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We study how different types of quantum correlations can be established as the consequence of a generalized
entanglement swapping protocol where, starting from two Bell pairs (1,2) and (3,4), a general quantum measure-
ment [denoted by a positive operator-valued measure (POVM)] is performed on the pair (2,3), which results in
creating quantum correlation in (1,4) shared between two spatially separated observers. Contingent upon using
different kinds of POVMs, we show generation or destruction of different quantum correlations in the pairs (1,4),
(1,2), and (3,4). This thus reflects nontrivial transfer of quantum correlations from the pairs (1,2) and (3,4) to the
pair (1,4). As an offshoot, this paper provides an operational tool to generate different types of single parameter
families of quantum correlated states [for example, entangled but not Einstein-Podolsky-Rosen (EPR) steerable,
or EPR steerable but not Bell nonlocal, or Bell nonlocal] by choosing different quantum measurements in the
basic entanglement swapping setup. We further extend our paper by taking mixed initial states shared by the
pairs (1,2) and (3,4). Finally, we study network nonlocality in our scenario. Here, we find the appropriate POVM
measurement for which the generated correlation demonstrates or does not demonstrate network nonlocality for
the whole range of the measurement parameter.
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I. INTRODUCTION

Entanglement swapping is a protocol by which quantum
systems that have never interacted in the past can become
entangled [1]. This protocol can be described as follows:
Alice and Bob share the pair (1,2) of two qubits in the Bell
state. Bob and Charlie share another pair (3,4) of two qubits in
the same Bell state. Bob performs projective measurement in
the Bell basis on the pair (2,3) and communicates the outcome
to Alice and Charlie. Alice and Charlie thus end up with a Bell
pair (1,4). This protocol can be considered as the quantum
teleportation [2] of a qubit that is maximally entangled with
another qubit.

In the above standard entanglement swapping protocol (us-
ing two initial Bell states, measurements in the Bell basis,
and classical communication), entanglement is completely de-
stroyed in the pairs (1,2) and (3,4) and a maximally entangled
state is created in the pair (1,4). In other words, quantum

*pratap6906@gmail.com
†a.ghosal1993@gmail.com
‡arup145.roy@gmail.com
§shiladitya.27@gmail.com
‖dasdebarshi90@gmail.com

correlation (in the form of entanglement) is transferred com-
pletely from the pairs (1,2) and (3,4) to the pair (1,4). The
entanglement swapping protocol can be generalized in various
ways—by modifying the initial states, or by modifying the
measurement performed by Bob, or by extending the num-
ber of parties [3,4]. These types of generalized entanglement
swapping protocol have been studied in different contexts
ranging from quantum networks [5,6] to quantum nonlocality
[7,8] to information loss or gain [9,10]. Hence, the natural
question that arises in this context is how to design different
types of quantum correlation transfer from (1,2) and (3,4)
to (1,4) by generalizing the standard entanglement swapping
protocol, i.e., either by modifying the initial states, or by
modifying the measurements, or both.

In the present paper, we consider a generalized entan-
glement swapping protocol, where each of the two pairs—
Alice-Bob and Bob-Charlie—initially shares a two-qubit Bell
state and Bob performs a general quantum measurement. A
general quantum measurement is represented by a positive
operator-valued measure (POVM) [11,12]. POVMs have been
shown to possess operational advantages in many tasks over
projective measurements, for example, in the context of distin-
guishing nonorthogonal quantum states [13], demonstrating
hidden nonlocality [14,15], probing temporal correlations
[16], sequential detection of quantum correlations by multiple
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observers [17–21], recycling resources in information theo-
retic tasks [22–25], and so on. Here, our aim is to investigate
how different types of quantum correlations are generated in
the pair (1,4) and are deteriorated in the pairs (1,2) and (3,4)
depending on the choice of the POVM by Bob.

In particular, we focus on the creation or destruction of
the following types of quantum correlations: entanglement
[26], Einstein-Podolsky-Rosen (EPR) steering [27], and Bell
nonlocality [28]. In general, these three types of quantum
correlations are inequivalent and there exists a hierarchy
between these—Bell-nonlocal states form a strict subset of
steerable states which again form a strict subset of entangled
states [29,30]. All these three types of quantum correlations
are the building blocks for different types of information
theoretic and communication tasks. For example, entangle-
ment is useful as resource in quantum teleportation [2], dense
coding [31], and so on. Bell nonlocality is the resource
for a number of device-independent tasks, e.g, quantum key
distribution [32], randomness certification [33], randomness
amplification [34], and Bayesian game theory [35]. EPR steer-
ing is the resource in one-sided device-independent quantum
key distribution [36], secure quantum teleportation [37], quan-
tum communication [37], and one-sided device-independent
randomness generation [38]. Against the above backdrop,
constructions of these quantum correlations are one of the ba-
sic requirements of modern quantum technology. The present
paper provides some basic operational tools in the generalized
entanglement swapping setup for generating these correla-
tions in the pair (1,4) shared between two spatially separated
observers that have never interacted before. Specifically, we
report the generation of the following types of two-qubit states
in (1,4) by choosing appropriate POVMs: (i) a single param-
eter class of mixed states that is Bell nonlocal for the whole
range of the state parameter, (ii) a single parameter class of
mixed states that is steerable but not Bell nonlocal for the
whole range of the state parameter, (iii) a single parameter
class of mixed states that is entangled but not EPR steerable
for the whole range of the state parameter, and finally (iv) a
single parameter class of mixed states that gradually shows
all the above-mentioned quantum correlations as the state pa-
rameter is varied. We further extend our paper by probing the
above aspects of creating or destroying quantum correlations
in the pair (1,4) when mixed states are initially shared by the
pairs (1,2) and (3,4) and appropriate POVMs are performed on
(2,3). One important point to stress here is that while probing
standard Bell nonlocality or EPR steering of the state shared
by (1,4), we consider that the sources producing the two initial
entangled states are not necessarily independent.

It is to be noted that Bell nonlocality has been studied
in the context of the entanglement swapping scenario earlier
[8]. However, contrary to the usual Bell scenario, the entan-
glement swapping scenario involves uncorrelated entangled
states produced from several independent sources [39,40]. To
characterize nonlocality in this context, local models with
uncorrelated local variables are desired. This is the motivation
behind introducing the concept of network nonlocality [39].
Network nonlocality in the entanglement swapping network
scenario can be checked using what is known as the “bilocal-
ity” inequality [39–41]. The concepts of network nonlocality
and bilocality inequality have attracted attention in recent

years as witnessed by a series of works [39–45]. Recently,
Gisin et al. [41] showed that the bilocality inequality can
be violated when arbitrary pure entangled states are initially
shared by the pairs (1,2) and (3,4) and when projective mea-
surement in the Bell basis is performed on (2,3). Further, when
two mixed states ρ12 and ρ34 are initially shared between the
pairs (1,2) and (3,4) and projective measurement in the Bell
basis is performed on (2,3), then violation of the bilocality
inequality implies that either ρ12 or ρ34 or both are Bell non-
local [41]. Motivated from these studies, we extend our paper
for probing network nonlocality in the generalized entangle-
ment swapping scenario where two two-qubit Bell states are
initially shared by the pairs (1,2) and (3,4) and a POVM is
performed on (2,3). Here we find the appropriate POVM for
which the resulting measurement statistics violates or does not
violate the bilocality inequality for the whole range of the
measurement parameter. The present paper probes network
nonlocality under POVMs.

The rest of the paper is organized as follows. In Sec. II,
we present the mathematical tools that are useful for the
present paper. In Sec. III, we describe in detail the generalized
entanglement swapping scenario considered by us. Next, in
Sec. IV, we demonstrate our main findings with different
classes of POVMs. Finally, we conclude with a short discus-
sion in Sec. V.

II. PRELIMINARIES

In this section, we discuss in brief the quantifications of
Bell nonlocality, EPR steering, and entanglement pertaining
to two-qubit states that will be used as tools in the present
paper.

A. Quantification of Bell nonlocality

Whether an arbitrary two-qubit state ρ violates the
Bell–Clauser-Horne-Shimony-Holt (CHSH) inequality
[46,47] or not is determined by the function Mρ defined
as [48,49]

Mρ = max
i> j

{ti + t j}. (1)

Here ti (i ∈ {1, 2, 3}) are the eigenvalues of the real symmetric
matrix T T

ρ Tρ , where Tρ is a real 3 × 3 matrix with elements
Ti j = Tr[ρ (σi ⊗ σ j )] (i, j ∈ {1, 2, 3}); T T

ρ is the transpose of
Tρ ; σi with i ∈ {1, 2, 3} are the Pauli matrices. The function
Mρ is related to the maximal mean value Bρ of the Bell-CHSH
operator through the relation [48,49] Bρ = 2

√
Mρ . Hence,

Mρ > 1 implies Bρ > 2—the condition for quantum viola-
tion of the Bell-CHSH inequality by the state ρ. One can,
therefore, quantify the degree of Bell nonlocality pertaining to
the two-qubit state ρ using Nρ ∝ max {0, Bρ − 2} [50]. After
simplifying and taking an appropriate normalization, we have

Nρ = max

{
0,

√
Mρ − 1√
2 − 1

}
. (2)

Consequently, Nρ > 0 implies that the Bell-CHSH inequality
is violated by the two-qubit state ρ. In the present paper, Bell
nonlocality of a two-qubit state is probed using the above
measure.
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B. Quantification of EPR steering

Similar to the case of Bell nonlocality, EPR steering of
a two-qubit state ρ can be quantified [50] in terms of the
maximum quantum violation of the n-setting linear steering
inequality proposed in [51]. For n = 2, the analytical form of
this quantifier is given by [50]

S (2)
ρ = max

⎧⎨
⎩0,

√
Λ

(2)
ρ − 1

√
2 − 1

⎫⎬
⎭

with Λ(2)
ρ = max

i> j
{ti + t j}, (3)

with ti (i ∈ {1, 2, 3}) being defined earlier. Further, S (2)
ρ > 0

implies that the two-setting linear steering inequality [51] is
violated by the two-qubit state ρ [50].

Next, n = 3; the analytical form of this quantifier is given
by [50]

S (3)
ρ = max

⎧⎨
⎩0,

√
Λ

(3)
ρ − 1

√
3 − 1

⎫⎬
⎭

with Λ(3)
ρ = t1 + t2 + t3. (4)

With this, S (3)
ρ > 0 implies that the three-setting linear steer-

ing inequality [51] is violated by the two-qubit state ρ [50].
One can easily check that, for any two-qubit state ρ, S (2)

ρ =
Nρ [52]. Also, a two-qubit state ρ violates the two-setting
linear steering inequality if and only if the state violates the
Bell-CHSH inequality [52]. Hence, nonequivalence of EPR
steering and Bell nonlocality can be probed if we quantify Bell
nonlocality by Nρ and EPR steering by S (3)

ρ . This motivates
us to use S (3)

ρ as the quantifier of EPR steering pertaining to
any two-qubit state ρ. In what follows, for simplicity, we will
denote S (3)

ρ by Sρ . We will determine whether a two-qubit
state ρ is steerable or not depending on whether Sρ > 0 or
Sρ � 0 respectively.

C. Quantification of entanglement

Entanglement of a two-qubit state ρ can be quantified using
the concept of negativity defined as [53,54]

Eρ = ‖ρTB‖1 − 1

where ‖ρTB‖1 denotes the trace norm of the partial transpose
of ρ. From the above definition, we have

Eρ = 2 max (0,−μ4) (5)

where μ4 is the minimum eigenvalue of ρTB . A two-qubit state
ρ is entangled if and only if Eρ > 0.

D. POVM

In general, any quantum measurement is represented by the
POVM [11,12], which is a set of positive operators that add to
identity, i.e., E ≡ {Ei|

∑
Ei = I, 0 < Ei � I}. Every Ei can

be decomposed as Ei = M†
i Mi. The effects (Eis) represent

quantum events that may occur as outcomes of a measure-
ment. For an arbitrary state ρ, the postmeasurement state

after obtaining the outcome i is given by ρPM|i = MiρM†
i

Tr(ρEi )
=

Ui
√

Eiρ
√

Ei
†
U †

i
Tr(ρEi )

where Ui is an arbitrary unitary operator (spec-
ified by the actual physical realization of the POVM) and the
probability of getting the ith outcome is given by Tr(ρEi ).
As a special case, the postmeasurement state, when the ith
outcome is obtained, can be determined using the generalized
von Neumann–Lüders transformation rule [11,12] as follows:

ρPM|i =
√

Ei ρ
√

Ei
†

Tr(ρEi )
. In the present paper, the postmeasurement

states will be evaluated using the above-mentioned general-
ized von Neumann–Lüders transformation rule.

E. Network nonlocality

Next, we are going to describe in brief the basic concept
and definition of bilocality and network nonlocality [39].
In a typical entanglement swapping scenario involving three
observers, say, Alice, Bob, and Charlie, there are two inde-
pendent sources S1 and S2. Bob shares two pairs of particles,
one with Alice produced from S1 and another with Charlie
produced from S2.

In order to capture nonlocality in the above network, let
Alice, Bob, and Charlie receive inputs denoted by x̃, ỹ, and z̃
respectively and return outputs denoted by ã, b̃, and c̃ respec-
tively. The produced correlation P(ã, b̃, c̃|x̃, ỹ, z̃) will exhibit
network nonlocality if it cannot be described by the following
bilocal model [39]:

P(ã, b̃, c̃|x̃, ỹ, z̃) =
∫

d�1d�2ρ(�1,�2)P(ã|x̃,�1)

× P(b̃|ỹ,�1,�2)P(c̃|z̃,�2)

with ρ(�1,�2) = ρ1(�1)ρ2(�2), (6)

where �1 and �2 are two hidden variables produced by
two sources S1 and S2 respectively. Here the condition
ρ(�1,�2) = ρ1(�1)ρ2(�2) implies that the two sources S1

and S2 are independent.
The first approach towards deriving bilocal inequality was

reported in [39] and later Branciard et al. derived more general
bilocal inequalities [40]. Here, we will consider the latter
bilocal inequalities. Consider the entanglement swapping
scenario with each of Alice and Charlie performing a single-
particle measurement with binary inputs x̃ ∈ {0, 1} and z̃ ∈
{0, 1} respectively and obtaining corresponding binary out-
puts ã ∈ {0, 1} and c̃ ∈ {0, 1} respectively. The middle party,
Bob, performs the same measurement (and hence receives no
input ỹ) with four possible outcomes. Let us denote Bob’s
outcome by two bits: b̃0b̃1 = 00, 01, 10, or 11 (for de-
tails see [40,42]). Therefore, the tripartite correlations can
be written as P(ã, b̃0b̃1, c̃|x̃, z̃). With these, let us define the
following [40]:

I = 〈(A0 + A1)B0(C0 + C1)〉 (7)

and

J = 〈(A0 − A1)B1(C0 − C1)〉, (8)

where

〈AxByCz〉 =
∑

ã,b̃0 b̃1,c

(−1)ã+b̃y+c̃P(ã, b̃0b̃1, c̃|x̃, z̃). (9)
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Using these notations, the bilocality inequality [40] can be
expressed as

Bbilocal =
√

|I| +
√

|J| � 2. (10)

When the above inequality is violated, then the tripartite
measurement correlation is nonbilocal, i.e., network nonlocal-
ity is demonstrated [39–41].

III. SETTING UP THE SCENARIO

Specifically, we consider a general entanglement swap-
ping protocol, where Alice shares a Bell pair |ψ1〉12 =
(1/

√
2)(|00〉 + |11〉) denoted by (1,2) with Bob and Bob

shares another Bell pair |ψ1〉34 = (1/
√

2)(|00〉 + |11〉) de-
noted by (3,4) with Charlie. Here, Alice, Bob, and Charlie are

physically separated from each other. Bob performs a joint
quantum measurement with four possible outcomes (which
is a POVM E ≡ {E1, E2, E3, E4}) on (2,3) and discloses the
outcome to both Alice and Charlie. Consequently, the pair
(1,4) shared between Alice and Charlie may become corre-
lated depending on the choice of the POVM by Bob. Similarly,
the correlations present in the pairs (1,2) and (3,4) may get
reduced. Within this framework, different types of POVM lead
to different types of correlation transfer from the pairs (1,2)
and (3,4) to the pair (1,4).

In the above scenario, the postmeasurement state [after
Bob performs the POVM on (2,3) and discloses the outcome
to Alice and Charlie] shared between Alice-Charlie, when the
ith outcome (i ∈ {1, 2, 3, 4}) is obtained, is given by

ρ14|i = Tr23[(I2 ⊗ √
Ei ⊗ I2)(|ψ1〉〈ψ1|12 ⊗ |ψ1〉〈ψ1|34)(I2 ⊗ √

Ei
† ⊗ I2)]

Tr[(I2 ⊗ √
Ei ⊗ I2)(|ψ1〉〈ψ1|12 ⊗ |ψ1〉〈ψ1|34)(I2 ⊗ √

Ei
† ⊗ I2)]

. (11)

Similarly, the postmeasurement states shared between Alice-Bob and Bob-Charlie, when the ith outcome is obtained, are
given by

ρ12|i = Tr34[(I2 ⊗ √
Ei ⊗ I2)(|ψ1〉〈ψ1|12 ⊗ |ψ1〉〈ψ1|34)(I2 ⊗ √

Ei
† ⊗ I2)]

Tr[(I2 ⊗ √
Ei ⊗ I2)(|ψ1〉〈ψ1|12 ⊗ |ψ1〉〈ψ1|34)(I2 ⊗ √

Ei
† ⊗ I2)]

(12)

and

ρ34|i = Tr12[(I2 ⊗ √
Ei ⊗ I2)(|ψ1〉〈ψ1|12 ⊗ |ψ1〉〈ψ1|34)(I2 ⊗ √

Ei
† ⊗ I2)]

Tr[(I2 ⊗ √
Ei ⊗ I2)(|ψ1〉〈ψ1|12 ⊗ |ψ1〉〈ψ1|34)(I2 ⊗ √

Ei
† ⊗ I2)]

(13)

respectively. Here, the postmeasurement states are determined using the Lüders state-update rule.

Let each Ei admit the following decomposition:

Ei =
3∑

k=0

qik|�ik〉〈�ik|,

where |�ik〉 for k = 0, 1, 2, 3 form a complete orthonormal
basis on C2 ⊗ C2 and qik � 0 for all k = 0, 1, 2, 3. With this,
we have [10]

ρ14|i = E∗
i

Tr(Ei )

with E∗
i =

3∑
k=0

qik|�∗
ik〉〈�∗

ik|, (14)

with |�∗
ik〉 being the complex conjugation of |�ik〉 in the

computational basis.
However, obtaining similar compact expressions for (1,2)

and (3, 4) seems difficult for an arbitrary POVM.

IV. RESULTS

We have analyzed with different classes of POVMs. Below,
we present some of these results which seem interesting in the
context of quantum correlation (e.g., Bell nonlocality, EPR
steering, and entanglement) transfer from the pairs (1,2) and
(3,4) to the pair (1,4).

A. Case I

At first, we consider a POVM E ≡ {E1, E2, E3, E4} with
the following effect operators:

Ei = λ|ψi〉〈ψi| + 1 − λ

4
I4, (15)

where λ ∈ [0, 1] is the sharpness parameter denoting the mea-
surement strength; (1 − λ) denotes the amount of white noise
incorporated in the measurement; |ψi〉 for i = 1, 2, 3, 4 forms
the Bell basis defined as

|ψ1〉 = |00〉 + |11〉√
2

, |ψ2〉 = |00〉 − |11〉√
2

,

|ψ3〉 = |01〉 + |10〉√
2

, |ψ4〉 = |01〉 − |10〉√
2

.

The above measurement becomes projective when λ = 1 and
becomes trivial when λ = 0. This measurement is unentan-
gled for 0 � λ � 1

3 and entangled for 1
3 < λ � 1.

For this POVM, each outcome i occurs with probability
pi = 1

4 for all i ∈ {1, 2, 3, 4}.
After Bob gets the outcome i (i ∈ {1, 2, 3, 4}) contingent

upon performing the above POVM and communicates the out-
come to Alice and Charlie, the postmeasurement state shared
between Alice and Charlie becomes

ρ14|i = λ|ψi〉〈ψi| + 1 − λ

4
I4 ∀i ∈ {1, 2, 3, 4}. (16)
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FIG. 1. Variation of negativity (Eρ14|i , Eρ12|i , and Eρ34|i ) with the
measurement parameter λ for the states ρ12|i, ρ34|i, and ρ14|i. Here
ραβ|i denotes the postmeasurement state for the pair (α, β) after Bob
gets the outcome i (i ∈ {1, 2, 3, 4}) contingent upon performing the
POVM (15) and communicates the outcome to Alice and Charlie.
It is noteworthy that this plot is the same for all possible outcomes
i ∈ {1, 2, 3, 4} of Bob’s measurement.

This is obtained from Eq. (14).
Similarly using Eqs. (12) and (13), we get the postmea-

surement state shared between Alice-Bob and that between
Bob-Charlie as written below:

ρ12|i = ρ34|i = s(λ)|ψ1〉〈ψ1| + 1 − s(λ)

4
I4 ∀i ∈ {1, 2, 3, 4}

with s(λ) = 1

2
[1 − λ +

√
(1 − λ)(1 + 3λ)]. (17)

Hence, each of ρ14|i, ρ12|i, and ρ34|i belongs to the Werner class
of states for all i ∈ {1, 2, 3, 4}. Another important point to be
stressed here is that ρ14|i depends on the outcome i, whereas
ρ12|i and ρ34|i are independent of i.

1. Entanglement

Next, we evaluate the amount of entanglement of ρ14|i,
ρ12|i, and ρ34|i for all i ∈ {1, 2, 3, 4}. From (5), we get

Eρ14|i = 3λ − 1

2
∀i ∈ {1, 2, 3, 4}. (18)

Each ρ14|i is entangled if and only if 1
3 < λ � 1. Hence, it is

clearly reflected that the state ρ14|i is entangled if and only if
Bob’s measurement is entangled.

In the case of ρ12|i or ρ34|i, the amount of entanglement is
given by

Eρ12|i = Eρ34|i = 3s(λ) − 1

2
∀i ∈ {1, 2, 3, 4} (19)

with s(λ) being defined earlier. From Eq. (19), it follows
that the states ρ12 and ρ34 are entangled if and only if
0 � λ < 0.91.

We show the variation of Eρ14|i , Eρ12|i , and Eρ34|i with λ in
Fig. 1. From this figure, it is evident that all the resulting
states ρ12|i, ρ34|i, and ρ14|i are simultaneously entangled when
1
3 < λ < 0.91. In other words, there exists a range of the
measurement strength λ when the particle of Alice (Charlie) is

FIG. 2. Variation of the amount of EPR steering (Sρ14|i , Sρ12|i , and
Sρ34|i ) with the measurement parameter λ for the states ρ12|i, ρ34|i,
and ρ14|i. Here ραβ|i denotes the postmeasurement state for the pair
(α, β) after Bob gets the outcome i (i ∈ {1, 2, 3, 4}) contingent upon
performing the POVM (15) and communicates the outcome to Alice
and Charlie. This plot remains the same for all possible outcomes
i ∈ {1, 2, 3, 4} of Bob’s measurement.

simultaneously entangled with the particles of Bob and Char-
lie (Alice)—which is never possible in the usual entanglement
swapping scenario with λ = 1. Moreover, when λ = 2

3 , all
these three resulting states shared between different parties
have equal amounts of entanglement—Eρ14|i = Eρ12|i = Eρ34|i =
1
2 . These aspects are the same for all possible outcomes i ∈
{1, 2, 3, 4}.

2. EPR steering

We now move to analyze the EPR steering of all the post-
measurement states which we obtained earlier. For the state
ρ14|i, the eigenvalues of the matrix T T

ρ14|i Tρ14|i are given by

t1 = λ2, t2 = λ2, and t3 = λ2. Hence, using Eq. (4) we have

Sρ14|i = max
{

0,

√
3λ − 1√
3 − 1

}
∀i ∈ {1, 2, 3, 4}. (20)

Hence, the state ρ14|i is steerable with respect to the quantum
violation of the three-setting linear steering inequality [51]
when 1√

3
< λ � 1. Next, let us focus on the states ρ12|i

and ρ34|i. For each of these two states, the eigenvalues
of the matrix T T

ρm m+1|i Tρm m+1|i (with m ∈ {1, 3}) are given

by t1 = [s(λ)]2, t2 = [s(λ)]2, and t3 = [s(λ)]2, where
s(λ) = 1

2 [1 − λ + √
(1 − λ)(1 + 3λ)]. With these, we have

Sρ12|i = Sρ34|i = max
{

0,

√
3s(λ) − 1√

3 − 1

}
∀i ∈ {1, 2, 3, 4}.

(21)

The states ρ12|i and ρ34|i are steerable when s(λ) > 1√
3
, i.e.,

when 0 � λ < 0.75.
We have plotted the variation of Sρ14|i , Sρ12|i , and Sρ34|i with

λ in Fig. 2. From this figure, it can be observed that all the
three states ρ12|i, ρ34|i, and ρ14|i are simultaneously EPR steer-
able when 1√

3
< λ < 0.75. For λ = 2

3 , all these three resulting
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FIG. 3. Variation of Bell nonlocality (Nρ14|i , Nρ12|i , and Nρ34|i )
with the measurement parameter λ for the states ρ12|i, ρ34|i, and ρ14|i.
Here ραβ|i denotes the postmeasurement state for the pair (α, β) after
Bob gets the outcome i (i ∈ {1, 2, 3, 4}) contingent upon performing
the POVM (15) and communicates the outcome to Alice and Charlie.
This plot remains the same for all possible outcomes i ∈ {1, 2, 3, 4}
of Bob’s measurement.

states have the same amount of EPR steerability. Similar to the
case of entanglement, here also, these features are the same for
all possible outcomes i ∈ {1, 2, 3, 4}.

3. Bell nonlocality

Next, we will focus on Bell nonlocality of the postmea-
surement states. Using the eigenvalues of the matrix T T

ρ14|i Tρ14|i
derived earlier, we get

Nρ14|i = max
{

0,

√
2λ − 1√
2 − 1

}
∀i ∈ {1, 2, 3, 4}. (22)

Hence, ρ14|i is Bell nonlocal (with respect to the Bell-CHSH
inequality) when 1√

2
< λ � 1. Similarly, for the states ρ12|i

and ρ34|i, we have

Nρ12|i = Nρ34|i = max
{

0,

√
2s(λ) − 1√

2 − 1

}
∀i ∈ {1, 2, 3, 4},

(23)

where s(λ) = 1
2 [1 − λ + √

(1 − λ)(1 + 3λ)]. These two
states are Bell nonlocal when s(λ) > 1√

2
, i.e., when

0 � λ < 0.62.
We have plotted the variation of Nρ14|i , Nρ12|i , and Nρ34|i

with λ in Fig. 3. Unlike the case of entanglement and EPR
steering, there does not exist any range of λ, where all the
three states ρ12|i, ρ34|i, and ρ14|i are simultaneously Bell non-
local with respect to quantum violation of the Bell-CHSH
inequality. In particular, when 0.62 � λ � 1√

2
, none of the

three states ρ14|i, ρ12|i, and ρ34|i is Bell nonlocal.
From Table I, it can be observed that these analyses provide

a tool for constructing different types of quantum correlations
in different branches of a network by fine tuning the measure-
ment strength λ. For example, if one chooses the POVM (15)
with λ � 1√

2
, then after completion of the protocol the pair

(1,4) becomes entangled without Bell nonlocality (with re-

TABLE I. The ranges of the measurement strength λ for which
the states ρ12|i, ρ34|i, and ρ14|i are entangled, or EPR steerable, or
Bell nonlocal for all possible i ∈ {1, 2, 3, 4}. Here ραβ|i denotes the
postmeasurement state for the pair (α, β) after Bob gets the outcome
i (i ∈ {1, 2, 3, 4}) contingent upon performing the POVM (15) and
communicates the outcome to Alice and Charlie.

Entangled Steerable Bell nonlocal
States when when when

ρ14|i 1
3 < λ � 1 1√

3
< λ � 1 1√

2
< λ � 1

ρ12|i 0 � λ < 0.91 0 � λ < 0.75 0 � λ < 0.62
ρ34|i 0 � λ < 0.91 0 � λ < 0.75 0 � λ < 0.62

spect to the Bell-CHSH inequality). Similarly, if one chooses
λ � 1√

3
, then the pair (1,4) is entangled without EPR steering

(with respect to the three-setting steering inequality) and Bell
nonlocality (with respect to the Bell-CHSH inequality). In a
similar way, entanglement without steerability or entangle-
ment without Bell nonlocality can be established between the
pair (1,2) or (3,4) by appropriately choosing λ.

B. Case II

We now consider another class of POVM E ≡
{E1, E2, E3, E4} with

E1 = x
∣∣ψ (λ)

1

〉〈
ψ

(λ)
1

∣∣ + y1(1 − x)

y1 + y2

∣∣ψ (λ)
2

〉〈
ψ

(λ)
2

∣∣
+ y2(1 − x)

y1 + y2
|φ3〉〈φ3|,

E2 = x
∣∣ψ (λ)

2

〉〈
ψ

(λ)
2

∣∣ + y1(1 − x)

y1 + y2

∣∣ψ (λ)
1

〉〈
ψ

(λ)
1

∣∣
+ y2(1 − x)

y1 + y2
|φ4〉〈φ4|,

E3 = x
∣∣ψ (λ)

3

〉〈
ψ

(λ)
3

∣∣ + y1(1 − x)

y1 + y2

∣∣ψ (λ)
4

〉〈
ψ

(λ)
4

∣∣
+ y2(1 − x)

y1 + y2
|φ1〉〈φ1|,

E4 = x
∣∣ψ (λ)

4

〉〈
ψ

(λ)
4

∣∣ + y1(1 − x)

y1 + y2

∣∣ψ (λ)
3

〉〈
ψ

(λ)
3

∣∣
+ y2(1 − x)

y1 + y2
|φ2〉〈φ2|, (24)

where x = 0.3, y1 = 2+2
√

1−λ−λ

4 , and y2 = λ
4 with 0 � λ � 1.

We choose |ψ (λ)
i 〉 from the set {|ψ (λ)

i 〉, i = 1, . . . , 4} and |φi〉
from the set {|φi〉, i = 1, . . . , 4} that are given by∣∣ψ (λ)

1

〉 = a|00〉 − b|11〉,∣∣ψ (λ)
2

〉 = b|00〉 + a|11〉,
|ψ (λ)

3 〉 = a|01〉 − b|10〉,∣∣ψ (λ)
4

〉 = b|01〉 + a|10〉,
with

a =
√

1 − √
1 − λ√

2
, b =

√
1 + √

1 − λ√
2

,
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and

|φ1〉 = |00〉,
|φ2〉 = |11〉,

|φ3〉 = |01〉,
|φ4〉 = |10〉.

The above POVM is characterized by the single parameter λ.
In this case, it can be shown that the probability of getting

the ith outcome is pi = 1
4 for all i ∈ {1, 2, 3, 4}.

Next, we will find out the postmeasurement states ρ12|i,
ρ34|i, and ρ14|i after Bob performs the above POVM on the pair
(2,3) and communicates the outcome to Alice and Charlie.
From Eq. (14), we get

ρ14|1 = x
∣∣ψ (λ)

1

〉〈
ψ

(λ)
1

∣∣ + y1(1 − x)

y1 + y2

∣∣ψ (λ)
2

〉〈
ψ

(λ)
2

∣∣
+ y2(1 − x)

y1 + y2
|φ3〉〈φ3|,

ρ14|2 = x
∣∣ψ (λ)

2

〉〈ψ (λ)
2

∣∣ + y1(1 − x)

y1 + y2

∣∣ψ (λ)
1

〉〈
ψ

(λ)
1

∣∣
+ y2(1 − x)

y1 + y2
|φ4〉〈φ4|,

ρ14|3 = x
∣∣ψ (λ)

3

〉〈
ψ

(λ)
3

∣∣ + y1(1 − x)

y1 + y2

∣∣ψ (λ)
4

〉〈
ψ

(λ)
4

∣∣
+ y2(1 − x)

y1 + y2
|φ1〉〈φ1|,

ρ14|4 = x
∣∣ψ (λ)

4

〉〈
ψ

(λ)
4

∣∣ + y1(1 − x)

y1 + y2

∣∣ψ (λ)
3

〉〈
ψ

(λ)
3

∣∣
+ y2(1 − x)

y1 + y2
|φ2〉〈φ2|. (25)

From Eqs. (12) and (13), we get

ρ12|1 = (e2 + f 2)|ξ1〉〈ξ1| + h2|φ3〉〈φ3| + h2|φ4〉〈φ4|
+ g2|φ1〉〈φ1|,

ρ34|1 = (e2 + g2)|ξ2〉〈ξ2| + h2|φ3〉〈φ3| + h2|φ4〉〈φ4|
+ f 2|φ2〉〈φ2|,

with |ξ1〉 = e√
e2 + f 2

|00〉 + f√
e2 + f 2

|11〉,

|ξ2〉 = g√
e2 + g2

|00〉 + e√
e2 + g2

|11〉,

e =
√

y2(1 − x)

y1 + y2
,

f = a2

√
y1(1 − x)

y1 + y2
+ b2√x,

g = b2

√
y1(1 − x)

y1 + y2
+ a2√x,

h = ab

√
y1(1 − x)

y1 + y2
− ab

√
x. (26)

Similarly, ρ12|i and ρ34|i for other values of i can be evaluated.
Unlike the previous POVM, here the states ρ12|i and ρ34|i are

FIG. 4. Variation of negativity (Eρ14|i , Eρ12|i , and Eρ34|i ) with the
measurement parameter λ for the states ρ12|i, ρ34|i, and ρ14|i. Here
ραβ|i denotes the postmeasurement state for the pair (α, β) after
Bob gets the outcome i (i ∈ {1, 2, 3, 4}) contingent upon performing
the POVM (24) with x = 0.3 and communicates the outcome to
Alice and Charlie. This plot is the same for all possible outcomes
i ∈ {1, 2, 3, 4} of Bob’s measurement.

different as the POVM (24) is asymmetric with respect to the
two particles of the pair (2,3). This is due to the fact that the set
{|φi〉, i = 1, . . . , 4} is not symmetric. Note that each of ρ12|i,
ρ34|i, and ρ14|i is a mixed state for 0 � λ � 1.

1. Entanglement

Let us first focus on the entanglement of the states ρ12|i,
ρ34|i, and ρ14|i. The amount of entanglement of the state ρ14|i
is given by

Eρ14|i =
√

4q2 + r2 − r

with q = ab[y1(1 − 2x) − xy2]

y1 + y2
,

r = y2(1 − x)

y1 + y2
∀i ∈ {1, 2, 3, 4}. (27)

Next, the amount of entanglement of the states ρ12|i and
ρ34|i is given by

Eρ12|i = 2(e f − h2) ∀i ∈ {1, 2, 3, 4} (28)

and

Eρ34|i = 2(eg − h2) ∀i ∈ {1, 2, 3, 4} (29)

respectively, where e, f , g, and h are defined earlier. Hence,
though the structure of each of the states ρ12|i, ρ34|i, and ρ14|i
is different for different i, each of Eρ14|i , Eρ12|i , and Eρ34|i does
not depend on i.

Setting x = 0.3, we have plotted the variation of Eρ14|i , Eρ14|i ,
and Eρ14|i with λ in Fig. 4. It can be observed that each of the
above three states is entangled for the whole range of λ except
at λ = 0.

This result demonstrates the following interesting as-
pect of the generalized entanglement swapping protocol
with the POVM (24). This protocol creates entanglement
in the pair (1,4). However, it never completely destroys
the entanglement content in the pairs (1,2) and (3,4) for
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the whole range of the measurement parameter λ except
at λ = 0.

2. EPR steering

Next, we will evaluate EPR steerability of different post-
measurement states. It can be checked that the eigenvalues of
the matrix T T

ρ14|i Tρ14|i for the state ρ14|i are given by

t1 =
(

2ab
[
y2x + y1(2x − 1)

]
y1 + y2

)2

,

t2 =
(

2ab
[
y2x + y1(2x − 1)

]
y1 + y2

)2

,

t3 =
(

y1 + y2(2x − 1)

y1 + y2

)2

∀i ∈ {1, 2, 3, 4}. (30)

The eigenvalues of the matrix T T
ρ12|i Tρ12|i for the state ρ12|i are

given by

t1 = 4e2 f 2

t2 = 4e2 f 2,

t3 = (e2 + f 2 + g2 − 2h2)2 ∀i ∈ {1, 2, 3, 4}. (31)

And finally, the eigenvalues of the matrix T T
ρ34|i Tρ34|i for the

state ρ34|i are given by

t1 = 4e2g2,

t2 = 4e2g2,

t3 = (e2 + f 2 + g2 − 2h2)2 ∀i ∈ {1, 2, 3, 4}. (32)

Using the above expressions, Sρ14|i , Sρ12|i , and Sρ34|i can be
evaluated by setting x = 0.3. Interestingly, in this case, it can
be shown that Sρ14|i = 0 for the whole range of λ ∈ [0, 1]. On
the other hand, Sρ12|i > 0 and Sρ34|i > 0 for the whole range of
λ except at λ = 0.

3. Bell nonlocality

Using Eqs. (30), (31), and (32) and setting x = 0.3, it can
be checked that each of the two states ρ12|i and ρ34|i is Bell
nonlocal for the whole range of λ except at λ = 0. On the
other hand, the state ρ14|i is not Bell nonlocal for the whole
range of λ. In other words, Nρ14|i = 0 for all λ ∈ [0, 1], and
Nρ12|i > 0 and Nρ34|i > 0 for all λ ∈ (0, 1].

Therefore, the above results indicate that the resulting
state ρ14|i (for all possible outcomes i) after completion of
our generalized entanglement swapping protocol contingent
upon using the POVM (24) with x = 0.3 is entangled, but
does not violate the three-setting steering inequality [51] or
the Bell-CHSH inequality. This is summarized in Table II.
Interestingly, this holds for the whole range of λ except at
λ = 0. Hence, this process leads to the generation of a single
parameter (λ) family of mixed entangled states that does not
violate the three-setting linear steering inequality or the Bell-
CHSH inequality for the whole range of the state parameter,
except for the case when the state parameter is equal to zero.
This class of mixed entangled states has another interesting
feature—entanglement increases with an increase in the state

TABLE II. The ranges of the measurement parameter λ for which
the states ρ12|i, ρ34|i, and ρ14|i are entangled, or EPR steerable, or
Bell nonlocal for all possible i ∈ {1, 2, 3, 4}. Here ραβ|i denotes the
postmeasurement state for the pair (α, β) after Bob gets the outcome
i (i ∈ {1, 2, 3, 4}) contingent upon performing the POVM (24) with
x = 0.3 and communicates the outcome to Alice and Charlie.

Entangled Steerable Bell nonlocal
States when when when

ρ14|i 0 < λ � 1 Never Never
ρ12|i 0 < λ � 1 0 < λ � 1 0 < λ � 1
ρ34|i 0 < λ � 1 0 < λ � 1 0 < λ � 1

parameter λ whenever λ � 0.34. However, when λ > 0.34,
then entanglement decreases with an increase in λ. Hence, it is
implied that this class of states never violates the three-setting
linear steering inequality or the Bell-CHSH inequality even
when the entanglement content is varied (by varying λ).

Similarly, from Table II, we see that the resulting states
ρ12|i and ρ34|i (for all possible outcomes i) are Bell nonlocal
for the whole range of λ except λ = 0. Thus, this generalized
entanglement swapping protocol with the POVM (24) also
provides a tool to generate a single parameter (λ) family of
mixed entangled states that is Bell nonlocal for the whole
range of the state parameter, except for λ = 0.

Finally, we would like to point out that this generalized en-
tanglement swapping protocol generates entanglement in the
pair (1,4), but never generates EPR steering (with respect to
quantum violation of the three-setting linear steering inequal-
ity) or Bell nonlocality (with respect to quantum violation of
the Bell-CHSH inequality) in (1,4). On the other hand, this
protocol never completely destroys Bell nonlocality in each
of the pairs (1,2) and (3,4). This is valid for the whole range
of the measurement parameter λ, except at λ = 0.

C. Case III

Now, we consider the POVM mentioned in (24) with x =
0.725. For this POVM, we will now determine how different
quantum correlations are created or destroyed in various pairs
of particles.

1. Entanglement

Entanglement of each of the states ρ12|i, ρ34|i, and ρ14|i can
be determined by setting x = 0.725 in Eqs. (27), (28), and
(29). In this case, we get that Eρ14|i > 0, Eρ12|i > 0, and Eρ34|i >

0 for the whole range of λ except at λ = 0. This is valid for
any i ∈ {1, 2, 3, 4}. The variation of Eρ14|i , Eρ12|i , and Eρ34|i with
λ is depicted in Fig. 5.

Hence, similar to the previous case, this protocol creates
entanglement in the pair (1, 4) without completely destroying
the entanglement content in the pairs (1, 2) and (3, 4). This
feature persists for the whole range of the measurement pa-
rameter λ except at λ = 0.

2. EPR steering

Using the expressions of the eigenvalues of the matrices
T T

ρ14|i Tρ14|i , T T
ρ12|i Tρ12|i , and T T

ρ34|i Tρ34|i mentioned in Eqs. (30),
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FIG. 5. Variation of negativity (Eρ14|i , Eρ12|i , and Eρ34|i ) with the
measurement parameter λ for the states ρ12|i, ρ34|i, and ρ14|i. Here
ραβ|i denotes the postmeasurement state for the pair (α, β) after
Bob gets the outcome i (i ∈ {1, 2, 3, 4}) contingent upon performing
the POVM (24) with x = 0.725 and communicates the outcome to
Alice and Charlie. This plot is the same for all possible outcomes
i ∈ {1, 2, 3, 4} of Bob’s measurement.

(31), and (32) and setting x = 0.725, we get the following
results for all i ∈ {1, 2, 3, 4}: Sρ14|i > 0 and Sρ12|i > 0 for all
λ ∈ (0, 1], whereas Sρ34|i = 0 for all λ ∈ [0, 1].

3. Bell nonlocality

Similarly, using Eqs. (30), (31), and (32) and setting x =
0.725, we get the following results in the context of Bell
nonlocality for all i ∈ {1, 2, 3, 4}: Nρ14|i = 0, Nρ12|i = 0, and
Nρ34|i = 0 for all λ ∈ [0, 1].

All the above results are summarized in Table III. This
table points out that each of the two resulting states ρ14|i
and ρ12|i (for all possible outcomes i) after completion of our
generalized entanglement swapping protocol contingent upon
using the POVM (24) with x = 0.725 is entangled as well as
steerable, but does not violate the Bell-CHSH inequality. This
holds for the whole range of λ except at λ = 0. Hence, this
protocol can be used as a tool to generate a single parameter
family of EPR steerable mixed states (where the state param-
eter is λ) that does not violate the Bell-CHSH inequality for
the whole range of the state parameter, except for the case
when the state parameter is equal to zero. Further, this class
of states never violates the Bell-CHSH inequality even when

TABLE III. The ranges of the measurement parameter λ for
which the states ρ12|i, ρ34|i, and ρ14|i are entangled, or EPR steerable,
or Bell nonlocal for all possible i ∈ {1, 2, 3, 4}. Here ραβ|i denotes the
postmeasurement state for the pair (α, β) after Bob gets the outcome
i (i ∈ {1, 2, 3, 4}) contingent upon performing the POVM (24) with
x = 0.725 and communicates the outcome to Alice and Charlie.

Entangled Steerable Bell nonlocal
States when when when

ρ14|i 0 < λ � 1 0 < λ � 1 Never
ρ12|i 0 < λ � 1 0 < λ � 1 Never
ρ34|i 0 < λ � 1 Never Never

FIG. 6. Variation of negativity (Eρ14|i , Eρ12|i , and Eρ34|i ) with the
measurement parameter λ for the states ρ12|i, ρ34|i, and ρ14|i. Here
ραβ|i denotes the postmeasurement state for the pair (α, β) after
Bob gets the outcome i (i ∈ {1, 2, 3, 4}) contingent upon performing
the POVM (24) with x = 0.8 and communicates the outcome to
Alice and Charlie. This plot is the same for all possible outcomes
i ∈ {1, 2, 3, 4} of Bob’s measurement.

the amount of entanglement is varied by varying the state
parameter λ.

On the other hand, the resulting state ρ34|i (for all possible
outcomes i) is entangled, but does not violate the three-setting
steering inequality [51] or the Bell-CHSH inequality even
when the entanglement of ρ34|i is varied by varying λ.

Finally, it should be noted that this generalized entangle-
ment swapping protocol generates entanglement as well as
EPR steering in the pair (1,4), but never generates Bell non-
locality in (1,4). This protocol never destroys EPR steering
in (1,2), but completely destroys Bell nonlocality in (1,2).
Also, this protocol never destroys entanglement in (3,4), but
completely destroys EPR steering in (3,4). This is valid for the
whole range of the measurement parameter λ, except at λ = 0.
Here, destroying Bell nonlocality and EPR steering is probed
with respect to the quantum violations of the Bell-CHSH
inequality and the three-setting linear steering inequality re-
spectively.

D. Case IV

Next, we again consider the POVM mentioned in (24), but
with x = 0.8. For this POVM, let us now find out how differ-
ent quantum correlations are created or destroyed in various
pairs in the generalized entanglement swapping scheme.

1. Entanglement

Entanglement of each of the states ρ12|i, ρ34|i, and ρ14|i is
determined by taking x = 0.8 in Eqs. (27), (28), and (29). In
this case also, we get that Eρ14|i > 0, Eρ12|i > 0, and Eρ34|i > 0
for the whole range of λ except at λ = 0. This holds for any
i ∈ {1, 2, 3, 4}. The variation of Eρ14|i , Eρ12|i , and Eρ34|i with λ is
depicted in Fig. 6. Hence, in this protocol also, entanglement
is created in the pair (1,4), but the entanglement content is not
destroyed completely in the pairs (1,2) and (3,4). This is valid
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TABLE IV. The ranges of the measurement parameter λ for
which the states ρ12|i, ρ34|i, and ρ14|i are entangled, or EPR steerable,
or Bell nonlocal for all possible i ∈ {1, 2, 3, 4}. Here ραβ|i denotes the
postmeasurement state for the pair (α, β) after Bob gets the outcome
i (i ∈ {1, 2, 3, 4}) contingent upon performing the POVM (24) with
x = 0.8 and communicates the outcome to Alice and Charlie.

Entangled Steerable Bell nonlocal
States when when when

ρ14|i 0 < λ � 1 0 < λ � 1 0 < λ � 1
ρ12|i 0 < λ � 1 Never Never
ρ34|i 0 < λ � 1 Never Never

for the whole range of the measurement parameter λ except
at λ = 0.

2. EPR steering

Using the expressions of the eigenvalues of the ma-
trices T T

ρ14|i Tρ14|i , T T
ρ12|i Tρ12|i , and T T

ρ34|i Tρ34|i mentioned earlier
and setting x = 0.8, we get the following results for all
i ∈ {1, 2, 3, 4}: Sρ14|i > 0 for all λ ∈ (0, 1], whereas Sρ34|i =
Sρ12|i = 0 for all λ ∈ [0, 1].

3. Bell nonlocality

Using Eqs. (30), (31), and (32) and setting x = 0.8, we get
the following results in the context of Bell nonlocality for all
i ∈ {1, 2, 3, 4}: Nρ14|i > 0 for all λ ∈ (0, 1], and Nρ12|i = 0 and
Nρ34|i = 0 for all λ ∈ [0, 1].

The above results are summarized in Table IV. It is evident
from Table IV that the resulting state ρ14|i (for all possible
outcomes i), generated after completion of our protocol using
the POVM (24) with x = 0.8, is Bell nonlocal for the whole
range of λ except at λ = 0. Thus this protocol is an operational
tool to construct a single parameter family of mixed states
(where the state parameter is λ) that is Bell nonlocal for the
whole range of the state parameter, except for the case when
the state parameter is equal to zero.

On the other hand, each of the states ρ12|i and ρ34|i (for
all possible outcomes i) is entangled, but does not violate
the three-setting steering inequality [51] or the Bell-CHSH
inequality even if one varies the entanglement of it.

Finally, this generalized entanglement swapping protocol
always generates Bell nonlocality (EPR steering) in (1,4) by
completely destroying the Bell nonlocality (EPR steering)
in (1,2) and (3,4) for the whole range of the measurement
strength λ. On the other hand, entanglement in (1,4) is gener-
ated without completely destroying entanglement in (1,2) or
(3,4). Importantly, this holds for the whole range of the mea-
surement parameter λ, except at λ = 0. Here also, destroying
Bell nonlocality and EPR steering is probed with respect to
the quantum violations of the Bell-CHSH inequality and the
three-setting linear steering inequality respectively.

E. When the initial states are mixed ones

So far we have studied quantum correlation transfer in the
generalized entanglement swapping scenario when the initial
states are maximally entangled ones. However, in realistic

situations, such maximally entangled states are difficult to be
prepared. That is why we next consider mixed initial states
in order to incorporate experimental nonidealness. In what
follows, we will show that similar types of quantum corre-
lation transfer are possible in the generalized entanglement
swapping scenario involving mixed initial states shared by the
pairs (1,2) and (3,4) when the previously mentioned POVM
given by Eq. (24) is performed on the pair of particles (2,3).

Here, instead of Bell states, Alice shares a mixed state
ρ12 = m|φ+〉〈φ+| + (1 − m)|φ−〉〈φ−| with Bob and Bob
shares another copy of the same state ρ34 = m|φ+〉〈φ+| +
(1 − m)|φ−〉〈φ−| with Charlie where 1

2 � m � 1 and |φ±〉 =
1√
2
(|00〉 ± |11〉).
In this scenario, the postmeasurement state, when Bob gets

the outcome 1 [associated with E1 mentioned in Eq. (24)]
and communicates the measurement outcome to Alice and
Charlie, is given by

ρ14|1 = (2m − 1)2 + 1

2
(g2 + h2)|η1〉〈η1|

+ 1 − (2m − 1)2

2
( f 2 + h2)|η2〉〈η2| + e2|φ3〉〈φ3|

with |η1〉 = g√
g2 + h2

|00〉 + h√
g2 + h2

|11〉,

|η2〉 = h√
f 2 + h2

|00〉 − f√
f 2 + h2

|11〉. (33)

Similarly, the other postmeasurement states shared be-
tween Alice-Bob and Bob-Charlie are given by

ρ12|1 = m(e2 + f 2)|ζ1〉〈ζ1| + (1 − m)(e2 + f 2)|ζ2〉〈ζ2|
+ g2|φ1〉〈φ1| + h2|φ3〉〈φ3| + h2|φ4〉〈φ4|

with |ζ1〉 = e√
e2 + f 2

|00〉 + f√
e2 + f 2

|11〉,

|ζ2〉 = e√
e2 + f 2

|00〉 − f√
e2 + f 2

|11〉, (34)

and

ρ34|1 = m(e2 + g2)|χ1〉〈χ1| + (1 − m)(e2 + g2)|χ2〉〈χ2|
+ f 2|φ2〉〈φ2| + h2|φ3〉〈φ3| + h2|φ4〉〈φ4|

with |χ1〉 = g√
e2 + g2

|00〉 + e√
e2 + g2

|11〉,

|χ2〉 = g√
e2 + g2

|00〉 − e√
e2 + g2

|11〉, (35)

where e, f , g, h, |φ1〉, |φ2〉, |φ3〉, and |φ4〉 are defined earlier.
For a fixed value of m and x, all the postmeasurement states
are single parameter families of mixed states.

Similarly, the postmeasurement states ρ14|i, ρ12|i, and ρ34|i
for other values of i ∈ {2, 3, 4} can be evaluated.

Furthermore, the probability of getting the ith outcome is
pi = 1

4 for all i ∈ {1, 2, 3, 4}.
Now, it can be checked that one can generate all types of

quantum correlated states (i.e., entangled but not steerable,
steerable but not Bell nonlocal, and Bell nonlocal) that are
mentioned in Tables II, III, and IV in the pairs (1,4), (1,2),
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TABLE V. The ranges of the measurement parameter λ for which
the states ρ12|i, ρ34|i, and ρ14|i are entangled, or EPR steerable, or
Bell nonlocal for all possible i ∈ {1, 2, 3, 4} when each of the ini-
tial states shared by the pairs (1,2) and (3,4) is m|φ+〉〈φ+| + (1 −
m)|φ−〉〈φ−| with 0.9 � m � 0.97. Here ραβ|i denotes the postmea-
surement state for the pair (α, β) after Bob gets the outcome i (i ∈
{1, 2, 3, 4}) contingent upon performing the POVM (24) with x =
0.55, 0.77, or 0.9.

Bell
x States Entangled when Steerable when nonlocal when

x = 0.55 ρ14|i 0 < λ � 1 Never Never
ρ12|i 0 < λ � 1 0 < λ � 1 0 < λ � 1
ρ34|i 0 < λ � 1 0 < λ � 1 0 < λ � 1

x = 0.77 ρ14|i 0 < λ � 1 0 < λ � 1 Never
ρ12|i 0 < λ � 1 Never Never
ρ34|i 0 < λ � 1 Never Never

x = 0.9 ρ14|i 0 < λ � 1 0 < λ � 1 0 < λ � 1
ρ12|i 0 < λ � 1 Never Never
ρ34|i 0 < λ � 1 Never Never

and (3,4), when the initial states shared by (1,2) and (3,4) are
the above-mentioned mixed states with 0.9 � m � 0.97 and
when Bob gets any outcome contingent upon performing the
POVM (24) with x = 0.55, 0.77, or 0.9. We summarize the
results in Table V.

F. Probing network nonlocality

So far, while studying Bell nonlocality and EPR steering,
we have not taken into account the fact that the sources
producing the two initial entangled states are in general inde-
pendent. Now, in order to consider independence of sources,
we will study network nonlocality in the scenario consid-
ered by us. Before considering the specific scenario, let
us assume that two arbitrary two-qubit states are initially
shared by the pairs Alice-Bob and Bob-Charlie. This will
lead to a general condition for violating the bilocality inequal-
ity (10) in the generalized entanglement swapping scenario
considered by us.

Let Alice and Bob share a two-qubit state

ρAB = 1

4

[
I2 ⊗ I2 + rAB

A · σ ⊗ I2 + I2 ⊗ rAB
B · σ +

3∑
i, j=1

tAB
i j σi ⊗ σ j

]
(36)

produced by the source S1. Similarly, Bob and Charlie share a two-qubit state

ρBC = 1

4

[
I2 ⊗ I2 + rBC

B · σ ⊗ I2 + I2 ⊗ rBC
C · σ +

3∑
i, j=1

tBC
i j σi ⊗ σ j

]
(37)

produced by another source S2. Here, rAB
A = (rAB

A|1, rAB
A|2, rAB

A|3)
and rB

AB = (rAB
B|1, rAB

B|2, rAB
B|3) represent the Bloch vectors of

Alice’s reduced state and Bob’s reduced state, respectively, in
ρAB; σ = (σ1, σ2, σ3) is the vector composed of Pauli matri-
ces; while tAB

i j are the terms corresponding to the correlation
matrix of the state ρAB and similarly for the state ρBC . The
correlation matrix of the initial states can be written in polar
decomposition form tAB = U ABRAB where U AB is a unitary
matrix and RAB =

√
tAB†tAB. Let τAB

1 � τAB
2 � τAB

3 be three
non-negative eigenvalues of RAB and let τBC

1 � τBC
2 � τBC

3 be
three non-negative eigenvalues of RBC .

Now we find a criteria for violating the bilocality inequality
(10) when Alice and Charlie measure single-qubit projective
measurements but Bob does a POVM measurement on two
qubits.

1. First type of POVM

At first, let us consider that Bob performs the POVM
mentioned in Eq. (15). Also, consider that Alice performs
measurements of the observables σ · u and σ · u′ depend-
ing on whether Alice’s input is x̃ = 0 or 1 respectively.
Similarly, Charlie also performs measurements of the ob-
servables σ · v and σ · v′ depending on whether his input
is z̃ = 0 or 1 respectively. Here, u = (u1, u2, u3), u′ =
(u′

1, u′
2, u′

3), v = (v1, v2, v3), and v′ = (v′
1, v

′
2, v

′
3) are unit

vectors. Now, using the relations given by Eqs. (7)–(9), it

turns out that B0 = E1 + E2 − E3 − E4 = λσ3 ⊗ σ3 and B1 =
E1 − E2 + E3 − E4 = λσ1 ⊗ σ1 where 0 � λ � 1.

One important point to be mentioned here is that the
bilocality inequality (10) is valid when |〈B0〉| � 1 and
|〈B1〉| � 1 [40]. In the present case, since we have B0 =
λσ3 ⊗ σ3 and B1 = λσ1 ⊗ σ1 with 0 � λ � 1, the two con-
ditions |〈B0〉| � 1 and |〈B1〉| � 1 are satisfied. Hence, we can
safely use the bilocality inequality (10).

Now to get the maximum value of Bbilocal in the present
context, we will follow the method mentioned in [41]. At first,
let us calculate the quantity I as follows:

I = Tr[{(u + u′) · σ ⊗ λ(σ3 ⊗ σ3) ⊗ (v + v′) · σ}
× (ρAB ⊗ ρBC )]

= λ Tr[{(u + u′) · σ ⊗ σ3}ρAB]Tr[{σ3 ⊗ (v + v′) · σ}ρBC]

= λ

( ∑
i=1,2,3

(ui + u′
i ) tAB

i3

)( ∑
k=1,2,3

(vk + v′
k ) tBC

3k

)
. (38)

Similarly, J can be expressed as

J = Tr[{(u − u′) · σ ⊗ λ(σ1 ⊗ σ1) ⊗ (v − v′) · σ}
× (ρAB ⊗ ρBC )]

= λ Tr[{(u − u′) · σ ⊗ σ1}ρAB] Tr[{σ1 ⊗ (v − v′) · σ}ρBC]

= λ

( ∑
i=1,2,3

(ui − u′
i ) tAB

i1

)( ∑
k=1,2,3

(vk − v′
k ) tBC

1k

)
. (39)
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Let the initial states given by Eqs. (36) and (37) be defined
in such a way that the Z and X Bloch directions of ρAB are
given by the eigenvectors of the matrix RAB associated with
the two largest eigenvalues- τAB

1 and τAB
2 . Similarly, the Z and

X Bloch directions of ρBC are also given by the eigenvectors
of the matrix RBC associated with the two largest eigenvalues
τBC

1 and τBC
2 .

Next, we want to maximize Bbilocal with respect to
u, u′, v, and v′. From Eqs. (38) and (39), it is clear
that the unit vectors u, u′, v, and v′ should lie within
the two-dimensional subspace spanned by two eigenvec-
tors associated with the two largest eigenvalues. Hence, let
us consider that u = (sin α, 0, cos α), u′ = (sin α′, 0, cos α′),
v = (sin γ , 0, cos γ ), and v′ = (sin γ ′, 0, cos γ ′). With these,
the maximum value of Bbilocal can be found by solving the
following: ∂αBbilocal = 0, ∂α′Bbilocal = 0, ∂γBbilocal = 0, and
∂γ ′Bbilocal = 0. After doing the above partial differentiation,
we get various solutions. It can be checked that among those
solutions the following set gives the maximum of Bbilocal:

α = −α′, γ = −γ ′, and cos α = cos γ =
√

λτAB
1 τBC

1

λτAB
1 τBC

1 +λτAB
2 τBC

2
.

And the maximal value of the left-hand side of the bilocality
inequality (10) is given by

Bmax
bilocal = 2

√
λτAB

1 τBC
1 + λτAB

2 τBC
2 . (40)

The above relation is valid for any two arbitrary two-qubit
states shared by Alice-Bob or Bob-Charlie and when Bob
performs the two-qubit POVM given by (15). Hence, the
bilocality inequality (10) will be violated if

λτAB
1 τBC

1 + λτAB
2 τBC

2 > 1. (41)

In our scenario, we have considered maximally entan-
gled Bell pairs: ρAB = ρBC = |φ+〉〈φ+|. Hence, from (40), the
bilocality inequality becomes

Bmax
bilocal = 2

√
2λ � 2 (42)

as τAB
1 = τAB

2 = 1 and τBC
1 = τBC

2 = 1 in the present case.
Therefore, the bilocality inequality (10) is violated if λ > 1/2.

2. Second type of POVM

Now, we want to get a criteria to violate the bilocality
inequality when Bob performs the POVM given by Eq. (24)
with different values of x. Here also, Alice performs
measurements of the observables σ · u and σ · u′ depending
on whether Alice’s input is x̃ = 0 or 1 respectively. Charlie
performs measurements of the observables σ · v and σ · v′
depending on whether his input is z̃ = 0 or 1 respectively.
Using the relations (7)–(9), it turns out in the present case
that B1 = E1 − E2 + E3 − E4 = �1 σ1 ⊗ σ1 + �2 σ3 ⊗ I2

and B0 = E1 + E2 − E3 − E4 = �3 σ3 ⊗ σ3, where
�1 = 2ab(y1−2xy1−xy2 )

y1+y2
, �2 = (1−2b2 )(2x−1)y1+y2(1−2b2x)

y1+y2
, and

�3 = y1−y2+2xy2

y1+y2
where a, b, y1, and y2 are defined earlier

(case II) after Eq. (24). It can be checked that the maximum
eigenvalue of B0 and B1 is less than or equal to unity for
all λ ∈ [0, 1] and for all x ∈ [0, 1]. Hence, the conditions
|〈B0〉| � 1 and |〈B1〉| � 1 are satisfied and we can use the
bilocality inequality (10).

Now, to find the maximum magnitude of Bbilocal mentioned
in Eq. (10), we evaluate I and J following the process that
was done in the case of the previous POVM. These can be
written as

I = Tr[{(u + u′) · σ ⊗ �3(σ3 ⊗ σ3)

⊗ (v + v′) · σ}(ρAB ⊗ ρBC )]

= �3

( ∑
i=1,2,3

(ui + u′
i ) tAB

i3

)( ∑
k=1,2,3

(vk + v′
k ) tBC

3k

)
(43)

and

J = Tr[{(u − u′) · σ ⊗ (�2 σ3 ⊗ I2

+�1 σ1 ⊗ σ1) ⊗ (v − v′) · σ}(ρAB ⊗ ρBC )]

= �2

( ∑
i=1,2,3

(ui − u′
i )t

AB
i3

)( ∑
k=1,2,3

(vk − v′
k )rBC

C|k

)

+�1

( ∑
i=1,2,3

(ui − u′
i )t

AB
i1

)( ∑
k=1,2,3

(vk − v′
k )tBC

1k

)
. (44)

Now, we have to maximize the bilocality inequality (10)
with respect to the unit vectors u, u′, v, and v′. Here,
we choose the above unit vectors in three-dimensional
space which is the most general case. Let u= (sin α cos β,
sin α sin β, cos α), u′ = (sin α′ cos β ′, sin α′ sin β ′, cos α′),
v = (sin γ cos φ, sin γ sin φ, cos γ ), and v′ = (sin γ ′ cos φ′,
sin γ ′ sin φ′, cos γ ′). It can be checked that the the maximum
value of Bbilocal is obtained at α = α′, β = 0, β ′ = π , γ =
γ ′, φ = 0, φ′ = π , and cos α = cos γ =

√
|�3τ

AB
1 τBC

1 |
|�1τ

AB
2 τBC

2 |+|�3τ
AB
1 τBC

1 | .

And the maximum value is given by

Bmax
bilocal = 2

√∣∣�1τ
AB
2 τBC

2

∣∣ + ∣∣�3τ
AB
1 τBC

1

∣∣. (45)

The above expression infers that when Alice-Bob and
Bob-Charlie initially share two arbitrary two-qubit states be-
tween them produced from two independent sources and Bob
performs the POVM given by (24) on his qubits, then network
nonlocality is demonstrated if∣∣�1τ

AB
2 τBC

2

∣∣ + ∣∣�3τ
AB
1 τBC

1

∣∣ > 1. (46)

In our scenario, we have considered maximally entangled
Bell states: ρAB = ρBC = |φ+〉〈φ+|. Hence, from (45), the
bilocality inequality becomes

Bmax
bilocal = 2

√
|�3| + |�1| � 2 (47)

as τAB
1 = τAB

2 = 1 and τBC
1 = τBC

2 = 1 in the present case.
Therefore, the bilocality inequality (10) is violated when
|�33| + |�11| > 1.

Next, we find the condition under which bilocality inequal-
ity (10) is violated with the POVM given by Eq. (24) with
different values of x using the expressions obtained above.
The results obtained are presented in Table VI. In particu-
lar, we find different values of x for which the network is
nonbilocal or bilocal with respect to the quantum violation
of the bilocality inequality (10) for the whole range of the
measurement parameter λ ∈ [0, 1]. Interestingly, we observe
that for x = 0.5 the generated correlation does not violate the
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TABLE VI. The ranges of the measurement parameter λ for
which the network is nonbilocal or bilocal with respect to the quan-
tum violation of the bilocality inequality (10) when the POVM (24)
with different x is performed by Bob.

x Nonbilocal when

x = 0.3 0 < λ < 0.51
x = 0.5 Never
x = 0.725 0 < λ � 1
x = 0.8 0 < λ � 1

bilocality inequality (10) for the whole range of the measure-
ment parameter λ. However, the states shared between the
pairs (1,4), (1,2), and (3,4) after completion of the general-
ized entanglement swapping protocol are entangled for the
whole range of measurement parameter λ except at λ = 0
when the POVM (24) with x = 0.5 is performed by Bob.
Also, for x = 0.725, the generated correlation demonstrates
network nonlocality for the whole range of λ except at λ = 0,
whereas the states shared by the pairs (1,4), (1,2), and (3,4)
after completion of the protocol do not violate the Bell-CHSH
inequality (see Table III) for any λ in this case. In other words,
after a generalized entanglement swapping protocol, one may
end up with states that seem to be (Bell) local, while, in fact,
they are (network) nonlocal.

V. CONCLUDING DISCUSSIONS

In the present paper, we have considered a generalized
entanglement swapping protocol, where Alice and Bob share
a Bell pair (1,2) whereas Bob and Charlie share another Bell
pair (3,4) in the same state. Bob performs a joint quantum
measurement (POVM) on the pair (2,3) and discloses the
outcome via classical communication to Alice and Charlie.
In this scenario, our key findings are twofold. At first, using
a generalized entanglement swapping protocol, we have cre-
ated different kinds of quantum correlated single parameter
families of two-qubit mixed states in (1,4). These states have
the following features: (1) a single parameter class of mixed
states that gradually shows entanglement, EPR steering, and
Bell nonlocality as the state parameter is varied; (2) a single
parameter class of mixed states that is entangled but not EPR
steerable (hence, not Bell nonlocal) for the whole range of
the state parameter; (3) a single parameter class of mixed
entangled states that is steerable but not Bell nonlocal for the
whole range of the state parameter; and (4) a single parameter
class of mixed entangled states that is Bell nonlocal for the
whole range of the state parameter.

Secondly, in the standard entanglement swapping protocol,
the quantum correlation is completely transferred from the
pairs (1,2) and (3,4) to the pair (1,4). Therefore, the natural
question that arises in this context is how such transfer of
quantum correlations changes when the standard entangle-
ment swapping protocol is generalized by changing the initial
states, or by changing the measurements, or both [3–8]. In the
present paper, we have addressed such questions by demon-
strating nontrivial transfers of quantum correlations (e.g., Bell
nonlocality, EPR steering, and entanglement) from (1,2) and

(3,4) to (1,4) by choosing different quantum measurements
and/or initial states that are summarized below.

(1) For the first POVM considered by us, we have shown
that different quantum correlations are generated gradually
(i.e., entanglement is generated at first, followed by the gen-
eration of EPR steering and then Bell nonlocality) in (1,4)
with an increase in the measurement parameter at the expense
of gradual destruction of these three quantum correlations in
(1,2) and (3,4).

(2) For the second class of POVM, entanglement is gen-
erated in the pair (1,4) although the entanglement in each of
the pairs (1,2) and (3,4) is not destroyed completely. Further,
Bell nonlocality or EPR steering in each of the pairs (1,2)
and (3,4) is not completely lost and, consequently, these two
correlations are not generated in (1,4).

(3) In the case of the third POVM, the pair (1,4) gains
entanglement although the entanglement in each of the pairs
(1,2) and (3,4) is not destroyed completely for the whole range
of the measurement strength λ except at λ = 0. Further, Bell
nonlocality is completely lost as a result of the protocol in
each of the pairs (1,2) and (3,4) whereas Bell nonlocality is
not generated in (1,4).

(4) For the fourth POVM, the pair (1,4) gains Bell non-
locality (and, hence, EPR steering as well as entanglement).
On the other hand, each of the pairs (1,2) and (3,4) com-
pletely loses EPR steering and Bell nonlocality, but retains
entanglement.

Hence, the present paper provides operational tools in the
basic entanglement swapping setup for generating different
kinds of correlated states between two spatially separated
observers without any interaction between them. In each of
the above cases, the whole class can be generated by varying
the measurement parameter. Since the three types of quantum
correlations, namely entanglement, EPR steering, and Bell
nonlocality, act as resources in different kinds of tasks, each of
the above-mentioned classes of mixed states has a distinct role
as a resource depending on the type of task to be performed.
Remarkably, our results point out that all these types of quan-
tum correlated mixed states can be generated in a single setup
just by choosing appropriate POVMs. We thus expect that our
results will be helpful for experimental generation of different
types of correlations in a single setup that can be employed in
different information processing and communication tasks.

Note that experiments on entanglement swapping have
been reported in several studies where maximally entangled
initial states were produced with high fidelity [55–58]. How-
ever, in order to take into account realistic nonidealness, we
have further extended our studies by taking mixed initial states
shared by the pairs (1,2) and (3,4). In such cases also, we have
shown that the aforementioned different kinds of quantum
correlated single parameter families of two-qubit states can
be generated in (1,4) by choosing appropriate POVM for Bob.

Here, we want to clarify that while studying standard Bell
nonlocality or EPR steering of the states after completion
of the generalized entanglement swapping protocol, we have
not considered the possibility that the two sources producing
the initial entangled states may be independent. That is why
we have also studied network nonlocality in the generalized
entanglement swapping scenario considered by us as this con-
cept incorporates the fact of independence of sources that
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is relevant in the context of entanglement swapping scenar-
ios [39,42]. Here, we have found appropriate joint POVMs
performed by Bob on the pair (2,3) for which the result-
ing statistics demonstrates or does not demonstrate network
nonlocality for the whole range of the measurement param-
eter. Interestingly, we have shown an instance of a POVM
for which the measurement statistics does not show network
nonlocality, but all the states shared by (1,2), (3,4), and (1,4)
become entangled after the generalized entanglement swap-
ping for the whole range of the measurement parameter. We
have also presented an example where all the states shared
by the pairs (1,2), (3,4), and (1,4) after completion of the
entanglement swapping protocol are Bell local if we consider
that the sources producing the initial entangled states are not
necessarily independent, while they show network nonlocal-
ity when the independence of sources has been taken into
account. This may hold for EPR steering as well.

Before concluding we would like to mention some future
research directions that we leave open. The multipartite entan-
glement swapping protocol [3] assisted with different kinds of

POVM for generating different kinds of genuine multipartite
quantum correlations is worth studying in the future. Also,
probing network steering (incorporating statistical indepen-
dence of the sources) in the context of our paper is another
direction for future research. Finally, finding the amount of
information loss or gain by different pairs [9,10] in our entan-
glement swapping setups is of fundamental interest.
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