1D multi-well potential into four clusters (blue circles, red triangles, and green squares symbols
with black vertical lines showing the boundaries) using PTVC with the three different target functions: Modularity

(b), the Kemeny constant (c) and τ2 (d), respectively. PCCA+ clustering (a) also shown for comparison.

FIG. 6: Clustering of a three-state stochastic block model network into four clusters using PTVC with the three
different target functions: Modularity (b), the Kemeny constant (c) and τ2 (d). PCCA+ clustering (a) also shown

for comparison.

intra-cluster transitions and rare inter-cluster transitions,
so that the network communities correspond to the clus-
ters as metastable states.

We used the PTVC algorithm to identify three clusters
within a 3-state SBM network for all three variational pa-
rameters. As expected, we obtain the correct clustering
using all three methods as well as using PCCA+ (Fig.
S2 and Table S1).

The results for four clusters (Fig. 6 and Table II) show
a consistent picture with the 1D example. PCCA+ and
Kemeny subdivides one of the clusters in two approxi-
mately equal-sized clusters, whereas τ2-optimal cluster-
ing identifies a transition cluster separating one small
metastable cluster from the others. Modularity identifies
the three expected clusters and assigns a single node to
an additional 4th cluster.

Moreover, we find that the identified TS contains both
the nodes with highest closeness and betweenness cen-
trality (Fig. S3), which indeed reflects the nature of
transition states: they are positioned between metastable
states, most of the paths go through them, and they are
close to all the other nodes.

3. Santa Fe Collaboration Network

As a first example of a real world network which is
small enough for clear visualisation, we consider the
Santa Fe collaboration network (Fig. 7)133. In this net-
work, links are drawn between 118 researchers at the
Santa Fe institute who appeared as co-authors on at least
one publication. The nodes then form clusters corre-
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FIG. 7: Clustering of the Sante Fe Institute collaboration network into five clusters using PTVC with the three
different target functions: Modularity (b), the Kemeny constant (c) and τ2 (d). PCCA+ clustering (a) also shown

for comparison.

TABLE II: Values of the Kemeny constant, τ2 and
Modularity for a three-state stochastic block model
network reduced to four clusters using the PCCA+

method, and the optimization for the Kemeny constant,
τ2 and Modularity. Bolded numbers indicate the largest

value of the respective objective function.

Clustering method Kemeny τ2 Modularity
PCCA+ 65.342 40.774 0.3645
Kemeny 65.574 40.807 0.35908
τ2 65.373 40.942 0.37832
Modularity 65.091 40.796 0.39652

sponding to three main research groups, linked by cross-
disciplinary researchers.

We apply random-walk dynamics on this network and
cluster it into three states (Fig. S4 and Table S2), which
corresponds to the number of metastable clusters pre-
dicted by the spectral gap (Fig. S1), we find that the
resulting clusterings are identical for all four methods, as
in the previously considered networks.

When clustering into four states (Fig. S4 and Table
S3), we find that the τ2-optimal clustering still finds a
transition cluster separating two of the metastable re-
gions as expected. However the Kemeny-optimal clus-
tering no longer behaves similarly to PCCA+ clustering,
and is instead identical to the τ2-optimal one.

The fact that the Kemeny and τ2-optimal clusterings
are identical can be seen as a consequence of the fact that
the additional cluster is also metastable but too small to
be detected via spectral gap, hence it is insightful to look
for one more cluster. We find indeed that when optimiz-
ing for five clusters (Fig. 7 and Table III), the Kemeny-
optimal and τ2-optimal clusterings are no longer identi-
cal, and the latter successfully identifies the two regions
separating the three initial metastable states into distinct
clusters. Again we find that the two additional clusters
contain nodes with high closeness and betweenness cen-
trality (Fig. S5).

In conclusion, our method retrieves all the communi-
ties, when the number of clusters used coincide with the
number of communities detected via spectral gap analy-
sis, and it allows to identify transition clusters containing

the nodes with the highest centrality when used with a
larger number of clusters.

TABLE III: Values of the Kemeny constant, τ2 and
Modularity for the Santa Fe Collaboration network

reduced to five clusters using the PCCA+ method, and
the optimization for the Kemeny constant, τ2 and

Modularity. Bolded numbers indicate the largest value
of the respective objective function.

Clustering method Kemeny τ2 Modularity
PCCA+ 335.58 238.51 0.41749
Kemeny 336.2 238.8 0.41504
τ2 333.11 239.9 0.41652
Modularity 334.53 236.52 0.41999

4. Political Books co-purchasing Network

Our next real-world network is one of political books:
each node represents a book, and an edge is present
between two books if they appear as being often co-
purchased on Amazon. Thus, for our clustering ap-
proach, we also use the random-walk dynamics. The
data have been compiled by Valdis Krebs.134 Based on
a reading of the descriptions and reviews of the books
on Amazon, the nodes have been labelled manually by
Mark Newman into one of 3 categories: ”liberal” (blue),
”neutral” (red), and ”conservative” (green)135 (Fig. S6),
providing a comparison to our clusterings.

The spectral gap analysis detects two metastable states
(Fig. S1), corresponding to the categories ”liberal” and
”conservative” as we could expect, while the ”neutral”
category will be considered as the transition state be-
tween the two. We observe that partitioning into two
clusters yields identical clusterings for all dynamical clus-
tering methods and a very similar clustering for modu-
larity (Fig. S7 and Table S4). When optimizing for three
clusters yields results consistent with our previous obser-
vations (Fig. 8 and Table IV). On one hand the Kemeny
constant and PCCA+ converge to a similar clustering.
On the other hand the τ2-optimal clustering is seen to
separate the two stable states (Fig. 8), while the small
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FIG. 8: Clustering of the Political Books co-purchase network into three clusters using PTVC with the three
different target functions: Modularity (b), the Kemeny constant (c) and τ2 (d). PCCA+ clustering (a) also shown

for comparison. The ”Conservative” and ”Liberal” books clusters (blue and green) are similarly detected by all
parameters, with differences mainly on the ”Transition” cluster (red).

transition cluster contains nodes with high closeness and
betweenness centrality (Fig. S8). Modularity does not
separate the two stable states fully and identifies a third
cluster somewhat different from Kemeny and PCCA+.

The manual labelling (Fig. S6) is not retrieved by
any of the kinetic clusterings we have tried. This can
be explained by multiple factors: the edges here are bi-
nary, i.e., they do not measure how strongly connected
(co-purchased) two books are, hence all the information
about the strength of the connection is lost. Given that
our method is based on the dynamics of the network,
which is highly dependent on the weights of the edges
(transition rates), we can expect it to lead to a differ-
ent clustering in the presence of weights, which may be
closer to the manual clustering with a weighted network.
Additionally, the manual labelling have been made by a
single person and therefore it is prone to the subjectiv-
ity of this person’s judgment. The discrepancy between
the τ2-optimal clustering and the labelling can be used
to suggest reconsideration of the labelling, or to gather a
more robust dataset for the task at hand. Furthermore,
it also suggests that there is no completely neutral opin-
ion, but some bias exists towards liberal or conservative
orientation.

TABLE IV: Values of the Kemeny constant, τ2 and
Modularity for the political book network reduced to

three clusters using the PCCA+ method, and the
optimization for the Kemeny constant, τ2 and

Modularity. Bolded numbers indicate the largest value
of the respective objective function.

Clustering method Kemeny τ2 Modularity
PCCA+ 29.944 25.041 0.35879
Kemeny 29.954 25.237 0.35843
τ2 29.023 25.653 0.34739
Modularity 29.524 25.062 0.35954

5. Streets Network

Finally, we consider a subset of the Open Street Map
road networks of Luxembourg (Fig. 9). The graph is an
undirected and unweighted version of the largest strongly
connected component of the corresponding Open Street
Map road networks137. Due to the large size of the net-
work (114599 nodes), we have taken a subset of the initial
graph (Fig. 9, right), the subset contains two medium-
sized cities (Everlange and Useldange), as well as a few
smaller cities (Reimberg and Shandel).

In the absence of data about the dynamics in this net-
work, we applied the Laplacian method described in sec-
tion II A 2 to obtain the random walk dynamics. We find
that the spectral gap analysis determines that there are
two metastable states.

Similarly to what we observe in the previous networks,
when optimizing for two clusters the partitions from all
four methods provide similar results (Fig. 10, top and
Table V). Each of the two clusters contains one of the two
largest cities of the network, Everlange and Useldange
(Fig. 9, right).

When clustering into three states (Fig. 10, bottom
and Table VI), we find that PCCA+ provides a sensible
clustering, identifying the third largest city, Schandel,
into the third cluster, similarly to the Kemeny-optimal
clustering. The Modularity-optimal clustering splits the
left-hand cluster, we can see that the additional cluster
corresponds to a part of one of the largest cities (Ever-
lange). The τ2-optimal clustering maintains the two main
cities unseparated, and instead assigns the third largest
city as well as the main road connecting the two main
cities into the third, transition cluster, thus completely
separating the two main cities.

IV. CONCLUSIONS

Network clustering is a crucial component of analysis
of large datasets in most fields. Here, we present a theo-
retical framework for clustering based on the dynamical
properties of networks. We introduce variational cluster-
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FIG. 9: Street Network of Luxembourg from DIMACS10136,137, and the subset we consider.
Latitude and Longitude in Decimal Degrees, the colored circles highlight the main cities in this geographic area.

FIG. 10: Clustering of the subset of Luxembourg streets network (Fig. 9, right) into two (top) and three (bottom)
states. PCCA+ clustering (a), Modularity (b), the Kemeny constant (c) and τ2 (d) optimized clusters are shown for

comparison.
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TABLE V: Values of the Kemeny constant, τ2 and
Modularity for the Luxembourg roads network reduced

to two clusters using the PCCA+ method, and the
optimization for the Kemeny constant, τ2 and

Modularity. Bolded numbers indicate the largest value
of the respective objective function.

Clustering method Kemeny τ2 Modularity
PCCA+ 14327 14327 0.37365
Kemeny 14593 14593 0.37404
τ2 14593 14593 0.37404
Modularity 13280 13280 0.37367

TABLE VI: Values of the Kemeny constant, τ2 and
Modularity for the Luxembourg roads network reduced

to three clusters using the PCCA+ method, and the
optimization for the Kemeny constant, τ2 and

Modularity. Bolded numbers indicate the largest value
of the respective objective function.

Clustering method Kemeny τ2 Modularity
PCCA+ 19973 15007 0.4057
Kemeny 20007 15035 0.40499
τ2 18167 15374 0.3999
Modularity 15260 13144 0.41305

ing protocols using the Kemeny constant and the slowest
relaxation time. Building upon our earlier computational
and theoretical work on the Kemeny constant70,76,77, we
derived a novel theoretical expression for the gradient of
the Kemeny constant with respect to clustering, and pro-
vided an analytical solution for the optimal clustering of
a 1D potential maximizing the Kemeny constant, for an
arbitrary number of clusters. We showed that bound-
aries in optimal clustering correspond to equal round-
trip times between clusters they separate. We further
extended this result to complex networks in general, and
showed that in the optimal clustering maximizing the Ke-
meny constant each node belongs to the cluster that is
the closest as measured by the round-trip time distance
measure.

To enable more efficient clustering in complex systems,
we described in the present work an algorithmic proto-
col, PTVC, allowing for the identification of clusters in
large and complex networks by using parallel temper-
ing to maximize any variational parameter or objective
function. Using this algorithm, we compared different
objective functions (Modularity, Kemeny constant, and
slowest timescale τ2) as well as PCCA+ on the exam-
ples of two model networks and three real data-derived
networks.

The optimization using the Kemeny constant is shown
to successfully identify the key metastable states, in both
weighted and unweighted networks, illustrating the proof
of the variational result70. Moreover, maximizing τ2 has
shown to consistently identify less stable states, which
can be considered as transition clusters, in addition to
the metastable states. These transition clusters appear
to contain nodes with high closeness and betweenness
centrality. While the vast majority of clustering meth-
ods focus on detecting communities (metastable states),

we present results suggesting that the use of specific
timescales τi can be used to also efficiently identifying
key transition states in complex systems.

This new approach of maximizing specific timescales
(τi) or their sum (Kemeny) opens up new and exciting
potential research avenues and applications. For one, this
method can effectively identify key transition states from
a Markov model. In the context of molecular simulations,
this can be incorporated to analyse and enhance the sam-
pling of the system’s configuration space138.

Furthermore, spectral properties are related via the
Kemeny constant to mean first passage times, which can
be more readily available from numerical data, and can
be evaluated numerically effectively139–141. The novel an-
alytical expression for the gradient of the Kemeny con-
stant, ∂ζCG/∂bJ and its discrete form using round trip
times, derived in this work, also opens the possibilities
to employ alternative implementations of our clustering
method, based on e.g., gradient descent techniques, thus
avoiding an exhaustive search over the space of possible
boundary positions. This will be explored in future work.

V. SUPPLEMENTARY MATERIAL

The supporting information contains the definition of
the irregular 1D potential; numerical values for the Ke-
meny constant, τ2, and modularity for the various net-
works clustered into different number of clusters; spec-
tral gaps; additional clustering results including central-
ity measures.
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Appendix A: Diffusion on 1D Symmetric potential: 3-state
clustering

In this section we consider a system diffusing in a 1D
potential symmetric about 0. We consider clustering the
system in three clusters, that we shall denote with 1, 2, 3.
Taking 0 as the center of the 1D space, we denote with a
the position of the boundary between cluster 2 and 3 and,
due to the symmetry of the potential, −a will denote the
boundary between 1 and 2.
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The clustered mean first passage times are given in
Eq. (34) and can be written compactly as

tCGJI =
1

ΠJ

∫
J

dxπ(x) [t̄xI − t̄xJ ] (A1)

in terms of the MFPTs to the single position x from the
clusters I and J , respectively, as defined in Eq. (36).

Inserting this into the expression for the Kemeny con-
stant provided for a symmetric system coarse-grained
into three clusters, in Eq. (33), we obtain:

ζCG/2 =

∫ −a
−∞

dxπ(x)(t̄x2 − t̄x1) (A2)

Differentiating with respect to a using the Leibniz inte-
gral rule yields

∂ζCG/2

∂a
=− π(−a)(t̄−a2 − t̄−a1) (A3)

+

∫ −a
−∞

dxπ(x)
∂

∂a
(t̄x2 − t̄x1)

From Eq. (36) we have

t̄x2 =

∫ a

−a
dz p2(z)txz (A4)

with

p2(x) =
π(x)

Π2
, Π2 =

∫ a

−a
dxπ(x) (A5)

hence

∂

∂a
t̄x2 = p2(a)txa + p2(−a)tx−a

+

∫ a

−a
dz

∂

∂a
p2(z)txz (A6)

Substituting

∂

∂a
p2(z) =

∂

∂a

π(z)

Π2(a)
= − π(z)

Π2
2(a)

∂

∂a
Π2(a) (A7)

= − p2(z)

Π2(a)

∂

∂a
Π2(a)

= −[p2(a) + p2(−a)]p2(z)

we get

∂

∂a
t̄x2 = p2(a)txa + p2(−a)tx−a (A8)

−[p2(a) + p2(−a)]t̄x2

Similarly, for t̄x1 =
∫ −a
−∞ dz p1(z)txz

∂

∂a
t̄x1 = p1(−a)(t̄x1 − tx−a) (A9)

Collecting all the terms, and using p2(a)π(x) = p2(x)π(a)

and similarly for −a

∂

∂a
ζCG/2 = −π(−a)(t̄−a2 − t̄−a1) + π(a)

∫ −a
−∞

dx p2(x)txa

+π(−a)

∫ −a
−∞

dx p2(x)tx−a

−[π(a) + π(−a)]

∫ −a
−∞

dx p2(x)t̄x2

−π(−a)

∫ −a
−∞

dx p1(x)(t̄x1 − tx−a) (A10)

Using π(a) = π(−a), due to the symmetry of the
potential, and that ∀ x ∈ 1 t̄x2 = tx−a + t̄−a2 and
txa = tx−a + t−aa

1

π(a)

∂

∂a
ζCG/2 = −(t̄−a2 − t̄−a1)

+

∫ −a
−∞

dx p2(x)(tx−a + t−aa)

+

∫ −a
−∞

dx p2(x)tx−a

−2

∫ −a
−∞

dx p2(x)(tx−a + t̄−a2)

−
∫ −a
−∞

dx p1(x)(t̄x1 − tx−a)

Simplifying, and using Π1 = Π3 due to the symmetry
of the potential,

1

π(a)

∂

∂a
ζCG/2 = −t̄−a2 + t̄−a1 +

Π1

Π2
t−aa − 2

Π1

Π2
t̄−a2

−
∫ −a
−∞

dx p1(x)(t̄x1 − tx−a)

= −
(

1 + 2
Π1

Π2

)
t̄−a2 + t̄−a1 +

Π1

Π2
t−aa

−
∫ −a
−∞

dx p1(x)(t̄x1 − tx−a)

= − 1

Π2
t̄−a2 + t̄−a1 +

Π1

Π2
t−aa

−
∫ −a
−∞

dx p1(x)(t̄x1 − tx−a)

Equating ∂ζCG/∂a to zero we obtain

− 1

Π2
t̄−a2 + t̄−a1 +

Π1

Π2
t−aa =

∫ −a
−∞

dx p1(x)(t̄x1 − tx−a)

Because of symmetry, this is equivalent to

− 1

Π2
t̄a2 + t̄a3 +

Π3

Π2
t−aa =

∫ −a
−∞

dx p1(x)[t̄x1 − tx−a]

One can write the right hand side (RHS) in terms of the
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Kemeny constant

ζCG/2 =

∫ −a
−∞

dxπ(x)(t̄x2 − t̄x1)

= Π1

∫ −a
−∞

dx p1(x)[t̄x2 − t̄x1]

= Π1

∫ −a
−∞

dx p1(x)[(tx−a + t̄−a2)− t̄x1]

= Π1

∫ −a
−∞

dx p1(x)[tx−a − t̄x1] + Π1t̄−a2

(A11)

to get

− 1

Π2
t̄a2 + t̄a3 +

Π3

Π2
t−aa = t̄−a2 −

ζCG

2Π1
= t̄−a2 − tCG

12

(A12)
where in the last step we used Eq. (33), or, using equiv-
alence of states 1 and 3,

Π1t−aa − t̄a2 + Π2(t̄−a1 − t̄−a2 + tCG
12 ) = 0 (A13)

Another identity can be obtained by using the relation
of the quantities above to the Kemeny constant of the
original process ζ =

∫∞
−∞ dxπ(x)txy. Writing

1

Π1

∫ −a
−∞

dxπ(x)t̄x1 =
1

Π2
1

∫ −a
−∞

dxπ(x)

∫ −a
−∞

dy π(y)txy

=
1

Π2
1

∫ −a
−∞

dy π(y)

(
ζ −

∫ ∞
−a

dxπ(x)txy

)
=

1

Π1

(
ζ −

∫ ∞
−a

dxπ(x)t̄x1

)
(A14)

using Eq. (A1) and t̄x2 = tx−a + t̄−a2 ∀ x ∈ 1, we obtain

tCG12 =

∫ −a
−∞

dx
π(x)

Π1
(tx−a + t̄−a2 − t̄x1)

=

∫ −a
−∞

dx
π(x)

Π1
tx−a + t̄−a2 −

∫ −a
−∞

dx
π(x)

Π1
t̄x1

=

∫ −a
−∞

dx
π(x)

Π1
tx−a + t̄−a2

− 1

Π1

[
ζ −

∫ +∞

−a
dxπ(x)t̄x1

]
=

∫ −a
−∞

dx
π(x)

Π1
tx−a + t̄−a2

− 1

Π1

[
ζCG −

∫ +∞

−a
dxπ(x)(tx−a + t̄−a1)

]
=

∫ −a
−∞

dx
π(x)

Π1
tx−a + t̄−a2

− 1

Π1

[∫ −a
−∞

dxπ(x)tx−a − (1−Π1)t̄−a1

]
= t̄−a2 +

1−Π1

Π1
t̄−a1

Substituting in Eq. (A13), one finally obtains a relation
between MFPTs and the stationary distribution of the

coarse-grained that holds when the Kemeny constant is
maximized with respect to the two boundary positions
−a and a.

Π1t−aa − t̄a2 +
Π2

Π1
t̄−a1 = 0 (A15)

This expression will be tested in Sec. (III A 1).

A more interpretable result can be derived as follows.
Defining

t̂Jα =

∫
J

dx
π(x)

ΠJ
(txα − t̄xJ) (A16)

and using Eq. (33) and (A11) we can interpret t̂1−a =
−t̄−a2 + tCG12 as the MFPT to cluster 1 from its right
boundary. Then rearranging Eq. (A10) we have

∂

∂a
ζCG/2 = −π(−a)(t̄−a2 − t̄−a1) (A17)

+π(a)

∫ −a
−∞

dx p2(x)(txa − t̄x2)

+π(−a)

∫ −a
−∞

dx p2(x)(tx−a − t̄x2)

+π(−a)(tCG12 − t̄−a2)

Using the symmetry of the potential, we can expand the
above equation as follows (this corresponds to starting
the derivation from ζCG = Π1t

CG
12 + Π3t

CG
32 instead of

ζCG = 2Π1t
CG
12 ):

∂

∂a
ζCG = −π(−a)(t̄−a2 − t̄−a1) (A18)

+π(a)

∫ −a
−∞

dx p2(x)(txa − t̄x2)

+π(−a)

∫ −a
−∞

dx p2(x)(tx−a − t̄x2)

+π(−a)(tCG12 − t̄−a2)

−π(a)(t̄a2 − t̄a3)

+π(a)

∫ +∞

a

dx p2(x)(txa − t̄x2)

+π(−a)

∫ +∞

a

dx p2(x)(tx−a − t̄x2)

+π(a)(tCG32 − t̄a2)
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Writing

∂Π2t
CG
22

∂a
= π(a)(t̄a2 − t̄a2)− π(−a)(t̄−a2 − t̄−a2)

+

∫ a

−a
dxπ(x)

[
∂t̄x2

∂a
− ∂t̄x2

∂a

]

=

∫ a

−a
dxπ(x)

{
p2(a)txa + p2(−a)tx−a (A19)

−[p2(a) + p2(−a)]t̄x2 − p2(a)txa − p2(−a)tx−a

+[p2(a) + p2(−a)]t̄x2

}

=

∫ a

−a
dxπ(x)p2(a)(txa − t̄x2 − txa)

+

∫ a

−a
dxπ(x)p2(−a)(tx−a − t̄x2 − tx−a)

+

∫ a

−a
dxπ(x)[p2(a) + p2(−a)]t̄x2

=

∫ a

−a
dxπ(a)p2(x)(txa − t̄x2)

+

∫ a

−a
dxπ(−a)p2(x)(tx−a − t̄x2)

+π(a)

∫ a

−a
dx p2(x)(t̄x2 − txa)

+π(−a)

∫ a

−a
dx p2(x)(t̄x2 − tx−a)

= −π(a)t̂2a − π(−a)t̂2−a

+π(a)

∫ a

−a
dx p2(x)(txa − t̄x2)

+π(−a)

∫ a

−a
dx p2(x)(tx−a − t̄x2) (A20)

We now add Eq. (A19) to both sides of Eq. (A18). Equa-
tion (A19) is equal to zero, hence it will not alter the
result, but will allow to simplify the RHS:

∂

∂a
ζCG = π(a)[(t̂3a + t̄a3)− (t̂2a + t̄a2)] (A21)

+π(−a)[(t̂1−a + t̄−a1)− (t̂2−a + t̄−a2)]

+π(a)

∫ +∞

−∞
dx p2(x)(txa − t̄x2)

+π(−a)

∫ +∞

−∞
dx p2(x)(tx−a − t̄x2)

Writing again π(a)p2(x) = p2(a)π(x) in the last two

terms, we note that these vanish as
∫ +∞
−∞ dxπ(x)tx−a

and
∫ +∞
−∞ dxπ(x)txa are equal to the Kemeny constant

of the original system, ζorig, and
∫ +∞
−∞ dxπ(x)t̄x2 =∫

dy p2(y)
∫ +∞
−∞ dxπ(x)txy = ζorig as well. Hence, we are

left with

∂

∂a
ζCG =π(−a)

[
(t̂1−a + t̄−a1)− (t̂2−a + t̄−a2)

]
(A22)

+ π(a)
[
(t̂3a + t̄a3)− (t̂2a + t̄a2)

]

Finally, using the definition of round-trip times given in
Eq. (38) we find

∂ζCG

∂a
= π(a)[tRT3a − tRT2a ] + π(−a)[tRT1−a − tRT2−a]

From symmetry of the potential, the above equation sim-
plifies to

∂ζCG

∂a
= 2π(a)[tRT3a − tRT2a ]. (A23)

Appendix B: Diffusion on 1D potential: m-state clustering

Considering a continuous one-dimensional space clus-
tered into m clusters, each cluster J can be charac-
terized by two boundaries, bJ−1 and bJ , i.e. one has
J = (bJ−1, bJ) for each state J = 1, ...,m. The first and
final (i.e. mth) clusters are bounded by the lower and
upper boundaries b0 and bm of the configuration space,
which can take arbitrary values, including ±∞. Using
the continuous formulation of Eq. (30)

ζCG =ζorig −
m∑
J=1

1

ΠJ

∫
J

dy

∫
J

dxπ(y)tyxπ(x) (B1)

and Eq. (36) we can write

ζCG = ζorig −
m∑
J=1

∫ bJ

bJ−1

dy π(y)t̄yJ (B2)

The Kemeny derivative with respect to a boundary posi-
tion bL takes only contributions from J = L or J = L+1,
giving

∂ζCG

∂bL
= − ∂

∂bL

[ ∫ bL

bL−1

dy π(y)t̄yL (B3)

+

∫ bL+1

bL

dy π(y)t̄y(L+1)

]
We apply the Leibniz differentiation rule to the first (α)
and second (β) integrals of Eq. (B3) separately:

∂

∂bL
α = π(bL)t̄bLL +

∫ bL

bL−1

dy π(y)
∂

∂bL
t̄yL

∂

∂bL
β = −π(bL)t̄bL(L+1) +

∫ bL+1

bL

dy π(y)
∂

∂bL
t̄y(L+1)

(B4)

Expanding t̄yL and using the Leibnitz rule again, we get

∂

∂bL
t̄yL =

π(bL)

ΠL
(tybL − t̄yL)

∂

∂bL
t̄y(L+1) =

π(bL)

ΠL+1

(
t̄y(L+1) − tybL

)
(B5)
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Inserting Eq. (B5) in Eq. (B4) and rearranging we have

∂α

∂bL
= π(bL)

[
t̄bLL +

∫ bL

bL−1

dy
π(y)

ΠL
(tybL − t̄yL)

]
∂β

∂bL
= −π(bL)t̄bL(L+1)

− π(bL)

ΠL+1

∫ bL+1

bL

dy π(y)
(
tybL − t̄y(L+1)

)
(B6)

Using for the integrals the shorthand notation provided
in Eq. (A16) we can write

∂

∂bL
α = π(bL)

(
t̄bLL + t̂LbL

)
∂

∂bL
β = −π(bL)

(
t̄bL(L+1) + t̂(L+1)bL

)
Inserting Eq. (B7) in Eq. (B3)

∂ζCG

∂bL
= π(bL)

[
(t̄bL(L+1) + t̂(L+1)bL) (B7)

− (t̄bLL + t̂LbL)
]

and using the definition of round-trip times given in
Eq. (38) we obtain

∂ζCG

∂bL
= π(bL)

[
tRTbL(L+1) − t

RT
bLL

]
(B8)

This shows that the derivative vanishes when the follow-
ing equality is satisfied:

tRTbL(L+1) = tRTbLL (B9)

This provides an intuitive interpretation of our results:
the optimal clusters L ad L+ 1 (obtained by maximizing
the Kemeny constant) are those which have the same
round-trip times to the separating barrier bL.

Appendix C: Discrete random walk on 1D potential:
m-state clustering

Here we consider the case of a 1D discrete system, i.e. a
a random walk on a linear chain. In discrete systems, we
replace the partial derivative, of the coarse-grained Ke-
meny constant ζCG, with respect to the barrier position
bL, with the finite difference between the assignments of a
node bL to clusters L and L+1, respectively. In particular
if the clusters are ordered so that J < J+1 < J+2 < ...,
moving the barrier α to “the right”, corresponds to mov-
ing the node bL to“the left”, i.e. from cluster J + 1 to J .
Hence, the equivalent to ∂ζCG/∂bL in discrete space is:

∆ζCG(bL, L+ 1→ L) = ζCG(bL ∈ L)− ζCG(bL ∈ L+ 1)
(C1)

We can obtain a computationally efficient formula for
the finite difference of the coarse-grained Kemeny con-
stant. Following a similar derivation as in the previous
section, expanding Eq. (B7) and replacing the integrals

with sums, we obtain

∆ζCG

πbL
=

1

Π2
L

∑
i∈L

∑
j∈L

πjtjiπi −
1

ΠL

∑
j∈L

πjtjbL (C2)

− 1

ΠL

∑
i∈L

πitbLi −
1

Π2
L+1

∑
i∈L+1

∑
j∈L+1

πiπjtji

+
1

ΠL+1

∑
j∈L+1

πjtjbL +
1

ΠL+1

∑
i∈L+1

πitbLi,

We use the following property of the mean first passage
times in one-dimensional space :

tji =

{
tjbj + tbjj if j > bj > i

tjbj − tibj if j < i < bj
(C3)

and expand the double sums in Eq. (C2) as follows:∑
i∈L

∑
j∈L

πjtjiπi =
∑
i∈L

πi

[∑
j

πjtji −
∑
j 6∈L

πjtji

]

=
∑
i∈L

πi

ζorig − L−1∑
S=1

∑
j∈S

πjtji −
M∑

S=L+1

∑
j∈S

πjtji


=
∑
i∈L

πi

ζorig − L−1∑
S=1

∑
j∈S

πj(tjbL − tibL)

−
M∑

S=L+1

∑
j∈S

πj(tjbL + tbLi)


= ΠLζ

orig −
∑
i∈L

L−1∑
S=1

∑
j∈S

πiπj (tjbL − tibL)

−
∑
i∈L

M∑
S=L+1

∑
j∈S

πiπj (tjbL + tbLi)

= ΠL

ζorig −∑
j 6∈L

πjtjbL

+

L−1∑
S=1

ΠS

∑
i∈L

πitibL

−
M∑

S=L+1

ΠS

∑
i∈L

πitbLi

=

L∑
S=1

ΠS

∑
j∈L

πjtjbL −
M∑

S=L+1

ΠS

∑
i∈L

πitbLi

and, similarly:

∑
i∈L+1

∑
j∈L+1

πjtjiπi =

=

M∑
S=L+1

ΠS

∑
j∈L+1

πjtjbL −
L∑
S=1

ΠS

∑
i∈L+1

πitbLi

Inserting these equations into Eq. (C2) yields the finite
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difference of the Kemeny constant on a linear chain

∆ζCG

πbL
=

∑
S<L ΠS

Π2
L

∑
j∈L

πjtjbL −
∑
S≥L ΠS

Π2
L

∑
i∈L

πitbLi

(C4)

+

∑
S≤L+1 ΠS

Π2
L+1

∑
i∈L+1

πitbLi −
∑
S>L+1 ΠS

Π2
L+1

∑
j∈L+1

πjtjbL .

Appendix D: Random walks on complex networks: m-state
clustering

Below we will show that the result obtained in Ap-
pendix B holds in complex networks, up to an approxi-
mation.

As a discrete equivalent of the Kemeny constant-
derivative with respect to barrier position, we consider
the finite difference in the coarse-grained Kemeny con-
stant ζCG between the case when node α is assigned to
cluster B or A.

∆ζCG(α,A→ B) = ζCG(α ∈ B)− ζCG(α ∈ A) (D1)

For convenience we define FJI as folllows:

FJI =
∑
i∈I

∑
j∈J

πjtjiπi (D2)

This leads to a shorter formulation of Eq. (30) and
Eq. (34) :

ζCG = ζorig −
∑
J

FJJ
ΠJ

(D3)

tCGJI =
FJI

ΠJΠI
− FJJ

Π2
J

(D4)

If we consider splitting a cluster Γ into two clusters A
and B, i.e. Γ = A ∪B, the following property holds:

FΓΓ = FAA + FAB + FBA + FBB (D5)

Additionally we define A+ = A ∪ {α} and B+ = B ∪
{α}, i.e. as the union of the node α and the clusters A
and B respectively, implying that A and B do not contain
α, hence

ΠA+ = ΠA + πα (D6)

Using Eq. (D3) and dropping (α,A → B) for simplic-
ity, we rewrite Eq. (D1) as follows:

∆ζCG =

ζorig − ∑
J /∈{A,B}

FJJ
ΠJ
− FB+B+

ΠB+

− FAA
ΠA


(D7)

−

ζorig − ∑
J /∈{A,B}

FJJ
ΠJ
− FA+A+

ΠA+

− FBB
ΠB



Simplifying the first two terms in the brackets and rear-
ranging, we have

∆ζCG =

[
FBB
ΠB

− FB+B+

ΠB+

]
−
[
FAA
ΠA
− FA+A+

ΠA+

]
=

ΠB+FBB −ΠBFB+B+

ΠB+ΠB
− ΠA+FAA −ΠAFA+A+

ΠA+ΠA

(D8)

Expanding FX+X+ and ΠX+ on the numerator, by using
Eq. (D5) and Eq. (D6) respectively, and simplifying the
cancelling terms:

∆ζCG =

[
ΠαFBB
ΠB+ΠB

− FαB + FBα + Fαα
ΠB+

]
(D9)

−
[

ΠαFAA
ΠA+ΠA

− FAα + FαA + Fαα
ΠA+

]
From tαα = 0 we have Fαα = 0, then dividing by πα and
rearranging, we have:

∆ζCG

πα
=

[
FAα
παΠA+

− FAA
ΠA+ΠA

+
FαA
παΠA+

]
(D10)

−
[
FBα
παΠB+

− FBB
ΠB+ΠB

+
FαB
παΠB+

]
Under the approximation Π+

A ' ΠA and Π+
B ' ΠB , which

hold for πα � ΠA,ΠB :

∆ζCG

πα
=

[
FAα
παΠA

− FAA
ΠAΠA

+
FαA
παΠA

]
(D11)

−
[
FBα
παΠB

− FBB
ΠBΠB

+
FαB
παΠB

]
We can use the formula for the coarse-grained mean first
passage times in terms of F , Eq. (D4) , and simplify:

∆ζCG

πα
=
[
tCGAα + tCGαA

]
−
[
tCGBα + tCGαB

]
(D12)

As tCGAα is the mean first passage time from a cluster that
contains a single node α to cluster A, this is the discrete-
space analogue of the mean first passage time t̂Aα defined
in Eq. (A16) for diffusion in continuous space and, simi-
larly, tCGαA is analogous to t̄αA defined in Eq. (36).

Upon defining, as before, the round-trip time tRTαA =
tCGAα + tCGαA , we can finally rewrite (D12) in the intuitive
way:

∆ζCG(α,A→ B) = πα
[
tRTαA − tRTαB

]
(D13)

This suggests that, given a network with M clusters, the
cluster B to which a new node α should be assigned,
in order to maximize the Kemeny constant, is the one
with minimum round trip time to α, provided that πα �
ΠL ∀ L = 1, . . . ,M .
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SUPPORTING INFORMATION

The discretized N = 100-state irregular 1D 4-well po-
tential (v) was constructed using the following code:

v = [];

for i = 1 : 4

if i == 2

x = linspace(−4 ∗ π, 4 ∗ π, 2 ∗N/5);

else

x = linspace(−4 ∗ π, 4 ∗ π,N/5);

end

vseg = −i ∗ 3/4 ∗ [sin(x/4− π ∗ 3/2) + 1] ;

v = [v vseg];

end (S1)

TABLE S1: Stochastic block model network reduced to
three clusters.

Clustering method Kemeny τ2 Modularity
PCCA+ 63.931 40.774 0.40156
Kemeny 63.931 40.774 0.40156
τ2 63.931 40.774 0.40156
Modularity 63.931 40.774 0.40156

TABLE S2: Santa Fe Collaboration network reduced to
three clusters.

Clustering method Kemeny τ2 Modularity
PCCA+ 303.07 233.4 0.41022
Kemeny 303.07 233.4 0.41022
τ2 303.07 233.4 0.41022
Modularity 303.07 233.4 0.41022

TABLE S3: Santa Fe Collaboration network reduced to
four clusters.

Clustering method Kemeny τ2 Modularity
PCCA+ 319.25 233.63 0.41209
Kemeny 319.82 238.59 0.41247
τ2 319.82 238.59 0.41247
Modularity 318.16 236.31 0.41742

TABLE S4: Political books network reduced to two
clusters.

Clustering method Kemeny τ2 Modularity
PCCA+ 24.481 24.481 0.35232
Kemeny 24.481 24.481 0.35232
τ2 24.481 24.481 0.35232
Modularity 24.372 24.372 0.35345
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FIG. S1: Spectral gap analysis of the networks considered. Negative logarithm of the dominant eigenvalues of the
rate matrix in the networks: (a) 1D multi-well potential on a linear chain, (b) Stochastic Block Model, (c) Santa Fe

Institute collaboration, and (d) Political Books co-purchase. Black vertical line indicates the largest gap between
subsequent eigenvalues.

FIG. S2: Clustering of the Stochastic Block Model network into three clusters.
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FIG. S3: Centrality measures on the Stochastic Block Model network.

FIG. S4: Clustering of the Santa Fe Institute collaboration network into three (top) and four (bottom) clusters.
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FIG. S5: Centrality measures on the Santa Fe Institute collaboration network.

FIG. S6: Labelling of the political books co-purchase network into three clusters: ”conservative” (blue), ”neutral”
(red) and ”liberal” (green) by Mark Newman135.

FIG. S7: Clustering of the political books co-purchase network into two clusters.
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FIG. S8: Centrality measures on the political books co-purchase network.

FIG. S9: Centrality measures on the streets network.


