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Abstract 

Background: To assess whether AI-based decision support allows more reproducible and 

standardized assessment of treatment response on MRI in neuro-oncology as compared to 

manual 2-dimensional measurements of tumor burden using the RANO criteria. 

Methods: A series of 30 patients (15 lower-grade gliomas, 15 glioblastoma) with availability of 

consecutive MRI scans was selected. The time to progression (TTP) on MRI was separately 

evaluated for each patient by 15 investigators over two rounds. In the 1st round the TTP was 

evaluated based on the RANO-criteria, whereas in the 2nd round the TTP was evaluated by 

incorporating additional information from AI-enhanced MRI-sequences depicting the 

longitudinal changes in tumor volumes. The agreement of the TTP-measurements between 

investigators was evaluated using concordance correlation coefficients (CCC) with confidence 

intervals (CI) and p-values obtained using bootstrap resampling. 

Results: The CCC of TTP-measurements between investigators was 0.77 (95%CI=0.69,0.88) 

with RANO alone and increased to 0.91 (95%CI=0.82,0.95) with AI-based decision support 

(p=0.005). This effect was significantly greater (p=0.008) for patients with lower-grade gliomas 

(CCC=0.70 [95%CI=0.56,0.85] without vs. 0.90 [95%CI=0.76,0.95] with AI-based decision 

support) as compared to glioblastoma (CCC=0.83 [95%CI=0.75,0.92] without vs. 0.86 

[95%CI=0.78,0.93] with AI-based decision support). Investigators with less years of experience 

judged the AI-based decision as more helpful (p=0.02). 

Conclusions: AI-based decision support has the potential to yield more reproducible and 

standardized assessment of treatment response in neuro-oncology as compared to manual 2-

dimensional measurements of tumor burden, particularly in patients with lower-grade 

gliomas. A fully-functional version of this AI-based processing pipeline is provided as open-

source (https://github.com/NeuroAI-HD/HD-GLIO-XNAT). 

Keywords: RANO; tumor response assessment; tumor volumetry; AI-based decision 

support  

https://github.com/NeuroAI-HD/HD-GLIO-XNAT


N-O-D-22-00258R2 

Key Points: (248 characters) 

1. AI-based decision support improved the concordance of TTP ratings over RANO alone 

2. AI-based decision support was more useful for lower-grade gliomas as compared to 

glioblastoma 

3. Less experienced investigators judged the AI-based decision support as more helpful 

Importance of the Study:  

The RANO criteria are widely adopted in neuro-oncology, however the prescribed manual 

measurements of tumor burden on MRI may be challenging and potentially limit the 

reproducibility of the RANO-criteria for reliable assessment of treatment response. There has 

been long-standing interest in using volumetric assessment of tumor burden with previous 

studies indicating that volumetric measurements may be more reliable and accurate as 

compared to 2-dimensional measurements of tumor diameters in arbitrarily chosen slices. The 

present study demonstrates that AI-based decision support has the potential to yield more 

reproducible and standardized assessment of treatment response in neuro-oncology as 

compared to manual 2-dimensional measurements of tumor burden. Particularly the evaluation 

of lower-grade gliomas where reliable assessment of the TTP may be challenging due to the 

slow growing nature of these tumors may benefit from AI-based decision support. A fully 

functional version of this AI-based processing pipeline is provided as open-source 

(https://github.com/NeuroAI-HD/HD-GLIO-XNAT). 

  

https://github.com/NeuroAI-HD/HD-GLIO-XNAT
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Introduction 

Magnetic resonance imaging (MRI) is used extensively in cancer research during drug 

development, including clinical trials, as well as for the routine management of cancer patients. 

1  It is particularly valuable for brain tumors, which are located in one of the most vulnerable 

and hard-to-reach regions of the human body. However, the assessment of imaging data by 

radiologists still relies primarily on qualitative (subjective) visual interpretation, which may 

increase the burden of time and expenditure on clinical trials, and which may also hamper the 

validity of imaging biomarkers used in clinical trials and clinical practice for assessing treatment 

response. The criteria for assessing treatment response and efficacy in neuro-oncology are 

essentially based on longitudinal measurements of the largest diameters of contrast-enhancing 

target lesions on imaging as formalized by the Response Assessment in Neuro-Oncology 

(RANO) criteria 2,3. The RANO criteria are widely adopted in neuro-oncology clinical trials to 

yield a standardized and reproducible assessment of treatment response. Underlying the use 

of RANO is the assumption that the two-dimensional measurement of a contrast-enhancing 

lesion’s largest diameter on MRI is a surrogate marker of the overall tumor burden. However, 

this assumption is not always accurate, since brain tumors frequently display very complex 

shapes and anisotropic growth, influenced in part by the surrounding anatomic boundaries, 

host tissue–tumor interface, or treatment related effects (e.g., areas of necrosis and surgical 

cavities). Consequently, reproducible assessment of tumor burden and treatment response 

and/or disease progression between different radiologists using RANO criteria may be 

challenging and thus potentially limiting its value for clinical decision making. Reproducible 

assessment is further complicated by the assessment of nonenhancing T2/FLAIR lesions as 

an additional criterion besides contrast-enhancing lesions for evaluating treatment response 

and/or disease progression.  

 In the light of that, there has been long-standing interest in using volumetric 

assessment of tumor burden 3,4 with previous studies indicating that volumetric measurements 

may be more reliable and accurate as compared to 2-dimensional measurements of tumor 

diameters in arbitrarily chosen slices (Figure 1) 5,6. In the present study we investigated the 
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clinical utility of AI-based decision support with automated volumetric quantification of tumor 

burden on MRI in neuro-oncology and evaluated whether it enables more reproducible and 

standardized assessment of treatment response as compared to manual 2-dimensional 

measurements of tumor burden using the RANO criteria. 

  



N-O-D-22-00258R2 

Methods 

Study Design and Participants 

This study was institutional review board-approved and informed consent was waived (S-

784/2018).  For the present study, a non-consecutive series of n=30 adult brain tumor patients 

(including n=15 glioblastoma WHO °IV and n=15 lower-grade gliomas, the latter encompassing 

n=2 IDH-mutant astrocytoma WHO °II, n=3 IDH-mutant astrocytoma WHO °III, n=8 IDH-

mutant 1p/19q codeleted oligodendroglioma WHO °II and n=2 IDH-mutant 1p/19q codeleted 

oligodendroglioma WHO °III) previously treated at Heidelberg University Hospital. The 

selection of patients that were included for the present study was performed on consensus by 

three local investigators from Heidelberg University Hospital (P.V. , W.W. and M.B) aiming at 

representing different clinical scenarios from different disease stages in neuro-oncology. The 

MRI exams were acquired during the period of 09/2009 and 02/2019 with a standardized 

imaging protocol 7 and included 3D T1-weighted images before (T1-w) and after contrast agent 

administration (cT1-w) as well as axial 2D FLAIR and T2-weighted (T2-w) images as well as 

diffusion-weighted MRI with apparent diffusion coefficient (ADC) maps. To increase the 

diversity of the dataset, longitudinal MRI scans were selected from the primary treatment 

setting in 12 cases (with the post-radiation MRI scan used as the first imaging timepoint; except 

in patients that did not receive radiation therapy the post-surgery MRI scan was used as the 

first imaging timepoint) and the recurrent treatment setting in 18 cases (with the MRI scan prior 

to change of therapy as the first imaging timepoint). The last imaging timepoint was the MRI 

scan showing definitive tumor progression with subsequent change of treatment. Specifically, 

a median of 5 consecutive MRI scans (IQR, 5-10) were selected for each patient with a median 

of interval of 3.1 months (IQR, 2.5-3.6 months) between the scans. The interval between scans 

was significantly longer for lower-grade gliomas as compared to glioblastoma (p<0.0001) with 

3.5 months (IQR, 3.0-5.6 months) for lower-grade gliomas and 2.8 months (IQR, 1.5-3.1 

months) for glioblastoma. The Supplementary Table 1 contains information on patient and 

treatment characteristics.  
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The 15 participating investigators were neuroradiologists (namely P.V., R.Y.H., F.B., J.E.P., 

Y.W.P., S.S.A., R.J., M.S., W.B.P., M.B.) or neuro-oncologists (namely N.G., M.J.v.d.B, M.W., 

P.Y.W., W.W.) and the majority (11/15, 73%) are active members of the RANO working group 

and/or the brain tumor group (BTG) from the European Organization for Research and 

Treatment of Cancer (EORTC). The investigators represented 11 institutions from 5 countries 

(Germany: n=4, USA: n=4, Netherlands: n=3, South Korea: n=3, Switzerland: n=1) and all of 

them are authors of this article. None of the investigators used AI-based decision support for 

assessment of treatment response in neuro-oncology prior to this study. Prior to the start of 

the study, all investigators reached consensus on the number and composition of patients to 

be included (i.e., n=30 patients including both lower-grade gliomas and glioblastomas from 

both primary and recurrent treatment settings). This consensus decision enabled that each of 

the 15 participating investigators would manage to interpret all cases in a reasonable 

timeframe while still including patients from a broad range of clinical scenarios.  

Image interpretation 

In the 1st assessment round of the study investigators were provided with the consecutive MRI 

scans (including T1-w, cT1-w, FLAIR, T2-w, DWI and ADC sequences for each timepoint) as 

well as relevant clinical information (integrated diagnosis according to the WHO 2016 

classification of CNS tumors, current tumor-specific treatment and in case of recurrent tumors 

the number of recurrences) from each patient. The investigators received no information 

regarding at what timepoint when treatment was changed during the period covered by the 

available MRI scans. 

All MRI scans were provided in DICOM format, stripped of patient information (with allocated 

patient identifiers being subject_01 to subject_30), and delivered to investigators. Investigators 

used their personal workstations with RadiAnt (Medixant, Poland) or OsiriX Lite (Pixmeo, 

Switzerland) as DICOM viewer. The investigators were asked to assess the timepoint of tumor 

progression on MRI in each patient by applying the 2D RANO concept with bi-perpendicular 

measurements of tumor burden as a general guide as outlined in the RANO criteria for high-
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grade3 and lower-grade gliomas 4 and complete all reads at a typical clinical pace within a 2-

month timeframe. The investigators received no feedback following submission of their 

readings. An illustrative case depicting the MRI sequences from consecutive timepoints during 

the 1st round of the assessment are shown in Supplementary Figure 1.  

The 2nd assessment round of the study started after a 1-month wash out period. Patient 

identifiers within the image and clinical data were reordered to impede the re-use of the TTP 

assessment from the 1st round. The investigators received all the information from the 1st 

assessment round (MRI scans as well as relevant clinical information) as well as additional 

MRI sequences for each MRI scan generated using a previously developed and validated in-

house AI-based processing pipeline, including deep-learning based skull stripping 

(https://github.com/NeuroAI-HD/HD-BET) and deep-learning based tumor segmentation 

(https://github.com/NeuroAI-HD/HD-GLIO) as core components 6,8. To allow unbiased 

evaluation of the performance we did not perform any manual adjustments to the output of the 

AI-based processing pipeline (e.g., editing of tumor segmentation masks). Thereby for each 

MRI scan three additional MRI sequences were provided: (1-2) cT1-w and FLAIR sequences 

with color-coded overlays that indicate the contrast-enhancing and T2/FLAIR-hyperintense 

tumor identified by the AI-based processing pipeline, and (3) a DICOM sequence depicting a 

graph with the absolute and relative change in these tumor volumes over time (plotting 

contrast-enhancing and T2/FLAIR-hyperintense tumor volumes from the current and all 

previous MRI scans). Identical to the 1st assessment round the investigators were asked to 

assess the timepoint of tumor progression on MRI in each patient by incorporating this 

additional information and complete all reads at a typical clinical pace within a 2-month 

timeframe. As a general guideline, investigators were told that a 25% increase in the bi-

perpendicular diameter would correspond to a 40% increase in the tumor volume (assuming 

spherical configuration of the tumor), 6 however final judgment (strict adherence to this 

volumetric threshold vs. subjective interpretation of the growth curve) was done at the 

discretion of the investigators. An illustrative case depicting the additional AI-enhanced MRI 

sequences from consecutive timepoints provided during the 2nd round of the assessment are 

https://github.com/NeuroAI-HD/HD-BET
https://github.com/NeuroAI-HD/HD-GLIO
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shown in Supplementary Figure 2. Moreover, investigators were asked to record whether the 

additional information from the AI-based decision support was perceived as helpful or not 

(specified as “1” or “0”) for each of the assessed patients. The investigators received no 

feedback following submission of their readings. Subsequently, a questionnaire was circulated 

among the investigators to collect information about the years of their experience with neuro-

oncology imaging.  

Statistical analysis 

All statistical analyses were performed with R version 4.1.2 (R Foundation for Statistical 

Computing, Vienna, Austria). The agreement as well as disagreement in the individual 

readings for the timepoint of tumor progression between 1st and 2nd round of the assessment 

(overall 450 pairs i.e., from 30 patients * 15 investigators) were analyzed with descriptive 

metrics (absolute and relative agreement); differences were assessed with a 2-sample test for 

equality of proportions.  

The time to progression (TTP) for each reading was calculated from the date of baseline MRI 

until the timepoint of tumor progression specified by the readings from each of the 

investigators. For those cases where the investigator did not judge tumor progression until the 

last MRI timepoint, an interval of 3 months (equivalent to one follow-up interval) was added as 

a workaround to the TTP measurement prior calculating the concordance correlation 

coefficient (CCC) and the standard deviation (SD) of the TTP measurements. This procedure 

allowed that none of the readings needed to be excluded when calculating these metrics while 

preserving statistical validity. The agreement of the TTP measurements between the 

investigators (separately for the 1st and 2nd round of the assessment) was evaluated for the 

whole patient cohort as well as for the glioblastoma and lower-grade glioma subgroups using 

the CCC 9. The reported 95% confidence intervals (CI) were calculated using bootstrapping 

(with n=1000 iterations) with the bias-adjusted and accelerated bootstrap method. Empirical p-

values were computed from the bootstrap distribution to assess differences between the CCC 

from the 1st and 2nd round for the whole patient cohort as well as for the glioblastoma and 

lower-grade glioma subgroups. The SD of the TTP measurements from all investigators was 
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computed for each patient (separately for the 1st and 2nd round of the assessment) and was 

used as an additional metric beyond the CCC to evaluate agreement between investigators on 

a per-patient level. The reported 95% confidence intervals (CI) were calculated using 

bootstrapping (with n=1000 iterations) with the bias-adjusted and accelerated bootstrap 

method. A Pearson correlation test was used to evaluate the association (a) between the 

percentage of investigators judging AI-based decision support as helpful for assessing the TTP 

in patients and the standard deviation of the TTP measurements in the 2nd round of the 

assessment, as well as (b) between the percentage of patients where investigators judged AI-

based decision as helpful for assessing the TTP and the experience of the investigators with 

neuro-oncology imaging. P-values <0.05 were considered significant. 

 

  



N-O-D-22-00258R2 

Results 

The CCC of TTP measurements between investigators was 0.77 (95% CI = 0.69 – 0.88) in the 

1st round of the assessment without AI-based decision support and increased to 0.91 (95%CI 

= 0.82 – 0.95) with AI-based decision support (p=0.005) (Figure 2). This effect was more 

pronounced for patients with lower-grade gliomas, where the CCC was 0.70 (95% CI = 0.56 – 

0.85) without AI-based decision support, as compared to 0.90 (95% CI = 0.76 – 0.95) with AI-

based decision support (p=0.008). In contrast,  for patients with  glioblastoma the CCC was 

0.83 (95% CI = 0.75 – 0.92) without AI-based decision support, as compared to 0.86 (95% CI 

= 0.78 – 0.93) with AI-based decision support (p=0.016). Similarly, the median SD for the TTP 

measurements between the investigators was 6.1 months (95% CI = 4.3 - 9.6 months) without 

AI-based decision support and decreased to 4.8 months (95% CI = 3.7 - 6.2 months) with AI-

based decision support (p=0.004) (Figure 3). Thereby a greater decrease in the SD when 

using additional AI-based decision support was observed for patients with lower-grade gliomas 

(-1.7 months [95% CI: -4.2 to -1.1 months]) as compared to glioblastoma (-0.1 months [95% 

CI: -0.5 to 0.0 months]) (p<0.001). Illustrative cases from two representative cases which 

demonstrate improved agreement in the TTP among investigators when using additional AI-

based decision support are shown in Figure 4 and 5 and Supplementary Figure 3.  

Comparison of all available pairs of TTP assessments from the 1st and the 2nd round of the 

assessment (450 pairs i.e., 30 patients x 15 raters) showed that the assessment performed 

with RANO alone were kept unchanged with additional AI-based decision support in 251 / 450 

instances (56%) and were changed for the remaining 199 / 450 instances (44%) 

(Supplementary Table 2). Thereby, the probability of changing the TTP assessment with 

additional AI-based decision support was higher for the subset of patients with lower-grade 

gliomas (114 / 225 [51%]) as compared to glioblastoma (85 / 225 assessments [38%], 

p=0.008). The AI-based decision support did not systematically shift the judgment of tumor 

progression towards an earlier or later timepoint, instead the probability between shifting 

towards an earlier timepoint (105 / 450 instances [23%]) as compared towards shifting to a 
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later timepoint (94 / 450 instances [21%]) with additional AI-based decision support was 

balanced (p=0.42). 

The percentage of patients where individual investigators judged AI-based decision as helpful 

(median, 57% [IQR, 47-63%]) was negatively correlated with the experience of the 

investigators with neuro-oncology imaging (median of 19 years [IQR, 12-24 years]; Pearson 

correlation coefficient = -0.52; p = 0.02) i.e., investigators with less years of experience judged 

the AI-based decision support as more helpful (Figure 6a). Moreover, the percentage of 

investigators who judged the information provided through AI-based decision support as 

helpful for assessing the TTP in individual patients (median, 64% [IQR: 45-79%]) was 

negatively correlated with the SD of the TTP measurements in the 2nd of the assessment 

(Pearson correlation coefficient = -0.34; p = 0.03) i.e., the more investigators who judged the 

AI-based decision support to be helpful for a given patient, the better the agreement on TTP 

measurements for that patient (Figure 6b). 

A fully functional version of AI-based processing pipeline that was used in the present study 

(illustrative case shown in the Supplementary Figure 2) is provided through 

https://github.com/NeuroAI-HD/HD-GLIO-XNAT as open-source and allows seamless 

manufacturer neutral integration into existing radiological infrastructures through the XNAT 

framework as a Container Service Plugin 10 (Supplementary Figure 4). 

 

  

https://github.com/NeuroAI-HD/HD-GLIO-XNAT
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Discussion 

 

The importance and meaningful clinical use of AI algorithms for automated quantification of 

tumor burden in neuro-oncology is reflected in the growing body of literature showing that 

accurate automated delineation of the various tumor sub-compartments can offer the basis for 

generating quantitative and reproducible imaging endpoints in neuro-oncology 5,6,11-13. 

Specifically, AI algorithms for automated volumetric segmentation of tumor burden proved to 

be highly accurate with spatial overlap agreement between the predicted and the expert ground 

truth tumor annotation of more than 90% for the segmentation of contrast-enhancing tumor, as 

well as non-enhancing T2/FLAIR signal abnormality 5,6,11, even when applying the AI algorithm 

to unseen data from a multicenter phase II/III trial 6. The findings from the present study now 

provide additional evidence regarding the clinical value of AI-based decision support towards 

establishing high-quality imaging endpoints in neuro-oncology. Specifically, we demonstrate 

within the setting of an international multi-reader study with 15 investigators that automated 

AI-based volumetric quantification of tumor burden allows to improve the reproducibility and 

agreement of tumor response assessment measurements as compared to standard RANO 

criteria within a simulated clinical setting. We demonstrate that particularly lower-grade gliomas 

where reliable assessment of the tumor progression may be challenging due to their slow 

growing nature of these tumors may benefit from AI-based decision support with a potentially 

clinically meaningful and relevant decrease in the SD (by a median of 1.7 months) of the TTP 

measurements between the investigators. In contrast, when investigators used the AI-based 

decision support in patients with glioblastoma, there was comparatively less impact on the 

reproducibility of tumor response assessment. Potentially, this may reflect that tumor growth 

dynamics are comparatively more robust to discern when assessing tumors with a faster 

growth trajectory, thereby limiting the impact of AI-based decision support.  

The principal benefits of AI-based decision support may be useful not only in a routine 

clinical scenario, but especially in the context of clinical trials, where the assessment of 

treatment efficacy on MRI is – besides overall survival – a key endpoint for the approval of new 
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treatment concepts. Therefore, blinded central assessment of treatment efficacy by 

independent radiologists is frequently requested by regulatory authorities 14 to mitigate over- 

or under-estimation of the true effect of treatments (i.e., systematic bias) when only relying on 

the local RANO readings where investigators are not blinded to the patients’ treatment 

assignments and clinical information 15. Moreover, central RANO reading by expert radiologists 

is labor and time intensive and thus increases the burden of time and expenditure on clinical 

trials. Consequently, AI algorithms for automated volumetric delineation of tumor burden and 

tumor response assessment may assist investigators during central reading of the imaging 

data to yield high-quality imaging endpoints in neuro-oncology. As part of this study, we provide 

a fully functional version of the AI-based processing pipeline as open-source, enabling 

seamless manufacturer neutral integration into existing radiological infrastructures through the 

XNAT framework 10 (Supplementary Figure 4) and thus may hold great promise for enhancing 

future research efforts in the field of neuro-oncology.  

Our study also demonstrates that the information provided through the AI-based 

decision support is perceived as more helpful by comparatively less experienced investigators. 

Moreover, perceiving AI-based decision support as helpful by a greater number of investigators 

for determining the TTP in a specific patient, directly translated into a better agreement in the 

TTP measurements for this patient. Both findings taken together, highlight (a) that the 

confidence and validity of tumor response assessment readings could be augmented through 

AI-based decision support especially for less experienced investigators, and (b) that 

investigators were able to readily identify appropriate cases where AI-based decision support 

is helpful and thereby leading to a more reproducible assessment of treatment efficacy in 

neuro-oncology. 

Our study has some limitations. First, we acknowledge the retrospective nature of the 

study and the selection of a non-consecutive patient series. However, we aimed to simulate a 

realistic clinical scenario including patients with different tumor subtypes from both primary and 

recurrent treatment situations and a broad range of treatment scenarios. Although further 

validation in a prospective clinical scenario is needed to better establish the value of AI-based 
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decision support and to specifically assess whether more reliable surrogate endpoints can be 

obtained from MRI, it may be challenging to adopt a rigorous prospective multi-reader design 

with/without AI-based decision support as performed in the present study.  

Second, the AI-based processing pipeline applied in the present study makes use of 

our previously trained and validated artificial neural networks for automated skull-stripping 8 

and automated tumor segmentation which has been developed using >3000 MRI examinations 

from >1400 brain tumor patients 6. However, the potential underrepresentation of atypical or 

particularly challenging in these data used for training the artificial neural networks may affect 

the performance in a real-world clinical scenario and potentially lead to false-positive or false-

negative detection of tumor burden. Consequently, this may have negatively affecting the 

perceived usefulness of the AI-based decision support among the investigators in the present 

study. Although data sharing initiatives with public deposition of annotated cases (e.g. through 

collaborative efforts such as the Cancer Genome Imaging Archive [TCIA] or the Brain Tumor 

Segmentation Challenge [BraTS] for gliomas 11,16) is a crucial first step to address this 

limitation, medical data privacy regulations often pose a significant challenge towards 

establishing a centralized data repository 17. Recent technical developments in the field of AI, 

specifically federated learning which allows multiple healthcare institutions to share their data 

to train an AI model while still guaranteeing medical data privacy, aim to address this challenge 

17-20. 

Third, the differentiation of T2/FLAIR hyperintensities as well as contrast-enhancing 

lesions during the follow-up into treatment or tumor-related changes, may still be a challenge 

in the field of neuro-oncology, particularly with treatment concepts that incorporate 

immunotherapies or anti-angiogenic drugs 21,22. Consequently, the future incorporation of 

advanced MRI modalities such as diffusion or perfusion-weighted imaging 23,24 or metabolic 

imaging with radiolabeled molecules from positron emission tomography (PET) 25 will be 

important to overcome limitations of structural MRI and may allow to further optimize the clinical 

value of the AI-based decision support applied in the present study. 
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In conclusion, AI-based decision support has the potential to yield more reproducible 

and standardized assessment of treatment response in neuro-oncology as compared to 

manual 2-dimensional measurements of tumor burden. Particularly the evaluation of patients 

with lower-grade gliomas where reliable assessment of the TTP may be challenging due to 

their slow growing nature of these tumors may benefit from AI-based decision support. To 

enhance future research efforts in the field of neuro-oncology imaging, we provide a fully 

functional version of the AI-based processing pipeline as open-source which can readily be 

integrated into existing radiological (research) infrastructures. 
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Figure Captions 

 

Figure 1. Use of automated AI-based volumetric quantification of tumor burden to overcome 

the interrater variability of RANO measurements of tumor diameters towards a more 

standardized & reproducible assessment of treatment efficacy in neuro-oncology. 

Figure 2. Concordance correlation coefficients (CCC) of tumor response assessment between 

investigators in the 1st round of the study without AI-based decision support (red colored) and 

the 2nd round of the study with AI-based decision support (green colored). The central line of 

the boxplot denotes the median and the edges of the boxplot denote the first and the third 

quartile of the bootstrap distribution of the CCC. The lines extending from the boxes (whiskers) 

indicating variability outside the upper and lower quartiles. The outliers are denoted by black 

dots at the end of the whisker lines. 

Figure 3. Standard deviation (SD) of tumor response assessment between investigators in the 

1st round of the study without AI-based decision support (red colored) and the 2nd round with 

AI-based decision support (green colored). The difference in the SD between the 1st and the 

2nd round is shown in blue.  

Figure 4. Illustrative case (patient #17, oligodendroglioma WHO°III) depicting the change in 

tumor burden over time on cT1-w and FLAIR sequences (1st and 2nd row). The cT1-w overlay 

and FLAIR overlay sequences (3rd and 4th row) as well as the corresponding tumor volume plot 

were provided in the 2nd round of the assessment and visualize the contrast-enhancing tumor 

volumes (red) and T2-w/FLAIR abnormality volumes (green) which were automatically 

generated by the AI-based decision support for each timepoint. The last row visualizes the 

time to progression (TTP) measurements from the 15 investigators based on RANO alone (1st 

round; blue colored boxplot) vs. additional AI-based decision support (2nd round; purple colored 

boxplot). The boxplots demonstrate higher agreement of the TTP measurements from the 15 

investigators with additional AI-based decision support. 

 Figure 5. Illustrative case (patient #18, astrocytoma WHO°III) depicting the change in tumor 

burden over time on cT1-w and FLAIR sequences (1st and 2nd row). The cT1-w overlay and 



N-O-D-22-00258R2 

FLAIR overlay sequences (3rd and 4th row) as well as the corresponding tumor volume plot 

were provided in the 2nd round of the assessment and visualize the contrast-enhancing tumor 

volumes (red) and T2-w/FLAIR abnormality volumes (green) which were automatically 

generated by the AI-based decision support for each timepoint. The last row visualizes the 

time to progression (TTP) measurements from the 15 investigators based on RANO alone 

(1st round; blue colored boxplot) vs. additional AI-based decision support (2nd round; purple 

colored boxplot). The boxplots demonstrate higher agreement of the TTP measurements 

from the 15 investigators with additional AI-based decision support. 

Figure 6. (A) Correlation between the percentage of investigators judging AI-based decision 

support as helpful for assessing the TTP in individual patients and the standard deviation of 

the corresponding TTP measurements in round 2 (RANO+AI). (B) Correlation between the 

percentage of patients where investigators judged AI-based decision as helpful for assessing 

the TTP and the corresponding experience of the investigators with neuro-oncology imaging.  

 

 















Data Supplement 

 

Supplementary Table 1. Characteristics of the patients (integrated diagnosis of the glioma 
subtype, timepoint of the disease from where MRI scans have been included, current treatment 
during this timeframe and number of MRI scans sent to the investigators).  

ID Integrated Diagnosis Timepoint Current 
Treatment 

No. of MRI 
scans 

1 Glioblastoma (IDH-wt) newly diagnosed adjuvant TMZ 19 
2 Glioblastoma (IDH-wt) 1st recurrence bevacizumab + 

lomustine 
9 

3 Glioblastoma (IDH-mut) newly diagnosed adjuvant TMZ 13 
4 Glioblastoma (IDH-wt, MGMT-meth) newly diagnosed adjuvant TMZ + 

Nivolumab 
10 

5 Glioblastoma (IDH-wt) 1st recurrence TTF (Tumour 
Treating Fields) 

6 

6 Glioblastoma (IDH-wt) newly diagnosed adjuvant TMZ 5 
7 Glioblastoma (IDH-wt) 1st recurrence lomustine 5 
8 Glioblastoma (IDH-wt) newly diagnosed adjuvant TMZ 4 
9 Glioblastoma (IDH-wt) newly diagnosed adjuvant TMZ 5 
10 Glioblastoma (IDH-wt, MGMT-unmeth) newly diagnosed adjuvant TMZ 5 
11 Glioblastoma (IDH-wt, MGMT-unmeth) 1st recurrence bevacizumab + 

lomustine 
5 

12 Glioblastoma (IDH-wt, MGMT-unmeth) 4th recurrence bevacizumab 4 
13 Glioblastoma (IDH-wt, MGMT-meth) 2nd recurrence CCNU 4 
14 Glioblastoma (IDH-wt, MGMT-meth) newly diagnosed adjuvant TMZ 8 
15 Glioblastoma (IDH-wt, MGMT-meth) 1st recurrence bevacizumab + 

lomustine 
6 

16 Oligodendroglioma (WHO °II, IDH-mut, 1p19q codel) 1st recurrence proton beam 
irradiation 

22 

17 Oligodendroglioma (WHO °III, IDH-mut, 1p19q codel) 3rd recurrence CCNU 10 
18 Astrocytoma (WHO °III, IDH-mut) 1st recurrence TMZ 14 
19 Oligodendroglioma (WHO °II, IDH-mut, 1p19q codel) newly diagnosed no therapy after 

resection 
12 

20 Astrocytoma (WHO °III, IDH-mut) newly diagnosed TMZ + peptide 
vaccine 

10 

21 Oligodendroglioma (WHO °II, IDH-mut, 1p19q codel) 2nd recurrence TMZ 6 
22 Oligodendroglioma (WHO °II, IDH-mut, 1p19q codel) newly diagnosed no therapy after 

resection 
8 

23 Oligodendroglioma (WHO °II, IDH-mut, 1p19q codel) newly diagnosed TMZ 13 
24 Oligodendroglioma (WHO °II, IDH-mut, 1p19q codel) 1st recurrence proton beam 

irradiation 
5 

25 Oligodendroglioma (WHO °II, IDH-mut, 1p19q codel) 3rd recurrence proton beam 
irradiation 

5 

26 Astrocytoma (WHO °II, IDH-mut) 2nd recurrence CCNU/VP16 6 
27 Oligodendroglioma (WHO °III, IDH-mut, 1p19q codel) 2nd recurrence PCV 6 
28 Astrocytoma (WHO °II, IDH-mut) 5th recurrence bevacizumab 7 
29 Oligodendroglioma (WHO °II, IDH-mut, 1p19q codel) 1st recurrence adjuvant TMZ 6 
30 Astrocytoma (WHO °III, IDH-mut) 3rd recurrence TMZ 6 

 

  



Supplementary Table 2. Details on agreement and disagreement rates across all the time 
to progression readings (total of 450 readings i.e., readings from 30 patients by 15 
investigators) performed during the 1st round with RANO alone and 2nd round with additional 

AI-based decision support.  

 

All  
(n=450) 

LGG 
(n=225) 

GBM 
(n=225) 

 n (%) n (%) n (%) 

Absolute agreement in TTP values between 1st 
and 2nd round 

251 56% 111 49% 140 62% 

Disagreement in TTP values between 1st and 
2nd round 

199 44% 114 51% 85 38% 

Shorter TTP with AI-based decision support 
(as compared to RANO alone) 

105 23% 55 24% 50 22% 

Tumor progression only identified with AI-
based decision support (but not with 
RANO alone) 

17 4% 8 4% 9 4% 

Longer TTP with AI-based decision support 
(as compared to RANO alone) 

94 21% 59 26% 35 16% 

Tumor progression only  identified with 
RANO alone (but not with additional AI-
based decision support) 

17 4% 10 4% 7 3% 



Supplementary Figure 1. Screenshot of DICOM images provided during the 1st round of the 

assessment, depicting consecutive MRI scans in a representative patient with 2nd recurrence of an 

(initially diagnosed) IDH-mutant astrocytoma WHO °II. The investigators evaluated the timepoint of 

tumor progression based on the response assessment in neuro-oncology (RANO) criteria (exemplarily 

shown here are the post-contrast T1-weighted sequences in the 1st row and fluid attenuated inversion 

recovery [FLAIR] sequences in the 2nd row from 5 consecutive timepoints). 

 

  



Supplementary Figure 2. Screenshot of DICOM images that were additionally provided during the 2nd 

round of the assessment for each of the MRI scans (same patient & timepoints as shown in 

Supplementary Figure 1). Specifically, for each MRI scan three additional MRI sequences were 

provided: skull-stripped and co-registered post-contrast T1-weighted sequences (1st row) and fluid 

attenuated inversion recovery (FLAIR) sequences (2nd row) with color-coded overlays that indicate the 

contrast-enhancing and T2/FLAIR-hyperintense tumor volumes (red and green colored) identified by the 

AI-based processing pipeline, and a DICOM sequence depicting a graph with the absolute and relative 

change in these tumor volumes over time (3rd row; plotting contrast-enhancing and T2/FLAIR-

hyperintense tumor volumes from the current and all previous MRI scans; a magnified version of the 

graph from the last MRI scan is shown in the 4th row). 

 

  



Supplementary Figure 3. Illustrative case (patient #8, glioblastoma IDH-wildtype) depicting the change 
in tumor burden over time on cT1-w and FLAIR sequences (1st and 2nd row). The cT1-w overlay and 
FLAIR overlay sequences (3rd and 4th row) as well as the corresponding tumor volume plot were 
provided in the 2nd round of the assessment and visualize the contrast-enhancing tumor volumes (red) 
and T2-w/FLAIR abnormality volumes (green) which were automatically generated by the AI-based 
decision support for each timepoint. The last row visualizes the time to progression (TTP) measurements 
from the 15 investigators based on RANO alone (1st round; blue colored boxplot) vs. additional AI-based 
decision support (2nd round; purple colored boxplot). The boxplots demonstrate higher agreement of the 
TTP measurements from the 15 investigators with additional AI-based decision support. Specifically, 
with additional AI-based decision support 14/15 investigators selected timepoint #3 for tumor 
progression, which demonstrated an increase in the contrast-enhancing tumor volume from 0.3 cm³ 
(manually measured biperpendicular diameter: 9 x 5 mm) at baseline to 2.7 cm³ (manually measured 
biperpendicular diameter: 16 x 8 mm) at timepoint #3, i.e., corresponding to a volume increase of 
+900%. Without AI-based decision support, only 11/15 investigators selected timepoint #3 for tumor 
progression, whereas the remaining 4/15 investigators selected timepoint #4 for tumor progression, 
where contrast-enhancing tumor volume was 12.7 cm³ (manually measured biperpendicular diameter: 
22 x 11 mm), i.e., corresponding to a volume increase of +4200% as compared to baseline). 

  



Supplementary Figure 4. Workflow of how the AI-based processing pipeline can be integrated into 

existing radiological infrastructures through the Extensible Neuroimaging Archive Toolkit (XNAT) 

framework as a docker container service plugin. 
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