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ABSTRACT. We consider the only one known class of non-Kähler irreducible holomorphic symplectic

manifolds, described in the works of D. Guan and the first author. Any such manifold Q of dimension

2n −2 is obtained as a finite degree n2 cover of some non-Kähler manifold WF which we call the base

of Q. We show that the algebraic reduction of Q and its base is the projective space of dimension n −1.

Besides, we give a partial classification of submanifolds in Q, describe the degeneracy locus of its alge-

braic reduction and prove that the automorphism group of Q satisfies the Jordan property.

1. INTRODUCTION

1.1. Holomorphic symplectic manifolds. Let M be a complex manifold of dimension 2n. A holomor-
phic symplectic structure is a closed holomorphic 2-formωM on M of maximal rank. One can ask when
a compact holomorphic symplectic manifold is Kähler, i.e. admits a positive closed (1,1)-form. By the
Enriques-Kodaira classification, in dimension two there are 3 different types of holomorphic sym-
plectic surfaces: K3 surfaces, complex tori and Kodaira-Thurston surfaces (see below). Every simply
connected holomorphic symplectic manifold of dimension 2 is a K3 surface, and those are known to
be Kähler by the result of Siu [Siu83]. It then was conjectured by A. Todorov that this should generalize
to higher dimensions. In fact, in his MPIM preprint [Tod90] Todorov claimed that every holomorphic
symplectic manifold admits a Kähler metric. However, ten years later several counterexamples to this
statement were found by D. Guan [Gua94; Gua95a; Gua95b]. A more geometrically transparent con-
struction of these manifolds was then given by the first author in [Bog96]. In the present paper we
call1 them BG-manifolds. Their construction is sketched in Section 3.2.

Holomorphic symplectic manifolds are closely related to hyperkähler manifolds. Recall that a hy-
perkähler manifold is a Riemannian manifold (M , g ) equipped with three Kähler complex structures
I , J ,K : T M → T M , satisfying the quaternionic relation

I 2 = J 2 = K 2 = I JK =−id.

Any hyperkähler manifold is holomorphically symplectic. Indeed, a simple computation shows that
the form

ω=ωJ +
p−1ωK

is of type (2,0) (here ω∗ = g (∗X ,Y )). Moreover, it is closed and hence holomorphic. Conversely, a
compact holomorphically symplectic manifold is hyperkähler, provided that it is Kähler. This follows
from the Calabi-Yau theorem [Yau78].
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1In [KV19] this class of manifolds was called Bogomolov-Guan manifolds.
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One of the most important properties of hyperkähler manifolds is the existence of the Beauville-
Bogomolov-Fujiki-form (BBF-form, for short), that makes the second cohomology group into lattice.
This fact is the consequence of the Bogomolov-Tian-Todorov theorem, which says that the deforma-
tion theory of Kähler manifolds with trivial canonical class is unobstructed. In the recent work [KV19]
it was proven that the deformation theory of BG-manifolds is similar to that of hyperkähler manifolds.
More precisely, there is a version of local Torelli theorem which allows to show that holomorphic sym-
plectic deformations of BG-manifolds are unobstructed, and the corresponding period map is locally
an isomorphism. Moreover, a BG-manifold M of dimension dimCM = 2n possesses a non-Kähler ver-
sion of the BBF-form, i.e. there exists a symmetric form q on H 2(M) such that for any w ∈ H 2(M) one
has ∫

M
w 2n = q(w, w)n .

Conjecturally, this form is also non-degenerate.

1.2. Algebraic reduction and submanifolds of BG-manifolds. The goal of this article is to shed some
light on the geometry of non-Kähler manifolds, described in the works of Guan and the first author,
and also some related manifolds. As described in Section 3.2, any BG-manifold Q of dimension 2n−2
is obtained as a finite degree n2 cover of some complex non-Kähler manifold WF which we call the
base of Q. The first main result of this article describes the algebraic reduction of Q and WF .

Theorem A. Let n Ê 2 be an integer, Q be a BG-manifold of dimension 2n−2, and WF be its base. Then
Q and WF have a structure of a fiber space

Φ : Q →Pn−1, Π : WF →Pn−1

with typical fiber being an abelian variety; these maps are the algebraic reductions of Q and WF , respec-
tively. In particular, the algebraic dimension of Q equals n −1.

The construction of BG-manifolds actually reminds the construction of (hyperkähler) generalized
Kummer varieties, but starts with the Kodaira-Thurston surface, rather than a complex torus. The
idea to start with Kodaira surface to produce new examples of irreducible holomorphic manifolds is
based on the fact that Kodaira surface is one of five possible complex surfaces with Kodaira dimension
zero together with K3 surfaces, abelian surfaces, Enriques surfaces and hyperelliptic surfaces [Bar+04,
p. VI], and it is the only non-Kähler one among those. If S is a Kodaira-Thurston surface, then its
algebraic reduction

π : S → E

is a principal elliptic fibration over an elliptic curve E . It is well known that all algebraic submanifolds
of S are contained in the fibers of π. The second main result of this paper gives some information
about the properties of submanifolds in BG-manifolds (again using the algebraic reduction Φ of Q).
A somewhat more precise description of their geometry can be extracted from Proposition 6.13 and
Theorem 6.1.

Theorem B. Let Q be a BG-manifold and X ⊂Q be its submanifold. Set Z =Φ(X ).
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(1) If Z is a point, then X is a subvariety of the fiber Φ−1(Z ) which is algebraic for a general point Z
and Moishezon for others.

(2) If Z is a smooth curve, then X can be Moishezon or non-Moishezon, depending on Z (see Propo-
sition 6.13 for a more precise statement).

(3) If dim(Z ) Ê 2, then X is not Moishezon.

1.3. Automorphisms. Given a complex manifold X , one is often interested in the properties of its
group of biholomorphic or bimeromorphic transformations, denoted in this article by Aut(X ) and
Bim(X ) respectively (or Bir(X ) for X algebraic). In general, these groups may have a very complicated
structure and hence one can try to study their finite subgroups instead. In fact, it often happens that
one can observe some kind of boundedness on this level. Following [Pop14], we say that a group Γ

is Jordan if there exists a constant J = J(Γ) ∈ Z>0 such that every finite subgroup G ⊂ Γ has a normal
abelian subgroup A ⊂ G with [G : A] É J. The minimal such J is called the Jordan constant of Γ and is
denoted J(Γ). A classical theorem due to Camille Jordan says that GLn(C) enjoys this property, hence
the name.

In recent years, the property of being Jordan has been investigated in several different contexts,
and many groups of geometric nature were observed to satisfy it, for example: diffeomorphism groups
of some smooth manifolds [Rie10; Rie16; Rie18; Rie10; Zim14]; groups of birational selfmaps of ra-
tionally connected [PS16; Bir16] and of non-uniruled [PS14] algebraic varieties; in fact, all biregular
automorphism groups of complex projective varieties [MZ18] and even just Kähler ones [Kim18]. A
somewhat sporadic example is the one of three-dimensional Moishezon compact complex spaces
[PS19b].

Remark 1.1. There is a complete classification of complex projective surfaces and threefolds whose
groups of birational transformations are not Jordan. It was proved by V. Popov that Bir(X ) is Jordan for
all algebraic surfaces which are not birational to P1 ×E , where E is an elliptic curve [Pop14]. Then Yu.
Zarhin showed that Bir(A×Z ) is not a Jordan for any abelian variety A and rational variety Z [Zar14].
For threefold case see [PS18].

The aforementioned result of Popov and Zarhin can be actually generalized to all complex com-
pact surfaces, including non-Kähler ones (e.g. Kodaira-Thurston surface), see [PS19a]. However, es-
sentially nothing is known about the Jordan property of higher dimensional non-Kähler manifolds. In
this paper we take an attempt to get some improvements in that direction and establish the following
(for definitions used in the statement see Section 8):

Theorem C. Let Q be a BG-manifold of dimension 2n −2. Then

(1) The group Aut(Q) of its biholomorphic automorphisms is (strongly) Jordan.
(2) Denoting by Bim(Q)Φ ⊂ Bim(Q) the subgroup of those bimeromorphic transformations which

are fiberwise with respect to the algebraic reduction Φ of Q, we have a short exact sequence

1 → Bim(Q)Φ→ Bim(Q) →∆→ 1,

where ∆ is a subgroup of the Cremona group Bir(Pn−1), and the group Bim(Q)Φ is (strongly)
Jordan. The group Bim(Q) is quasi-bounded.
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However the following question remains open (see also Remark 8.6):

Question. Does Bim(Q) satisfy the Jordan property?

This paper is organized as follow. In Section 2 we list some well-known definitions and properties
related to holomorphic symplectic and complex analytic manifolds. In Section 3 we recall the con-
struction of BG-manifolds (mostly following the approach of the first author). Every such manifold
Q is a finite cover of some manifold WF called the base of Q. In Section 4 we prove Theorem A, com-
puting the algebraic reduction of WF , and then of Q itself. Section 5 is auxiliary and introduces some
useful filtration on the set of all complex spaces, that we shall use in the sequel. Section 6 is devoted
to description of submanifolds of Q and the proof of Theorem B. Finally, in Section 7 we describe the
discriminant locus of the algebraic reduction of Q and its degenerate fibers. This allows us to establish
the Jordan property of Aut(Q) in Section 8, proving Theorem C.

Acknowledgement. F. B. is partially supported by EPSRC programme grant EP/M024830. F. B.
and N. K. are partially supported by the HSE University Basic Research Program, Russian Academic
Excellence Project ’5-100’ . N. K. and A. K. are supported by the "BASIS" foundation, by the Simons
Travel grant. E. Y. acknowledges support by the Swiss National Science Foundation Grant “Birational
transformations of threefolds” 200020_178807. We are grateful to Dmitry Kaledin and Vasya Rogov
for important observations and helpful remarks; A. K. is also thankful to the organizers and attendees
of the Workshop on Complex and Algebraic Geometry held in Moscow (March 18, 2020) for useful
comments and remarks.

2. PRELIMINARIES

In this section we briefly recall some main definitions and basic facts about complex manifolds
and their bimeromorphic geometry.

2.1. Holomorphic symplectic manifolds.

Definition 2.1. A holomorphic symplectic manifold is a complex manifold M equipped with a non-
degenerate holomorphic (2,0)-form ωM .

In dimension 2, we have 3 types of holomorphic symplectic surfaces: complex tori, K3 surfaces
and Kodaira-Thurston surfaces. The latter is of central importance for the present paper. We recall its
main properties in Section 3.1.

Definition 2.2. A hyperkähler manifold is a Riemannian manifold (M , g ) equipped with three Kähler
complex structures I , J ,K : T M → T M , satisfying the quaternionic relation

I 2 = J 2 = K 2 = I JK =−id.

Since we do not assume our manifolds to be Kähler, in this paper we have to distinguish between
the terms “hyperkähler” and “holomorphic symplectic”, which are often used as synonyms in the
literature. Any hyperkähler manifold is automatically holomorphic symplectic, because

ω=ωJ +
p−1ωK
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is a holomorphic symplectic form on (M , I ). Now recall the fundamental

Theorem 2.3 (Calabi-Yau Theorem [Yau78]). Let M be a compact holomorphic symplectic Kähler man-
ifold. Then M admits a hyperkähler metric, which is uniquely determined by the cohomology class of
its Kähler form.

Therefore, every Kähler holomorphic symplectic manifold is actually hyperkähler.

Remark 2.4. A hyperkähler manifold M is called of maximal holonomy, or simple, or irreducible holo-
morphic symplectic (IHS), if π1(M) = 0, H 2,0(M) = C〈ω〉. Simple hyperkähler manifolds are building
blocks of all compact hyperkähler manifolds: according to Bogomolov’s decomposition theorem, any
hyperkähler manifold admits a finite covering which is a product of a torus and several maximal ho-
lonomy hyperkähler manifolds. The maximal holonomy hyperkähler components of this decompo-
sition are defined uniquely.

At the moment, there are several known examples of simple hyperkähler manifolds: two spo-
radic O’Grady examples in dimensions six and ten, Hilbert schemes Z [n] of 0-dimensional closed
subschemes of length n of a K3 surface Z , and generalized Kummer varieties, i.e. the kernels of the
composition

T [n] → Symn T
Σ→ T,

where T is a complex torus and Σ is the sum morphism. As we will see in Section 3.2, the construction
of BG-manifolds actually reminds that of generalized Kummer varieties (but starts with the Kodaira-
Thurston surface, rather than a complex torus).

2.2. Complex spaces and meromorphic maps. Our main references for this paragraph are [GPR94]
and [Uen75]. In this paper, all complex spaces are assumed to be reduced and irreducible and com-
pact, if not stated otherwise. A complex manifold is a smooth complex space. The term “variety” is
reserved for algebraic ones (which differs from Ueno’s book).

Definition 2.5. Let X and Y be complex spaces.

• A fiber space is a proper surjective morphism f : X → Y with irreducible general fiber.
• A morphism f : X → Y is called a (proper) modification, if f is proper, surjective, and there

exist closed analytic subsets ZX ( X and ZY ( Y such that f induces an isomorphism X \ZX
∼=

Y \ ZY .
• A meromorphic map f : X 99K Y is a map X → 2Y such that its graph Γ f is an irreducible

closed analytic subset of X ×Y , and the projection pX : Γ f → X is a proper modification. A
meromorphic map is called bimeromorphic if the projection pY : Γ f → Y is a modification as
well.

• A meromorphic fiber space is a meromorphic map f : X 99K Y such that pY is a fiber space.

The group of all bimeromorphic maps X 99K X will be denoted Bim(X ).

Remark 2.6. By GAGA principle, for a smooth complex projective variety X one has Bim(X ) = Bir(X ),
the group of birational automorphisms of X .
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Given a complex space X , its field of meromorphic functions will be denoted M (X ). This is a
finitely generated extension over C, satisfying

0 É trdegCM (X ) É dim(X ), (1)

see [Uen75, Theorem 3.1]. The integer number a(X ) = trdegCM (X ) is called the algebraic dimension
of X . Further, X is said to be a Moishezon space if a(X ) = dim(X ) [Moi66].

Remark 2.7. Any bimeromorphic map f : X 99K Y induces an isomorphism of the fields of meromor-
phic functions

f ∗ : M (Y ) ∼−→M (X ),

so a(X ) is a bimeromorphic invariant. The converse does not hold in general, but holds for Moishezon
spaces [GPR94, VII, Corollary 6.8].

Remark 2.8. By Artin’s theorem, every Moishezon space carries an algebraic space structure.

Let us also mention the behavior of the algebraic dimension under some maps.

Lemma 2.9 ([Uen75, Theorem 3.8]). Let f : X 99K Y be a surjective meromorphic map of irreducible
compact complex spaces. Set

a( f ) = inf
y∈Y

a( f −1(y)), dim f = dim X −dimY .

Then one has
a(Y ) É a(X ) É a(Y )+a( f ) É a(Y )+dim f .

Definition 2.10. Given a compact complex space X , its algebraic reduction is a meromorphic fiber
space f : X 99K X0 to a projective variety X0, such that f induces an isomorphism M (X0) ∼=M (X ).

An algebraic reduction is unique up to bimeromorphic equivalence and clearly a(X ) = dim(X0).
Further, as explained in Definition 2.5, we may assume the algebraic reduction to be a (holomorphic)
fiber space.

Example 2.11. If X is a surface, then its algebraic reduction is a holomorphic map, whose typical fiber
is an elliptic curve [Bar+04, p. VI.5.1].

We shall need the following result in the future.

Lemma 2.12. If ξX : X → X0 and ξY : Y → Y0 are the algebraic reductions of compact complex mani-
folds X and Y , then

(ξX ×ξY ) : X ×Y → X0 ×Y0

is the algebraic reduction of X ×Y . In particular, a(X ×Y ) = a(X )+a(Y ).

Proof. It is clear that ξX ×ξY is a fiber space. Consider the map

(ξX × idY ) : X ×Y → X0 ×Y .

Fix a generic point y ∈ Y and restrict this map to a submanifold X × {y}:

(ξX × idY )|X×{y} : X × {y} → X0 × {y}. (2)
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Now take a meromorphic function f on X×Y . The map (2) is the algebraic reduction, so the restriction
of the function f |X×{y} is constant on fibers of (ξX × idY )|X×{y}. Then, the function f is constant on all
fibers of the map ξX × idY . Therefore, one can define a map

ϕ : M (X ×Y ) →M (X0 ×Y ), ϕ( f )(x0, y) = f (x, y), where x ∈ ξ−1
X (x0),

which is easily checked to be an isomorphism. By repeating this argument for the map idX0 ×ξY we
get the following chain of isomorphisms:

M (X ×Y ) ∼=M (X0 ×Y ) ∼=M (X0 ×Y0).

Since X0 ×Y0 is a projective variety, it is the algebraic reduction of X ×Y . �

3. NON-KÄHLER IRREDUCIBLE HOLOMORPHIC SYMPLECTIC MANIFOLDS

3.1. Kodaira surfaces. The known examples of non-Kähler irreducible holomorphic symplectic man-
ifolds are constructed from Kodaira-Thurston surfaces, so we first recall main properties of the latter
ones. Most of the statements of this paragraph can be found in Kodaira’s original paper [Kod64].

A Kodaira-Thurston surface (often called just Kodaira surface) is a compact complex surface of
Kodaira dimension 0 with odd first Betti number (so, it is never Kähler). There are two kinds of Kodaira
surfaces: primary and secondary ones. Every secondary surface is just a quotient of a primary Kodaira
surface S by a finite cyclic group acting freely on S. Any primary Kodaira surface S (we fix this notation
until the end of the paper) can be constructed as follows. Let E be an elliptic curve, and take a line
bundle L on E with the first Chern class c1(L ) 6= 0. Denote by S′ the total space of L with zero
section removed (so, S′ is a C∗-bundle on E). Now fix λ ∈ C with |λ| > 1, and let gλ : S′ → S′ be the
corresponding homothety. Then S = S′/〈gλ〉.
Remark 3.1. Topologically, S has a structure of a principal S1-fibration over T3 =S1 ×S1 ×S1.

One can show that S has the following invariants [Bar+04, Table 10]:

KS ∼ 0, a(S) = 1, b1(S) = 3, b2(S) = 4, χ(S) = 0, h0,1(S) = 2, h0,2(S) = 1.

Here, and throughout the paper, a(S) denotes the algebraic dimension of S. We will use the following
property of manifolds with a map to Kodaira surface.

Lemma 3.2. Assume that f : M 99K S is a bimeromorphic map from a smooth surface M to a Kodaira
surface S. Then M is non-Kähler.

Proof. If f is not isomorphism in a point x ∈ S, then by [Bar+04, p. III.4.2] it is a σ-process with center
in x. By [Bar+04, p. I.9.1] the σ-process does not change the Betti number b1. Thus,we get that the
number b1(M) = b1(S) = 3 is odd which is impossible for Kähler manifolds. �

3.2. Bogomolov-Guan example. Let us recall the first example of simply-connected non-Kähler com-
pact complex manifolds, which we call BG-manifolds as in [KV19]. This example was introduced by
D. Guan in [Gua94] and then studied by the first author in [Bog96]. Here we mainly follow Bogomolov’s
work.
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Recall that an algebraic reduction of a compact complex surface X of algebraic dimension 1 is the
morphism X → C to a curve C obtained as regularization of a meromorphic map X 99K P1 (defined
by a non-constant meromorphic function), followed by the Stein factorization. Let

π : S
F−→ E . (3)

be the algebraic reduction of a Kodaira surface S. Then E is an elliptic curve and π is a principal
elliptic fibration [Bar+04]. All fibers of π are isomorphic to each other, denote it F . Moreover, the field
M (S) of all meromorphic functions of S is isomorphic to M (E). This implies in particular that all
automorphisms of S are induced by automorphisms of E .

In what follows we denote by Symn E and Symn S the symmetric products E n/Sn and Sn/Sn .
Denote by S[n] and E [n] the Hilbert schemes of length n zero-dimensional subschemes of S and E
respectively. Then we have the induced projection:

π[n] = (
Symn(π)◦δ)

: S[n] F [n]

−−→ Symn E .

Here δ is a resolution of singularities S[n] → Symn S. The generic fiber of this projection is isomorphic
to a F n . Define

Σ : Symn E → E , x = {x1, . . . , xn} 7→ x1 + . . .+xn .

It is the Abel-Jacobi map of Symn E . The symmetric product of a smooth curve is smooth; thus, we
have an isomorphism E [n] ∼= Symn E . This gives us the following structure of the fiber space:

πn = (
Σ◦π[n]) : S[n] → E .

Fix 0 ∈ E and denote by W the fiber of this projection over zero point:

W =π−1
n (0)

π[n]

−−→Σ−1(0).

Abel’s theorem implies that the fiber of the Abel-Jacobi map Σ through a point D ∈ Symn E is the
projective space |D| =PH 0(OE (D)), i.e. Σ−1(0) ∼=Pn−1, see [ACG11, p. I.3].

The action of F on fibers of S induces a fiberwise diagonal action on S[n], and, therefore, on the
fiber space W . Thus, we have a projection

Π : W /F →Pn−1. (4)

The manifold
WF =W /F

will be called the base of a BG-manifold Q, which is given by the following result of the first author.

Theorem 3.3 ([Bog96, Section 3]). If a natural number n > 2 divides c1(L ), there exists a simply con-
nected non-Kähler compact complex smooth manifold Q and a finite morphism

p : Q →WF .

of degree n2. The manifold Q is isomorphic to the one described in [Gua94].
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To conclude, the BG-manifold Q is included in the following diagram:

Q

Φ
((

p
// W /F

Π

""

W
q

oo � � //

π0
��

S[n]

π[n]

��

δ // Symn(S)

Symn (π)
��

S ×·· ·×S

π×···×π
��

αoo

Pn−1

��

� � // E [n]
∼= //

Σ
��

Symn(E) E ×·· ·×E
αEoo

0 �
� // E

Remark 3.4. The original construction of BG-manifolds is due to Guan [Gua95a; Gua95b] and it relies
on nilmanifolds. In his papers Guan used the two ways of how one may obtain a compact holomor-
phic symplectic manifold. The first one is well-known, it is the holomorphic symplectic reduction.
The second is introduced in [Gua95b].

(i) For any given compact holomorphic symplectic manifold M with the Albanese map M → A let
V be a subspace of the pull-backed holomorphic 1-forms from A such that the holomorphic
symplectic structure vanishes on V . Let G be a Lie group of holomorphic vector field dual to
V . Then one might get a compact holomorphic symplectic manifold by the smooth covering
of the quotient of a fiber of M over a point of A by the Lie group G .

(ii) For the holomorphic symplectic nilmanifold N one can try to find a faithful representation
of finite subgroup S of Aut(G), where G is the Lie group corresponding to the nilmanifold N .
Suppose this representation preserves the complex structure as well as the symplectic struc-
ture, and suppose the set

D = {
n ∈N : s(n) = n for some s ∈ S

}
has only codimension 2 irreducible components and π1(N )S = 1. Then the desingularization
of N /S might be the simply-connected non-Kähler holomorphic symplectic manifold.

The first method was used by Guan in [Gua95a] for the Hilbert scheme S[n] of length n of any
Kodaira-Thurston surface S. The covering of orbifold was obtained using its isomorphism to the quo-
tient of a nilmanifold by a subgroup of an automorphism group. This method is close to the Bogo-
molov’s one described above.

The second method was applied in [Gua95b] where the author started with nilmanifold Mn,t

given by structure equations, where n ∈ N , t ∈ Z. Then he got a deformation family Qn,t of simply-
connected holomorhic symplectic manifolds which are non-Kähler of dimension 2n −2 paramtrized
by integer parameter t . This is analogous to the existence of different Kodaira surfaces parametrized
by c1(L). This construction generalizes the one in [Gua95a].

In particular, the manifold Qn−1,1 coincides with Q constructed in 3.3. Moreover, from Guan’s
construction it follows that in dimension 2 the manifold Q is a K3 surface since N is abelian in this
case.

Example 3.5. Consider the case n = 2. Then the manifold R/F , where R := (Sym2π)−1(0), is the fiber
of a Kähler torus of dimension 2 (see Lemma 6.9) and the induced action of S2 is an involution on this
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torus. Therefore, WF is bimeromorphic to Kummer K3 and Q is its cover of degree 4. By construction
Q is smooth simply-connected Kähler holomorphic symplectic manifold; thus, it should be also a K3
surface.

Proposition 3.6. A generic fiber of Φ : Q →Pn−1 is an abelian variety; in particular, it is connected.

Proof. To show this, we need to recall the construction of the finite cover p : Q →WF . If we consider S
as a real manifold of dimension 4, there is an action of S1 on S induced from the action on L ∗. This
free action gives us a structure of a fiber space:

ψ : S → T,

where T = S/S1 is a real 3-dimensional torus. There is a map from the Hilbert scheme of S to the
Hilbert scheme of T :

S[n] Symn (ψ)◦δ−−−−−−−→ Symn T
ΣT−−→ T.

Here the map ΣT is induced by the map Symn T → T which maps a set of n points in S to their sum.
By [Bog96, Proposition 2.1] the map ΣT is well-defined and the fiber M of the composition ΣT ◦ψ[n] is
smooth and irreducible.

By [Bog96, Lemma 3.8] the finite cover p : Q →WF factors in the following way:

Q
τ
//

Φ
))

p

))
M/S1 //

Ψ

##

WF

Π
��

Pn−1

By construction, fibers ofΨ are connected. Now we fix a general point x ∈Pn−1 and consider fibers Qx

and (M/S1)x of maps Φ and Ψ. By [Bog96, Remark 3.5] we see that the generator of the fundamental
group π1(M/S1) is induced by an element in π1((M/S1)x). Moreover, by [Bog96, Corollary 3.7] we see

π1(Qx) ⊂π1((M/S1)x)

and the index of the subgroup equals n. Therefore, we deduce that Qx is a connected finite unramified
cover of (M/S1)x . Moreover, by [Bog96, Remark 3.9] we see that Qx is a finite unramified cover of
a generic fiber of WF which is isomorphic to an abelian variety Π−1(x) ∼= F n−1. By the Serre-Lang
theorem [Mum74, Chapter IV], we conclude that Qx is an abelian variety as well. �

4. THE ALGEBRAIC REDUCTION OF BG-MANIFOLDS

The goal of this Section is to prove Theorem A. We start with the algebraic reduction

π : S
F−→ E

of a Kodaira surface S (with general fiber denoted by F ). Let ε : E n → E be the map which sends n
points on E to their sum, and A = kerε= ε−1(0) be the fiber of this map over 0 ∈ E . The elliptic curve F
acts on (πn)−1(A) ⊂ Sn fiberwise diagonally.
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(πn)−1(A) �
� //

πn

��

Sn

πn

��
A �
� // E n ε // E 3 0

Denote by X the quotient (πn)−1(A)/F of this action. The abelian variety A is isomorphic to E n−1 and
ε induces a map

η : X → A. (5)

These two manifolds are connected as follows.

Proposition 4.1. The map η is the algebraic reduction of X (in particular, M (X ) ∼=M (A)).

Proof. In view of (5) we have an injection M (A) ,→ M (X ). Denote the general fiber of η by B . By
construction, B is isomorphic to an abelian variety F n/F ∼= F n−1. There is an action of B on M (X ). Set

B0 = max
{
G ⊂ B : M (X )G =M (X )

}
.

There is a standard action of the symmetric group Sn on Sn and, therefore, on X . By the definition
of B0 its action and the action of Sn commute, so B0 is a Sn-invariant abelian subvariety in F n/F .

Any abelian subvariety M ⊆ F n can be uniquely defined by its tangent subspace TM ,0 ,→ TF n ,0. If
M isSn-invariant, then the same is true for TM ,0. There are only two irreducible subrepresentations of
the representation TF n ,0 of the group Sn . Namely, these are a trivial diagonal subrepresentation and
a standard (n −1)-dimensional subrepresentation. Consider the abelian subvariety corresponding to
the trivial subrepresentation. Its image in B equals 0. The abelian subvariety corresponding to the
standard subrepresentation maps surjectively to B . Thus, all Sn-invariant subvarieties of B either
coinside with B or vanish.

If B0 = B we get that B acts transitively on fibers of η and all meromorphic functions on X are
constant on fibers of η. Thus, M (X ) is isomorphic to M (A).

If B0 = 0, then we prove below that a(X ) = dim(X ). In order to show this consider the module D

of M (A)-linear derivations on M (X ):

D = DerM (A)(M (X )). (6)

Then by Noether normalization lemma, trdegM (A)(M (X )) = dimM (A)(D). Consider a 1-parameter
subgroup Γ= {γt } in B ; this subgroup defines a derivation in D. The dimension of the abelian variety
B equals n−1, so we fix its generators γ1, . . . ,γn−1 and denote by Γi = 〈t ·γi 〉 a 1-parameter group in B
and by Di the associated derivation in D. Assume that these derivations are linearly dependent over
the field M (A): there exist meromorphic functions f1, . . . , fn−1 in M (A) such that

n−1∑
i=1

fi Di = 0. (7)

By construction of Di for any function g ∈M (X ) such that the fiber η−1(a) is not a pole of g we have:(
Di (g )

)∣∣
η−1(a) = Di (g |η−1(a)).
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There is a non-empty open subset U ⊂ A such that for any point a ∈ U it is not a pole of fi for
all i = 1, . . . ,n −1 and f j (a) 6= 0 for some j . Then for each a ∈U and any g ∈M (X ) such that η−1(a) is
not a pole of g we have

n−1∑
i=1

fi (a)Di (g |η−1(a)) = 0.

Construct a group Γ= 〈t ·γ〉 in such a way:

γ=
n−1∑
i=1

fi (a)γi .

The derivation D which corresponds to Γ vanishes on all functions g |η−1(a). This implies that for all
such functions γ·g |η−1(a) = g |η−1(a). Denote by B ′

a a minimal abelian subvariety of B which contains Γ.
Then Γ is Zariski dense subset of B ′

a ; and therefore, for each b ∈ B ′
a we have

b · g |η−1(a) = g |η−1(a).

Thus, there is a family of subgroups B ′
a ⊂ B for each a ∈U . Since a choice of a subgroup is a choice of a

sublattice, i.e. of discrete data, all these subgroups coincide, denote by B ′ this subgroup of B . By con-
struction M (X )B ′ =M (X ). This contradicts to the assumption; thus, there is no linear dependency (7)
and a(X ) = dim(X ).

Thus, X is a Moishezon manifold. The abelian varieties A and B do not contain projective lines,
since the embedding of P1 should factor through the Albanese variety of P1 which is a point. There-
fore, X does not contain a projective line either. Since X carries an algebraic space structure (see
Remark 2.8), [Bir+10, Corollary, 1.4.6] implies that X is projective and, consequently, Kähler.

Consider the embedding of an elliptic curve E to A ⊂ E n where the point x maps to (x,−x,0, . . . ,0).
Denote (πn)−1(E)/F by XE , it is isomorphic to S ×E S ×F n−3. Then XE maps surjectively to a Kodaira
surface; thus, XE is not in the Fujiki class C (see [Fuj83]). In particular, this implies that XE is not
Kähler. Then X contains a non-Kähler submanifold and we get a contradiction. �

Proposition 4.2. The map Π : WF →Pn−1 is the algebraic reduction.

Proof. The manifold W /F is a resolution of singularities of X /Sn . Then Proposition 4.1 implies

M (W /F ) ∼=M (X )Sn ∼=M (A)Sn

Since by Abel theorem ASn =Pn−1, we get the result. �

Corollary 4.3. The map Φ : Q →Pn−1 is the algebraic reduction, and M (Q) =M (WF ).

Proof. Since Q is a finite cover of WF their algebraic dimensions are equal

a(WF ) = a(Q).

Denote by ξ : Q →Q0 the algebraic reduction of Q; by definition of the algebraic reduction there exists
a finite rational map:

p0 : Q0 →Pn−1

However, by Lemma 3.6 for a dense set of points x we know that Φ−1(x) = (p0 ◦ξ)−1(x) are connected
manifolds. Therefore, p0 is a map of degree 1 and Pn−1 is the algebraic reduction of Q. �
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5. CLASSES Nk AND SUBMANIFOLDS IN PRODUCTS OF KODAIRA SURFACES

This section is mostly auxiliary for our future discussion. We are going to introduce some classes
of complex spaces that will be useful for distinguishing non-algebraic manifolds. We then use this
notion to classify all algebraic subvarieties in products of Kodaira surface.

Definition 5.1. Let k ∈ZÊ0. We call N k the class of complex spaces X such that there exists a subspace
M ⊆ X with dim(M)−a(M) Ê k.

Lemma 5.2. The power of Kodaira surface Sk is in the class N k and there is no submanifold X ⊆ Sk

such that X ∈N k+1.

Proof. The first assertion is due to Lemma 2.12. Now consider a submanifold X ⊆ Sk and its image
under the map πk : Sk → E k ; denote πk (X ) = Z . Since Z is algebraic, one has dim(Z ) = a(Z ). But
a(Z ) É a(X ) by Lemma 2.9, hence

dim(X )−a(X ) É dim(X )−dim(Z ) É k.

Therefore, any X ⊆ Sk is not in the class N k+1. �

Remark 5.3. The proof of Lemma 2.12 shows also that if the algebraic reduction ξ : X → X0 of a man-
ifold X is a regular map and all its fibers ξ−1(x) for x ∈ X0 are of same dimension, then X ∈ N k

where k = dim(X )−a(X ).

Remark 5.4. Clearly, the classes N k form the descending chain

N 0 ⊃N 1 ⊃N 2 ⊃ . . . ⊃N k ⊃N k+1 ⊃ . . . .

By (1), the class N 0 consists of all complex spaces, and if X ∈N k with k > 0, then X is non-algebraic.
Moreover, by Lemma 5.2 we see that Sk ∈ N k and Sk 6∈ N k+1. So all classes N k are non-empty and
all embeddings N k+1 ⊂N k are strict.

The classes N k have the following properties.

Lemma 5.5. Let X and Y be two complex spaces. Then the following assertions hold:

(1) if Y ∈N k and f : X → Y is a surjective morphism, then X ∈N k ;
(2) if X ∈ N k , f : X → Y is a proper morphism, and d < k is the dimension of a general fiber of

f : X → f (X ), then Y ∈N k−d .
(3) if X ∈N 1, then dim(X ) > a(X ).

Proof. We start with (1). Let Y ∈ N k . Then there is a subspace M ⊂ Y such that dim(M)−a(M) Ê k.
The set Z = f −1(M) is an analytic subset of X , and carries a natural complex subspace structure. Then
by Lemma 2.9 we have

a(Z ) É a(M)+dim( f |Z ) = a(M)+dim Z −dim M É dim Z −k,

which implies X ∈ N k . To prove (2), take M ⊂ X with a(M) É dim(M)−k and set W = f (M) ⊂ Y . By
Remmert’s proper mapping theorem, W is an analytic subset of Y (see e.g. [GPR94, III, Corollary 4.3]).
By Lemma 2.9 one has

a(W ) É a(M) É dim(M)−k É dimW +d −k,
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so indeed Y ∈N k−d .
To prove (3), assume that dim(X ) = a(X ). Then X is a Moishezon space. However, any subspace

M of a Moishezon space is Moishezon [Uen75, Corollary 3.9], so dim(M) = a(M) and X 6∈N 1. �

5.1. Digression: nilmanifolds and products of Kodaira surfaces. Consider n possibly different Ko-
daira surfaces S1, . . . ,Sn fibered over an elliptic curve πi : Si → E . Denote by S = S1 × ·· · × Sn their
product. The manifold S admits a structure of abelian fibration

P : S → E n .

We study the geometry of a fiber of P over a curve C in E n . The preimage of C here is isomorphic to a
fiber product:

P −1(C ) = (S1 ×E C )×C · · ·×C (Sn ×E C )
P−→C .

In case when C is an elliptic curve, each surface Si ×E C is a Kodaira surface; in particular, it is in
the class N 1. Moreover, for any curve C we have natural surjective morphisms qi : Si ×E C → Si . By
Lemma 5.5 this implies that Si×E C are also in the class N 1. Thus, all these surfaces are non-algebraic.
Denote by qC

i the composition of qi and the projection from P −1(C ) to its multiple Si ×E C :

qC
i : P −1(C ) → Si ×E C

qi→ Si . (8)

Now we are ready to prove that most submanifolds of S are non-algebraic.

Lemma 5.6. If X is a submanifold of S , then either it is contained in the fiber of P over a point of E n

and this fiber is an abelian variety, or X ∈N 1.

Proof. Assume that P (X ) is not a point. Consider a curve C inside P (X ) and the preimage of this
curve M = P −1(C )∩ X . As we saw in (8), there are n projections qC

i from M to Kodaira surfaces Si .
Since P (M) is a curve, there exists a number 1 É i É n such that the map qC

i : M → Si is surjective. By
Lemma 5.5 this implies that M ∈N 1. Therefore, X ∈N 1. �

Remark 5.7. According to Guan’s approach, the BG-manifolds are constructed as resolutions of nil-
manifolds M/S, where M is a nilpotent Lie group and S is a finite group in Aut(M) (see Remark 3.4).
Thus, Lemma 5.6 reminds the following folklore statement studued by the first author in 1970-s:
Let N /Γ be the quotient of a nilpotent Lie group N by its discrete subgroup Γ. Then any compact
complex curve C ⊂ N /Γ is in fact contained in the abelian subvariety Cn/Z2n where Cn is a shift of a
subgroup of N and Z2n ⊂ Γ is also a subgroup.

The counterexample to the statement above given by the curve C in abelian variety A and the
Kodaira-type manifold ML with the base A constructed by some linear bundle L (see Section 6.1),
such that this linear bundle is trivial over C .

Related questions were studied in a work [HW93, Section 8], where they proved that if Z is com-
pact complex space in the nilmanifold G/Γ, then there is closed complex subgroup H < G such that
the quotient H/Γ is compact, and after modification of Γ the fibration Z → Z /H can be extended to
the fibration af the ambient homogeneous space.
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6. SUBMANIFOLDS OF BG-MANIFOLDS

The goal of this section is to give a description on submanifolds of BG-manifolds. Consider the
diagonal action of the elliptic curve F on the power of Kodaira surface Sn and the quotient manifold
Sn/F . Then πn induces the morphism

πn
F : Sn/F → E n .

Denote by pi and Pi the projections from products E n and Sn to their i -th components:

pi : E n → E , Pi : Sn → S.

To describe submanifolds of Q, we first need to describe those of Sn/F .

Theorem 6.1. If X is a submanifold of Sn/F and Z = πn
F (X ), then we are in one of the following situa-

tions:

(1) Z is a point and X is a subvariety of the fiber F n−1 ∼= (πn
F )−1(Z ).

(2) Z is a curve and X can be algebraic, Kähler or non-Kähler depending on Z and the Kodaira
surface S. If Z is smooth we have following possibilities:
(a) If there exists i and j such that deg(pi |Z ) 6= deg(p j |Z ), then X is non-Kähler in class N 1.
(b) If for all i and j we have deg(pi |Z ) = deg(p j |Z ), then X is Kähler.
(c) Let L be the line bundle on E in the construction of the Kodaira surface. If for all i and j we

have (pi |Z )∗L ∼= (p j |Z )∗L , then X is algebraic. In particular, any variety in the preimage
of Z = {(x, . . . , x)| x ∈ E } ⊂ E n is algebraic.

(3) dim(Z ) Ê 2 and X is a non-Kähler manifold in the class N 1.

The prove this statement, we need some preparation.

6.1. Kodaira-type manifolds. As we saw above, the Kodaira surface S belongs to the class N 1; in
particular, it is non-algebraic. Now we are going to show that a construction, similar to construction
of S, describes a big class of submanifolds in Sn/F . On the other hand, frequently this construction
leads to a manifold of class N 1.

Fix a complex number q ∈C∗ with |q | > 1, and denote by qZ the following subgroup of C∗:

qZ = {
qm : m ∈Z}

.

Denote by F the elliptic curve C∗/qZ.

Definition 6.2. Consider a manifold X and a line bundle L on X . The group qZ acts on the total
space of line bundle without zero-section L ∗. Then we call

ML =L ∗/qZ.

a Kodaira-type manifold with the base X .

By construction there is a canonical projection from ML to X :

πL : ML → X .
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Note that if X is an elliptic curve and c1(L ) 6= 0, then the Kodaira-type manifold ML is a (primary)
Kodaira surface (see Subsection 3.1). More generally, if X is a smooth curve then the Kodaira-type
manifold over X is non-Kähler:

Lemma 6.3. Let C be a smooth curve and L be a line bundle on C with c1(L ) 6= 0. Then ML is non-
Kähler and belongs to the class N 1.

Proof. By [Bar+04, Proposition V.5.3(ii)] we have b1(ML ) = 2g (C )+ 1. This implies that ML is not
Kähler. Similar to the proof of Lemma 3.2, we get that ML is not bimeromorphic to a compact Kähler
surface. The Enriques-Kodaira classification implies then that ML is in the class N 1. �

Given a complex manifold X , consider two line bundles L1, L2 on X , a fixed complex number q
in C∗ and the fibered product

Y = ML1 ×X ML2 .

If we endow Y with a the diagonal action of F and consider the quotient manifold, we will get a
Kodaira-type manifold.

Lemma 6.4. Assume that X is a manifold, L1 and L2 are line bundles on X . If Y is a fibered product of
Kodaira-type manifolds ML1 ×X ML2 with diagonal action of F = C∗/qZ, then Y /F is also a Kodaira-
type manifold and

Y /F ∼= ML1⊗L ∨
2

.

Proof. We construct a map from Y /F to ML1⊗L ∨
2

, starting with an auxiliary map

Θ̃ : Y = (
L ∗

1 /qZ
)×X

(
L ∗

2 /qZ
)→ (

L1 ⊗L ∨
2

)∗ /qZ;

Θ̃(p, l1, l2) = l1 ⊗ l∨2 .

Here p ∈ X is a point, l1 and l2 are points on the fibers (L ∗
1 )p and (L ∗

2 )p modulo action of the
group qZ and by l∨2 we denote the unique linear functional on (L2)p which maps l2 to 1. The map Θ̃
is well-defined. If we change l1 and l2 by another representatives qd1 · l1 and qd2 · l2 in fibers (L ∗

1 )p

and (L ∗
2 )p of the quotient-sets (L ∗

1 )p /qZ and (L ∗
2 )p /qZ, then

Θ̃
(
p, qd1 · l1, qd2 · l2

)
= qd1−d2 · (l1 ⊗ l∨2 ) = l1 ⊗ l∨2 .

The last equality holds, since we consider l1 ⊗ l∨2 as an element in the quotient-set
(
L1 ⊗L ∨

2

)∗
p /qZ.

Moreover, the map Θ̃ invariant by the action of F on Y . Since the action of qZ commutes with
the map Θ̃, it suffices to show that for any representative λ ∈ C of an element of F the action of λ
commutes with Θ̃:

Θ̃
(
λ · (p, l1, l2)

)= Θ̃(
p,λ · l1,λ · l2

)=λ · l1 ⊗ (λ · l2)∨ =λ · l1 ⊗λ−1 · l∨2 = l1 ⊗ l∨2 .

Therefore, the map Θ̃ factors through the quotient-manifold Y /F and we get the following map:

Θ : Y /F → ML1⊗L ∨
2

.
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Note that any element of
(
L1 ⊗L ∨

2

)
p can be written as a decomposable tensor l1 ⊗ l∨2 . Then we can

define the map
Θ′ : ML1⊗L ∨

2
→ Y /F, Θ′(l1 ⊗ l∨2 ) = (p, l1, l2).

As above, we can easily see that this is a well-defined map and that Θ′ ◦Θ and Θ◦Θ′ are identity maps
of ML1⊗L ∨

2
and Y /F . Thus, Θ defines an isomorphisms of two manifolds. �

Remark 6.5. Lemma 6.4 implies in particular that ML
∼= ML −1 .

Now we can generalize Lemma 6.4 to the fibered product of n Kodaira type manifold.

Lemma 6.6. If L1, L2, . . . ,Ln are line bundles on X , then we have the following isomorphism:(
ML1 ×X ML2 ×X · · ·×X MLn

)/
F ∼= ML2⊗L ∨

1
×X . . . MLn−1⊗L ∨

1
×X MLn⊗L ∨

1
.

Here we consider the diagonal action of F =C/qZ on ML1 ×X ML2 ×X · · ·×X MLn .

Proof. Denote MLi by Mi and consider the following map:

Υ : (M1 ×X · · ·×X Mn)/F → (M2 ×X M1)/F ×X · · ·×X (Mn ×X M1)/F ;

Υ(x,m1, . . . ,mn) = ((x,m2,m1), . . . , (x,mn ,m1)).

We can easily see that this map is well-defined. Consider an element ((x,m2,m12), . . . , (x,mn ,m1n)) in
the right hand side manifold. Here m1i is an element in the fiber of M1 over the point x. Then there
exists a unique set of elements f3, . . . , fn such that fi ·mi 1 = m21. Then we can define an inverse map:

Υ−1((x,m2,m12), . . . , (x,mn ,m1n)) = (x,m12,m2, f3 ·m3, . . . , fn ·mn).

Another easy computation shows that this map is also well-defined. This proves that Υ is an isomor-
phism. The last necessary observation is that (Mi ×X M1)/F = MLi⊗L ∨

1
by Lemma 6.4. �

Lemmas 6.4 and 6.6 give us a description of fibers of Sn/F over any subvariety. To see it consider
a subvariety Z ⊂ E n and denote by LZ the fiber of Sn over Z :

LZ = (πn)−1(Z ) �
� //

πn |LZ
��

Sn

π
��

Z �
� // E n

Denote by Li the line bundle p∗
i L on Z and by Si the Kodaira-type manifold Si = M(pi |Z )∗L with

the base Z . Then LZ is isomorphic to a fiber product of Kodaira-type manifolds:

LZ = S1 ×Z S2 ×Z · · ·×Z Sn .

We shall need the following result in the future.

Lemma 6.7 ([Var86, Corollaire 2.9, 2.10]). Let X be a Kähler manifold, Y be a complex analytic space
and π : X → Y be a proper surjective morphism. Assume that one of the following conditions hold:

• The fibers of π have the same dimension and either Y is normal, or π is flat;
• Y has no non-trivial analytic subsets different from divisors (e.g. Y is a surface).

Then Y is Kähler.
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Lemma 6.8. Assume that X ⊂ Sn/F and Z =πn(X ) is a smooth curve in E n . If there exists two indices i
and j such that deg(pi |Z ) 6= deg(p j |Z ), then X is non-Kähler and belongs to the class N 1.

Proof. We can assume that i = 1 and j = 2. The fiber LZ of πn over a curve Z is a fibered product of
Kodaira type surfaces S1, . . . ,Sn :

LZ = S1 ×Z · · ·×Z Sn = ML1 ×Z · · ·×Z MLn .

By Lemma 6.6 we conclude that LZ /F ∼= M(L2⊗L ∨
1 ) ×Z . . . M(Ln⊗L ∨

1 ). Consider the following composi-
tion:

X ⊂ LZ /F ∼= M(L2⊗L ∨
1 ) ×Z . . . M(Ln⊗L ∨

1 )
pr1−−→ M(L2⊗L ∨

1 ),

where pr1 is a projection to the first component of the product. By Lemma 6.3 we know that Z is an
algebraic reduction of M(L2⊗L ∨

1 ). Since X maps surjectively to Z the image of X in M(L2⊗L ∨
1 ) coincides

with it. Since M(L2⊗L ∨
1 ) is not Kähler by Lemma 6.3, we get by Lemma 6.7 that X is not Kähler either.

By Lemma 5.5 we get that X ∈N 1 also. �

Lemma 6.8 describes a big class of non-algebraic manifolds inside Sn/F . Now we are going to
show that there are some algebraic varieties in Sn/F which map to curves in E n .

Lemma 6.9. If Z is a smooth curve in E n such that deg(pi |Z ) = deg(p j |Z ) for all i and j , then LZ /F is
Kähler. Moreover, if all line bundles Li = (pi |Z )∗L are isomorphic, then LZ /F is an algebraic variety.

Proof. By Lemma 6.6 the quotient manifold LZ /F is isomorphic to the following:

LZ /F ∼= M(L2⊗L ∨
1 ) ×Z · · ·×Z M(Ln⊗L ∨

1 ).

Since c1(Li ⊗L ∨
1 ) = 0 for all i by [Bar+04, Section V.5] we get that M(Li⊗L ∨

1 ) are complex tori for all i .
Therefore, LZ /F is Kähler.

If we know that all line bundles Li ⊗L ∨
1 are trivial, then by construction we get

MLi⊗L ∨
1
= MO Z

∼= Z ×F.

Then Lemma 6.6 implies that LZ /F ∼= Z ×F n−1 is an algebraic manifold. �

Remark 6.10. Lemma 6.9 proves in particular that if we consider a diagonal in E n

∆= {(x, x, . . . , x)| x ∈ E } ∈ E n ,

then the fiber L∆/F ⊂ Sn/F is an algebraic manifold.

Denote by tx the translation of the abelian variety E n by the element x = (x1, . . . , xn) ∈ E n :

tx : E n → E n .

Consider an antidiagonal ∇ = {(x,−x)| x ∈ E } in the product E 2. Then depending on the Kodaira
surface the fiber over tx(∇) in S2/F could be algebraic or not algebraic.

Lemma 6.11. If line bundle L associated to the Kodaira surface S admits a section vanishing in one
point then there exists x = (x1, x2) ∈ E 2 such that LZ /F ⊂ S2/F is an algebraic manifold and Z = tx(∇).
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Proof. By construction the fiber LZ is isomorphic to the following fibered product of the Kodaira-type
manifolds:

LZ = Mt∗x1
L ×Z Mt∗x2

((−1)∗L ).

By assumption, there exists a point p on E such that L ∼OE (N · [p]) for some integer N .

(t∗x1
L )⊗ (

t∗x2

(
(−1)∗L

))∨ =O Z (N · [p −x1]−N · [−x2 −p]) ∼=O Z (N · [2p −x1 +x2]−N · [0]).

If we fix x1 and x2 such that x1 − x2 = 2p , then this bundle will be trivial. Then by Lemma 6.4 we get
that the fiber LZ /F is isomorphic to an algebraic manifold:

LZ /F = MO Z = Z ×F.

�

6.2. Proof of Theorem 6.1. We will need the following assertion.

Lemma 6.12. Endow S2 with diagonal action of F , and consider the induced commutative diagram

S2 α // //

π2
����

S2/F

π2
F

||||
E 2

If X ⊂ S2/F and π2
F (X ) = E 2, then X coincides with S2/F and X ∈N 1.

Proof. The dimension of X equals either 2 or 3. Note that the complex space S2/F is in the class N 1

by Lemmas 5.2 and 5.5. Since π2 is the algebraic reduction of S2 (see Lemma 2.12) we get that π2
F is

the algebraic reduction of S2/F , which implies that any divisor X in S2/F is a preimage of a divisor on
E 2. But this contradicts to our assumption π2

F (X ) = E 2, so dim(X ) = 3 and X coincides with S2/F . �

Proof of Theorem 6.1. If Z is a smooth curve in E n and deg(pi |Z ) 6= deg(p j |Z ) for some i and j , then
by Lemma 6.8 the manifold X is non-Kähler. Otherwise, by Lemma 6.9 the manifold X is Kähler.
Moreover, if for all i and j line bundles (pi |Z )∗L ∼= (p j |Z )∗L , then by Lemma 6.9 the manifold X is
algebraic. Remark 6.10 and Lemma 6.11 show situations, when this condition holds.

If dim(Z ) Ê 2, then there exists two indices, say 1 and 2, such that (p1×p2)(Z ) = E×E . Projections
to the i -th component of the product Pi : Sn → S induce the morphism

(P1 ×P2)F : Sn/F → S2/F,

which maps X to a submanifold Y on S2/F . By the choice of p1 and p2 we get that π2
F (Y ) = E 2. By

Lemma 6.12 we get that Y = S2/F (in particular, it is not Kähler) and Y ∈N 1. Then Lemma 5.5 imply
that X is in the class N 1. Take a smooth curve Z ′ ⊂ Z such that deg(p1|Z ′) 6= deg(p2|Z ′). As we showed
above the intersection X ′ = X ∩ (πn)−1(Z ′) is non-Kähler. Since it is a submanifold of X this implies
that X is non-Kähler. �
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6.3. Classification of submanifolds of Q. Recall that BG-manifolds Q fit into the following commu-
tative diagram:

W � � //

q

��

S[n]

��

δ // Symn S

��

Snαoo

r
��

Q

Φ   

p
// W /F

Π
��

� � // S[n]/F

��

δF // (Symn S)/F

��

Sn/F

πn
F
��

αFoo

Pn−1 � � // E [n]
∼= // Symn(E) E nαEoo

(9)

The vertical arrows here are quotients by the action of F and the horizontal maps in the middle row
are induced by the corresponding maps from above. Denote by E ⊂ Q the following preimage of the
exceptional locus of δ:

E = p−1(q(Exc(δ)).

The set E is a divisor of Q. Theorem 6.1 implies such an assertion on submanifolds of Q outside E .

Proposition 6.13 (Theorem B). Assume that X is a submanifold of Q and Z =Φ(X ), then:

(1) If Z is a point, then X is a subvariety of the fiberΦ−1(Z ), which is an abelian variety for a general
point Z .

(2) If Z is a smooth curve, then X can be in the class N 1 or Moishezon, depending on Z :
(a) If there exists i and j such that deg(pi |Z̃ ) 6= deg(p j |Z̃ ), then X ∈N 1.
(b) If for all i and j we have (pi |Z̃ )∗L ∼= (p j |Z̃ )∗L and X 6⊂ E , then X is Moishezon.

Here by Z̃ we denote a connected component of the preimage α−1
F (Z ).

(3) dim(Z ) Ê 2 and X belongs to the class N 1.

Proof. We use the results of Theorem 6.1. Denote by X̃ a connected component of α−1
F (δF (p(X ))). All

components of this preimage are isomorphic; thus, we can choose any of them. Set Z̃ = πn
F (X̃ ). If Z

is a point, then X is a submanifold of the fiber Φ−1(Z ); for a general Z this is an algebraic (abelian)
variety by Proposition 3.6. If dim(Z ) Ê 2, then dim(Z̃ ) Ê 2 and X̃ is a non-Kähler manifold in the class
N 1. Therefore, X is also in the class N 1 by Lemma 5.5.

Let Z be a curve. Then Z̃ is a curve and the manifold X̃ can be in the class N 1 or Moishezon (in
fact, algebraic), according to the cases described in Theorem 6.1 (2). The same, respectively, will hold
for X . �

7. DEGENERATE FIBERS OF ALGEBRAIC REDUCTIONS

7.1. Fibers of Φ and Π. In this section we study singular fibers of the maps to the projective space
from manifolds Symn(S), W , WF which appear during the Bogomolov construction. Denote by V the
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fiber
(
Σ◦Symn(π)

)−1 (0). This is the image δ(W ), see diagram below.

Q

Φ ++

p
// W /F W

q
oo δ|W //

π[n]

%%

V

Symn (π)|V
��

� � // Symn(S)

Symn (π)
��

Pn−1 ∼=Σ−1(0) �
� // Symn(E)

Σ // E

Fix a point x ∈Σ−1(0) and denote by Qx , Wx and Vx fibers of Φ, π[n]|W and Symn(π)|V over this point.
Fibers Vx can be easily described:

Lemma 7.1. For any fiber Vx there exists a sequence of integers k1 Ê ·· · Ê kl > 0 such that
∑

ki = n and

Vx = F [k1] ×F [k2] ×·· ·×F [kl ].

If the point x = {x1, . . . , xn} is such that xi 6= x j for all i 6= j , then l = n and k1 = ·· · = kn = 1.

Consider the following divisor in Σ−1(0):

D = {
{y1, . . . , yn} ∈Σ−1(0) : there exist i 6= j such that yi = y j

}
. (10)

Lemma 7.2. The indeterminancy locus (δ|W )−1 lies in Symn(π)−1(D) and for any point x ∈ Σ−1(0) it
intersects Vx by a proper closed subset.

Proof. The map δ is a resolution of singularities; in particular, it is isomorphism in a neighborhood of
a smooth point of Symn(S). �

Lemma 7.3. For any point y ∈ Σ−1(0) \ D we have Wy
∼= F n and Wy /F ∼= F n−1. If y ∈ D, then both vari-

eties Wy and Wy /F are not birational to abelian varieties.

Proof. By (10) a point y = {y1, . . . , yn} ∈Σ−1(0) is not inside D , if for all indices i 6= j we have yi 6= y j . By
Lemma 7.2 the fiber Wy is isomorphic to Vy . Lemma 7.1 implies that Wy

∼= F n .
If y ∈ D , then we have an isomorphism Vy

∼= F [k1] ×F [k2] ×·· ·×F [kl ], where k1 Ê 2. Thus, there is a
structure of a fiber space on Vy induced by Abel-Jacobi maps:

P : Vy → F l .

All fibers of P are isomorphic to Pk1−1 ×·· ·×Pkl−1. This variety is not birational to an abelian variety
since its Albanese dimension equals l < n.

Since the map δ|W is birational and its exceptional locus does not contain fibers of π[n], we get
that the fiber Wy is a union of several irreducible manifolds Wy1 ∩ . . .Wys and Wy1 is birational to Vy .
Thus, Wy1 is not birational to an abelian variety.

All maps from the projective elliptic curve F to the affine group PGL(k1,C)× ·· · ×PGL(kl ,C) are
constant. Therefore, the structure of

(
Pk1−1 ×·· ·×Pkl−1

)
-fiber space remains on q(Wy1 ). Then the

fiber Wy /F contains an irreducible component which is not birational to an abelian variety. �

Lemma 7.4. The subset D is a non-rational divisor in Σ−1(0).
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Proof. Define the following fiber space:

D̃

��

// E

·2
��

E [n−2] Σ // E

Any point of D̃ can be associated with a set ({x1, . . . , xn−2}, x), where x is a point with property:

2 ·x = x1 +·· ·+xn−2.

There is a regular map from D̃ to E [n]:

ι : D̃ → E [n] ι({x1, . . . , xn−2}, x) = {−x,−x, x1, . . . , xn−2}.

The image of the map ι coincides with D . Moreover, the map ι is birational to the image. Therefore,
D is birational to D̃ , it is an irreducible subvariety of codimension 1 in Σ−1(0). Finally, the Albanese
variety of D̃ equals E since the fibers of the map to E are projective spaces. Then we get the following
equality:

h1,0(D̃) = dim(Alb(D̃) = dim(E) = 1.

Since h1,0 is a birational invariant of a Kähler manifold, we get that D is not rational. �

7.2. D as a dual variety. Let x0 be the identity element for the group structure on E . If n Ê 3, then the
line bundle OE (nx0) is very ample; denote W = H 0(E ,OE (nx0))∨, it is an n-dimensional vector space.
Then we have an embedding:

E ,→P(W ) ∼=Pn−1

With each hyperplane H ⊂Pn−1 we can associate a point on a Hilbert scheme of E .

Lemma 7.5. If n Ê 3, then E is not contained in a hyperplane H ⊂ Pn−1. Each H intersects E by the set
of n points counted with multiplicities E ∩H = {x1, . . . , xn}; then we have a map:

ρ : P
(
W ∨)→ E [n]

ρ(H) = {x1, . . . , xn}.

The image of ρ is contained in Σ−1(0) ⊂ E [n]. The map ρ induces an isomorphism:

D ∼= {
H ⊂P(W ∨) : H is tangent to E in a point x

}⊂P(W ∨).

Example 7.6. If n = 3, then by Lemma 7.5 we see that D ⊂ P(
W ∨)

is a dual curve to a plane cubic
curve E ⊂ P2. Thus, D is a plane curve of degree 6 with 9 cusps. In case when n Ê 4 the variety D is a
natural generalisation of the dual variety to a curve E in the projective space.

Now we introduce some notation. For each point {x1, . . . , xn} in Σ−1(0) ⊂ E [n] denote by Hx1,...,xn a
hyperplane in P(W ) such that

Hx1,...,xn ∩E = {x1, . . . , xn}.
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The hyperplane Hx1,...,xn defines a point in P
(
W ∨)

. Fix a subspace U of dimension n − 3 inside the
hyperplane Hx1,...,xn ⊂ P(W ). Denote by L a line in P

(
W ∨)

passing through the point x on D corre-
sponding to U :

Hx1,...,xn ∈ L = {
H ∈P(W ∨) : U ⊂ H

}
.

Now fix a subspace U which does not intersect E . Consider the projection from such U to a general
line P1 ⊂P(W ):

πU : P(W ) 99KP1.

By the choice of U the restriction πU |E : E → P1 is a regular finite map of degree n. For a point y ∈ P1

the following hyperplane Hy corresponds to a point on L:

Hy = 〈U , y〉 ∈ L ⊂P(
W ∨)

.

Lemma 7.7. The choice of a line L ⊂ P(
W ∨)

is equivalent to a choice of a subspace U ⊂ P(W ) of codi-
mension 2. With each U which does not intersect E we can associate a regular map

πU : E →P1

of degree n and ramification divisor RU ⊂ E is of degree 2n.

Definition 7.8. Denote by Z the set

Z = {
H ∈P(

W ∨)
: |H ∩E | É n −2

}⊂ D ⊂P(
W ∨)

.

Here we consider a set-theoretical intersection H ∩E .

Lemma 7.9. The set Z is a closed and proper subset of D.

Proof. The subset Z is closed by the definition. To prove its properness take n − 3 pairwise distinct
points x1, . . . , xn−3 ∈ E and choose y such that y 6∈ {x1, . . . , xn−3} and

z =
(
−2y −

n−3∑
i=1

xi

)
6∈ {x1, . . . , xn−3, y}

Then {x1, . . . , xn−3, y, y, z} is a point on D , but it does not lie in Z . Thus, Z does not coincide with D . �

Consider a divisor D in PN of degree d . We say that a point x ∈ D is of multiplicity m, if for a
general line l ⊂PN passing through x we have:

|l ∩D| = d −m +1.

Proposition 7.10. The degree of the divisor D in P
(
W ∨)

equals 2n. Fix a point x = {x1, . . . , xn} ∈ D such
that |{x1, . . . , xn}| = r . Then x is a point on D of multiplicity n − r .

Proof. By Lemma 7.9 we can choose a line L in P
(
W ∨)

which does not intersect Z . By Lemma 7.7 this
line L corresponds to a subspace U ⊂ P(W ). Since L does not intersect Z , each hyperplane H which
contain U is not a bitangent to E . Therefore, the ramification divisor RU of πU consists of 2n distinct
points. By the generality of the choice of L we see that deg(D) = deg(RU ) = 2n by Lemma 7.7.

Consider a point x as in the assumption of the lemma. If r = n−1, then a general line L through x
does not intersect Z by Lemma 7.9 and the multiplicity of x equals 1.
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If r < n −1, then x ∈ Z . Since Z is of codimension 2, a general line L passing through x does not
intersect Z in any point except x. Then we conclude that the point x is of multiplicity n − r . �

Denote by Z k the set of singular points on D ⊂ P
(
W ∨)

of multiplicity Ê k. These sets give a
stratification of D :

;=Z n (Z n−1 ( · · ·(Z 2 (Z 1 = D.

Proposition 7.11. The set Z n−1 ⊂ D is a finite set of singular points of maximal multiplicity. It does
not lie on any hyperplane in P

(
W ∨)∼=Σ−1(0).

Proof. By Lemma 7.5 and Proposition 7.10 each point of Z n−1 corresponds to a point Hx,...,x ofP
(
W ∨)

,
where x is a point in the group of n-torsion E [n] ∼=Z/n ×Z/n. Thus,

|Z n−1 | = n2.

There is a standard action of a group of n-torsion E [n] on the projective space P
(
W ∨)

. For
each ξ ∈ E [n] and a point Hx1,...,xn in P

(
W ∨)

we have:

ξ ·Hx1,...,xn = Hx1+ξ,...,xn+ξ. (11)

This action induces the action of E [n] on P(W ) which leaves the curve E ⊂ P(W ) invariant and acts
on it by translation with n-torsion points. By [Hul86, Theorem I.2.5.] this projective action is induced
by the linear action of the standard representation of the finite Heisenberg group Hn on the n-di-
mensional vector space W (for the definition see [Hul86, Page 11]).

Denote by Lx a 1-dimensional subspace of W ∨ associated with a point Hx,...,x ∈ P(
W ∨)

for a
point x ∈ E [n]. By (11) the action of each element of Hn maps Lx to Ly for some y ∈ E [n]. Thus,
there is a subrepresentation of W ∨:

L = 〈Lx〉x∈E [n] ⊂W ∨.

However the standard representation W of Hn and its dual W ∨ are irreducible. Then L = W ∨ and
there is no hyperplane in P

(
W ∨)

which contain all points Hx,...,x for x ∈ E [n]. �

8. AUTOMORPHISMS OF WF AND Q

The goal of this paragraph is to prove Theorem C. The definition of the Jordan property is given
in Section 1. Here we will need some other definitions.

Definition 8.1. Let Γ be a group.

• We say that Γ is bounded if there is an integer B = B(G) ∈ ZÊ0 such that each finite subgroup
G ⊂ Γ satisfies |G| É B.

• We say that Γ is quasi-bounded [BZ19] or has finite subgroups of bounded rank [PS14] if there
is an integer A = A(Γ) ∈ZÊ0 such that each finite abelian subgroup of Γ is generated by at most
A elements.

• We say that Γ is strongly Jordan [PS18] if it is Jordan and quasi-bounded.

Lemma 8.2 ([PS20, Lemma 4.1]). Let X and Y be compact complex manifolds, and φ : X → Y be a sur-
jective morphism with connected fibers. Let {Gi } be a countable family of finite subgroups in Bim(X )φ.
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Then there exists a smooth, irreducible and reduced fiber F of the map φ of dimension dim X −dimY
such that all the groups Gi are embedded into Bim(F ). Moreover, if dim(Y ) > 0 and we are given a
countable family Ξ of proper closed analytic subsets in Y , then the fiber F can be chosen so that φ(F )
does not lie in Ξ.

For a surjective morphism of compact complex manifolds φ : X → Y we denote by Bim(X )φ the
subgroup of Bim(X ) which consists of bimeromorphic selfmaps whose action is fiberwise with respect
to φ. Also set

Aut(X )φ = Aut(X )∩Bim(X )φ.

Proposition 8.3. Let Q be a BG-manifold of dimension 2n−2. Then the group Aut(Q) is strongly Jordan.

Proof. By Proposition 8.5, there is a short exact sequence of groups

1 → Aut(Q)Φ→ Aut(Q) →ΞD → 1,

where ΞD ⊂ Aut(Pn−1,D), the latter group being the group of projective automorphisms preserving
D . This is a finite group, because by Proposition 7.11 it preserves a finite subset of n2 points Z n−1 ⊂
D , which spans Pn−1. As in [PS20, Corollary 4.2] we note that the group Aut(Q)Φ is strongly Jordan.
Namely, assuming the contrary, we use Lemma 8.2 to deduce that the group Aut(F ) is not strongly
Jordan, where F is a general fiber of Φ. However, we know from Proposition 3.6 that F is an abelian
variety, so

Aut(F ) ∼= F (C)oΓ, (12)

where Γ ⊂ GL2dimF (Z). By Minkowski’s theorem, the latter group is bounded. Therefore, Aut(F ) is
strongly Jordan. This is a contradiction.

Finally, it is easy to see that an extension of a finite group by a strongly Jordan group is again
strongly Jordan. �

Remark 8.4. Note that every finite subgroup G ⊂ Aut(Q) fits into exact sequence

1 →GF →G →GD → 1,

where GF embeds into Aut(F ) and GD embeds into Sn2 . By Chermak-Delgado theorem, GF contains
a characteristic abelian subgroup of index at most |Γ|2. Therefore, J(Aut(Q)) É |Γ|2 · |Sn2 |. By the
results of S. Friedland and W. Feit [Fri97], one has |Γ| É |O2dimF (Z)| = 22dimF (2dimF )! for 2dimF > 10
(the remaining cases are somewhat sporadic, see the references therein). Thus, putting d = dimQ =
2dimF = 2n −2 we can get a rough estimate

J(Aut(Q)) É 4d (d !)2[(d/2+1)2]! = 24n−4[(2n −2)!]2(n2)!

for any BG manifold Q of dimension d > 10.

We finish this section by deriving some consequences about the structure of Bim(Q).

Proposition 8.5. Let Q be a BG manifold of dimension 2n −2 and WF be its base. Then

(1) Any ϕ ∈ Bim(WF ) induces ϕ0 ∈ Bim(Pn−1) such that Π ◦ϕ = ϕ0 ◦Π and ϕ0(D) = D. Further,
there exists the integer M such that for any ϕ ∈ Bim(Q) its power ϕM induces ϕ0 ∈ Bim(Pn−1)
and ϕ0(D) = D.
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(2) There exists an exact sequence of groups

1 → Bim(Q)Φ→ Bim(Q) →∆→ 1, (13)

where∆ is a subgroup of the Cremona group Bim(Pn−1) ∼= Bir(Pn−1). Moreover, the group Bim(Q)Φ
is strongly Jordan, and the group Bim(Q) has finite subgroups of bounded rank.

Proof. (1) Consider a bimeromorphic automorphismϕ of Q and denote byϕx the restriction ofϕ to a
fiber Qx which is not in the exceptional or indeterminancy locus:

ϕx : Qx 99KQy .

For a general point x both manifolds Qx and Qy are abelian; thus, ϕx is regular. Moreover, Qx and
Qy are finite covers of abelian varieties (WF )x and (WF )y and these finite covers induces an isogeny.
Therefore, some degree M of ϕx induces a morphism between (WF )x and (WF )y and ϕM induces a
bimeromorphic automorphism of WF . Then it suffices to show that any automorphism of WF fixes a
divisor D .

Consider a bimeromorphic automorphism ϕ of WF . Since Π is the algebraic reduction of WF , we
get a bimeromorphic map ϕ0 of the projective space which commutes with Π. Since ϕ is bimeromor-
phic, there exists open subsets U and V in Q, such that ϕ|U is an isomorphism to V :

ϕ|U : U ∼−→V .

Denote by U0 and V 0 the images of U and V in Pn−1; these are open subsets in Pn−1. For each
point x ∈ Pn−1 denote by Ux and V x dense subvarieties of fibers Π−1(x)∩U and Π−1(x)∩ V . Fix a
point x ∈ U0 ∩D , where D is as in (10). Then ϕ(Ux) ∼= V ϕ0(x); in particular, the fiber V ϕ0(x) is not
birational to an abelian variety. By Lemma 7.3 this implies that ϕ0(x) ∈ D .

(2) The existence of the short exact sequence (13) is clear, since Φ is the algebraic reduction of Q.
To see that Bim(Q)Φ is strongly Jordan we note that Bim(F ) = Aut(F ) and use Lemma 8.2. It remains
to notice that both Aut(F ) and Bir(Pn−1) are quasi-bounded (see [PS14, Remark 6.9]), hence the same
is true for Bim(Q). �

Remark 8.6. It would be interesting to investigate the properties of the groups in (13). For example, we
still do not know if Bim(Q) is a Jordan group, or even whether Aut(Q) and Bim(Q) are bounded (note
that this is indeed the case for hyperkähler manifolds, see [CF19, Theorem 1.4] or [KY19, Theorem C]).

Proof of Theorem C. Claim (1) was proven in Proposition 8.3. Claim (2) is a part of Proposition 8.5. �
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