Check for updates

Citation: Launders N, Dotsikas K, Marston L, Price G, Osborn DPJ, Hayes JF (2022) The impact of comorbid severe mental illness and common chronic physical health conditions on hospitalisation: A systematic review and meta-analysis. PLoS ONE 17(8): e0272498. https://doi.org/10.1371/journal.pone.0272498

Editor: Giuseppe Carrà, Universita degli Studi di Milano-Bicocca, ITALY

Received: October 5, 2021

Accepted: July 20, 2022

Published: August 18, 2022

Peer Review History: PLOS recognizes the benefits of transparency in the peer review process; therefore, we enable the publication of all of the content of peer review and author responses alongside final, published articles. The editorial history of this article is available here: https://doi.org/10.1371/journal.pone.0272498

Copyright: © 2022 Launders et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Data Availability Statement: All relevant data are within the manuscript and its <u>Supporting</u> Information files.

RESEARCH ARTICLE

The impact of comorbid severe mental illness and common chronic physical health conditions on hospitalisation: A systematic review and meta-analysis

Naomi Launders ¹*, Kate Dotsikas¹, Louise Marston², Gabriele Price³, David P. J. Osborn^{1,4}, Joseph F. Hayes^{1,4}

1 Division of Psychiatry, UCL, London, United Kingdom, 2 Department of Primary Care and Population Health, UCL, London, United Kingdom, 3 Health Improvement Directorate, Public Health England, London, United Kingdom, 4 Camden and Islington NHS Foundation Trust, St Pancras Hospital, London, United Kingdom

* naomi.launders.19@ucl.ac.uk

Abstract

Background

People with severe mental illness (SMI) are at higher risk of physical health conditions compared to the general population, however, the impact of specific underlying health conditions on the use of secondary care by people with SMI is unknown. We investigated hospital use in people managed in the community with SMI and five common physical long-term conditions: cardiovascular diseases, COPD, cancers, diabetes and liver disease.

Methods

We performed a systematic review and meta-analysis (Prospero: CRD42020176251) using terms for SMI, physical health conditions and hospitalisation. We included observational studies in adults under the age of 75 with a diagnosis of SMI who were managed in the community and had one of the physical conditions of interest. The primary outcomes were hospital use for all causes, physical health causes and related to the physical condition under study. We performed random-effects meta-analyses, stratified by physical condition.

Results

We identified 5,129 studies, of which 50 were included: focusing on diabetes (n = 21), cardiovascular disease (n = 19), COPD (n = 4), cancer (n = 3), liver disease (n = 1), and multiple physical health conditions (n = 2). The pooled odds ratio (pOR) of any hospital use in patients with diabetes and SMI was 1.28 (95%CI:1.15–1.44) compared to patients with diabetes alone and pooled hazard ratio was 1.19 (95%CI:1.08–1.31). The risk of 30-day readmissions was raised in patients with SMI and diabetes (pOR: 1.18, 95%CI:1.08–1.29), SMI and cardiovascular disease (pOR: 1.27, 95%CI:1.06–1.53) and SMI and COPD (pOR:1.18, 95%CI: 1.14–1.22) compared to patients with those conditions but no SMI.

Funding: This study was supported by Public Health England (PhD2019/002 - NL), the Wellcome Trust (211085/Z/18/Z - JFH), the Medical Research Council (MC\PC\17216 - DPJO), University College London Hospitals NIHR Biomedical Research Centre (NL, DPJO, JFH) and the NIHR ARC North Thames Academy (DPJO, JFH). This report is independent research supported by the National Institute for Health Research ARC North Thames. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. The views expressed in this publication are those of the author(s) and not necessarily those of the National Institute for Health Research, Public Health England, or the Department of Health and Social Care

Competing interests: The authors have declared that no competing interests exist.

Conclusion

People with SMI and five physical conditions are at higher risk of hospitalisation compared to people with that physical condition alone. Further research is warranted into the combined effects of SMI and physical conditions on longer-term hospital use to better target interventions aimed at reducing inappropriate hospital use and improving disease management and outcomes.

Introduction

People with severe mental illness (SMI) have more physical health comorbidities [1–5] and poorer prognoses from those comorbidities [6] than the general population. Physical health comorbidities can lead to reduced quality of life [7], worsening mental health [8], and drives excess mortality in people with SMI [9, 10].

Previous systematic reviews have found that people with SMI are at a higher risk of 30-day readmissions compared to those without SMI [11, 12], and that those with SMI and physical health comorbidities are at higher risk of psychiatric admissions compared to those with SMI alone [13].

Studies based on hospital records alone have found that people with SMI use hospitals for physical health more frequently than people without SMI for emergency admissions [14], preventable admissions [15] and all-cause admissions [16]. However, without accounting for underlying physical comorbidities, whether this represents inappropriate use of services is unclear. A recent meta-analysis by Ronaldson et al. [17] found that in studies controlling for physical health comorbidities there were more hospitalisations, ED visits and longer length of stays in people with SMI compared to those without SMI, suggesting the higher service use is not explained by higher prevalence of physical health conditions alone.

The relationship between physical and mental health and the effect on service utilisation is likely complex, dependent on a range of patient and provider factors. Known drivers of hospital utilisation in the general population, such as poor medication adherence, polypharmacy [18] or inappropriate prescribing [19], continuity of care, and patient satisfaction [20–22] may influence hospital utilisation differently depending on the number and type of underlying mental and physical health conditions in a population.

In order to understand the effect of having both a diagnosis of SMI and of physical health conditions on hospital utilisation, we undertook a systematic review and meta-analysis of observational hospital utilisation studies, comparing people with SMI and one of five common physical long-term conditions (LTCs), compared to those with either SMI or LTCs alone. These diseases (cardiovascular diseases, chronic obstructive pulmonary disease (COPD), cancers, diabetes and liver disease) were chosen because of their high burden of disease globally and/or their impact on those with SMI.

Methods

Search strategy

We searched the following sources on 24 March 2020 for publications or grey literature within the remit of the study without date restrictions: PubMED, EmBase, Web of Science, PsychInfo, PsychExtra, Health Management Information Centre. Searches for new publications were performed on 17 December 2020 and 17 March 2022. Searches included terms for severe mental illness, physical health conditions and hospitalisation (S1 Appendix). We performed forward and backward citation searching of relevant studies, reviews and editorials. Where conference abstracts were identified searches for related articles were performed. Conference abstracts were excluded from the final analysis, though those with available data were included in a sensitivity analysis. The study protocol was registered with Prospero: CRD42020176251.

Outcomes

The primary outcomes were planned or unplanned hospital admissions, for either all-causes, all physical health causes, causes specific to the physical LTC under study, or ambulatory care sensitive conditions (ACSC), a list of conditions for which emergency admission is thought to be avoidable [23]. Secondary outcomes were readmissions and attendance at EDs or other acute outpatient care for these causes.

Inclusion and exclusion criteria

We included observational studies of adults under the age of 75, managed in the community, and diagnosed with SMI and at least one of the physical LTCs of interest (cardiovascular diseases, COPD, cancers, diabetes and liver disease). We defined SMI as patients with a diagnosis of either schizophrenia, bipolar disorder or other non-organic long-term psychotic disorders, in line with the Quality Outcomes Framework used by the NHS in England [24]. We therefore excluded studies that included major depression in their definition of SMI, without stratifying results by mental health condition.

We excluded studies without comparator populations, interventional studies, and reviews. We also excluded studies focused solely on children and young people (under 18) or the elderly (over 75 years), or in populations not managed in the community. We excluded studies focused on planned outpatient care, preventative services such as cancer screening where the setting of service provision was unclear and context specific, and studies focused on admissions for specific procedures. Finally, we excluded studies where the outcome was hospitalisation for a specific physical health condition other than the physical LTC of interest.

Data screening and extraction

We collated the results of the literature search using EndNote X9 (Clarivate Analytics, PA, USA) and removed duplicates. The first researcher (NL) screened titles and abstracts against inclusion and exclusion criteria in Microsoft Access, and records obtained in March 2020 (70%) were screened by the second researcher (KD). We resolved disagreements through discussion and calculated the Kappa statistic for inter-rater agreement. We acquired full text articles for all studies identified for inclusion which were screened by the first researcher and a 20% sample was screened by the second researcher. We extracted data from included studies using a standardised form, which was piloted on a sub-set of articles prior to finalisation. This form included variables describing the study focus (exposure, outcome, study population, location); design (methodology, effect measure and size, matching or adjusting variables, follow up time, study period), and publication (publication year).

Statistical analysis

We analysed the data both as a narrative synthesis, and a meta-analysis stratified by physical LTCs. Studies providing adjusted odds ratios (OR) or hazard ratios (HR) were included in the meta-analyses. Pooled OR and HR were calculated on aggregate data and the relationship between SMI and physical health and secondary care utilisation quantified using a random

effects meta-analysis, performed in R [25] and R Studio [26]. In-study bias was be assessed using Newcastle-Ottawa scale (NOS) assessment for observational studies. We assessed publication bias by visual scrutiny of funnel plots of effect size against standard error, and where more than ten studies were considered, using an Egger's test. Study heterogeneity was measured using the I² statistic [27]. We undertook subgroup analysis to account for SMI diagnosis group and outcome measures. Where differences were found between groups in subgroup analysis, meta-regression was performed to determine the effect of controlling for these groups on heterogeneity. We performed a sensitivity analysis using three-level hierarchical meta-analysis. This method allows for the inclusion of multiple results from single studies, accounting for variance between participants and between studies as in random effects meta-analysis, but also the variance between multiple effect sizes within a study [28].

Results

We identified 5,129 records, of which 3,646 remained after deduplication (Fig 1). Inter-rater agreement of title and abstract screening was 91.4%, with a Kappa statistic of 0.57. Following screening, 50 studies [29-78] were included in the narrative synthesis, published between 2006 and 2022 (Table 1).

Study characteristics

Most studies were conducted in the United States (US) (n = 33; Table 1). Forty-four studies quantified the risk of admissions, readmissions or ED visits in a patient population (median population size: 53,343; interquartile range (IQR): 23,856-185,981); while in five studies the focus was the number of index admissions which resulted in a readmission (median admissions: 184,898, IQR: 132,604-581,469), and one investigated the admission ratio of 4,275 ED visits. The majority of studies (n = 38) included adults with an age range of 20 to 65 or wider, while seven focused on those over the age of 65. The remaining studies excluded patients under the age of 30 or 40 (n = 3), those over the age of 50 (n = 1) or those over 35 (n = 1). The included studies were heterogeneous in population, exposure, outcome, and effect measure and 27 could be stratified into multiple analyses based on these factors (Table 2). Of the 104 unique analyses, 59 investigated inpatient admissions over at least a year, with a median follow up of five years (IQR: 2-14). A further 27 investigated inpatient admissions limited to a 28 to 31 day period following an index admission (termed 30-day readmissions) and 12 investigated ED visits (median follow up: 2 years, IQR: 2-5 years). Two analyses investigated 7-day readmissions, two investigated 90-day readmissions, one combined inpatient admissions and ED visits over a ten year period, and one calculated the odds of admission in those attending an ED (Table 2). ED use was the only acute outpatient care outcome identified, and we did not identify any studies of planned inpatient admissions.

Study quality and risk of bias

The majority of studies had pre-existing psychiatric illness as a focus (n = 37/50), while 11 considered a broad range of risk factors for hospital admission, of which SMI was one. Two studies included SMI as a covariate for a different exposure of interest. The majority (n = 42) of studies were in unmatched populations and 11 did not provide adjusted effect measures. Ten studies were limited to a single region of a country, and two to single hospitals (S1 Table). Denominator populations were sourced from hospital records in 31 studies, hospital and outpatient or pharmacy records in eleven and primary care records in eight (S1 Table).

Of the 39 studies which provided adjusted effect estimates, 37 controlled for age and gender, one controlled for gender but not age [38] and one controlled for age and was limited to

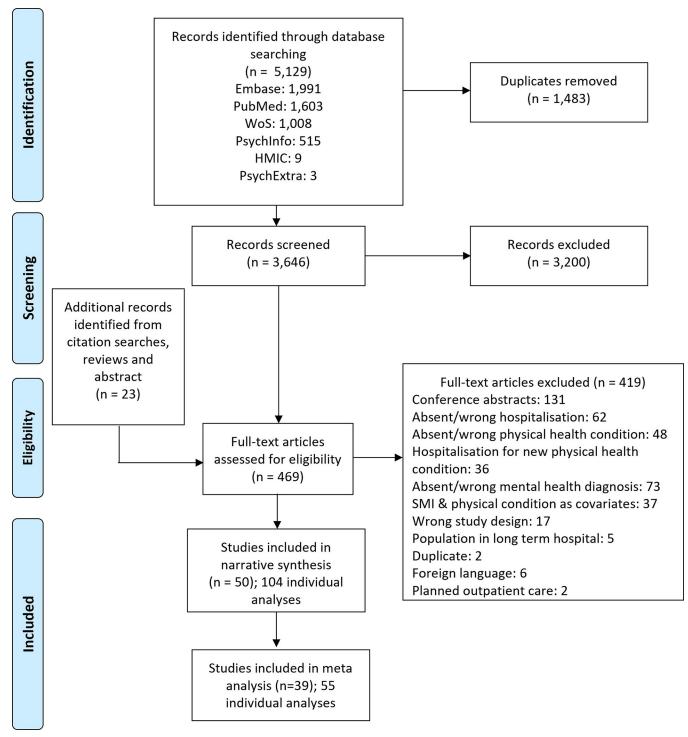


Fig 1. PRISMA flow chart. WoS: Web of Science; HMIC: Health management information consortium.

https://doi.org/10.1371/journal.pone.0272498.g001

the female population only [64]. Thirty-three studies controlled for physical health comorbidities and eight for prior healthcare utilisation (S1 Table). Almost half the studies (n = 24/50) had a NOS of between 6 and 7 (fair quality), while 19 had a score of 8 or 9 (high quality) and seven had a score of under 6 (poor quality; S1 and S2 Tables). Two studies with multiple

Table 1. Study description.

Authors	Pub year	Study design	Exposure	Outcome	Population	Notes	Study period	Follow up	Pop size	Unit of measure	Country	Area	Age	Matched
	Studie	es of diabete	es and SMI											
Egglefield et al. [29]	2020	Cross sectional	Antipsychotic adherence	Preventable diabetes admissions	Medicaid registered patients with diabetes	Unadjusted data provided for patients with schizophrenia	2012	1 year	191,521	Person	US	One region	18-64	No
Helmer et al. [<u>30]</u>	2020	Cohort	SMI and other MH conditions	Any, acute and chronic ACSC admissions	Veterans Affairs registered patients with diabetes		2010	1 year	151,614	Person	US	National	>66	No
Stockbridge et al. [<u>31]</u>	2019	Cross sectional	Schizophrenia, bipolar disorder, and other MH conditions	Diabetes admissions	Insured patients with diabetes		2011– 2013	3 years	229,039	Person	US	National	20-64	No
Tsai et al. [<u>32</u>]	2019	Cohort	Bipolar disorder	Hyperglycaemia admissions	Patients with diabetes		1999– 2013	Up to 11 years	30,477	Person	Taiwan	National	Adults	Yes
Goueslard et al. [<u>33]</u>	2018	Cohort	Schizophrenia	Acute diabetes complications long-term readmissions	Patients with type 1 diabetes		2009– 2012	3 years	45,655	Person	France	National	15-35	No
Edwards et al. [<u>34]</u>	2014	Cohort	Home-Based Primary Care	ACSC admissions	Veterans Affairs registered patients with diabetes	Psychosis is a covariate	2006– 2010	Up to 5 years	56,608	Person	US	National	>67	No
Druss et al. [<u>35]</u>	2012	Cross sectional	Schizophrenia, bipolar disorder, and other MH conditions	ACSC admissions	Medicaid registered patients with diabetes		2003- 2004	2 years	657,628	Person	US	National	< = 65	No
Leung et al. [<u>36</u>]	2011	Cohort	Schizophrenia, bipolar disorder, and other MH conditions	Diabetes admissions	Medicaid or medicare registered patients with type 2 diabetes		2005	1 year	106,174	Person	US	One region	>18	No
Mai et al. [<u>37</u>]	2011	Cohort	Schizophrenia, affective psychosis, other psychoses, and other MH conditions	Diabetes admissions	Patients with diabetes		1990– 2006	Up to 15.5 years	43,671	Person	Australia	One region	>18	Yes
Cramer et al. [<u>38]</u>	2010	Cross sectional	Risk factors and comorbidities	More than one all- cause long-term readmission	Medicaid registered patients with diabetes	Psychosis is one of many risk factors considered	2005	1 year	695	Person	US	National	Adults	No
Yan et al. [<u>39</u>]	2019	Cohort	Risk factors and comorbidities	All-cause admissions	Patients with antipsychotic- treated schizophrenia, bipolar 1 disorder or major depressive disorder	Type 2 diabetes is one of many risk factors considered	2013– 2016	1 year	38,195	Person	US	Multiple regions	>18	No
Chen et al. [<u>40]</u>	2012	Cohort	Outpatient quality of care	All-cause 30-day readmissions	Commercially insured patients with diabetes	Psychosis is a covariate	2010	30 days	30,139	Person	US	National	>19	No
Guerrero Fernandez de Alba et al. [41]	2020	Cohort	Schizophrenia, and other MH conditions	All-cause and diabetes admissions and ED attendances	Patients with type 2 diabetes		2012	l year	63,365	Person	Spain	One region	>18	No
Chwastiak et al. [<u>42</u>]	2014	Cohort	SMI	All cause 30-day and long-term readmissions	Patients with diabetes		2010- 2011	30 days / up to 2 years	82,060	Person	US	One region	>18	No
Becker et al. [43]	2011	Cohort	Schizophrenia	Hyperglycaemia or hypoglycaemia admissions or ED attendances	Patients with diabetes		1996– 2006	1–10 years	5,033	Person	Canada	One region	18-50	Yes
Krein et al. [<u>44]</u>	2006	Cross sectional	SMI	All-cause admissions	Veterans Affairs registered patients with diabetes		1997– 1998	1 year	36,546	Person	US	National	Mean 58	Yes
Kurdyak et al. [<u>45</u>]	2017	Cohort	Schizophrenia	Diabetes and all- cause admissions and ED attendances	Patients with diabetes		2011- 2013	2 years	1,131,375	Person	Canada	One region	19– 105	No
Shim et al. [<u>46</u>]	2014	Cohort	Schizophrenia or diabetes	Diabetes and all- cause ED attendances	Medicaid registered patients with diabetes and/or schizophrenia		2006– 2007	2 years	432,112	Person	US	Multiple regions	18-64	No
Sullivan et al. [47]	2006	Cross sectional	Bipolar disorder, and other MH conditions	Admissions in those attending ED for diabetes	Patients with diabetes		1994– 1998	4.5 years	4,275	Admissions	US	Single site	>18	No

Table 1. (Continued)

Authors	Pub year	Study design	Exposure	Outcome	Population	Notes	Study period	Follow up	Pop size	Unit of measure	Country	Area	Age	Matcheo
Wang et al. [<u>78]</u>	2021	Cohort	SMI	All cause admissions	Patients with diabetes		2000- 2016	6.4 years	6,383	Person	UK	England	>18	Yes
Huang et al. [73]	2021	Cohort	Schizophrenia	All cause admissions	Patients with diabetes		2002- 2013	11	10,604	Person	Taiwan	National	Not given	Yes
	Studio	es of cardio	vascular disease and S	MI										
Attar et al. [48]	2020	Cohort	Schizophrenia	Major adverse cardiac event long- term readmissions	Patients with acute myocardial infarction		2000- 2018	5 years	286,333	Person	Sweden	National	>18	No
Chamberlain et al. [<u>49]</u>	2017	Cohort	Multimorbidity	All-cause long- term readmissions	Patients with atrial fibrillation	Schizophrenia is one of many risk factors considered	2000- 2014	Up to 14 years	2,860	Person	US	One region	>18	No
Sayers et al. [50]	2007	Cross sectional	Psychosis, bipolar disorders, and other MH conditions	All-cause long- term readmissions	Medicare registered patient with congestive heart failure		1999	l year	21,429	Person	US	National	65+	No
Shah et al. [<u>51</u>]	2018	Cross sectional	Risk factors and comorbidities	All-cause 30-day readmissions	Patients with non- acute myocardial infarction cardiogenic shock	Psychosis is one of many risk factors considered	2013- 2014	30 days	24,665	Person	US	Multiple regions	>16	No
Pham et al. [52]	2019	Cross sectional	Risk factors and comorbidities	All-cause and heart failure 7- and 30-day unplanned readmissions	Medicare registered patient with heart failure	Psychosis is one of many risk factors considered	2014	30 days	234,298	Admissions	US	Multiple regions	>65	No
Chamberlain et al. [53]	2018	Cross sectional	Risk factors and comorbidities	Heart failure 30-day readmissions	Patients with heart failure	Psychosis is one of many risk factors considered	2006– 2011	30 days	1,007,807	Person	US	Multiple regions	Not given	No
Shah et al. [<u>54</u>]	2018	Cross sectional	Risk factors and comorbidities	All cause 31-day readmissions	Patients with Takotsubo cardiomyopathy	Psychosis is one of many risk factors considered	2013- 2014	31 days	5,997	Person	US	Multiple regions	>18	No
Shah et al. [<u>55</u>]	2018	Cross sectional	Risk factors and comorbidities	All-cause 30-day readmissions	Patients with acute myocardial infarction and cardiogenic shock	Psychosis is one of many risk factors considered	2013- 2014	30 days	26,016	Person	US	Multiple regions	>16	No
Jorgensen et al. [<u>56]</u>	2017	Cohort	Schizophrenia	All-cause 28-day readmissions	Patients with heart failure		2004- 2013	28 days	36,718	Person	Denmark	National	>18	No
Ahmedani et al. [57]	2015	Cohort	Bipolar disorders, schizophrenia- spectrum disorders, other psychoses, and other MH conditions	All-cause 30-day readmissions	Patients with heart failure or myocardial infarction		2009– 2011	30 days	123,921	Admissions	US	Multiple regions	>18	No
Coffey et al. [58]	2012	Cross sectional	Risk factors and comorbidities	Congestive heart failure 30-day readmissions	Patients with congestive heart failure	Psychosis is one of many risk factors considered	2006	30 days		Admissions	US	Multiple regions	>18	No
Lu et al. [<u>59</u>]	2017	Cohort	Schizophrenia, bipolar mood disorder, and other MH conditions	Heart failure 30-day and long- term readmissions	African American patients with heart failure		2010- 2013	30 days / ave 3.2 years	611	Person	US	Single site	>20	No
Kallio et al. [69]	2022	Cohort	Schizophrenia	Stroke and myocardial infarction long term readmissions	Patients with coronary artery disease who underwent coronary artery bypass grafting surgery		2004– 2018	Up to 10 years	29,220	Person	Finland	Multiple sites	Not given	Yes
Fleetwood et al. [<u>71</u>]	2021	Cohort	Schizophrenia and bipolar disorder	Stroke and myocardial infarction long term readmissions	Patients hospitalised with myocardial infarction		1999– 2018	Up to 20 years	184,134	Person	UK	Scotland	>18	No
Ghani et al. [72]	2021	Cohort	SMI	All-cause 30-day emergency readmissions	Patients who underwent vascular surgery		2007– 2018	30 days	8,973	Person	UK	One region	>18	No
Fleetwood et al. [70]	2021	Cohort	Schizophrenia and bipolar disorder	Stroke and myocardial infarction long term readmissions	Patients hospitalised with stroke		1991– 2018	Up to 28 years	169,923	Person	UK	Scotland	>18	No
Paredes et al. [75]	2020	Cohort	SMI	All-cause 30-day readmissions	Medicare registered patients who underwent coronary artery bypass grafting surgery		2013– 2017	30 days	118,837	Person	US	National	>65	No

Table 1. (Continued)

Authors	Pub year	Study design	Exposure	Outcome	Population	Notes	Study period	Follow up	Pop size	Unit of measure	Country	Area	Age	Matched
Sreenivasan et al. [<u>76</u>]	2022	Cohort	Bipolar disorder and schizophrenia or other psychotic illnesses	All-cause 30-day readmissions	Patients hospitalised with myocardial infarction		2016– 2017	30 days	904,575	Person	US	National	>18	No
Andres et al. [77]	2012	Cross sectional	Schizophrenia	Long-term readmission for myocardial infarction	Patients hospitalised with myocardial infarction		2000- 2007	8 years	19,016	Person	Spain	One region	>15	No
	Studie	es of COPD	and SMI											
Buhr et al. [<u>60</u>]	2019	Cross sectional	Charlson and Elixhauser indicies	All-cause 30-day readmissions	Patients with COPD	Psychosis included in the Elixhauser index	2010- 2016	30 days	1,622,983	Admissions	US	National	>40	No
Jorgensen et al. [<u>61</u>]	2018	Cohort	Schizophrenia	All-cause 30-day readmissions	Patients with COPD		2008- 2013	30 days	211,868	Person	Denmark	National	>30	No
Lau et al. [<u>62</u>]	2017	Cross sectional	Risk factors and comorbidities	COPD 30-day readmissions	Patients with COPD	Psychosis is one of many risk factors considered	2006– 2011	30 days	597,502	Person	US	Multiple regions	>40	No
Singh et al. [63]	2016	Cohort	Psychosis, and other MH conditions	All-cause 30-day readmissions	Medicare registered patients with COPD		2001– 2011	30 days	135,498	Admissions	US	National	>66	No
	Studie	es of cancer	, liver disease or multi	ple diseases and SMI										
Basta et al. [64]	2016	Cohort	Risk factors and comorbidities	Complicated lymphedema long- term readmissions	Women who had undergone breast cancer related mastectomy /lumpectomy	Psychosis is one of many risk factors considered	2007– 2012	2 years	56,075	Person	US	Multiple regions	>18	No
Kashyap et al. [68]	2021	Cohort	Bipolar and psychoses	All-cause 30-day ED attendance	Medicare registered patients with gastrointestinal malignancies in the last 30 days of life		2004- 2014	30 days	110,325	Person	US	National	>66	No
Ratcliff et al. [74]	2021	Cohort	Bipolar disorder and psychoses	All cause 90-day readmissions	Veterans Affairs registered patients who underwent surgery for colorectal cancer		Not given	90 days	50,611	Person	US	National	Not given	No
Huckans et al. [65]	2010	Cohort	Schizophrenia	All-cause readmissions during anti-viral therapy	Veterans Affairs registered patients with hepatitis C		1998– 2006	During antiviral therapy	60	Person	US	Multiple regions	Mean 50	Yes
Davydow et al. [66]	2016	Cohort	SMI	ACSC admissions	General population	Table 1 provides unadjusted effect for patients with underlying cardiovascular disease, diabetes, liver disease and cancer	1999– 2013	14 years	5,945,540	Person	Denmark	National	>18	No
Guo et al. [67]	2008	Cohort	Risk factors and comorbidities	All-cause admissions and ED attendances	Commercially insured patients with bipolar disorder	Diabetes, COPD and heart disease are some of many risk factors considered	1998– 2002	Up to 5 years	67,862	Person	US	Multiple regions	Mean 37.1	No

https://doi.org/10.1371/journal.pone.0272498.t001

analyses had differing NOS for analyses presenting ORs and HRs (S1 and S2 Tables). Funnel plots for all analyses presenting ORs (Egger's test: p = 0.3733, S1 Fig) and risk ratios (Egger's test: p = 0.2809, S1 Fig) were not suggestive of publication bias, however the funnel plot for analyses presenting HRs was asymmetrical (Egger's test: p < 0.0001, S1 Fig).

Hospital utilisation in people with SMI, comparing people with or without physical LTCs

Nine analyses from three studies [39, 46, 67] investigated the impact of diabetes (n = 5), cardiovascular disease (n = 2) and COPD (n = 2) on hospitalisation in a patient population with pre-

Table 2. Description of analyses.

Authors	Year	Baseline condition	Exposure	Utilisation	Utilisation type	NOS score	Adjusted for age and sex	Adjusted for physical comorbidities	Adjusted for prior utilisation	Effect measure	Effect size	95%CI/p- value	Included in meta- analysis
The effect of diab	etes on	hospital utilisation in p	patients with SMI										
Yan et al. [<u>39</u>]	2019	Schizophrenia	Diabetes T2	Inpatient	All cause	9	Yes	Yes	Yes	aOR	1.19	1.05-1.36	NA
Shim et al. [<u>46</u>]	2014	Schizophrenia	Diabetes T1/ T2	ED	All cause	4	No	No	No	OR	1.46	1.41-1.51	NA
Yan et al. [<u>39]</u>	2019	Bipolar	Diabetes T2	Inpatient	All cause	9	Yes	Yes	Yes	aOR	1.23	1.13-1.34	NA
Guo et al. [67]	2008	Bipolar	Diabetes	Inpatient	All cause	6	Yes	Yes	No	aRR	1.44	1.36-1.52	NA
Guo et al. [67]	2008	Bipolar	Diabetes	ED	All cause	6	Yes	Yes	No	aRR	1.17	1.08-1.25	NA
The effect of card	iovascu	lar disease on hospital	utilisation in pati	ents with SMI									
Guo et al. [<u>67</u>]	2008	Bipolar	Ischemic heart disease	Inpatient	All cause	6	Yes	Yes	No	aRR	1.89	1.78-2.02	NA
Guo et al. [<u>67</u>]	2008	Bipolar	Ischemic heart disease	ED	All cause	6	Yes	Yes	No	aRR	1.67	1.53-1.81	NA
The effect of COP	D on h	ospital utilisation in pa	tients with SMI										
Guo et al. [67]	2008	Bipolar	COPD	Inpatient	All cause	6	Yes	Yes	No	aRR	1.94	1.81-2.06	NA
Guo et al. [67]	2008	Bipolar	COPD	ED	All cause	6	Yes	Yes	No	aRR	1.61	1.47-1.76	NA
	on hosp	vital utilisation in patie	nts with diabetes		1						_!	1	
Stockbridge et al. [31]	2019	Diabetes T1/T2	Bipolar	Inpatient	Diabetes	7	Yes	Yes	No	aOR	0.99	0.78-1.25	Yes
Druss et al. [35]	2012	Diabetes T1/T2	Bipolar	Inpatient	ACSC	7	Yes	Yes	No	aOR	1.03	0.98-1.09	Yes
Leung et al. [36]	2011	Diabetes T2	Bipolar	Inpatient	Diabetes	7	Yes	No	Yes	aOR	1.07	0.91-1.26	Yes
Chen et al. [40]	2012	Diabetes T1/T2	Psychosis	30-day	All cause	8	Yes	Yes	Yes	aOR	1.15	1.03-1.29	Yes
Stockbridge et al. [31]	2019	Diabetes T1/T2	Schizophrenia	Inpatient	Diabetes	7	Yes	Yes	No	aOR	1.61	1.29-2.01	Yes
Goueslard et al. [33]	2018	Diabetes T1	Schizophrenia	Inpatient	Diabetes	6	Yes	Yes	No	aOR	2.21	1.69-2.88	Yes
Druss et al. [35]	2012	Diabetes T1/T2	Schizophrenia	Inpatient	ACSC	7	Yes	Yes	No	aOR	1.26	1.21-1.30	Yes
Leung et al. [36]	2011	Diabetes T2	Schizophrenia	Inpatient	Diabetes	7	Yes	No	Yes	aOR	0.75	0.63-0.89	Yes
Guerrero Fernandez de Alba et al. [41]	2020	Diabetes T2	Schizophrenia	Inpatient	All cause	6	Yes	Yes	No	aOR	1.40	1.18-1.66	Yes
Guerrero Fernandez de Alba et al. [41]	2020	Diabetes T2	Schizophrenia	Inpatient	Diabetes	6	Yes	Yes	No	aOR	1.25	0.55-2.82	Yes
Guerrero Fernandez de Alba et al. [41]	2020	Diabetes T2	Schizophrenia	ED	All cause	6	Yes	Yes	No	aOR	1.28	1.11-1.47	Yes
Kurdyak et al. [45]	2017	Diabetes T1/T2	Schizophrenia	ED	Diabetes	6	Yes	Yes	No	aOR	1.34	1.28-1.41	Yes
Kurdyak et al. [45]	2017	Diabetes T1/T2	Schizophrenia	ED	All cause ^a	6	Yes	Yes	No	aOR	1.72	1.68-1.77	Yes
Kurdyak et al. [45]	2017	Diabetes T1/T2	Schizophrenia	Inpatient	Diabetes	6	Yes	Yes	No	aOR	1.36	1.28-1.43	Yes
Kurdyak et al. [45]	2017	Diabetes T1/T2	Schizophrenia	Inpatient	All cause ^a	6	Yes	Yes	No	aOR	1.85	1.79-1.92	Yes
Helmer et al. [30]	2020	Diabetes T1/T2	SMI	Inpatient	ACSC	7	Yes	Yes	No	aOR	1.00	0.94-1.07	Yes
Chwastiak et al. [42]	2014	Diabetes T1/T2	SMI	30-day	All cause ^a	8	Yes	Yes	Yes	aOR	1.24	1.07-1.44	Yes
Wang et al. [<u>78</u>]	2021	Diabetes T2	SMI	Inpatient	All cause ^a	9	Yes	Yes	Yes	aOR	1.36	1.13-1.65	Yes
Cramer et al. [38]	2010	Diabetes T1/T2	Psychosis	Inpatient	All cause	5	No	Yes	No	aOR	2.15	1.18-3.92	Yes, but also excluded as does not adjusted for age and sex
Helmer et al. [30]	2020	Diabetes T1/T2	SMI	Inpatient	Chronic ACSC	7	Yes	Yes	No	aOR	0.88	0.82-0.96	No: subset of all ACSC
Helmer et al. [<u>30]</u>	2020	Diabetes T1/T2	SMI	Inpatient	Acute ACSC	7	Yes	Yes	No	aOR	1.21	1.11-1.31	No: subset of all ACSC
Egglefield et al. [29]	2020	Diabetes T1/T2	Schizophrenia	Inpatient	Diabetes	4	No	No	No	OR ^d	1.69	1.54-1.86	No: unadjusted
Krein et al. [44]	2006	Diabetes T1/T2	SMI	Inpatient	All cause	4	No	No	No	OR	2.80	2.67-2.94	No: unadjusted
Shim et al. [<u>46</u>]	2014	Diabetes T1/T2	Schizophrenia	ED	Diabetes	4	No	No	No	OR	1.17	1.12-1.21	No: unadjusted
Shim et al. [46]	2014	Diabetes T1/T2	Schizophrenia	ED	All cause ^a		No	No	No	OR ^d	1.30		No: unadjusted

Table 2. (Continued)

Authors	Year	Baseline condition	Exposure	Utilisation	Utilisation type	NOS score	Adjusted for age and sex	Adjusted for physical comorbidities	Adjusted for prior utilisation	Effect measure	Effect size	95%CI/p- value	Included in meta- analysis
Tsai et al. [<u>32</u>]	2019	Diabetes T1/T2	Bipolar	Inpatient	Diabetes	8	Yes	Yes	No	aHR	1.41	1.15-1.71	Yes
Mai et al. [<u>37</u>]	2011	Diabetes T1/T2	Affective psychosis	Inpatient	Diabetes	8	Yes	Yes	No	aHR ^e	1.22	1.15-1.30	Yes
Edwards et al. [<u>34]</u>	2014	Diabetes T1/T2	Psychosis	Inpatient	ACSC	6	Yes	Yes	No	aHR	1.01	0.98-1.04	Yes
Mai et al. [<u>37</u>]	2011	Diabetes T1/T2	Other psychosis	Inpatient	Diabetes	8	Yes	Yes	No	aHR ^e	1.18	1.10-1.27	Yes
Mai et al. [<u>37</u>]	2011	Diabetes T1/T2	Schizophrenia	Inpatient	Diabetes	8	Yes	Yes	No	aHR ^e	1.06	0.94-1.20	Yes
Becker et al. [<u>43</u>]	2011	Diabetes T1/T2	Schizophrenia	Inpatient or ED	Diabetes	8	Yes	Yes	Yes	aHR	1.68	1.34-2.10	Yes
Chwastiak et al. [42]	2014	Diabetes T1/T2	SMI	Inpatient	All cause ^a	7	Yes	Yes	Yes	aHR	1.14	1.05-1.23	Yes
Goueslard et al.	2018	Diabetes T1	Schizophrenia	Inpatient	Diabetes	6	Yes	Yes	No	aHR	2.13	1.69–2.69	Yes, but also excluded as an outlier
Stockbridge et al. [31]	2019	Diabetes T1/T2	Bipolar	Inpatient	Diabetes	7	Yes	Yes	No	aRR	1.34	0.78-2.31	No: RR
Stockbridge et al. [31]	2019	Diabetes T1/T2	Schizophrenia	Inpatient	Diabetes	7	Yes	Yes	No	aRR	1.41	0.94-2.12	No: RR
Huang et al. [73]	2021	Diabetes T2	Schizophrenia	Inpatient	All cause ^a	7	No	No	No	Average number of admissions	1.09 vs 0.92	p = 0.001	No: Average utilisation
Sullivan et al. [47]	2006	Diabetes T1/T2	SMI	Admission ratio	Diabetes	6	Yes	No	No	aOR	0.77	0.45-1.33	No: Admission ratio
The effect of SMI	on hosj	pital utilisation in patio	ents with cardiova	scular disease									
Shah et al. [<u>51</u>]	2018	Cardiogenic shock (no AMI)	Psychosis	30-day	All cause	8	Yes	Yes	No	aOR	0.90	0.78-1.05	Yes
Pham et al. [52]	2019	Heart failure	Psychosis	30-day	All cause	7	Yes	Yes	No	aOR	1.11	1.04-1.18	Yes
Pham et al. [52]	2019	Heart failure	Psychosis	30-day	Cardiovascular	7	Yes	Yes	No	aOR	1.02	0.93-1.13	Yes
Chamberlain et al. [53]	2018	Congestive heart failure	Psychosis	30-day	Cardiovascular	8	Yes	Yes	No	aOR	1.07	1.01-1.12	Yes
Chamberlain et al. [<u>53]</u>	2018	Congestive heart failure	Psychosis	30-day	Cardiovascular	8	Yes	Yes	No	aOR	1.08	1.00-1.16	Yes
Shah et al. [<u>54</u>]	2018	Takotsubo cardiomyopathy	Psychosis	30-day	All cause	8	Yes	Yes	No	aOR	1.90	1.36-2.66	Yes
Shah et al. [<u>55</u>]	2018	Cardiogenic shock (with AMI)	Psychosis	30-day	All cause	8	Yes	Yes	No	aOR	1.14	0.97-1.35	Yes
Coffey et al. [58]	2012	Congestive heart failure	Psychosis	30-day	Cardiovascular	7	Yes	Yes	No	aOR	1.16	p<0.001	Yes
Jorgensen et al. [56]	2017	Heart failure	Schizophrenia	30-day	All cause ^a	9	Yes	Yes	No	aOR	1.77	0.79-3.92	Yes
Ghani et al. [72]	2021	Vascular surgery	SMI	30-day	All cause ^c	6	Yes	No	Yes	aOR	2.02	1.10-3.70	Yes
Paredes et al. [75]	2020	CABG surgery	SMI	30-day	All cause	7	Yes	Yes	No	aOR ^e	2.28	2.10-2.46	Yes
Pham et al. [<u>52</u>]	2019	Heart failure	Psychosis	7-day	All cause	7	Yes	Yes	No	aOR	1.10	1.00-1.22	No: 7-day readmission
Pham et al. [<u>52</u>]	2019	Heart failure	Psychosis	7-day	Cardiovascular	7	Yes	Yes	No	aOR	1.04	0.87-1.23	No: 7-day readmission
Ahmedani et al. [57]	2015	Heart failure	Schizophrenia	30-day	All cause	6	No	No	No	OR ^d	1.06	0.78-1.44	No: unadjusted
Ahmedani et al. [57]	2015	MI	Schizophrenia	30-day	All cause	6	No	No	No	OR ^d	1.55	0.69-3.45	No: unadjusted
Ahmedani et al. [57]	2015	Heart failure	Bipolar	30-day	All cause	6	No	No	No	OR ^d	1.25	1.05-1.50	No: unadjusted
Ahmedani et al. [57]	2015	MI	Bipolar	30-day	All cause	6	No	No	No	OR ^d	0.98	0.61-1.58	No: unadjusted
Ahmedani et al. [57]	2015	Heart failure	Other psychoses	30-day	All cause	6	No	No	No	OR ^d	1.70	1.40-2.07	No: unadjusted
Andres et al. [77]	2012	MI	Schizophrenia	Inpatient	MI	6	No	No	No	OR ^d	0.83	0.25-2.81	No: unadjusted
Sreenivasan et al. [76]	2022	МІ	Psychosis	30-day	All cause	8	Yes	Yes	No	aHR	1.56	1.43-1.69	Yes
Lu et al. [<u>59</u>]	2017	Heart failure	Bipolar	Inpatient	Cardiovascular	6	Yes	Yes	No	aHR	2.08	1.05-4.11	Yes, but also excluded as an outlier

Table 2. (Continued)

Authors	Year	Baseline condition	Exposure	Utilisation	Utilisation type	NOS score	Adjusted for age and sex	Adjusted for physical comorbidities	Adjusted for prior utilisation	Effect measure	Effect size	95%CI/p- value	Included in meta analysis
Fleetwood et al. [71]	2021	MI	Bipolar	Inpatient	MI or stroke	8	Yes	No	No	aHR	1.40	1.20-1.62	Yes
Fleetwood et al.	2021	Stroke	Bipolar	Inpatient	MI or stroke	8	Yes	No	No	aHR	1.14	1.01-1.28	Yes
Sreenivasan et al. [76]	2022	МІ	Bipolar	30-day	All cause	8	Yes	Yes	No	aHR	1.32	1.19-1.45	Yes
Lu et al. [<u>59]</u>	2017	Heart failure	Bipolar	30-day	Cardiovascular	7	Yes	Yes	No	aHR	3.44	1.19- 10.00	Yes, but also excluded as an outlier
Attar et al. [48]	2020	МІ	Schizophrenia	Inpatient	Re-infarction	8	Yes	Yes	Yes	aHR	1.29	0.77-2.13	Yes
Chamberlain et al [<u>49]</u>	2017	Atrial fibrillation	Schizophrenia	Inpatient	All cause	7	Yes	Yes	No	aHR	1.22	0.98-1.52	Yes
Lu et al. [<u>59</u>]	2017	Heart failure	Schizophrenia	Inpatient	Cardiovascular	6	Yes	Yes	No	aHR	2.33	1.51-3.61	Yes, but also excluded as an outlier
.u et al. [<u>59</u>]	2017	Heart failure	Schizophrenia	30-day	Cardiovascular	7	Yes	Yes	No	aHR	4.92	2.49-9.71	Yes, but also excluded as an outlier
Fleetwood et al.	2021	MI	Schizophrenia	Inpatient	MI or stroke	8	Yes	No	No	aHR	1.46	1.29-1.65	Yes
Fleetwood et al. [70]	2021	Stroke	Schizophrenia	Inpatient	MI or stroke	8	Yes	No	No	aHR	1.21	1.10-1.34	Yes
Fleetwood et al. [71]	2021	MI	Schizophrenia	Inpatient	MI	8	Yes	No	No	aHR	1.42	1.24-1.63	No: Population included in other outcome
Fleetwood et al. 71]	2021	МІ	Bipolar	Inpatient	MI	8	Yes	No	No	aHR	1.34	1.13-1.58	No: Population included in other outcome
Fleetwood et al. 70]	2021	Stroke	Schizophrenia	Inpatient	Stroke	8	Yes	No	No	aHR	1.24	1.11-1.38	No: Population included in other outcome
Fleetwood et al. [70]	2021	Stroke	Bipolar	Inpatient	Stroke	8	Yes	No	No	aHR	1.17	1.03-1.32	No: Population included in other outcome
Attar et al. [48]	2020	MI	Schizophrenia	Inpatient	Stroke	8	Yes	Yes	Yes	aHR	1.72	1.00-2.98	No: Population included in other outcome
Attar et al. [<u>48</u>]	2020	MI	Schizophrenia	Inpatient	Heart failure	8	Yes	Yes	Yes	aHR	1.39	1.04-1.86	No: Population included in other outcome
Kallio et al. [69]	2022	Coronary artery disease and CABG	Schizophrenia	Inpatient	MI	6	No	No	No	HR	1.86	1.25-2.78	No: unadjusted
Kallio et al. [69]	2022	Coronary artery disease and CABG	Schizophrenia	Inpatient	Stroke	6	No	No	No	HR	0.91	0.50-1.66	No: unadjusted
Sayers et al. [50]	2007	Heart failure	Psychosis	Inpatient	All cause	7	Yes	Yes	No	Predicted increase	0.30	p<0.001	No: predicted increase
Sayers et al. [50]	2007	Heart failure	Bipolar	Inpatient	All cause	7	Yes	Yes	No	Predicted increase	0.38	p = 0.001	No: predicted increase
Davydow et al.	2016	MI	SMI	Inpatient	ACSC	5	No	No	No	RR ^d	1.41	1.36-1.47	No: RR
Davydow et al. [<u>66]</u>	2016	CHF	SMI	Inpatient	ACSC	5	No	No	No	RR ^d	1.19	1.15-1.22	No: RR
Davydow et al.	2016	Cerebrovascular disease	SMI	Inpatient	ACSC	5	No	No	No	RR ^d	1.47	1.43-1.52	No: RR
The effect of SMI	on hos	pital utilisation in patio	ents with COPD										
.au et al. [<u>62</u>]	2017	COPD	Psychosis	30-day	COPD	8	Yes	Yes	No	aOR	1.19	1.13-1.25	Yes
Lau et al. [<u>62</u>]	2017	COPD	Psychosis	30-day	COPD	8	Yes	Yes	No	aOR	1.16	1.08-1.24	Yes
Singh et al. [63]	2016	COPD	Psychosis	30-day	All cause	6	Yes	No	No	aOR	1.18	1.10-1.27	Yes
orgensen et al. <u>61]</u>	2018	COPD	Schizophrenia	30-day	All cause	8	Yes	Yes	No	aOR	1.08	0.92-1.28	Yes
Buhr et al. [<u>60</u>]	2019	COPD	Psychosis	30-day	All cause	5	No	No	No	OR ^d	1.27	1.25-1.29	No: unadjusted
Huckans et al.	^	atient admissions in liv HCV	er disease patients Schizophrenia	s Inpatient	All cause ^a	5	No	No	No	OR	5.80		No: unadjusted
65]												53.01	

Table 2. (Continued)

Authors	Year	Baseline condition	Exposure	Utilisation	Utilisation type	NOS score	Adjusted for age and sex	Adjusted for physical comorbidities	Adjusted for prior utilisation	Effect measure	Effect size	95%CI/p- value	Included in meta- analysis
Huckans et al. [65]	2010	HCV	Schizophrenia	ED	All cause ^a	5	No	No	No	OR	3.27	0.77- 13.83	No: unadjusted
Davydow et al. [66]	2016	Liver disease	SMI	Inpatient	ACSC	5	No	No	No	RR ^d	1.53	1.45-1.61	No: unadjusted
The effect of SMI	on inpa	tient admissions in car	icer patients										
Davydow et al. [66]	2016	Cancer	SMI	Inpatient	ACSC	5	No	No	No	RR ^d	1.54	1.48-1.60	No: unadjusted
Basta et al. [<u>64</u>]	2016	Breast cancer related mastectomy/ lumpectomy	Psychosis	Inpatient	Cancer	8	No ^b	Yes	No	aOR	2.15	1.51-3.06	No: limited comparison
Kashyap et al. [68]	2021	Gastrointestinal malignancies	Bipolar	ED	All cause end of life	8	Yes	Yes	No	aOR	1.12	1.01-1.24	No: limited comparison
Kashyap et al. [68]	2021	Gastrointestinal malignancies	Psychosis	ED	All cause end of life	8	Yes	Yes	No	aOR	0.98	0.85-1.12	No: limited comparison
Ratcliff et al. [74]	2021	Surgery for colorectal cancer	Bipolar	90-day	All cause	6	No	No	No	OR ^d	1.24	1.04-1.47	No: unadjusted
Ratcliff et al. [74]	2021	Surgery for colorectal cancer	Psychosis	90-day	All cause	6	No	No	No	OR ^d	1.25	1.03-1.52	No: unadjusted

a: Excluded psychiatric hospitalisations

b: Adjusted for age and only included females so scored as if adjusted for age and sex

c: emergency admissions

d: calculated from raw data

e: extracted from figure using ImageJ: https://imagej.nih.gov/ij/; COPD: Chronic Obstructive Pulmonary Disease; ED: Emergency Department; OR: odds ratio; HR: hazard ratio; RR: risk ratio; HCV: hepatitis C virus; SMI: severe mental illness; CABG: coronary artery bypass graft; MI: myocardial infarction; ACSC: ambulatory care sensitive condition.

https://doi.org/10.1371/journal.pone.0272498.t002

existing schizophrenia (n = 2) or bipolar disorder (n = 7). The outcome was all-cause ED attendances for four studies and all-cause admissions for five. All analyses found a higher risk of hospital utilisation in those with SMI and a physical health condition compared to those with SMI alone (<u>Table 2</u>). The low number and heterogenous study characteristics meant that these studies were deemed unsuitable for meta-analysis.

Hospital utilisation in people with physical LTCs, comparing people with and without SMI

Ninety-five analyses from 48 studies investigated the impact of SMI diagnosis on hospital utilisation in a patient population with diagnoses of diabetes, cardiovascular disease, COPD, liver disease or cancer.

Hospital utilisation in people with diabetes, with and without SMI. Thirty-seven analyses from 20 studies investigated the effect of SMI on hospital utilisation in patients with diabetes. Most analyses included patients diagnosed with either type I or II diabetes mellitus (n = 28; Table 2). Twenty-seven analyses were included in meta-analysis, reasons for exclusions are detailed in Table 2.

The meta-analysis of adjusted OR included 19 analyses from 14 studies (Fig 2). Schizophrenia was the most frequent exposure (11 analyses) and admissions the most frequent outcome (14 analyses; Table 2). The funnel plot of these analyses did not show asymmetry (Egger's test: p = 0.0738, S2 Fig). For patients with diabetes, the pooled OR for hospital utilisation in patients with a diagnosis of any SMI was 1.30 (95%CI: 1.16–1.45) compared to those without an SMI diagnosis, however heterogeneity was high (I² = 97.8%). When one study which did not control for age was removed [38] the pooled odds ratio was 1.28 (95% confidence interval (CI)

Study	Odds Ratio	OR	95%-CI	Weight
SMI = Bipolar Stockbridge et al 2019 Druss et al 2012 Leung et al 2011		1.03	[0.78; 1.25] [0.98; 1.09] [0.91; 1.26]	4.9% 6.1% 5.5%
SMI = Psychosis Cramer et al 2010 Chen et al 2012			[1.18; 3.92] [1.03; 1.29]	2.2% 5.9%
SMI = Schizophrenia Stockbridge et al 2019 Goueslard et al 2018 Druss et al 2012 Leung et al 2011 Guerrero Fernandez de Alba et al 2020 Guerrero Fernandez de Alba et al 2020 Guerrero Fernandez de Alba et al 2020 Kurdyak et al 2017 Kurdyak et al 2017 Kurdyak et al 2017 Kurdyak et al 2017		2.21 1.26 0.75 1.40 1.25 1.28 1.34 1.72 1.36	$\begin{matrix} [1.29; 2.01] \\ [1.69; 2.88] \\ [1.22; 1.31] \\ [0.63; 0.89] \\ [1.18; 1.66] \\ [0.55; 2.83] \\ [1.11; 1.47] \\ [1.28; 1.41] \\ [1.68; 1.77] \\ [1.29; 1.44] \\ [1.79; 1.92] \end{matrix}$	5.0% 4.6% 6.2% 5.4% 1.5% 5.7% 6.1% 6.2% 6.1% 6.2%
SMI = SMI Helmer et al 2020 Chwastiak et al 2014 Wang et al 2021 Random effects model		1.24 1.36	[0.94; 1.07] [1.07; 1.44] [1.13; 1.65] [1.16; 1.45]	6.1% 5.6% 5.3% 100.0%
(Heterogeneity: $l^2 = 98\%$, $\tau^2 = 0.0532$, $p < 0.01$ Test for subgroup differences: $\tau_2^2 = 23.38$, df = 3 ($p < 0.01$	0.5 1 2			

Test for subgroup differences: $\chi_3^2 = 23.38$, df = 3 (p < 0.01)

Fig 2. Forest plot of studies presenting adjusted odds ratios of hospital utilisation in diabetes patients with SMI compared to diabetes patients without SMI.

https://doi.org/10.1371/journal.pone.0272498.g002

1.15–1.44, $I^2 = 97.9\%$) In subgroup analysis, the effect size was greater in patients with schizophrenia (OR: 1.42, 95%CI: 1.25–1.60) than patients with other SMI diagnoses, and analyses of all-cause hospitalisations had higher pooled OR (1.43, 95%CI: 1.28–1.60) compared to those reporting ACSC conditions or diabetes-specific hospitalisations (Table 3). Studies performed in the US had a lower pooled OR (1.10, 95%CI: 0.99–1.22) than studies in other countries (Table 3). While the pooled OR for analyses of 30-day readmissions was lower, confidence intervals of all outcome types overlapped (Table 3). Controlling for these variables in metaregression reduced heterogeneity ($I^2 = 82.8\%$).

Fewer studies in populations with diabetes assessed HR (eight analyses from six studies, Fig 3). Seven analyses investigated admissions, while one investigated admissions or ED attendance combined (Table 2). The funnel plot identified one outlier, with a large effect size [33] (S3 Fig). When this outlier was removed, the pooled HR was reduced from 1.26 (1.13–1.41; $I^2 = 92.7\%$, Fig 3) to 1.19 (95%CI: 1.08–1.31, $I^2 = 90.6\%$). In subgroup analysis, analyses of diabetes admissions had a higher pooled HR (1.25; 95%CI: 1.13–1.37) than all-cause or ACSC admissions studies, while analyses performed in the US had a lower pooled HR (1.07; 95%CI: 0.95–1.20) than studies in other countries (Table 3). Pooled HRs were similar across SMI diagnoses. When controlling for country and type of hospital utilisation in meta-regression, the residual heterogeneity was reduced (I^2 : 46.5%).

		No. of studies	Pooled effect size (95%CI) of hospital use in people with SMI compared to those without	I ² (%)	p-value for between group differences
The	effect of SMI on				
	pital use in people				
with	n diabetes (OR)				
S	MI diagnosis				<0.0001
	Bipolar disorder	3	1.03 (0.98–1.08)	0	
	Psychosis	1	1.15 (1.03–1.29)	-	
	Schizophrenia	11	1.42 (1.25–1.60)	97.7	
	SMI	3	1.17 (0.96–1.44)	85.9	
_ (Outcome: service				0.2015
	30-day readmission	2	1.18 (1.08–1.29)	0	
	ED attendance	3	1.44 (1.18–1.77)	97.8	
	Inpatient admissions	13	1.26 (1.08–1.47)	97.9	
0	Outcome: Cause				0.0225
	All-cause	7	1.43 (1.28–1.60)	94.7	
	Diabetes	8	1.25 (1.08–1.44)	90.3	
	Ambulatory care sensitive	3	1.09 (0.93–1.28)	96.6	
0	Country of study				<0.0001
	US	9	1.10 (0.99–1.22)	91.6	
	Canada	4	1.55 (1.34–1.80)	98.2	
	France	1	2.21 (1.69–2.89)	-	
	Spain	3	1.33 (1.19–1.48)	0	
	UK	1	1.36 (1.13–1.65)	-	
hos	effect of SMI on pital use in people diabetes (HR)				
s	MI diagnosis				0.3654
	Bipolar disorder	2	1.27 (1.12–1.44)	46.2	
	Psychosis	2	1.09 (0.93–1.27)	93.2	
	Schizophrenia	2	1.32 (0.85–2.07)	91.8	
	SMI	1	1.14 (1.05–1.23)	-	
0	Dutcome: Cause				<0.0001
	All-cause	1	1.14 (1.05–1.23)	-	
	Diabetes	5	1.25 (1.13–1.37)	73.5	
	Ambulatory care sensitive	1	1.01 (0.98–1.04)	-	
0	Country of study				0.0016
	US	2	1.07 (0.95–1.20)	87.3	
	Canada	1	1.68 (1.34–2.10)	-	
	Australia	3	1.17 (1.10–1.25)	46.5	
	Taiwan	1		-	
hos with	effect of SMI on pital use in people a cardiovascular pase (OR)				
	MI diagnosis	1		+	< 0.0001

Table 3. Subgroup analyses of studies of hospital use in people with underlying diabetes, cardiovascular disease and COPD: Comparing those with and without SMI with outliers removed.

Table 3. (Continued)

		No. of studies	Pooled effect size (95%CI) of hospital use in people with SMI compared to those without	I ² (%)	p-value for between group differences
	Psychosis	8	1.09 (1.02–1.16)	66.4	
	Schizophrenia	1	1.77 (0.79–3.94)	-	
	SMI	2	2.28 (2.11–2.46)	0	
0	Outcome: Cause				0.0861
	All-cause	7	1.46 (1.03–2.08)	97.5	
	Cardiovascular disease	4	1.07 (1.04–1.11)	0	
0	Country of study				0.2259
	US	9	1.22 (1.01–1.48)	97.5	
	Denmark	1	1.77 (0.79–3.94)	-	
	UK	1	2.02 (1.10-3.70)	-	
hosj witł	effect of SMI on pital use in people n cardiovascular sase (HR)				
S	MI diagnosis				0.0056
	Bipolar	3	1.28 (1.13–1.43)	62.9	
	Psychosis	1	1.56 (1.44–1.67)	-	
	Schizophrenia	4	1.30 (1.15–1.46)	47.8	
0	Outcome: Service				0.2218
	30-day readmission	2	1.44 (1.22–1.69)	53.7	
	Inpatient admissions	6	1.28 (1.17–1.40)	84.4	
C	Outcome: Cause				0.4218
	All-cause	3	1.39 (1.20–1.60)	77.0	
	Cardiovascular disease	5	1.29 (1.16–1.43)	62.5	
0	Country of study				0.7365
	Sweden	1	1.29 (0.78–2.14)	-	
Τ	UK	4	1.29 (1.15–1.44)	71.8	
	US	3	1.39 (1.20–1.60)	77.0	
hos	effect of SMI on pital use in people n COPD (OR)				
S	MI diagnosis				0.3059
	Psychosis	3	1.18 (1.14–1.22)	0	
	Schizophrenia	1	1.08 (0.92–1.27)	-	
	Outcome: Cause				0.7298
╈	All-cause	2	1.16 (1.09–1.24)	0	
	COPD	2	1.18 (1.13–1.23)	0	
	Country of study			1	0.3059
\top	US	3	1.18 (1.14–1.22)	0	
+	Denmark	1	1.08 (0.92–1.27)	_	

https://doi.org/10.1371/journal.pone.0272498.t003

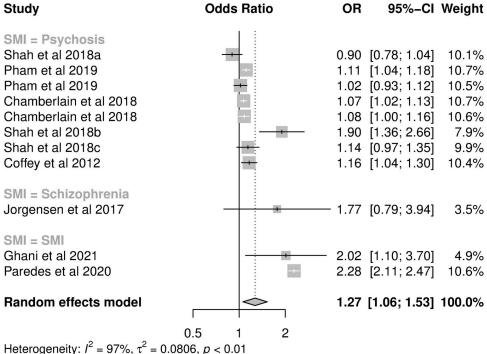
For studies of both hazard ratios and odds ratios based in the US, there was evidence that pooled effect sizes of hospital utilisation in people with SMI were lower in studies of patients registered in Veteran's Affairs, Medicare or Medicaid, compared to studies of commercially

Study	Hazard Ratio	HR	95	5%-CI	Weight
SMI = Bipolar Tsai et al 2019 Mai et al 2011		1.41 1.22	[1.16; [1.15;	-	10.3% 14.6%
SMI = Psychosis Edwards et al 2014 Mai et al 2011	-	1.01 1.18	[0.98; [1.10;	-	15.1% 14.3%
SMI = Schizophrenia Goueslard et al 2018 Mai et al 2011 Becker et al 2011		- 2.13 1.06 1.68	[1.69; [0.94; [1.34;	1.21]	9.2% 12.8% 9.4%
SMI = SMI Chwastiak et al 2014	-	1.14	[1.05;	-	14.2%
Random effects model Heterogeneity: $I^2 = 93\%$, $\tau^2 = 0.021$ 0.5	0, <i>p</i> < 0.01 1 2	1.26	[1.13;	1.41]	100.0%
	· · · · · · · · · · · · · · · · · · ·				11 01 01

Fig 3. Forest plot of studies presenting adjusted hazard ratios of hospital utilisation in diabetes patients with SMI compared to diabetes patients without SMI.

https://doi.org/10.1371/journal.pone.0272498.g003

insured people or studies including both state-insured and commercially insured individuals (Table 4).


Hospitalisation use in people with cardiovascular disease, with and without SMI.

Forty-four analyses from 20 studies were based in populations with underlying cardiovascular

		No. of studies	Pooled effect size (95%CI) of hospital use in people with SMI compared to those without	I ² (%)	p-value for between group differences
on] peo	e effect of SMI hospital use in ple with betes (OR)				
5	Study population				0.0365
	Medicaid/ Medicare	4	1.03 (0.86–1.22)	95.4	
	Veterans' health	1	1.00 (0.94–1.07)	-	
	Insured	3	1.22 (0.96–1.56)	80.1	
	Complete	1	1.24 (1.07–1.44)	-	
on l peo	e effect of SMI hospital use in ple with betes (HR)				
5	Study population				0.005
	Veterans' health	1	1.01 (0.98–1.04)		
	Insured	1	1.14 (1.05–1.23)		

Table 4. Subgroup analyses of studies of hospital use in the US in people with underlying diabetes: Comparing those with and without SMI.

https://doi.org/10.1371/journal.pone.0272498.t004

Heterogeneity: $I^{c} = 97\%$, $\tau^{c} = 0.0806$, p < 0.01Test for subgroup differences: $\chi^{2}_{2} = 215.34$, df = 2 (p < 0.01)

Fig 4. Forest plot of studies presenting adjusted odds ratios of hospital utilisation in cardiovascular disease patients with SMI compared to cardiovascular disease without SMI. a: [51], b: [54], c: [55].

https://doi.org/10.1371/journal.pone.0272498.g004

disease, the most common of which was heart failure (n = 7, <u>Table 1</u>). Eleven analyses from nine studies providing adjusted ORs for hospital utilisation in people with SMI compared to those without SMI were included in meta-analysis, and twelve analyses from six studies presented adjusted HR. The funnel plot for these analyses did not show asymmetry (meta-analysis of ORs: Egger's test: p = 0.6751, <u>S4 Fig</u>; meta-analysis of HRs: Egger's test: p = 0.1535, <u>S5 Fig</u>), and for ORs did not show any outliers.

For those presenting ORs, all were 30-day readmission studies, and psychosis was the exposure for eight analyses (Table 2). The pooled OR for hospital utilisation in patients with a diagnosis of any SMI was 1.27 (95%CI: 1.06–1.53; I^2 : 96.9%, Fig 4). In subgroup analysis, pooled OR were not significantly different between cause of hospitalisation or country of study, but did differ by SMI diagnosis (Table 3). The majority of analyses examined broad risk factors for hospitalisation, while only three focused on SMI specifically. Those with SMI as a focus had greater pooled OR (pOR: 2.27, 95%CI: 2.10–2.46 vs. pOR 1.09, 95%CI: 1.02–1.16). Controlling for these variables in meta-regression reduced heterogeneity ($I^2 = 61.9\%$).

For those presenting HRs, the pooled HR for hospital utilisation was 1.43 (95%CI: 1.28–1.60, I²: 78.4%, Fig 5). Most analyses investigated inpatient admissions (8/12) and cardiovascular outcomes (n = 9). One study, contributing four analyses, was identified as an outlier (S5 Fig). This study was a small single-site study of African American patients in the US [59]. Removal of this study from the meta-analysis reduced the pooled HR to 1.33 (95%CI: 1.21–1.46, I²: 74.0%). In subgroup analysis, pooled HRs were not significantly different between cause of hospitalisation, hospitalisation type or country of study (Table 3). However, there were differences by SMI diagnosis, and controlling for this did reduce heterogeneity (I² = 55.13%).

Study	Hazard Ratio	HR	95%–CI	Weight		
SMI = Bipolar						
Lu et al 2017		- 3.44	[1.19; 9.97]	1.0%		
Lu et al 2017		2.08	[1.05; 4.12]	2.3%		
Fleetwood et al 2021a			[1.20; 1.63]	11.6%		
Fleetwood et al 2021b			[1.01; 1.28]	12.6%		
Sreenivasan et al 2022	+	1.32	[1.20; 1.46]	13.2%		
SMI = Psychosis						
Sreenivasan et al 2022	+	1.56	[1.43; 1.70]	13.6%		
SMI = Schizophrenia		4 00		0.00/		
Attar et al 2020			[0.78; 2.15]	3.6%		
Chamberlain et al 2017			[0.98; 1.52]			
Lu et al 2017			[2.49; 9.72]			
Lu et al 2017			[1.51; 3.60]			
Fleetwood et al 2021a			[1.29; 1.65]	12.5%		
Fleetwood et al 2021b		1.21	[1.10; 1.34]	13.2%		
Developer offerste medel		1 40	[1 00, 1 00]	100.00/		
Random effects model		1.43	[1.28; 1.60]	100.0%		
	0.2 0.5 1 2 5					
Heterogeneity: $I^2 = 78\%$, $\tau^2 =$						
Test for subgroup differences: $\chi_2^2 = 3.96$, df = 2 ($p = 0.14$)						

Fig 5. Forest plot of studies presenting adjusted hazard ratios of hospital utilisation in cardiovascular disease patients with SMI compared to cardiovascular disease without SMI. a: [71] b: [70].

https://doi.org/10.1371/journal.pone.0272498.g005

Hospitalisation use in people with COPD, with and without SMI. Five analyses from four studies were in populations with underlying COPD. All five presented ORs for 30-day readmissions in patients with SMI compared to those without SMI, of which four presented adjusted ORs. The funnel plot of these analyses did not show asymmetry of outliers (S6 Fig).

Study	Odds Ratio	OR	95%-CI	Weight	
SMI = Psychosis Lau et al 2017 Lau et al 2017 Singh et al 2016		- 1.16	[1.13; 1.25] [1.08; 1.24] [1.10; 1.27]	47.2% 25.2% 23.3%	
SMI = Schizophrenia Jorgensen et al 2018		— 1.08	[0.92; 1.27]	4.4%	
Random effects model Heterogeneity: $I^2 = 0\%$, $\tau^2 = 0$, $p = 0$ 0.8		1.18 7 .25	[1.14; 1.22]	100.0%	
Fig. 6 Forest plot of studies presenting edirected adds ratios of bospital utilisation in COPD patients with SMI compared to COPD					

Fig 6. Forest plot of studies presenting adjusted odds ratios of hospital utilisation in COPD patients with SMI compared to COPD patients without SMI.

https://doi.org/10.1371/journal.pone.0272498.g006

The pooled OR for hospital use in patients with a diagnosis of any SMI was 1.18 (95%CI: 1.14–1.22, $I^2 = 0\%$, Fig 6). In subgroup analysis, pooled ORs were not significantly different between cause of hospitalisation, country of study or SMI diagnosis (Table 3).

Hospitalisation use in people with cancer or liver disease, with and without SMI. Two studies were identified which considered SMI as an exposure for hospitalisation in people with and without SMI in populations with underlying liver disease and four in populations with underlying cancer (Table 1). Neither of the liver disease studies presented adjusted effect estimates, and both were low quality for the exposures and outcomes considered in this synthesis (NOS score = 5). Huckans et al. [65] found that people with schizophrenia were more likely to attend EDs and have inpatient admissions during hepatitis C treatment than those without schizophrenia, though due to the small population size (n = 60) confidence intervals were wide and included one. Davydow et al. [66] found higher ACSC admissions for in those with liver disease and SMI compared to those with liver disease without SMI (Table 2).

For cancer, two studies presented adjusted effect measures of hospital utilisation. Basta et al. [64] studied readmissions for lymphedema in the two years after breast cancer diagnosis in women. They found that women with a diagnosis of psychosis were at higher risk of readmission (aOR: 2.15, 95%CI: 1.51–3.06). Kashyap et al. [68] found higher utilisation of emergency departments in the 30 days prior to death in those with gastrointestinal malignancies and SMI compared to those with gastrointestinal malignancies alone. Finally, an unadjusted analysis by Ratcliff et al. [74] found higher risk of 90-day readmissions after surgery for colorectal cancer in those with SMI, while Davydow et al. [66] found higher risk of ACSC admissions in those with cancer and SMI compared to those with cancer alone, in unadjusted analysis (Table 2).

Sensitivity analysis. In sensitivity analysis, re-running the analysis as a three-level hierarchical model did not result in improved model fit, nor substantial change the pooled OR (1.26, 95%CI: 1.10–1.45) or HR (1.23; 95%CI 1.01–1.50) for studies in people with diabetes and SMI, or the pooled OR (1.34, 95%CI: 1.07–1.69) or HR (1.47. 95%CI: 1.16–1.85) for people with cardiovascular disease and SMI. For COPD, the two analyses from one study included in the meta-analysis were from different populations and so sensitivity analysis was not performed. Only three conference abstracts providing adjusted effect measures for hospitalisation were retrieved. The first was a study of risk factors for 30- and 90-day rehospitalisation following radical cystectomy for bladder cancer. The authors found that people with psychosis had an elevated HR for readmission (aHR: 1.82, p<0.05) [79]. The second was a small study of 373 people with diabetes, which found that those with two or more admissions were more likely to have a diagnosis of schizophrenia (aOR: 4.99, p<0.05) than those with only one admission [80]. Finally, a study of all-cause 30-day readmissions in people with acute ischaemic stroke, found those with SMI we at higher risk (aOR: 1.24, 95%CI: 1.20–1.27) [81].

Discussion

This review and meta-analysis demonstrates that people with SMI and one of five physical health conditions have consistently higher hospital utilisation than either people with SMI alone or with physical health conditions alone. This is the first systematic review to consider the impact of having SMI and a specific physical health condition on hospital utilisation, allowing a better understanding of the impact of SMI on hospital use in those with underlying physical illness, and highlighting areas for future research.

We found that in people with underlying cardiovascular disease, COPD or diabetes, people with a diagnosis of SMI had higher hospital use compared to those without SMI. This finding is in line with other systematic reviews or meta-analyses [11-13, 17], which consider the

impact of SMI on hospitalisations in the general population, or when controlling for physical health comorbidities. The same appeared to be true for people with cancer and liver disease, though studies presenting adjusted analyses were limited to one study of breast cancer complications [64], and one of end of life emergency department use in people with gastrointestinal malignancies [68]. No studies of liver disease reported adjusted effect measures. Only five studies were identified which considered a population with underlying severe mental illness, with and without physical LTCs. In these studies, the addition of physical LTC increased the risk of hospital utilisation.

In populations with underlying diabetes, cardiovascular disease and COPD, people with SMI were at higher risk of 30-day readmissions compared to those without SMI, and the pooled OR were similar for 30-day readmission in these populations. This suggests that over this short timeframe, the risk of readmission does not differ substantially by underlying physical disease. While the effect size of having SMI was relatively small for all three diseases, any increased risk of hospital admission represents a major burden given the underlying high rate of admissions for these diseases in the general population [82, 83].

A strength of focusing on studies in populations with underlying physical LTC, is that it provides further evidence that the higher emergency hospitalisation in people with SMI is not due to higher prevalence of that LTC in the SMI population. It also allows the investigation of the impact of hospitalisations for the underlying LTC, compared to all-cause hospitalisations. In 30-day readmission studies of both COPD and cardiovascular disease we found little difference between studies of all-cause or cause-specific hospitalisations, suggesting that 30-day readmissions for the index condition are likely driving the difference between those with and without a diagnosis of SMI. The consistently higher risk in those with SMI, may indicate systematic differences in management and treatment of physical health conditions in people with SMI, such as lower adherence to medication, reduced access or attendance at planned outpatient care [84] and less guideline-recommended treatment [56, 61, 85–87], as well as more complex medication regimens and medical histories.

For studies examining hospital admissions for populations with underlying diabetes, we found that while patients with SMI had higher pooled OR of diabetes-specific admissions than those without SMI, the greatest difference was in all-cause admissions. This was also true in studies investigating both all-cause and diabetes admissions in the same study [41, 45]. These findings suggest that while a higher risk of diabetes admissions and sub-optimal management and treatment of diabetes [35, 37, 45] account for some of the higher hospital use in people with SMI, there are other factors involved. A study of patients with underlying diabetes found high rates of all-cause hospitalisations in people with SMI, even once acute psychiatric admissions were excluded from the outcome [45], suggesting that higher rates of multimorbidity, and therefore higher general physical health admissions, as well as higher risk of trauma and infectious disease hospitalisations [16], may be adding to the burden of hospitalisations in these patients. While we did not find the same in the subgroup analysis of diabetes studies presenting hazard ratios, only one study investigated all-cause admissions and the total number of available studies was small, limiting interpretation.

We also found evidence that specific populations may have elevated risk of hospital use. We found a high risk of hospitalisation in people with SMI in studies examining the effect of SMI on readmissions during hepatitis C treatment [65], on cardiovascular hospital use in African American patients with heart failure [59], on diabetes readmissions in patients under the age of 35 with type I diabetes [33], and following breast cancer surgery [64]. For diabetes, patients with schizophrenia appeared to be at higher risk of hospitalisation compared to other SMI diagnoses in studies presenting adjusted odds ratios. This has been reported elsewhere [17], and is in line with other studies that have found people with schizophrenia suffer more ill-

health, greater all-cause mortality and poorer physical health and treatment outcomes than people with other SMI diagnoses [9, 35, 37, 88, 89]. However, for studies of people with underlying diabetes or cardiovascular disease presenting adjusted hazard ratios, there was little difference between diagnoses of bipolar disorder and schizophrenia. Of the seven studies included in our review which considered schizophrenia alongside other SMI diagnoses, two found patients with schizophrenia were more likely to be hospitalised than other SMI diagnoses [31, 35], one found that those with schizophrenia were less likely to be hospitalised [36], and four found no significant difference [37, 59, 70, 71].

Finally, we found that while still elevated, the risk of readmission in patients with diabetes and SMI was lower in the US compared to other countries. While this finding has been documented before [17], the reason for this is unclear. For these studies, we found differences in effect size based on the healthcare system under investigation, and therefore patients with SMI may face different barriers and drivers to hospital use across payers in the US healthcare system. It is not clear whether this is limited to diabetes management, as the small number of studies in patients with COPD or cardiovascular disease did not permit comparisons by country.

Limitations

Although this review has better described the pattern of hospital utilisation in people with SMI and physical health conditions, there are limitations. Although our search strategy was thorough, we may have missed studies which include SMI as a risk factor for higher healthcare utilization, but which do not include terms for SMI in the title or abstract. These studies are unlikely to have SMI as their main exposure variable and given that SMI is not common in the general population are less likely to provide well powered estimations. We identified 11 studies for which SMI was not the main focus, and while inclusion of these studies provides further evidence, caution is needed as they may be subject to confounding and issues of power [90]. In addition, while our search strategy was thorough, and overall agreement between reviewers was high (91%), the interrater reliability of screened abstracts as measured by the Kappa statistic was moderate (0.57). This is in part due to the large number of studies screened and the rarity of relevant studies [91], but also the complexity of multiple exposures and outcomes. All disagreements were discussed thoroughly to ensure the accuracy of study inclusion.

We found marked heterogeneity in the study results, particularly for studies of diabetes. While definitions of SMI, physical LTCs and outcome measures accounted for some of this, underlying differences in the population and healthcare system, as well as differences in study design are likely major causes of this heterogeneity.

While most studies we identified were of fair or good quality, there were limitations to many of them. Few studies utilised matched cohorts of patients, and most did not evaluate the impact of prior healthcare utilisation, despite this being a known predictor of hospital use in the general population [92]. Furthermore, many studies were performed in the US, which limits the generalisability of results to other healthcare systems. Despite being based in longitudinal populations, under half of studies performed a time-to-event analysis. Where this was performed, very few accounted for multiple hospitalisations or included time-varying covariates. Most studies included only patients who had accessed secondary care, both to define SMI and physical health conditions. Without access to primary care records, these studies exclude those patients who may be managed solely in primary care or attend secondary care very infrequently. These excluded patients may provide important information on protective factors that reduce secondary care use.

Knowledge gaps and future research

There were few studies investigating hospital use in a population of patients with SMI, comparing hospital use in those with or without physical LTC. The underlying heterogeneity of these studies made them unsuitable for meta-analysis. Given that people with SMI are at an higher risk of many physical LTCs, further research is required to identify the drivers of physical health hospitalisations in people with SMI, and subsets of this population at higher risk.

There was also a lack of data regarding hospital use in patients with cancer, and the impact of SMI diagnoses on hospital utilisation. Given the higher risk of mortality following cancer diagnosis in those with SMI, and evidence of sub-optimal cancer screening and late diagnoses [93], it is important to understand hospital utilisation in this population.

Finally, there was a lack of information on the impact of SMI on hospitalisation for liver disease, and on the long-term risk of hospitalisation in patients with COPD or cardiovascular disease. These common diseases represent a huge burden in terms of hospital resource use and ill health in the general population [94]. Given people with SMI may be at higher risk of these diseases [2], receive poorer care [6, 56, 61, 84–87, 89, 95–98] and worse outcomes [6], more research is required into the impact of an SMI diagnosis on hospital utilisation in people with these conditions.

Conclusions

This systematic review and meta-analysis found that patients with SMI and underlying physical health conditions are at a higher risk of hospital use for that condition, and for other causes. Further research is warranted into the effects of different physical health conditions and different SMI diagnoses on hospital use, particularly over longer time periods, and of pathways and drivers of hospitalisation in those with SMI. This will allow targeted interventions aimed at reducing inappropriate hospital use and improving disease management and outcomes in people with SMI.

Supporting information

S1 Checklist. (DOC)

S1 Appendix. Search strategy. (DOCX)

S1 Table. Study quality and detailed characteristics. *Does control for age and is limited to females.

(DOCX)

S2 Table. Components of the Newcastle-Ottawa score. *One point. a: Analysis presenting odds ratios; b: analysis presenting hazard ratios c: Analysis of 30-day readmissions; d: analysis of long-term readmissions. (DOCX)

S1 Fig. Funnel plots for all individual analyses. (DOCX)

S2 Fig. Funnel plot for studies presenting adjusted odds ratios of hospital utilisation in diabetes patients with SMI compared to without SMI. (DOCX)

S3 Fig. Funnel plot for studies presenting adjusted hazard ratios of hospital utilisation in diabetes patients with SMI compared to without SMI. (DOCX)

S4 Fig. Funnel plot for studies presenting adjusted odds ratios of hospital utilisation in heart disease patients with SMI compared to without SMI. (DOCX)

S5 Fig. Funnel plot for studies presenting adjusted hazard ratios of hospital utilisation in heart disease patients with SMI compared to without SMI. (DOCX)

S6 Fig. Funnel plot for studies presenting adjusted odds ratios of hospital utilisation in COPD patients with SMI compared to without SMI. (DOCX)

Author Contributions

Conceptualization: Naomi Launders, Louise Marston, Gabriele Price, David P. J. Osborn, Joseph F. Hayes.

Data curation: Naomi Launders, Kate Dotsikas.

Formal analysis: Naomi Launders.

Funding acquisition: Gabriele Price, David P. J. Osborn.

Investigation: Naomi Launders, Kate Dotsikas.

Methodology: Naomi Launders, Louise Marston, Gabriele Price, David P. J. Osborn, Joseph F. Hayes.

Supervision: Louise Marston, Gabriele Price, David P. J. Osborn, Joseph F. Hayes.

Validation: Kate Dotsikas.

Visualization: Naomi Launders.

Writing - original draft: Naomi Launders.

Writing – review & editing: Naomi Launders, Kate Dotsikas, Louise Marston, Gabriele Price, David P. J. Osborn, Joseph F. Hayes.

References

- Launders N, Hayes J. F., Price G., Osborn D. P. J. Clustering of physical health multimorbidity in 68,392 people with severe mental illness and matched comparators: a lifetime prevalence analysis of United Kingdom primary care data. PLoS Med. 2022; 19(4).
- 2. Public Health England. Severe mental illness (SMI) and physical health inequalities. 2018.
- Firth J, Siddiqi N, Koyanagi A, Siskind D, Rosenbaum S, Galletly C, et al. The Lancet Psychiatry Commission: a blueprint for protecting physical health in people with mental illness. Lancet Psychiatry. 2019; 6(8):675–712. https://doi.org/10.1016/S2215-0366(19)30132-4 PMID: 31324560
- Bahorik AL, Satre DD, Kline-Simon AH, Weisner CM, Campbell CI. Serious mental illness and medical comorbidities: Findings from an integrated health care system. J Psychosom Res. 2017; 100:35–45. https://doi.org/10.1016/j.jpsychores.2017.07.004 PMID: 28789791
- Baughman KR, Bonfine N, Dugan SE, Adams R, Gallagher M, Olds RS, et al. Disease Burden Among Individuals with Severe Mental Illness in a Community Setting. Community Ment Health J. 2016; 52 (4):424–32. https://doi.org/10.1007/s10597-015-9973-2 PMID: 26611625

- Olfson M, Gerhard T, Huang C, Crystal S, Stroup TS. Premature Mortality Among Adults With Schizophrenia in the United States. JAMA Psychiatry. 2015; 72(12):1172–81. <u>https://doi.org/10.1001/jamapsychiatry.2015.1737</u> PMID: 26509694
- Barnes AL, Murphy ME, Fowler CA, Rempfer MV. Health-related quality of life and overall life satisfaction in people with serious mental illness. Schizophr Res Treatment. 2012; 2012:245103. <u>https://doi.org/10.1155/2012/245103 PMID: 23213525</u>
- Filipcic I, Simunovic Filipcic I, Ivezic E, Matic K, Tunjic Vukadinovic N, Vuk Pisk S, et al. Chronic physical illnesses in patients with schizophrenia spectrum disorders are independently associated with higher rates of psychiatric rehospitalization; a cross-sectional study in Croatia. Eur Psychiatry. 2017; 43:73– 80. https://doi.org/10.1016/j.eurpsy.2017.02.484 PMID: 28371744
- Hoang U, Goldacre MJ, Stewart R. Avoidable mortality in people with schizophrenia or bipolar disorder in England. Acta Psychiatr Scand. 2013; 127(3):195–201. https://doi.org/10.1111/acps.12045 PMID: 23216065
- Walker ER, McGee RE, Druss BG. Mortality in mental disorders and global disease burden implications: a systematic review and meta-analysis. JAMA Psychiatry. 2015; 72(4):334–41. <u>https://doi.org/10.1001/jamapsychiatry.2014.2502</u> PMID: 25671328
- Germack HD, Caron A., Solomon R., Hanrahan N. P. Medical-surgical readmissions in patients with cooccurring serious mental illness: A systematic review and meta-analysis. General Hospital Psychiatry. 2018; 55:65–71. https://doi.org/10.1016/j.genhosppsych.2018.09.005 PMID: 30414592
- Jansen L, van Schijndel M, van Waarde J, van Busschbach J. Health-economic outcomes in hospital patients with medical-psychiatric comorbidity: A systematic review and meta-analysis. PLoS One. 2018; 13(3):e0194029. https://doi.org/10.1371/journal.pone.0194029 PMID: 29534097
- Sprah L, Dernovsek M. Z., Wahlbeck K., Haaramo P. Psychiatric readmissions and their association with physical comorbidity: A systematic literature review. BMC Psychiatry. 2017; 17(1). <u>https://doi.org/10. 1186/s12888-016-1172-3 PMID: 28049441</u>
- 14. Dorning H DA, Blunt I. Focus on: people wth mental ill health and hospital use. The Health Foundation and Nuffield Trust; 2015.
- Lin HC, Huang CC, Chen SF, Chen YH. Increased risk of avoidable hospitalization among patients with schizophrenia. Can J Psychiatry. 2011; 56(3):171–8. <u>https://doi.org/10.1177/070674371105600307</u> PMID: 21443824
- Jayatilleke N, Hayes R. D., Chang C. K., Stewart R. Acute general hospital admissions in people with serious mental illness. Psychol Med. 2018; 48(16):2676–83. <u>https://doi.org/10.1017/</u> S0033291718000284 PMID: 29486806
- Ronaldson A, Elton L, Jayakumar S, Jieman A, Halvorsrud K, Bhui K. Severe mental illness and health service utilisation for nonpsychiatric medical disorders: A systematic review and meta-analysis. PLoS Med. 2020; 17(9):e1003284. https://doi.org/10.1371/journal.pmed.1003284 PMID: 32925912
- Wimmer BC, Bell JS, Fastbom J, Wiese MD, Johnell K. Medication Regimen Complexity and Number of Medications as Factors Associated With Unplanned Hospitalizations in Older People: A Populationbased Cohort Study. J Gerontol A Biol Sci Med Sci. 2016; 71(6):831–7. https://doi.org/10.1093/gerona/ glv219 PMID: 26707381
- Bobrovitz N, Heneghan C, Onakpoya I, Fletcher B, Collins D, Tompson A, et al. Medications that reduce emergency hospital admissions: an overview of systematic reviews and prioritisation of treatments. BMC Med. 2018; 16(1):115. https://doi.org/10.1186/s12916-018-1104-9 PMID: 30045724
- 20. Huntley A, Lasserson D, Wye L, Morris R, Checkland K, England H, et al. Which features of primary care affect unscheduled secondary care use? A systematic review. BMJ Open. 2014; 4(5):e004746. https://doi.org/10.1136/bmjopen-2013-004746 PMID: 24860000
- Tammes P, Morris RW, Brangan E, Checkland K, England H, Huntley A, et al. Exploring the relationship between general practice characteristics and attendance at Walk-in Centres, Minor Injuries Units and Emergency Departments in England 2009/10-2012/2013: a longitudinal study. BMC Health Serv Res. 2017; 17(1):546. https://doi.org/10.1186/s12913-017-2483-x PMID: 28789652
- Whittaker W, Anselmi L, Kristensen SR, Lau YS, Bailey S, Bower P, et al. Associations between Extending Access to Primary Care and Emergency Department Visits: A Difference-In-Differences Analysis. PLoS Med. 2016; 13(9):e1002113. https://doi.org/10.1371/journal.pmed.1002113 PMID: 27598248
- Hodgson K, Deeny SR, Steventon A. Ambulatory care-sensitive conditions: their potential uses and limitations. BMJ Qual Saf. 2019; 28(6):429–33. https://doi.org/10.1136/bmjqs-2018-008820 PMID: 30819838
- 24. National Institute for Health and Care Excellence. NICE Quality and Outcomes Framework indicator 2022 [Available from: https://www.nice.org.uk/Standards-and-Indicators/QOFIndicators?categories= &page=3.

- 25. R Core Team. A language and environment for statistical computing. 2018.
- 26. RStudio Team. RStudio: Integrated Development for R. 2015.
- Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ. 2003; 327(7414):557–60. https://doi.org/10.1136/bmj.327.7414.557 PMID: 12958120
- Van den Noortgate W, Lopez-Lopez JA, Marin-Martinez F, Sanchez-Meca J. Three-level meta-analysis of dependent effect sizes. Behav Res Methods. 2013; 45(2):576–94. <u>https://doi.org/10.3758/s13428-012-0261-6 PMID: 23055166</u>
- Egglefield K, Cogan L., Leckman-Westin E., Finnerty M. Antipsychotic Medication Adherence and Diabetes-Related Hospitalizations Among Medicaid Recipients With Diabetes and Schizophrenia. Psychiatr Serv. 2020; 71(3):236–42. https://doi.org/10.1176/appi.ps.201800505 PMID: 31744428
- Helmer DA, Dwibedi N, Rowneki M, Tseng CL, Fried D, Rose D, et al. Mental Health Conditions and Hospitalizations for Ambulatory Care Sensitive Conditions Among Veterans with Diabetes. Am Health Drug Benefits. 2020; 13(2):61–71. PMID: 32724500
- Stockbridge EL, Chhetri S., Polcar L. E., Loethen A. D., Carney C. P. Behavioral health conditions and potentially preventable diabetes-related hospitalizations in the United States: Findings from a national sample of commercial claims data. PLoS One. 2019; 14(2):e0212955. https://doi.org/10.1371/journal. pone.0212955 PMID: 30818377
- Tsai CL, Yang YC, Chen SF, Hsu CY, Shen YC. Risk of hyperglycemic crisis episode in diabetic patients with bipolar disorder: A nationwide population-based cohort study. J Affect Disord. 2019; 257:281–6. https://doi.org/10.1016/j.jad.2019.07.025 PMID: 31302516
- Goueslard K, Petit J. M., Cottenet J., Chauvet-Gelinier J. C., Jollant F., Quantin C. Increased risk of rehospitalization for acute diabetes complications and suicide attempts in patients with type 1 diabetes and comorbid schizophrenia. Diabetes care. 2018; 41(11):2316–21. <u>https://doi.org/10.2337/dc18-0657</u> PMID: 30150237
- Edwards STP J.; Simon S. R.; Pizer S. D. Home-based primary care is associated with reduced ambulatory care sensitive hospitalizations in veterans with diabetes. Journal of General Internal Medicine. 2014; 29:S109.
- Druss BG, Zhao L., Cummings J. R., Shim R. S., Rust G. S., Marcus S. C. Mental comorbidity and quality of diabetes care under medicaid: A 50-state analysis. Medical Care. 2012; 50(5):428–33. https://doi. org/10.1097/MLR.0b013e318245a528 PMID: 22228248
- Leung G, Zhang J., Lin W. C., Clark R. E. Behavioral disorders and diabetes-related outcomes among Massachusetts Medicare and Medicaid beneficiaries. Psychiatr Serv. 2011; 62(6):659–65. <u>https://doi.org/10.1176/ps.62.6.pss6206_0659</u> PMID: 21632736
- Mai Q, Holman C. D. J., Sanfilippo F. M., Emery J. D., Preen D. B. Mental illness related disparities in diabetes prevalence, quality of care and outcomes: A population-based longitudinal study. BMC Medicine. 2011; 9 (no pagination).
- Cramer S, Chapa G., Kotsos T., Jenich H. Assessing multiple hospitalizations for health-plan-managed Medicaid diabetic members. J Healthc Qual. 2010; 32(3):7–14. https://doi.org/10.1111/j.1945-1474. 2010.00089.x PMID: 20500775
- Yan T, Greene M., Chang E., Broder M. S., Touya M., Munday J., et al. Hospitalization risk factors in antipsychotic-Treated schizophrenia, bipolar i disorder or major depressive disorder. Journal of Comparative Effectiveness Research. 2019; 8(4):217–27. https://doi.org/10.2217/cer-2018-0090 PMID: 30556736
- 40. Chen JY, Ma Q, Chen H, Yermilov I. New bundled world: quality of care and readmission in diabetes patients. J Diabetes Sci Technol. 2012; 6(3):563–71. https://doi.org/10.1177/193229681200600311 PMID: 22768887
- Guerrero Fernandez de Alba IG-M A.; Poblador-Plou B.; Gimeno-Feliu L. A.; Ioakeim-Skoufa I.; Rojo-Martinez G.; Forjaz M. J.; Prados-Torres A. Association between mental health comorbidity and health outcomes in type 2 diabetes mellitus patients. Scientific reports. 2020; 10(1):19583. <u>https://doi.org/10.1038/s41598-020-76546-9 PMID</u>: 33177607
- Chwastiak LA, Davydow D. S., McKibbin C. L., Schur E., Burley M., McDonell M. G., et al. The Effect of Serious Mental Illness on the Risk of Rehospitalization Among Patients With Diabetes. Psychosomatics. 2014; 55(2):134–43. https://doi.org/10.1016/j.psym.2013.08.012 PMID: 24367898
- **43.** Becker T, Hux J. Risk of acute complications of diabetes among people with schizophrenia in Ontario, Canada. Diabetes Care. 2011; 34(2):398–402. https://doi.org/10.2337/dc10-1139 PMID: 20978096
- Krein SL, Bingham C. R., McCarthy J. F., Mitchinson A., Payes J., Valenstein M. Diabetes treatment among VA patients with comorbid serious mental illness. Psychiatr Serv. 2006; 57(7):1016–21. https://doi.org/10.1176/ps.2006.57.7.1016 PMID: 16816287

- 45. Kurdyak P, Vigod S., Duchen R., Jacob B., Stukel T., Kiran T. Diabetes quality of care and outcomes: Comparison of individuals with and without schizophrenia. Gen Hosp Psychiatry. 2017; 46:7–13. https://doi.org/10.1016/j.genhosppsych.2017.02.001 PMID: 28622820
- 46. Shim RS, Druss B. G., Zhang S., Kim G., Oderinde A., Shoyinka S., et al. Emergency department utilization among Medicaid beneficiaries with schizophrenia and diabetes: The consequences of increasing medical complexity. Schizophr Res. 2014; 152(2–3):490–7. <u>https://doi.org/10.1016/j.schres.2013.12</u>. 002 PMID: 24380780
- 47. Sullivan G, Han X., Moore S., Kotrla K. Disparities in hospitalization for diabetes among persons with and without co-occurring mental disorders. Psychiatr Serv. 2006; 57(8):1126–31. https://doi.org/10. 1176/ps.2006.57.8.1126 PMID: 16870963
- Attar RW A.; Koul S.; Eggert S.; Polcwiartek C.; Jernberg T.; Erlinge D.; et al. Higher risk of major adverse cardiac events after acute myocardial infarction in patients with schizophrenia. Open Heart. 2020; 7(2).
- 49. Chamberlain AM, Alonso A., Gersh B. J., Manemann S. M., Killian J. M., Weston S. A., et al. Multimorbidity and the risk of hospitalization and death in atrial fibrillation: A population-based study. American Heart Journal. 2017; 185:74–84. https://doi.org/10.1016/j.ahj.2016.11.008 PMID: 28267478
- Sayers SL, Hanrahan N, Kutney A, Clarke SP, Reis BF, Riegel B. Psychiatric comorbidity and greater hospitalization risk, longer length of stay, and higher hospitalization costs in older adults with heart failure. J Am Geriatr Soc. 2007; 55(10):1585–91. https://doi.org/10.1111/j.1532-5415.2007.01368.x PMID: 17714458
- Shah M, Patel B, Tripathi B, Agarwal M, Patnaik S, Ram P, et al. Hospital mortality and thirty day readmission among patients with non-acute myocardial infarction related cardiogenic shock. Int J Cardiol. 2018; 270:60–7. https://doi.org/10.1016/j.ijcard.2018.06.036 PMID: 29929933
- Pham PNX H.; Sarayani A.; Chen M.; Brown J. D. Risk Factors Associated With 7-Versus 30-Day Readmission Among Patients With Heart Failure Using the Nationwide Readmission Database. Medical Care. 2019; 57(1):1–7. https://doi.org/10.1097/MLR.000000000001006 PMID: 30363021
- Chamberlain RS, Sond J, Mahendraraj K, Lau CS, Siracuse BL. Determining 30-day readmission risk for heart failure patients: the Readmission After Heart Failure scale. Int J Gen Med. 2018; 11:127–41. https://doi.org/10.2147/IJGM.S150676 PMID: 29670391
- Shah MR, P.; Lo K. B. U.; Sirinvaravong N.; Patel B.; Tripathi B.; Patil S.; et al. Etiologies, predictors, and economic impact of readmission within 1 month among patients with takotsubo cardiomyopathy. Clinical Cardiology. 2018; 41(7):916–23. https://doi.org/10.1002/clc.22974 PMID: 29726021
- Shah M, Patil S, Patel B, Agarwal M, Davila CD, Garg L, et al. Causes and Predictors of 30-Day Readmission in Patients With Acute Myocardial Infarction and Cardiogenic Shock. Circ Heart Fail. 2018; 11 (4):e004310. https://doi.org/10.1161/CIRCHEARTFAILURE.117.004310 PMID: 29618581
- Jorgensen M, Mainz J., Egstrup K., Johnsen S. P. Quality of Care and Outcomes of Heart Failure Among Patients With Schizophrenia in Denmark. Am J Cardiol. 2017; 120(6):980–5. https://doi.org/10. 1016/j.amjcard.2017.06.027 PMID: 28774428
- Ahmedani BK, Solberg L. I., Copeland L. A., Fang-Hollingsworth Y., Stewart C., Hu J., et al. Psychiatric comorbidity and 30-day readmissions after hospitalization for heart failure, AMI, and pneumonia. Psychiatr Serv. 2015; 66(2):134–40. https://doi.org/10.1176/appi.ps.201300518 PMID: 25642610
- Coffey RMM A.; Barrett M.; Andrews R. M.; Mutter R.; Moy E. Congestive Heart Failure: Who Is Likely to Be Readmitted? Med Care Res Rev. 2012; 69(5):602–16. https://doi.org/10.1177/ 1077558712448467 PMID: 22653415
- Lu MLR, De Venecia T. A., Goyal A., Rodriguez Ziccardi M., Kanjanahattakij N., Shah M. K., et al. Psychiatric conditions as predictors of rehospitalization among African American patients hospitalized with heart failure. Clin Cardiol. 2017; 40(11):1020–5. https://doi.org/10.1002/clc.22760 PMID: 28750156
- Buhr RGJ N. J.; Kominski G. F.; Dubinett S. M.; Ong M. K.; Mangione C. M. Comorbidity and thirty-day hospital readmission odds in chronic obstructive pulmonary disease: a comparison of the Charlson and Elixhauser comorbidity indices. BMC health services research. 2019; 19(1):701. https://doi.org/10. 1186/s12913-019-4549-4 PMID: 31615508
- Jorgensen M, Mainz J., Lange P., Johnsen S. P. Quality of care and clinical outcomes of chronic obstructive pulmonary disease in patients with schizophrenia. A Danish nationwide study. International Journal for Quality in Health Care. 2018; 30(5):351–7. <u>https://doi.org/10.1093/intqhc/mzy014</u> PMID: 29432585
- Lau CSMS B. L.; Chamberlain R. S. Readmission after COPD exacerbation scale: Determining 30-day readmission risk for COPD patients. International Journal of COPD. 2017; 12:1891–902. https://doi.org/ 10.2147/COPD.S136768 PMID: 28721034

- Singh G, Zhang W., Kuo Y. F., Sharma G. Association of Psychological Disorders With 30-Day Readmission Rates in Patients With COPD. Chest. 2016; 149(4):905–15. <u>https://doi.org/10.1378/chest.15-0449</u> PMID: 26204260
- Basta MN, Fox JP, Kanchwala SK, Wu LC, Serletti JM, Kovach SJ, et al. Complicated breast cancerrelated lymphedema: evaluating health care resource utilization and associated costs of management. Am J Surg. 2016; 211(1):133–41. https://doi.org/10.1016/j.amjsurg.2015.06.015 PMID: 26421413
- Huckans M, Mitchell A., Ruimy S., Loftis J., Hauser P. Antiviral therapy completion and response rates among hepatitis c patients with and without schizophrenia. Schizophrenia Bulletin. 2010; 36(1):165–72. https://doi.org/10.1093/schbul/sbn065 PMID: 18562341
- 66. Davydow DS, Ribe A. R., Pedersen H. S., Fenger-Gron M., Cerimele J. M., Vedsted P., et al. Serious Mental Illness and Risk for Hospitalizations and Rehospitalizations for Ambulatory Care-sensitive Conditions in Denmark A Nationwide Population-based Cohort Study. Medical Care. 2016; 54(1):90–7. https://doi.org/10.1097/MLR.00000000000448 PMID: 26492210
- Guo JJ, Keck PE Jr., Li H, Jang R, Kelton CM. Treatment costs and health care utilization for patients with bipolar disorder in a large managed care population. Value Health. 2008; 11(3):416–23. https://doi.org/10.1111/j.1524-4733.2007.00287.x PMID: 18179673
- Kashyap MH, Chang J. P., Pollom D. T., L E. Impact of mental illness on end-of-life emergency department use in elderly patients with gastrointestinal malignancies. Cancer Med. 2021; 10(6):2035–44. https://doi.org/10.1002/cam4.3792 PMID: 33621438
- Kallio MK, Malmberg J., Gunn M., Rautava J., Korhonen P., Kytö P., V. Impaired long-term outcomes of patients with schizophrenia spectrum disorder after coronary artery bypass surgery: nationwide casecontrol study. BJPsych Open. 2022; 8(2):e48. https://doi.org/10.1192/bjo.2022.10 PMID: 35144708
- Fleetwood K, Smith Sarah H., Mercer Daniel J., Licence Stewart W., Sudlow Kirsty, Jackson Cathie L. M., et al. Association of severe mental illness with stroke outcomes and process-of-care quality indicators: Nationwide cohort study. The British Journal of Psychiatry. 2021(Pagination).
- Fleetwood KW, Smith S. H., Mercer D. J., Licence S. W., Sudlow K., Jackson C. L. M., A C. Severe mental illness and mortality and coronary revascularisation following a myocardial infarction: a retrospective cohort study. BMC Med. 2021; 19(1):67. <u>https://doi.org/10.1186/s12916-021-01937-2</u> PMID: 33745445
- 72. Ghani MK, Pritchard S., Harris M., Weerakkody M., Stewart R., Perera R., G. Vascular surgery receipt and outcomes for people with serious mental illnesses: Retrospective cohort study using a large mental healthcare database in South London. J Psychosom Res. 2021; 147:110511. <u>https://doi.org/10.1016/j.jpsychores.2021.110511 PMID: 34051514</u>
- Huang CJL T. L. Huang Y. T. Hsieh H. M. Chang C. C. Chu C. C. Wei C. W. Weng S. F. Healthcare burden and factors of type 2 diabetes mellitus with Schizophrenia. Eur Arch Psychiatry Clin Neurosci. 2021.
- Ratcliff CGM N. N. Sansgiry S. Dindo L. Cully J. A. Impact of psychiatric diagnoses and treatment on postoperative outcomes among patients undergoing surgery for colorectal cancer. Psychiatr Serv. 2021; 72(4):391–8. https://doi.org/10.1176/appi.ps.201900559 PMID: 33557593
- 75. Paredes AZ, Hyer JM, Diaz A, Tsilimigras DI, Pawlik TM. The Impact of Mental Illness on Postoperative Outcomes Among Medicare Beneficiaries: A Missed Opportunity to Help Surgical Patients? Ann Surg. 2020; 272(3):419–25. https://doi.org/10.1097/SLA.00000000004118 PMID: 32568745
- 76. Sreenivasan J, Kaul R, Khan MS, Malik A, Usman MS, Michos ED. Mental health disorders and readmissions following acute myocardial infarction in the United States. Sci Rep. 2022; 12(1):3327. <u>https:// doi.org/10.1038/s41598-022-07234-z</u> PMID: 35228619
- 77. Andres E, Garcia-Campayo J, Magan P, Barredo E, Cordero A, Leon M, et al. Psychiatric morbidity as a risk factor for hospital readmission for acute myocardial infarction: an 8-year follow-up study in Spain. Int J Psychiatry Med. 2012; 44(1):63–75. https://doi.org/10.2190/PM.44.1.e PMID: 23356094
- 78. Wang HI, Han L, Jacobs R, Doran T, Holt RIG, Prady SL, et al. Healthcare resource use and costs for people with type 2 diabetes mellitus with and without severe mental illness in England: longitudinal matched-cohort study using the Clinical Practice Research Datalink. Br J Psychiatry. 2021:1–8.
- 79. Nepple KO P.; Strope S.; Sandhu G.; Kallogjeri D.; Kibel A. Hospital readmission after radical cystectomy for bladder cancer: Results of a population-based analysis. Journal of Urology. 2012; 187(4): e646–e7.
- Duquette EK A.; Wang N. E.; Shearer E. Social determinants of health associated with multiple emergency department visits in patients with diabetes. Academic Emergency Medicine. 2020; 27 (Supplement 1):S134.
- Salih YW, H. Keeney, B. Leyenaar, J. Robbins, N. M. Hospital readmission rates among acute ischemic stroke survivors with severe mental illness. Neurology Conference: 73rd Annual Meeting of the American Academy of Neurology, AAN. 2021;96(15 SUPPL 1).

- Agency for Healthcare Research and Quality. HCUP Fast Stats. Healthcare Cost and Utilization Project (HCUP) Rockville, MD2021 [Available from: www.hcup-us.ahrq.gov/faststats/national/ inpatientcommondiagnoses.jsp.
- NHS Digital. Hospital Admitted Patient Care and Adult Critical Care Activity 2019 [Available from: https://digital.nhs.uk/data-and-information/publications/statistical/hospital-admitted-patient-careactivity/2018-19.
- Kurdyak P, Vigod S., Calzavara A., Wodchis W. P. High mortality and low access to care following incident acute myocardial infarction in individuals with schizophrenia. Schizophr Res. 2012; 142(1–3):52–7. https://doi.org/10.1016/j.schres.2012.09.003 PMID: 23021899
- Kisely S, Campbell LA, Wang Y. Treatment of ischaemic heart disease and stroke in individuals with psychosis under universal healthcare. Br J Psychiatry. 2009; 195(6):545–50. https://doi.org/10.1192/ bjp.bp.109.067082 PMID: 19949207
- Chang WC, Chan J. K. N., Wong C. S. M., Hai J. S. H., Or P. C. F., Chen E. Y. H. Mortality, Revascularization, and Cardioprotective Pharmacotherapy After Acute Coronary Syndrome in Patients With Psychotic Disorders: A Population-Based Cohort Study. Schizophr Bull. 2020.
- McGinty EE, Blasco-Colmenares E., Zhang Y., Dosreis S. C., Ford D. E., Steinwachs D. M., et al. Postmyocardial-infarction quality of care among disabled Medicaid beneficiaries with and without serious mental illness. Gen Hosp Psychiatry. 2012; 34(5):493–9. https://doi.org/10.1016/j.genhosppsych.2012. 05.004 PMID: 22763001
- Heiberg IH, Jacobsen BK, Balteskard L, Bramness JG, Naess O, Ystrom E, et al. Undiagnosed cardiovascular disease prior to cardiovascular death in individuals with severe mental illness. Acta Psychiatr Scand. 2019; 139(6):558–71. https://doi.org/10.1111/acps.13017 PMID: 30844079
- Schulman-Marcus J, Goyal P., Swaminathan R. V., Feldman D. N., Wong S. C., Singh H. S., et al. Comparison of Trends in Incidence, Revascularization, and In-Hospital Mortality in ST-Elevation Myocardial Infarction in Patients With Versus Without Severe Mental Illness. Am J Cardiol. 2016; 117(9):1405–10. https://doi.org/10.1016/j.amjcard.2016.02.006 PMID: 26956637
- Westreich D, Greenland S. The table 2 fallacy: presenting and interpreting confounder and modifier coefficients. Am J Epidemiol. 2013; 177(4):292–8. https://doi.org/10.1093/aje/kws412 PMID: 23371353
- Viera AJ, Garrett JM. Understanding interobserver agreement: the kappa statistic. Fam Med. 2005; 37 (5):360–3. PMID: 15883903
- Wallace E, Stuart E, Vaughan N, Bennett K, Fahey T, Smith SM. Risk prediction models to predict emergency hospital admission in community-dwelling adults: a systematic review. Med Care. 2014; 52 (8):751–65. https://doi.org/10.1097/MLR.000000000000171 PMID: 25023919
- 93. Solmi M, Firth J, Miola A, Fornaro M, Frison E, Fusar-Poli P, et al. Disparities in cancer screening in people with mental illness across the world versus the general population: prevalence and comparative meta-analysis including 4 717 839 people. Lancet Psychiatry. 2020; 7(1):52–63. https://doi.org/10. 1016/S2215-0366(19)30414-6 PMID: 31787585
- 94. GBD 2019 collaborators. Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet. 2020; 396 (10258):1204–22. https://doi.org/10.1016/S0140-6736(20)30925-9 PMID: 33069326
- Laursen TM, Munk-Olsen T., Agerbo E., Gasse C., Mortensen P. B. Somatic hospital contacts, invasive cardiac procedures, and mortality from heart disease in patients with severe mental disorder. Archives of General Psychiatry. 2009; 66(7):713–20. <u>https://doi.org/10.1001/archgenpsychiatry.2009.61</u> PMID: 19581562
- Murugiah K, Kumar G., Deshmukh A., Sachdeva R., Mehta J. Schizophrenia and use of revascularization procedures after acute myocardial infarction. Journal of the American College of Cardiology. 2012; 59(13):E1898.
- 97. Shao M, Zhuo C., Gao X., Chen C., Xu Y., Tian H., et al. Reduced rate of revascularization in schizophrenic patients with acute myocardial infarction: A systematic review and meta-analysis. Prog Neuropsychopharmacol Biol Psychiatry. 2020; 99:109870. <u>https://doi.org/10.1016/j.pnpbp.2020.109870</u> PMID: 31954758
- Druss BG, Bradford D. W., Rosenheck R. A., Radford M. J., Krumholz H. M Mental disorders and use of cardiovascular procedures after myocardial infarction. Jama. 2000; 283(4):506–11. <u>https://doi.org/10.1001/jama.283.4.506</u> PMID: 10659877