Learning neural codes for perceptual uncertainty
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Abstract—Perception is an inferential process, in which the
state of the immediate environment must be estimated from
sensory input. Inference in the face of noise and ambiguity
requires reasoning with uncertainty, and much animal behaviour
appears close to Bayes optimal. This observation has inspired
hypotheses for how the activity of neurons in the brain might rep-
resent the distributional beliefs necessary to implement explicit
Bayesian computation. While previous work has focused on the
sufficiency of these hypothesised codes for computation, relatively
little consideration has been given to optimality in the repre-
sentation itself. Here, we adopt an encoder-decoder approach
to study representational optimisation within one hypothesised
belief encoding framework: the distributed distributional code
(DDC). We consider a setting in which typical belief distribution
functions take the form of a sparse combination of an underlying
set of basis functions, and the corresponding DDC signals are
corrupted by neural variability. We estimate the conditional
entropy over beliefs induced by these DDC signals using an
appropriate decoder. Like other hypothesised frameworks, a
DDC representation of a belief depends on a set of fixed encoding
functions that are usually set arbitrarily. Our approach allows
us to seek the encoding functions that minimise the decoder
conditional entropy and thus optimise representational accuracy
in an information theoretic sense. We apply the approach to
show how optimal encoding properties may adapt to represent
beliefs in new environments, relating the results to experimentally
reported neural responses.

I. INTRODUCTION

The brain receives information about the external world
through noisy sensory signals, from which it must derive in-
ferences about behaviourally relevant variables. Measurements
of behaviour suggest that when these relevant variables are not
fully constrained by sensory input, neural computation reflects
processing of the full distributional belief in accordance with
the principles of Bayesian inference. This observation has
led to the Bayesian coding hypothesis, postulating that these
distributional beliefs (or posterior probabilities) are encoded
explicitly in the activity of neural populations that form the
basis of perceptual inference and learning [1]. A number of
frameworks have been suggested for the representation of
probabilities in the brain, including probabilistic population
coding [2], [3], sampling [4], [5], and distributed distributional
coding (DDC) [6], [7].

In the DDC framework, a probability density function is
represented by the expected values of a set of encoding
functions. If the set of encoding functions is rich enough, the
DDC expectations provide sufficient information to carry out
probabilistic computation. Previous studies have shown that
DDC representations provide an effective substrate to learn
and to make inferences in deep generative models [8], to build

successor representations within partially observable Markov
decision processes [9], and to carry and resolve uncertainty
over time [10]. In these studies, the set of encoding functions
was chosen arbitrarily, and remained fixed throughout. Little
is known about how the DDC encoding might be optimised
so as to maximise the fidelity of the resulting distributional
representations.

Here, we tackle this question using an information-theoretic
learning framework. The optimal set of encoding functions
will depend on assumptions, including the form of the belief
distributions to be encoded, noise in the representation, and the
objectives of downstream processing. We consider a setting in
which the distribution functions of the beliefs to be encoded
take the form of a sparse combination of an underlying set
of basis functions (with positive or negative weights). These
beliefs are then represented by the expectations of encoding
functions as defined by the DDC, but these encoded values are
corrupted by independent internal neural noise before further
processing. Finally, in place of downstream processing we
consider a computational decoder, which seeks to recover the
encoded belief given the DDC expected values and knowledge
of the sparse family from which the belief is drawn.

These assumptions allow us to exploit the generative model
used in Bayesian compressive sensing and relevance vector
machines. Using this framework, we derive the posterior dis-
tribution over the belief distribution function obtained by the
decoder, and calculate the conditional entropy. We suggest that
appropriate DDC encoding functions are those that minimise
this uncertainty about the encoded distribution function. This
approach provides us with a general rule for learning the
encoding functions; descending the gradient of the conditional
entropy over the distribution function. We show that our
suggested optimality criterion can explain the dynamics of the
neuronal tuning functions, providing evidence for the codes of
uncertainty in the brain.

II. A GENERATIVE MODEL FOR DDC

The moments of a probability distribution function can
provide substantial information about the characteristics of
the underlying distribution. Distributed distributional coding
(DDC) extends the notion of moments and suggests that the
distribution over a latent variable Z is represented in the brain
by the expected values of a given set of encoding functions,
{¢:(2)}, [6], [7]. The distribution function ~(z) is then
represented by K DDC values,
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Fig. 1: The generative model for DDC values, 7. The distri-
bution function, «, has a sparse representation in some basis,
B, i.e. v = Bw, where w is the vector of sparse coefficients.
The observed DDC values are generated by adding noise, €, to
the expected values of DDC encoding functions with respect
to the distribution function, ® Bw. The sparseness of w is
fulfilled by a hierarchical prior.

Here, we assume that the latent variable, Z, is discrete with .S
states, and denote the distribution function by the vector < and
the encoding functions by the K X S matrix ®. Therefore, in
the absence of noise, the vector of DDC values, 7, is derived
from r» = ®~. We assume that the posterior distribution -y
has a sparse representation in some basis set of size M. The
basis matrix is represented by the S x M matrix B, and
~ = Bw, where w is a vector of size M and contains the
sparse coefficients of ~. By defining ¥ = ®B, we have
r =®Bw = Yw.

We model the DDC values by a generative model (Fig. 1)
similar to the ones used in relevance vector machine [11], [12]
and Bayesian compressive sensing [13], [14]. In this model,
the sparseness criterion is implemented by a hierarchical prior
for w. We consider a Gaussian prior for w,

M
-1
P(wla) = [[N(wil0,0; ") 2)
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where «; is the precision of the Gaussian density function. We
also assume a gamma prior for a = (ay, as, ..., anr),

M
P(a) = [[ T(cla,b) 3)
i=1
By marginalizing out «; in this hierarchical prior,
Pw) = [ Nwlo.a7Plasja,bdas, @)
0

and it can be shown that w; has a t-distribution [12], [13]. In
practice, a and b are set to small values (e.g. a = b = 104
), and the t-distribution will induce the desired sparseness for
the values of w;.

Neuronal activity in the brain is noisy. The DDC values, 7,
are modeled by adding i.i.d. noise to the expected values of the
encoding functions, » = ® Bw + €, where each entry of € has
a Gaussian distribution with precision ag. We can similarly
assume a gamma prior for oy (with parameters ¢ and d), and
set the parameters to a small value (e.g. 10~%). Let

Dy = diag(an, g, ..., anr), (5)

be the diagonal matrix of the precision values. Since
P(r|w)P(w|a)

P = 6
(wlr, ) = T ©
it can be shown that [13],
P(wlr, o) = N (pa, Eaw) Q)
with
Koy = aOEw\IlTr (8)
Y = (®T® + D, )7? 9)
The probability of evidence given the precision values is
P(r|a,ap) = / P(r|w, ap) P(w|a)dw. (10)
w

We can find the optimal value of a using type II maximum
likelihood [12], [15],

L(a, ap) = log P(r|ex, o) (11)

= _71 (Klog(2m) +log |Al+r"A'r) (12

where A = oy 'T + ¥D;'¥7, and o* = argmax, L(c).
An iterative algorithm has been suggested for calculating o*
[13]. For a given p,, and %,,, an update equation is derived
for o by calculating the derivative of (12) with respect to ¢,
a?ew _ 1—ai2u.,(i,i)’ (13)
[ZAQ

and we iterate over (5), (8), (9), and (13) until convergence.
Similarly, we can find the optimal value of cg, however in this
study, we assume that the neuronal noise variance is known.

For the optimal value o*, P(w|r, a*) = N (u%,, %)), with

wh, = agXn el (14)
¥ = (T + Do)t (15)
Since v = Bw, we can easily find the posterior of «,
P(y|r,a”) = N(p3, 7)) (16)
with
py = By, (17)
¥ = By, B (18)

III. LEARNING DDC ENCODING FUNCTIONS

We hypothesize that the DDC encoding functions are modi-
fied to reduce the amount of uncertainty about the distribution
function ~ given the DDC values, r. The uncertainty is quan-
tified by the conditional differential entropy h(~y|r), however,
since we are using type II maximum likelihood for estimating
the precision parameters, we calculate instead, h(vy|r, a*).

Since P(y|r,a*) = N (uk,X%), we have [16],

1

h(y|r, a*) = 5 log (|2mext|h) (19)
1

= 5 log (|B" B||2meX,|) (20)

= %log (|IBTB|) + h(w|r,a*) (21
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Fig. 2: The effect of learning the means and/or variances of
Gaussian encoding functions on the decoding precision and
entropy of the distribution function. A) the encoding functions
(green) before learning. The true distribution is shown in black.
The conditional mean of the posterior distribution, uf,, is
depicted in blue. Some generated samples of the posterior are
shown in red. B) Learning the means of the Gaussian encoding
functions. C) Learning only the variances of the encoding
functions. D) Learning both the means and variances of the
encoding functions. In all the simulations, «y = 100.

where |.|T is the pseudo-determinant. Also,

(22)

)

(23)

1
h(w|r,a™) = 3 log (|2meXy,|)

1
= —5log (|2me) " (aoB" @7 ®B + Dq-)

In (21), the first term is constant, therefore, to minimize the
entropy h(7y|r,a*), we need to minimize h(w|r, a*). Hence,
the parameters of the encoding functions should be adjusted
such that the matrix of encoding functions, ®, minimizes (23).

Let U = ayBT®T®B + D,-, and c be an arbitrary
parameter of the encoding functions,

oh(w|r,a*) 1 10U

dc ~ 2In 2Tr(U Oc ) @4)
where Tr(.) is the trace of the matrix. Moreover,
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IV. LEARNING IN 1D LATENT SPACES

We assume that the latent variable Z corresponds to a
one-dimensional space, and the latent state Z = j, j €
{1,2,..., S}, is mapped to the value z; = Lt + & in the
interval [0, 1]. For example, Z can denote the discrete location
of an animal on a linear track. At each location, the animal
receives new sensory information and forms a distributional
belief about its location, which is represented by the DDC
values. The set of encoding functions and the DDC values
determine the amount of uncertainty about the belief. By
modifying the encoding functions, the brain can reduce this

uncertainty.

A. Gaussian encoding functions

First we assume that the encoding functions are Gaussian
functions, with initial mean p; and the standard deviation o;,

1 —(zj—1i)?
2
e 2% 27)
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where i € {1,2,..., K} and j € {1,2,...,S5}. We can learn
the parameters of the encoding functions, means and variances,

using (26). The derivative of ® with respect to uy is derived
from

(I)(Z:J) =

0B (i, §) {(Zf;;‘”@(i,j) if i=k o8

Opig 0 if i#k
and we use the gradient descent to find the (local) optimum

of the mean of each encoding function. The mean of the k’th
encoding function is updated by

pr(n) = pr(n —1) — /\H(n)W

Oh(w|r,a™)

(29)

where ), is the learning rate, and m is calculated
from (26) and (28). After each update, ® is modified according
to the new encoding functions, and the vector of DDC values,
r, is altered by the new @, though the belief v may remain
the same. We then derive the optimal precision values a* for
the new 7, and repeat the steps until convergence. To avoid
oscillations of the optimization algorithm around the optimal
point, we use an exponential decay for the learning rate. The
learning rate at time n, is derived from A, (n) = A,(0)e™"",
where « is the decay constant.

We simulated the learning process for 5 Gaussian encod-
ing functions (Fig. 2). We assume that the true distribution
function is a mixture of Gaussians (black line). In Fig. 2A,
we show the DDC encoding functions before learning (green
lines). As described in Section III, we derive the posterior
distribution over the distributional belief. The mean of the
distributional belief  given the DDC values, pZ (blue line),
can not capture the true distribution function. The generated
samples of « (red lines) demonstrate high uncertainty around
z = 0.8. After learning the means of the encoding functions
(Fig. 2B), the amount of uncertainty reduces significantly, and
the distribution function is reconstructed more accurately.
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Fig. 3: Learning the shape of encoding functions. A) Gener-
alized normal functions. The shape parameter, 3, modifies the
shape of the function. B) Learning the locations, scales, and
shapes of the encoding functions. The line colors are as in
Fig. 2.

We can also use the gradient descent to find the standard
deviation of the Gaussian encoding functions,

.. (2j—pi)>—o? .. . .
0B(ij) [ (i) it i—k
= 7y (30)
doy, 0 if i#£k
and the standard deviation is updated by
Oh(w|r, a*
or(n) :ak(n—l)—)\g(n)%. (31)
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Learning the variances of the encoding functions results
in lower uncertainty and a more accurate reconstruction of
the true distribution (Fig. 2C). The amount of uncertainty is
minimized by learning both the means and variances of the
encoding functions (Fig. 2D), and the calculated mean of the
posterior, puZ, fits the true distribution with high precision.

B. Generalized normal functions

We can also learn the shape of the encoding functions. We
assume that the set of encoding functions consists of Gener-
alized normal functions, with the parameters, p (location),

(scale), and 3 (shape),
B llonlfe)®

7o) = 5ar7m)

In Fig. 3, generalized normal functions have been plotted for
different shape parameters. We calculate the derivative of the
entropy with respect to the shape parameter of the encoding
function. The entry (i,7) of the matrix of the encoding
functions is

(32)
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The derivative of the logarithm of I'(z) is the digamma
function F (z),

o d _ I(x)
F(z) = T In(T'(z)) = T(a) (35)
Therefore, from (34) and (35),
0B (i, j (Bt F(F) .
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The derivative with respect to the scale parameter is derived
from
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and with respect to the location parameter,
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where sgn(z) is the sign function.

We can therefore learn the location, scale and shape of
the generalized normal functions. It is shown in Fig. 3B that
learning the shapes of the DDC encoding functions reduces
the uncertainty about the distribution function and produces
a precise reconstruction of the true distribution. These results
propose an explanation for different shapes of neuronal tuning
functions: distinct tuning shapes have been evolved to reduce
the uncertainty of the brain about the distribution over the
variables of interest.

C. Dynamics of encoding functions

Sensory signals change constantly, and the inferred distri-
bution function over the latent variable is time-variant. The
learning mechanism of the DDC encoding functions should
take into account the time-varying characteristics of the dis-
tribution function. We extend our model to dynamic learning
and show how the encoding functions are gradually modified
to reduce the instantaneous uncertainty about the current distri-
butional belief. This analysis reveals the dynamical properties
of encoding functions and is employed to study the dynamics
of neuronal tuning functions.

We explain the dynamics of encoding functions through
examples of spatial navigation. Let’s assume that an animal
is moving on a linear track. At each location on the track,
the navigational uncertainty of the animal is characterized
by the posterior distribution over location, and is represented
by a DDC code. The DDC encoding functions are initially
located randomly (Fig. 4A). When the animal is moving
on the track, we assume that the posterior distribution over
the animal’s location sweeps the latent space uniformly (Fig.
4B). At each location, the posterior distribution is represented
by the corresponding vector of DDC values, 7; the optimal
precision vector o™ is calculated, and the encoding functions
are slightly updated to reduce the instantaneous uncertainty
h(y|r,a*). Then the animal moves to a different location,
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Fig. 4: Learning the encoding functions for dynamic distribution functions. A) Initial location of encoding functions. B) The
distribution function sweeps the latent space uniformly. The mean of the distribution function linearly increases by time from
z =0to z =1, and resets to zero after reaching Z = 1. C) The encoding functions after learning the sequence of distributions
in B. D) Distribution function sweeps the latent space non-uniformly, with more distributions around the center. The mapping
from time to the mean of the distribution function is non-linear, and its slope increases by the absolute distance from z = 0.5.
E) Encoding functions after learning the sequence of distributions in D.

the posterior over location is updated, a new vector of DDC
values is formed, and the procedure continues. After hundreds
of laps, this learning algorithm leads to a uniform placement
of the DDC encoding functions (Fig. 4C). This result has been
already observed in the hippocampal place cells (neurons in
CAl and CA3 regions of the hippocampus that are activated
when the animal is in a specific location). It has been shown
that at the initial phase of exploration, the place cells are
randomly located. However, after enough trials, the place cells
tile the environment uniformly [17].

When there is a reward in the environment, the animal
spends more time around the estimated reward location (non-
uniform sweep). The sequence of posterior distributions over
location has therefore more entries around the reward zone
(Fig. 4D). This non-uniform sweep will create a higher density
of encoding functions around the concentration point (Fig. 4E).
The encoding functions are updated to reduce the uncertainty
about distribution functions, and since distribution functions
are around the reward location most of the time, the learning
algorithm pushes the encoding functions towards the reward
zone. This phenomenon has been also validated in the ex-
periments: when the animal spends more time near the goal
location, the place cells shift toward the goal [18].

V. DISCUSSION

Perception appears to be built on internalised probabilistic
beliefs about features of the external world. One hypothesis
about how such beliefs may be represented in the brain is the
distributed distributional code (DDC), in which neural activity
corresponds to expectations of a set of encoding functions
under the internal belief. Here we asked how these encoding
functions might be adapted to increase the fidelity of the
representation. We assumed that the beliefs to be encoded are
sparse in a known basis, and modeled the DDC values using
hierarchical priors. We derived the conditional uncertainty
about the distributional belief given the DDC values, and then
minimised this uncertainty with respect to parameters in the
encoding functions. This general learning rule can be exploited
in various applications. We showed that the means, variances,

and shapes of the encoding functions obtained in this way
suggest links to known neuronal tuning properties.

Our framework can be easily extended to higher dimensions.
If the latent variable is n-dimensional, we parametrize a set of
n-dimensional encoding functions and learn each parameter of
the encoding functions through (26). Moreover, the learning
algorithm that was derived here is applicable to the optimisa-
tion of classic tuning functions in sensory areas and the other
encoding functions that represent a sparse function linearly.

The set of basis functions, B, that is used in this paper con-
sists of normal functions with different widths and means; the
basis matrix B, however, can be replaced by other functions,
such as discrete cosine transform basis functions.

The derived sparse coefficients, w, do not necessarily cor-
respond to a normalized non-negative distributional belief ~.
However, neither optimisation of the encoding functions, nor
downstream computation, depends on explicit decoding of the
distribution function. The minimization of the entropy pro-
vides direct learning rules for the parameters of the encoding
functions, while many computations with DDC representations
depend on simple linear combinations.

Probabilistic inference in the brain is not limited to sensory
signals. The brain must deal with uncertainty during action,
cognition, and perception. Action planning and motor execu-
tion, decision making, and a wide variety of cognitive tasks are
fundamentally probabilistic and may depend on distributional
representations such as the DDC. We can therefore employ the
results of this paper to derive efficient DDC encoding functions
that could underlie different cognitive tasks across various
regions of the brain. Thus, this approach may help us to gain
a general understanding of the dynamics of neuronal tuning
functions from the perspective of DDC Bayesian computation.
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