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Abstract 
In this study, we mined the PDB and created a structural library of 178,465 interfaces that 

mediate protein-protein/domain-domain interactions. Interfaces involving the same CATH 

fold(s) were clustered together. Our analysis of the library reveals similarities between 

chain-chain and domain-domain interactions. The library also illustrates how a single 

protein fold can interact with multiple folds using similar interfaces. The library is hence a 

useful resource to study the types of interactions between protein folds. Analysing the 

data in the library reveals various interesting aspects of protein-protein and domain-

domain interactions such as how proteins belonging to folds that interact with many other 

folds also have high EC values. These data could be utilized to seek potential binding 

partners. It can also be utilized to investigate the different ways in which two or more folds 

interact with one another structurally. We constructed a statistical potential of pair 

preferences of amino acids across the interface for chain-chain and domain-domain 

interactions separately. They are quite similar further lending credence to the notion that 

domain-domain interfaces could be used to study chain-chain interactions. We analysed 

protein complexes modelled by AlphaFold2 and RoseTTAFold and noticed that some of 

the modes of interaction involve folds and interfaces that have not been observed to bind 

in the PDB. Lastly and importantly, the library includes predicted small molecule binding 

sites at protein-protein interfaces. This has applications as interfaces containing small 

molecule binding sites can be easily targeted to prevent the interaction and perhaps form 

a part of a therapeutic strategy.  
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1. Introduction 

Protein-protein interactions are vital for several biological processes [1,2]. Identifying and 

characterizing such interactions could help explain the functioning of proteins and the 

basis of various diseases [3–5]. Various databases such as Database of Interacting 

Proteins (DIP) [6], Biomolecular Interaction Network Database (BIND) [7,8], Molecular 

Interaction Database (MINT) [9], Interactome3D [10], STRING [11] etc. list  experimentally 

validated interactions. Among these databases, only very few such as Interactome3D 

contain structural information about the interacting partners. Various other databases 

(such as ProtCID [12], PIBASE [13] etc which we have discussed later) contain only 

information about protein complexes in the Protein DataBank (PDB). 

The 3D structure of complexes of interacting proteins helps explain the mechanism of 

interaction, which in turn shed light on the functioning of cellular pathways [14–17]. 3D 

structures of these complexes can be determined by X-ray crystallography, NMR 

spectroscopy, cryo-EM, etc. Though the number of 3D structures of heteromeric protein 

complexes is steadily increasing, these experiments are expensive, labour intensive and 

technically challenging [18,19], necessitating computational approaches [19–25]. With 

the advent of high accuracy deep learning driven methods such as AlphaFold2 [26] and 

RoseTTAFold  [27] for predicting the 3D structures of proteins, the next frontier is to make 

accurate predictions of the structures of heteromeric protein complexes. One of the key 

ingredients of the success of these prediction methods was the availability of over 

100,000 structures and over 200 million sequences of proteins. There are however far 

fewer heteromeric protein complexes in the PDB (around 42,000). The same deep 

learning techniques have been adapted for the prediction of the structures of protein 

complexes [28,29]. However, to improve these techniques, we would need to either wait 

for more data on 3D structures of complexes to accumulate or leverage information from 

known structures, paying particular attention to domain-domain interfaces. Our study, 

which primarily focuses on binary interactions, is an effort in the latter direction. An 

argument can be made that protein cores and protein interfaces show similar physico-

chemical properties (such as amino acid composition, contact preferences etc) and so 

monomeric structures could help build structures of complexes. However, cores and 

interfaces differ in structural packing and composition [30]. Hence the vast repertoire of 

protein structures that are not in complexes cannot be used to model protein complexes 

and we need to rely on data from protein interfaces. 

Large proteins contain multiple domains, which are defined as independent folding, 

evolving and structural units in proteins. Two protein chains can fuse (gene fusion) 

leading to the formation of two protein domains in a single protein. Conversely, two (or 

more) domains of the same protein can split and evolve into two (or more) independent 

chains [31,32]. During these fusion/fission events, a chain-chain interface can convert to 

a domain-domain interface or vice versa. Hence interfaces on domains can be structurally 

similar to that between chains. The domain definitions/boundaries of individual proteins 



have been characterized in SCOP/SCOPe [33,34], CATH [35–37], Pfam [38] and Ecod 

[39] which can be utilized to identify interfaces between different protein domains. 

Multiple libraries have been developed in the past to characterize protein-protein/domain-

domain interfaces such as 3DID [40–42], PIBASE [13], SCOPPI [43], SNAPPI-DB [44], 

SCOWLP [45,46], ProtCID [12], PrePPI [47] etc. Many of these databases classify and 

cluster the interfaces to show similarities between different interfaces or study specific 

properties of the interfaces such as conservation, the importance of water etc. Methods 

such as PRISM [20] and InterComp [48] utilizes the interfaces as templates to model 

protein complexes [49]. Databases such as PrePPI [47] in addition to experimentally 

determined structures also contain predicted protein complexes. 

Protein complexes can be modeled either by docking one protein onto another or by 

comparative modeling using a template protein complex. Template-based modeling of 

protein complexes has been shown to be more accurate in comparison to docking [50–

52]. In addition, recent literature indicates that the structural repertoire of protein 

interfaces is degenerate and close to complete [53,54] and nature reuses similar 

interfaces across different proteins. Hence a library of such observed protein-

protein/domain-domain interfaces will be useful in understanding and modeling protein 

complexes. A combined domain-domain and chain-chain interface library might be useful 

and may account for gene fusion/fission events. Hence, a composite library might provide 

a better sampling of the structural space of the protein interfaces.  

We have created a library of all known interfaces between different proteins (chain-chain 

interface) and also separately catalogued intra-chain domain-domain interfaces. Libraries 

as such can be useful in studying how protein folds structurally interact with one another. 

Thus, we structurally clustered interfaces belonging to the same fold, to identify the 

various modes of interactions between proteins belonging to the same fold. Using the 

interface library, we showed how domain-domain and chain-chain interfaces and non-

homologous protein complexes (belonging to the same/different folds) could have 

structurally similar interfaces. In addition to structurally characterizing the interfaces, we 

compared the amino-acid pair preferences between domain-domain and chain-chain 

interfaces. We also showed that the interfaces are more conserved as compared to the 

whole protein. The library also contains predicted small molecule binding sites that could 

be targeted to prevent protein complex formation, with possible therapeutic applications. 

We have also compared modelled protein complexes to our interface library to identify 

interactions not observed in the PDB. Regardless of how proteins interact, be it 

homologous pairs interacting similarly [55,56] or unrelated protein pairs (or proteins and 

peptides) using similar interfaces [48] [49], our interface library could be used to predict 

the 3D structures of the complexes. 



2. Results 

2.1. Library of interfaces  

We extracted 112,043 binary chain-chain interfaces and 66,442 binary domain-domain 

interfaces (domain definitions based on CATHv4.2) from 42,259 PDB structures (table 1). 

As mentioned in the methods section, we call these fold combinations. Note that only 

89,993 out of 112,043 fold combinations have an associated CATH identifier. This has 

implications on how these fold combinations are clustered (see section 2.3). The 22,110-

fold combinations that are not annotated by CATH ids come from 6712 PDB entries. 

These interfaces are still a part of the library, albeit without being clustered (see section 

2.3).  

Binary interfaces are made of both homo- and heteromeric interactions. Among chain-

chain interfaces, 62% of fold combinations were homomers, whereas this was only 28% 

of the domain-domain interfaces. Homomeric associations are more abundant in 

interactions between protein chains than interactions between protein domains. 

2.2. Fold related properties of the interface library 

2.2.1. Fold Combination  

The binary fold combinations in our library contain records of CATH ids interacting with 

one another. There are 524 CATH ids that interact with only one other fold and on the 

other extreme, the CATH id 3.40.50 (Rossman fold) interacts with 238 other folds. The 

number of fold combinations that a CATH id is a part of has a correlation coefficient of 

0.82 with the number of its Enzyme Commission (EC) terms (Figure S1). Generally, the 

higher the number of EC terms associated with a fold, the greater the number of folds it 

would interact with. Of the 1391 CATH folds, only 1109 folds interact with one another. 

Of these, 1092 folds interact with <30 other folds. The Rossman fold (CATH ID- 3.40.50) 

has the highest number of fold combinations, 238, to go along with over 1,000 EC terms 

(Table2). CATH id 1.20.5 (Single alpha-helices interacting in coiled-coils or other helix-

helix interfaces) interacts with 90 different folds, perhaps because of the diversity of the 

sequences that can take up this particular fold [57]. The list of 15 folds that are a part of 

>30 fold combinations (table 2) contains some of the most abundantly populated CATH 

ids. The fact that some folds such as Rossmann fold, TIM barrels and Jelly rolls have 

more EC terms (1087, 317 and 132 respectively) than they appear in fold combinations 

(238, 66 and 57 respectively) could imply that several fold combinations are yet to 

structurally explored. The higher the number of EC terms in a fold, the more varied the 

functions of the proteins in the fold, hence the larger the number of folds they interact 

with. 



2.2.2. Number of interfaces per fold combination 

The 1109 folds that form chain-chain and domain-domain interfaces feature in 3,065 

unique fold combinations. 585 fold combinations have only one known interface (1 unique 

chain-chain or domain-domain interface in 1 fold combination). 2,502 (82%) fold 

combinations had <=30 interfaces (Figure S2). An interface here refers to a particular 

configuration of a fold combination. A single fold combination could be observed in the 

PDB to have multiple interfaces.  A homo-oligomeric structure could have various 

instances of the same interface within a single PDB entry.  

Homo-dimeric interactions between Rossmann folds (14,844 interfaces), 

Immunoglobulin-like folds (6,528 interfaces) and Glutamine 

Phosphoribosylpyrophosphate-subunit 1-domain 1 folds (6,318 interfaces) are the three 

largest populations of fold combinations.  As was shown earlier (Table 2), the Rossmann 

fold and the Immunoglobulin-like fold are associated with 1,087 and 111 EC Terms 

respectively. In addition, the Rossman Fold is the most diversified and prevalent fold of 

ancient evolutionary origin and accounts for about 15% of the human proteome [58]. A 

large number of instances (6,318) of Glutamine Phosphoribosylpyrophosphate-subunit-

1-domain-1 fold homo-dimers are found in only 277 PDB entries, as most/all of these 

entries contain homo-multimers of the same protein. This fold has only 14 EC terms. This 

indicates the low diversity in the sequences and functions of proteins adopting these folds.  

2.3. Clustering of the interface library 

Given the number of instances the same fold combinations appear in different interfaces, 

we clustered (within each fold combination) the 156,375 interfaces ((89,933 chain-chain 

and 66,442 domain-domain) according to structural similarity. To find general structural 

patterns in the ways folds and domains interact with one another, we grouped them into 

structural clusters within each fold combination. This clustering can also help identify if 

non-homologous protein pairs can use the same interface geometry and if chain-chain 

and domain-domain interfaces are structurally similar. The cluster representatives can 

also serve as structurally non-redundant templates for the comparative modelling of 

protein complexes or multidomain proteins. The interfaces were grouped into 27,885 

clusters that have structure overlap >=80% and RMSD <=1.5 Å with respect to that of the 

representative PDB. 13,039 (~47%) clusters only contain 1 PDB (Figure S3), which might 

be a result of the stringent RMSD and structure overlap criterion used during clustering. 

26,401 (~95%) clusters contain less than 20 PDB per cluster (Figure S3).  

 

Superfamily based investigation of interface clusters 

Each CATH fold is further subdivided into homologous superfamily. We checked if the 

structural clusters formed as described above were within a superfamily.  Out of the 

27,885 clusters, 27,741 clusters (99.5%) had all interfaces belonging to the same 



superfamily combination. Only 144 clusters had interfaces belonging to different 

superfamily combinations. Out of these 144 clusters, 130 clusters had interfaces from a 

combination of 2 superfamilies. Of the remaining 14 clusters having more than 2 

superfamily combination in the same cluster, 9 clusters belonged to the fold 1.20.5 (Single 

alpha helix involved in coiled-coil or other helix-helix interactions). This is because the 

single alpha helix fold is a secondary structural component that could easily interact with 

other helices from various superfamilies, leading to the clustering together of multiple 

superfamilies. Even though our study was done at a fold level, 99.5% of the clusters were 

formed superfamily wise, indicating that interfaces are structurally conserved within 

superfamilies. Had we used less stringent criteria as cut-offs for clustering, we might have 

had more clusters across superfamilies. 

2.3.1. Number of interface clusters per fold combinations 

The number of clusters per fold combination ranges from 1 to 8,004. 1,626 fold 

combinations (out of the 3,065 observed combinations) had only 1 cluster (585 fold 

combinations had only 1 interface and hence only had 1 cluster). 2,942 (96%) fold 

combinations had <20 clusters (Figure S4). 3043 (99%) fold combinations were clustered 

into less than 100 clusters. 

The top few folds having a large of self-interactions are those involving the Rossmann 

fold, immunoglobulin-like fold and TIM barrel, with 14,844, 6,528 and 3,598 interfaces 

respectively. These interfaces were grouped into 7,809, 1,675 and 984 clusters 

respectively. The high number of clusters in these fold combinations was because 

multiple non-homologous proteins take up these folds [59] (as indicated by high EC 

numbers for the fold -  Table 2). This results in multiple modes of interactions depending 

on the protein type. Most of the interfaces (73%) of self-interactions between Rossman 

folds have high RMSD (>2 Å) and low structure overlap (<70%) when the different protein 

interfaces are structurally superimposed on the cluster representatives (Figure S5). 

However, self-interactions in domains such as Glutamine Phosphoribosylpyrophosphate-

subunit 1-domain 1 folds containing 6,318 interfaces, have only 202 clusters because of 

the low number of EC terms (14) for the CATH fold, indicating low diversity of the 

sequences taking up the fold. 

In certain cases, we have split PDB entries belonging to the same fold combination into 

multiple clusters because of the stringency in our clustering criterion. Certain folds such 

as the hemagglutinin-ectodomain chain B had 484 out of 567 interfaces clustered 

together with cluster representative 4gxx_BD. The other interfaces were grouped into 

different clusters because they had a structural overlap ranging between 70-80% and 

RMSD between 1.5 Å – 2.4 Å with 4gxx_BD and hence were not clustered together. It is 

clear that the stringency of clustering modulates the number of clusters. In addition, these 

stringent clusters can help in modeling protein interfaces by providing better resolved 

clusters (Figure S6).  



2.3.2. Similarity between domain-domain and chain-chain interfaces 

Over the course of evolution, protein domains can split into chains or protein chains can 

come together to form domains. The interface library could be used to find evidence of 

structurally similar chain-chain and domain-domain interfaces. Hence, a composite library 

such as the one described here can serve as a source of templates to model both protein 

complexes and multidomain proteins. 

514 fold combinations contain both chain-chain and domain-domain interfaces. From 

these fold combinations, 102 clusters contain both chain-chain and domain-domain 

interfaces clustered together (Supplementary Text 1). These clusters had a median of 

57% of domain-domain interface and 43% chain-chain interface. Clusters, as such, 

highlight the fact that nature reuses the same geometry across different types of 

interfaces. 

Here are a few interesting examples that illustrate the usage of the same interface in 

domain-domain and chain-chain interactions, even when the proteins with those 

folds/domains are unrelated to one another. The domain-domain interface of Giardia dicer 

is superimposed onto a chain-chain interface of the Nuclease domain of ribonuclease 3; 

with a structure overlap of 86% and an RMSD of 1.33 Å (Figure S7A). The two proteins 

share a sequence identity of 23% and belong to the Ribonuclease iii N terminal 

endonuclease domain, Chain A fold. In the other example, the chain-chain interface of 

AVA_4353 protein superimposes onto the domain-domain interface of PhuS protein with 

a structure overlap of 91% and RMSD of 1.28 Å (Figure S7B). The two proteins belong 

to the heme utilizing iron like fold and share no significant sequence similarity. Curiously, 

within a complex of a protein carboxysome shell protein CcmP (with two domains of the 

same fold Alpha Beta Plaits), we see structurally similar chain-chain and domain-domain 

interface (Figure 1). The two domains within a monomer however share no significant 

sequence similarity. 

2.3.3. Sequence conservation at the interface compared to that of the whole 

protein/domain 

In this section, we are comparing the conservation of residues on the interface to the 

conservation of residues throughout the protein/domain. The sequence identity of the 

interface was computed as the number of identical residues between the structurally 

aligned positions of the cluster representative and the members of the cluster. The 

structural comparison was done using the structural alignment tool CLICK [60]. The 

sequence identity of the full protein/domain was computed as the number of identical 

residues computed from a BLAST2seq alignment [61] of the cluster representative with 

the members of the cluster. Structural alignments were not used while computing the 

identity of the full protein as the proteins might be structurally dissimilar even though they 

have structurally similar interfaces. In the case of chain-chain interfaces, the full protein 



was used for the alignment, however for domain-domain interfaces, only the domains 

under consideration were used. In instances where there are multiple copies of the same 

interaction in a single PDB, such as homo-multimeric complexes, only 1 of the interfaces 

was considered for the analysis of sequence conservation, to avoid redundancy.  

Our analysis shows that in a majority of cases (54%), the interface residues were more 

conserved than the entire protein chains within a cluster. In 23% the protein chains 

showed higher conservation than the interfaces. In the remaining 23% of cases the 

conservation in the protein chain and the interface were about the same (Figure S8). We 

investigated the extreme cases where the difference in the identities at the interface and 

the full protein sequence was > 30%. Most of these were a consequence of non-

significant short sequence alignments, non-rigidity of the interface, structurally similar 

chain-chain and domain-domain interfaces in the same protein and structurally similar 

chains in heterooligomer (Supplementary Text 2). 

Clustering of sequentially unrelated interfaces 

The interface library shows how some sequentially unrelated/distantly related proteins 

could have similar interface structures. This library, can in turn, be useful to identify 

templates (based on structural similarity) to model protein-protein complexes or build 

structures of multidomain proteins. Around 2% of the interfaces clustered together have 

an identity of <30% while 10% of them have an identity of <40%. L2- Haloacid 

dehalogenase from X. autotrophicus (Figure S9A) (PDB ID – 1QQ5) and the hypothetical 

2 haloalonoic acid dehalogenase S. tokodaii (Figure S9A) (PDB ID – 2w43) contains the 

1.10.150-3.40.50 fold combination. The two proteins are 31% identical to each other. 

However, the two interfaces superimpose on each other with a structure overlap of 89% 

and RMSD of 1.47 Å. The Human Psoriasin (Figure S9B) and the Bovine protein SC0067 

contain the 1.10.238 fold but are only 27% identical to each other. They have a similar 

structure and interact using the same geometry with the interface structure overlap of 

94.6% and RMSD of 1.0 Å.  

2.4. Structurally similar protein-protein interfaces from different folds  

A fold interacting with different folds using the same geometry 

The clustering of the interface library was limited to proteins belonging to the same fold 

combinations, as an all against all comparison of all the interfaces irrespective of their 

folds is computationally expensive and out of the scope of our computational resources. 

However, we compared a few interfaces across different folds to check if there exists 

structural similarity of the interface irrespective of the fold the protein chains/domain 

belong to. 



The NusG (Transcription antitermination protein) and the Transcription elongation factor 

SPT5 belong to the same fold of alpha-beta plaits and are 34% sequentially identical to 

each other. The NusG protein interacts with DNA dependent RNA polymerase E, which 

belongs to Ruberythrin Domain 2-fold whereas the SPT5 interacts with the Transcription 

elongation factor SPT4 belongs to Herpes Virus 1 fold. Even though, the interacting 

proteins (DNA dependent RNA polymerase and SPT4) to the two proteins (NusG and 

SPT5 respectively) belong to different folds and are only 29% identical sequentially the 

interacting interface is similar with a structure overlap of 93% and RMSD of 1.72 Å (Figure 

2). We also found an example of interfaces belonging to different folds that share the 

same geometry which has been shown in Supplementary Text 3. 

We believe that while we have not systematically categorized such similarities across fold 

combinations, these data could easily be mined from our library for individual fold 

combinations. 

2.5. Pair preference of the amino acid residues at chain-chain vs 

domain-domain interfaces 

The overall trends for the amino acid pair preferences at a chain-chain interface and 

domain-domain interface look similar (Figure S17). Here, favourable scores are positive 

numbers, and unfavourable scores are negative. The side chain interactions between Ala 

with all other amino acids are unfavourable (except Trp, Tyr, Phe which though 

favourable, have low scores). Another small amino acid, Cys, also has few favourable 

interactions. Except for the favourable Cys-Cys interaction (mostly disulphide bridges), 

its only other favourable interactions (for Met, Asn, Tyr, Trp and Phe) all have low scores. 

The interactions between the aromatic Tyr, Trp and Phe with all amino acids are 

favourable at both domain-domain and chain-chain interfaces. However, the interactions 

of other hydrophobic amino acids - Val, Ile and Leu are usually unfavourable (except for 

low favourable scores with Tyr, Trp and Phe). The interactions between negatively 

charged amino acids Asp and Glu and positively charged amino acids such as His, Lys, 

Arg, Gln are favourable, as should be expected. Pi-pi interactions (sp2 containing side 

chains) are found among Tyr, Trp, Phe, His, Arg, Asp, Glu, Asn and Gln [62]. Most of 

these pairs show high favourability of interaction (potential of >1) except Phe-Asp, Phe-

Glu, Asp-Asp, Asp-Glu, Glu-Glu pairs indicating the probable preference for pi-pi 

interactions at the interface. Self-pairs are preferred in chain-chain interfaces as 

compared to domain-domain interfaces. This can be because ~62% of the chain-chain 

interfaces are homo-oligomers as compared to ~28% of the domain-domain interfaces 

being homo-oligomeric (Results Section 2.2).  



2.6. Small molecule binding site at protein-protein interfaces 

Proteins function via interacting with other protein molecules. In disease conditions, these 

interfaces become important drug targets [63–65] and are invaluable in therapeutic 

discovery strategies. Hence, the prediction of small molecule binding sites at the protein-

protein interfaces can be the first step toward inhibiting protein complex formation.  

The overlap of the residues constituting the binding site and the interface was calculated 

(Figure S10). Of the 112,043 chain-chain interfaces, 61,367 and 74,849 interfaces had at 

least one chain with a minimum of 50% or 30% overlap respectively between the interface 

residues and the predicted small molecule binding site. If we consider both chains of the 

interface having at least 50% or 30% overlap with the binding site, the number of 

interfaces reduces to 30,525 and 61,667 respectively. If both the chains have been 

predicted as small molecule binding site, there is a higher probability that the interface 

could be targeted by small molecules. Depending on the stringency, the user can 

modulate the overlap percentage between the predicted binding site and interface. The 

predicted binding site (using DEPTH) could be used to dock/predict small molecules that 

could bind at the interface, hence disrupting the formation of the complex [66–69].  

One example is that of the inhibition by a small molecule of the interaction between XIAP 

protein and caspase-9, which is a caspase involved in mitochondrial cell death [70] 

(Figure 3) [71]. The binding site on the Nipah virus glycoprotein had a 30% overlap with 

that of the interface residues with the ephrin B2 receptor of humans (PDB – 2VSM). 

Autodock [72] and DOCK [73] were used to predict the small drug-like molecule 

(ZINC63411510) that would go and bind the predicted binding site of the glycoprotein, 

hence preventing its interactions with the ephrin-B2 receptor [74].  

 

2.7. Comparison of modelled protein complexes to the interface library 

 

To explore the feasibility and ramification of using modelled/predicted structures, we used 

the 1106 core eukaryotic binary protein complexes modelled using AlphaFold2 and 

RoseTTAFold [75]. We ran these models by our interface library to check for new fold 

combinations. These would be binding modes not observed in the PDB, and hence not 

found in our database. We filtered these models to leave out those with disordered 

regions or regions with poor reliability scores at the interface (pLDDT score < 70) and 

ensured that the occluded surface area was 400 Å2 or greater and contained at least 50 

residues at the interface. This left us with 547 binary complexes. We next assigned CATH 

domains to the proteins in these complexes scanning their UniProt IDs against CATH-

FunFams v4.3 (212,872 HMMs) using HMMER3 [76] with an e-value cut-off of 1e-03. 

Domain boundaries were resolved using CATH-resolve-hits [77] with a bit score cut-off of 

25 and coverage of 80%. With this method, we could assign CATH domains to both 

chains in 308 of the 547 binary complexes. These 308 interfaces belonged to 233 fold 



combinations, of which our database had records on 131. The remaining 102 fold 

combinations (from 105 interfaces) have not been seen in the PDB and were hence new 

binding modes identified by the deep learning complex modelling techniques. Even 

among the 131 known fold combinations, we detected new modes of binding. We 

clustered these fold combinations with the cluster representatives of the interfaces. Of the 

203 interfaces (belonging to 131 fold combinations), only 53 interfaces had a structure 

overlap of >80% and RMSD <1.5 Å. However, given these are models and there can be 

regions of the interface which are not modelled well, the structural comparison may be 

inexact. Hence, we reduced the structure overlap cut-off to >70% and RMSD to <3 Å. 

With this more permissive comparison criteria, 174 interfaces matched one of the cluster 

representatives (Figure S19). Only 29 interfaces (belonging to 26 fold combinations) had 

a lower structure overlap indicating modes of interactions not seen in the PDB. 

3. Discussions 

Typically, interface libraries contain known associations between fold types. We believe 

that these associations should be viewed at the level of domains, which could be thought 

of as a unit of evolutionary conservation. Ideally, we want to annotate interaction patches 

on domains, but we found that in some complexes where 2 chains interact with one 

another multiple domains (more than 2) are involved. In such cases, we are unable to 

determine if the constituent binary domain associations could interact in isolation. Hence, 

we have organized the data into chain-chain and domain-domain interfaces. Our interface 

library consists of 112,043 pairs of interacting protein chains and 66,442 pairs of 

interacting domains taken from crystal structures deposited in the PDB. In our study, an 

interface is simplistically detected if the solvent accessible surface area occluded on 

dimer formation is greater than 400 Å2, an approach similar to one espoused by the PQS 

server [78]. It is possible that using such a simple criterion to identify interfaces may lead 

to false positives/negatives. One of the future improvements we can make to our 

database is to use a more nuanced method of detecting interfaces. Change in the 

occluded surface area could be used in conjunction with various other information such 

as solvation energy, dissociation entropy, interface packing, surface complementarity, 

interface hydrophobicity, pair frequency, covariation, conservation, amino acid 

composition, surface conservation vs interface conservation etc [79].  

In our interface library, we have used an 8 Å cut-off to identify interface residues. We and 

others had previously shown that an 8 Å cut-off, though permissive, is best at depicting 

the first shell of residues at the interface for the development of statistical potential [80,81]. 

We assume the 8 Å cut-off provides structural context to the residues that are important 

in maintaining the interface structure. This somewhat permissive cut-off could also help 

account for water-mediated interactions at the interface. 

Binary chain-chain interactions are typically dominated by homomeric interactions, where 

the interacting partners have the same CATH id. In our library, 62% of all chain-chain 



pairs and 28% of domain-domain interactions are homomeric. We conjecture that the 

other 72% of domain-domain interactions provide us with plausible templates for different 

types of interactions, many of which have not yet been deposited in the PDB.  

In addition to its utility as a plausible template library for modeling protein-protein 

interactions, our library provides us with several pieces of useful data. The PDB contains 

1,391 different CATH folds. Of these, 1109 folds have interacting partners either with itself 

or another fold. 15 of these folds interact with over 30 other folds. The Rossmann fold, for 

instance, interacts with 238 other folds. In general, there is a strong correlation 

(correlation coefficient > 0.8) between the number of EC terms associated with a fold and 

the number of folds it interacts with. A mismatch between the number of EC terms related 

to a fold and its number of known interacting partners gives one the basis to search for 

plausible new interacting partners or EC terms.  

One reason for a high number of interfaces for certain folds (folds such as Rossmann 

fold, Immunoglobulin fold, α helices fold has >1000 interfaces) could be because of the 

large number of non-homologous proteins that populate these folds (maybe because of 

convergent evolution). It could also be because of the homo-oligomeric nature of certain 

folds. Of the 282 folds for which we have no evidence (yet) of interaction with other folds. 

~67% of them belong to the orthogonal bundle (CATH ID – 1.10), irregular architecture 

(CATH ID – 4.10), 2-layer sandwich (CATH ID – 3.10), alpha-beta complex (CATH ID – 

3.90) and up-down bundle (CATH ID -1.20) architecture. Though we cannot conclude this 

based on the data, we speculate that proteins belonging to these superfamilies do not 

interact with proteins of other folds.  

This library now gives us a platform for examining the nature of interactions between one-

fold and its multiple partners. Do date and party hubs use different types of interfaces 

[82], how could we categorize these, etc. We also examined the extent to which domains 

and chains use the same interfaces.  

Our library has catalogued 3065 fold combinations involving 1109 folds of a possible 1391 

folds. Speculatively, even if we assumed that only these 1109 folds were capable of 

interactions, we could have as many as 614,386 (966,745 fold combinations involving 

1391 folds) fold combinations. Clearly, there is a significant mismatch between what is 

possible and what has been observed, PDB sampling bias and under-representation of 

complex structures notwithstanding. The extent of the mismatch implies that not all fold 

combinations are observed in nature. A close examination and analysis of the domain-

domain associations in our library may be useful in guiding the construction of 

interactomes/networks.  

The 155,375 interfaces (88,933 chain-chain interfaces+66,442 domain-domain 

interfaces) with an assigned domain definition clustered into 27,885 clusters based on the 

structural similarity of the interface. 99.5% of these clusters contained interfaces 

belonging to the same superfamily within a fold. If the clustering conditions were to be 

relaxed, more of the interface clusters would contain members from different 



superfamilies. This indicates that structurally similar interfaces will mostly be found within 

a superfamily. In turn, this could assist in identifying interfaces on proteins within a 

superfamily. These interfaces could be homo- or heteromeric. Some of the often-recurring 

folds such as the Rossmann fold, TIM barrel and Immunoglobulin folds have >900 

clusters of homomeric and heteromeric interfaces. This indicates the richness (diversity 

of sequences taking on the fold) of the fold in the way it explores interaction diversity, 

which in turn explains the high correlation with EC terms. 

102 clusters had both chain-chain and domain-domain interfaces together, irrespective 

of the sequence similarity. This can indicate gene fusion leading to the formation of a 

domain-domain interface from a chain-chain interface or gene splitting leading to the 

formation of a chain-chain interface from the domain-domain interface. An interesting 

example is that of the CcmP protein, which has structurally similar chain-chain and 

domain-domain interfaces. Because domain-domain interfaces and chain-chain 

interfaces are sometimes structurally similar, our library can provide an increased number 

of templates to model multi-domain proteins whose individual domains may have been 

crystallized separately. 

Our database is a redundant set of all the interfaces recorded in the PDB. The dataset 

has been made structurally non-redundant by clustering interfaces and choosing one 

representative per cluster. We did not remove redundant chains/domains from our 

analysis to capture the different modes in which identical sequences would interact with 

one another because of the flexibility of the interfaces. This could improve the predictive 

abilities of the library to model protein complexes allowing it to sample even small 

variations in otherwise similar conformations. 

We observed that the interfaces have higher sequence similarity as compared to that of 

the whole protein. The sequence similarity and structure similarity go hand and hand 

however exceptions are noted. We noticed that ~2% of the interfaces which were 

clustered together (same fold combination) were structurally similar (structure 

overlap>80% and RMSD<1.5) but were not sequentially similar (<30% identity). These 

show that irrespective of the sequence identity this library can be used to search 

templates for protein complex modeling. 

As stated earlier, our primary intent in creating the library was to accumulate a large 

number of interface templates to model protein-protein interactions. Though we have not 

explicitly done so in this study, our interface library when combined with a structure 

comparison tool, such as CLICK [60], could help us see similarities between interfaces 

from unrelated folds. Previous studies have also reported how dissimilar folds can use 

the same geometry at the interface to interact with a certain protein fold. Our interface 

library also contains many instances of homologous proteins interacting with each other 

using structurally different interfaces, such as in lectins, bacterial chemotaxis proteins, 

ASPP proteins etc. Previous studies have also pointed toward proteins utilizing similar 

geometry at the interfaces conjecturing that the structural repertoire of interfaces is close 



to complete [53]. Hence, the interface library presented in this study can serve as a useful 

resource to model protein complexes using a topology-independent structural match to 

identify template interfaces for the same. 

We also computed the amino acid pair preference at chain-chain and domain-domain 

interfaces to calculate amino acid substitution scores. Overall, the trends of what amino 

acid pairs are favoured/unfavoured are similar in both the chain-chain/domain-domain 

interfaces. However self-amino acid pairs were generally favoured at the chain-chain 

interface to a greater degree when compared to domain-domain interfaces. This could be 

because ~62% of chain-chain interfaces are homo-oligomers whereas only ~28% of the 

domain-domain interfaces are homo-oligomers. The similarity between the two pair 

preferences shows that domain-domain interfaces could supplement chain-chain 

interfaces and aid in the study of protein-protein interactions. 

A significant predictive aspect of our library is the detection of plausible small molecule 

binding sites on interfaces. About 54% of protein-protein interfaces had at least 50% 

overlap between the interface residues and predicted small molecule binding site 

residues. This could serve as a useful resource in studying/inhibiting interactions with 

possible therapeutic applications. With these data, we could possibly analyse the 

interface structures to determine the most appropriate small molecule that could affect a 

known interaction. These small molecules could variously be carbohydrates, cofactors, 

drugs etc. However, all these predicted binding sites may not be druggable. Various 

methods such as PockDrug [83], Bitenet [84], DrugPred [85], DeepDrug3D [86] etc. have 

been developed to predict if a biding pocket is druggable. They use binding site properties 

such as hydrophobicity, cavity volume, physicochemical properties, polarities, 

compactness, hydrogen bonding abilities, Voronoi tessellations, voxel properties etc. 

These tools can hence be used in conjunction with our prediction depending on the 

requirements of the user to identify if the predicted binding pockets are druggable. 

We envisage that future contributions to our database could be from modelled structures, 

given the recent success of deep modelling techniques. With this in mind, we analysed 

308 (233 fold combinations) eukaryotic protein complex interfaces modelled using 

AlphaFold2 and RoseTTAFold. Of these, there were 102 protein fold combinations that 

have not (yet) been recorded in the PDB. Even among the 131 fold combinations already 

recorded in our database, 26 fold combinations had new interaction modes, as gleaned 

from computing structure overlap and RMSD to cluster representatives. These models 

have not yet been included in our dataset as some work needs to be done on quantifying 

the accuracies of the modelled complexes. But the preliminary results are encouraging 

and our database could contribute to self-consistent learning in these techniques and 

benefit future modelling of protein complexes. 

In this study, we have laid the foundation for future protein-protein and domain-domain 

interactions studies/predictions/design. The interfaces here could prove useful in 

constructing the structures of protein complexes or even building a whole protein structure 



from individually solved domains. Our library could also be used in conjugation with 

fragment-based interface design algorithms such as nanohedra [87]. With the rapid 

growth of structures resolved using cryo-EM, a library such as ours could also prove 

useful in refining such structures. The information presented in this study would soon be 

available as a queryable relational database on a webserver (work in progress). 

4. Methods  

4.1. Library of interfaces 

All multi-chain and multi-domain (based on CATHv4.2 domain definition) complexes were 

extracted from the PDB. The accessible surface area for the individual protein 

chains/domains and all possible binary protein chain/domain complexes were calculated 

using MODELLER [88]. Only binary complexes with greater than 400 Å2 change in solvent 

accessible surface area after interface formation were retained. This cut-off was used to 

filter crystallographic artifacts from biologically relevant interfaces in line with the PQS 

server [78,80,89,90]. Despite this cut-off, some of the interfaces could be artifacts of 

crystallization. However, we believe that these could still serve as viable templates and 

the scoring scheme employed for modeling could discern between actual interactions and 

artifacts [91].  

Our library contains a list of interacting amino acid residues. Interacting residues are 

those that have at least one atom within 8 Å of another atom from a different 

chain/domain. These interacting residues constitute the interacting interface. The 

interface library contains dimeric chain-chain or domain-domain interfaces (domain-

domain interfaces were between residues of the same chain). Oligomeric interfaces, 

involving more than 2 chains, are represented in the database by the constituent dimeric 

interfaces (subject to the same selection described above). All interfaces are also labelled 

by the CATH folds of their constituent chains/domains and are referred to as a ‘fold 

combination’ in this study. 

4.2. Clustering of interfaces 

All interfaces with the same fold combination were hierarchically clustered together such 

that the representative interface is the one with the highest resolution. All interfaces within 

a cluster were compared to the representative interface using CLICK [92] (a topology 

independent structural superimposition tool) with Cα and Cβ as representative atoms for 

superimposition. An interface was clustered with the representative interface if the 

structure overlap was >80% and RMSD was <1.5 Å (these values were empirically 

chosen). A new representative interface was chosen from the remaining interfaces and 

the same procedure was repeated to find plausible clusters for all interfaces (Figure S11). 



21 fold combinations with more than 1000 instances in PDBs were broken into two smaller 

sets of a maximum of 600 interfaces each (empirically chosen to ensure that the smaller 

subset had at least 400 members). This reduced the number of structural comparisons 

for clustering.  

 

4.3. Pair preference of amino acids at domain-domain and chain-chain 

interfaces 

 

A residue-residue interaction profile was calculated for all side chain-side chain 

interactions using the same statistical potential as described in the method PIZSA [93,94]. 

The scoring scheme is the ratio of the observed probability to the expected probability of 

an interface residue pair. It is a statistical potential that computes the propensity of pairs 

of amino acids to occur across an interface. Interactions across the interface were 

computed as atomic contacts with a cut-off distance of 4 Å. The PIZSA potential also 

calibrates this propensity by the number of atomic contacts mediating the interaction 

between the pair of amino acids. To prevent the overrepresentation of certain sequences 

while computing the statistical potential, the PDB entries were culled using PISCES [95] 

such that the maximum sequence identity was 40%. 
  

4.4 Prediction of small molecule binding sites 

 

The small molecule binding site of the individual chains that form the protein-protein 

interfaces was predicted with the software DEPTH [96] using default options. DEPTH was 

earlier compared to other state of art binding site prediction software such as 

MetaPocket2.0 [97] and Concavity [98] and was shown to be better or at par with these 

methods [96].   

 

5. Data availability 
The interface library can be downloaded from here. 
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