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I used to be uncertain, but now I’m not so sure. 
(inspired by Tommy Cooper)

Many crossroads in life require deciding between 
actions with unknown consequences. These decisions 
can be mundane, such as whether to take the bus or 
cycle to work, or more profound, such as whether to 
accept a new job offer or to continue in a current job. 
The more mundane decisions afford more opportunity 
for learning, as we face them and their consequences 
many times. Nevertheless, the consequences of mun-
dane decisions can be profound and life changing: 
Arriving late for a crucial meeting might result in being 
fired and subsequently looking for a new job.

How do we decide to act under uncertainty? And 
how do we learn to improve our decisions in the future? 
Generally, there is an inherent tie between our actions 
and our experience of the world. We do not know what 
would have happened if we had taken a different 
course of action. The resulting conundrum, known as 
the exploration-exploitation dilemma (Cohen et  al., 

2007), is easy to describe, yet difficult to resolve: Should 
we choose options that we know we like (exploit our 
knowledge), or should we choose more uncertain 
options so that we might learn about them and improve 
our future decisions (explore to acquire knowledge)?

Classic results suggest that people generally choose 
known rather than uncertain alternatives. In the Ellsberg 
paradox (Ellsberg, 1961), people are presented with two 
urns: a known urn with exactly 50 red and 50 black 
balls and an ambiguous urn with 100 red and black 
balls in an unknown proportion. When betting on 
whether a randomly drawn ball will be black or red, 
people prefer to draw from the known urn. Such ambi-
guity, or uncertainty, aversion has been observed many 
times (Camerer & Weber, 1992). Yet there are many situ-
ations in which people actively seek out uncertain alter-
natives. If you are allowed to play the Ellsberg game 
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repeatedly, choosing the ambiguous urn would prove 
advantageous. Over time, you could learn whether 
there are more red or black balls in the urn and bet 
accordingly, winning more often than possible with the 
known urn. When (a) learning is possible and (b) future 
decisions can be improved by learning, uncertainty 
should—and indeed does—guide learning and decision 
making.

Evidence for a guiding role of uncertainty in learning 
and decision making is interesting for a variety of rea-
sons. First, it indicates that uncertainty is cognitively 
accessible and affects behavior. Evaluating the uncer-
tainty of knowledge is perhaps one of the primary 
metacognitive abilities. Second, it provides additional 
support for Bayesian theories of cognition. Theories of 
learning and decision making that concern only expec-
tancies and not their associated uncertainties should be 
deemed incomplete.

Multiarmed Bandits

Multiarmed-bandit tasks provide a useful experimental 
paradigm to study how people navigate the explora-
tion-exploitation dilemma. In a multiarmed-bandit task, 
participants are repeatedly presented with a set of 
options, each with an initially unknown distribution of 
rewards. The goal is to accumulate as much reward as 
possible. After participants choose an option, a reward 
is randomly drawn from the chosen option’s reward 
distribution. Crucially, participants do not see the 
rewards they would have obtained had they chosen 
differently. These tasks are analogous, for example, to 
ordering at a restaurant. After you order a dish, you do 
not know how much you would have enjoyed a differ-
ent dish. This is the informational bottleneck that leads 
to the exploration-exploitation dilemma: By sticking to 
one option, you forgo the opportunity to learn about 
other options. But exploring other options comes with 
a potential cost, as you may not enjoy them as much 
as your current favorite. Exploration should therefore 
focus on promising options, options that have a reason-
able chance of being better than the current favorite. 
This probability is inherently tied to both value 
(expected reward) and uncertainty about that value. 
Hence, good strategies for exploration need to take 
both value and uncertainty into consideration.

Multiarmed-bandit tasks are a simple type of  
reinforcement-learning task, a term that broadly refers 
to “learning by doing.” In standard bandit tasks, all 
options are independent, and the reward distributions 
are static (they do not change over time). An example 
would be choosing what to order in a restaurant where 
dishes are always prepared by the same chef who is 

consistently excellent. Although there might be varia-
tions in your experience, due to slight variations in the 
quality of ingredients, quantity of spices, and so forth, 
these are random, and your average enjoyment will not 
fluctuate. In such tasks, exploration should be front 
loaded; that is, it should occur only during the initial 
stages. Once the value of each option is estimated with 
sufficient precision, you can safely exploit the option 
deemed best forever after.

In restless-bandit tasks (Daw et al., 2006; Knox et al., 
2012; Speekenbrink & Konstantinidis, 2015), the reward 
distributions vary over time. An example would be 
choosing what to order at a restaurant where the dishes 
are prepared by different chefs who can learn to perfect 
their skills and who also have periods of underperfor-
mance. At such a restaurant, a once favorite dish may 
become relatively poor for a prolonged period in time. 
The rational approach to such tasks would be to con-
tinue exploration throughout, because during the time 
spent exploiting one option, other options might have 
surpassed it.

In contextual-bandit tasks (Schulz, Konstantinidis, 
& Speekenbrink, 2018; Stojić, Schulz et  al., 2020;  
Wu et  al., 2018), options and the environment come 
with reward-predictive features. An example would be 
choosing what to order at a restaurant where, before 
making your choice, you can observe the chefs at work 
and other patrons consuming their dishes. Learning the 
feature-reward relations allows generalizing experience 
across options. The rational approach would again be 
for exploration to be front loaded, but now with respect 
to the options’ features. Moreover, it is no longer neces-
sary to explore all options. Once the feature-reward 
relations are learned with sufficient precision, unprom-
ising options can be avoided altogether without ever 
trying them. Figure 1 illustrates the differences between 
the three types of bandit tasks.

The goal of exploration is to improve future deci-
sions. When a bandit task approaches its end, the risk 
of exploration will likely start to outweigh its potential 
benefits, simply because there are fewer future deci-
sions to improve. Therefore, exploration should 
decrease toward the end of all types of bandit tasks.

Types of uncertainty

Multiarmed bandits involve two types of uncertainty. The 
first, called aleatoric uncertainty or risk, concerns inher-
ent variability in rewards. Even if we know the reward 
distributions exactly, variability in rewards means we 
cannot know exactly what reward will follow a given 
choice. Aleatoric uncertainty is therefore also called irre-
ducible uncertainty, as no amount of learning can reduce 
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it. The second form of uncertainty, called epistemic 
uncertainty, concerns the accuracy of our beliefs about 
the world. Within this type of uncertainty, a further dis-
tinction can be made between estimation uncertainty 
and structural uncertainty. Although we may assume 
that we have a structurally correct model of the world, 
some aspects of this model (the model parameters) may 
be unknown. This type of uncertainty is called estimation 
uncertainty. For example, in the repeated Ellsberg game, 
the only uncertainty is about the proportion of red balls. 
This uncertainty is reducible, as we can estimate the 
proportion with increasing precision by drawing more 
balls from the ambiguous urn. Structural uncertainty 
concerns uncertainty about whether our structural 
model of the world is accurate. Perhaps the experi-
menter lied, and the ambiguous urn also contains green 
and blue balls. Or perhaps after some time one ambigu-
ous urn is replaced by another one with a different 
proportion of red balls. This uncertainty is also reducible, 

as observations can be used to select among a set of 
competing models of the world.

The different types of uncertainty can be formalized 
precisely within a Bayesian learning framework (see 
Fig. 2). In Bayesian learning, a main driver of learning 
is the level of epistemic uncertainty relative to aleatoric 
uncertainty. When epistemic uncertainty is relatively 
high, many states of affairs (e.g., possible values of an 
option) are initially plausible. When aleatoric uncer-
tainty is relatively low, a reward provides relatively 
precise information about an option’s value, such that 
many of the initially plausible states of affairs become 
implausible. When aleatoric uncertainty increases, an 
observed reward provides less information about value, 
and so less can be learned. When epistemic uncertainty 
decreases, more is known, and fewer states of affairs 
become plausible. This leaves less room to shift beliefs, 
and hence less can be learned from an observed reward. 
So, all else being equal, higher epistemic uncertainty 
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Fig. 1.  Three types of multiarmed-bandit tasks. The squares at the top show how options might be presented to participants. In a standard 
bandit task, participants are provided with options with unknown but static reward distributions. The options may be distinguished by 
a label or color (as shown here), but these features are not related to rewards. In a restless-bandit task, participants are also provided 
with options with unknown reward distributions, but these distributions vary over time, such that an option that once had the highest 
value may be surpassed by other options. As in the standard bandit task, the features of the options are not related to rewards. The 
lower plots for these two tasks show the reward distributions of chosen (thick lines) and nonchosen (thin lines) options over 10 trials. 
The horizontal location of each reward distribution reflects that option’s value. Thus, in the standard bandit task, the distributions have 
the same locations from trial to trial, whereas in the restless-bandit task, the distributions’ locations vary over trials. On each trial, after 
an option is chosen, a random reward (shown as a dot) is drawn from that option’s reward distribution. In a contextual-bandit task, 
options come with reward-predictive features, such as horizontal and vertical lines that differ in length across options. These features 
are related to the value of an option, as illustrated in the plot on the lower right; lighter colors indicate higher average reward.
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implies a higher learning rate, but higher aleatoric 
uncertainty implies a lower learning rate.

Exploration strategies

Determining the optimal trade-off between the costs 
and benefits of exploration is generally not possible 
(May et al., 2012). It involves planning ahead by con-
sidering each potential outcome of each potential deci-
sion, in terms of immediate rewards as well as how 
these would change one’s beliefs and subsequent deci-
sions (and their potential outcomes) in the future. In 
all but restricted cases, the sheer number of possible 
futures makes optimal planning impossible.

A heuristic solution, known as the upper-confidence-
bound rule, is to approximate the informational value 
of exploration by adding an uncertainty bonus to the 
estimated value of each option. As the term suggests, 
the resulting sum of the expectation and uncertainty 
bonus equals an upper confidence bound on the 
option’s value. The rule states that the option with the 
highest upper bound should be selected. An alterna-
tive form of uncertainty-guided exploration, called 
Thompson sampling, is to add to the estimated values 
momentary random noise that reflects the uncertainty 
of these estimates. This can be implemented by ran-
domly sampling a momentary expected value from the 
current prior distribution for each option and choosing 
the option with the highest sampled value. An uncer-
tainty-ignorant heuristic is the softmax strategy, in 
which the same level of momentary random noise—
which does not depend on uncertainty—is added to 
the estimated values of all options, and the option with 

the highest sum is chosen. Another uncertainty-ignorant 
heuristic is the epsilon-greedy strategy, which introduces 
randomness in choice by sometimes (with a probability ε) 
choosing an option from all available options com-
pletely at random, irrespective of the options’ estimated 
values or uncertainty.

Uncertainty-guided heuristics generally outperform 
uncertainty-ignorant heuristics in maximizing the accu-
mulated rewards (May et al., 2012). For example, if the 
epsilon-greedy and softmax strategies are used, a given 
option would be explored equally often regardless of 
whether the subjective probability that it is the best 
option is substantial or vanishingly small (see Fig. 3). 
Uncertainty-guided heuristics lead to exploration of an 
option only in the former case, which is sensible 
because there is little to be gained from exploring an 
option when it is almost certainly worse than the other 
options.

Uncertainty Guides Learning

There is a wealth of evidence that, in accordance with 
Bayesian principles, epistemic uncertainty increases 
and aleatoric uncertainty decreases how much is 
learned from experience (e.g., Behrens et  al., 2007; 
Dayan et al., 2000; Nassar et al., 2010; Payzan-LeNestour 
& Bossaerts, 2011; Speekenbrink & Shanks, 2010; Stojić, 
Orquin, et  al., 2020). This evidence often relies on 
computational modeling in which models with a con-
stant learning rate are compared with models in which 
the learning rate is modulated by epistemic and alea-
toric uncertainty. Such work has shown that the latter 
models describe behavior better than the former.

Low Estimation Uncertainty Structural UncertaintyHigh Estimation Uncertainty

Prior

Likelihood
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Fig. 2.  Types of uncertainty in Bayesian learning. In Bayesian reinforcement learning, the prior distribution reflects beliefs about the 
value (e.g., average reward) of an option. The wider the prior distribution, the higher the estimation uncertainty. The likelihood repre-
sents variability in rewards (aleatoric uncertainty). An observed reward (shown as dots) provides new information, allowing belief to be 
updated from the prior to the posterior distribution. The learning rate (distance between the means of the prior and posterior distributions, 
shown as arrows; larger distance implies higher learning rate) depends on the relative magnitude of epistemic uncertainty (estimation or 
structural uncertainty) compared with aleatoric uncertainty. When estimation uncertainty is high relative to aleatoric uncertainty (left plot), 
the learning rate is relatively high. Reducing estimation uncertainty (middle plot) reduces the learning rate. Structural uncertainty refers 
to uncertainty about the underlying structural model. This can be represented through a prior distribution that is a weighted sum over 
models, each with associated estimation uncertainty. An observed reward provides information about the identity of the underlying model 
as well as the parameters of the possible models. Structural uncertainty (right plot) increases the learning rate compared with no structural 
uncertainty (middle plot), for reasons similar to those that account for the increase in learning rate when estimation uncertainty increases.
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In behavioral studies, structural uncertainty is often 
introduced by abruptly changing the value of options 
(e.g., Behrens et al., 2007; Payzan-LeNestour & Bossaerts, 
2011). Increased structural uncertainty should speed 
learning (Fig. 2, right), as it indicates that formerly held 
beliefs, and the data that supported these, may no lon-
ger be relevant. This prediction has generally been sup-
ported (Gallistel, 2012). A complicating factor is that the 
speed of learning can be assessed only through changes 
in choice probabilities, and choices reflect not only 
learned value (i.e., exploitation) but also exploration. 
Prediction tasks (Nassar et  al., 2010; Speekenbrink & 
Shanks, 2010), in which people are asked to predict the 
next value of a variable, allow for more direct measures 
of learning rate. Results for such tasks also indicate that 
learning rate increases with epistemic uncertainty and 
decreases with aleatoric uncertainty, as expected from 
Bayesian principles.

Uncertainty Guides Attention and 
Information Gathering

Before one decides on a course of action, information 
can be obtained about the current state of the world. 

This information can be perceptual as well as memory 
based (Shadlen & Shohamy, 2016). In contextual-bandit 
tasks and studies on associative learning, participants 
are presented with reward-predictive cues. Determining 
the identity of these cues helps reduce uncertainty 
about the consequences of possible actions (e.g., 
choosing an option). Eye-tracking studies indicate that 
people preferentially focus their attention on more pre-
dictive cues (Leong et al., 2017; Walker et al., 2019). 
This is sensible, as these cues reduce uncertainty most.

Even in noncontextual-bandit tasks, people allocate 
their attention to options in an uncertainty-guided man-
ner. My colleagues and I (Stojić, Orquin, et al., 2020) 
found that, before making their choice, people looked 
more at options with a higher value (expected reward) 
as well as those with higher estimation uncertainty. 
Focusing on particular options in the absence of further 
cues may help retrieval of prior experiences from mem-
ory, and thus help in determining the value of options. 
But it may also bias choice directly toward attended 
options (Krajbich et  al., 2010). Directing attention 
toward options according to both value and uncertainty 
is then a way to employ this bias to balance exploita-
tion and uncertainty-guided exploration. We (Stojić, 
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Fig. 3.  Illustration of the performance of exploration heuristics in two situations with different estimation uncertainty. The plots show the 
current prior expectations about the value of two options, and the insets show the probability of exploring Option A according to each 
heuristic. In both situations, Option A is expected to provide a lower average reward than Option B (the prior mean of Option A, μA, is 
lower than that of Option B, μB). In the left plot, there is much more uncertainty about Option A than Option B, which is also evident in 
the 95% upper confidence bounds (UCBs): UCBA is substantially higher than UCBB. As a result, the uncertainty-guided heuristics, the UCB 
rule and Thompson sampling, predict a relatively high probability of exploring Option A. The UCB rule always chooses the option with 
the highest UCB, whereas Thompson sampling chooses the option with the highest sampled value from the prior distribution. When the 
estimation uncertainty of Option A is reduced (right plot), these uncertainty-guided heuristics predict that Option A will not be explored. 
In contrast, the uncertainty-ignorant heuristics, the epsilon-greedy and softmax strategies, predict equal rates of exploration of Option A 
in these two situations.
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Orquin, et al.) found that time spend looking at an 
option had a strong influence on subsequent choice, 
which could be only partially explained by the option’s 
estimated value and estimation uncertainty. But value 
and estimation uncertainty also had additional unique 
effects beyond those mediated by looking time. Thus, 
there appear to be multiple routes by which uncertainty 
guides decisions: a direct route via an internal valuation 
process and an indirect route via visual attention.

Uncertainty Guides Exploration

Although some studies have found no evidence for 
uncertainty-guided exploration (Daw et al., 2006; Pay-
zan-LeNestour & Bossaerts, 2011), many studies have 
found such evidence (Frank et al., 2009; Gershman, 2018; 
Knox et al., 2012; Speekenbrink & Konstantinidis, 2015; 
Stojić, Orquin, et al., 2020; Stojić, Schulz, et al., 2020). 
Whether uncertainty adds a bonus or noise to options’ 
estimated value is not clear, and it likely does both 
(Gershman, 2018; Wilson et  al., 2014). Most of these 
studies have relied on computational modeling and 
shown that models with an uncertainty-driven explora-
tion component describe people’s behavior better than 
those with uncertainty-ignorant exploration strategies. 
Wilson et al. (2014) showed that after a forced-choice 
stage, people prefer to choose options they experienced 
less and therefore are more uncertain about. Gershman 
(2019) generated different bandit tasks with all possible 
combinations of safe options, which always give the 
same reward, and risky options, which give variable 
rewards, and found behavioral evidence for uncertainty-
guided exploration when the options differed in uncer-
tainty (one option was safe and the other risky), as well 
as evidence for random exploration.

Deriving unambiguous behavioral signatures of 
exploration strategies is complicated by the fact that 
uncertainty is inherently tied to a statistical model of 
the world, and people may entertain different models 
of a given task. If someone assumes that a task is a 
static-bandit task, in which the value of options remains 
unchanged over time, uncertainty-driven exploration 
should be high initially and switch to pure exploitation 
when sufficient knowledge is acquired (front-loaded 
exploration). By contrast, uncertainty-ignorant explora-
tion should persist throughout the task. If someone 
assumes that a task is a restless-bandit task, in which 
the value of options changes over time, both uncer-
tainty-guided and uncertainty-ignorant exploration 
should persist throughout the task. However, only 
uncertainty-guided exploration would predict explora-
tion of an option to increase with the time since it was 
last chosen. When people are explicitly instructed 
whether the task is a static- or restless-bandit task, these 

predictions for uncertainty-guided exploration are often 
confirmed. Navarro et al. (2016) used an observe-or-bet 
task to cleanly separate exploration and exploitation. 
Participants could either chose to observe the reward 
of an option without reaping it or bet on an option by 
choosing it without observing the reaped reward. In 
this task, participants front-loaded exploration of static 
bandits but not restless bandits, although front loading 
required prior experience with static-bandit tasks. Knox 
et al. (2012) instructed participants about the changing 
value of the options in their task and found, as pre-
dicted, that the probability of exploration increased 
with the time since an option was last explored. Using 
another restless-bandit task, Konstantinidis and I 
(Speekenbrink & Konstantinidis, 2015) additionally 
found that people switched more between options (a 
rough measure of exploration) in periods of rapid 
change with high epistemic uncertainty.

In another study, my colleagues and I (Stojić, Schulz, 
et al., 2020) derived qualitative predictions for uncer-
tainty guidance in a contextual-bandit task in which, 
after some time, a novel option was introduced. We 
found evidence that people explore a novel option 
much more when the learned relationship between 
features and rewards indicates that the new option will 
yield high rewards. In addition, we found evidence that 
people explore a novel option when its features are 
relatively dissimilar to those of previously encountered 
options. As exploring options with novel features 
should reduce uncertainty about the relationship 
between features and rewards substantially, this behav-
ioral pattern points to functional uncertainty guidance 
in exploration. Using a different contextual-bandit task 
in which the features were the spatial locations of 
options, my colleagues and I (Wu et al., 2018) found 
related evidence for functional uncertainty guidance.

Open Questions

I have reviewed a range of results supporting the idea 
that uncertainty plays a guiding role in learning and 
experience-based decision making. In this section, I 
describe important open questions that can be addressed 
in future research.

Balancing the costs and benefits of exploration 
requires consideration of immediate risk and potential 
future benefits. As the end of a task approaches and 
there are only a limited number of decisions left, the 
potential benefits of newly acquired knowledge tend to 
be outweighed by the costs of acquiring more knowl-
edge. The heuristic exploration strategies considered 
here ignore this planning aspect of exploration. Whether 
humans do so as well is not entirely clear. Although 
people explore less in shorter compared with longer 
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tasks (Rich & Gureckis, 2018; Wilson et al., 2014), and 
when they expect to encounter an unknown option less 
often (Rich & Gureckis, 2018; Wulff et al., 2015), this 
behavior is likely based on heuristics rather than a plan-
ning process that optimally weights the risks and ben-
efits of acquiring new information (Knox et al., 2012).

Krueger et al. (2017) compared situations in which 
all options provide rewards and those in which all 
options provide losses and found evidence for uncer-
tainty-guided exploration in both. Although the uncer-
tainty bonus was larger when the options yielded losses, 
participants relied on qualitatively similar exploration 
strategies in both situations. However, as in most studies 
discussed in this review, the cost of exploration was 
relatively benign (e.g., a small loss in points or financial 
reward). In real life, the cost is often more profound. 
For example, a foraging animal exploring a new area 
may die if it encounters a predator or no food. More 
research on how people safely explore in high-stakes 
environments is needed. Initial results (e.g., Schulz, Wu, 
et al., 2018) indicate that people adapt their exploration 
strategies when disastrous outcomes have to be avoided. 
Purposeful exploration has been found to be greater in 
periods when it is relatively safe than when the stakes 
are high (Schulz et al., 2017). Linking such findings to 
those of research on exploratory play, curiosity, risk 
sensitivity, and changing patterns of exploration over 
the life span is an important avenue for future research.

Reinforcement-learning models (RLMs) focus on how 
sequences of decisions over trials are shaped by 
obtained rewards (and sometimes uncertainty). Evi-
dence-accumulation models (EAMs) focus on the 
intratrial processes that affect the timing and nature of 
isolated decisions. How these evidence-accumulation 
processes link with longer-term learning and afford 
uncertainty-guided exploration is an open question. 
Although recent advances have integrated RLMs and 
EAMs (e.g., Pedersen et  al., 2017), these efforts have 
generally ignored the role of uncertainty. There are dif-
ferent ways to relate the parameters of EAMs to uncer-
tainty and value estimates. Gershman (2018) found 
evidence that uncertainty bonuses decrease response 
times, whereas uncertainty-modulated noise added to 
options’ values increases response times. This indicates 
that multiple parameters of EAMs may be related to 
uncertainty (e.g., the initial level and variability of evi-
dence). Attention to options may also directly influence 
the evidence-accumulation process (e.g., Krajbich et al., 
2010), although work in this area tends to treat attention 
as given, rather than investigating why and when atten-
tion is directed to options. Our recent work shows that 
attention is guided by both value and uncertainty (Stojić, 
Orquin, et al., 2020), which may inspire new ways of 
integrating RLMs and EAMs.

Conclusion

Research with a variety of multiarmed-bandit tasks 
shows that both learning and decisions are guided by 
uncertainty. This indicates that theories of behavior that 
ignore uncertainty are incomplete. Rather than avoiding 
uncertainty, we should embrace it and let uncertainty 
guide our learning and decisions in scientific endeavors 
as well as daily life.
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Stojić, H., Schulz, E., Analytis, P. P., & Speekenbrink, M. 
(2020). It’s new, but is it good? How generalization 
and uncertainty guide the exploration of novel options. 
Journal of Experimental Psychology: General, 149(10), 
1878–1907. https://doi.org/10.1037/xge0000749

Walker, A. R., Luque, D., Le Pelley, M. E., & Beesley, T. 
(2019). The role of uncertainty in attentional and choice 
exploration. Psychonomic Bulletin & Review, 26(6), 1911–
1916. https://doi.org/10.3758/s13423-019-01653-2

Wilson, R. C., Geana, A., White, J. M., Ludvig, E. A., & Cohen, 
J. D. (2014). Humans use directed and random exploration  
to solve the explore–exploit dilemma. Journal of Experi
mental Psychology: General, 143(6), 2074–2081. https://
doi.org/10.1037/a0038199

Wu, C. M., Schulz, E., Speekenbrink, M., Nelson, J. D., & 
Meder, B. (2018). Generalization guides human explora-
tion in vast decision spaces. Nature Human Behaviour, 
2(12), 915–924. https://doi.org/10.1038/s41562-018-0467-4

Wulff, D. U., Hills, T. T., & Hertwig, R. (2015). How short- and 
long-run aspirations impact search and choice in deci-
sions from experience. Cognition, 144, 29–37. https://
doi.org/10.1016/j.cognition.2015.07.006

https://doi.org/10.1073/pnas.1911348117
https://doi.org/10.1037/xge0000749
https://doi.org/10.3758/s13423-019-01653-2
https://doi.org/10.1037/a0038199
https://doi.org/10.1037/a0038199
https://doi.org/10.1038/s41562-018-0467-4
https://doi.org/10.1016/j.cognition.2015.07.006
https://doi.org/10.1016/j.cognition.2015.07.006

