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ABSTRACT

We use the IllustrisTNG suite of cosmological simulations to measure intrinsic alignment (IA) bispectra of dark matter subhaloes
between redshifts 0 and 1. We decompose the intrinsic shear field into E- and B- modes and find that the bispectra Bssg and Bsgg, be-
tween the matter overdensity field, §, and the E-mode field, are detected with high significance. We also model the IA bispectra ana-
Iytically using a method consistent with the two-point non-linear alignment model. We use this model and the simulation measure-
ments to infer the IA amplitude A, and find that values of Aj4 obtained from IA power spectra and bispectra agree well at scales
up t0 kg = 2Mpc~!. For example at z = 1, Ajp = 2.13 #+ 0.02 from the cross power spectrum between the matter overdensity
and E-mode fields and Ajy =2.11 & 0.03 from Bysg. This demonstrates that a single physically motivated model can jointly model
two-point and three-point statistics of IAs, thus enabling a cleaner separation between IAs and cosmological weak lensing signals.
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1 INTRODUCTION

Gravitational tidal effects cause dark matter haloes and the galaxies
within them to preferentially align with the cosmological large-scale
structure. Thus, the shapes and orientations of galaxies and haloes
may be correlated across cosmological distances. This phenomenon
is known as intrinsic alignment (IA) (Kirk et al. 2012; Joachimi et al.
2015; Kiessling et al. 2015; Kirk et al. 2015; Troxel & Ishak 2015).
IAs have been widely studied, mainly because the IA effects
mimic cosmic shear and thus are an undesirable contaminant of weak
lensing shape measurements. Controlling this systematic uncertainty
has been a major concern for recent weak lensing surveys, such as
the Kilo-Degree Survey (KiDS-1000)" (Joachimi et al. 2021) and
the Dark Energy Survey? (Secco et al. 2022a). For forthcoming
surveys such as Euclid® (Laureijs et al. 2011) and the Vera C.
Rubin Observatory Legacy Survey of Space and Time,* control
of systematics will become even more pressing. These surveys
will measure the shapes of billions of galaxies, reducing statistical
uncertainties, so that uncontrolled systematics will be a limiting
issue. Looking further ahead, as understanding of IAs develops it is
also possible to see this signal as a valuable cosmological probe in
its own right that future surveys will be able to exploit (Chisari &
Dvorkin 2013; Taruya & Okumura 2020). All these considerations
suggest that it is worthwhile to explore [As as broadly as possible.
So far, most theoretical and observational studies of IAs have
used two-point statistics; relatively few have taken the further step of
considering three-point measurements. However, there is evidence
that TAs affect two-point and three-point weak lensing statistics
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differently (Huterer et al. 2006; Semboloni et al. 2008; Troxel &
Ishak 2011, 2012; Pyne & Joachimi 2021). For this reason, most
work that has investigated three-point statistics aimed to use them to
self-calibrate IA contamination in weak lensing data.

Three-point A statistics have already been successfully measured
from both survey data and simulations. On the observational side,
Semboloni et al. (2010) measured three-point aperture mass statistics
from the Cosmic Evolution Survey (Scoville et al. 2007) and Fu
et al. (2014) built on this work using the larger Canada—France—
Hawaii Telescope Lensing Survey (Heymans et al. 2012). Both these
studies showed that using three-point statistics could help improve
constraints on cosmological parameters. Early simulation results
were described by Semboloni et al. (2008) who measured three-point
IA aperture mass statistics from simulations described in Heymans
et al. (2006). The main focus of this work was a comparison between
the amplitudes of A and weak lensing statistics.

Another strand of work has involved analytical modelling of
three-point TA statistics, building on methods developed for two-
point statistics, in particular the non-linear alignment (NLA) model
(Hirata & Seljak 2004; Bridle & King 2007). This postulates that
the IA of haloes is related to the tidal gravitational field at an earlier
redshift. This methodology can been extended to three-point statistics
in a natural but empirical way (Troxel & Ishak 2012; Merkel &
Schifer 2014; Pyne & Joachimi 2021). Other IA models, for example
the halo-model of Schneider & Bridle (2010) and tidal alignment
models such as Blazek, Vlah & Seljak (2015), have generally
only been implemented for two-point statistics. An exception is the
development by Vlah, Chisari & Schmidt (2020, 2021) of effective
field theory models of galaxy alignments. These authors modelled
two-point statistics at next-to-leading order and three-point statistics
at leading order.

Despite the body of work described above, an analytical model for
three-point IA statistics has never been tested against simulations.
In this work we aim to fill this gap. As a starting point, we consider
dark matter subhaloes rather than galaxies. Since the IA of galaxies
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is related to that of their host haloes, our work can be seen as a first
step towards a model for galaxies.

Our approach to measurement from simulations is based on that
of Kurita et al. (2021) who developed a novel method to measure
three-dimensional IA power spectra of dark matter haloes which
they applied to the high-resolution DarkQuest suite of simulations
(Nishimichi et al. 2019; Miyatake et al. 2021). This has a resolution
of 2048? particles in a periodic cubic box size of 1 ~~! Gpc. Using
the same methodology, we measure all theoretically non-zero IA
bispectra for equilateral and specific isosceles triangles from the
IlustrisTNG® simulation suite.

Kurita et al. (2021) compared their simulation results with the
two-point NLA model and concluded that at linear scales the
model matches the simulation results, with a scale-independent IA
amplitude, but that at non-linear scales the model breaks down
and the amplitude is no longer constant. We similarly compare
our bispectrum measurements with an analytical model based on
perturbation theory which is in keeping with the two-point NLA
model.

In Section 2, we describe the simulation suite and the methods
used to measure dark matter subhalo shapes. Section 3 explains
how we measure IA power spectra and bispectra from simulations,
and Section 4 discusses the NLA model and our analytical model
for three-point IA statistics. In Section 5, we present our IA
power spectrum and bispectrum measurements from simulations and
compare these with analytical results, and in Section 6 we discuss
how these compare with previous work. We summarize and discuss
possible further work in Section 7. Appendices discuss other details,
including signal-to-noise ratios and a possible phenomenological
modification to the NLA model.

2 SIMULATIONS

2.1 Characteristics of the simulations

We use the publicly available cosmological simulation suite II-
lustrisTNG (Marinacci et al. 2018; Naiman et al. 2018; Nel-
son et al. 2018, 2019; Pillepich et al. 2018; Springel et al.
2018). Each simulation in the suite uses the moving-mesh
code AREPO (Springel 2010)° and self-consistently solves for
the coupled evolution of dark matter, cosmic gas, luminous
stars, and supermassive black holes from the starting redshift
z = 127 to the present day, based on a cosmology consistent
with Planck (Ade et al. 2016): Q, = 0.6911, Q,, = 0.3089, 2, =
0.0486, os = 0.8159, ny = 0.9667, h = 0.6774. Specifically, we use
the IlustrisTNG300-1 hydrodynamic simulation which has the
largest simulation box size within the suite of simulations available
from the public data release (Nelson et al. 2019). The simulation box
volume is 300 Mpc? (comoving) with 25007 dark matter particles
and an equal initial number of gas cells.

The publicly available data include catalogues of haloes identified
using the Friends-of-Friends algorithm (Davis et al. 1985). The SUB-
FIND algorithm (Springel et al. 2001) is used to identify substructures
within the haloes. This algorithm defines the centre of the subhalo as
the location of the most bound particle, and provides the positions of
all dark matter particles in the halo.

For our analysis, we select dark matter subhaloes from the
simulations at three redshifts, z = 0.0, 0.5, 1.0. The subhalo mass is

Shttps://www.tng-project.org
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the total sum of the masses of all individual particles belonging to a
given subhalo as identified by the SUBFIND algorithm. The maximum
subhalo masses in the simulation are approximately 3.4 x 10'4,
7.4 x 10", and 1.2 x 10" Mg at z = 1.0, 0.5, and 0.0, respectively.
We select subhaloes within the mass range 4 x 10 ' to 10" A~ 'Mg
for our analysis.

2.2 Measurement of 3D halo shapes from simulations

We start by measuring 3D ellipsoidal subhalo shapes. For this, we
adopt the widely used method based on the inertia tensor J;;. This is
defined as

iy = oM

Zn my
where m,, is the mass of the nth particle and x,;, x,; are its position
coordinates relative to the centre of the halo. The semi-axes a, b, ¢
of the ellipsoid are obtained from the eigenvalues A,, Ap, A, of the
inertia tensor, with a = 4/A, and so on. We set ¢ < b < a and define
axis ratios s = c¢/a and g = b/a. The eigenvectors of the inertia tensor
determine the orientation of the axes.

In order to obtain well-resolved shapes, we choose only subhaloes
with a minimum of 1000 dark matter particles, which is consistent
with the particle number threshold adopted in earlier studies, for
example Tenneti et al. (2015). With this threshold the minimum
subhalo mass is about 4 x 100 42~ M.

As an improvement on equation (1), we use the reduced inertia
tensor (Tenneti et al. 2015) which gives more weight to particles that
are closer to the centre of a subhalo, thus avoiding potential problems
with defining its outer edge. The reduced inertia tensor is defined as

Xpi Xnj
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Rather than taking the ‘raw’ axis ratios defined above we use the
iterative approach described in Tenneti et al. (2015) to recover the
shape of an isodensity surface (Schneider, Frenk & Cole 2012). In this
method, the principal axes of the ellipsoids are rescaled iteratively
while the enclosed volume is kept constant. After each rescaling,
particles outside the ellipsoidal volume are discarded. The process
is repeated until the fractional change in the axis ratios is below a
predefined limit, in our case 1 per cent.

3 INTRINSIC ALIGNMENT SPECTRA FROM
SIMULATIONS

3.1 Ellipticity and tidal shear

The ellipticity, €, of a subhalo shape is a spin-2 quantity (it is invariant
under rotations of integer multiples of ). It can be parametrized in
several ways in terms of the shape and orientation of the subhalo. All
parametrizations are essentially equivalent so we can make a choice
that suits the problem at hand. In many cases, it is convenient to
express the ellipticity as € = €, + i€, where €. represents stretching
along a defined axis and €, represent stretching along an axis at 45°
to this. It is always possible to find such a decomposition (Stebbins
1996).
We can then express the two components of the ellipticity as
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€L = <Z;Z) cos 26, )

€x = (;;g) sin26 , ®)
where a and b are the semimajor and semiminor axes of the ellipse.
Here we take the line of sight to be the z-axis and consider ellipses
projected on to the plane perpendicular to this (Kurita et al. 2021;
Shi et al. 2021). The angle 6 is an arbitrary choice that we take
to be the position angle of the major axis with respect to the x-
axis in the x—y plane, as determined by the relevant eigenvector.
Equations (4) and (5) clearly satisfy the requirements for a spin-2
quantity. Moreover, under a parity transformation € is unchanged
but €, — —e, (Schneider, van Waerbeke & Mellier 2002).

This definition of €, in terms of (a — b)/(a + b), is commonly used
for weak lensing shear because it provides an unbiased estimator
of the shear and does not depend on the ellipticity distribution of
source galaxies (Seitz & Schneider 1997; Viola, Kitching & Joachimi
2014). Even though we are considering intrinsic ellipticity rather than
cosmic shear we adopt this definition for consistency. It has the added
advantage that the tidal shear y = y, + iy, can be assumed to be
directly proportional to the ellipticity.

Other studies of IAs, for example Blazek et al. (2015) and Shi
et al. (2021), used an alternative definition of ellipticity that replaces
(@ — b)(a + b) with (a> — b*)/(a> + b?) in equations (4) and
(5). This version is more readily comparable with observations but
does not provide an unbiased shear estimator (Schneider & Seitz
1995). Moreover, rather than the shear being directly related to
the ellipticity, an extra responsivity factor R = 1 — €2,__ is required
(Bernstein & Jarvis 2002), where €ms = v/(€7) = \/(€2). The
responsivity measures the average response of €, , to y « so that
V+.x = €4+.x/2R. With our definition of the ellipticity we do not need
to consider the responsivity and can assume that e directly traces the
tidal shear field y. Thus y and y , are given by equations (4) and
(5).

3.2 Decomposition into E- and B-modes

For studies of IAs, it is convenient to go a step further and decompose
the shear field into a curl-free (E-mode) component y g and a gradient-
free (B-mode) component y 5 (Kamionkowski et al. 1998; Crittenden
et al. 2002). We define these by the equations

V() = (3,:0; — 9,0,) 74 (x) + 28,8y ¥ (%), (6)

V() = (3,0, — 88,y (x) — 20,8, 74 (x) , @)

where x is the configuration space position and 9.9, = 3%/dx?, and
SO on.

This decomposition takes a simpler form in Fourier space. We
define Fourier space coordinates to be k = (ky, ky, k.) and choose the
k.-axis to be along the line of sight. The derivatives in equations (6)
and (7) change to multiplicative factors so we get

kyyvelk) = (k2 — k2) 74 (k) + 2k.ky 7. (K), ®)

I, 7sk) = (k2 = 3) 7 (k) = 2kiky 74 (K) ©)

where k)%y =k + k§ and y; and y, are the Fourier transforms of
equations (4) and (5). Alternatively, these expressions can be written
in terms of the angle ¢ = tan ! (k,/k,) giving (Kurita et al. 2021; Shi
et al. 2021)

7e(k) = 7.(k) cos 2¢ + p (k) sin 2, 10)
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78(k) = P (k) cos 2¢ — 74 (k) sin2¢ . an

Even though & and yp are measured in the plane perpendicular
to the line of sight, the wavevector k is three-dimensional: k =

k(ﬂcosd), /1 — p?sing, 1), where cos ~!'(u) is the angle
between k and the k,-axis (Blazek et al. 2015; Kurita et al. 2021).

3.3 Intrinsic alignment power spectra and bispectra

Equations (10) and (11) lead directly to the IA power spectrum
between the Fourier transforms of the E-mode shear, 7z, and matter
density contrast, §, and also the auto power spectra of 7 and Jg:

(el = 2m)*83(k + k') Pyg(k), (12)
(Fetoek))) = 2m)*85(k + k') Peg(k), (13)
(7ak)a(K")) = (2m)*8 (k + k') Pgg (k) (14)

where () denotes the ensemble average and &7 is the three-
dimensional Dirac delta function. From parity considerations, these
are the only possible non-zero intrinsic shear power spectra (Stebbins
1996; Kamionkowski et al. 1998; Crittenden et al. 2002; Schneider
et al. 2002). Power spectra involving a single B-mode shear will
switch sign if kK — —k which is physically impossible unless the
spectra are zero. Theoretically, the B-mode auto power spectrum
also vanishes to first order but in practice it may be non-zero because
of Poisson shot noise due to the finite sampling of the halo positions,
which is also present in the E-mode auto power spectrum. [See Blazek
etal. (2019) and Kurita et al. (2021) for more detailed discussions of
shape noise.]

The formalism of equations (12)—(14) can be extended to IA
bispectra. Again, any bispectrum that includes an odd number of
B modes can be expected to be zero by parity arguments so there are
five possible non-zero bispectra:

(8(k1)8(kx) P (ks)) = (2m)* 83 (ky + ko + k3) Byse(ky, ka, k3), (15)

<S(k1))7E(k2))7E(k3)> = 27383 (k1 + k2 + k3) Bsgr (k1. ko, k3),
(16)

ek ) Teka)Pu(ks)) = 2m)383 (k1 + ko + k3) Beee(ky, ko, k),
(17)

(8(k)Ps(ko)Pa(k3)) = (2m) 83 (ky + ko + k3)Bspg (ki ko, k3),
(18)

(Pelk)7s(k2) 7 (k3)) = (27)*83 (k1 + ka + k3)Bepp(ky, ka, k3) .
(19)

3.4 Methodology for measuring power spectra and bispectra
from simulations

To measure the power spectra and bispectra, we follow the method-
ology in Kurita et al. (2021). We refer the reader to Kurita et al.
(2021) and Shi et al. (2021) for more detailed descriptions of the
measurement methodology. To measure power spectra, we use the
publicly available package NBODYKIT’ (Hand et al. 2018) which

"https://github.com/bcep/nbodykit
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provides a wide range of tools to analyse cosmological simulations.
For bispectra, we adapt BSKIT,? developed by Foreman et al. (2020).
This package is based on NBODYKIT together with the Fast Fourier
Transform-based bispectrum measurement algorithm presented in
Tomlinson, Jeong & Kim (2019). In both cases, we incorporate
equations (10) and (11) into the existing code in order to measure
the IA spectra.

In measuring from simulations, we align all axes in Fourier space
with the simulation box sides. We then define a regular grid of size
5123 within the box and assign the subhalo shape measurements to the
grid using the cloud-in-cell interpolation algorithm. We investigated
the alternative triangle shaped cloud assignment method but found
it made little difference to the results. We confine our bispectrum
measurements to equilateral triangles and to a representative isosce-
les configuration whose sides have magnitudes in the ratio 2:2:1.
To quantify uncertainty in the estimates, we divide the simulation
box into 3* subboxes, and estimate standard errors using jackknife
sampling, excluding each subbox in turn.

In all subsequent results we show IA auto power spectra with
Poisson shot noise subtracted, but without any allowance for non-
linear effects due to IAs of shapes. Kurita et al. (2021) explored the
latter in detail but found it to be only 5-10 per cent of Poisson shot
noise in their halo sample from the Dark Quest simulations. Thus
we measure shot noise in the IA power spectra as €2, /ne Where
Neff = Np/ Lgox is the effective number density within the simulation
box with side length Ly, and ny, is the number of subhaloes in the
box.

The measured shear ‘fields’ are weighted by the number density
of haloes. Density weighting is important because haloes are biased
tracers of the matter density field and ellipticity/shear measurements
can only be made at the positions where haloes exist.

4 ANALYTICAL MODELLING

Two-point IA statistics are commonly modelled by the linear align-
ment model (Hirata & Seljak 2004). This model assumes that the
intrinsic ellipticity of a halo is linearly related to the local quadrupole
of the gravitational potential at the redshift at which the halo formed.
Thus, in Fourier space we can write

Pk, 2) = =Awa fo0 “Herdk, 2) (20)

where €2, is the total matter density parameter, p, is the critical
density at the present day, and D(z) is the linear growth factor. The
functions f(4/x, are defined as

fr = (1 - ;ﬁ) cos2¢ , 210

fx = (1 — /ﬁ) sin2¢ , (22)
where, as before, cos ~!(u) is the angle between k and the k.-
axis and ¢ = tan"(kx/ky). The parameter C; in equation (20)
is a normalization factor which in principle can be determined
from observations or simulations. The amplitude Ajs quantifies
the magnitude of the IA effect. This quantity, commonly used in
cosmological inference, is what we are particularly interested in.

Substituting from equation (20) into equations (10) and (11), we
have

7ek) = findk) , (23)

(k) =0, (24)
Shttps://github.com/sjforeman/bskit
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where we define fi5 as
fia = —Aa (1 = p?) Sipeee (25)

From equation (23), we can obtain the three-dimensional E-mode
IA power spectra

Psg(k) = fia Par(k) , (26)

Pep(k) = fii Pan(k) @n

where we have used the non-linear matter power spectrum, Py (k),
as suggested by Bridle & King (2007). This modification, known as
the NLA model, has been found empirically to improve the fit of the
model at non-linear scales.

Theoretically the model predicts that B-mode power spectra are
zero to first order, although as discussed previously, Pgg may be
non-zero in practice due to shape noise or to higher order non-linear
contributions, although these would be small (Blazek et al. 2019).

Note that equations (26) and (27) also depend on redshift but for
brevity we have omitted the z-dependence, here and in all subsequent
related equations.

4.1 Extension of linear alignment model to bispectra

To develop a similar analytical model for three-point statistics, we
need to relate the IA bispectra to the non-linear matter bispectrum.
It is most straightforward to use a fitting function for the matter
bispectrum based on tree-level perturbation theory, for example those
given in Scoccimarro & Couchman (2001) and Gil-Marin et al.
(2012). These have the generic form

Bsss(k1, ko, k3) = 2 [F5™(ky, ko) Pap(ky) Pai(k2) + 2 perms.] , (28)

where erff(k 1, k2) is a modification of the standard perturbation
theory kernel (Bernardeau et al. 2002).

This formulation is easily extended to include IA power spectra
in place of the non-linear matter power spectrum, leading directly to
expressions for the IA bispectra that are in the spirit of the two-point
NLA model (Pyne & Joachimi 2021):

Bssg(ki, ky, k3) =2 [fIineff(kl, ko) Pa (k1) Pai (ko) (29)

+ fia F5 (Ko, k3) Pap (ko) Pap (k3)
+ fin F5™ (ks et) Pa (k) P (k)

Biwe(ki, oo ks) =2 | FiLFS™ Gy, o) P (k) P (k) (30)

+ fAFsT(ky, k3) P (ko) Par(k3)
+ fAFsT ks, kl)PNL(kz)PNL(kl)} ,
= [\ Bsss(k1, k2, k) . @31)

The bispectrum Bggg, is positive but the signs of Bssg and Bsgg depend
on the triangle configuration.
For equilateral triangles, equations (29)—(31) reduce to

Begg(ky, k2, k3)

Bssg = 1 [fé + ZﬁA} Bsss (32)
Boes = 4 [2f3+ ] Bow (33)
Brgr = fi\ Bsss » 34)

where we have omitted the k arguments for brevity.
In this work we use the fitting formula from Gil-Marin et al. (2012)
in equations (29)—(31) with the non-linear matter power spectrum
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estimated by the fitting formula in Takahashi et al. (2012). We note,
however, that the formulas of both Scoccimarro & Couchman (2001)
and Gil-Marin et al. (2012) are known to have deficiencies: they are
fitted over limited k scales and have been found to be inaccurate
for squeezed triangles (Namikawa et al. 2019). These issues were
explored in detail by Takahashi et al. (2020) who developed a new
formula, Bihalofit, based on the halo model. It is more accurate than
the perturbation theory based fitting functions over a wider range of
wavenumbers and redshifts. However, it does not lend itself to use
in our model because it is the sum of 1-halo and 3-halo terms that
involve halo model integrals and a large number of fitted parameters.
Thus, it cannot easily be related to the NLA model. However, as we
show in Appendix A, for scales up to at least k &~ 3 hMpc ™! there is
good agreement between the matter bispectrum estimated from Gil-
Marin et al. (2012) and from Takahashi et al. (2020) and between
these results and our measurements from simulations.

5 RESULTS

We present our results as follows. First, in Section 5.1, we discuss the
halo ellipticity distributions that underlie our IA measurements. In
Section 5.2, we present our measurements of IA power spectra and
bispectra from simulations, and discuss consistency with previous
power spectrum results and between our two-point and three-point
measurements. In the rest of Section 5, we use these simulation
measurements to validate our analytical models. In Sections 5.3 and
5.4, we focus on IA power spectra, using the NLA model to estimate
IA amplitudes and explore their mass dependence. These power
spectrum results establish our methodology and provide context
for our principal results from bispectra based on our three-point
analytical IA model. Results for equilateral triangles are given in
Section 5.5 and compared to power spectrum results in Section 5.6.
Finally, in Section 5.7 we discuss non-equilateral IA bispectra.

5.1 Distribution of halo ellipticities by mass

Previous measurements of halo IAs from simulations, for example
Jing (2002), Lee et al. (2008), Xia et al. (2017), Piras et al. (2018),
and Kurita et al. (2021), have found that IA increases with increasing
halo mass and to a lesser extent with redshift. Similar trends have
been noted from measurements of galaxy shapes from simulations
(Tenneti et al. 2014, 2015), and in survey data for galaxies (Joachimi
et al. 2011, 2013; Singh, Mandelbaum & More 2015) and clusters
(van Uitert & Joachimi 2017). In view of this, we split our measured
subhaloes into four mass bins, with each bin spanning one order of
magnitude from 10'" to 10" 27! M.

Fig. 1 shows the distribution of ellipticity, defined as € =
/€2 + €2, in each of the four bins at z = 0.5. (Similar distributions
are found for other redshifts.) Dotted vertical lines show the median
ellipticity in each bin. This confirms previous authors’ findings:
higher-mass haloes are more elliptical. It is noticeable that the two
lowest-mass bins have similar ellipticities, which are lower than those
of the two high-mass bins.

5.2 IA power spectra and bispectra measured from simulations

Fig. 2 shows our measured IA power spectra, Psg, Pgg, and Pgg,
defined by equations (12)—(14), at three redshifts, with the non-
linear matter power spectrum Pss shown for comparison. In this
and all similar figures, we show the absolute value of the spectra.
Pgp is essentially equal to the shot noise at all but the largest
scales considered here. The non-vanishing cross-power spectrum
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Figure 1. Distribution of dark matter subhaloes by projected ellipticity € =

w/e_z,_ + €2 in four mass bins at z = 0.5. Vertical dotted lines indicate the
median ellipticity in each bin.

Psg confirms that subhalo shapes are correlated with the matter
overdensity field at all scales. The power spectra show little variation
across redshifts. These results are consistent with IA power spectrum
measurements in Kurita et al. (2021). (See their figs 2 and 4.)

Figs 3 and 4 show similar results for measured E-mode and B-
mode bispectra respectively [equations (15)-(19)], for equilateral
triangles and for isosceles triangles with sides in the ratio 2:2:1.
The B-mode bispectra have very low signal-to-noise ratios (see
Appendix B) and we do not consider them further in this work.
However, the E-mode bispectra, in particular Bssg, have relatively
strong signals, especially for isosceles configurations.

There is no convenient benchmark with which to compare our
bispectrum results. The only previous measurements of three-point
IAs from simulations were by Semboloni et al. (2008, 2010).
Unfortunately, it is difficult to compare our results with theirs for a
number of reasons: they worked in configuration space and measured
aperture mass statistics, and they focused on the magnitudes of 1As
relative to lensing signals, rather than on the strength of the IA signal
itself. This is discussed further in Section 6.

In Fig. 5, we split the IA power spectra Psz and Pgg and the
bispectrum Bssg between mass bins. In all three cases the magnitudes
of the spectra increase with mass. Again we note that the spectra in
the two lowest-mass bins are similar to each other and generally
smaller than those in higher-mass bins.

5.3 Intrinsic alignment amplitude from power spectra

Having shown that E-mode spectra are detectable from the simula-
tions, we now estimate the IA amplitude A in equation (20) from
simulation measurements. We first consider power spectra. From
equations (26) and (27) we can obtain approximate estimates of fia,
and hence Ay, from the ratio Psg(k)/Pss(k) or from «/Pgg(k)/ Pss (k).
Alternatively, following Kurita et al. (2021), we can use least-squares
minimization to fit Ajy from these equations. To do this we find the
value of the parameter A;, which minimizes x2 given by

_ A 2
=3, B (35)
R
Here, in the first case, based on Psg, R(k) = Psg(k)/Pss(k) and
F(Aw) = [y (1—p2) duc@An = 3e(@)An (36)
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Figure 2. TA power spectra Psg, Pgg, and Pgg measured from simulations. The matter power spectrum Pj;s is also shown for reference. Shot noise has been
subtracted from the auto power spectra. Shaded areas are 68 per cent confidence intervals.
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Figure 3. IA bispectra Bssg, Bsgg, and Bggg measured from simulations. Top: Equilateral triangles. Bottom: Isosceles triangles with sides in the ratio 2:2:1.
The bispectrum Bs;s is also shown for reference. Shaded areas are 68 per cent confidence intervals.

where c(z) = CiQnpo/D(z) [see equation (25)] and o2(k) is
the variance of R(k) calculated using jackknife sampling from
27 simulation subboxes. To calculate F (AIA), we obtain the
growth factor from the cosmological parameter estimation code
CosmoSIS® (Zuntz et al. 2015). We use the value of C; de-

“https://github.com/joezuntz/cosmosis
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rived by Bridle & King (2007) which is 5 x 10~ h_2M51Mpc3,
leading to Cjp, = 0.0134 (Joachimi et al. 2011). All cos-
mological parameters values are identical to those used in the
simulations.

In the second case, based on Pgg, R(k) = «/ Pee(k)/ Pss(k) and
F(Aw) = [} (1-12)° dpc@An = Le@An . 37)

with ¢(z) and o}(k) defined as before.
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Figure 4. IA bispectra Bssp and Bggp measured from simulations. 7op: Equilateral triangles. Bottom: Isosceles triangles with sides in the ratio 2:2:1. The
bispectrum Bj;ss is also shown for reference. Shaded areas are 68 per cent confidence intervals.

Fig. 6 compares the values of Ajs obtained from ratios of power
spectra to those obtained using equation (35). Results are for
kmin = 0.1h Mpc’1 and varying kp,x. There is good agreement for
all values of k.. This validates the NLA model. The results for
Pgg are consistently higher than those for Psg, suggesting a possible
unexplained systematic trend.

5.4 Dependence of IA amplitude on mass

Since the IA power spectra depend strongly on subhalo mass, we
also expect Aja to depend on mass. We therefore obtain estimates
of Ajs from Psg and Pgg for each of our four mass bins. We
assume that the same linear alignment model applies for all halo
masses, with any mass-dependence being absorbed into the estimated
amplitude. Alternative ways in which the mass-dependence has been
incorporated include inserting a mass-dependent halo bias term into
the linear alignment model (Xia et al. 2017) and using a virial
argument to derive a scaling by mass (Piras et al. 2018).

We perform the x> minimization using equation (35) for each of
the four mass bins and for three redshifts, and also vary the maximum
k value used. The results are shown in Fig. 7. The values of Ajp
obtained from Psg are consistent with fig. 6 in Kurita et al. (2021),
given slightly different mass bins and k and z ranges.

We also fit a power law of the form

Aa o MJ (38)

where M|, is the mean halo mass per bin. We estimate this relationship
using both Psg and Pgg. The results are shown in Fig. 8. At all
redshifts the two estimates are reasonably consistent for kpy,x <
2 h Mpc~!, but show some variability for higher ky.

We can compare our estimated power spectrum slopes in Fig. 8
with those found by Piras et al. (2018) from the Millennium simula-
tion. These authors obtained g & 0.35 for z = 0.46, with a slightly
lower-mass sample of haloes (10" < M, < 10'33¢ 4~ M). Our
value B ~ 0.43 for kyax ~ 2 h Mpc‘1 at z = 0.5 is somewhat higher.
We note, however, that Piras et al. (2018) repeated their analysis
using observational data and found 8 ~ 0.56. They suggested several
possible reasons for this difference, including the effect of baryons
on halo shapes and the relative strength of the stellar and dark matter
signals in different mass bins.

5.5 Intrinsic alignment amplitude from equilateral bispectra

‘We now turn to our main aim: to investigate whether our three-point
analytical model is consistent with the two-point NLA model over the
non-linear scales of interest. We start with the equilateral bispectrum
Bjie given by equation (32). We later expand this to non-equilateral
versions of Bssg, but do not consider other IA bispectra because we
find these have insufficient signal to provide robust estimates of the
amplitude Ajx.

We again use equation (35) to fit a parameter A, but in this case
R(k) = B;(?E' / Bsss. Also, using equation (32), we now have

A -
F(Aw) = fj (1 - p?) dp Dat2hnl )

= 2{(c(2)A1n)? 4 2c(z) A1l , (40)

where ¢(z) and Ajs are defined as in Section 5.3. In contrast to
the power spectra, there is no simple relationship between the ratio
By / Bsss and the IA amplitude so we cannot produce a plot similar
to Fig. 6.
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Figure 5. IA spectra in four mass bins. Top: Psg. Centre: Pgg. Bottom: ng;i.

As shown in Fig. 5, B;;'Ei increases with mass, albeit not as
consistently as Psg, so we again obtain estimates of Ajs for each
mass bin, and fit a power law to this. Figs 7 and 8 show the
resulting estimates of Aja and of the slope 8. Note that we fit the
bispectrum measurements only for k > 0.7 2 Mpc™' in contrast to
k > 0.1 h Mpc™! for the power spectrum.

5.6 Comparison of results from power spectra and equilateral
bispectra

Table 1 summarizes our main results. It shows estimates of Aps
derived from Psg, Pgg, and B, for each mass bin. Also in this table
are the estimated power-law slopes B from equation (38) and the

MNRAS 516, 1829-1845 (2022)

mean value of Ajs, weighted by the number of subhaloes per mass
bin. For illustrative purposes, we choose kp.x = 2 h Mpc_1 in this
table, well within non-linear scales, since our models appear reliable
up to this value. This range also covers the typical fit range for cosmic
shear studies. The overall picture would be qualitatively similar with
a different k.

The IA amplitudes obtained from Psg and Bssg are completely
consistent, underlining the validity of the analytical modelling up
to at least kyaxy =2 h Mpc’1 and confirming that our modelling of
three-point IA statistics is consistent with the two-point NLA model.
The power-law relationship that we obtain using Bjss is broadly
consistent with the power spectrum results but is rather lower in
most cases and more dependent on the value of ky,y.
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5.7 Analytical predictions for isosceles bispectra

It is worth exploring whether our analytical model can also be
applied to non-equilateral bispectra since these can contain more
information than equilateral configurations (Appendix B). In this
case, it is not possible to obtain simplified expressions similar to
those in equations (32)—(34) because the perturbation theory kernels
do not cancel out. Instead, we consider whether the IA amplitudes
predicted from By, are also valid for non-equilateral bispectra. For
illustration, we again consider isosceles triangles with one side with
magnitude k and two sides with magnitude 2k. _

We take the estimates of Ay obtained from Bjgg in the final
column of Table 1, noting that these are very similar to the estimates
obtained from Psg. We calculate fj5 from equation (25) using the same
assumptions as in Section 5.3, obtain the non-linear matter power
spectrum from Halofit (Takahashi et al. 2012), and insert the resulting

values into equations (29)—(31). In Fig. 9, we compare these predicted
bispectra with those measured from simulations, finding a reasonable
fit across scales and redshifts. This confirms that our empirical IA
bispectrum model works for both equilateral and isosceles triangle
configurations.

5.8 Decorrelation of matter overdensity and E-mode fields

In Appendix C, we discuss a possible phenomenological change to
our two-point and three-point analytical models that adjusts them
for the correlation between the matter overdensity field and the E-
mode ‘field’. We measure the correlation between the fields from
simulations, and introduce the resulting correlation coefficient into
the analytical model. In most cases, this improves the fit of the models
considerably. This is not central to our main results but may be worth
considering for future IA modelling.
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Table 1. Estimates of the IA amplitude A1 and the power-law exponent 8 in equation (38) for subhaloes in four mass ranges, with 68
per cent confidence intervals, from the power spectra Psg and Pgg and the bispectrum B;gg' with kppax =2 1 Mpc_1 . Also shown are the
mean Aja for all masses, calculated as the average over mass bins weighted by the number of haloes per bin. For both power spectra,

kmin ~ 0.1 h Mpc ™" and for the bispectrum kpin &~ 0.7 h Mpc ™.

Subhalo mass range (h~' M)
Redshift 101010 1011012 1012—1013 10'3—-10"  Slope 8 Mean Aia

From power spectrum Psg 0.0 0.74 £ 0.01 0.86 £ 0.01
0.5 1.02 £ 0.01 1.31 £0.01
1.0 1.59 £ 0.01 2.10 £0.02
From power spectrum Pgg 0.0 140+£0.02 1.61 £0.02
0.5 1.96 £0.02 225+0.02
1.0 2.69+£0.02 321+0.02
From bispectrum Bssg 0.0 0.94 4+ 0.01 0.99 + 0.01
0.5 1.07 £0.01 1.25 £ 0.01
1.0 1.58 £0.02 2.07+0.02

240£0.03 11.13£0.12 0.3924+0.002 0.91 £0.01
426 £0.04 19.38+0.14 0.432£0.001 1.36 +0.01
6.68 £0.06 28.87+0.21 0.427+0.001 2.13 £0.02
6.84 £0.09 45.08+0.81 0.507+=0.002 1.90 £ 0.02
9.14£0.09 6343 £1.01 0.507+0.001 2.64£0.02
13.54 £0.15 112.53 +1.47 0.543 £0.001 3.81 +=0.03
233£003 974+0.16 0.3324+0.003 1.06+£0.01
379 £0.05 17.59£0.23 0.407 +£0.002 1.34 £0.01
594 £0.09 33.88+£0.39 0.446+0.002 2.11 £0.03
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Figure 9. IA bispectra for isosceles triangles with one side of magnitude k and two sides of magnitude 2k. Solid lines: Measured from simulations. Dashed

equi

lines: Calculated from equations (29)—(31) with best-fitting values of Aja estimated from By .

6 COMPARISON WITH PREVIOUS WORK

The most relevant previous work is by Kurita et al. (2021)
who measured TA power spectra from simulations; Semboloni
et al. (2008) who measured three-point IA statistics from sim-
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ulations and compared them with cosmic shear; and Pyne &
Joachimi (2021) who wused analytical models to investigate
the effect of IAs on the weak lensing power spectrum and
bispectrum.
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Our present work is most directly comparable with Kurita et al.
(2021) who used the same methodology but a different simulation
suite. Both studies explore the correlation between the intrinsic shear
field and the matter overdensity field, and both consider dark matter
haloes rather than galaxies. The power spectrum results presented
in the current work are consistent with those in Kurita et al. (2021),
giving confidence that the bispectrum measurements we present here
are also sound.

Semboloni et al. (2008) built on the work of Heymans et al. (2006)
who measured two-point (GI) correlations between the shapes of
foreground galaxies and the weak lensing shear of source galaxies in
a suite of N-body simulations, and also shape—shape (II) correlations.
Semboloni et al. (2008) used the same simulations to measure three-
point statistics (GGG, GGI, GII, and III correlations). Their main
findings were that for surveys whose median redshift was around
0.7 the II and III terms were consistent with zero, but that for
shallower surveys with zyeq &~ 0.3 the II/GG and III/GGG ratios
were non-zero, and the III ratio could be a factor of 10 higher
than the II ratio. Later Semboloni et al. (2010) also used these
simulations to validate measurements of three-point shear statistics
from observations. These studies are relevant to this work in that
they measured three-point IA statistics, but not easily comparable
because they focused on IA contamination of the cosmic shear
signal.

A likely reason for any inconsistencies between the findings in
this paper and those of Semboloni et al. (2008) is the different mass
resolution of the simulations. The simulations used in Semboloni
et al. (2008) and related works were state of the art at the time,
with 5123 particles in a periodic cubic box measuring 300 4 Mpc ™!
per side. However, the mass resolution was low with a particle
mass of 1.7 x 10 2~! Mg, compared with 4 x 107 7~' My in
IustrisTNG300. As aresult, the smallest bound haloes that Heymans
et al. (2006) could identify had masses several times 10'! 7~ M
whereas in the current work we use haloes with mass as low as
around 4 x 10'°42~!My. This is despite the fact that we include
only haloes with at least 1000 particles, in contrast to Heymans
et al. (2006) who allowed a considerably smaller minimum particle
number. Semboloni et al. (2008) explicitly stated that the lack of
low-mass haloes in their sample was a limitation. The results in
Heymans et al. (2006) and Semboloni et al. (2008) also depend on
models that they used to populate each halo with a single spiral or
elliptical galaxy. Although it would be possible to do an approx-
imate lensing calculation to compare our results with Semboloni
et al. (2008), in view of the many differences between the two
studies we consider this would involve too many assumptions to be
useful.

Pyne & Joachimi (2021) modelled the GGI, GII, and III corre-
lations analytically using the same approach as in this paper (the
NLA model extended to three-point statistics). This work also found
that TAs affected two-point and three-point weak lensing statistics
differently, although not consistently with the results in Semboloni
et al. (2008). Again, this disagreement may be attributable to the low
mass resolution of their simulations.

7 SUMMARY AND DISCUSSION

We have measured IA bispectra of dark matter subhaloes from the
TustrisTNG300-1 cosmological simulation suite, building on the
power spectrum methodology developed by Kurita et al. (2021). We
also measured the IA power spectra Psg and Pgg and confirmed that
they are consistent with results obtained by Kurita et al. (2021) using
the DarkQuest simulation suite.

Three-point intrinsic alignments of haloes 1839

At all redshifts, the cumulative signal-to-noise ratios of the 1A
bispectra were well below those we obtained for power spectra — for
example, 10—15 per cent at kyay & 4 h Mpc ™! compared with around
40 per cent for power spectra. The bispectrum Bggg and measured
bispectra involving B-modes have very low signal-to-noise ratios
and provide no useful information. However, we found that the E-
mode bispectra Bssg and Bsgg do have useful information content.
Signal-to-noise ratios for the non-equilateral triangles that we studied
are notably higher than for equilateral triangles, suggesting that
the common simplification of using only equilateral triangles in
bispectrum analyses is sub-optimal (Yankelevich et al. 2022).

All the IA power spectra and bispectra we studied showed similar
strong relationships with subhalo mass. This can be traced back to
the relationship between halo ellipticity and mass. As discussed in
Section 5.1, this mass dependence has been noted by others in both
simulations and observations. Its origin is debated. Smith & Watts
(2005) attributed it to higher mass haloes forming later so they have
had less time to virialize and therefore retain more memory of the
tidal fields at the time they formed. More recently, Xia et al. (2017)
postulated that the IA strength depends independently on both halo
formation time and mass, whereas Piras et al. (2018) suggested that
higher-mass haloes experience stronger tidal fluctuations.

We used the standard NLA model to estimate the IA amplitude
from both Pgg and Pgg, and found that our estimates are consistent
with corresponding results obtained by Kurita et al. (2021). This
validated our two-point modelling.

For TA bispectra, we used the analytical model from Pyne &
Joachimi (2021), which is in the spirit of the NLA model. From
this we again estimated the IA amplitude, this time from equilateral
bispectra. We found that the best-fitting amplitudes Ajy obtained
using Bjgn were extremely close to those obtained from Psg. It
is not possible to use the same methodology to estimate Ajx from
non-equilateral triangles but we showed that the predicted Ajs from
Bjse produced an acceptable fit to simulation measurements of 1A
bispectra of specific isosceles triangles.

We fitted power-law relationships between the estimated Ajy and
subhalo mass, obtaining almost identical relationships from Psg and
Bjs . These also agreed approximately with the relationship found
by Piras et al. (2018) using power spectrum measurements from
the Millennium simulation. It is interesting that all our estimated
IA amplitudes are similar for the two lowest-mass bins and larger
for the high-mass bins. This hints at a possible broken power-law
relationship with mass similar to the luminosity relationship found
by Fortuna et al. (2021) for a sample of luminous red galaxies from
KiDS-1000 (Kuijken et al. 2019).

Our bispectrum measurements are an advance on the early three-
point IA measurements from simulations reported in Semboloni et al.
(2008) since we have been able to take advantage of the improved
resolution and methodology of the IllustrisSTNG simulation suite.
Semboloni et al. (2008) focused on the magnitude of the IA effect
relative to cosmic shear, whereas we considered the correlation
between the IA shear and the matter overdensity field. There are
also several other detailed differences between the two studies and,
as discussed in Section 6, many assumptions would need to be made
to compare our results directly with theirs. It is more useful to
consider the results from Pyne & Joachimi (2021) who estimated
ratios between IA and lensing signals using the same analytical
models as in this paper. Like Semboloni et al. (2008), this work
found that two-point and three-point weak lensing statistics are
affected differently by IA. The present work has shown that our
analytical models agree well with measurements from IllustrisTNG
which validates the results reported in Pyne & Joachimi (2021).

MNRAS 516, 1829-1845 (2022)

2202 Jaquieldas /0 uo Jesn uopuo] 86sjj09 Alsieaun Aq yE¥E/99/628 1/2/91 S/801e/seluw/woo dno olwapese//:sdiy Woll papeojumoc]



1840  S. Pyne, A. Tenneti and B. Joachimi

The fits between the measured and modelled IA power spectra
and bispectra are not perfect. In Appendix C, we suggest a possible
phenomenological modification of the analytical models based on
the correlation between the matter overdensity and E-mode fields
measured in simulations. This may be worth considering for future
IA modelling.

Overall our results demonstrate that a single physically motivated
analytical approach can be applied to both two-point and three-
point A statistics, enabling a cleaner separation between IA and
weak lensing signals. This opens up the prospect of using such
a model in joint power spectrum-bispectrum analysis. Pyne &
Joachimi (2021) showed that such analysis can allow self-calibration
to mitigate IA contamination of weak lensing data in forthcoming
surveys. This is particularly pertinent in the light of advances in the
measurement of three-point statistics from survey data. Secco et al.
(2022b) recently reported high signal-to-noise detections of three-
point shear correlations and aperture mass statistics in the first three
years of data from the Dark Energy Survey. These measurements
lay the foundations for joint two- and three-point cosmological
analyses which will of course need tight control of systematics such
as [As.

This work has considered only dark matter haloes and so has
only limited application to observational data. In future work, we
plan to build on the measurement techniques and modelling in this
paper to confirm that the three-point approach can be extended to
galaxies and to investigate the impact of galaxy characteristics and
environment.
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APPENDIX A: COMPARISON BETWEEN
SIMULATIONS AND ANALYTICAL
CALCULATIONS OF THE MATTER
BISPECTRUM

To confirm the suitability of the perturbation theory-based formula
from Gil-Marin et al. (2012) for our purposes, Fig. Al compares
it with our matter bispectrum measurements at z = 1 from the
IustrisTNG300-1 simulations. Also shown are more recent ana-
Iytical estimates using Bihalofit (Takahashi et al. 2020) as well as
tree-level perturbation theory bispectra (Bernardeau et al. 2002). We
show results for equilateral triangles and for isosceles triangles with
sides in the ratio 2:2:1. All the separate results for the non-linear
bispectrum are consistent at the scales that we are interested in,
with the simulation measurements and analytical estimates from Gil-

Marin et al. (2012) only diverging significantly for k > 3 s Mpc~".
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APPENDIX B: SIGNAL-TO-NOISE RATIOS

We approximate the cumulative signal-to-noise ratio (SNR) of a
power spectrum P(k) as

S\’ )
(ﬁ) = X (B1)

where o is the variance in the ith bin, measured using jackknife
sampling, and we consider only diagonal terms of the covariance.
Similar definitions apply to the IA power spectra and bispectra.
Equation (B1) is a simplification that somewhat overestimates the
signal-to-noise ratio. Nevertheless, it allows a useful comparison
between the information content of different spectra.

Fig. B1 shows, as a function of k., the cumulative SNR for
the matter power spectrum and also for E-mode IA power spectra.
Fig. B2 shows similar information for the E-mode IA bispectra, for
equilateral triangles and for isosceles triangles with sides in the ratio
2:2:1.

The main messages to take from these figures are that the SNR
for Pgg is much weaker than for Psg; the power spectra contain
much more information than the bispectra; and the IA spectra Bsgg
and Bggg contain very little signal in the IllustrisTNG300-1 volume.
For this reason, we use only Bssg in most parts of this work. The
Psg SNR appears surprisingly strong in comparison to that for Pg;
but this could be due to the simplifications in our calculations. We
also confirmed that in each case the cumulative SNRs for individual
mass bins are typically within 80 per cent of the SNRs for the whole
sample.
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Figure Al. Comparison between the matter bispectrum at z = 1 measured from the IllustrisTNG300-1 simulation, calculated using the fitting formula from
Gil-Marin et al. (2012), and calculated using the more accurate Bihalofit fitting formula (Takahashi et al. 2020). Also shown are the bispectra calculated from
tree-level perturbation theory (Bernardeau et al. 2002). Left: Equilateral triangles, right: isosceles triangles with sides in the ratio 2:2:1.
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APPENDIX C: PHENOMENOLOGICAL
ADJUSTMENT TO ANALYTICAL MODELS

In Fig. 9, we compare IA isosceles bispectra measurements from
simulations with analytical predictions and show that there is a
close but not perfect match between the two estimates. Figs C1
and C2 respectively show analogous results for IA power spectra

MNRAS 516, 1829-1845 (2022)

and equilateral bispectra. Again the fits are close but not exact.
Looking more closely at Fig. C1, the simulations and analytical
calculations match well for Pgg; the discrepancy is only in Psg which
correlates the matter overdensity and E-mode fields (the latter is not a
true field but we treat it as such). From Figs 9 and C2, we see that the
fitis not perfect for any of the bispectra. The measured Bggg (isosceles
and equilateral) are noisy and in this case part of the discrepancy may
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Figure C1. IA power spectra Psg and Pgg estimated from simulations (solid lines) and calculated from the NLA model with best-fitting values of A1 estimated

from Psg (dashed lines).
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Figure C2. IA bispectra for equilateral triangles. Solid lines: Measured from simulations. Dashed lines: Calculated from equations (29)—(31) with best-fitting

values of Aja estimated from B;g;l.

be due simply to the uncertainty in the measurements. We therefore
consider here how to improve the fits for the spectra that depend
on both the matter density and E-mode fields. We tackle this by
considering the correlation between the measured power spectra of
the two fields. The correlation coefficient r(k) between the power
spectra can be defined as (Kurita et al. 2021)
2y — 6 Pspk)?
rk) = 3 mdreE - €h
The normalizing factor 6/5 arises from integration over y of the terms
in (1 — p?) in equations (26) and (27):

1 2

1 2 6

Jo (1=p?) du 6

With this normalization, r(k) should be equal to unity if the NLA
model is valid. Our calculated correlation coefficients at three
redshifts are shown in blue in Fig. C3. The coefficients asymptote to
approximately one as k — 0 but reduce to a lower, redshift-dependent
value for k = 1, apart from z = O where the correlation coefficient is
very noisy at large values of k.

To model the correlation coefficients at each redshift we fit a
generalized logistic curve of the form

r(k) =ro+ ———— . (C3)
1+a exp(—b(kfko)}

This has six free parameters: ry and r; are the lower and upper
asymptotes of the curve, ky determines the k value at which the curve
starts to decline, and the remaining parameters, a, b, and v, control
the shape of the curve. In particular, b controls the rate at which the
curve decreases as k increases. We normalize the fitted curves to be
equal to one at ky,,. For z = 0, because of the noisy data at larger &,
we set r(k) = r(1.0) fork > 1.0 hMpC_l. The fitted curves are shown
in green in Fig. C3.

It is difficult to fit a single model which takes redshift into account
since we only have data for three redshifts. Instead, we fit the model
separately for each redshift, leading to the best-fitting parameter
values shown in Table C1. The values for z = 0.5 and z = 1 are
similar so it is plausible that single model could in fact be constructed
for both these redshifts.
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Figure C3. Blue: Correlation coefficients r(k) between the E-mode field and the matter density field as defined by equation (C1), for three redshifts. Green:
Logistic curve fitted to the calculated correlation coefficients using equation (C3) with parameter values from Table C1.

Table C1. Best-fitting parameter values and normalization factor for the
modelled correlation coefficients given by equation (C3).

Redshift 7o r1 a b v ko Norm
0.0 0.6 0.95 1.03 614 57.8 0.19 0.95
0.5 0.43 1.02 1.72 12.5 6.00 0.16 1.00
1.0 0.43 1.06 2.20 19.9 13.0 0.08 1.04

We now introduce the correlation coefficient into the two-point
analytical model by rewriting equation (26) as

Psg(k) = r(k) fia PaL(k) , (C4

for each redshift. Thus the model now includes the simulation-based
correlation between the fields. Similarly, we incorporate correlation
coefficients into the three-point model given by equations (29) and

(30). So, since Pgg is unchanged, we have

Bssg(ky, ky, k3) =2 [flineff(kl, k>) Pap (k1) Pa(k2)
+r(ky) fia Fs" (k. k3) Py (ko) P (k3)

r(ks) fin FS" (ks o) Pt (ks) P ()] L+ (CS)
and similarly for Bsgg.

Fig. C4 compares the unadjusted and adjusted analytical results to
the simulation measurements for Psg. In this case, by construction,
the phenomenological modification virtually eliminates the discrep-
ancy between the simulations and analytical calculations.

Fig. C5 shows similar results for the bispectra Bssg and Bsgg for
equilateral and isosceles triangles. Here, the benefits of introducing
the correlation coefficient are less clear, especially for Bsgg where
neither version of the analytical model fits the simulations very
well, especially at higher redshifts. Nevertheless, we conclude that
it may be worth considering this decorrelation between the density
field and the intrinsic shape in future two-point and three-point IA
models.
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Figure C4. IA power spectrum Psg measured from simulations and calculated from the NLA model with and without adjustment by the correlation coefficient

r(k) given by equation (C1).
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