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Abstract

The premise of the work that was undertaken in this thesis is the use of

mathematical modelling techniques to solve fundamental questions in quan-

tum chemistry. In particular, this project focusses on how thermalisation ef-

fects, particularly in the context of proton transfer, can be incorporated into

the exact quantum dynamics method MCTDH, which is the multiconfigu-

rational time-dependent Hartree method. This is a computational method

set up to solve the time-dependent Schrödinger equation (TDSE) exactly for

small systems or molecules.

The question posed in this thesis is what can scientists do when the gas

phase zero temperature picture is no longer a useful description for the re-

actions and processes that we are interested in. For instance, if we look at

proton transfer, there is still a lot of uncertainty about the exact mecha-

nism and the role that is played by the environment in this process. In this

project ML-ρ-MCTDH is developed and applied in three studies of proton

transfer, looking first at a model of symmetric proton transfer, followed by

a brief study of salicylaldimine and finally looking at porphycene. Chapter

1 introduces the topic and chapters 2 and 3 cover the theory and methodol-

ogy underpinning the research focus. In the remaining chapters results are

presented and discussed.





Impact Statement

The simulation of molecular systems on a quantum level is an important tool

in understanding fundamental reactivity, insight into which is valuable to a

wide range of applications in chemistry from drug design to the development

of solar panels. Rigorous molecular modelling of this kind is becoming an

indispensable counterpart to experimental work, helping to interpret the con-

tribution of quantum effects such as tunnelling and non-adiabatic coupling

effects in order to understand chemical properties of technological impor-

tance. For modelling reaction rates and mechanisms, MCTDH is a bench-

mark method in this field, with wide ranging impact on the way that the

study of time-resolved molecular dynamics has developed over the years.

Many applications involve the interpretation of time-resolved spectroscopy

results obtained experimentally which is particularly useful for the under-

standing and therefore development of photoactivated molecules. Existing

methods for modelling this kind of problem in the gas phase are inadequate

due to the important role of the environment, while a classical or semi-

classical approach would neglect quantum effects which are known to be

correspondingly important.

The development of a multi-layered-density-matrix capability of the Quantics

package aims to tackle this choice, by improving the scaling of the existing

density matrix scheme in MCTDH in order to allow more realistic systems

to be modelled. The work thus underpins a wide range of technological

development in which the effect of temperature on quantum dynamics is im-

portant. Applications range from dye sensitised solar cells, key to combatting



climate change, to quantum computers, which are key in further information

exchange.





“We live in a world where there is more and more information, and less

and less meaning.”

Jean Baudrillard
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Chapter 1

Introduction

1.1 Preface

The dynamics of quantum mechanical systems is important to study in order

to understand fundamental reactivity of molecules. While classical mechanics

is able to explain the dynamics in simple ground state chemical systems, in-

terpreting phenomena such as tunnelling, the quantisation of nuclear motion

seen in many experimental spectra, and various aspects of chemical bonding

can only be explained by examining the quantum behaviour of the system.

Tunnelling occurs when a nuclear wavefunction reaches an energy barrier

since the wave decays inside the barrier, and if this barrier is narrow enough,

the wavefunction does not decay to zero and is still present on the other side

of the barrier. The particle can therefore travel to a region that is otherwise

forbidden by classical mechanics when it has insufficient activation energy

to mount the barrier. The two factors that affect the amount of tunnelling

are the size of the particle and the width of the energy barrier, indeed the
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Preface 1.1

probability of tunnelling increases with decreased particle size and decreased

barrier width. Tunnelling is potentially important in any reaction involving a

proton being transferred between different sites. This is due to its light mass

and corresponding highly quantum mechanical nature. The rate determining

step in enzyme catalysis, for example, may be controlled by tunnelling [1,2].

Another area of chemistry where nuclear dynamics is especially important is

in photochemistry, where the dynamics of the nuclei can have a significant im-

pact on reaction mechanisms due to coupling between electronic and nuclear

motion. For instance, the development of dye sensitised solar cells relies on

an understanding of photochemistry and therefore of nuclear dynamics [3,4].

In recent years, nuclear dynamics has also become an important topic due

to the development of quantum technologies, such as quantum computers.

Realistically, only the smallest quantum dynamical systems can be modelled

with full accuracy. This is because the coupling in realistic systems means

that the cost of simulating a multidimensional nuclear wavefunction goes up

exponentially with the number of degrees of freedom. Therefore the pro-

hibitive computational cost of modelling multidimensional systems imposes

limitations on the time scales that can be looked at, and challenges the-

oreticians to find a representative subset of the problem and to rationally

approximate whatever is missing. One common assumption is to treat a sys-

tem as ‘closed’, which means that the number of particles and total energy

is conserved, as if the system is isolated in a sealed box. In reality there

are no closed systems, and any system which is thermalised or interacts in

a substantial environment must be treated as ‘open’. Similarly, models of

large systems often employ classical approximations to the ‘bath’ (i.e the

Introduction 24



Existing approaches to thermalisation in dynamics 1.2

less important modes).

The main focus of this project is on the time dependent quantum dynamics

method MCTDH (Multi-Configurational Time-Dependent Hartree) which is

essentially a computational modelling technique set up to solve the TDSE

(time-dependent Schrödinger equation) using numerical integration, as a tool

for understanding molecular reactions. Standard MCTDH propagates a nu-

clear wavepacket and simulates models in the gas phase. In contrast, it is

possible to describe quantum dynamics using a density matrix, which is useful

in any reaction where thermalisation effects or the environment are impor-

tant, crucially here in the case of proton transfer (PT). The benefit of the

density matrix approach is that it is possible to distinguish the ‘system’ and

‘bath’ dynamics and treat them with different levels of approximation within

a same framework. This functionality exists in the form of the ρ-MCTDH

algorithm, which isn’t used often as it is limited due to scaling issues. This

motivates the central idea of this project, which is to utilise the multilayer

formalism of MCTDH to make the existing ρ-MCTDH package more efficient.

1.2 Existing approaches to thermalisation in

dynamics

Adding temperature to a system is straightforward using classical mechanics

due to the direct connection between the temperature and the momentum of

the particles.
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Existing approaches to thermalisation in dynamics 1.2

Fig. 1.1: Paths between point A at time t to point B at time t′(> t). Paths which

self-intersect or go backwards in time are not allowed.

There are many powerful computational packages to simulate classical molec-

ular dynamics, however this is not the focus of this thesis which deals only

with quantum methods. Feynman provided a way to use the ideas of classical

mechanics to solve the TDSE.

Path integral molecular dynamics (PIMD) methods were developed to use

Feynman path integrals to simulate the molecular dynamics of a quantum

system in the condensed phase. In the Feynman path integral formulation

of quantum mechanics the functional integral over all quantum mechani-

cally possible paths over configuration space is found, where the value of

the integral gives a probability of taking that path (known as the quantum

amplitude). This is shown schematically in Figure 1.1

In PIMD methods the nuclei are treated quantum mechanically and each nu-

clei is mapped into a classical system consisting of set of harmonic potentials
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and described by an effective Hamiltonian. This method is non empirical

and uses force fields based on the method chosen, and is therefore a classical

system with quantum information incorporated.

There are several well established computational techniques which use the

PIMD method, including the Centroid Molecular Dynamics (CMD) [5,6] and

Ring Polymer Molecular Dynamics (RPMD) methods [7, 8].

Both the RPMD and CMD methods use the quantum Boltzmann operator

alongside a modified form of classical mechanics which conserves the quan-

tum mechanical equilibrium distribution. In the CMD method the classical

potential energy function is replaced with an imaginary-time centroid po-

tential of mean force [9] whereas in RPMD a classical molecular dynamics

simulation is performed in the full phase space of the imaginary-time path

integral [7]. For correlation functions involving linear functions of position

and/or momentum operators, CMD and RPMD are exact in the limit as

time tends to zero, in the limit of a harmonic potential, and in the classical

limit. Both methods struggle to simulate correlation functions in the case of

strongly nonlinear operators [10–13].

CMD and RPMD have been used simulate quantum mechanical effects in

a variety of applications [14–30], they have been shown to capture quan-

tum mechanical effects in many condensed phase molecular dynamics sim-

ulations especially in application to molecular liquids. A final computa-

tional method using the PIMD approach is the Feynman-Kleinert Quasi-

Classical Wigner method (FK-QCW) [31,32], which was developed to use the

Feynman-Kleinert approximation of the density operator in order to improve
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Thermalisation in open quantum dynamics 1.3

the Feynman-Kleinert implementation of the classical Wigner approximation

for evaluating quantum time correlation functions.

Another approach to modelling molecular dynamics which also makes use

of path integrals is the Path integral Monte Carlo method, PIMC. There

are various successful implementations of this method dating back to the

1970s [33]. A Monte Carlo method is an algorithm which repeatedly sam-

ples possible outcomes until the distribution of results converges. While

simulations based on Monte Carlo algorithms are very good at reproducing

static properties of a thermalised system, such as enthalpy, the dynamics is

non-empirical and therefore approximate. Indeed this is the main limitation

of this family of methods, which motivates the adaptation of the MCTDH

approach proposed in this thesis. The PIMC method is used to calculate

thermodynamic properties, for instance heat capacity, free energy and inter-

nal energy. The disadvantage of a statistical sampling approach is that an

excessive number of points must be calculated in order to obtain accurate

results.

1.3 Thermalisation in open quantum dynam-

ics

To accurately study the dynamics of molecular systems including quantum

effects requires solving the TDSE. This, however, is only applicable to pure

states of closed systems, i.e. there is no exchange of energy with an environ-

ment. As a result thermalisation, which results in a system in an incoherent

mixture of states guided by the Boltzmann distribution, cannot take place.
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For this, we need to solve instead the Liouville-von Neumann (LvN) equation

using a density matrix approach.

Quantum dynamics simulations suffer from an inherent poor scaling, with

the computational effort required to solve the TDSE growing exponentially

with the number of degrees of freedom included in the system. Traditional

methods use time-independent basis sets that form a grid and are typically

restricted to 3-4 degrees of freedom. The effort required to solve the LvN

equation is even worse as a density matrix effectively squares the number of

degrees of freedom to be treated and grid-based methods are restricted to 2

degrees of freedom at most.

For solving the TDSE, MCTDH has enabled accurate solutions for many de-

grees of freedom to be obtained. This, and the even more powerful multilayer-

MCTDH will be described in Chapter 3. MCTDH can also be used to divide

a system into “primary” and “secondary” modes, with the secondary modes

forming a bath for the primary system and can be treated using classical dy-

namics to save effort. This partitioning is shown schematically in Figure 1.2.

While this allows for some thermalisation effects to be included, the limita-

tion of using a wavefunction is that it is not possible to truly represent the

environment surrounding the system, as this would require the open system

dynamics to be accounted for. This is the motivation for using a density

matrix instead, which can fully account for both open and closed system

dynamics.

The MCTDH approach can, however, also be used to propagate density ma-

trices. This alleviates the scaling but the method at present still cannot treat
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Introduction to proton transfer 1.4

Fig. 1.2: Diagram of system, bath, environment mode correlations [34].

more than a few degrees of freedom. The key to an accurate, general den-

sity matrix approach would be to use the ML-MCTDH approach for density

matrices. This would bring all of the power of MCTDH to simulations of

open systems, including partitioning of degrees of freedom into a primary

system, secondary bath and “dissipative” modes that can then be included

using dissipation operators (Figure 1.2).

1.4 Introduction to proton transfer

PT is a category of reaction mechanism where an H+ ion moves from a donor

to an acceptor site. It can either occur within a molecule (intramolecular PT)

or between molecules (intermolecular). This simple process is important to

understand since it is a key part of many reactions in organic chemistry,
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playing a role in numerous processes vital to life, from the stability of DNA

to enzymatic reactions.

One reason why PT is a notoriously difficult to model is that it can be

significantly impacted by nuclear quantum mechanical effects, such as the

zero-point energy (ZPE) effect, tunnelling through the reaction barriers, and

the coherence of nuclear wave functions. This means that classical models

of PT are limited as they do not account for these quantum effects in any

reaction where PT plays a role, which motivates why a quantum approach is

useful. Another difficulty with predicting the mechanism and timescale of PT

is that the environmental conditions of the proton, such as the temperature

or presence of a solvent can play a significant role in driving or inhibiting the

possible pathways to reaction. Conversely, this second aspect means that

studies using purely quantum modelling techniques are also limited, since

they are restricted by computational capacity and can usually only fully de-

scribe a small number of coupled particles and hence cannot represent these

large scale effects.

Similar challenges were encountered by scientists studying electron transfer

(ET) processes in the 1950s who also found that classical estimates for reac-

tion rates were often inaccurate, and Marcus theory of ET aimed to address

this. Marcus theory corrects the classical model for ET by estimating the

Gibbs free energy of activation to includes solvation effects (see Figure 1.3).

Many of the ideas introduced in Marcus theory informs the way that PT is

described, which is framed in terms of donor and acceptor states with adia-

batic surfaces. PT can be more unpredictable and harder to model than ET,
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Fig. 1.3: Energy diagram for ET including inner and outer sphere reorganisation

and electronic coupling [35]. In this schematic D-L-A stand for the donor, ligand

and acceptor components respectively, the horizontal axis represents the reaction

coordinate for the PT and the vertical axis is free energy. λ is the reorganization

energy, ∆Go represents the total Gibbs free energy change for the ET, and HA,B

quantifies the electronic coupling between initial and final states.

and often requires a fully quantum dynamical approach. This is partly due

to the fact that in ET processes the coupling of the nuclear motion to the

electron is minimal and can often be neglected. In contrast, in PT the nuclear

motion takes place on a similar timescale which means that the coupling to

the nuclear dynamics must be considered. Depending on the PT system, the

specific properties of the potential energy surface, such as the barrier height

or width will determine whether tunnelling occurs. In contrast, in Marcus

theory ET is governed by just one coupling parameter. Another reason that

PT is more costly to model than ET is that it occurs over longer timescales,

requiring correspondingly long simulations.

The kinetic isotope effect is when the rate of a reaction is observed to be

slower when an atom is replaced by its heavier isotope. For example, in a re-
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action where a C-H bond is broken, if the hydrogen is replaced by deuterium

then the rate of reaction would be expected to slow significantly. This is an

example of a primary kinetic isotope effect, whereas it is also possible to see

some reduction in reaction rate even when the bond involving the isotope is

not broken, which is known as a secondary kinetic isotope effect. The kinetic

isotope effect can be used to establish which mechanism in a complex multi

step reaction is the rate determining step.

To understand the primary kinetic isotope effect, note first that a molecule

containing deuterium swapped for hydrogen has the same potential energy

profile as the original molecule containing only hydrogen, since bond dis-

tances and strengths depend on atomic charge (which is identical for H and

D). However the vibrational frequencies of the C-D bond stretch (reaction

coordinate) does differ, since this depends on atomic mass. In particular the

zero point energy (ZPE), which is inversely proportional to atomic mass (or

more particularly, proportional to the inverse square of the mass), is measur-

ably lower for the C-D bond in comparison to the C-H bond as deuterium

is heavier. This means that the activation energy Ea needed to break the

bond containing deuterium is larger despite the fact that the barrier height

(or potential) is identical to that for hydrogen, since Ea depends on the ZPE.

For this reason the effect with isotopes such as 13C the difference is generally

less observable since the difference in mass is relatively insignificant, and for

this reason the kinetic isotope effect for 13C is less discernible. Interestingly,

experimentally for the substitution of deuterium for hydrogen does not nec-

essarily result in the reaction rate being slower. When deuteration doesn’t

affect the reaction rate, this is an indication that tunnelling is not a signif-
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icant part of the reaction mechanism, which could be due to properties of

the PES meaning that tunnelling would be energetically unfavourable, or be-

cause the system is already thermalised to an energy level above the barrier

height and thus the reaction is apparently barrierless.

In cases where PT is the rate limiting step, a first principles understanding

of the mechanism is essential. ET is a fundamentally quantum process due

to the small size of electrons. Indeed, electrons are well known to exhibit

wave-like characteristics, meaning that a classical description is fundamen-

tally flawed, particularly in ET processes where tunnelling plays a significant

role. Although protons are significantly heavier, a classical description is sim-

ilarly inadequate. This is especially true in the description of PT because of

the vital role that coupling to the environment plays in this process. Indeed

research suggests that the tunnelling which occurs in many reactions that

involve PT far exceeds what would be expected for a particle of its size [1],

which is one reason why it is so important to model this effect accurately.

As has been discussed earlier in this chapter, a density matrix description can

easily incorporate system-bath coupling effects which makes it an ideal model

for ET and PT processes. Systems which are well described by density ma-

trices are those where the quantum character can be adequately represented

by a limited number of degrees of freedom which are embedded in an en-

vironment system of classical behaviour. An example where density matrix

evolution (DME) would not be appropriate is a system where the wavefunc-

tion develops into delocalised shapes, for example for a solvated electron,

which would require a large number of basis functions.
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Wolfseder et al [36] proposed a method for treating ET processes in a non-

pertubative approach by using a density matrix description in the framework

of Redfield theory. This was applied to a general dissipative ET system and

various pump-probe spectra were simulated to femtosecond resolution. The

authors also undertook a simulation of coherent photon-echo signals which

they resolved in frequency, time and direction of emission with the purpose

of understanding the effects of vibrational damping on the process.

To a similar effect, Egorova et al [37] demonstrated the utility of multilevel

Redfield theory when applied appropriately to ultrafast photoinduced ET

reactions. Dynamics simulations were run on a standard model for ET in

the condensed phase, for different temperatures and values of coupling and

reorganisation energy and these were compared with results from the self-

consistent hybrid method. This model was adapted in a further article by

Egorova [38] to investigate the fluorescence spectra in nonadiabatic systems.

The first article on PT considered here is that of double PT in benzoic acid

crystals from the perspective of quantum operator theory [39]. To explain

the clearly nonclassical tunnelling effects in this system even at high tem-

peratures where the energetic barrier for PT is more accessible, this article

applied quantum Kramer’s theory, to justify the low activation energy that

is observed in kinetic isotope experiments. In particular, the model looked

at incorporating the effects of coupling with a condensed phase environment

and included symmetric coupling to the intramolecular mode. Calculations

were reported for the activation energies of hydrogen and deuterium which

agree quantitatively with experiment.
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The method of DME was applied to a PT process in a fluctuating double

well potential by Berendsen et al, 1993 [40]. This generalised model was

constructed to describe a 1-D collision of a classical particle with a quan-

tum oscillator to replicate the process of PT along a hydrogen bond. This

system is particularly well represented by DME as nonadiabatic transitions

are well characterised in this method and because it is possible to model the

system reasonably well using few quantum degrees of freedom. The paper

also demonstrated how the classical equations of motion can be ensured to

be consistent with the quantum model and conserve total energy.

The same authors proceeded to write a review of the DME procedure [41]

and continued developing the model to apply it to PT in aqueous hydrogen

malonate [42]. The objective was to calculate the rate of proton tunnelling

in the intramolecular double well of this molecule and compare the model

results with approximate analytic solutions calculated by Borgis and Hynes

1991 [43] and with the classical rate in the nonadiabatic limit which was also

estimated in this paper. The authors considered the use of a biased sampling

method to search for configurations with greater tunnelling probability, and

found that, after a correction was applied, the resulting rate was equivalent

to an unbiased one.

The paper surmises that the differences in the free energy of solvation of the

two forms of the molecule (the symmetric and antisymmetric positions of the

proton) correspond to the solvent reorganisation energy to ensure no energy

splitting between product and reactant states. Despite various limitations of

the model the tunnelling rate found using their DME method was similar to

the one calculated by Borgis at just 5 times smaller, and their estimate using
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classical TST was slightly larger. This study shows the potential of using

density matrices to describe PT, which motivates why it is useful to develop

this further within the ML-MCTDH formalism. It is hoped that this will be

far more efficient than the methods used in these earlier studies, which will

allow more complicated and interesting systems to be studied.

1.5 Thesis overview

This thesis looks at the quantum dynamical context leading to the develop-

ment of density matrices and gives an overview of the derivation and main

notational conventions of this construction, also exploring how the density

matrix description has been applied to quantum dynamical systems. There

is a discussion of the issue of dimensionality with regards to computation,

and an exploration of how the MCTDH framework has been constructed to

address this.

A full derivation of the equations of motion of the MCTDH algorithm are

presented as well as the different versions of the density matrix formulation

(ρ-MCTDH). This leads on to the key result of the thesis that the multi-

layer formulation of MCTDH can be directly used for the propagation of

density matrices. As demonstrated in the results of subsequent chapters,

this will allow much larger density matrices to be propagated than presently

possible. The problem of modelling the significant quantum effects that can

influence the process of ET and PT is discussed, looking at how experi-

mentalists and theoreticians have approached this phenomena. A simple

model is implemented to better understand the crucial role the environment
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plays in the process of PT, and the three methods (MCTDH, ρ-MCTDH and

ML-MCTDH) are compared. The computational effort, timing and error is

assessed, as well as the behaviour of each method in a parallel setting and

the problem of basis set convergence.

Chapters 2 and 3 cover the theory and methodology underpinning the re-

search focus. In the remaining chapters results are presented and discussed.

The question posed in this thesis is what can scientists do when the gas phase

zero temperature picture is no longer a useful description for the reactions

and processes that we are interested in. For instance, if we look at PT, there

is still a lot of uncertainty about the exact mechanism and the role that is

played by the environment in this process. The approach which is taken is to

use density matrices within the MCTDH framework in a study of PT within

salicylaldimine and for a model symmetric PT system. A final study looks

at double PT in porphycene. Studies using density matrices with over 10

degrees of freedom are shown to be possible.
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Theory

2.1 Quantum dynamics

Introductions to quantum mechanics begin with the idea that a system may

be described by a Hamiltonian operator, Ĥ, and its eigenstates can be found

by solving the differential equation

Ĥ|Ψn〉 = En|Ψn〉. (2.1)

This is known as the (time independent) Schrödinger equation and the quan-

tities {|Ψn〉} are eigenstates of the system, with associated eigenvalue energies

{En}. This is a stationary wavefunction picture of quantum mechanics, and

any state of the system can be written as some combination of these eigen-

states {|Ψn〉}. The premise of quantum mechanics is that if the Schrödinger

equation for a system is solved exactly then all physical quantities of the

system can be determined, in an equivalent way to Newton’s equations in

classical mechanics which were for hundreds of years thought to fully explain

our physical world. Clearly the complete Hamiltonian describing positions

and momenta of all particles in the universe can never be determined, so
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in practice a reduced system Hamiltonian is almost always used, thus the

system is no longer fully deterministic.

Rather than using the TISE as shown in (2.1), in order to determine dynam-

ical information such as reaction rates and mechanisms we must consider

the time-dependant picture. The time dependent case requires more work

as evolving wavefunctions are found instead by solving the time dependent

Schrödinger equation (TDSE)

i~
∂Ψ(x, t)

∂t
= ĤΨ(x, t) (2.2)

This equation shows the 1-dimensional case but the TDSE can be extended

to any number of dimensions. Note that ~ is Planck’s constant divided by

2π. Assuming that the wavefunction can be written as a product of distinct

position and time parts, as in Ψ(x, t) = ψ(x)χ(t), and assuming that Ĥ is

time-independent, then this differential can be treated as first order separable

which rearranges to give

i~
χ̇(t)

χ(t)
=
Ĥψ(x)

ψ(x)
= E (constant). (2.3)

Since the left hand side of this equation is independent of position just as

the right hand side is independent of time, then the only way they can be

equal is if both sides are equal to a constant, here this constant is denoted E.

Then each side may be solved separately, for the particular constant E [44];

Ĥψ(x) =
{
− ~2

2m

∂2

∂x2
+ V̂ (x)

}
ψ(x) = Eψ(x), (2.4)

i~χ̇(t) = Eχ(t) =⇒ χ(t) = Ae−
i
~Et (for some constant A). (2.5)

Note that V̂ (x) is the potential operator. Then the particular solution of the

complete wavefunction can be written Ψ(x, t) = ψ(x)e−
i
~Et. Note that the

potential could also be time-dependent (V (x, t)) and multidimensional, and
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the importance of this quantity is that for bound potentials the physical so-

lutions will exist for discrete values of the energy, E. For unbound potentials

meaningful solutions exist for a continuous range of E. The general solution

is therefore a linear sum of these particular energy solutions for the bound

potential, and an integral in the unbound case:

Ψ(x, t) =
∞∑
n=1

an(t)ψn(x)e−
i
~Ent (discrete spectrum) (2.6)

Ψ(x, t) =

∫ ∞
0

a(E)ψE(x)e−
i
~EtdE. (continuous spectrum) [45] (2.7)

These time dependent states of a system are called ‘wavepackets’. It is also

possible to get a potential which is bound in some regions of configuration

space and unbound in other regions. As before, if the TDSE is solved ex-

actly for all time then all physical and dynamical properties can be extracted.

However, depending on the complexity of the system potential, the number

of terms involved means this calculation can be computationally prohibitive.

Therefore in most cases a full solution is only possible for very simple, few par-

ticle systems and for short timescales, largely due to the complexity caused

by the coupling between different degrees of freedom in the potential. In

systems where there is little or no coupling between the degrees of freedom

in the potential, the TDSE is easily soluble even for very large systems.

One strategy used to address this issue in atomic and molecular systems

is to decouple the electron and nuclear motion by assuming that they are

independent of each other. This is called the Born-Oppenheimer approxima-

tion [46, 47], which relies on the fact that the difference in mass between an

electron and a nucleus causes them to move at different speeds. Therefore the

nuclear geometry can be treated as fixed with respect to the electronic motion

without too much loss of accuracy. In the Born-Oppenheimer approximation
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relativistic effects due to coupling between electronic and nuclear degrees of

freedom are therefore neglected, which means that the nuclear and electronic

wavepackets can be treated separately which simplifies the problem signifi-

cantly. The advantage of this is that there are many well established methods

(such as DFT, density functional theory or MP2, second order Møller-Plesset

theory [48, 49]) designed to provide approximate solutions to the TISE for

electrons at a given set of nuclear coordinates. These can be used to build up

a relatively accurate picture of the electronic potential energy surface (PES).

The PES which is calculated using one of the above methods is the potential

energy landscape of the electrons in the configuration space of a molecular

system, under the assumption of fixed nuclear coordinates. The TDSE for

the nuclear wavefunction can then be solved using this PES. The nuclear

problem is significantly more problematic however, as the full configuration

interaction must be included in order to establish a quantum dynamical pic-

ture which is useful and sufficiently accurate. This is largely due to strong

nuclear correlations that must be fully accounted for.

2.2 Density matrices

The use of density matrices to describe quantum systems was introduced by

Von Neumann (1927) and has been developed and formalised by researchers

such as Wigner [50], Hillery [51] and Fano [52], gaining momentum in recent

years due to increased computational capabilities. Density matrices are an

alternative to wavepackets in representing quantum dynamical systems, and

are superior in some aspects as they are inherently able to describe ‘mixed

quantum states’ and they can easily be constructed to include environmental
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effects, as mentioned above. Indeed it is a major drawback that a wavepacket

description of quantum dynamics can only describe the pure states (or eigen-

states) of a system, since real systems exist in mixed states (non eigenstates)

most of the time.

It is well known that pure states are only able to represent wavepackets,

which is insufficient for looking at a system which is thermalised, not in

equilibrium or open. This is due to the fact that a wavepacket can always

be written as a coherent superposition of states |Ψi(t)〉:

|Φ(t)〉 =
∑
i

ci(t)|Ψi(t)〉, (2.8)

where |ci(t)|2 = pi, the probability of observing the system in state |Ψi〉. In

contrast the full density operator of a system is defined to be

ρ̂(t) =
∑
i

|Ψi(t)〉pi〈Ψi(t)|. (2.9)

Again pi is the probability of being in state |Ψi(t)〉 and
∑

i pi = 1. Note first

that the density operator can represent both pure and mixed states as it is

in general an incoherent superposition of pure states |Ψi(t)〉〈Ψi(t)|.

The convention for |Ψi(t)〉 is that they must be normalised, but they do not

necessarily need to be orthogonal. It is also worth noting that the states of

the system |Ψi(t)〉 do not necessarily need to be energy eigenstates and the

pi form a probability distribution since
∑

i pi = 1 implies that if one pj = 1

then all other pi must be identically 0. A density matrix is expanded in the

basis {|n〉} with diagonal elements

ρnn = 〈n|ρ̂|n〉 =
∑
i

pi〈n|ρi|n〉 =
∑
i

pi〈n|Ψi〉〈Ψi|n〉 =
∑
i

pi|c(i)
n |2, (2.10)
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where ρi = |Ψi(t)〉〈Ψi(t)|, c(i)
n = 〈n|Ψi〉 and c

(i)∗
n = 〈Ψi|n〉. The above state-

ment also holds if |Ψi(t)〉 are an orthogonal basis set, but this is not a neces-

sary condition (any normalised basis set will work). Notice that since |c(i)
n |2

is the probability of finding a system described by the normalised eigenstate

|Φi〉 in the state |n〉, the interpretation of
∑

i pi|c
(i)
n |2 is that it is the prob-

ability of finding a system described by the density operator ρ in the state

|n〉. In a thermalised system, pi are the Boltzmann factors e−Ei/kt, where Ei

is the energy of state Ψi.

For a system described by ρ̂, ρmn represents the quantum coherences be-

tween states |m〉 and |n〉, for instance tunnelling can be represented by the

occupation of these off-diagonal elements of the density matrix. A general

off-diagonal element is written:

ρmn =
∑
i

pi c
(i)
m c(i)∗

n . (2.11)

Since density matrices are to functions as operators are to functions, it is

worth demonstrating a few fundamental properties of this formalism.

The equation of motion for density matrices is known as the Liouvillian,

L(ρ̂), and is given as follows:

L(ρ̂) =
dρ̂

dt
=
−i
~

[Ĥ, ρ̂]. (2.12)

Similar to the wavefunction equation of motion, the Liouville equation con-

tains full information on a system at a particular time if it is solved exactly.

To prove this property holds, firstly consider the direct time derivative of an

arbitrary matrix element ρ̂(i)(t) = |Ψi(t)〉〈Ψi(t)|. Then
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d

dt
ρ̂(i)(t) =

( d
dt
|Ψi〉

)
〈Ψi|+ |Ψi〉

( d
dt
〈Ψi|

)
(2.13)

=⇒ d

dt
ρ̂(i) =

1

i~
(Ĥ|Ψi〉〈Ψi| − |Ψi〉〈Ψi|Ĥ) =

1

i~
[Ĥ, ρ̂(i)]. (2.14)

Using the definition that ρ̂ =
∑

i piρ̂
(i), and noting that pi is constant with

respect to time, then pre-multiplying both sides of the equation with pi and

summing over all degrees of freedom i gives the full expression for the Liou-

ville equation:

d

dt

(∑
i

piρ̂
(i)
)

=
1

i~

(
H̄
∑
i

pi|Ψi〉〈Ψi| −
(∑

i

pi|Ψi〉〈Ψi|
)
Ĥ
)

(2.15)

=⇒ dρ̂

dt
=

1

i~
[Ĥ, ρ̂]. [53] (2.16)

Finally, it is useful to consider the proof of the fact that Tr(ρ̂) = 1. As

mentioned, the eigenvalues of the density matrix form a probability distribu-

tion and since the total of any probability distribution is always 1 we expect

Tr(ρ̂) = 1. Let us prove this holds mathematically. Let {|n〉} be a complete

orthonormal basis for our density matrix, then recall that
∑

n |n〉〈n| = 1.

Now observe

Tr(ρ̂) =
∑
n

〈n|
∑
i

pi|Ψi〉〈Ψi|n〉

=
∑
i

pi
∑
n

〈Ψi|n〉〈n|Ψi〉

=
∑
i

pi〈Ψi|
(∑

n

|n〉〈n|
)
|Ψi〉

=
∑
i

pi〈Ψi|Ψi〉 =
∑
i

pi = 1. [54] (2.17)

In fact practical use of the full density operator is limited to very small

systems, which motivates the introduction of a ‘reduced’ density operator.
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To understand this better, imagine the complete system Hamiltonian can be

partitioned into a core ‘system of interest’ and a surrounding ‘bath’, where

Ĥs, the system, includes the information on the quantum activity of interest

and everything else is contained in the bath Ĥb. Define Ĥ = Ĥs + Ĥb + Ĥsb,

where Ĥsb describes the interaction between the two other parts. Then the

‘reduced density operator’ ρ̂s is defined to be the trace over the degrees of

freedom of the bath:

ρ̂s = Trb(ρ̂), (2.18)

where ρ̂ is the full density operator as defined above. The value of this con-

struction is that ρs can be used, under certain conditions of approximation,

to describe open systems. One useful assumption which is often made in

order to simplify the problem is that the system bath interaction is weak,

and that the dynamics of the bath is much faster than that of the system.

This is called the Markov approximation, and it is important to note that

this must neglect memory effects and implies an assumption of irreversibility.

From this point, there are two distinct approaches to deriving an equation of

motion which can be used in a similar way to the Liouville equation for the

full density operator. The first is the Redfield [55] equation of motion which

is derived with a perturbative approach. This gives

∂ρ̂s
∂t

(t) =
−i
~

[Ĥs, ρ̂s] + R̂(t). (2.19)

The operator R̂(t) describes the relaxation process of the system due to

system-bath coupling. The second is known as the Lindblad [56] [57] equation

of motion:

L(ρ) = −i[H, ρ] +
∑
j

(VjρV
†
j −

1

2
V †j Vjρ−

1

2
ρV †j Vj). (2.20)
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L(ρ) is the Liouvillian which was introduced in equation (2.12), which is

equivalent to the TDSE in the pure state limit. In this equation the Li-

ouvillian is perturbed to include the Lindblad dissipative terms Vj. It is

important to note that the Lindblad equation assumes that the energy can

flow from the system to the bath but not from the bath back into the system.

Overall, the properties of density matrices are summarised:

• Density matrices are Hermitian, which means that ρnm = ρ∗mn.

• Diagonal elements of ρ are non-zero: ρnn ≥ 0. ρnn can be seen as the

probability of system being found in state |n〉.

• Expectation value of operator A is 〈A〉 = Tr(Aρ).

• Tr(ρ) = 1, if normalised.

• Tr(ρ2) ≤ 1, in general.

• Tr(ρ2) = 1, for pure states only.
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Methodology

3.1 Preamble

The next challenge is to represent the problem of nuclear dynamics under the

Born-Oppenheimer representation efficiently in a computer model. Once the

electronic potential energy surface (PES) has been calculated for the con-

figuration space that is considered in the model, the nuclear part must be

determined in relation to the PES. Determining the nuclear wavepacket as

a function of electronic configurations takes significant computational effort,

meaning that it is not feasible to find these quantities for every point on the

continuous PES. Therefore points must be chosen on the PES, which are rep-

resentative of where our system is likely to move in configuration space. The

nuclear wavefunction is then represented on these points by ‘basis functions’

premultiplied by coefficients, and the collective set of points is known as the

‘grid’.

A simple evenly spaced grid would be useless at representing the shape of
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a complex PES, unless the points are closely spaced which would require a

large basis set. This is problematic computationally since the bigger the basis

the higher the memory cost. There are a multitude of different basis sets,

known as discrete variable representation (DVR), which are used to decide

which points on the PES are selected. Conventional methods represent the

nuclear wavefunction directly in the time-independent DVR and can only

treat 4 or 5 degrees of freedom fully. MCTDH can directly treat up to 20

degrees of freedom of a system accurately, although using mode combination

methods more than 20 is possible. Consider the generic form of the MCTDH

wavefunction

Ψ(Q1, . . . ,Qf , t) =

n1∑
j1=1

· · ·
nf∑
jf=1

Aj1...jf (t)

f∏
κ=1

φ
(κ)
jκ

(Qκ, t). [58] (3.1)

In this notation, f is the number of degrees of freedom, Q1, . . . ,Qf are the

nuclear coordinates, Aj1...jf are time-dependent expansion coefficients, and

nκ is the number of basis functions used for representing the κth degree of

freedom. Notice that the basis functions are time dependent, which is impor-

tant because it ensures that they can evolve in time to optimally represent

the wavepacket. The fact that the basis functions are time dependent means

that a smaller basis is needed which is one of the reasons that the grid used

in MCTDH is more efficient than other methods. The efficiency of the grid

method used in MCTDH is one reason why it performs so much better than

equivalent procedures.

The variational principle used in MCTDH is the following:

〈δΨ|H − i ∂
∂t
|Ψ〉 = 0. (3.2)

This is called the Dirac-Frenkel variational principle [59, 60], and is used to

derive the equations of motion which drives the dynamics in MCTDH.
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ρ-MCTDH operates in much the same way as MCTDH but instead of a wave-

function, a density operator is propagated with an equation of motion based

on one of the Redfield or Lindblad schemes. The general form of these den-

sity operators is discussed in the following section which gives a brief outline

of the original publication which introduced the development of ρ-MCTDH.

3.2 Examples of ρ-MCTDH

The main papers concerning the development and implementation ρ-MCTDH

are by Raab et al [61,62] who developed the extension of the MCTDH pack-

age to include the density matrix propagation methodology. Raab outlines

the derivation of two main propagator schemes, which are based on different

approximate forms of the density operator specifically adapted to be incor-

porated into the MCTDH formalism. These are known as types I and II

respectively.

ρI(Q1, . . . ,Qf ,Q
′

1, . . . ,Q
′

f , t) =

n1∑
τ1=1

· · ·
nf∑
τf=1

Bτ1...τf (t)×
f∏
κ=1

σ(κ)
τκ (Qκ,Q

′

κ, t),

(3.3)

ρII(Q1, . . . ,Qf ,Q
′

1, . . . ,Q
′

f , t)

=

n1∑
j1,l1=1

· · ·
nf∑

jf ,lf=1

Bj1...jf ,l1...lf (t)

f∏
κ=1

∣∣∣φ(κ)
jk

(Qκ, t)
〉〈
φ

(κ)
lk

(Q′κ, t)
∣∣∣. (3.4)

Thus in type I ρ is described by single particle density operators (or SPDOs

σ
(κ)
τκ (Qκ,Q

′
κ, t)) whereas the basis for type II are single particle functions
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(SPFs) like in standard MCTDH.

One of these papers by Raab focused on the type II density operator applied

to a model pyrazine system, which is particularly useful for benchmarking

purposes since the full 24-mode model has already been investigated us-

ing MCTDH [63], and experimental results are also well established. Raab

demonstrated the capability his package has to propagate over a range of tem-

peratures, with results for the state populations, linear absorption spectrum

and Fourier transform of autocorrelation function taken at 0K, 300K and

500K with clearly explicable trends. Consideration was taken to determine

which integration method (CMF - constant mean field, VMF - variable mean

field) and propagation scheme was the most efficient in terms of time and

CPU and overall accuracy in a series of tests at different temperatures and

with differing numbers of basis functions. The conclusion was that DFVP

(based on the Dirac-Frenkel/MacLachlan variational principle) along with

the CMF integrator yielded the most accurate results in combination with

efficiency and CPU time.

In a second article by Raab [62] a modified Henon-Heiles system was used,

along with an application to pyrazine, to focus in detail on the effect that the

number of basis sets and grid points has on the efficiency of the calculations.

Both density types I and II were tested equally in this paper, in the context

of open, closed and varyingly thermalised systems for timescales up to 1000fs.

A measures of the error incurred during propagation was measured in each

example, in different ways depending on the propagation method; type I or

II. For density II the trace was conserved by construction, as it should be

if a closed system was perfectly modelled. For type I, the trace begins at
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value 1 and any decrease gives an indication of error. Similarly, the loss of

energy of closed systems, ∆E/E0 was noted. Both of these errors arise due

to the construction of the equations of motion, as will be shown below, and

will become negligible on convergence.

3.3 Multilayer MCTDH

Multilayer MCTDH is a more immediate extension of the MCTDH code,

in comparison with the use of a density operator. Indeed, in order to tackle

larger problems using MCTDH, it is often necessary to combine several modes

in the input file in order to reduce the configuration space and therefore the

computation time. The extension to this idea was pioneered by Wang and

Thoss [64] and extended further by Manthe [65] to deal with larger problems

more efficiently by specifying exactly how the wavefunction of each mode is

decomposed into lower dimensional SPFs, as distinct from ordinary MCTDH

where they are simply represented by a base-layer (or grid).

Examples of the precise specification for the ‘multilayered’ basis set is dis-

cussed below, but it is worth beginning by defining the generalised form of

the ML-MCTDH wavefunction:

|φkn(t)〉 =
∑
I

Bk,n
I (t)|ukI (t)〉 ≡

∑
i1

∑
i2

· · ·
∑
iQ(k)

Bk,n
i1i2...iQ(k)

(t)

Q(k)∏
q=1

|vk,qiq (t)〉.

(3.5)

The constituents of this equation are defined analogously to the ordinary

MCTDH wavefunction outlined in Section 3.4, but the main idea is that the

lowest dimensional SPFs are contained in a sequence of higher dimensional
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layers of SPFs. The propagation and expansion coefficients are calculated at

each ‘layer’ and the basis can be set up to accommodate as many or as few

layers of SPFs as are required by the problem. Clearly some problems are

naturally better suited to this method, because any effort that is saved by

propagating lower dimensional SPFs will be offset by the cost of minimising

the additional layers of coefficients and by the extra propagation steps.

In a system which is mostly weakly coupled, combining some of the slightly

more correlated modes is an effective strategy. However, if a model has a

more intricate system of coupling then this strategy of mode combination

will not simplify the calculation. While ML-MCTDH is an entirely general

method which can in theory be applied to any chemical model of interest, it

has mostly been used to investigate weakly coupled symmetric system-bath

type models where the majority of modes belong to a simple harmonic oscil-

lator type bath. The focus on these somewhat simplified models is dually a

consequence of the research interests of the academics who have thus far used

this method, and to the inherent challenge of specifying an efficient multilayer

basis decomposition for systems with more complex coupling schemes. The

dimensionality issues inherent in a problem which is asymmetric or strongly

coupled are not fatal to this method but will have greater computational

effort unless an optimal basis can be found. While ordinary MCTDH is only

viable up to 25 to 30 degrees of freedom, the power of ML-MCTDH is its

ability to propagate systems with many hundreds of modes to numerical ac-

curacy. Indeed this method has proved powerful in applications to a range

of problems [66–71].

One application which is particularly pertinent uses ML-MCTDH to inves-
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tigate two PT reactions in a condensed phase environment [67]. The article

varies the temperature and system-bath coupling strength to understand the

relationship these factors have with the thermal rate constant and quantum

flux correlation function of each system. In this paper an approximation is

made for estimating the thermal energy, based on sampling from the Boltz-

mann distribution. This is discussed further in Chapter 5. Similar to previous

examples discussed, the models in this paper are constructed with a double-

well potential coupled to a bath of harmonic oscillators. It is easy to see how

this system would be well represented by a density matrix approach, due to

the fact that it is described by a small number of modes and because of the

important role of the environment.

To explain how the basis is set up, consider Figure 3.1, which corresponds to

distinct multilayer basis specifications. The top node of the figure indicates

the full MCTDH-wavefunction which is n-dimensional for an n-mode system.

Each subsequent layer reduces the dimension by one. The ‘zeroth layer’ in

the ML-basis-section specifies how many ‘groups’ of layers the wavefunction

is represented and the number of SPFs in each group. In the first example,

the basis splits into five groups, the first of which consists of three SPFs and

the others contain just two. Regardless of how many layers are used, the base

layer is the generic MCTDH grid, as with ordinary MCTDH, and therefore

does not need to be specified in the input file, but is indicated in the diagram

with the square boxes.

The second example (lower diagram) splits into five groups of SPFs. Fol-

lowing along the furthest right branch of the second tree, this section of the

basis contains the modes x14 - x17. The top layer of this branch consists
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Fig. 3.1: ML-MCTDH tree representing two different basis set contractions for a

17-mode PT model.

of four SPFs which splits into two groups of two SPFs. Both of these 17-

mode calculations were applied to the spin boson model proposed by Craig

et al [67]. More information on these calculations and the relevant inputs is

discussed later, but it is worth noting here that the latter basis gave a better

converged result while the former was significantly faster.

3.4 Introduction to MCTDH

Once the electronic potential energy surface has been determined using a

chosen electronic structure method such as DFT, Hartree Fock etc. (or

parametrised by a model), the nuclear dynamics of a system can be explicitly

calculated using MCTDH. This method works within the BOA and provides

a numerically exact solution to the TDSE. Whereas the PES is calculated

from the time independent electronic SE, the TDSE allows us to capture the

kind of non equilibrium information about a molecules behaviour which is

Methodology 57



Introduction to MCTDH 3.4

required in order to understand reaction pathways and the role that is played

by quantum effects. While much information can be gained from simply con-

sidering the time independent electronic structure, accurate information on

quantum effects or non equilibrium behaviour for instance in a reaction is

simply lost in this kind of single point calculation due to the fact that a

molecule is rarely completely stationary.

The standard method, which exactly propagates a nuclear wavefunction us-

ing time dependent coefficients, has existed since the 1960’s [72]. Building

on this, the MCTDH method which was developed in the 1990’s [58, 73–77]

uses a smaller number of optimal time dependent coefficients and SPFs. In

Chapter 4 we will revisit the exact method in order to demonstrate how a

new Chebyshev integrator has been implemented to contract the time evo-

lution into a single timestep.

Start by recalling the TDSE, here in atomic units:

iΨ̇ = ĤΨ. (3.6)

In order to solve this computationally we need to represent the full multidi-

mensional wavefunction as a product of some basis. In the standard method

this is

Ψ(Q1, . . . , Qf , t) =

N1∑
j1=1

· · ·
Nf∑
jf=1

Cj1...jf (t)

f∏
κ=1

χ
(κ)
jκ

(Qκ). (3.7)

The DFVP [60] is used to derive equations of motion for each of the time

dependent expansion coefficients:

〈δΨ|Ĥ − i ∂
∂t
|Ψ〉 = 0 (3.8)
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which gives coefficients

iĊJ =
∑
L

ĤJLCL (3.9)

where the notation J and L has been introduced to simplify it to J = j1 . . . jf ,

ĤJL = 〈χ(1)
jf
. . . χ

(f)
jf
|Ĥ|χ(1)

jf
. . . χ

(f)
jf
〉. (3.10)

In this formalism the wavepacket is represented in the full product primitive

basis. In contrast, in MCTDH this is simplified by introducing a smaller set

of optimal time dependent basis functions, which means that the wavepacket

is expanded much more compactly as:

Ψ(Q1, . . . , Qf , t) =

n1∑
j1=1

· · ·
nf∑
jf=1

Aj1...jf (t)

f∏
κ=1

φ
(κ)
jκ

(Qκ, t)

=
∑
J

AJΦJ , (3.11)

where each degree of freedom is represented by a small set of optimal time

dependent SPFs, and each SPF is comprised of a linear combination of the

primitive basis functions which is a time independent grid called the DVR

[78–81] (discrete variable representation):

φ
(κ)
jκ

(Qκ, t) =
Nκ∑
iκ=1

c
(κ)
iκjκ

(t)χ
(κ)
iκ

(Qκ). (3.12)

The DVR has been derived for sine, exponential, Legendre polynomial and

harmonic oscillator functions [58, 82]. Ideally the basis functions should be

orthonormal in order to reduce the effort of computation, so the following

constraint has been applied without loss of generality:

〈φ(κ)
j (0)|φ(κ)

` (0)〉 = δj`, (3.13)

〈φ(κ)
j (t)|φ̇(κ)

` (t)〉 = −i〈φ(κ)
j (t)|g(κ)|φ(κ)

` (t)〉. (3.14)

This is the same as just applying the more general constraint g(κ) = 0.
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Now we apply the DFVP which results in the following equations of motion

for the time-dependent MCTDH coefficients and SPFs:

iȦJ =
∑
L

〈ΦJ |Ĥ|ΦL〉AL, (3.15)

iφ̇
(κ)

= (1− P (κ))(ρ(κ))−1〈H〉(κ)φ(κ). (3.16)

The derivation of these equations of motion are detailed later in this chapter.

This section has outlined how MCTDH operates for single state problems,

however the adaptation for multistate problems is seen in [82, 83]. If some

SPFs are of GWP type the method is called G-MCTDH.

Ψ(Q1, . . . , Qf , t) =
∑
j1=1

· · ·
∑
jf=1

Aj1...jf (t)
d∏

κ=1

φ
(κ)
jκ

(Qκ, t)

f∏
κ=(d+1)

g
(κ)
jκ

(Qκ, t).

(3.17)

In the case where the DVR is replaced by a basis of multidimensional time

dependent GWPs this is called the vMCG method (variational multiconfig-

urational Gaussian) [34, 84–86]. The flexibility of vMCG basis in compar-

ison to a grid based method means that the dynamics can be calculated

without pre-calculating the PES, in what is known as the direct dynamics

approach [87–90].

3.5 Derivation of MCTDH equations of mo-

tion

First define the following notation J = (j1, j2, . . . , jf ) is an ordered list of in-

dices, AJ = Aj1...jf , ΦJ = ΠJ
κ=1ψ

κ
jκ and a trick which is used later to simplify

the derivation is what is called a ‘single-hole’ function, where the Hartree
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product includes everything except one degree of freedom. For simplifica-

tion the time dependence of all SPFs (likewise coefficients) is not explicitly

indicated but can be assumed, i.e. AJ = Aj1...jf (t), ΦJ = ΠJ
κ=1φ

κ
jκ(t). For

some integer p, the single hole function where the p-th degree of freedom is

missing:

Ψ
(p)
` =

n1∑
j1=1

· · ·
np−1∑
jp−1=1

np+1∑
jp+1=1

· · ·
nf∑
jf=1

Aj1...jp−1`jp+1...jfψ
(1)
j1
. . . ψ

(p−1)
jp−1

ψ
(p+1)
jp+1

. . . ψ
(f)
jf

=
∑
Jκ

AJκ` ΦJκ , (3.18)

where Jκ = (j1, . . . , jκ−1, jκ+1, . . . , jf ) and Jκ` = (j1, . . . , jκ−1, `, jκ+1, . . . , jf ),

ΦJκ =
∑f

ν 6=κ ψ
(κ)
jν

and the index ` is an integer which depends on the deriva-

tive, as seen in (3.22). We see in the next section how this is useful. Using

this, the multi-configurational wavefunction can be simplified with this no-

tation to:

Ψ =

n1∑
j1

n2∑
j2

· · ·
nf∑
jf

Aj1,...,jfψ
(1)
j1
ψ

(2)
j2
. . . ψ

(f)
jf

=
∑
J

AJΨJ = Ψ =
nκ∑
`=1

ψ
(κ)
` Ψ

(κ)
` .

(3.19)

Consider the partial derivative of the wavefunction with respect to an arbi-

trary choice of coefficient, AJ . The only term that survives is the one that

has AJ as a prefactor:

∂Ψ

∂AJ
= ΦJ . (3.20)

Similarly consider the partial derivative with respect to some arbitrary ψ
(κ)
j :

∂Ψ

∂ψ
(κ)
j

= Ψ
(κ)
j . (3.21)

Since the coefficients SPFs are each time dependent the time derivative gives;

Ψ̇ =
∑
J

ȦJΦJ +

f∑
κ=1

nκ∑
j=1

ψ̇
(κ)
j Ψ

(κ)
j . (3.22)
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To derive the equation of motion for the coefficients, apply the DFVP to the

following:

〈 ∂Ψ

∂AJ
|Ĥ|Ψ〉 = 〈ΦJ |H|Ψ〉 =

∑
L

〈ΦJ |H|ΨL〉AL

= i〈 ∂Ψ

∂AJ
|Ψ̇〉

= i〈ΦJ |Ψ̇〉

= i
∑
L

〈ΦJ |ȦLΦL〉+ i

f∑
κ=1

nκ∑
`=1

〈ΦJ |ψ̇(κ)
` Ψ

(κ)
` 〉

= iȦJ + i

f∑
κ=1

nκ∑
`=1

〈ψ(κ)
jκ
|ψ̇(κ)
` 〉〈ΦJκ|Ψ(κ)

` 〉

= iȦJ + i
∑
κ

∑
`

(−ig(κ)
jκ`

)AJκ` , (3.23)

where we have defined g
(κ)
jκ`

and AJκ` in the following way:

g
(κ)
jκ`

= i〈ψ(κ)
jκ
|ψ̇(κ)
` 〉 = 〈ψ(κ)

jκ
|ĝ(κ)|ψ(κ)

` 〉 (3.24)

AκJ` = 〈ΦJκ|Ψ(κ)
` 〉. (3.25)

Rearranging for ȦJ gives us that

iȦJ =
∑
L

〈ΦJ |H|ΦJ〉AL − i
f∑
κ=1

nκ∑
`=1

g
(κ)
jκ`
AJκ` . (3.26)

Now consider the partial derivative of the wavefunction with respect to one

of the SPFs:
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〈 ∂Ψ

∂ψ
(κ)
j

|Ĥ|Ψ〉 = 〈Ψ(κ)
j |H|Ψ〉

= 〈Ψ(κ)
j |H|

∑
`

Ψ
(κ)
` ψ

(κ)
` 〉 =

nκ∑
`=1

〈H〉(κ)
j`

= i〈 ∂Ψ

∂ψ
(κ)
j

|Ψ̇〉

= i
∑
L

〈Ψ(κ)
j |ΦL〉ȦL︸ ︷︷ ︸+ i〈Ψ(κ)

j |
f∑
ν=1

nν∑
`=1

ψ̇
(ν)
` Ψ

(ν)
` 〉︸ ︷︷ ︸ . (3.27)

The first part simplifies in the case where ĝ(κ) = 0 to

i
∑
L

〈Ψ(κ)
j |ΦL〉ȦL =

∑
L

〈Ψ(κ)
j |ΦL〉〈ΦL|H|Ψ〉, (3.28)

since iȦL reduces to simply 〈ΦL|H|Ψ〉 when ĝ(κ) = 0. Recall that

ΦL = ΦLκψ
(κ)
`κ
,Ψ

(κ)
j =

∑
Jκ

AJκΦJκ . (3.29)

So the first part of (3.27) simplifies to∑
Lκ,`κ

A∗Lκj |ψ
(κ)
`κ
〉〈ψ(κ)

`κ
ΦLκ|H|Ψ〉 = P (κ)〈Ψ(κ)

j |H|Ψ〉 = P (κ)

nκ∑
`=1

〈H〉(κ)
j` ψ

(κ)
` ,

(3.30)

where P (κ) is the ‘projector’ onto a single particle function with degree of

freedom κ:

P (κ) =
nκ∑
j=1

|ψ(κ)
`κ
〉〈ψ(κ)

`κ
|. (3.31)

Now consider the second part of (3.27)

i〈Ψ(κ)
j |

f∑
ν=1

nν∑
`=1

ψ̇
(ν)
` Ψ

(ν)
` 〉 = i〈Ψ(κ)

j |
nκ∑
`=1

ψ̇
(κ)
` Ψ

(κ)
j 〉 = i

nκ∑
`=1

ρ
(κ)
j` ψ̇

(κ)
` . (3.32)

Because the constraint means that out of the sum over the f degrees of

freedom the only survivor is when ν = κ since 〈ψκj |ψν` 〉 = 0. Then overall the

equations of motion for coefficients and SPFs are as summarised in (3.15)

and (3.16).
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3.6 Derivation of ρ-MCTDH EOM for type

II density operators

Consider the multiconfigurational expansion for the density operator for a

system with f degrees of freedom, Q = (Q1, . . . , Qf ):

ρ(Q1, . . . , Qf , Q
′
1, . . . , Q

′
f , t) =

n1∑
τ1=1

· · ·
nf∑
τ ′f=1

Bτ1,...,τf ,τ
′
1,...,τ

′
f
(t)

f∏
κ=1

σ(κ)
τκ (Qκ, Q

′
κ, t)

=
∑
T

BTΩT =
nκ∑
ν=1

σ(κ)
ν Π(κ)

ν , (3.33)

where σ
(κ)
τκ = |ϕ(κ)

i (Qκ)〉〈ϕ(κ)
j (Q′κ)| for τκ = (i, j); {ϕi} are SPFs. T =

(τ1, . . . , τf , τ
′
1, . . . , τ

′
f ) are the indices we sum over for type II coefficients.

BT are the coefficients and are Hermitian:

ΩT =

f∑
κ=1

σ(κ)
τκ ; (3.34)

(τκ, `) = (τ1, . . . , τκ−1, `, τκ+1, . . . , τf ); (3.35)

Ωτκ = σ(1)
τ1
· · · σ(κ−1)

τκ−1
σ(κ+1)
τκ+1

· · · σ(f)
τf
. (3.36)

The ‘single-hole density operators’ are

Π(κ)
ν =

∑
τκ

Bτκ,νΩτκ . (3.37)

To set up the problem we first note that the evolution of our quantum system

within this context is described by ρ̇ = L(ρ) instead of the TDSE. Our

variational principle (Dirac-Frenkel/MacLachlan) says that

〈〈δρ|ρ̇− L(ρ)〉〉 = 0 ⇐⇒ 〈〈δρ|L(ρ)〉〉 = 〈〈δρ|ρ̇〉〉. (3.38)

The constraints are 〈〈σ(κ)
µ (0)|σ(κ)

ν (0)〉〉 = δµν and 〈〈σ(κ)
µ |σ̇(κ)

ν 〉〉 = −i〈〈σ(κ)
µ |G(κ)σ

(κ)
ν 〉〉

for all t. We also have that G =
∑f

κ=1 G(κ) is the constraint superoperator
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analogous to the constraint operator in MCTDH, where G(κ) acts on degree

of freedom (κ). It is defined as having the property that 〈〈σ(κ)
µ |σ̇(κ)

ν 〉〉 =

−i〈〈σ(κ)
µ |G(κ)σ

(κ)
ν 〉〉. The norm is 〈〈A|B〉〉 = Tr{A†B}.

Step 1: derive ḂT .

Take an arbitrary coefficient

BA ∈ {BT |T = (τ1, . . . , τf , τ
′
1, . . . , τ

′
f ), {τi} ∈ N, τi ≤ ni}. (3.39)

Now observe that

∂ρ

∂BA

= 0 + · · ·+ ∂BA

∂BA

·
f∑
κ=1

σ(κ)
τκ + 0 + · · ·+ 0 = 1 · ΩA = ΩA. (3.40)

Note that ΩA is defined in (3.34) where the multi indices A corresponds to

the arbitrary coefficient BA as chosen above.

Similarly fix σ
(q)
τq ∈ {σ

(κ)
τκ |κ ∈ N, κ ≤ f}, one single particle density operator

with degree of freedom (q), and observe that the partial derivative with

respect to this is:

∂ρ

∂σ
(q)
τq

= 0 + 0 + · · ·+B{τq}σ
(1)
τ1
· · · ∂σ

(q)
τq

∂σ
(q)
τq

σ(q+1)
τq+1

· · ·σ(f)
τf

+ 0 + · · ·

= Π(q)
ν . (3.41)

where Π
(q)
ν is defined in (3.37) and fixed for degree of freedom (q).

Now find ρ̇, analogously to the derivation for the MCTDH wavefunction

(consider {BT} constant with respect to t):

∂ρ

∂t
=

∂

∂t

(∑
T

BTΩT

)
=
∑
T

∂BT

∂f
ΩT +

∂

∂t

(
nκ∑
ν=1

Π(κ)
ν σ(κ)

ν

)

=
∑
T

ḂTΩT +

n1∑
ν=1

Π(1)
ν σ̇(1)

ν + · · ·+
nf∑
ν=1

Π(f)
ν σ̇(f)

ν (κ-th term missing due to Πκ
ν)

=
∑
T

ḂTΩT +

f∑
κ=1

nκ∑
ν=1

Π(κ)
ν σ̇(κ)

ν = ρ̇. (3.42)
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We now substitute these results into the variational principle; i.e. put ∂ρ
∂BA

=

ΩA, ∂ρ

∂σ
(q)
τq

= Π
(q)
ν and ρ̇ =

∑
T ḂTΩT +

∑f
κ=1

∑nκ
ν=1 Π

(κ)
ν σ̇

(κ)
ν into 〈〈δρ|L(ρ)〉〉 =

〈〈δρ|ρ̇〉〉:

〈〈δρ|L(ρ)〉〉 = 〈〈 ∂ρ
∂BA

|ρ̇〉〉

= 〈〈ΩA|

(∑
T

ḂTΩT +

f∑
κ=1

nκ∑
ν=1

Π(κ)
ν σ̇(κ)

ν

)
〉〉

= 〈〈ΩA|
∑
T

ḂTΩT 〉〉+ 〈〈ΩA|
f∑
κ=1

nκ∑
ν=1

Π(κ)
ν σ̇(κ)

ν 〉〉

=
∑
T

〈〈ΩA|ḂTΩT 〉〉+

f∑
κ=1

nκ∑
ν=1

〈〈ΩA|Π(κ)
ν σ̇(κ)

ν 〉〉, (3.43)

where we have used the fact that Tr{A + B} = Tr{A} + Tr{B}. Next we

use that ḂT is just a coefficient to continue the calculation from (3.43):

〈〈δρ|L(ρ)〉〉 =
∑
T

ḂT 〈〈ΩA|ΩT 〉〉+

f∑
κ=1

nκ∑
ν=1

Tr{Ω†AΠ(κ)
ν σ̇(κ)

ν }. (3.44)

Take any two distinct arbitrary multi indices A and T, and recall the def-

inition of ΩT in (3.34) then using general properties of traces over oper-

ators Tr{Ω†AΩT} = 0 for all A 6= T as 〈〈σ(κ)
µ |σ(κ)

ν 〉〉 = δµν and further

Tr{ Ω†AΩA} = Tr{1} = 1. Hence we obtain

〈〈δρ|L(ρ)〉〉 = ḂA〈〈ΩA|ΩA〉〉

+

f∑
κ=1

nκ∑
ν=1

Tr{(σ(1)
τ1
· · ·σ(f)

τf
)†σ(1)

τ1
· · ·σ(κ−1)

τκ−1
σ(κ+1)
τκ+1

· · ·σ(f)
τf
σ̇(κ)
ν Bτν ,`}

= ḂA +

f∑
κ=1

nκ∑
ν=1

Tr{Bτν ,`σ
(κ)†
τκ σ̇(κ)

ν }

= ḂA +

f∑
κ=1

nκ∑
ν=1

Bτν ,`〈〈σ(κ)
τκ |σ̇

(κ)
ν 〉〉. (3.45)

Note that the second equality in (3.45) comes from the fact that σ
(κ)
τκ is

missing from the expression so all terms cancel except for σ
(κ)†
τκ . Next we
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continue the calculation by using the definition of the constraint operator

〈〈σ(κ)
µ |σ̇(κ)

ν 〉〉 = −i〈〈σ(κ)
µ |G(κ)σ(κ)

ν 〉〉 (3.46)

to obtain:

〈〈δρ|L(ρ)〉〉 = ḂA − i
f∑
κ=1

nκ∑
ν=1

Bτν ,`〈〈σ(κ)
τκ |G

(κ)σ(κ)
ν 〉〉

= ḂA − i
f∑
κ=1

nκ∑
ν=1

Bτν ,` Tr{Π(κ)
ν Ω†AG

(κ)σ(κ)
ν }. (3.47)

Next we use Tr{ABCD} = Tr{BCDA} to continue the calculation:

〈〈δρ|L(ρ)〉〉 = ḂA − i
f∑
κ=1

nκ∑
ν=1

Bτν ,` Tr{Ω†AG
(κ)σ(κ)

ν Π(κ)
ν }

= ḂA − i
nκ∑
ν=1

〈〈ΩA|
f∑
κ=1

G(κ)σ(κ)
ν Π(κ)

ν 〉〉

= ḂA + 〈〈ΩA|G
nκ∑
ν=1

σ(κ)
ν Π(κ)

ν 〉〉 = ḂA − i〈〈ΩA|G(ρ)〉〉. (3.48)

We now have that (3.48) implies that

ḂA = 〈〈ΩA|L(ρ)〉〉+ i〈〈ΩA|G(ρ)〉〉

= 〈〈ΩA|(L+ iG)(ρ)〉〉, (3.49)

where A is arbitrary.

Step 2: derive ϕ̇(κ). First substitute ḂT into ρ̇:

ρ̇ =

f∑
j=1

nκ∑
ν=1

Π(j)
ν σ̇(j)

ν +
∑
T

ΩT 〈〈ΩA|(L+ iG)(ρ)〉〉. (3.50)
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Fix the degree of freedom κ and consider δσ
(κ)
ν . The variation, δρ =

∑
µ Π

(κ)
ν δσ

(κ)
µ :

〈〈δρ|Lρ〉〉 =
∑
µ

〈〈Π(κ)
µ δσ(κ)

µ |ρ̇〉〉

=
∑
µ

〈〈Π(κ)
µ δσ(κ)

µ |

[
f∑
j=1

nκ∑
ν=1

Π(j)
ν σ̇(j)

ν +
∑
T

ΩT 〈〈ΩT |(L+ iG)ρ〉〉

]
〉〉

=
∑
µ

〈〈Π(κ)
µ δσ(κ)

µ |
f∑
j=1

nκ∑
ν=1

Π(j)
ν σ̇(j)

ν 〉〉

+
∑
µ

∑
T

〈〈Π(κ)
µ δσ(κ)

µ |ΩT 〉〉〈〈ΩT |(L+ iG)ρ〉〉, (3.51)

In the final step of (3.51) the first term has been simplified by applying the

additivity property of traces: Tr{A + B} = Tr{A} + Tr{B}. Similarly, the

second term has been simplified using the property that Tr{A · Tr{B}} =

Tr{A}Tr{B}. In the next step the following property is used to simplify the

expression further: Tr{δσ(κ)t
µ Π

(κ)t
µ Π

(j)
ν σ̇

(j)
ν } = 0 unless j = κ so the sum

∑f
j=1

disappears due to 〈〈σ(κ)|σ(j)〉〉 = δij, and therefore we obtain

〈〈δρ|Lρ〉〉 =
∑
µ

∑
ν

〈〈Π(κ)
µ δσ(κ)

µ |Π(κ)
ν σ̇(κ)

ν 〉〉

+
∑
µ

∑
T

〈〈Π(κ)
µ δσ(κ)

µ |ΩT 〉〉〈〈ΩT |(L+ iG)ρ〉〉. (3.52)

It follows that

∑
µν

〈〈Π(κ)
µ δσ(κ)

µ |Π(κ)
ν σ̇(κ)

ν 〉〉 =
∑
µ

〈〈Π(κ)
µ δσ(κ)

µ |Lρ〉〉

−
∑
µ

∑
T

〈〈Π(κ)
µ δσ(κ)

µ |ΩT 〉〉〈〈ΩT |(L+ iG)ρ〉〉.

(3.53)
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We wish to write (3.53) more simply. First we use the following:

D(κ)
µν = 〈〈Π(κ)

µ |Π(κ)
ν 〉〉, (3.54)

ρ(κ) =
nκ∑
ν=1

|σ(κ)
ν 〉〉〈〈σ(κ)

ν |, (3.55)

〈L+ iG〉(κ)
µν = 〈〈Π(κ)

µ |(L+ iG)Π(κ)
ν 〉〉. (3.56)

Use also the facts that
∑

T ΩT =
∑nκ

τκ=1

∑
Tκ

ΩTκσ
(κ)
τκ and Π

(κ)
ν =

∑
Lκ
BLκ,νΩLκ .

Now note that

Π(κ)†
µ Π(κ)

ν =
∑
Tκ

∑
Lκ

B∗Tκ,µBTL,νΩ
†
Tκ

ΩTL

=
∑
Tκ,Lκ

B∗Tκ,µBTL,νσ
(f)†
τf
· · ·σ(κ+1)†

τκ+1
σ(κ−1)†
τκ−1

· · · σ(1)†
τ1

σ(1)
τ1
· · ·σ(κ−1)

τκ−1
σ(κ+1)
τκ+1

σ(f)
τf

=
∑
Tκ,Lκ

B∗Tκ,µBTL,ν , (3.57)

which is just a constant (with respect to coordinate). Therefore the first

component of the expression (3.53) which we are trying to rewrite is:

∑
µν

〈〈Π(κ)
µ δσ(κ)

µ |Π(κ)
ν σ̇(κ)

ν 〉〉 =
∑
µν

Tr{δσ(κ)†
µ Π(κ)†

µ Π(κ)
ν σ̇(κ)

ν }

= 〈〈Π(κ)
µ |Π(κ)

ν 〉〉〈〈δσ(κ)
µ |σ̇(κ)

ν 〉〉

=
∑
µν

D(κ)
µν 〈〈δσ(κ)

µ |σ̇(κ)
ν 〉〉

= −i
∑
µν

D(κ)
µν 〈〈δσ(κ)

µ |Gσ(κ)
ν 〉〉. (3.58)
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Now we simplify the second term in our derived expression:

∑
µ

∑
T

〈〈Π(κ)
µ δσ(κ)

µ |ΩT 〉〉〈〈ΩT (L+ iG)ρ〉〉

=
∑
µ

∑
Tκ

∑
Lκ

nκ∑
τκ=1

B∗Lκ〈〈ΩLκδσ
(κ)
µ |στκΩτκ〉〉〈〈στκΩTκ(L+ iG)ρ〉〉

=
∑
µ

∑
Tκ

∑
Lκ

nκ∑
τκ=1

Tr{στκΩTκΩ†Lκδσ
(κ)†
µ }〈〈στκΩTκBLκ(L+ iG)(

nj∑
τj

Π(j)
τj
σ(j)
τj
〉〉

=
∑
µ

nj∑
τj=1

Tr{δσ(κ)†
µ στκ}〈〈στκ

∑
Tκ

BTκΩTκ(L+ iG)Π(j)
τj
σ(j)
τj
〉〉

=
∑
µ

∑
ν

〈〈δσ(κ)
µ |στκ〉〉〈〈στκΠ(κ)

µ |(L+ iG)Π(κ)
ν σ(κ)

ν 〉〉

=
∑
µν

〈〈δσ(κ)
µ |ρ(κ)〈L+ iG〉(κ)

µν σ
(κ)
ν 〉〉. (3.59)

Notice that
∑

µν Dµν〈〈δσ(κ)
µ |σ̇(κ)

ν 〉〉 =
∑

µν Dµν(−i〈〈δσ(κ)
µ |Gσ(κ)

ν 〉〉). Then

∑
µν

Dµν〈〈δσ(κ)
µ |σ̇(κ)

ν 〉〉

=
∑
µν

Dµν〈〈δσ(κ)
µ |σ̇(κ)

ν 〉〉 − i
∑
µν

Dµν〈〈δσ(κ)
µ |Gσ(κ)

ν 〉〉+ i
∑
µν

Dµν〈〈δσ(κ)
µ |Gσ(κ)

ν 〉〉

=
∑
µν

Dµν〈〈δσ(κ)
µ |σ̇(κ)

ν + iG(κ)σ(κ)
ν 〉〉 − i

∑
µν

Dµν〈〈δσ(κ)
µ |Gσ(κ)

ν 〉〉. (3.60)

Finally consider

∑
µ

〈〈Π(κ)
µ δσ(κ)

µ |Lρ〉〉 =
∑
µ

〈〈Π(κ)
µ δσ(κ)

µ |L
∑
ν

Π(κ)
ν σ(κ)

ν 〉〉

=
∑
µν

〈〈Π(κ)
µ δσ(κ)

µ |Π(κ)
ν σ(κ)

ν 〉〉 (3.61)
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and

∑
µ

〈〈Π(κ)
µ δσ(κ)

µ |Lρ〉〉+ i
∑
µν

Π(κ)
µ |Π(κ)

ν 〉〉〈〈δσ(κ)
µ |Gσ(κ)

ν 〉〉

=
∑
µν

〈〈Π(κ)
µ δσ(κ)

µ |(L+ iG)Π(κ)
µ σ(κ)

ν 〉〉

=
∑
µν

δσ(κ)
µ |〈L+ iG〉(κ)

µν σ
(κ)
ν 〉〉. (3.62)

Then we can put all these parts together to rewrite (3.53);

∑
µν

〈〈Π(κ)
µ δσ(κ)

µ |Π(κ)
ν σ̇(κ)

ν 〉〉

=
∑
µ

〈〈Π(κ)
µ δσ(κ)

µ |Lρ〉〉 −
∑
µ

∑
T

〈〈Π(κ)
µ σ(κ)

µ |ΩT 〉〉〈〈ΩT |(L+ iG)ρ〉〉, (3.63)

which becomes

∑
µν

Dµν〈〈δσ(κ)
µ |σ̇(κ)

ν + iG(κ)σ(κ)
ν 〉〉 − i

∑
µν

Dµν〈〈δσ(κ)
µ |Gσ(κ)

ν

=
∑
µ

〈〈Π(κ)
µ δσ(κ)

µ |Lρ〉〉 −
∑
µν

δσ(κ)
µ |〈L+ iG〉(κ)

µν σ
(κ)
ν 〉〉. (3.64)

This implies the following:

∑
µν

Dµν〈〈δσ(κ)
µ |σ̇(κ)

ν + iG(κ)σ(κ)
ν 〉〉

=
∑
µν

〈〈δσ(κ)
µ |〈L+ iG〉(κ)

µν σ
(κ)
ν 〉〉 −

∑
µν

〈〈δσ(κ)
µ |ρ(κ)〈L+ iG〉(κ)

µν σ
(κ)
ν 〉〉

=
∑
µν

〈〈δσ(κ)
µ |(1− ρ(κ))〈L+ iG〉(κ)

µν σ
(κ)
ν 〉〉. (3.65)
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Now we expand the following:

∑
ν

〈L+ iG〉(κ)
µν σ

(κ)
ν =

∑
ν

〈〈Π(κ)
µ |(L+ iG)Π(κ)

ν 〉〉σ(κ)
ν

=
∑
ν

Tr{Π(κ)†
µ (L+ iG)Π(κ)

ν }σ(κ)
ν

=
∑
ν

Tr{Π(κ)†
µ (L+ iG)Π(κ)

ν }κσ(κ)
ν

=
∑
ν

Tr{Π(κ)†
µ (L+ iG)Π(κ)

ν σ(κ)
ν }κ

=
∑
ν

Tr{Π(κ)†
µ (L+ iG)ρ}κ. (3.66)

Using this, rewrite

∑
µν

〈〈δσ(κ)
µ |(1− ρ(κ))L+ iG〉(κ)

µν σ
(κ)
ν 〉〉

=
∑
µ

〈〈δσ(κ)
µ |(1− ρ(κ)) Tr{Π(κ)†

µ (L+ iG)ρ}κ. (3.67)

Therefore in summary the equations of motion for coefficients and density

operators are:

ḂJ,L = 〈ΦJ |(L+ iG)(ρ)|ΦL〉 = B∗L,J (3.68)

ϕ̇(κ) = −ig(κ)ϕ(κ) + (1− ρ(κ)) Tr{(L+ iG)(ρ)}κ[D(1),(κ)]−1ϕ(κ). (3.69)

3.7 Derivation of ρ-MCTDH EOM for type I

density operators

Recall that the MCTDH form of the density matrix can be written as follows,

and rewritten in the ‘single hole’ form;

ρ =
∑
T

BTΩT =

f∑
κ=1

nκ∑
ν=1

Π(κ)
ν σ(κ)

ν . (3.70)
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Start by taking the partial derivative with respect to the coefficients BT :

∂ρ

∂βT
= ΩT =

f∏
k=1

σ(k)
τk

(Qk, Q
′
k, t). (3.71)

Similarly

∂ρ

∂σ
(κ)
µ

= Π(κ)
ν =

∑
τκ

Bτκ,νΩτ,k. (3.72)

The DFVP implies that 〈〈δρ|L(ρ)〉〉 = 〈〈δρ|ρ̇〉〉. We are interested in varia-

tions on δBT :

〈〈 ∂ρ
∂βT
|L(ρ)〉〉 = 〈〈ΩT |L(ρ)〉〉

= 〈〈∂ρ|ρ̇〉〉

= 〈〈ΩT |{
∑
T1

ḂT1ΩT1 +

f∑
κ=1

nκ∑
ν=1

Π(κ)
ν σ̇(κ)

ν }〉〉

= 〈〈ΩT |
∑
T1

ḂT1ΩT1〉〉+

f∑
κ=1

nκ∑
ν=1

〈〈ΩT |Π(κ)
ν σ̇(κ)

ν 〉〉

=
∑
T1

ḂT1〈〈ΩT |ΩT1〉〉+

f∑
κ=1

nκ∑
ν=1

∑
τκ

〈〈ΩT |Bτκ,νΩ
(κ)
ν σ̇(κ)

ν 〉〉

= ḂT +

f∑
κ=1

nκ∑
ν=1

∑
τκ

Tr{σ(κ)†
τf

σ(κ)†
τf−1

. . . σ(κ)†
τ1

Bτκ,νσ
(κ)
τ1
. . . σ

(κ)
ν−1σ

(κ)
ν+1 . . . σ

(κ)
τf
σ̇(κ)
ν }

= ḂT +

f∑
κ=1

nκ∑
ν=1

∑
τκ

Bτκ,ν 〈〈σ(κ)
ν |σ̇(κ)

ν 〉〉

= ḂT − i
f∑
κ=1

(
nκ∑
ν=1

∑
τκ

Bτκ,ν 〈〈σ(κ)
ν |G(κ)σ(κ)

ν 〉〉

)

= ḂT − i
∑
T

BT 〈〈ΩT |GΩT 〉〉

= ḂT − 〈〈ΩT |iG{
∑
T

BTΩT}〉〉

= ḂT − 〈〈ΩT |iG(ρ)〉〉. (3.73)

Overall this implies that

ΩT |L(ρ)〉〉 = ḂT − 〈〈ΩT |iG(ρ)〉〉, (3.74)
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which in turn implies

ḂT = 〈〈ΩT |L(ρ)〉〉+ 〈〈ΩT |iG(ρ)〉〉 = 〈〈ΩT |(L+ iG)(ρ)〉〉. (3.75)

Now consider the variations in δσ
(κ)
µ . We do this differently. First substitute

in ḂT in ρ̇:

ρ̇ =
∑
T

ḂTΩT +

f∑
κ=1

nκ∑
ν=1

Π(κ)
ν σ̇κν

=
∑
T

ΩT 〈〈ΩT |(L+ iG)(ρ)〉〉+

f∑
κ=1

nκ∑
ν=1

Π(κ)
ν σ̇κν . (3.76)

Recall the DFVP 〈〈δρ|Lρ〉〉 = 〈〈δρ|ρ̇〉〉 and 〈〈δρ =
∑

µ〈〈Π
(κ)
µ δσ

(κ)
µ |. Then

〈〈δρ|ρ̇〉〉 =
∑
µ

〈〈Π(κ)
µ δσ(κ)

µ |{
∑
T

ΩT 〈〈ΩT |(L+ iG)(ρ)〉〉+

f∑
κ=1

nκ∑
ν=1

Π(κ)
ν σ̇κν}〉〉

=
∑
µ

〈〈Π(κ)
µ δσ(κ)

µ |
f∑
κ=1

nκ∑
ν=1

Π(κ)
ν σ̇κν 〉〉+

∑
µ

〈〈Π(κ)
µ δσ(κ)

µ |{
∑
T

ΩT 〈〈ΩT |(L+ iG)ρ〉〉}〉〉

=
∑
µ

f∑
κ=1

nκ∑
ν=1

〈〈Π(κ)
µ δσ(κ)

µ |Π(κ)
ν σ̇κν 〉〉+

∑
µ

∑
T

〈〈Π(κ)
µ δσ(κ)

µ |ΩT 〉〉〈〈ΩT |(L+ iG)ρ〉〉

= 〈〈δρ|L(ρ)〉〉

=
∑
µ

〈〈Π(κ)
µ δσ(κ)

µ |L(ρ)〉〉. (3.77)

Then altogether

∑
µν

〈〈Π(κ)
µ δσ(κ)

µ |Π(κ)
µ σ̇(κ)

µ

=
∑
µ

〈〈Π(κ)
µ δσ(κ)

µ |L(ρ)〉〉 −
∑
µ

∑
T

〈〈Π(κ)
µ δσ(κ)

µ |ΩT 〉〉〈〈ΩT |(L+ iG)ρ〉〉. (3.78)

The next step is to add iG to each side of (3.78). The left hand side of (3.78)

Methodology 74



ML-MCTDH and ML-ρ-MCTDH derivation 3.8

can therefore be simplified as follows:

∑
µν

〈〈Π(κ)
µ δσ(κ)

µ |Π(κ)
µ σ̇(κ)

µ + i
∑
µν

〈〈Π(κ)
µ δσ(κ)

µ |Gρ〉〉

=
∑
µν

〈〈Π(κ)
µ δσ(κ)

µ |{Π(κ)
µ σ̇(κ)

µ + Gρ}〉〉

=
∑
µν

〈〈Π(κ)
µ δσ(κ)

µ |{Π(κ)
µ σ̇(κ)

µ + G(Π(κ)
µ σ(κ)

µ )}〉〉

=
∑
µν

〈〈Π(κ)
µ |Π(κ)

ν 〉〉〈〈δσ(κ)
µ |σ̇(κ)

ν + iG(κ)σ(κ)
ν 〉〉

=
∑
µν

D(κ)
µν 〈〈Π(κ)

µ δσ(κ)
µ |{σ̇(κ)

µ + Gσ(κ)
µ }〉〉. (3.79)

Similarly the right hand side of (3.78) can be rewritten as:

∑
µ

〈〈Π(κ)
µ δσ(κ)

µ |L(ρ)〉〉 −
∑
µ

∑
T

〈〈Π(κ)
µ δσ(κ)

µ |ΩT 〉〉〈〈ΩT |(L+ iG)ρ〉〉

+ i
∑
µν

〈〈Π(κ)
µ δσ(κ)

µ |Gρ〉〉. (3.80)

Therefore the equations of motion for coefficients and single particle density

operators can be summarised as:

σ̇(κ) = −iG(κ)σ(κ) + (1− P(κ))(D(κ))−1〈L+ iG〉(κ)σ(κ) (3.81)

ḂT =
∑
T ′

〈〈ΩT |(L+ iG)ΩT ′〉〉BT ′ . (3.82)

3.8 ML-MCTDH and ML-ρ-MCTDH deriva-

tion

The key to ML-MCTDH is expanding the SPFs recursively in an ‘MCTDH-

like’ form to create ‘layers’. First expand wavefunction in configurations that

are products of SPFs to form the first layer (in the following nomenclature
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based on Manthe [91]).

Ψ(q1 · · · qf , t) =
∑
J

A′J(t)φ′J(q1 · · · qf , t) (3.83)

=
∑
j1···jd1

A′j1···jd1
(t)ϕ1:1

j1
(q1:1, t) · · ·ϕ1:d1

jd1
(q1:d1 , t),

where the superscript 1 denotes the first layer, d1 is the dimensionality of

this layer (number of sets of SPFs) and q1:κ = (q1 . . . qdκ) denotes the set of

coordinates for the κ-th set of SPFs (mode).

One SPF is then expanded in a second layer set of SPFs requiring an extra

superscript:

ϕ1:κ
j =

∑
k

A2:κ
j:kφ

2:κ
k =

∑
k1···kdκ

A2:κ
j:k1···kdκ (t)ϕ2:κ1

k1
(q2:κ1, t) · · ·ϕ2:κdκ

kdκ
(q2:κdκ , t),

(3.84)

where the superscript 2 : κ denotes functions (and coefficients) in the second

layer coming from the κ-th mode from the top layer. These functions can in

turn be expanded:

ϕ2:κµ
j =

∑
k

A3:κµ
j:k φ

3:κµ

=
∑

k1···kdκµ

A3:κµ
j:k1···kdκµ

(t)ϕ3:κµ1
k1

(q3:κµ1, t) · · ·ϕ3:κµdκµ
kdκµ

(q3:κµdκµ , t), (3.85)

etc. Note that the superscript contains the history of where the function

comes from running down the expansion tree from the top layer (κµ) in

addition to the layer number (3) and function number in that layer (e.g. 1).

For simplicity pack this history into a single index and assume this can be

correctly mapped, i.e. write

ϕ2:κ
j =

∑
k1···kdκ

A3:κ
j:k1···kdκ (t)ϕ3:κ1

k1
(q3:κ1, t) · · ·ϕ3:κdκ

kdκ
(q3:κdκ , t). (3.86)
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Note also that coefficients require a subscript, j, to denote which function in

the layer above they relate to, or in general

ϕm:κ
j (qm:κ, t) =

∑
k1···kd

Am+1:k
j:k1···kd(t)ϕ

m+1:κ1
k1

(qm+1:κ1, t) · · ·ϕm+1:κd
kd

(qm+1:κd, t)

=
∑
K

Am+1:κ
j:K (t)φm+1:κ

K (qm:κ, t). (3.87)

Note that the history of the function on the left hand side, ϕm:κ
j is implicit

- this is simply the j-th function of the κ-th mode of the m-th layer with

dimension d. History on the right hand side, ϕm+1:κλ
kλ

, only explicitly goes

up one layer - this is the kλ-th function of the mode κλ in layer m + 1,

where κλ means the λ-th set of functions used to expand the κ-th mode of

the layer above. The functions {ϕκλk } span the set of coordinates qm+1:κλ,

which are a subset of qm:κ. Equation (3.87) also defines layer configurations,

φm:κ
k . As a final note on the structure of the ML-MCTDH wavefunction, it

should be mentioned that the recursive expansion is finished at the lowest

layer with a basis set - either a time-independent DVR or a GWP basis.

Two diagrams which show explicit examples of possible structures for an

ML-MCTDH wavefunction are shown in Figure 3.1.

It is useful to define layer single hole functions. As for MCTDH, the top

layer wavefunction can be written as

Ψ(q1 · · · qf , t) =
∑
j

ψ1:κ
j ϕ1:κ

j (3.88)

with the SHF ψ1:κ
j the wavefunction ignoring the SPFs for mode κ. Expand-

ing ϕ1:κ
j using (3.87),

Ψ =
∑
j

ψ1:κ
j

∑
k1···kd

A2:κ
j:k1···kdϕ

2:κ1
k1
· · ·ϕ2:κλ

kλ
· · ·ϕ2:κd

kd
(3.89)

=
∑
k

ψ2:κλ
k φ2:κλ

k (3.90)
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where (3.89) and (3.90) define the relationship between SHFs on different

layers. The generalisation of (3.90) is:

Ψ =
∑
k

ψm:κλ
k ϕm:κλ

k (3.91)

=
∑
k

ψm:κλ
k

∑
J

Am+1:λ
k:J φm+1:λ

J . (3.92)

The equations of motion are obtained as usual from the Dirac-Frenkel vari-

ational principle

〈δψ|H − i ∂
∂t
|Ψ〉 = 0. (3.93)

First vary the top layer coefficients δA′J :

〈φJ |H − i
∂

∂t
|Ψ〉 = 0 (3.94)

i〈φJ |Ψ̇〉 = 〈φJ |H|Ψ〉 (3.95)

i〈φJ |
∑
K

φKȦK + φ̇KAK〉 =
∑
K

〈φJ |H|φK〉AK (3.96)

and taking the common MCTDH gauge constraint 〈φJ |φ̇K〉 = 0 to retain or-

thonormality of the SPFs, we obtain the usual MCTDH equations of motion

iȦJ =
∑
K

〈φJ |H|φK〉AK . (3.97)

Now varying the basis functions is equivalent to varying all of the expansion

coefficients on all of the layers - these are the remaining ‘parameters’ that

define the wavefunction. These can be best accessed using the SHF of (3.92).

Vary δAm:λ
j:k :

〈ψm−1:κλ
j φm:λ

k |H − i
∂

∂t
|Ψ〉 = 0, (3.98)

i.e.

i〈ψm−1:κλ
j φm:λ

k |
∑
j′k′

ψ̇m−1:κλ
j′ φm:λ

k′ A
m:λ
j′k′ + ψm−1:κλ

j′ φ̇m:λ
k′ A

m:λ
j′k′

+ψm−1:κλ
j′ φm:λ

k′ Ȧ
m:λ
j′k′ 〉 = 〈ψm−1:κλ

j φm:λ
k |H|

∑
j′k′

ψm−1:κλ
j′ φm:λ

k′ 〉Am:λ
j′k′ . (3.99)
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Due to gauge of 〈φm:λ
k |φ̇m:λ

k′ 〉 = 0, and 〈φm:λ
k |φm:λ

k′ 〉 = δkk′ , this becomes

∑
j′

i〈ψm−1:κλ
j |ψ̇m−1:κλ

j′ 〉Am:λ
j′k + i〈ψm−1:κλ

j |ψm−1:κλ
j′ 〉Ȧm:λ

j′k

=
∑
j′k′

〈ψm−1:κλ
j φm:λ

k |H|ψm−1:κλ
j′ φm:λ

k′ 〉Am:λ
j′k′ . (3.100)

In an analogous way to MCTDH, define the ‘layer density matrices’:

ρm:λ
jj′ = 〈ψm−1:κλ

j |ψm−1:κλ
j′ 〉 (3.101)

and the layer ‘mean-field matrices’:

Hm:λ
jj′ = 〈ψm−1:κλ

j |H|ψm−1:κλ
j′ 〉. (3.102)

Then (3.100) becomes

∑
j′

iρm:λ
jj′ Ȧ

m:λ
j′k =

∑
j′k′

〈φm:λ
k |Hm:λ

jj′ |φm:λ
k′ 〉Am:λ

j′k′

−
∑
j′

i〈ψm−1:κλ
j |ψ̇m−1:κλ

j′ 〉Am:λ
j′k . (3.103)

To evaluate the second term on the right hand side, multiply (3.103) by Am:λ∗
kK

and sum over K. (This is the same as in MCTDH multiplying by an SPF

and integrating in a DVR, i.e. 〈ϕi|ϕj〉 =
∑

αA
∗
iα〈χα|χα〉Ajα = δij.)∑

k

∑
j′

iρm:λ
jj′ A

m:λ∗
kK Ȧm:λ

j′K =
∑
K

∑
j′K′

Am:λ∗
kK 〈φm:λ

K |Hm:λ
jj′ |φm:λ

K′ 〉Am:λ
j′K′

−
∑
K

∑
j′

i〈ψm−1:κλ
j |ψ̇m−1:κλ

j′ 〉Am:λ∗
kK Am:λ

j′K (3.104)

using the orthonormality of the SPFs,

∑
K

Am:λ∗
kK Am:λ

j′K = δkj′ and
∑
K

Am:λ∗
kK Ȧm:λ

j′K = 0, (3.105)

and the term on the left hand side of (3.104) is zero, i.e. (3.104) becomes

i〈ψm−1:κλ
j |ψ̇m−1:κλ

k 〉 =
∑
j′KK′

Am:λ∗
kK 〈φm:λ

K |Hm:λ
jj′ |φm:λ

K′ A
m:λ
j′K′ . (3.106)
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Substitute (3.106) into (3.103) to get

∑
j′

iρm:λ
jj′ Ȧ

m:λ
j′K =

∑
j′K′

〈φm:λ
K |Hm:λ

jj′ |φm:λ
K′ 〉Am:λ

j′K′

−
∑

j′j′′K′K′′

Am:λ∗
j′K′ 〈φm:λ

K′ |Hjj′′ |φm:λ
K′′ 〉Am:λ

j′′K′′A
m:λ
j′K (3.107)

and finally defining the SPF projector

Pm:λ =
∑
j′

|ϕm:λ
j′ 〉〈ϕm:λ

j′ | (3.108)

=
∑
j′KK′

|φm:λ
j′K 〉Am:λ

j′KA
∗
j′K′〈φm:λ

K′ | (3.109)

we can write (3.107), after multiplying by (ρm:λ
`j )−1, as

iȦm:λ
`K = (ρm:λ

`j )−1
∑
j′K′

〈φm:λ
K |(1− Pm:λ)Hm:λ

jj′ |φm:λ
K′ 〉Am:λ

j′K′ . (3.110)

Note that (3.110) is identical to the usual MCTDH equations of motion for

the SPFs except that the basis representation of the SPFs is explicit. (3.97)

and (3.110) are the full ML-MCTDH equations of motion, which can be

implemented using the recursive structure of Manthe.

3.8.1 ML-ρ-MCTDH(I)

The ρ-MCTDH(I) density matrix is written in terms of SPDOs:

ρ(q1 · · · qf , q′1 · · · q′f , t) =
∑
j1···jρ

Aj1···jρσ
(1)
j1
· · ·σ(ρ)

jρ

and is isomorphic with MCTDH, but using the Hilbert-Schmidt norm (Raab

et al [61,62]). Thus the variational derivation above is valid with the following
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substitutions:

〈δΨ|(H − i ∂
∂t

)Ψ〉 = 0 7−→ 〈〈δρ|(L̂ − i ∂
∂t

)ρ〉〉 = 0,

Ψ =
∑
J

A′Jφ
′
J 7−→ ρ =

∑
J

A′JΩ′J top layer,

φm:κ
J = ϕm:κ

j1
· · ·ϕm:κ

jdκ
7−→ Ωm:κ

J = σm:κ
j1
· · ·σm:κ

jdκ
layer configurations,

ϕm:κ
j =

∑
J

Am+1:κ
J φm+1:κ

J 7−→ σm:κ
j =

∑
J

Am+1:κ
J σm+1:κ

J SPDO expansion,

Ψ =
∑
j

ψm:κλ
j ϕm:kλ

j 7−→ ρ =
∑
j

Πm:κλ
j σm:κλ

j single-hole SPDOs,

etc. Thus we can immediately write down that the top layer equation

(from (3.97)) is

iȦJ =
∑
K

〈〈ΩJ |L(ΩK)〉〉AK (3.111)

and the lower layer coefficient (from (3.110)),

iȦm:λ
`K = (Dm:λ

`j )−1
∑
j′K′

〈〈σm:λ
K |(1− Pm:λ)〈L〉m:λ

jj′ σ
m:λ
j′ 〉〉Am:λ

j′K′ (3.112)

where we have defined the following quantities for the layers:

Dm:λ
`j = 〈〈Πm:λ

` |Πm:λ
j 〉〉 ‘reduced density matrices’ (3.113)

〈L〉m:λ
jj′ = 〈〈Πm:λ

j |L(Πm:λ
j′ )〉〉 ‘mean-field Liouville’ (3.114)

and the projector

Pm:λ =
∑
k

|σm:λ
k 〉〉〈〈σm:λ

k |. (3.115)

3.8.2 ML-ρ-MCTDH(II)

For type II the density matrix is written in terms of SPFs:

ρ =
∑
JK

|φ′J〉B′JK〈φ′K | top layer (3.116)
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with configurations φ′K as for ML-MCTDH and a matrix of coefficients. Fol-

lowing Raab et al and extending to ML, the top layer coefficients equations

of motion comes from (3.111) to give

iḂJL = 〈φJ |L(ρ)|φL〉 (3.117)

and the SPFs come from (3.110) to give

iȦm:λ
`K = (D

(2)m:λ
`j )−1

∑
j′K′

〈φm:λ
K |(1− Pm:λ) Tr{L(ρ)ρ}λ|φm:λ

K′ 〉Am:λ
jK′ . (3.118)

3.9 Discussion

This chapter shows the derivation of the ML-ρ-MCTDH EOM for the first

time in order to show that they are well defined and that the ρ-MCTDH

scheme can be incorporated into the multilayer formalism. The step by step

derivations for the EOM of both the type I and II ML-ρ-MCTDH are detailed,

which extends on the brief overview of this which was previously published in

Raab et al [61, 62]. This extensive derivation was required in order to check

whether the ρ-MCTDH and ML-ρ-MCTDH schemes are compatible and can

be combined. This the first proof that ML-MCTDH can be used for density

matrices in an ML-ρ-MCTDH (I) or ML-ρ-MCTDH (II) algorithm.

It is important to note that the ML-ρ-MCTDH method is analogous to ρ-

MCTDH, as ML-MCTDH is to the MCTDH method, and the ML-ρ-MCTDH

method allows much larger systems to be treated than the standard ρ-

MCTDH method could. An advantage of the MCTDH wavefunction is that

since it is governed by the Dirac-Frenkel variational principle, it conserves

both total probability and energy. These quantities are not conserved for

density matrices, although the energy becomes increasingly preserved with
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convergence. The main computational effort for the type I formalism is linked

to the number of SPDOs used in a calculation whereas the computational

effort for the type II is linked to the number of coefficients.

For small systems, the overhead due to the additional equations of motion

required to solve the wavefunction in the multi-layer form makes it more

expensive to solve the wavefunction in this way. This is not specific to the

ML-ρ-MCTDH method, but the ML-MCTDH method in general. It is also

important to remember that the way the ML-tree is set up has a significant

impact on the efficiency of the ML calculations, both for wavefunctions and

density matrices. The system-specificity of the ML-tree is also one of the

main disadvantages of this method, although the payoff that is seen in terms

of the speedup of calculations makes this method a very powerful approach

for studying quantum dynamics of large systems.

As a final note on scaling, for ρ-MCTDH, type I is more efficient for high

temperature systems as thermalisation is included in the SPDOs, whereas

type II uses the expansion coefficients to represent this. At low temperatures,

however, type II will scale better due to the more compact SPF basis. In

ML-ρ-MCTDH, it is likely that type I will scale better for all large systems

as the basis functions dimensionality plays less of a role and the main effort

goes into the top layer coefficients, which scale linearly with basis set size for

type I and quadratically for type II.
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Chapter 4

Exact propagation of

wavepackets and density

matrices

4.1 Introduction

This chapter introduces a new numerical integrator which allows the exact

propagation of density matrices based on an extension to the well-known

Chebyshev integrator used to solve the TDSE and propagate wavepackets.

The capability of propagating exact density matrices within the Quantics [92]

package, was not previously possible. The term exact in this context means

numerically exact, where the nuclear wavefunction is expanded straight onto

the full grid rather than parametrised into basis functions, as is typical in the

MCTDH method. In a numerically exact calculation the only error comes

from using numerical integration rather than the full analytic integral. In
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this chapter, the numerical error resulting from the choice of integrator and

variables which affect the error is discussed. This new method is implemented

in Quantics and tested for a model of pyrazine based on previous studies

[34,93] using MCTDH [94].

4.2 Chebyshev integration method

The purpose of an integrator in quantum dynamics simulations is to solve

the TDSE using a numerical integration method. Existing integrators in

MCTDH include the Lanczos [95, 96], Runga-Kutta and Adams-Bashforth-

Moulton methods. In this section, we describe how the Chebyshev numerical

integration method [97] has been implemented into the Quantics package.

As mentioned above, the Chebyshev integrator allows the propagation of the

exact density matrix, which was not previously possible. This method, which

uses Chebyshev polynomials to approximate the time evolution operator, is

based on a paper by Leforestier et al [98],

Û(t) = e(−i/~)Ĥt ≈
N∑
n=0

anTn

(
− i
~
Ĥt

)
, (4.1)

along with expansion coefficients an which are based on Bessel functions. In

contrast to the other integrators, the Chebyshev integrator can be used to

calculate the time evolution of the system in just 1 timestep from tinitial to

tfinal, without the need to determine any intermediate timesteps. It is an

iterative scheme that converges on the exact solution to the TDSE over the

integration interval chosen.
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Various properties of the Chebyshev polynomials make them useful as a

basis, such as their orthonormality and the fact that they can be generated

recursively as follows:

T0(x) = 1,

T1(x) = 2x,

...

Tn+1(x) = 2xTn(x)− Tn−1(x). (4.2)

This simple recursion relation means that just two terms TN and TN−1 need

to be stored during computation. The second aspect of this method is the use

of Bessel functions, which are a series of infinite series functions defined by

the fact that they are canonical solutions to the Bessel differential equation:

x2y′′ + xy′ + (x2 + α2)y = 0. (4.3)

The corresponding solutions to this differential, Bessel functions, are of the

following form:

yα(x) =
∞∑
m=0

(−1)m

m!Γ(m+ α + 1)

(x
2

)2m+α

. (4.4)

In general α ∈ R, but in this case we simply require α to be of integer order.

Renaming α = n ∈ Z and using the fact that the gamma function of an

integer resolves to

Γ(n) =

∫ ∞
0

xn−1e−xdx

= (n− 1)!, (4.5)
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then the Bessel functions simplify so that:

y0(x) =
∞∑
m=0

(−1)m

(m!)(m+ 1)!

(x
2

)2m

y1(x) =
∞∑
m=0

(−1)m

m!(m+ 2)!

(x
2

)2m+1

...

yn(x) =
∞∑
m=0

(−1)m

m!(m+ n+ 1)!

(x
2

)2m+n

, (4.6)

where the n-th Bessel function can be determined from lower order functions

using the recurrence relation

yn+1(x) =
2n

x
yn(x)− yn−1(x). (4.7)

An important property of Chebyshev polynomials which must be taken into

account is that the domain must be contained in the interval [0, 1], which

means that it is necessary to rescale the system Hamiltonian so that eigen-

values are between 0 and 1:

Ĥnorm = 2

[
Ĥ − Î(∆Egrid/2 + Emin)

∆Egrid

]
. (4.8)

Here I is the identity matrix, Emin and Emax are (in practice, initial esti-

mates) of the minimum and maximum eigenvalues of the system and ∆Egrid =

Emax − Emin.

Now the evolution of the wavefunction in terms of Chebyshev polynomials

can be written in the following way;

Ψ(t) ≈ e(−i/~)[∆Egrid/2+Emin] +
N∑
n=0

an(α)[Tn(−iĤnorm)Ψ(t0)], (4.9)

with α =
∆Egridt

2~ . The expansion coefficients an are related to Bessel functions

Exact propagation of wavepackets and density matrices 88



Chebyshev integration method 4.2

according to

an(α) =


y0(α) if α = 0,

2yn(α) if α 6= 0.

(4.10)

The number of iterations N required is determined by the theoretical limit

N ≥ ∆Egridt

2~ . For n > N Bessel functions are vanishingly small and since

by definition Tn ≤ 1 the neglection of these terms results in negligible error.

Therefore the numerical error mostly arises from the truncation of individual

Bessel functions which are each, in theory, infinite sums. Using the fact that

for small α, the terms in a Bessel function are monotonically decreasing, a

certain tolerance can be set in the code, for instance to 10−6, so that the

iteration only stops when this level of accuracy has been achieved.

To set up the Chebyshev integrator in MCTDH it is necessary to evaluate

the operation of Tn(x) on Ψ(t0) to avoid higher order polynomial operations

on Ĥnorm. To do this, it is useful to reformulate the above recursion relation

of the Chebyshev polynomials in relation to this procedure. If we define a

new set of functions indexed by the same n by Pn = Tn(−iĤnorm)Ψ(0) then

P0 = T0Ψ(0)

= 1 ·Ψ(0) = Ψ(0)

P1 = T1Ψ(0)

= −iĤnormΨ(0)

∴ Pn+1 = −2iĤnormPn + Pn+1. (4.11)

This procedure has been implemented in the Quantics package for wavefunc-

tions and results using this integrator are discussed later in this chapter.
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In order to adapt the Chebyshev integrator so that it is compatible with

ρ-MCTDH, recall the Liouville equation (LE);

iρ̇ = [H, ρ] = L(ρ). (4.12)

Recall that ρ is a matrix. In order to relate this to the TDSE, write ρ as a

vector within Liouville space, expanded in a basis |I〉〉 = |i〉〈j|. Then iρ̇ = L̂ρ

where L is the matrix of an operator:

〈〈I|L̂|J〉〉 = Tr
{
|j〉〈i|L̂|k〉〈m|

}
= Tr

{
|j〉〈i|Ĥ|k〉〈m| − |j〉〈i|k〉〈m|Ĥ

}
= Hikδjm · δikHmj

= Hikδjm −H∗jmδik. (4.13)

Then the solution to the LE, analogous to the TDSE is

ρ(t) = e−iL̂(t)ρ(0). (4.14)

As with the case above for wavefunctions, this expression can be expanded in

a basis of Chebyshev polynomials with (4.13) substituted for Ĥ. Previously

it was not possible to do exact calculations using the density matrix in Quan-

tics, so the implementation of the Chebyshev integrator adapted for density

matrices adds this new capability. As before scaling is needed to ensure

that the domain of the polynomials is in [0, 1], so maximum and minimum

eigenvalues of L̂ are needed. Using eigenvectors of Ĥ as a basis

H|i〉 = εi|i〉, (4.15)

there are several cases to consider.
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Firstly if k = i, m = j,

Lij,km = Lij,ij = Hiiδjj −H∗jjδii

= εi − εj. (4.16)

If k = i, m 6= j,

Lij,im = −H∗mj = 0. (4.17)

If k 6= i, m = j,

Lij,kj = Hik = 0. (4.18)

If k 6= i, m 6= j,

Lij,km = 0. (4.19)

Thus in the eigenvalue basis L is diagonal with values εj−εi for all i, j. Then

the maximum and minimum eigenvalues are

`max = εmax − εmin, (4.20)

`min = εmin − εmax. (4.21)

This scaling means that the Chebyshev integrator can be used to propagate

the density matrix. This has been implemented in Quantics for the type I

density matrix and the next section discusses some results which test this

new approach.

4.3 2-mode pyrazine: a test case

As a test for the Chebyshev integration scheme a 2-dimensional, 2-state

model of pyrazine using the model Hamiltonian of [93] is used, consisting
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of vibrational modes ν10a and ν6a. This system is set up with 10 SPFs per

mode for each state, starting in the excited state.

To test the Chebyshev integrator, a measure of its accuracy should be ascer-

tained. In general for this integrator, the number of iterations N required is

determined by the theoretical limit N ≥ ∆Egridt

2~ . For n > N Bessel functions

are vanishingly small and since by definition Tn ≤ 1 the neglection of these

terms results in negligible error. Therefore the numerical error mostly arises

from the truncation of individual Bessel functions which are each, in theory,

infinite sums.

Using the fact that for small α, the terms in a Bessel function are mono-

tonically decreasing, a certain tolerance can be set in the code, for instance

selecting err = 10−6, means that the iteration continues up until this level

of accuracy has been achieved. Here three different error tolerances are con-

sidered: err = 10−6, err = 10−5 and err = 10−4. While the norm and total

energy (Etot) values for a system are conserved by default for existing inte-

grators ABM and SIL, the iterative form of the Chebyshev integrator means

that there can be a loss in these quantities over time.

Pyrazine was propagated using the Chebyshev integrator for 120fs, and in

Figure 4.1 the total energy for these 3 different values of err are plotted

against time. For the same calculation, the loss in the norm over these 3

values of the err are plotted in Figure 4.1. For comparison purposes, the cal-

culation is repeated using MCTDH along with the default ABM integrator,

then an exact propagation using ABM again, and finally exact along with the

Lanczos integrator. Note that ABM MCTDH is not exact, meaning that the
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Fig. 4.1: Left: 2D pyrazine plot of the change in the energy during a propagation of

a 2D model for pyrazine photo-excitation for exact calculation with the Chebyshev

integrator. Right: change in the norm for the same calculation. In both plots the

system was propagated for 120fs

wavefunction is expanded into a basis of SPFs in the usual way. The ABM

Exact method uses the ABM integrator to propagate the full wavefunction

on the grid. The results of these are summarised in Table 4.1.

We see that the Chebyshev integrator is faster than ABM but slower than

SIL. Considering that the number of iterations is proportional to the com-

putational effort and a dominant factor in the efficiency is the number of

times that HΨ is calculated, Table 4.2 summarises the iterations needed for

each of the Chebyshev calculations. The figures show that, as expected, the

calculations with a larger value of err are faster but result in a greater loss

of norm and energy.

The fact that each figure is a straight line shows that the loss in accuracy
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Integrator CPU Etot Norm

ABM MCTDH 6.120 0.511105000 1.000000000

ABM Exact 2.516 0.511105000 1.000000000

SIL Exact 0.564 0.511105000 1.000000000

Chebyshev Exact, err1 = 10−6 0.964 0.511114915 1.00008446

Chebyshev Exact, err2 = 10−5 0.932 0.511087311 0.999977334

Chebyshev Exact, err3 = 10−4 0.556 0.478087110 0.967083781

Table 4.1: CPU time, final energy and final norm for a set of wavepacket sim-

ulations of a 2D model of pyrazine photo-excitation using different integration

schemes.

Dimension Iterations per timestep

2D err1 = 10−6 17

2D err2 = 10−5 16

2D err3 = 10−4 12

2D density 1 err1 = 10−6 26

4D err1 = 10−6 21

4D err2 = 10−5 19

Table 4.2: Number of iterations per timestep for the Chebyshev simulations of the

2D and 4D model of pyrazine photo-excitation using different set tolerance values,

err.
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Fig. 4.2: Left: Exact density 1 propagation of 2D pyrazine, plotting total energy

over time using the Chebyshev integrator. Right: Exact density 1 propagation of

2D pyrazine, plotting total norm over time using the Chebyshev integrator.

is accumulated at a constant rate over each timestep. Interestingly, the

MCTDH calculation is slower than its exact counterpart, due to overheads

from the extra basis layer which is unnecessary for this size of model, but a

speedup is seen for larger systems. In Figure 4.1 the norm is conserved well

for an err ≤ 10−5 but reduces sharply for err = 10−4 over a period of 120fs.

The difference in CPU cost of the two more accurate err values is minimal,

therefore the default is set to err = 10−6.

4.4 Density matrix dynamics

The 2D model of pyrazine is used again here to test the implementation of the

Chebyshev integrator for the density matrix. Prior to the implementation of

the new Chebyshev integrator it was not previously possible to conduct an

exact calculation using density operators using the Quantics program. Note
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Integrator CPU Etot Norm

ABM ρ-MCTDH 306.368 0.511105000 1.000000000

Chebyshev Exact 618.124 0.511111297 1.000012319

Table 4.3: CPU time, final energy and final norm for the density matrix simulations

of the 2D model of pyrazine photo-excitation using different integration schemes.

here that by “exact” propagation we mean the density matrix is expanded

directly on the grid rather than using the time-dependent basis functions of

ρ-MCTDH. It may have an integration error but does not require conver-

gence with respect to the basis set and is thus a useful test of performance.

In contrast, the ρ-MCTDH propagation using the ABM integrator is not ex-

act which is why the Chebyshev integrator is needed.

Once again we consider how well this scheme conserves the total energy and

norm. The total energy increases incrementally over the 120fs propagation

time, as does the norm (in comparison to the Chebyshev calculation with the

highest accuracy). The CPU time for the exact density type I calculation is

roughly double the non-exact equivalent, which is shown in Table 4.3, which

also lists final total energy and norm value at the end of the 120fs propaga-

tion. All density matrix calculations take a lot longer than the equivalent

wavepacket calculations seen in the previous section as we have effectively

gone from 3 state 2D system to a 9 state 4D system which squares the effort.

4.5 4-mode pyrazine

The calculations are repeated for 4D pyrazine, the results of which are sum-

marised in Table 4.4. The total energy value starts at 0.65255000 and
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Integrator CPU Etot Norm

ABM MCTDH 54.564 0.65255000 1.000000000

ABM Exact Wavepacket 532.496 0.65255000 1.000000000

SIL Exact Wavepacket 96.676 0.65255000 1.000000000

Chebyshev Exact density matrix, accuracy 10−6 132.968 0.650278825 1.000018523

Table 4.4: CPU time, final energy and final norm for a set of simulations of a 4D

model of pyrazine photo-excitation using different integration schemes.

increases with the Chebyshev integrator by 0.002271175. The norm does not

increase significantly, and the small error in the energy is proportionate to

the error tolerence function which truncates the Chebyshev order to reduce

the cost of the simulations. As before, the SIL calculation is faster, but the

Chebyshev integrator sees an improvement on the ABM exact calculation.

Figure 4.3 shows the 4D spectrum calculated using MCTDH and the equiv-

alent spectrum resulting from the density matrix approach. The spectrum

calculated using the density matrix has less defined peaks and is closer to

the more diffuse spectrum for the full 24D model of pyrazine which implies

that the effect of the density matrix is to partially account for these missing

bath modes.

4.6 Discussion

This chapter presents a study into whether the efficiency of propagating

density matrices can be improved by the choice of numerical integrator. A

new integrator which uses the Chebyshev integration scheme is developed,

implemented and tested in the Quantics package against several of the ex-

isting integrators. The main advantage of the Chebyshev integrator is that
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Fig. 4.3: S1 absorption spectrum for the 4 mode pyrazine model, and the 4 mode

spectrum calculated using ρ-MCTDH.

it allows exact density matrix calculations for the first time. Although the

terminology “exact’ here may seem a bit confusing since the error introduced

by the Chebyshev integrator is not insignificant in these studies, the error

can be set to be smaller at the cost of more computational effort. Another

motivation for exploring the utility of the Chebyshev integrator is that unlike

most iterative numerical integrators which require small timesteps in order

to be accurate, the Chebyshev scheme can easily propagate long timesteps

(e.g 120fs at once) without losing accuracy unlike all other integration tech-

niques which are not able to propagate longer timesteps. However, since

the MCTDH method is set up to record results at regular small timesteps

this is not immediately useful but nevertheless the integrator is freely avail-

able and could be adapted for use in a different QD method. In MCTDH the

imaginary time propagator, which is used for relaxing a molecule to zero tem-

perature, uses just 1 timestep so the Chebyshev integrator could potentially

be adapted to improve the efficiency of this procedure. The results showed
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that the newly implemented Chebyshev integrator worked well although it is

not a significant improvement on the existing integrators in Quantics. The

integrator could potentially be suitable for use with a QD method which uses

a longer timestep.
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Chapter 5

Models of thermalised proton

transfer

The development of the multilayer density matrix ML-ρ-MCTDH method

aims to reduce the effort of modelling the non-equilibrium dynamics which

the density matrix approach is able to describe. In this chapter, the newly

implemented ML-ρ-MCTDH is tested against the MCTDH, ML-MCTDH

and ρ-MCTDH methods through the study of three different PT systems.

The first system is based on a simple PT model where the reaction coordi-

nate lies along a symmetric double-well PES. Wavepacket calculations were

performed for various bath sizes and over a range of temperatures.

Secondly, salicylaldimine is considered, where the PT occurs across an asym-

metrical double-well. Quantum dynamics simulations were performed to

model PT in salicylaldimine, starting with the two dimensional model of

the molecule, which is scaled up to 4D in order to assess the scalability of

this new method. Different approaches to thermalisation are applied, and the
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Fig. 5.1: Potential energy surface of the symmetric system for the PT mode and

the most strongly coupled bath mode.

resulting rates of flux are presented. Finally, a double PT in porphycene is

studied showing the change in rate of PT with both temperature and system

size.

5.1 A model for symmetric double well pro-

ton transfer

A symmetric PT model is used, where a 1D double-well ‘system’ is weakly

coupled to a ‘bath’ of 1D harmonic oscillators parametrised to typify a con-

densed phase environment. Figure 5.1 shows the PES for the PT mode and

the most strongly coupled bath mode.
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The model which is based on one used by Craig et al, represents PT (across

the double-well barrier) in a solvent phase. The model is defined by the

following Hamiltonian:

Ĥ =
p̂2
s

2
+ Vs(ŝ) +

N∑
j

[
p̂2
j

2
+

1

2
ω2
j

(
Q̂j −

cj ŝ

ω2
j

)2]
, (5.1)

with the following potential:

Vs(ŝ) = −1

2
ω2
b ŝ

2 +
ω4
b

V ‡0
ŝ4. (5.2)

Bath and coupling parameters are given by ωj = ωc tan

(
π
2

j
N+1

)
, cj =√

ηωc
N+1

ωj, and for a solvent ωb = 500cm−1, ωc = 100cm−1, V0 = 1043 and

cj = 25cm−1. To begin with, the initial conditions are implemented in a

rudimentary way with each bath mode perturbed by displacing it from its

equilibrium geometry so that they feed energy into the system mode through

the coupling. A feature of this model is that the magnitude of the coupling

terms for the bath modes is set up to scale with system size, meaning that

a greater number of bath modes results in weaker coupling to the system

mode. Later the initial conditions are set up more rigorously, to model the

system over a range of temperatures.

Note that for consistency, the model is quoted in mass scaled coordinates,

however issues with the grid lengths in this coordinate system meant that

it was necessary to convert to mass-frequency-scaled coordinates before any

accurate calculations could be made.

5.2 ML-MCTDH, increasing model size

Firstly, the 7-mode (Figure 5.2) and 17-mode models were adapted for ML-

MCTDH and the convergence and in particular the multilayer basis specifi-
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Fig. 5.2: ML-MCTDH tree representing the basis set contraction for a 7-mode PT

model.
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Fig. 5.3: PT dynamics for different bath sizes. Left: Autocorrelation function and

Right: The expectation value of the step function each of the 3 bath sizes.

cation was considered. For the 17-mode model it was clear that the choice of

mode groupings had a significant effect on computational efficiency (although

not necessarily on precision). Because of the way that the bath mode cou-

plings are scaled in the model, it is expected that the autocorrelation should

converge with system size, however this is not seen here because the initial

conditions for each bath mode were identically specified meaning that total

energy increases with system size. Note that this is not the usual thermal

distribution based on random sampling of the Boltzmann distribution as the

initial conditions here were set up as a suitable test, and later in this chapter

the initial conditions are set up more precisely.
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Figure 5.3 shows the PT dynamics for different bath sizes; the dynamics

was calculated for 36, 56 and 106 bath modes. The plot on the left is the

autocorrelation function

c(t) = 〈ψ(0)|ψ(t)〉 (5.3)

of each of the three calculations. The autocorrelation function is the overlap

between the initial and final wavefunction, which gives a measure of how

the system evolves compared to its initial state. On the right, the expecta-

tion value of a step function placed at the transition state is shown. This

gives a measure of the extent of the proton transferred. Therefore we see in

Figure 5.3 that the increase in energy along with system size results in the

dynamics being less correlated, although the oscillatory structure is similar

over the three propagations. The trend seen for the autocorrelation func-

tion progresses consistently with system size. The step function illustrates

that the initial conditions for the position of the wavepacket are identical.

However, the wavepacket for the 107 mode system recedes first into the well

that it starts from before transferring more completely across the barrier

before dissipating back into the first well. Since the initial conditions are

inconsistent with the earlier paper looking at this model, in particular due to

rescaling of the model, it is therefore difficult to directly compare the results

here to what has previously been observed.

The results show that the larger bath sizes, which have more energy (are

“hotter”) display a greater mobility. The autocorrelation function for the 37

mode calculation displays recurrences, when the wavepacket returns to its

initial position, which are damped in the larger calculations. The degree of

PT is also seen to increase with increasing system size as the energy from the

bath feeds into the PT mode and the system can overcome the barrier. The

degree of PT oscillates, but is seen to increase with time in all calculations.
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G-ML-MCTDH 5.3

5.3 G-ML-MCTDH

A long term aspiration in the field of quantum dynamics simulations is to

develop a “black-box” method, where the dynamics of a system can be cal-

culated without the need for system specific pre-calculated PES. Within the

quantics package, the relatively recently developed direct-dynamics method

is designed to do this. This approach is based on the G-MCTDH method in

which the grid-based single-particle function basis is replaced by a basis set

of parametrised Gaussian functions [87]. As it is not a grid-based method

the basis set of variational multiconfigurational gaussians can be used to es-

timate both the local PES and nuclear dynamics on the fly. If the density

matrix can be set up to work in this way with the direct-dynamics approach,

then this could potentially be a very useful technique. G-ML-MCTDH uses

exactly the same procedure as G-MCTDH and replaces SPFs with Gaussian

functions. This can then in principle be extended to provide a Gaussian

based G-ML-ρ-MCTDH scheme to enable on the fly density matrix calcula-

tions.

The first step towards this is to investigate how well G-ML-MCTDH works

with a basis of static GWPs. In order to test the G-ML-MCTDH scheme

against the benchmark of MCTDH, the 17-mode model was considered since

the 37-mode system would result in scaling issues on a full MCTDH grid.

In Figure 5.4 the autocorrelation function for each of these three schemes is

compared after 150fs propagation time and with identical initial conditions.

We see that it is difficult to converge the G-ML-MCTDH calculation fully,

which is one of the major drawbacks of this method. However, the advan-

tage of using a GWP basis is the flexibility, which can make it a powerful

approach depending on the properties of the system being studied.
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Fig. 5.4: The autocorrelation function from a 17-mode PT model using methods

MCTDH, ML-MCTDH and G-ML-MCTDH.

The trend that is seen for the three methods is roughly similar given the

sensitivity of a measure such as autocorrelation and a certain amount of ac-

curacy is to be expected to be lost where Gaussian wavepackets are used in

substitute for the full propagation on the grid. This initial finding suggests

that the G-ML-MCTDH routine can be expected to work well and one ad-

vantage is that it is more generally applicable to problems where the full

solution on the grid is inefficient.

5.4 Effects of temperature

We saw earlier in the chapter how the larger bath size resulted in more en-

ergy transfer into the system mode given that the initial conditions for each
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bath mode were identically specified meaning that total energy scales with

system size. It would be possible to scale initial conditions so that the total

energy remains the same regardless of system size.

Note however that the coupling strength of bath modes does scale with sys-

tem size, for instance bath modes which are labeled with higher numbers will

couple less strongly to the system, so this must be taken into account when

controlling for bath temperature. To explore the temperature dependence

of the dynamics, and to test the new code, calculations were run at a range

of temperatures using ρ-MCTDH(I) and ML-ρ-MCTDH(I). Thermalisation

was achieved by propagating in imaginary time. Formally, propagation of a

wavepacket can be written as

Ψ(t) = exp(−iHt)Ψ(0), (5.4)

The propagation in time can be changed to a propagation in temperature,

where time 0 is effectively infinite temperature. Therefore a propagation

in imaginary time relaxes the system from infinite temperature to a chosen

finite temperature using the transformed time it→ 1
kT

so that

Ψ(T ) = exp

(
− H

kT

)
Ψ(∞). (5.5)

For a density matrix propagation, using the Liouville von-Neumann equation

results in a thermalised density matrix with the form

ρ(T ) = exp

(
H

2kT

)
ρ(∞) exp

(
− H

2kT

)
. (5.6)

This means that starting with a density matrix in which all states are equally

populated (infinite temperature), propagation to temperature T provides the

thermalised density.
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Thermalisation calculations were run for the 2D system using ρ-MCTDH(I),

and the 7D system using ML-ρ-MCTDH(I) at 0K, 500K, 1000K, 1500K and

2000K. During thermalisation, the system was localised in the left hand (neg-

ative coordinate) energy well by adding a step function to the potential cen-

tered at the transition barrier. This effectively places a high wall, masking

out the right hand well. The step function is defined as follows, with respect

to the location of the TST which is defined as displacement 0 (x = 0).

Θ(ν1) =


1, if x > 0,

0, if x < 0,

(5.7)

The expectation value of a step function placed at the barrier, provides the

density that has crossed to the right hand well. In Figure 5.5 the expectation

of the step function at the different temperatures is plotted over time. The

bath and system are at the same temperature so it appears that there is very

little energy flow between them, as is illustrated in the right hand figure.

5.5 Proton transfer in an asymmetric double

well: Salicylaldimine

This section uses a model for salicylaldimine based on previous work by

[99, 100] using a model from Polyak et al [101]. This molecule was used

previously to study hydrogen bonding. The two most stable tautomers of

salicylaldimine, also known as 2-hydroxybenzaldimine are the enol and keto

forms, as seen in Figure 5.6. An intramolecular PT occurs if the molecule

has sufficient energy. The enol form is the most stable and is calculated to

be 0.39ev below the transition state while the keto form is 0.22ev.
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Fig. 5.5: Left: expectation value of the step functions for a range of thermalised

7D propagations. Right: total energy of the bath modes for the 7D propagation

at a range of temperatures.

Fig. 5.6: Reaction coordinate taken from [101].

Models of thermalised proton transfer 110



Proton transfer in an asymmetric double well: Salicylaldimine 5.5

A full PES for salicylaldimine C7H7ON is described by 42 normal modes, but

the previous work by Polyak et al selects the 13 which contribute the most

to the reaction. ν1 is the transition pathway and ν36 is the in-plane proton

motion perpendicular to ν1. In the previous study, the model starts close to

the enol form with the bond slightly stretched to give it enough energy for

the reaction to occur.

Before any further calculations on this model took place, it was initially ver-

ified that the result for the 2D exact calculation in this model corresponded

to the results published by Polyak et al. They did indeed correspond and all

further calculations used different initial conditions where the temperature

has been precisely defined, as was discussed in the previous section. At cold

temperatures it is unlikely that the proton would have sufficient energy to

cross the barrier but as the system is thermalised above the barrier we should

get movement. When the system is relaxed to 0K, the energy difference to

the stretched molecule is found to be 0.05182ev for the 2D model. Using that

T = E/kb where E is the energy in Joules, this is equivalent to a temperature

of 601.22K. Similarly, the energy gap between the stretched and relaxed 4D

model was found to be equivalent to a temperature of 1137.59K.

Thermalisation calculations were run for the 2D system using ρ-MCTDH(I)

to 0K, 500K, 1000K and 1500K. The expectation value of a step function

placed at the barrier, provides the density that has crossed to the high en-

ergy well. This is plotted in Figure 5.7. It can be seen that at 0K the density

is localised in the low energy, keto, well. PT then occurs by tunnelling

through the barrier to the enol well. At higher temperatures, more density

is found in the high energy well, but no dynamics takes place, showing that
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Fig. 5.7: Fraction of the density in the high-energy well of a 2D model of salicy-

laldimine at a range of temperatures.

the thermalisation has provided a good approximation to the thermalised

stationary state. As shown earlier, these calculations are converged and so

are the same as an exact result.

To test the effect of increasing the bath size on performance and system

behaviour a similar set of calculations was carried out for a 6D model, in

which the modes ν10, ν11, ν13 and ν32 were added to the main PT modes of

ν1 and ν36 used in the 2D model. The resulting fraction of PT is shown

in Figure 5.8. A similar behaviour is seen, but the degree of tunnelling at

0K is much less, indicating the higher barrier height. The high temperature

densities are also less constant, perhaps indicating that the calculations are
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not fully converged. These results show that the trend previously seen in the

2D systems is replicated here, where an increase in the dynamics is seen as

the temperature increases. The only movement of the system at zero Kelvin

is due to proton tunnelling. In this case, the wavepacket partially crosses the

barrier from the global minimum (enol) to the less stable minimum (keto).

When the temperature is increased to 500K and to 1000K the dynamics of

the system is not significantly altered. The change in the dynamics between

the 500K and 1000K propagations can be rationalised by the fact that the

system at 1000K has enough energy to traverse the lower activation energy

barrier for the return keto-enol tautomerisation, and hence the dynamics can

no longer be attributed entirely to tunnelling. The most significant change

in dynamics occurs when the temperature increases from 1000K to 2000K.

As a note on computational effort, a 2D propagation using ρ-MCTDH(I) for

100fs on a Xenon 12 core machine took 11,328s (3 hours 8 mins), while a 6D

calculation took 204 hours. This demonstrates the huge increase in resource

required by density matrix calculations. In contrast, the 6D calculation on

the same machine using ML-ρ-MCTDH(I) took only 26,508s (7 hours 21

mins), a huge saving in effort. The ML-ρ-MCTDH (II) method required

much longer and a comparison between the scaling for type I to type II

methods is given in the next section.

Models of thermalised proton transfer 113



Proton transfer in an asymmetric double well: Salicylaldimine 5.5

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0  20  40  60  80  100

P
ro

to
n 

T
ra

ns
fe

r

Time [fs]

0K
500K

1000K
1500K

Fig. 5.8: Fraction of the density in the high-energy well of a 6D model of salicy-

laldimine at a range of temperatures.
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Parameter Value

U0 876.0 cm−1

g 0.435

x0 0.624 Bohr

αtrans 0.0095

αcis 0.034

Table 5.1: Parameters for the porphycene double PT potential of Abdel-Latif and

Kühn [103].

5.6 The porphycene model Hamiltonian

Abdel-Latif and Kühn [102, 103] provide a two-dimensional model Hamilto-

nian for the double PT in porphycene using a symmetric and anti-symmetric

PT coordinates and a potential form that provides four minima. The Hamil-

tonian is

H = − ~2

2mH

(
∂2

∂x2
s

+
∂2

∂x2
a

)
+ +Usym + Uasym; (5.8)

Usym = 2U0 +
U0

x2
0

[
(g − 4)x2

a − (g + 4)x2
s

]
+a

2U0

x4
0

(
x4
s + x4

a + 6x2
ax

2
s

)
; (5.9)

Uasym =
αtransU0

x0

xa +
αcisU0

x0

xs. (5.10)

Double PT in porphycene has also been studied in an application of a path-

integral ring-polymer method [104]. The parameters were calculated at the

B3LYP/6-31+G** level of theory and are listed in Table 5.1. The potential

is shown in Figure 5.9.

This Hamiltonian was extended to include the remaining 106 vibrations of
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(a) (b)

Fig. 5.9: (a) porphycene and (b) the double well potential surface for porphycene

used to describe the double PT. Taken from [103].

porphycene as a bath of harmonic oscillators coupled to the system modes.

H = Hs +Hb +Hsb (5.11)

with the bath modes described by a set of harmonic oscillators in mass-

frequency scaled coordinates

Hb =
108∑
i=3

−ωi
2

∂2

∂q2
i

+
1

2
ωiq

2
i . (5.12)

To parameterise the extended model, the transition state structure was first

optimised using the same level of theory used by Abdel-Latif and Kühn.

This structure has D2h symmetry and the “symmetric” and “anti-symmetric”

double-proton vibrations are found to have imaginary frequencies and b2u and

b3g symmetry, respectively. These vibrations are shown in Figure 5.10.

Taking symmetry into account, coupling between the two system modes and

the bath can be written

Hsb =
∑
si

γsixsqi +
∑
aj

γajxaqj +
∑
sk

γskx
2
sqk +

∑
sk

γakx
2
aqk (5.13)

where i are the 16 b2u vibrations, j are the 17 b3g vibrations, and k the 17
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(a) (b)

Fig. 5.10: The (a) symmetric, xs, and (b) anti-symmetric, xa, PT vibrational

modes of porphycene, calculated at the B3LYP/6-31+G** level of theory.

a1g vibrations. The final model Hamiltonian thus include 55 modes.

The parameters for the system-bath coupling can be obtained by taking the

derivative of the full potential at the minimum energy structures with respect

to one of the bath modes. For modes of b2u symmetry, the derivative is

∂V

∂qi
= ωiqi + γsixs,0 = 0 (5.14)

for modes of b3g symmetry

∂V

∂qj
= ωjqj + γajxa,0 = 0 (5.15)

and for modes of a1g symmetry

∂V

∂qk
= ωkqk + γskx

2
s,0 + γakx

2
a,0 = 0 (5.16)

where xs,0 and xa,0 are the symmetric and anti-symmetric coordinates at the

minima. From these relationships the coupling parameters, γ, can be calcu-

lated from the geometry of the energy minima. The structures at the minima

were obtained by optimising at the B3LYP/6-31+G** level and theory, and

transformed to normal mode coordinates. The coupling parameters were
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then obtained using equations (5.14-5.16). The values are listed in Tables

5.2, 5.3 and 5.4, along with the frequencies for the modes.
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Mode ω (eV) γsi (eV/Bohr)

12 0.0310 0.02569

20 0.0509 0.05882

26 0.0781 -0.03258

43 0.1050 -0.03199

55 0.1245 -0.08677

58 0.1303 0.09544

61 0.1364 -0.04995

68 0.1517 -0.01423

74 0.1640 -0.00573

75 0.1676 -0.00745

80 0.1762 0.01957

86 0.1888 -0.00684

89 0.1948 -0.00024

94 0.2020 0.01869

97 0.3934 -0.00136

103 0.4025 -0.00192

107 0.4050 -0.00218

Table 5.2: Frequencies and coupling pa-

rameters for the bath modes in the por-

phycene model with b2u symmetry.

Mode ω (eV) γaj (eV/Bohr)

8 0.0194 -0.01773

22 0.0616 0.00151

25 0.0764 -0.05334

44 0.1053 0.04010

49 0.1129 -0.08953

56 0.1296 -0.09407

60 0.1358 -0.06313

64 0.1432 -0.00426

72 0.1615 -0.02938

78 0.1729 -0.01279

79 0.1742 0.00291

83 0.1797 -0.00477

88 0.1918 -0.00633

92 0.1995 -0.01916

98 0.3934 -0.00212

101 0.4023 0.00226

105 0.4046 -0.00305

Table 5.3: Frequencies and coupling pa-

rameters for the bath modes in the por-

phycene model with b3g symmetry.
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Mode ω (eV) γsk (eV/Bohr2) γak (eV/Bohr2)

13 0.0346 0.2222 0.2002

17 0.0457 0.0696 0.0746

18 0.0466 -0.1551 -0.1620

31 0.0852 -0.0637 -0.0624

54 0.1228 0.0044 0.0140

57 0.1301 0.1974 0.1895

62 0.1372 0.1006 0.1018

66 0.1489 0.0219 0.0136

70 0.1530 -0.0223 -0.0279

76 0.1696 0.2061 0.1879

77 0.1716 -0.0005 0.0200

82 0.1796 -0.0370 -0.0403

85 0.1883 0.0819 0.0620

91 0.1984 -0.0714 -0.0523

93 0.2016 -0.0775 -0.0771

96 0.2263 0.2932 0.3116

100 0.3955 -0.0024 -0.0007

104 0.4026 0.0000 0.0027

108 0.4050 -0.0142 -0.0101

Table 5.4: Frequencies and coupling parameters for the totally symmetric (a1g)

bath modes in the porphycene model.
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5.7 Double proton transfer in the porphycene

model

The porphycene PT model Hamiltonian was used in a series of calculations to

test the potential of the ML-ρ-MCTDH methods. This consisted of different

dimensional systems at a range of temperatures to demonstrate the scaling

as well as the changes in physical behaviour. In all cases, an initial energy

relaxation calculation was made to thermalise the system to the desired tem-

perature, followed by a propagation of 500fs. The number of basis functions

was chosen such that all natural populations were below 0.001 after 250fs.

I.e. the initial dynamics is well represented.

As a benchmark for the system dynamics, initially 2D calculations including

the xs and xa PT modes were ran at 0, 500, 1061, 1500 and 200K. The barrier

height is 1061K. The initial relaxation localised the density in one well cen-

tred at (xs, xa) = (−0.607, 0.0). This was done by including a step function

in the Hamiltonian during the relaxation to create a high wall at xs = 0.0.

This wall was then removed for the propagation, but the expectation value

of the step function as a function of time was used to calculate the amount

of PT taking place.

This PT at varying temperatures is shown in Figure 5.11. At 0K (purple

line), there is a slow transfer, which is almost complete after 300fs before

returning to the initial well. This is due to tunnelling. As the temperature

increases, the transfer is faster, and the amount decreases.

Snapshots of the density at different times are shown in Figure 5.12 and
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Fig. 5.11: Transfer of density between PT minima in the 2D porphycene model at

different temperatures, starting in one minima.

Figure 5.13. The density is taken from the trace of the time-evolving den-

sity matrices. At 0K, the initially localised density is seen to move towards

and then cross the barrier. At 1061K, the initial density is again localised

in the one well, but vibrationally excited in the xa mode, as seen by the

structure. In contrast to the 0K case, this hot density flows quickly around

the maximum of the potential at (xs, xa) = (0, 0) to undergo the double

PT. At 20fs it is seen to be occupying all four wells, after which the den-

sity oscillates back and forth between the two minima at (xs, xa) = (±0.6, 0).

A 4D system was then studied, including the 2 bath modes with the strongest

coupling ν13 and ν18. The amount of PT for this system as a function of time

at different temperatures is shown in Figure 5.14. The bath modes have

a strong effect in slowing down the transfer. The tunnelling at 0K is still

taking place at 500fs. Even at the barrier height temperature the transfer

is increasing in a similar way to the tunnelling. Only when well above the
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Fig. 5.12: Snapshots of the density of the 2D porphycene model at different times,

starting in one minima at 0K.
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Fig. 5.13: Snapshots of the density of the 2D porphycene model at different times,

starting in one minima at 1061K.
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Fig. 5.14: Transfer of density between PT minima in the 4D porphycene model at

different temperatures, starting in one minima.

barrier at 2000K does the transfer now take place in less than 100fs, reaching

50% transfer and staying there, indicating the density is spread across the

minima equally. The zero temperature propagation briefly dips negative in

this calculation which is an artefact of a small numerical error in the calcula-

tion. It is possible to see some PT occurs in the low temperature calculation

where the energy of the system is below the barrier height, which indicates

that tunnelling plays a significant role in the reaction at lower temperatures.

When the temperature of the system is set to be equivalent to the barrier

height, T=1061K, and also for the 1500K propagation, clear oscillations are

seen as the wavepacket oscillates back and forth between the two states. At

the higher energy, 2000K propagation, the wavepacket transfers more quickly

over the barrier.

Finally, a 6D system adding the modes ν17 and ν57 and a 10D system adding

ν12, ν20, ν8, and ν25 were examined to show the performance of the ML-ρ-
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MCTDH methods. The CPU-times for calculations on the 4 systems at 0K

using the different algorithms are listed in Table 5.5. All 4 methods could

be applied to the 4D system, and the huge saving in time by the ML-ρ-

MCTDH(I) algorithm is clear.

The large number of expansion coefficients in the matrix top layer of ML-ρ-

MCTDH(II) is the reason for the advantage of the type I density matrices.

This difference in effort is even more pronounced for the 6D case, for which

regular ρ-MCTDH(II) is prohibitively slow, and for ρ-MCTDH(I) is not fea-

sible. For the 10D system, only the ML-ρ-MCTDH(I) is feasible, and impres-

sively fast, taking only 6731s for a 500fs propagation. The key thing to note

here is that ML-ρ-MCTDH(I) scales much better with the larger model. This

is consistent with the trends seen in the earlier calculations looking at sali-

cylaldimine. The 6D ρ-MCTDH(I) calculation has a CPU time of 1.030×106

seconds in comparison to just 4993 seconds for the same calculation using

ML-ρ-MCTDH(I), which demonstrates how much more efficient this scheme

is. The purpose of these calculations is to verify that new method gives con-

sistent results to existing methods, i.e. to test that the code actually works

as intended. While it is not easy to compare the calculations directly to

previous studies as the models are set up differently and have incompara-

ble initial conditions, the dynamics predictions of ML-ρ-MCTDH has been

shown in this chapter to replicate existing dynamics approaches. Repeating

earlier density matrix calculations using the exact method to show that the

dynamics is identical verifies that this method is reliable. Building on this,

the ρ-MCTDH and ML-ρ-MCTDH calculations were found to give consistent

results, which shows that this method can be successfully used to predict the

dynamics of these systems.

Models of thermalised proton transfer 126



Discussion 5.8

Method 2D 4D 6D 10D

ρ-MCTDH(I) 5855 8866 1.030×106

ρ-MCTDH(II) 4875 14298

ML-ρMCTDH(I) 967 4993 13275

ML-ρMCTDH(II) 6700 7014

Table 5.5: CPU Time in seconds for various dimensional porphycene model systems

using different algorithms. All calculations were ran on a xenon 12 core compute

node.

5.8 Discussion

In this chapter ML-ρ-MCTDH is applied in three studies of PT. The first

model considered is a symmetric PT system, which is well adapted to be

represented with the ML-MCTDH basis and in previous studies it has been

scaled up and propagated with more than 100 degrees of freedom. The second

application is to asymmetric PT in salicylaldimine, where ML-ρ-MCTDH is

tested with a new way of producing thermalised density matrices.

Finally, the phenomenon of double PT in porphycene is evaluated in a

third application of the method. Porphycene was interesting to study as

it exhibits stronger nonlinear coupling, which makes it more challenging to

propagate within the multilayer basis setup. Despite this the capability of

ML-ρ-MCTDH to propagate this system efficiently is clearly demonstrated,

with a remarkable speedup in comparison to equivalent calculations using

ρ-MCTDH.
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Summary

This thesis set out to improve efficiency in the Quantics version of the density

matrix propagator, ρ-MCTDH, in order to allow the possibility of treating

larger and more realistic quantum systems thermally. This led to the devel-

opment and implementation of the novel ML-ρ-MCTDH scheme which has

been successfully tested and applied to interesting and challenging systems.

The potential of this method to treat much larger systems than were previ-

ously possible within the density matrix formalism has been demonstrated,

which is an exciting development with many more potential applications.

Chapter 3 derives the ML-ρ-MCTDH EOM for the first time in order to

show that they are well defined and that the ρ-MCTDH scheme can be in-

corporated into the multilayer formalism. The step by step derivations for

the EOM of both the type I and II ML-ρ-MCTDH are detailed, which ex-

tends on the brief overview of this which was previously published in Raab et

al [61, 62]. This extensive derivation was required in order to check whether

the ρ-MCTDH and ML-ρ-MCTDH schemes are compatible and can be com-

bined.
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Chapter 4 presents a study into whether the efficiency of propagating den-

sity matrices can be improved by the choice of numerical integrator. A new

integrator which uses the Chebyshev integration scheme is developed, imple-

mented and tested in the Quantics package against several of the existing

integrators.

In Chapter 5 ML-ρ-MCTDH is applied in three studies of PT, in order to

better understand the crucial role the environment plays in this process, and

the three methods MCTDH, ρ-MCTDH and ML-MCTDH are compared.

The first study looks at a model of symmetric PT, the second is a study into

salicylaldimine and a third looks at porphycene. The symmetric PT system

was selected as a demonstration of the effect of an environment and since it

is well adapted for the ML-MCTDH scheme, where it has previously been

scaled up and propagated for more than 100 degrees of freedom. The second

system examined is the asymmetric PT in salicylaldimine. ML-ρ-MCTDH

is tested along with a new way of producing thermalised density matrices.

Finally, a double PT in porphycene is studied showing the change in rate of

PT with both temperature and system size. This molecule was of interest as

it is a more complex system with stronger nonlinear coupling, and this prop-

erty makes it more difficult to propagate within the multilayer basis setup.

The key advantage of the ML-ρ-MCTDH approach is that it brings the power

of MCTDH to simulations of open systems, including allowing partitioning of

degrees of freedom into a primary system, secondary bath and “dissipative”

modes that can then be included using dissipation operators. In future work,

the method could be applied to investigate the open system dynamics of a
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molecule, for example using a Lindblad operator to model the dissipative

environment.

It would also be interesting to apply the method to larger systems. An al-

ternative approach to thermalisation is to use wavepacket dynamics with the

MCTDH method treating the bath modes of the thermalised environment

explicitly, with repeated dynamics calculations stochastically, sampling ini-

tial conditions from the Boltzmann distribution. In future work it could be

interesting to compare this approach with the density matrix treatment of

molecular systems.
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[58] M. H. Beck, A. Jäckle, G. A. Worth, and H.-D. Meyer. The multiconfig-

uration time-dependent Hartree method: A highly efficient algorithm

for propagating wavepackets. Phys. Rep., 324:1–105, 2000.

[59] P. A. M. Dirac. Note on exchange phenomena in the Thomas atom.

Proc. Cambridge Philos. Soc., 26:376–385, 1930.

[60] J. Frenkel. Wave Mechanics. Clarendon Press, Oxford, U.K., 1934.

[61] A. Raab, I. Burghardt, and H.-D. Meyer. The multiconfiguration time-

dependent Hartree method generalized to the propagation of density

operators. J. Chem. Phys., 111:8759–8772, 1999.

[62] A. Raab and H.-D. Meyer. A numerical study on the performance

of the multiconfiguration time-dependent Hartree method for density

operators. J. Chem. Phys., 112:10718–10729, 2000.

[63] G. A. Worth, H.-D. Meyer, and L. S. Cederbaum. State filtering by

a bath: Exact wavepacket dynamics treating 24 degrees of freedom.

Chem. Phys. Lett., 299:451–456, 1999.

[64] H. Wang and M. Thoss. Multilayer formulation of the multiconfigura-

tion time-dependent Hartree theory. J. Chem. Phys., 119:1289–1299,

2003.

[65] U. Manthe. On the integration of the multi-configurational time-

dependent Hartree (MCTDH) equations of motion. Chem. Phys.,

329:168–178, 2006.

Bibliography 139



Bibliography 6.0

[66] Z. Wang, M. Liang, Y. Tan, L. Ouyang, Z. Sun, and S. Xue. Organic

dyes containing dithieno [2, 3− d : 2, 3′− d′] thieno [3, 2− b : 3′, 2′− b′]

dipyrrole core for efficient dye-sensitized solar cells. J. Mater. Chem.,

3(9):4865–4874, 2015.

[67] I. R. Craig, M. Thoss, and H. Wang. Proton transfer reactions in model

condensed-phase environments: Accurate quantum dynamics using the

multilayer multiconfiguration time-dependent Hartree approach. J.

Chem. Phys., 127:144503, 2007.

[68] I. R. Craig, M. Thoss, and H. Wang. Accurate quantum-mechanical

rate constants for a linear response Azzouz-Borgis proton transfer

model employing the multilayer multiconfiguration time-dependent

Hartree approach. J. Chem. Phys., 135:64504, 2011.

[69] R. Welsch and U. Manthe. Reaction dynamics with the multi-layer

multi-configurational time-dependent Hartree approach: H+CH4 →

H2+ CH3 rate constants for different potentials. J. Chem. Phys.,

137(24):244106, 2012.

[70] L. Cao, S. Kronke, O. Vendrell, and P. Schmelcher. The multi-layer

multi-configuration time-dependent Hartree method for bosons: The-

ory, implementation, and applications. J. Chem. Phys., 139:134103,

2013.

[71] O. Vendrell and H.-D. Meyer. Multilayer multiconfiguration time-

dependent Hartree method: Implementation and applications to a

Henon-Heiles Hamiltonian and to pyrazine. J. Chem. Phys., 134:44135,

2011.

Bibliography 140



Bibliography 6.0

[72] A. D. McLachlan. A variational solution of the time-dependent

Schrödinger equation. Mol. Phys., 8:39–44, 1964.

[73] H.-D. Meyer, U. Manthe, and L. S. Cederbaum. The multi-

configurational time-dependent Hartree approach. Chem. Phys. Lett.,

165:73–78, 1990.

[74] H.-D. Meyer, F. Gatti, and G. A. Worth. Multidimensional Quantum

Dynamics: MCTDH Theory and Applications. Wiley-VCH, Weinheim,

Germany, 2009.

[75] U. Manthe, H.-D. Meyer, and L. S. Cederbaum. Wave-packet dynamics

within the multiconfiguration Hartree framework: General aspects and

application to NOCl. J. Chem. Phys, 97:3199–3213, 1992.

[76] M. H. Beck and H.-D. Meyer. An efficient and robust integration

scheme for the equations of motion of the multiconfiguration time-

dependent Hartree (MCTDH) method. Z. Phys. D, 42:113–129, 1997.

[77] G. A. Worth, H. D. Meyer, and L. S. Cederbaum. Relaxation of a

system with a conical intersection coupled to a bath: A benchmark

24-dimensional wave packet study treating the environment explicitly.

J. Chem. Phys., 109:3518–3529, 1998.

[78] A. S. Dickinson and P. R. Certain. Calculation of matrix elements

for one-dimensional quantum-mechanical problems. J. Chem. Phys,

49:4209, 1968.

[79] D. O. Harris, G. G. Engerholm, G. W. Gwinn, and W. D. Gwinn. Cal-

culation of matrix elements for one-dimensional quantum-mechanical

problems and the application to anharmonic oscillators. J. Chem.

Phys., 43:1515–1517, 1965.

Bibliography 141



Bibliography 6.0

[80] J. C. Light, I. P. Hamilton, and J. V. Lill. Generalized discrete variable

approximation in quantum mechanics. J. Chem. Phys., 82:1400–1409,

1985.

[81] J. C. Light. Discrete variable representations in quantum dynamics. In

Time-Dependent Quantum Mol. Dyn., pages 185–199, New York, 1992.

Plenum.

[82] J.-Y. Fang and H. Guo. Multiconfiguration time-dependent Hartree

studies of the CH3I/MgO photodissociation dynamics. J. Chem. Phys.,

101(7):5831, 1994.

[83] G. A. Worth, H.-D. Meyer, and L. S. Cederbaum. The effect of a model

environment on the S2 absorption spectrum of pyrazine: A wavepacket

study treating all 24 vibrational modes. J. Chem. Phys., 105:4412–

4426, 1996.

[84] G. A. Worth and I. Burghardt. Full quantum mechanical molecular

dynamics using Gaussian wavepackets. Chem. Phys. Lett., 368:502–

508, 2003.

[85] B. Lasorne, M. A. Robb, and G. A. Worth. Direct quantum dynamics

using variational multi-configuration Gaussian wavepackets. Implemen-

tation details and test case. PCCP, 9:3210–3227, 2007.

[86] G. A. Worth, M. A. Robb, and B. L. Lasorne. Solving the time-

dependent Schrödinger equation for nuclear motion in one step: Direct

dynamics of non-adiabatic systems. Mol. Phys., 106:2077–2091, 2008.

[87] G. W. Richings, I. Polyak, K. E. Spinlove, G. A. Worth, I. Burghardt,

and B. Lasorne. Quantum dynamics simulations using Gaussian

Bibliography 142



Bibliography 6.0

wavepackets: the vMCG method. Int. Rev. Phys. Chem., 34:269–308,

2015.

[88] D. Mendive-Tapia, B. Lasorne, G. A. Worth, M. A. Robb, and M. J.

Bearpark. Towards converging non-adiabatic direct dynamics calcula-

tions using frozen-width variational Gaussian product basis functions.

J. Chem. Phys., 548:22A548–10, 2012.

[89] G. A. Worth, M. A. Robb, and I. Burghardt. A novel algorithm for

non-adiabatic direct dynamics using variational gaussian wavepackets.

Faraday Discuss., 127:307–323, 2004.

[90] G. A. Worth and M. A. Robb. Applying direct molecular dynamics to

non-adiabatic systems. Adv. Chem. Phys., 124:355–432, 2002.

[91] U. Manthe. A multilayer multiconfigurational time-dependent Hartree

approach for quantum dynamics on general potential energy surfaces.

J. Chem. Phys., 128:164116, 2008.

[92] G. A. Worth, K. Giri, G. W. Richings, M. H. Beck, A. Jäckle, and
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