
Received: 3 September 2021 Revised: 28 July 2022 Accepted: 12 August 2022

DOI: 10.1002/sim.9562

R E S E A R C H A R T I C L E

Network meta-analysis of rare events using penalized
likelihood regression

Theodoros Evrenoglou1 Ian R. White2 Sivem Afach3

Dimitris Mavridis1,4 Anna Chaimani1,5

1Université Paris Cité, Research Center of
Epidemiology and Statistics
(CRESS-U1153), INSERM, Paris, France
2MRC Clinical Trials Unit, University
College London, London, UK
3Université Paris-Est Créteil, UPEC,
Créteil, France
4Department of Primary Education,
University of Ioannina, Ioannina, Greece
5Cochrane France, Paris, France

Correspondence
Theodoros Evrenoglou, Université Paris
Cité, Research Center of Epidemiology and
Statistics (CRESS-U1153), INSERM, Paris,
France, Hôpital Hôtel-Dieu, 1 Place du
Parvis Notre-Dame, 75004 Paris, France.
Email: tevrenoglou@gmail.com

Funding information
Medical Research Council, Grant/Award
Number: MC_UU_00004/06; European
Union’s Horizon 2020 COMPAR-EU
project, Grant/Award Number: No754936

Network meta-analysis (NMA) of rare events has attracted little attention in the
literature. Until recently, networks of interventions with rare events were ana-
lyzed using the inverse-variance NMA approach. However, when events are rare
the normal approximations made by this model can be poor and effect esti-
mates are potentially biased. Other methods for the synthesis of such data are
the recent extension of the Mantel-Haenszel approach to NMA or the use of
the noncentral hypergeometric distribution. In this article, we suggest a new
common-effect NMA approach that can be applied even in networks of inter-
ventions with extremely low or even zero number of events without requiring
study exclusion or arbitrary imputations. Our method is based on the implemen-
tation of the penalized likelihood function proposed by Firth for bias reduction
of the maximum likelihood estimate to the logistic expression of the NMA
model. A limitation of our method is that heterogeneity cannot be taken into
account as an additive parameter as in most meta-analytical models. However,
we account for heterogeneity by incorporating a multiplicative overdispersion
term using a two-stage approach. We show through simulation that our method
performs consistently well across all tested scenarios and most often results
in smaller bias than other available methods. We also illustrate the use of our
method through two clinical examples. We conclude that our “penalized likeli-
hood NMA” approach is promising for the analysis of binary outcomes with rare
events especially for networks with very few studies per comparison and very
low control group risks.
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1 INTRODUCTION

Network meta-analysis (NMA) has become an essential tool of comparative effectiveness research.1 Despite the rapid and
extensive development of NMA methods over the last decade,2 little attention has been given to the issue of rare events
within a network of interventions. Typically, NMAs with rare events are performed using the standard “inverse-variance”
(IV) model with a continuity correction for studies with zero events. This is a two-stage contrast-based model where
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original work is properly cited.
© 2022 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd.

Statistics in Medicine. 2022;1–17. wileyonlinelibrary.com/journal/sim 1

https://orcid.org/0000-0003-3336-8058
https://orcid.org/0000-0002-6718-7661
https://orcid.org/0000-0003-2791-223X
https://orcid.org/0000-0003-1041-4592
https://orcid.org/0000-0003-2828-6832
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fsim.9562&domain=pdf&date_stamp=2022-08-26


2 EVRENOGLOU et al.

at the first-stage the effect sizes and their variances are extracted from the studies and at the second-stage these are
synthesized to obtain the summary treatment effect estimates. A major drawback of this approach is that it relies on large
sample approximations and normality assumptions which are implausible under the presence of low number of observed
events. An alternative popular approach, usually fitted in Bayesian framework, is based on the exact binomial distribution.
However, it has been suggested that Bayesian methods may be problematic for meta-analyzes of rare events since results
can be dominated by the prior distribution.3,4 On the other hand, when such a model is fitted in frequentist framework
it relies on the maximum likelihood estimates (MLE) which are known to be biased in the presence of rare events.5,6

Other, possibly less biased, options for performing NMA with rare events are the recent extension of the Mantel-Haenszel
(MH) meta-analytical model4 and a model based on the noncentral hypergeometric distribution (NCH).3 The MH model,
though, is a nonparametric common-effect model and, thus, it avoids the use of any distributional assumption.

A further important issue of most meta-analyzes with rare events is how to handle studies with zero events in all
treatment groups. Imputations of arbitrarily chosen constants (eg, 0.5) have been found to bias the results.7,8 More sophis-
ticated models (eg, random intercepts models) allow inclusion of such studies by using between-study information which,
however, may again bias the results.9,10 Existing methods for NMA with rare events that avoid the use of between-study
information, like the aforementioned MH-NMA and NCH-NMA models, either exclude these studies from the analysis
or require continuity corrections. Studies with zero events in all treatment groups are not infrequent in meta-analyzes
of rare endpoints and the optimal way to treat such studies is still unclear. A recent meta-epidemiological study of 442
Cochrane reviews including at least one study with no events in both treatment groups suggested that the inclusion or
exclusion of these studies can impact materially the results of the meta-analyses.11 In addition, in the context of NMA,
exclusion of these studies may lead to disconnected networks.

In the present article, we aim to tackle the problem of rare events in networks of interventions with binary
data by adapting and extending methodology from the analysis of individual studies. We use the logistic regression
expression of NMA12 and the penalization to the likelihood function proposed by Firth13 to estimate the NMA rela-
tive effects, using odds ratios, through an one-stage model. In this way, we attempt to likely obtain less biased and
more precise estimates in comparison to the existing methods for NMAs with rare events described earlier. On top of
that, our penalized likelihood NMA method (PL-NMA) allows the inclusion of studies with zero events in all treat-
ment groups without using between-study information. The rest of the article is structured as follows. In Section 2,
we describe the standard NMA model as a logistic regression model and the proposed PL-NMA model. Section 3
presents a simulation study exploring the performance of our method in terms of bias and precision in comparison
to existing NMA approaches for rare events under different scenarios. Finally, in Section 4 we apply the different
models in two exemplar NMA datasets, and in Section 5 we discuss the strengths and limitations of our PL-NMA
approach.

2 METHODS

2.1 Common-effect NMA using logistic regression

Suppose a network of N studies and T treatments. Let rik and nik denote the number of events and the num-
ber of total participants, respectively, in treatment group k of study i where i = 1, 2, … ,N and k ∈ Ki with Ki =
{treatments evaluated in study i}. We assume that

rik ∼ Bin (nik, pik) ,

where pik is the probability of an event in treatment group k of study i. Then, we model the probabilities pik through the
following logistic regression model,

logit (pik) = 𝛼i + dbik (1)

with bi an arbitrarily chosen baseline treatment from the set Ki.
Parameter dbik represents the log-odds ratio (logOR) of treatment k vs bi in the ith study with dbibi = 0 for k = bi. The

parameter ai represents the log-odds of the event in the bi group and it is treated as a nuisance parameter. Under the



EVRENOGLOU et al. 3

transitivity assumption, the logOR between any two treatments t1 and t2 (t1, t2 = 1, … ,T and t1 ≠ t2) is

dt1t2 = dbi t2 − dbi t1 .

It follows from (1) that,

pik = expit
(
𝛼i + dbik

)
.

Let 𝜶 denote the vector that contains all study intercepts 𝛼i, d the vector of the relative effects dbik, and r and n the
vectors of observed events and sample sizes per study and treatment arm.

The estimation of the parameters dbik relies on the maximization of the likelihood function which can be written as,

L(𝜶,d | r,n) =
N∏

i=1

∏

k∈Ki

(
nik

rik

)

expit
(
𝛼i + dbik

)rik
(
1 − expit

(
𝛼i + dbik

))nik−rik
.

Equivalently, the log-likelihood function is,

l(𝜶,d | r,n) =
N∑

i=1

∑

k∈Ki

log

(
nik

rik

)

+ rik log
(

expit
(
𝛼i + dbik

))
+ (nik − rik) log

(
1 − expit

(
𝛼i + dbik

))
. (2)

The above model relies on the maximization of the log-likelihood in Equation (2) in terms of the N + T − 1 parameters
a and d. These MLE are biased in the case of finite sample sizes and their unbiasedness can only be assumed approxi-
mately for a large sample size and a considerable number of observed events.5 Hence, the MLE can be problematic when
the number of observed events is small, underestimating the probability of an event and overestimating the treatment
effects.14,15

2.2 Common-effect penalized likelihood NMA

To reduce the bias of the above MLE for NMAs with rare events, we employ Firth’s modification13 to the log-likelihood
function in (2); this is the frequentist equivalent to using as penalty Jeffrey’s invariant prior. This modification results in
the penalized likelihood and log-likelihood functions, respectively,

L∗(𝜶,d|r,n) = L(𝜶,d|r,n) |I|
1
2

and

l∗(𝜶,d|r,n) = l(𝜶,d|r,n) + 1
2

log|I|. (3)

The matrix I ≡ I(𝜶,d) is the Fisher’s information matrix with dimensions (N + T − 1) × (N + T − 1) that is given as

I = Z′WZ (4)

with Z being the model’s design matrix with dimensions
∑N

i=1Ai × (N + T − 1) and entries 1 for the columns associated
with the relevant treatment and study and 0 otherwise.16 Ai is the number of arms in study i, W = diag { nikpik (1 − pik)}
and |I| is the determinant of I. The penalized likelihood function is being maximized with respect to the (N + T − 1)
parameters a and d.

Equation (3) arises by the Taylor series expansion of the score function (ie, derivative of the log-likelihood function).
Firth showed that the use of Jeffrey’s invariant prior in this expansion penalizes the likelihood function and provides
less biased estimates than the standard likelihood13 function of Equation (2). The estimates obtained from the penalized
likelihood function are typically shrunk toward 0 and this in turn results in smaller SEs. This is why the estimates obtained
from the penalized likelihood function are expected to be more precise than those obtained from the standard likelihood
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function.17 The above PL-NMA provides finite treatment effects and SEs even in the case of studies that report zero events
in all treatment arms.17,18 Specifically, the issue of studies reporting only zero events in meta-analysis resembles that
of separation (ie, when one or more covariates perfectly predict the outcome) in individual studies.19,20 The PL-NMA
method allows the inclusion of studies with zero events in two or more groups, without sharing information between the
studies, by adding some prior information to the probability of an event through Jeffrey’s prior. The latter usually results
in estimated probabilities of event which are shifted toward 0.5.17,20

After maximizing the penalized likelihood function, we can replace pik with p̂ik in matrix W. Those probabilities can
be easily obtained as p̂ik = expit

(
âi + ̂dbik

)
. The square roots of the diagonal elements of the I−1 represent the SEs of

the estimates which are used to construct Wald type confidence intervals; for instance, the square root of the diagonal
element in the first row and first column of matrix I−1 represents the SE of the parameter in the first column of matrix
Z. The matrix I−1 is calculated as the inverse of matrix I in Equation (4). An alternative option is to construct profile
likelihood confidence intervals that can be obtained using the critical region defined by the inequality

2
{

l∗(𝜶̂, ̂d|r,n) − l∗
(
𝜶̂,
̂d0|r,n

)}
≤ c1,1−q,

where ̂d0 =
(

dbik0 ,
̂dbik

)
is the vector that contains the estimated treatment effects of all treatments in the network vs

the reference, except k0 ≠ k which is a specific treatment. The boundary c1,1−q is the (1 − q) quantile of the chi-square
distribution with 1 degree of freedom.

In case of T = 2, the model in (1) with the likelihood function in (3) corresponds to the penalized likelihood regression
model for pairwise meta-analysis.

2.3 Random-effects penalized likelihood NMA

The model in Equation (1) can be extended to the so-called binomial-normal (BN-NMA) model if we replace the dbik with
𝛿i,bik which are now the study-specific treatment effects that are assumed to follow a normal distribution with mean dbik
and variance 𝜏2. In this model, the true treatment effects vary from study to study but the study intercepts 𝛼i are kept
fixed. The model can also allow for random intercept terms. The random-intercepts model requires a common reference
treatment across the studies.21 This theoretical common reference does not have to be observed within each study but
its impact needs to be independent from unmeasured covariates. The PL-NMA model is a common-effect model and its
extension to incorporate heterogeneity is challenging. In particular, the standard approach of incorporating heterogene-
ity as an additive term is not straightforward as the penalization requires closed forms of the likelihood function and
its moments13 and these are not available for a logistic regression mixed-effect model. Therefore, we use an alternative
approach previously suggested in the literature where heterogeneity is incorporated as a multiplicative term.22-24 This is a
two-stage approach that modifies the study variances through an overdispersion parameter. Specifically, after fitting the
model presented in the previous section, we multiply the variance in study i and arm k vik = nikpik (1 − pik) with a scale
parameter 𝜑,21-23 hence

v∗ik = vik ∗ 𝜑, 𝜑 ≥ 1.

This implies that the matrix W in Equation (4) is replaced by 𝜑W. In this way, the point estimates of the treatment
effects remain unaffected but their variances are inflated by that unknown parameter 𝜑. To estimate the parameter 𝜑 we
use the expression suggested by Fletcher25

𝜑̂ = 𝜑̂P

1 + s
,

where s is the mean value of sik =
(
𝜕v̂ik
𝜕p̂ik

) (
rik−̂E(rik)

)

v̂ik
, 𝜕v̂ik
𝜕p̂ik

is the derivative of v̂ik with respect to p̂ik and 𝜑̂P = P
m

with P
denoting the Pearson’s statistic, and m = (T − 1) + (N − 1) the residual degrees of freedom of the model. The Pearson’s
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statistic for the NMA model presented in the previous section is,

P =
N∑

i=1

∑

k∈Ki

rik − ̂E (rik)
v̂ik

,

where ̂E (rik) = nik ∗ p̂ik. If 𝜑̂ < 1, we set it equal to 1.

3 SIMULATION

We conducted a simulation study to compare our proposed and existing methodologies for NMA of rare events. We report
our simulation following the recommendations by Morris et al26

3.1 Data generation

We start the data generation process by specifying the number of treatments in the network (3, 5, or 8) and the number of
studies in every treatment comparison (2, 4, or 8). We always create all possible T(T−1)

2
treatment comparisons; hence we

only assume fully-connected networks. We then generate the total number of participants per study arm using a uniform
distribution, namely, nik ∼ Unif (c1, c2), with c1 = 30, c2 = 60 for generating small studies and c1 = 100, c2 = 200 for larger
studies. We only generated studies with an equal number of participants across arms. For each study we generated the
control group risk; that is the risk of the event for patients receiving the reference treatment irrespective of whether this
was evaluated in the study, thus for the simulation bi ≡ 1. We generate the risk of an event in the reference treatment
group 1 using pi1 ∼ Unif (u1,u2) , with u1 ∈ [0.5% − 5%],u2 ∈ [1% − 10%] depending on the scenario (see Table 1). In all
scenarios, the true logORs were fixed at equal intervals between 0 and 1 (eg, in a network of 5 treatments the true logORs
are set to 0.25, 0.5, 0.75, and 1 for the comparisons of treatments 2, 3, 4, and 5 vs the reference treatment 1, respectively)
and were used to calculate the odds of an event in every study arm,

oddsi1 =
pi1

1 − pi1
,

oddsik = oddsi1 ∗ OR, k ≠ 1.

Finally, we obtain the event probabilities in the non-reference treatment groups as pik =
oddsik

1+oddsik
and the number of

events in every study arm using a binomial distribution rik ∼ Bin (nik, pik) ,∀i, k.
For scenarios assuming the presence of heterogeneity (𝜏 = 0.1), we set a common parameter 𝜏 to represent the SD of

the random-effects (see the Supplementary material S1 for a description).
We explored in total 33 scenarios with varying control group risks in the studies, number of treatments in the network,

study size, number of studies per comparison, and magnitude of heterogeneity (Table 1). In scenarios 1–16 we considered
only two-arm studies while in scenarios 17–32 we only included multi-arm studies evaluating all treatments. The latter
are certainly not very realistic scenarios but they aimed at exploring whether the increased correlation from multi-arm
studies could contribute to precision and bias reduction in NMAs with rare events. In scenario 33, we set extremely low
control group risks (Table 1) to increase the number of generated studies with zero events in all treatment arms. This
scenario only included two-arm studies.

We considered both homogeneous and heterogeneous cases and with different number of studies per comparison.
Scenarios 1–10 only considered small studies (ie, 30–60 participants per arm). For scenarios 11–32, we increased the num-
ber of patients per arm and we mostly focus on cases in which the control group risks were extremely low (ie, 1%–2%
and 0.5%–1%). In Scenarios 21–24 and 29–32 we considered a mix of low with higher control group risks. Table 1 pro-
vides a summary of the different scenarios. Across the first 32 scenarios the majority of the 1000 simulated datasets
included only a handful of studies reporting only zero events. Therefore, in the final scenario 33 we further decreased
the control group risk to lie between 0.1% and 0.3% in order to generate more studies with zero events in all treatment
groups. Overall, though, the impact of such studies on the final results cannot be fully captured through the present
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T A B L E 1 Overview of scenarios examined in our simulation. For each scenario we generated 1000 datasets. The rows in bold represent
the scenarios with multi-arm studies

#
Treatments in
the network

Patients
per arm

Number of
studies
per comparison

Total number
of studies
per dataset

Heterogeneity
(𝛕)

Control group
risk (%)

Mean events
per study

1 5 30–60 2 20 0 3%–5% 3

2 5 30–60 2 20 0.1 3%–5% 3

3 5 30–60 2 20 0 5%–10% 6

4 5 30–60 2 20 0.1 5%–10% 6

5 5 30–60 4 40 0 3%–5% 3

6 5 30–60 4 40 0.1 3%–5% 3

7 5 30–60 4 40 0 5%–10% 6

8 5 30–60 4 40 0.1 5%–10% 6

9 8 30–60 2 56 0 3%–5% 3

10 8 30–60 2 56 0.1 3%–5% 3

11 5 100-200 2 20 0 1%–2% 4

12 5 100–200 2 20 0.1 1%–2% 4

13 5 100–200 2 20 0 0.5%–1% 2

14 5 100–200 2 20 0.1 0.5%–1% 2

15 5 100–200 4 40 0 0.5%–1% 2

16 5 100–200 4 40 0.1 0.5%–1% 2

17 3 100–200 8 8 0 1%–2% 4

18 3 100–200 8 8 0.1 1%–2% 4

19 3 100–200 8 8 0 0.5%–1% 2

20 3 100–200 8 8 0.1 0.5%–1% 2

21 3 100–200 8 8 0 0.5%–5% 7

22 3 100–200 8 8 0.1 0.5%–5% 7

23 3 100–200 8 8 0 0.5%–10% 13

24 3 100–200 8 8 0.1 0.5%–10% 13

25 5 100–200 8 8 0 1%–2% 4

26 5 100–200 8 8 0.1 1%–2% 4

27 5 100–200 8 8 0 0.5%–1% 2

28 5 100–200 8 8 0.1 0.5%–1% 2

29 5 100–200 8 8 0 0.5–5% 7

30 5 100–200 8 8 0.1 0.5%–5% 7

31 5 100–200 8 8 0 0.5%–10% 13

32 5 100–200 8 8 0.1 0.5%–10% 13

33 5 100–200 4 40 0 0.1%–0.3% 1
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simulation study and further work is necessary. The extent of all-zero event studies can be found in Table 3 of our
Supplementary material S1.

3.2 Evaluated models

The simulation was conducted using R version 4.0.3 (October 10, 2020) and the packages netmeta,27 brglm,28 lme4,29 and
gemtc.30 The packages netmeta27 and gemtc30 are tailored for frequentist and Bayesian NMA, respectively. The packages
lme429 and brglm28 allow the conduction of NMA either as a generalized linear mixed effects model or as a generalized
linear model, respectively. The code used for our simulation can be found at https://github.com/TEvrenoglou/PL-NMA.
In each scenario, we generated 1000 datasets and we compared the following models:

• Common- and random-effects IV-NMA model with 0.5 correction for studies with at least one zero event arm
• Common-effect MH-NMA and NCH-NMA without 0.5 correction for studies with zero event arms. Note that the

NCH-NMA model also allows for random effects. However, the version of this model used here is the one implemented
in netmeta27 which is only common-effect and uses Breslow’s approximation.

• Common- and random-effects PL-NMA model.
• Common-effect logistic regression NMA model with standard (non-penalized) likelihood.
• Random-effects logistic regression NMA model using MLE with fixed study intercept (BN-NMA). The model assumes

the exact binomial likelihood for the observed events within studies and a normal distribution for the random-effects
across the studies. The glmer function from the lme429 package was used to perform NMA. This function is not tai-
lored for NMA and does not meet the requirement that variance-covariance matrix of the random-effects is having the
structure with 𝜏2 for diagonal elements and 𝜏

2

2
for off-diagonal elements. The latter implies that this function can only

be used for scenarios 1–16 where NMA of only two arm studies takes place.
• Common and random-effects Bayesian NMA with exact binomial likelihood and non-informative priors for the

treatment effects. The common-effect model assumes that dbik ∼ N
(
0, 1002). For random-effects the study-specific

treatment effects are following a normal distribution 𝛿i,bik ∼ N
(

dbik, 𝜏
2), then we form two random-effects mod-

els: the first assumes that dbik ∼ N
(
0,1002) and for the heterogeneity parameter that 𝜏 ∼ Unif(0, 2).31 The second

random-effects model assumes narrower priors; dbik ∼ N
(
0, 102) and a half-normal distribution for 𝜏 ∼ HN(1). For all

Bayesian models, we run 2 chains with 50 000 iterations and discarded the first 10 000 samples from each chain. Con-
vergence was checked using the Brooks–Gelman–Rubin criterion32 with a value lower than 1.1 considered as indicating
convergence.

The objective of scenario 33 was to investigate the impact of all-zero event studies. Therefore, in this scenario
we excluded the IV-NMA, the MH-NMA, and the NCH-NMA models as those models need to exclude all-zero
event studies prior to the analysis.4 The rest of the models were evaluated once by including and once by exclud-
ing all-zero event studies. A brief description of all models that are not described in the article is provided in the
Supplementary material S1.

3.3 Estimands and performance measures

The estimands of interest are the T − 1 logORs between treatments t = 2, … ,T and treatment 1. The performance of
the models was investigated in terms of the mean bias defined as the mean difference between the estimated and the
true logORs averaged over simulated datasets and estimands for each NMA method: the true estimands are all positive
so averaging over estimands makes sense. For heterogeneity parameter in terms of the models assuming additive hetero-
geneity terms we calculated the mean difference between the estimated and the true 𝜏 averaged over simulated datasets
while for the multiplicative PL-NMA model we report the percentage of the simulated datasets for which 𝜑̂ > 1. We
further calculated the mean coverage in each scenario defined as the percent of the corresponding 95% confidence or
credible intervals that included the corresponding true logOR. Finally, the methods were compared in terms of the mean
squared error (MSE) and length of confidence or credible intervals averaged across multiple contrasts and simulated
datasets.

https://github.com/TEvrenoglou/PL-NMA
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3.4 Simulation results

In the following sections we present the results of our simulation across the different performance measures. We first
discuss the results for scenarios 1–32 and then we discuss separately the results of scenario 33. Overall, the Bayesian
random-effects model with the uniform prior for the heterogeneity parameter had a rather poor performance and there-
fore its results are not discussed in the text but only presented in the figures and the tables; the results of all other models
are discussed in the following sections.

3.4.1 Bias in the estimation of the logORs

In Figure 1, we present the results in terms of mean bias across multiple contrasts (multiple estimands). In most scenarios,
IV-common-effect and IV-random-effects gave the most biased results. The two PL-NMA models overall produced the
least biased results across scenarios. The MH-NMA, NCH-NMA, and BN-NMA models also performed generally well, but
the MH-NMA and NCH-NMA resulted in large bias in scenarios with many treatments in the network and a small number
of studies per comparison (ie, scenarios 13, 14). The performance of NCH model for the scenarios with higher risks
(scenarios 3, 4, 7, 8, 23, 24, 31, 32) was decreased as this model uses Breslow’s approximation which is valid only for very
rare events (see the Supplementary material S1 for details). Interestingly, the PL-NMA models had a stable performance
across the different scenarios in terms of bias with a maximum value of mean bias equal to 0.02.

The BN-NMA model provided satisfactory results in terms of bias in almost all scenarios with a maximum mean bias
of 0.06. The performance of BN-NMA was increased in scenarios involving relatively larger studies, namely, when the
number of participants per arm was between 100 and 200. The results of the common-effect logistic regression model
with the standard (non-penalized) likelihood were equivalent to the results of the BN-NMA model. The random-effects
Bayesian model with half-normal prior distribution for heterogeneity had an improved performance in terms of bias
and a better performance in comparison to the common-effect Bayesian model with bias ranging from −0.03 to 0.04. In
all scenarios, the results in terms of bias were not affected materially for any of the models when the data-mechanism
involved heterogeneity. Overall, the IV-NMA, the MH-NMA, and the NCH-NMA models had the tendency to give negative
bias whether the rest of the models were positively biased. Full results are available in the Supplementary Tables 1 and 2
and are consistent with the results that we obtained for each contrast separately (Supplementary Figures 1–4).

F I G U R E 1 Simulation results in terms of mean bias for scenarios with 5, 3, and 8 treatments (T), respectively. Missing bars correspond
to 0 mean bias (after rounding to two decimal places) for the respective NMA method. The Monte-Carlo standard error across the different
scenarios and methods ranges from 0.004 to 0.02 with a mean value equal to 0.01. Models marked as NR are not relevant to the figure and
thus no results are plotted
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3.4.2 Estimation of heterogeneity parameter

In terms of estimation of the heterogeneity, all the random-effects models appeared to have a bad performance (Table 2).
The IV random-effects model seemed to have a particularly poor performance for estimating 𝜏 ≠ 0. Especially for sce-
nario 16, where 3 treatments and 8 studies per comparison were available, the model estimated that 𝜏 = 0 across 996
out of 1000 simulated datasets while the true value was set equal to 0.1. The BN-NMA model had also a very poor
performance in estimating 𝜏 as in all heterogeneous scenarios the heterogeneity parameter was estimated being 0.
Finally, since there is no clear correspondence between 𝜏 and 𝜑 we calculated the percentage of times with 𝜑̂ > 1
across all datasets and scenarios. Across scenarios assuming heterogeneity (𝜏 = 0.1), 𝜑̂ was greater than 1 in a range
between 0%–40% across the simulated datasets and scenarios; this percentage was increased to 20%–40% in scenarios
with higher control group risks (scenarios 4, 8, 22, 24, 30, 32). Across scenarios assuming that 𝜏 = 0 the percent-
age that 𝜑̂ > 1 ranges from 0-36%. The percentage per scenario can be found in Table 2. The half-normal Bayesian
random-effects model appeared to provide the most biased estimates of the heterogeneity parameter with bias ranging
from 0.07 to 0.25.

3.4.3 Coverage probability

In terms of coverage probability, the PL-NMA model with respect to Wald-type confidence interval had a consistent per-
formance with coverage ranging from 93.3% to 96.3% in 18 scenarios the coverage was slightly below the nominal level
but almost always within 95% confidence interval constructed for the nominal level (Figure 2). This confidence interval
was calculated as 0.95 ± 1.96

√
0.95(1−0.95)

1000
= (0.936, 0.964) × 100% . The performance of the PL-NMA model was increased

by using profile likelihood confidence intervals and, in most scenarios, it was around the nominal level of 95% with a
range between 94.3% and 96%. MH-NMA and NCH-NMA models had similarly good performance with coverage proba-
bility close to the nominal level, but it should be noted that the performance of NCH-NMA model was again decreased
for some scenarios with higher control group risks (scenarios 23, 24, 31). These results are consistent with previous sim-
ulation studies.4 The IV-NMA models had the worst performance as those models were suffering from over-coverage
across almost all scenarios. Overall, for IV-NMA, MH-NMA, and NCH-NMA results in terms of coverage are consistent
with previous simulation studies.4 The BN-NMA model and two Bayesian models had in most scenarios a good per-
formance with a coverage probability around the nominal level and typically within confidence interval bounds for the
nominal level.

3.4.4 MSE and length of confidence or credible intervals

In terms of MSE all the models appeared to have a similar performance (Figure 3). The two Bayesian models had a
slightly increased MSE which overall found to range from 0.07 to 0.72. Regarding the mean length of confidence (or
credible intervals) the Wald-type confidence intervals obtained by the PL-NMA were found to have the smaller lengths in
comparison to the other models (Figure 4). The mean length of the profile-likelihood confidence intervals for PL-NMA,
though, were wider; this probably explains also their slightly better performance compared to the Wald-type intervals
in terms of coverage probability. As expected, the most uncertain results were obtained by the Bayesian random-effects
model which provided the widest credible intervals.

3.4.5 Impact of all-zero event studies

In 6 datasets, all other models but the PL-NMA models provided implausible results with standard errors larger than 108.
Thus, all performance measures were calculated for all models after excluding those 6 scenarios.

For the PL-NMA model, the inclusion or exclusion of all-zero event studies do not seem to have important
impact to the point estimates of the logORs, thus the results do not differ much in terms of bias. Bayesian mod-
els seem to have a poor performance, irrespective of the choice between inclusion or exclusion. In particular, we
found that including all-zero events in the Bayesian models can seriously bias the results. The decision between



10 EVRENOGLOU et al.

T A B L E 2 Results in terms of bias for the estimation of heterogeneity across all scenarios. For the case of PL-NMA model the
frequency that 𝜑̂ > 1 is reported instead of the bias. In parenthesis the percentage that 𝜏 > 0 or 𝜑̂ > 1 across the 1000 datasets and 32
scenarios. In bold the scenarios that assume 𝜏 = 0.1

# IV-random Binomial normal
Bayesian d ∼ N

(
0, 1002)

,

𝝉 ∼ U(0, 2)
Bayesian d ∼ N

(
0, 102)

,

𝝉 ∼ HN(1) PL-NMA-random
Mean bias
(% 𝝉 >0)

Mean bias
(% 𝝉 >0)

Mean bias
(% 𝝉 >0)

Mean bias
(% 𝝉 >0)

Frequency
𝝋 > 1 (% 𝝋 > 1)

1 0.05 (15.5%) 0 (0%) 0.54 (100%) 0.25 (100%) 94 (9.4%)

2 −0.04 (16.5%) −0.1 (0%) 0.46 (100%) 0.15 (100%) 101 (10.1%)

3 0.09 (29.6%) 0 (0%) 0.36 (100%) 0.22 (100%) 246 (24.6%)

4 0.01 (37%) −0.1 (0%) 0.28 (100%) 0.13 (100%) 290 (29%)

5 0.01 (5.5%) 0 (0%) 0.37 (100%) 0.23 (100%) 21 (2.1%)

6 −0.08 (7.5%) −0.1 (0%) 0.29 (100%) 0.13 (100%) 33 (3.3%)

7 0.05 (22.8%) 0 (0%) 0.26 (100%) 0.20 (100%) 155 (15.5%)

8 −0.03 (29.9%) −0.1 (0%) 0.18 (100%) 0.11 (100%) 202 (20.2%)

9 0.01 (3.3%) 0 (0%) 0.34 (100%) 0.23 (100%) 10 (1%)

10 −0.09 (5.6%) −0.1 (0%) 0.25 (100%) 0.13 (100%) 19 (1.9%)

11 0.05 (17%) 0 (0%) 0.44 (100%) 0.23 (100%) 112 (11.2%)

12 −0.03 (21.7%) −0.1 (0%) 0.36 (100%) 0.14 (100%) 141 (14.1%)

13 0.01 (2.6%) 0 (0%) 0.71 (100%) 0.25 (100%) 7 (0.7%)

14 −0.09 (3.9%) −0.1 (0%) 0.62 (100%) 0.16 (100%) 12 (1.2%)

15 0.00 (0.3%) 0 (0%) 0.50 (100%) 0.24 (100%) 0 (0%)

16 −0.10 (0.4%) −0.1 (0%) 0.41 (100%) 0.14 (100%) 0 (0%)

17 0.06 (18.4%) - 0.43 (100%) 0.23 (100%) 127 (12.7%)

18 −0.03 (24.2%) - 0.34 (100%) 0.14 (100%) 161 (16.1%)

19 0.01 (4.8%) - 0.65 (100%) 0.25 (100%) 18 (1.8%)

20 −0.08 (5.1%) - 0.55 (100%) 0.15 (100%) 30 (3%)

21 0.07 (27.8%) - 0.32 (100%) 0.21 (100%) 201 (20.1%)

22 −0.01 (33.1%) - 0.23 (100%) 0.11 (100%) 236 (23.6%)

23 0.08 (38.2%) - 0.24 (100%) 0.18 (100%) 321 (32.1%)

24 −0.01 (41.9%) - 0.15 (100%) 0.09 (100%) 356 (35.6%)

25 0.03 (14.8%) - 0.31 (100%) 0.21 (100%) 92 (9.2%)

26 −0.06 (18.1%) - 0.22 (100%) 0.12 (100%) 120 (12%)

27 0.00 (1.7%) - 0.47 (100%) 0.24 (100%) 11 (1.1%)

28 −0.09 (2.3%) - 0.37 (100%) 0.14 (100%) 10 (1%)

29 0.05 (25.3%) - 0.23 (100%) 0.18 (100%) 167 (16.7%)

30 −0.03 (32.9%) - 0.15 (100%) 0.09 (100%) 238 (23.8%)

31 0.06 (34.8%) - 0.17 (100%) 0.15 (100%) 276 (27.6%)

32 −0.01 (47.6%) - 0.09 (100%) 0.07 (100%) 387 (38.7%)
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F I G U R E 2 Simulation results in terms of coverage probability for scenarios with 5, 3, and 8 treatments (T), respectively. The
horizontal lines represent the upper and lower bounds of the 95% confidence interval which is constructed for the nominal level

F I G U R E 3 Simulation results in terms of MSE for scenarios with 5, 3, and 8 treatments (T), respectively. Models marked as NR are not
relevant to the figure and thus no results are plotted

inclusion or exclusion of such studies appeared to have no impact for the BN-NMA and common-effect logistic
regression model. Those models do not require such studies to be excluded prior to the analysis but they intrinsically
exclude them.8

The PL-NMA model and BN-NMA estimated that 𝜑̂ = 1 and 𝜏 = 0 across all the 1000 datasets of scenario 33 in
both cases of inclusion or exclusion of all-zero event studies. The Bayesian random-effects model provided highly biased
estimates of the heterogeneity parameter with mean bias equal to 0.26 and 0.27 when including and excluding all-zero
event studies, respectively.



12 EVRENOGLOU et al.

F I G U R E 4 Simulation results in terms of length of confidence (or credible) intervals for scenarios with 5, 3, and 8 treatments (T),
respectively

Inclusion of all-zero event studies seemed to slightly improve the performance of PL-NMA model in terms of coverage
probability. However, Wald-type intervals tended to suffer from under-coverage irrespectively of including or exclud-
ing while profile-likelihood confidence intervals tended to provide coverage above the nominal level of 95%. Finally,
the Bayesian models were suffering from under-coverage; though their performance was improved when all-zero event
studies were included.

For the PL-NMA model the MSE was slightly decreased when including all-zero event studies while the Wald-type
confidence intervals were generally smaller. The mean length of profile likelihood confidence intervals remained robust
and were not affected by the inclusion or the exclusion. For the Bayesian models the results did not differ when including
or excluding all-zero event studies. More details about the results of this scenario can be found in the Supplementary
material S1.

4 CLINICAL EXAMPLES

4.1 Safety of inhaled medications for patients with chronic obstructive
pulmonary disease

We compared the results across the different models using a network that evaluates the safety of inhaled medications for
patients with chronic obstructive pulmonary disease.33 The network consists of 41 studies and the outcome of interest is
mortality. This is supposed to be a rare outcome as out of 52 462 patients only 2408 (4.6%) experienced the event of interest.
In total, 13 out of 41 studies reported less than 5 events and 20 out of 99 arms had 0 events. The network diagram of this
dataset is depicted in Figure 5. We analyzed the data using the PL-NMA model both with Wald and profile likelihood CIs,
the MH-NMA model, the NCH-NMA model and finally the same Bayesian models that were included in our simulation
For the latter convergence was checked using the Brooks–Gelman–Rubin32 criterion. We did not use the IV model and
the Bayesian random-effects model with uniform heterogeneity prior due to the bad performance of these models in the
simulation.

The results across the different NMA methods are almost identical (Figure 6). Regarding the estimation of hetero-
geneity, the additive parameter 𝜏was estimated as zero for the BN-NMA model and the multiplicative parameter 𝜑 was
estimated as 1. However, the Bayesian random-effects model resulted in 𝜏= 0.12 [0, 0.35] for the model that assumes
HN(1) prior.
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F I G U R E 5 Network diagram for the inhaled medications example. HH, tiotropium dry powder; ICS, inhaled corticosteroid; LABA,
long-acting β2 agonist; TIO-TIO-SMI, tiotropium solution

F I G U R E 6 Forest plots showing the odds ratios obtained from the inhaled medications network for all comparisons against the
reference
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F I G U R E 7 Network diagrams for the psoriasis example. Panel (A) shows the initially well-connected network while panel (B) the
resulting network after the exclusion of studies that report only zero events. The node Anti-IL 23 is eliminated with the discarded studies.
Anti-IL, anti-interleukin; Anti-TNF, anti-tumor necrosis factor

4.2 Safety of different drug classes for chronic plaque psoriasis

The second example is a network that evaluates the safety of different interventions for chronic plaque psoriasis.34 The
dataset consists of 43 studies that involve 5 drug classes and placebo. Here, we compared again the different NMA methods
but in a more extreme situation where the control group risks in the studies range between 0 and 1%. The outcome of
interest is the number of malignancies that occurred after using the drugs. The mean sample size per study arm is 226
patients. Out of the 43 studies in this network, 15 (35%) are studies with zero events in all treatment groups. For MH-NMA
and NCH-NMA the exclusion of all-zero event arms leads to the removal of the treatment node Anti-IL 23 from the
network (Figure 7A,B). A more detailed explanation regarding the exclusion mechanism of those models can be found in
our Supplementary material S1. The resulting network appears to be connected in terms of the rest treatments but also
much reduced in total number of studies than the initial network.

The results of the different approaches are shown in Figure 8. In terms of point estimates, for comparison Anti-IL 12/23
vs Placebo all models except the Bayesian random-effects models gave very similar results. For the comparison Apremilast
vs Placebo, the results across all models appeared to be robust. For the rest of the comparisons there is a lot of diversity
across the estimated point estimates which depicts the sensitivity of the results when the events are very rare. Finally,
in all comparisons there are important differences across the Bayesian models which validates our hypothesis that the
results are strongly dependent on the choice of prior distribution. With respect to heterogeneity, the PL-NMA estimated
the multiplicative term 𝜑 as 1. So, it suggests the absence of statistical heterogeneity. The Bayesian random-effects model,
though, gave 𝜏= 0.56 (0.03, 1.61).

5 DISCUSSION

In this article, we have presented a new method for NMA of binary outcomes and rare events. Our method aims to
improve the performance of existing NMA approaches for rare events in terms of bias and precision by using the penalized
likelihood function for logistic regression that was originally proposed by Firth13 for individual studies. Our approach
can only provide odds ratios. However, in the context of rare events, the differences between odds ratios and risk ratios
are often negligible.35,36

We evaluated the performance of the different methods and compared their results through an extended simulation
study and two real clinical examples. We used various scenarios including studies with low or extremely low control
group risks. The proposed PL-NMA model appeared to have overall the best performance in terms of bias especially in
situations with very few studies per comparison and very low control group risks. The performance on coverage prob-
ability was improved when profile-likelihood confidence intervals were used but precision was reduced. In agreement
with previous simulation studies,4 the IV-NMA models are considered a suboptimal choice and we believe meta-analysts
should avoid their use for NMAs with rare events, especially for the cases with very small number of events per study
(eg, <3). MH-NMA, NCH-NMA are good options under certain conditions, but they become less reliable as the network
becomes sparser. BN-NMA model is shown to be robust in terms of bias. However, we only evaluated the performance
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F I G U R E 8 Forest plots showing the odds ratios obtained from psoriasis network for all comparisons against the reference

of the BN-NMA model in scenarios with two-arm studies as currently the model cannot take into account multivariate
distributions for the random-effects. The common-effect Bayesian model performed well in terms of bias and coverage.
The performance of the random-effects Bayesian model was much improved across all the performance measures when
we moved to narrower prior distributions for both the treatment effects and the heterogeneity parameters. In that case
the model provided a reliable alternative as the results were less biased in comparison to the common-effect Bayesian
model and the coverage probability was usually above the nominal level. The estimates obtained from the penalized like-
lihood function are typically shrunk towards 0 and this in turn results in smaller standard errors. Hence, sometimes the
PL-NMA may underestimate the true study variance. As expected, all frequentist models failed to sufficiently frequently
detect the presence of heterogeneity particularly for scenarios with extremely low control group risks (ie, 0.5%–1% and
1%–2%). On the other hand, Bayesian models identified some amount of heterogeneity but the estimates were in all cases
highly biased. Of course the latter is a consequence coming from the choice of the prior distribution and other more
suitable choices can potentially give less biased results.

An additional property of the proposed PL-NMA model is the ability to synthesize all studies within a network of
interventions irrespective of the number of events per arm since excluding such studies from the analysis may result in
disconnected networks. The problem lies mainly in networks including studies with zero events in two or more treatment
groups. To date, the optimal way to treat such studies in meta-analysis or NMA is still unclear with some researchers
arguing that they are informative11,37 and others that those studies are non-informative and problematic.4,36 In scenario
33 of our simulation study, we intended to investigate the performance of the different models in the presence of several
such studies. The choice of inclusion or exclusion appears to mostly affect the uncertainty measures such as the length
of the confidence or credible intervals and the MSE which were typically smaller for all models when including all-zero
event studies. In terms of bias, the inclusion or exclusion appeared to have no serious impact for the PL-NMA model. On
the contrary, inclusion biased substantially the Bayesian models.

Although the PL-NMA model is by nature a common-effect model, we used a two-stage approach for incorporat-
ing between-study variance as a multiplicative overdispersion parameter. Multiplicative parameters are not the standard
way to account for heterogeneity in meta-analysis as typically an additive parameter is implemented. However, the
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penalized likelihood approach strongly relies on the analytical expression of the likelihood function and its moments;
these are not available for the logistic regression model of Section 2.1 for the case of random-effects. Thus, the incorpo-
ration of an additive heterogeneity parameter in the PL-NMA method is not straightforward. The use of multiplicative
heterogeneity parameters has been suggested previously for some meta-analytical approaches22,23 and particularly for
meta-analysis of rare events by Kuss37 and by Kulinskaya and Olkin.38 The latter, in contrast to our approach, is a one-stage
random-effects model.38 A key difference between our two-stage approach and the usual one-stage random-effects mod-
els is that the former does not affect the relative effect estimates but only inflates their variance when 𝜑 > 1. In addition,
the incorporation of the multiplicative parameter does not affect the weights of the studies and, thus, results might be
dominated by the larger studies.24,39 On the other hand, the additive heterogeneity model downweights larger studies.
Hence, the additive model may be more plausible when larger studies have more heterogeneity while the multiplicative
when the smaller studies do so.40,41 A potential interpretation of the multiplicative model could be that the scale param-
eter represents a common variance and the study-specific variances represent differing sample sizes. In our simulation,
we found that all random-effects approaches did not perform sufficiently well with respect to the estimation of the het-
erogeneity. It should be noted, though, that the Cochrane handbook suggests that estimation of heterogeneity is not of
primary interest when performing meta-analyzes of rare events and the priority should be the estimation of the treatment
effects.36

Overall, the proposed PL-NMA model offers a reliable choice for performing NMA for binary outcomes with rare
events. Future work for NMA of rare events could consider the extension of the beta-binomial model for meta-analysis
into NMA.37 Meta-analysts should always bear in mind that the presence of studies with rare events makes estimation
challenging and, therefore, a sensitivity analysis should be carried out to investigate the robustness of the results under
various analysis schemes. It is planned to integrate the proposed PL-NMA method into an R package.
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