

1 **Title: Indoor environmental conditions in vernacular dwellings in Alentejo,**
2 **Portugal**

3 Inês Costa-Carrapiço ^a, *, Javier Neila González ^a, Rokia Raslan ^b

4 ^a *Departamento de Construcción y Tecnología Arquitectónicas, Escuela Técnica Superior de*
5 *Arquitectura, Universidad Politécnica de Madrid, Avenida Juan de Herrera 4, 28040 Madrid, Spain*

6 ^b *UCL Institute of Environmental Design and Engineering, University College London, 14 Upper*
7 *Woburn Pl, London WC1H 0NN, UK*

8 * Corresponding author at *Universidad Politécnica de Madrid, Avenida Juan de Herrera 4, 28040*
9 *Madrid, Spain*. E-mail address: ines.costa.carrapico@gmail.com (I. Costa Carrapiço) ORCID 0000-
10 0003-4921-0538

11

12 Acknowledgements

13 A special thank you to all the inhabitants for allowing data collection at their homes and participating
14 in the surveys.

15

16 Funding

17 This work was supported by the Foundation for Science and Technology (FCT) from the Portuguese
18 Ministry for Science, Technology and Higher Education, under Grant No: SFRH/BD/95911/2013, and
19 its financing programme POPH/FSE.

20

21 Disclosure statement

22 The authors report that there are no competing interests to declare.

23

24 Biographical Note

25 Inês Costa-Carrapiço, MSc, is a PhD candidate.

26 Javier Neila González, PhD, is a Full Professor.

27 Rokia Raslan, PhD, is an Associate Professor.

28 **Indoor environmental conditions in vernacular dwellings in Alentejo, Portugal**

29 Understanding the indoor environmental conditions of livable architectural heritage such as
30 vernacular dwellings is a key step towards its conservation. Yet, there is a lack of large-sample
31 studies that assess indoor conditions using long-term quantitative and qualitative data
32 complying with monitoring standards. This paper addresses this gap in Portuguese vernacular
33 dwellings using long-term mixed methods, by analyzing the thermal performance, indoor air
34 quality, and illuminance of 22 case studies. Key findings highlight the role of thermal mass in
35 damping the outdoor thermal wave and providing thermal stability, night ventilation, and lack
36 of windows. Summer thermal performance bettered that of winter, but occupant control
37 strategies negatively impacted thermal stability and overheating. In winter, the most prevalent
38 heating system, electric, performed less efficiently than radiant heating, leaving occupants
39 exposed to thermal discomfort and health risks from cold, mold, and toxins from wood-burning
40 and cooking. Important discrepancies were found between the illuminance monitored and
41 survey data, indicating the significance of cultural practices in indoor environment acceptability
42 and expectations.

43 1

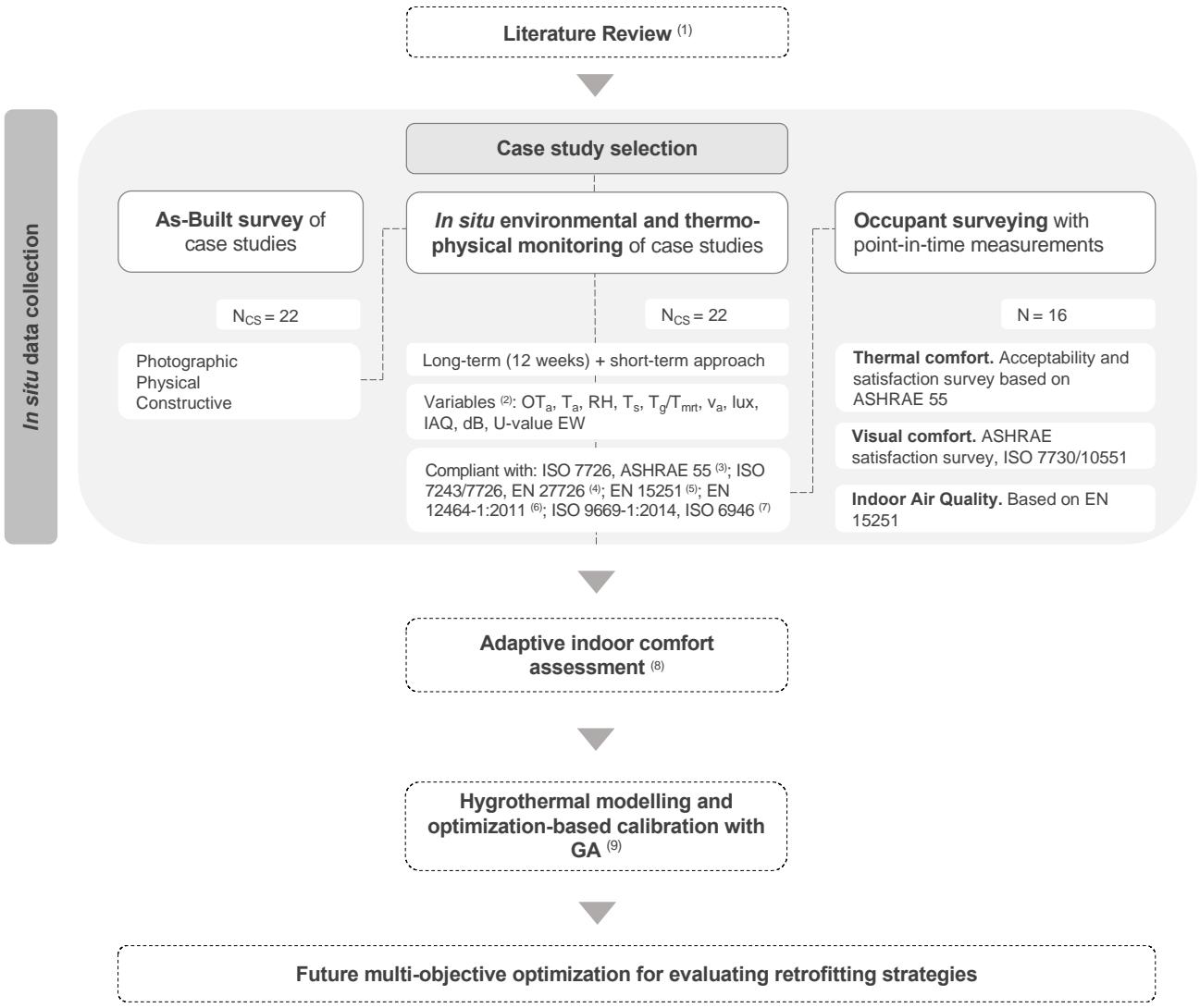
44

^Abbreviations: CIE: International Commission on Illumination; DBT: Dry-bulb temperature; DF: Daylight factor; D_T : Target daylight factor; D_{TM} : Minimum target daylight factor; GA: Genetic Algorithm; IAQ: Indoor Air Quality; OHI: Outdoor Horizontal Illuminance; RH: Relative Humidity; SVV: São Vicente e Ventosa; T_a : Air temperature; T_{aMAX} : Maximum temperature; T_{aMIN} : Minimum temperature; T_{MRT} : Mean Radiant Temperature; V_a : Air velocity; WWR: Window-To-Wall Ratio.

45 **1. Introduction**

46 The conservation of livable architectural heritage such as vernacular dwellings largely depends on
47 the understanding of their indoor environmental and living conditions [1,2]. In recent years, research
48 on the indoor conditions of vernacular dwellings has focused on thermal performance in humid
49 climate locations, such as the following research: [3–25]. This is then followed at a distance by
50 Portuguese [26–28], and Iranian studies [29–31]. The combination of *in situ* monitoring and occupant
51 surveying stands out as a popular methodological approach, added to, most recently, the coupling of
52 monitoring with dynamic simulation. Even though it has been suggested that thermally-unrelated
53 indoor environmental quality factors such as illuminance [32] and indoor air quality [33] affect
54 indoor thermal comfort perception, these are seldom addressed.

55 Portuguese vernacular architecture has been reviewed from a predominantly heritage
56 perspective. There is a lack of mixed-methods, i.e. combining qualitative and quantitative data
57 collection, large-sample studies on indoor conditions. In Alentejo, while a few qualitative historical,
58 ethnological, and construction studies have been undertaken since the 1930s [34–38], quantitative
59 research entailing monitoring is scarcer [27,28,39,40] and long-term large-sample studies are non-
60 existent. Previous research focused on identifying passive strategies and reporting thermal
61 performance based on short-term monitoring in single case studies, which may lead to extrapolation
62 bias. Only one previous study used data triangulation to assess the indoor comfort of a rammed-earth
63 vernacular dwelling in Alentejo [26] and compare it to a northern building [27,28]. Furthermore, to
64 the best of the authors' knowledge, no comprehensive research looking at thermal performance,
65 indoor air quality, and daylight illuminance has been conducted in vernacular dwellings in this
66 region.


67 The undertaking of large-sample and long-term studies is essential for obtaining robust and
68 transferable conclusions on vernacular dwellings' indoor behavior. Moreover, it is crucial that this
69 research analyses unresearched vernacular typologies to maintain their livability and encourage their
70 conservation [1,2].

71 **2. Aim**

72 This paper addresses this gap by analyzing a large sample of an unexplored typology of vernacular
73 dwellings in São Vicente e Ventosa (SVV), Alentejo, Portugal, and aiming to determine their indoor
74 environmental performance, i.e. thermal performance, indoor air quality, and illuminance, and living
75 conditions, based on long-term *in situ* data collection in summer and winter.

76 **3. Materials and methods**

77 The mixed-methods approach adopted encompasses quantitative and qualitative data collection to
78 carry out an informed assessment of the case studies' indoor conditions. This is the second step of a
79 four-stage global methodology, entailing literature review, *in situ* data collection, thermal comfort
80 assessment, and optimization-based modelling (see infographic in Fig. 1). Its overarching aim was to
81 develop a Genetic Algorithm (GA)-based multi-objective optimization methodological framework
82 applicable to the hygrothermal modelling of vernacular heritage models to ultimately contribute to
83 fostering adequate retrofit strategies for enhancing thermal comfort in heritage buildings worldwide.
84 For the published outcome of the first, third, and fourth stages the interested reader may refer to [41–
85 43]. The methods employed for the second stage, i.e. monitoring and surveying, which informs the
86 adaptive comfort assessment and modelling stages of the research, are outlined in the ensuing
87 section.

88

89 ⁽¹⁾ Stage 1 of the research published in [42].

90 ⁽²⁾ OT_a: Outdoor Air Temperature; T_a: Indoor Air Temperature; RH: Relative Humidity; T_s: Surface Temperature; T_g:
91 Globe Temperature; T_{mrt}: Mean Radiant Temperature; V_a: Air Velocity; Lux: Natural illuminance; IAQ: Indoor Air
92 Quality; dB: Sound level; U-value EW: Thermal Transmittance of the external walls; ⁽³⁾ T_a, RH, and V_a; ⁽⁴⁾ T_{mrt}; ⁽⁵⁾ IAQ,
93 Lux, dB; ⁽⁶⁾ Lux; ⁽⁷⁾ U-value;

94 ⁽⁸⁾ Stage 3 of the research published in [41].

95 ⁽⁹⁾ Stage 4 of the research published in [43].

96

97 Figure 1. Infographic of the research sequence developed.

98 **3.1. Case studies selection and description**

99 **3.1.1. Case studies selection**

100 The selected case studies are based in the rural settlement of SVV (38.57'14''N 7.12'46''W) and
101 their passive strategies and environmental and socioeconomic conditions are considered typical of the
102 region, permitting a broader impact of findings.

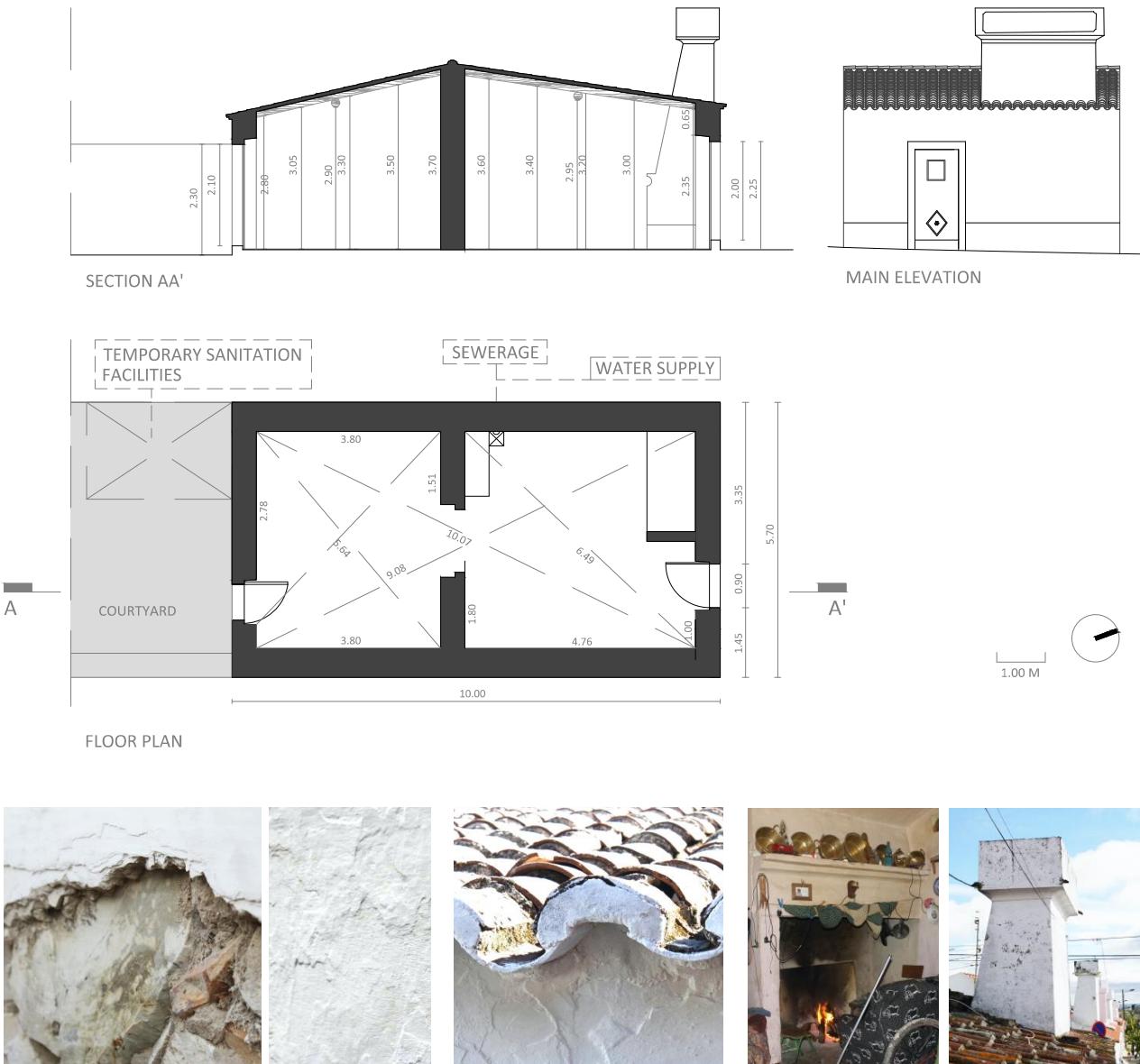
103 Their selection was conducted according to the following criteria: i. representativeness of
104 regional vernacular dwellings and their bioclimatic strategies; ii. preservation of traditional building
105 elements, including the façade's integrity; iii. residential occupancy; iv. physical condition. To this
106 end, a photographic survey of the façades of the entire settlement was carried out, resulting in 75
107 preliminary options, which decreased to 22 final ones due to additional considerations, i.e. access
108 denied by occupants, abandonment or construction work; absence of occupants; modified indoor
109 space and construction systems.

110

111

112 Figure 2. Location and street views of the selected case studies. Location Plan: Own elaboration
113 based on cartography from the Portuguese Geographic Institute.

114 3.1.2. Case studies description


115 The case studies' layout and occupancy profile are deeply rooted in the primary regional economic
116 activity, i.e. agriculture [40], originally providing shelter for rural workers. The case studies technical
117 sheet can be found in the Appendix A, with their respective labelling (D01-D22). Three main
118 typologies were identified; the predominant one (70 % of cases) is illustrated in Figure 3, its typical
119 features, based on the *in situ* data collection and the traditional technical literature, are outlined in
120 Table 1 and Table 2, and its respective constructive details (D01-D03) are presented in the Appendix
121 B. Amongst these, their significantly-sized fireplace and chimney play a predominant role in the case
122 studies and their lack of windows in all walls (with only built-in wickets on front and rear doors) are

123 amongst their key bioclimatic features. The current heating and cooling systems contrasted with the
124 traditional techniques are equally provided in Appendix C according to the four categories identified
125 for summer and winter within occupied dwellings, based on the survey conducted. Moreover, the
126 typical occupancy and behavioral profile are outlined in Table 3.

127 Contrary to the regional traditional building technique, i.e. rammed earth [34,44–47], the case
128 studies combined the locally available limestone with earth from surrounding fields. The local
129 limestone availability has been acknowledged in the literature [34], and the soils geological
130 constitution corroborates its use in the dwellings, with the latter sitting on a limestone and dolomite
131 patch of Cambrian soil [48].

132

133

134

135 Figure 3. Typical case study layout: Floor plan, section, and elevation. Views: 1 - Limestone and
136 earth masonry, lime wash; 2 – Roof with Arabic tiles; 3 - Chimney-Fireplace.

137 Table 1. General description and dwelling typology features of a typical vernacular dwelling in SVV

General description

Construction date	1800s
Orientation	NE-SW; SE-NW; E-W
Heritage protection	Yes. Façade

Dwelling Typology

Number of storeys	1
Average plan dimensions	6.00 m x 10.00 m
Number of rooms	2: living area + sleeping area

Outdoor space	Rear courtyard + front entrance steps (if existent)
Fireplace indoor space	1.50 - 2.00 m x 1.00 m
Ceiling height range	2.80 m (average lowest) - 3.60 m (av. highest) ⁽¹⁾
Openings	0.15 m ² : Built-in wicket on front and rear doors
	Window-to-Wall Ratio (WWR): < 1 % ⁽²⁾

138 ⁽¹⁾ The case studies who have installed an expanded polystyrene false ceiling were excluded from the
 139 calculation for the average lowest and highest points displayed in the table.

140 ⁽²⁾ The WWR was computed with reference to the in-built-wicket area.

141

142 Table 2. Construction features of a typical vernacular dwelling in SVV.

Dwelling Construction	Thickness	U-value	Decrement delay ⁽⁴⁾
External and internal walls			
Lime render + limestone and earth masonry + lime plaster + lime wash	0.60 m + 0.025 m	1.32 W/m ² .K ⁽²⁾ (EW) 1.17 W/m ² .K ⁽²⁾ (IW)	18 (h)
Roof			
Wooden joists + single hollow clay bricks + lime mortar + Arabic tile	0.30 x 0.15 x 0.03 m + 0.012 m + 0.19 x 0.40 x 0.07 m	3.13 W/m ² .K ⁽³⁾	-
Ground			
Ceramic floor tiles + lime mortar + earth	0.03 m + 0.010 m	1.53 W/m ² .K ⁽²⁾	-
Fireplace walls			
Baked brick + lime mortar + lime wash	0.20 m + 0.013 m	1.73 - 1.50 W/m ² .K ^(1, 2)	-

143 ⁽¹⁾ The fireplace has both exterior and interior walls, so the U-value was calculated according to the respective
 144 R_{se} and R_{si} values.

145 ⁽²⁾ [49].

146 ⁽³⁾ [50].

147 ⁽⁴⁾ The decrement delay was computed based on the following formula given in [51]:

$$D_d = 0.53 * \frac{t}{2} * \sqrt{\frac{\rho * c_p}{\pi * \lambda * t}} * d \quad (1)$$

149 Where, *t* is 24 hours, *ρ* is the density, *c_p* is the specific heat, *λ* is the thermal conductivity and *d* is the
 150 thickness of the layer.

151

152 3.1.3. Climate

153 SVV is characterized by a hot dry-summer Mediterranean climate, i.e. Csa according to the Köppen
 154 Climate Classification [52]. The dry and lengthy summer period averages 25 °C and peaks around 40
 155 °C in August [52]. Significant annual thermal amplitudes average 11 °C, peaking in summer (15 °C)

156 [40]. The average winter temperature is 10 °C, while the minimum ranges from 6 °C to 8 °C. Spring
157 and Autumn have little presence. The annual average rainfall is scarce, below 500 mm. The average
158 wind speed is 8 km/h, with prevailing Northwest and Southwest directions [53]. Finally, the region is
159 extremely sunny, with 3000 hours of annual sunshine [54].

160 Thus, regional vernacular dwellings developed climate-responsive strategies centered on
161 passive cooling, solar radiation shielding, and minimizing summer heat gains [26–28,39,40,55]. The
162 dwellings' key passive strategies are discussed in 4.4..

163 Table 3. Occupancy and behavioral profile.

164

		Living room	Bedroom	Courtyard
Activity and metabolic rate		Miscellaneous (cooking, house cleaning): 2.0 met/115 W/m ² Seated, quiet/watching TV: 1.0 met/60 W/m ²)/sewing: 1.0 met/55	Sleeping: 0.7 met/40 W/m ²	Standing, relaxed (1.2 met/70 W/m ²)
Summer	Occupancy profile	07:30-23:00	23:00-07:00	Occasional occupancy (use of sanitation facilities and specific activities) during the day
	Strategies and equipment	Wicket and door closed until the evening (around 22:00) Cross ventilation 07h00-09h00/22:00-23:00 Mechanical ventilation (ventilation fans) throughout the day, starting around 12:00, in 70 % of case studies No shading mechanisms apart from the door wicket	Wicket and door closed until the evening Cross ventilation 07h00-09h00/22:00-23:00 No shading mechanisms apart from the door	-
	Thermal insulation (Clo) ⁽²⁾	0.54-0.57 clo	0.54-0.57 clo	-
Winter	Occupancy profile	07:30-23:00	23:00-07:00	Occasional occupancy throughout the day
	Strategies and equipment	Heating from 07:30 to 23:00/ twice-daily from 07:30-09:30 and 23h00. No heating systems in 23 % of the case studies	Usually no heating system	-
	Thermal insulation (Clo)	1.30 clo	1.50 clo	-

165 (1) According to the metabolic rates for typical tasks in ASHRAE 55-2020.

166 (2) According to the thermal insulation data in ASHRAE 55-2020.

167

168

169

170

171

172 **3.2. Quantitative methods: *in situ* monitoring**

173 The authors requested monitoring permission through a preliminary meeting with the city and parish
174 council, where the research scope, its main goals and duration were delivered. These then established
175 the liaison with the inhabitants, which were briefed and asked to provide permission.

176 **3.2.1. As-built survey**

177 Due to the lack of previous surveys and graphic documentation related to SVV's vernacular
178 dwellings, the authors conducted an as-built survey within the *in situ* data collection phase,
179 encompassing photographic records, floor plans, sections, elevations, and constructive systems,
180 before monitoring.

181 **3.2.2. Environmental monitoring**

182 To quantitatively assess the case studies' indoor environment, the outdoor and indoor air temperature,
183 relative humidity, globe and surface temperature, air velocity, illuminance, air quality, and sound
184 level were measured. The monitoring ran from July 5th to August 16th and from January 16th until
185 February 27th, in 2015. A long-term *in situ* monitoring approach, as per ASHRAE [56], was adopted
186 for outdoor and indoor temperature and relative humidity, in combination with short-term monitoring
187 for the remaining parameters. The thermal measurements complied with ISO 7726 [57] and
188 ASHRAE 55 [56]. Table 4 details the measurements conducted and Table 5 lists the equipment
189 specifications.

190

191

192

Table 4. Details of the measurements conducted.

Parameter	Measurement length			Location of measurement	Standard complied with	Specifics
	LT ⁽¹⁾	ST ⁽²⁾	PIT ⁽³⁾			
Thermal comfort	Air temperature	■		Living room, bedroom, outdoors	ISO 7726 [57] ASHRAE 55 [58]	Outdoor temp.: dataloggers shielded from direct solar radiation or rainfall Indoor temp.: a centered single measuring point per space (air temperature difference homogeneous per the ISO 7726 criteria) at 1.0 m from the walls
	Relative humidity	■		Living room, bedroom, outdoors	ISO 7726, ASHRAE 55	Temp. and RH: sensors at the ISO 7726-recommended sitting height and ASHRAE waist level (0.60 m), shielded from neighboring heat sources and radiation, at 15 minute-measuring intervals
	Mean radiant temperature	■		Living room	ISO 7243, ISO 7726, EN 27726	Two-week time spans at a time, in three case studies
	Surface temperature	■		Living room/bedroom	-	Southwest-facing external walls, for 72 hours in the summer in three case studies
	Airspeed (va)	■		Living room	ASHRAE 55, ISO 7726	Repeated single-point indoor summer measurements, in three case studies with sealed and unsealed chimneys. at 3-minute intervals spanning two hours from 07:00 to 09:00, at the 0.1, 0.6, and 1.1 m levels, as recommended in ASHRAE 55 and ISO 7726 for seated occupants [59,60]. Dwellings kept in free-running mode
Other environmental parameters	Indoor air quality	■		Living room	EN 15251 [65]	CO2 (%), CO (ppm), VOCs (ppm). Average seated breathing height, in winter conditions
	Illuminance	■		Living room, outdoors	EN 15251 EN 12464-1:2011 [66]	Indoor daylight: consecutive centered measurements in the living room at 0.80 m high Average daylight factor (DF): measurements under unobstructed overcast sky and excluding direct sunlight (CIE standard general sky [67])
	Noise level	■		Living room, outdoors	EN 15251	Outdoor average daylight illuminance: 10-point measurements, 0.5 m from the façade, horizontal plane on the ground, in unobstructed CIE standard overcast (winter) and clear sky (summer) (duly protected from direct solar radiation) Indoor and outdoor levels: at 15-min intervals

⁽¹⁾ Long-term; ⁽²⁾ Short-term; ⁽³⁾ Point-in-time.

195

196 Table 5. Monitoring equipment technical specifications.

Equipment		Parameter	Measurement range	Accuracy	Measurement range and accuracy required in ISO 7726 and ASHRAE 55-2013
Thermal comfort parameters	Datalogger PCE-HT 71N	Air temperature	-40 °C to +70 °C	± 1 °C with 0.1 °C resolution	Range: 10 °C to 40 °C accuracy: ± 0.5/ 0.2 °C
	Datalogger PCE-HT 71N	Relative humidity	0 to 100 % RH	± 3 % RH with 0.1 % resolution	Range: 25 % to 95 % RH accuracy: ± 5 % RH
	Testo 635 Globe Thermometer, thermocouple type K, Ø 150 mm	Indirect mean radiant temperature	0 to +120 °C	Class 1 ⁽¹⁾	Range: 10 °C to 40 °C accuracy: ± 1 °C/ 2 °C
	Multifunction Testo 435-2 Temperature probe with triple sensor system	Surface temperature	-20 to +70 °C	± 0.1 °C + 0.2 % of measured value	Range: 0 °C to 50 °C accuracy: ± 1 °C
	Multifunction Testo 435-2 hot wire anemometer	Airspeed (v _a)	0 to +20 m/s	± 0.03 m/s + 5 % of measured value	0.05 m/s to 1 m/s/ 2 m/s and ±(0.05 + 0.05 v _a) m/s
Other environmental parameters	OLDHAM MX21 multi-risk gas detector	Indoor air quality	CO 1000 ppm / CO ₂ 5 %	1 ppm, <30 sec. Response time at 90 % of final value / 0.1	(2)
	LI-COR Photometer LI-189	Natural illuminance	0 to 1999 lux (lm/m ²)	±0.4 % of reading ± 3 digits on the least significant digit displayed (all ranges). Highest accuracy class L according to DIN 5032 and CIE 69	(3)
	Brüel & Kjaer 2260 Investigator sound level analyzer	Noise level	80-130 dB in 10 dB steps	-26 dB ± 1.5 dB re 1 V/Pa	(4)

197

198 ⁽¹⁾ According to standard EN 60584-2, the accuracy of Class 1 refers to -40 to +1000 °C (Type K), Class 2 to -40 to +1200 °C (Type K), Class 3 to -200 to +40 °C (Type K).199 ⁽²⁾ Complies with the requirements of the following European standards: EN 50014, EN 50018, EN 50020, EN 50284, EN 50303, EN 50270 and EN 50270.200 ⁽³⁾ Complies with the requirements given in DIN 5032 and CIE N°69.201 ⁽⁴⁾ Conforms with: IEC 60651 (1979) plus Amendment 1 (1993-02) and Amendment 2 (200-10), Type 1; IEC 60804 (2000-10) Type 1; IEC 61672-1 (2002-05) Class 1; DIN 45657 (1997-07); IEC 61260 (1995-07) plus Amendment 1 (2001-09), Octave and 1/3-octave Bands, Class 0; ANSI S1.4-1983 (R 1997) plus ANSI S1.4A-1985 Amendment; ANSI S1.43-1997 Type 1; ANSI S1.11-1986 (R 1993), Octave and 1/3-octave Bands, Order 3, Type 0-C, Optional Range.

204

205 3.3. *Qualitative methods: occupant surveying*

206 The occupant survey analyzed in the present paper focused on indoor air quality (IAQ) and
207 visual comfort. The point-in-time measurements were paired with a tolerance inquiry measured on a
208 seven-point scale for short-term evaluation (from “perfectly bearable” (+3) to “unbearable” (-3)) and
209 a mixed-mode satisfaction and preference questionnaire was administered to complete the assessment
210 with long-term perception (see the Survey Template in Appendix G.1). It was based on the ASHRAE
211 satisfaction survey [56], ISO 7730 [58] and ISO 10551 [59] and built around visual satisfaction,
212 preference, and tolerance. For the statistical data process and analysis, a linear regression was then
213 undertaken to investigate the relationship between the occupants’ tolerance and the point-in-time
214 monitored data. This is illustrated in the scatter plot in Fig. 11 and the summary table characterizing
215 the relationship between the illuminance tolerance votes and the monitored lux, with the
216 determination coefficient (R^2), Pearson’s Chi-Squared value (p-value), and the Standard Error of
217 Estimate (Se) in the Appendix G.2.

218 Prior to conducting the survey, the respondents had been sitting for more than 15 min and confirmed
219 how long they had been living in the dwelling to ensure the reliability of the perception results.
220 Electricity consumption data from the previous year was requested on an optional basis.

221 To assess the occupants’ IAQ perception, the authors adapted the methodology for subjective
222 evaluations presented in the Annex H of EN 15251 and applied it during the winter monitoring. The
223 results presented in this paper focus on the perception of IAQ based on a four-option scale and
224 explored the occupants’ perception of leading sources of discomfort or IAQ decline and odors.

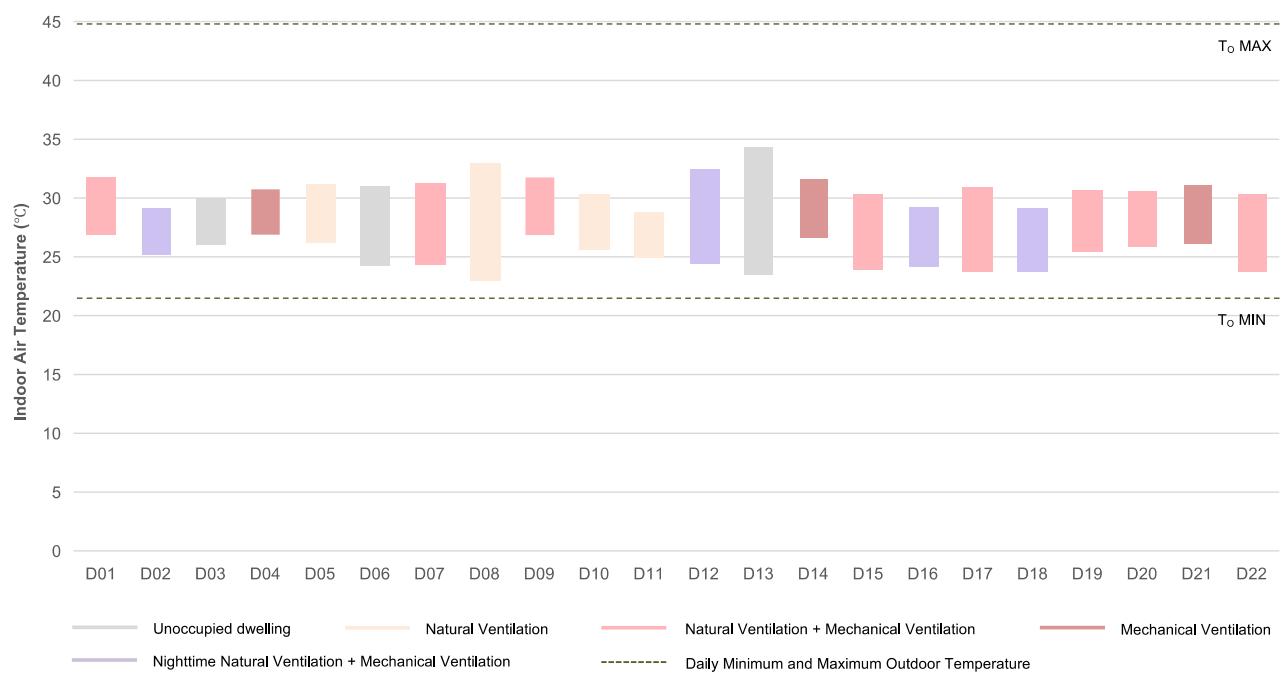
225 The thermal comfort section of the occupant survey was examined in depth in [41]. The
226 strategy combined short-term evaluation with environmental and long-term comfort perception,
227 measured on seven-point thermal sensation and satisfaction scales. Additional sections focused on
228 occupant adaptive behavior and identifying the source and time of discomfort. The present paper
229 touches, only tangentially, on this point at the end of the thermal performance analysis.

230 The statistical package for social sciences, SPSS, was used for data processing and the

231 significance level was set at 0.05 (confidence intervals at 95 %).

232 **4. Results and discussion**

233 The case studies' environmental performance is analyzed according to four main sections: i. summer
234 and winter thermal performance in the living area; ii. IAQ results; iii. visual comfort; iv. impact of
235 passive strategies. The thermal performance of the dwellings was explored according to the main
236 categories of conditioning strategies employed by users and identified during the research's
237 surveying stage, i.e. five summer categories (unoccupied, stand-alone natural ventilation, natural
238 ventilation with mechanical ventilation, nighttime natural ventilation with mechanical ventilation,
239 and stand-alone mechanical ventilation) and winter categories (unoccupied, electric heating, wood-
240 based heating, gas heating, and heating off). The noise level data exploitation was excluded from the
241 analysis in this paper due to the preliminary results suggesting a favorable acoustic behavior and no
242 adverse effects on the occupants' well-being [60].


243 **4.1. Thermal performance**

244 *4.1.1. Summer in situ monitoring*

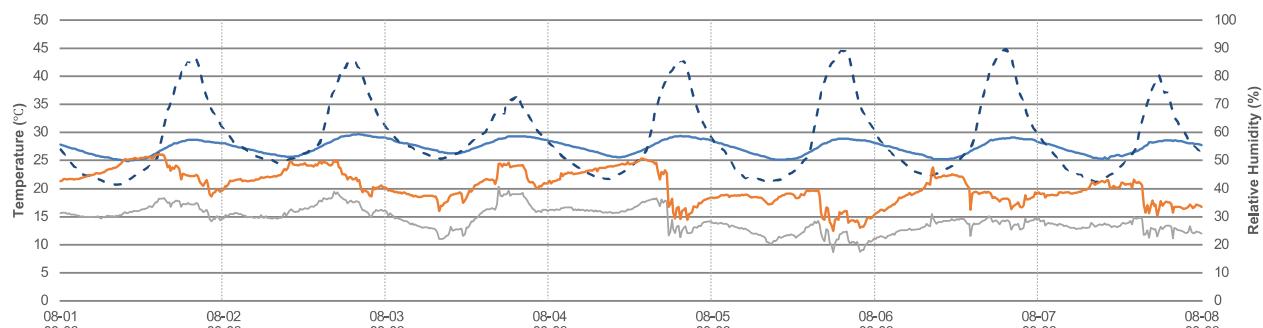
245 *4.1.1.1. Average indoor air temperature and relative humidity.* The outdoor dry-bulb temperature
246 (DBT) ranged from 44.6 °C (peaking around 17:00-18:00 in August) to 18.1 °C (05:00-07:00). The
247 average maximum and minimum were 35.1 °C and 21.1 °C, respectively. Relative humidity (RH)
248 fluctuated between 9.7 % and 84.1 %. The full summer monitoring data can be found in the
249 Appendix D.1.

250 To contrast the case studies' thermal performance, the free-floating indoor air temperature (T_a) in
251 each monitored dwelling on the most extreme day, August 6th, is benchmarked. On this day, the
252 outdoor temperatures ranged from 22.3 °C to 44.8 °C, as the continuum of a fairly homogeneous
253 week temperature-wise.

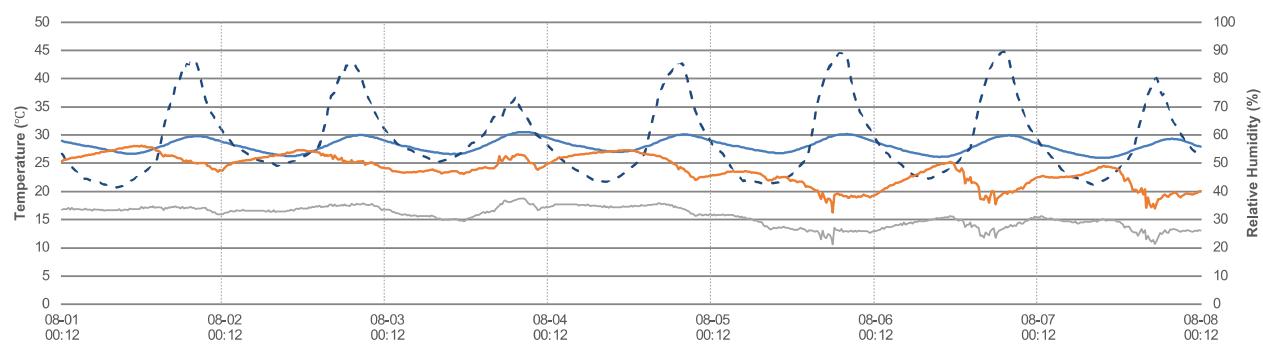
254 Specifically, Figure 4 illustrates their thermal behavior, per five categories: unoccupied dwellings (14
 255 %), stand-alone natural ventilation (18 %), natural ventilation with mechanical ventilation (40 %),
 256 nighttime natural ventilation with mechanical ventilation (14 %), and stand-alone mechanical
 257 ventilation (14 %). Additionally, please find the superimposed summer single-day temperature
 258 oscillation of representative case studies per each of the categories identified in the Appendix E.1., to
 259 better examine the divergent performances resulting from the different strategies adopted.

260
 261 (1) The interested reader may refer to the schedule of the strategies in Table 3.
 262
 263 Figure 4. Daily temperature oscillation in the living room of each monitored dwelling (D01-D22)
 264 according to their category, on August 6th 2015. Solar orientations: NE-SW axis: D01, D03, D08,
 265 D09, D10, D17, D16, D02, D04, D07, D21, D12; SE-NW axis: D22, D20, D14, D05, D06; E-W
 266 axis: D11, D15, D13, D19, D18.
 267
 268 All dwellings displayed a common T_a belt (25 °C-30 °C), with nearly 80 % of cases exhibiting
 269 maximum temperatures (T_{aMAX}) above that threshold. Large indoor thermal amplitudes were
 270 observed, between 8 °C and 10.6 °C. Performance discrepancies were observed between dwellings
 271 adopting different but also equivalent regulating strategies.

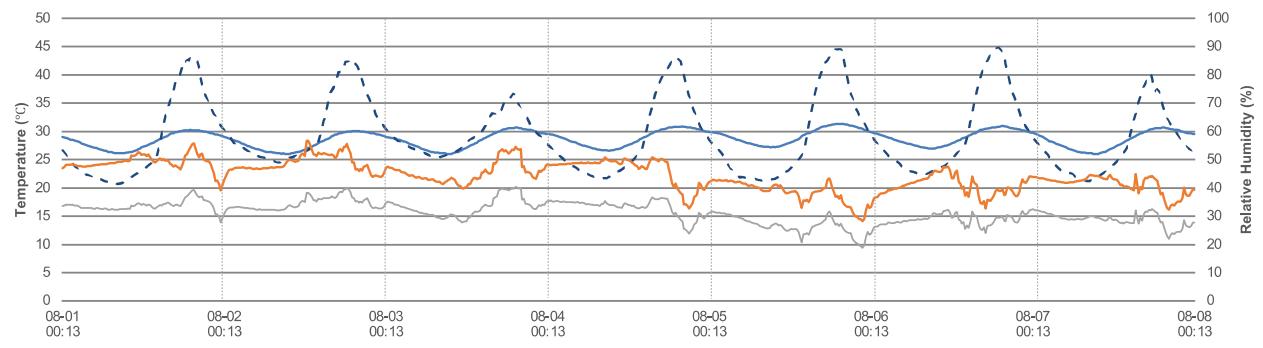
272 • **Approaches for regulating indoor T_a and bioclimatic strategies**

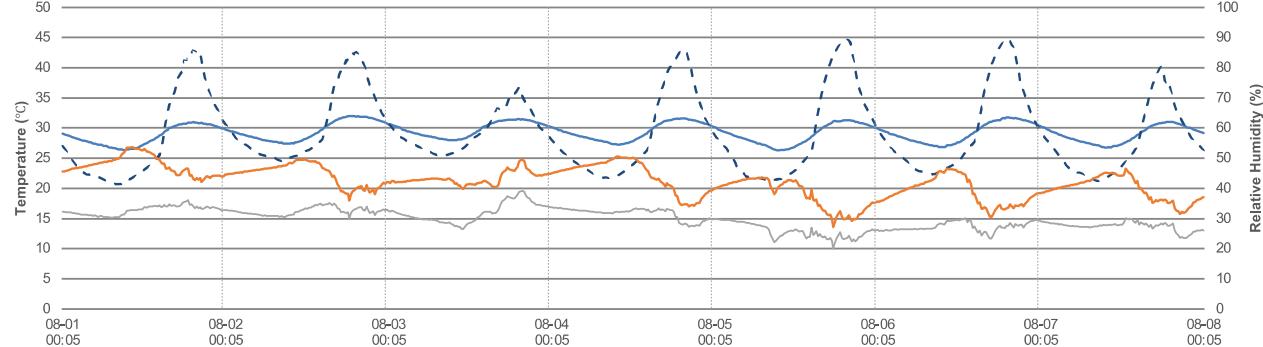

273 The most common summer strategy lies in combining daytime natural and mechanical ventilation.
274 Yet, the preliminary overview points to nighttime ventilation compounded by daytime mechanical
275 ventilation displaying a superior thermal performance, with shorter amplitudes and enhanced
276 stability, which can clearly be observed in the Appendix E.1. D12, however, presents the peculiarity
277 of having an unauthorized window and when compared to other dwellings in their category with
278 identical solar orientation (NE-SW) and occupancy, it is suggestive of poorer behavior under extreme
279 heat (peaking at 32.4 ° C) and lower thermal stability. This highlights the relevance of the lack of
280 windows as a bioclimatic strategy for reducing solar gains and overheating.

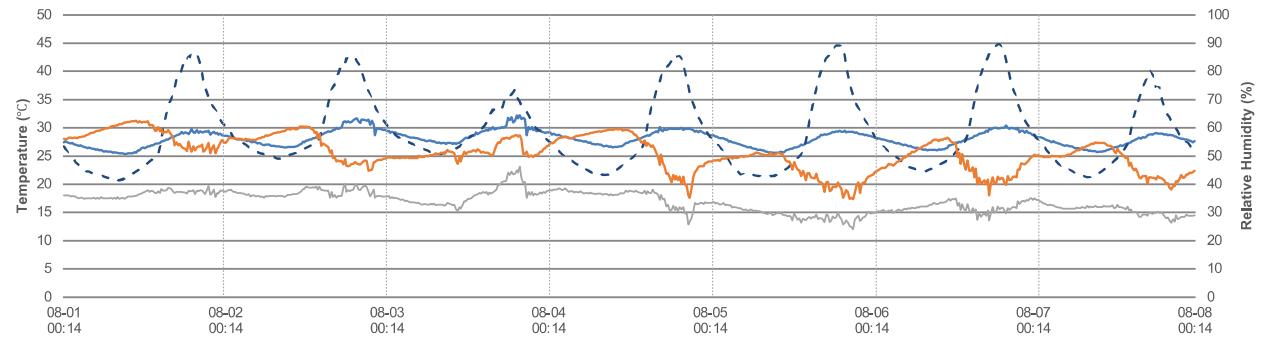
281 Although natural ventilation was traditionally applied during nighttime, it has reduced
282 progressively due to insecurity. Currently, only four case studies still practice it, with the remaining
283 dwellings using natural ventilation in the early morning and, or evening. It is plausible that this
284 adaptation may be hindering the dwellings' thermal performance and contributing to overheating.
285 Despite the in-depth occupant survey, uncertainty remains linked to adaptive behavior, which may
286 account for divergencies within categories. This emphasizes the criticality of pinpointing occupancy
287 to the best extent possible.


288

289 • **Representative week of indoor thermal fluctuation**


290


a. Indoor Air Temperature (°C) Indoor Dew Point Outdoor Air Temperature (°C) Indoor Relative Humidity (%)


b. Indoor Air Temperature (°C) Indoor Dew Point Outdoor Air Temperature (°C) Indoor Relative Humidity (%)

c. Indoor Air Temperature (°C) Indoor Dew Point Outdoor Air Temperature (°C) Indoor Relative Humidity (%)

d. Indoor Air Temperature (°C) Indoor Dew Point Outdoor Air Temperature (°C) Indoor Relative Humidity (%)

e. Indoor Air Temperature (°C) Indoor Dew Point Outdoor Air Temperature (°C) Indoor Relative Humidity (%)

292 Figure 5. One-week extract from the summer monitoring, displaying T_a and RH, where: a. D02,
293 nighttime natural and mechanical ventilation (NE-SW); b. D03, unoccupied dwelling (NE-SW); c.
294 D04, mechanical ventilation (NE-SW); d. D09, natural and mechanical ventilation (NE-SW); e. D11,
295 natural ventilation (E-W).

296
297 Figure 5 provides a closer look at the hottest week of the monitoring (1st-8th of August). The indoor
298 T_{as} fluctuated between 32 °C (18:30-20:00) and 24.4 °C (09:00) and followed the overall pattern of
299 the outdoor T_{as} with a time lag.

300 The average T_{aMAX} was well-nigh 31 °C, between 18:30 and 20:00, followed by thermal stability well
301 into 22:00, an hour after the outdoor peak. Still, the indoor-outdoor thermal jump is quite sharp (14
302 °C) considering the indoor and outdoor T_{aMAX} .

303 Throughout the morning, the thermal environment of the case studies remains very stable,
304 which is substantiated in the Appendix E.1. Before stepping into the different strategies used in the
305 dwellings, the results regarding the thermal stability of D03, an unoccupied dwelling, were
306 outstanding: the thermal stability coefficients or decrement factors, i.e. relating the amplitude of the
307 indoor temperature to the amplitude of the outdoor temperature as an indicator of whether the
308 building is prone to temperature changes, and calculated based on [51], averaged 0.11, suggesting
309 sky-high thermal stability and an 11 % impact regarding outdoor variations approximately [51,61].
310 The unoccupied category as a whole scored the average decrement factor of 0.22 for entire
311 monitoring period (see Appendix F for the decrement factors for the entire monitoring period and
312 average depression values of the maximum temperatures Table).

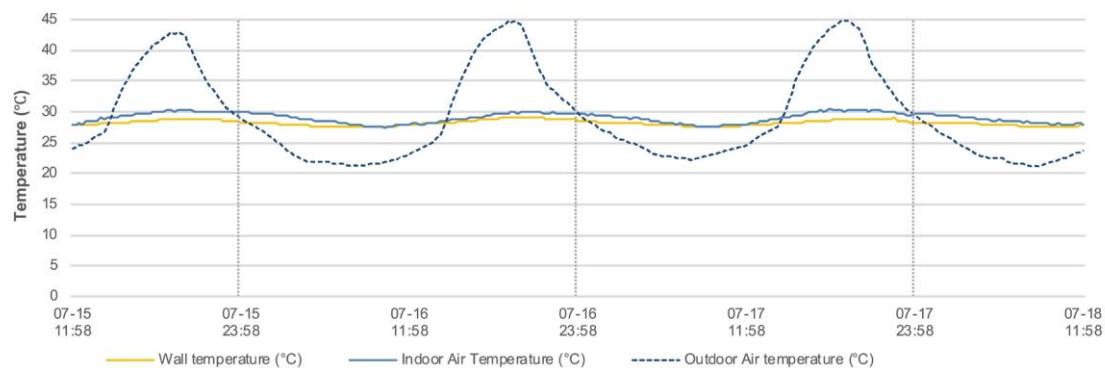
313 Furthermore, if we take D02, adopting nighttime and mechanical ventilation, the temperature
314 at 14:30 was around 26.7 °C early in the week and it displayed a 2 °C increment until reaching 28.7
315 °C at 19:30; in the meantime, the outdoor DBT rose by more than 16 °C, i.e. 10 times the indoor
316 increment. The thermal wave damping effect of thermal mass can be observed across all categories,
317 delaying outdoor-indoor heat transfer and avoiding excessive peaks. For the analyzed week, the
318 decrement factors averaged 0.30, suggesting high thermal stability and a 30 % impact regarding
319 outdoor variations approximately. In this regard, the strategy combining nighttime natural and

320 mechanical ventilation seems to provide the best thermal stability overall, with an excellent average
321 decrement factor of 0.19 when taking the entirety of the summer monitoring into account. On the
322 other hand, the natural and mechanical ventilation category exhibited the least favorable
323 performance, despite being the most used strategy, closely followed by mechanical ventilation alone
324 (see Appendix E.1). A possible explanation could lie in the fact that the DBT between 22:00 and
325 23:00, a self-reported ventilation window, is still too high (35 °C) to provide cooling comfort from
326 natural ventilation and may exacerbate the dwellings' daily thermal load. Nonetheless, the decrement
327 factors for both categories for the entire summer monitoring, i.e. 0.30 and 0.29 for natural and
328 mechanical ventilation combined and stand-alone mechanical ventilation, respectively, are still
329 indicators of very high thermal stability, with only a small percentage of the outdoor thermal
330 fluctuation being reflected indoors (see Appendix E.1).

331 Moreover, in graph (e) of Figure 5, i.e. the case study using stand-alone natural ventilation, on
332 days 2 and 3 the temperature rises sharply in the early evening (also please refer to Appendix E.1).
333 This could be attributable to a combination of factors: firstly, opening the wickets around 19:00,
334 when outdoor DBTs stand around 40 °C-42 °C, which can be corroborated by the lowering of the RH
335 observed throughout the week, with the exception of day 3, where this adaptive behavior possibly
336 didn't take place. The second one would be linked to cooking activities, being that cooking loads
337 without proper ventilation may contribute to overheating and additional humidity. Nonetheless,
338 cooking takes place on a daily basis and the fluctuation in question occurs in the first three days,
339 which could suggest that we are observing a combination of both phenomena.

340 Comparing the indoor thermal environments of dwellings adopting natural and mechanical
341 ventilation combined and nighttime natural with mechanical ventilation (see Appendix E.1., and
342 diagrams (d) and (a), respectively, in Figure 5), suggested that the latter could contribute to lowering
343 T_{aMIN} and T_{aMAX} on average by more than 1.5 °C and 2 °C, respectively, stressing the convective
344 cooling potential of nighttime natural ventilation. During the representative week in analysis, stand-
345 alone mechanical ventilation provided slightly higher thermal stability than daytime natural and

346 mechanical ventilation (< 4 °C variations), with average T_{aMIN} and T_{aMAX} around 26.5 °C and 30.6 °C,
347 respectively. These overall lower temperatures contradict the preliminary overview (Fig. 3),
348 reinforcing the importance of continuous monitoring. However, when contrasting mechanically-
349 ventilated dwellings with those adopting nighttime natural and mechanical ventilation, the stored heat
350 dissipation by convection seems to optimize the thermal inertia capacity. This is reflected in the
351 offset of outdoor extreme temperatures, by lowering the average temperature by 1.2 °C (Appendix
352 E.1). On top of seldom nighttime natural ventilation, the inherent lack of insulation, particularly in
353 roofs, might be further aggravating overheating (Appendix C).

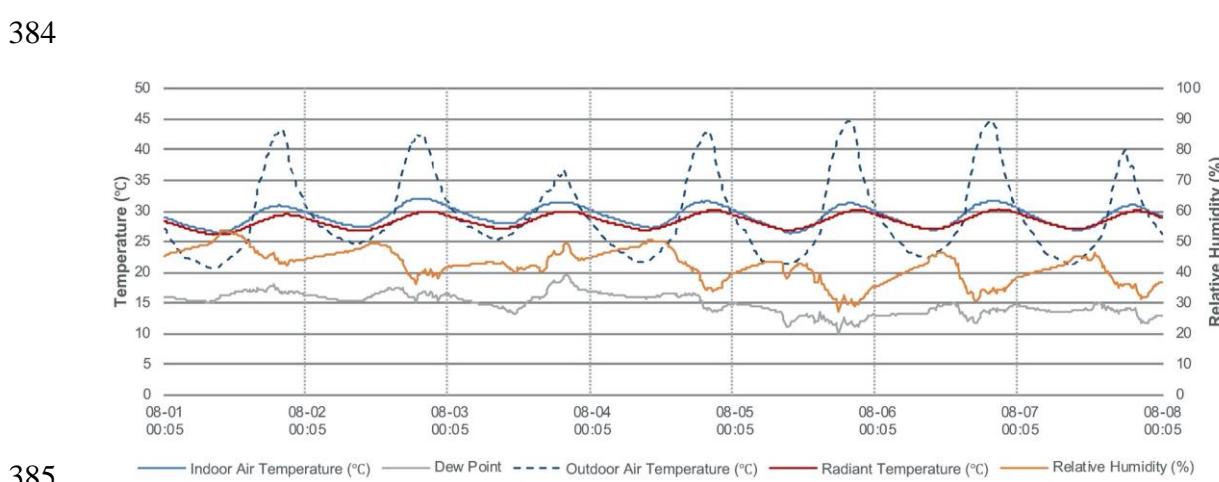

354 On a final note, it is worth emphasizing that in July, the indoor T_{aMAX} average did not exceed
355 29 °C. In any case, safely restoring nighttime natural ventilation would be crucial for improving the
356 case studies' thermal performance and IAQ. Furthermore, it is interesting how occupants exhibit a
357 much higher threshold tolerance regarding T_{as} of up to 30 °C than their winter counterparts.

358 • **Indoor relative humidity fluctuation**

359 The indoor RH fluctuated between 24.9 % and 62.1 %, in diametrically opposite fashion to T_{as} .
360 Indoor RH daily variation averages 15 percentage points against 45 of outdoor variation framed by
361 extreme maximums and minimums (9.7 % to 84.1 %). Some days, the indoor RH only oscillated
362 between 25 % and 37 %. This is a low level of airborne moisture but could be typical for dry-hot
363 regions. According to EN 15251 [62], long-term low humidity values have detrimental health
364 impacts, such as irritating mucous membranes and respiratory tract, eye dryness, and enhanced
365 susceptibility to pollutants [63].

366 *4.1.1.2. Average indoor air and inner wall surface temperature.* Due to the case studies' size, it was
367 foreseeable that the walls would strongly influence the T_{mrt} [64]. Overall, the inner wall surface
368 temperatures (T_{ws}) incurred the same trend as the T_{as} , with little difference between them. The T_{as}
369 surpassed the T_{ws} from the early afternoon to the following early morning, with a peak difference of
370 1.5 °C. From that point onwards, as T_{as} decrease, both temperatures level out, with T_{ws} slightly
371 exceeding T_{as} and the wall losing heat by convection from early to mid-morning. This points to the

372 impact of high thermal mass walls on the modulation of T_{ws} , on top of stabilizing T_{as} . These findings
 373 align with previous studies on vernacular dwellings with high thermal mass [22].


374

375 Figure 6. Inner wall surface temperature, indoor air temperature, and outdoor air temperature, 72-
 376 hour summer monitoring. D03 (SW-NE).

377 4.1.1.3. *Globe temperature and Mean Radiant Temperature (T_{mrt})*. According to [57], the T_{mrt} was
 378 derived from the conversion of the black globe temperature measurements, based on the following
 379 equation:

$$380 \quad T_{mrt} = \sqrt{(T_g + 273.15)^4 + \frac{h_{cg}}{\epsilon * D^{0.4}} * (T_g - T_a)} - 273.15 \quad (2)$$

381 Where T_g is the black globe temperature (°C), h_{cg} is the globe's mean convection coefficient
 382 ($1.1 * 10^8 * v_a^{0.6}$), v_a is the air velocity (m/s), ϵ is the emissivity of the sphere (0.95), D is the diameter
 383 of the sphere (mm), and T_a is the air temperature.

384

385

386 Figure 7. Median radiant temperature (T_{mrt}), indoor air temperature (T_a), and outdoor air temperature.
387 D06 (SE-NW).

388
389
390 Overall, and as illustrated in Fig. 7, the disparities between T_{mrt} s and T_a s under moderate
391 outdoor temperatures are marginal, i.e. only a few decimal degrees, but with rising temperatures from
392 the early afternoon onwards, the gap widens until around 19:00, which is consistent with previous
393 studies [21,65].

394 An explanation for the narrow difference found might lie in the absence of the main driving
395 factors for these deviations, previously identified as windows' size and exposure as well as the
396 intensity and duration of a room's or surface's direct solar radiation [66]. Additionally, the results
397 obtained reflect earlier studies on traditional dwellings' thermal performance [19,29,64].

398 4.1.1.4. *Air velocity (V_a)*. The V_a was found to average 0.15 m/s for unsealed-chimney case studies
399 and 0.05 m/s for sealed ones. These values conform to still air conditions and are within ASHRAE
400 2013's limits for V_a with occupant control, in which case V_a measurements are not required for
401 indoor thermal comfort assessment [56].

402 The *ad hoc* chimney sealing scheme compromises the stack effect ventilation, limiting fresh-
403 air intake. Nonetheless, the air leakage rate through the envelope is estimated to be quite high,
404 contributing to dissipating pollutants and moisture, but allowing inward warm air leakage while
405 simultaneously underventilating, possibly playing into overheating episodes. Conversely, the winter
406 air leakage can lead to cold drafts and decreased indoor thermal comfort.

407 Apart from the lack of nighttime cross-ventilation, a low V_a could augment summer thermal
408 discomfort due to excessive peaks. Moreover, the high adhesion to daytime mechanical ventilation is
409 the only counter-measure to increased T_a s that occupants control, for natural ventilation is infeasible
410 during the daytime in light of outdoor out-of-scale temperatures.

411 4.1.2. *Winter in situ monitoring*

412 4.1.2.1. *Average indoor air temperature and RH.* During the entirety of the winter monitoring, the
 413 outdoor DBT ranged from 1.6 °C (around 09:00) to 15.4 °C (15:00-17:00). The average maximums
 414 and minimums were 12.5 °C and 6 °C, respectively. The RH fluctuated between 59.1 % and 100 %.

415

416

417 (1) The interested reader may refer to the schedule of the strategies in Table 3.

418 Figure 8. Daily temperature oscillation in the living room of each monitored dwelling (D01-D22)
 419 according to their category, on February 8th 2015. Solar orientations: NE-SW axis: D01, D03, D08,
 420 D09, D10, D17, D16, D02, D04, D07, D21, D12; SE-NW axis: D22, D20, D14, D05, D06; E-W
 421 axis: D11, D15, D13, D19, D18.

422

423 Figure 8 displays the temperature oscillation in each dwelling on the coldest monitored day, when
 424 outdoor temperatures ranged from 1.6 °C to 9.5 °C, exhibiting a considerable dip in regard to the
 425 previous week: while on the preceding day, the 7th, the outdoor DBTs varied between 2 °C and 9.6
 426 °C, the previous week had been characterized by minimum temperatures of over 5.5 °C and
 427 maximum values of around 15 °C. Due to significant performance disparities between categories, i.e.
 428 electric heating (59 %), wood-based heating (14 %), gas heating (4.5 %), and heating off (9 %), a
 429 cross-category analysis was discarded. Such disparities were also found within the electric category,
 430 mainly due to two coexistent heating schedules: 07:30 to 23:00 and 07:30-09:30/17:00-23:00.
 431 Furthermore, the superimposed winter single-day temperature oscillation of representative case

432 studies per each of the categories identified is presented in the Appendix E.2., to better examine the
433 divergent performances resulting from the different strategies adopted.

434 The most common strategy is electric heating from early morning until bedtime at around
435 23:00 (45 %) versus bi-daily electric heating (14 %), i.e. 07:30 to 09:30/17:00 to 23:00. Within the
436 former, a common T_a belt between 10.5 °C and 13.7 °C was identifiable, with the T_{aMIN} being 9.8 °C.
437 The latter performed worse than all-day electric, and fireplace and wood-burning stove heating
438 schemes, and has a common T_a belt at 8 °C-12.9 °C, with the T_{aMIN} being 7.7 °C. The T_a belt of the
439 wood-heated dwellings is much higher, 13.1 °C-17.9 °C, the closest to the lower end of indoor
440 comfort acceptability [67]. The best performing dwelling (D05) pertains to this category and ranged
441 between 13.5 °C-19.4 °C (also see D15 in the Appendix E.2).

442

443 • **Representative week of indoor thermal fluctuation**


444 Figure 9 showcases a representative week (16th-23rd of February) for each category. The full winter
445 data can be found in the Appendix D.2. The criteria for selecting the representative week of thermal
446 fluctuation consisted in its inherent depiction of the usual coldest week behavior. In this case, the
447 coldest week coincided with an atypical extreme weather event, entailing average wind gusts of 70
448 km/h and reaching extremely dangerous speeds of 120 km/h. Thus, the period above mentioned was
449 chosen in its place for its representativeness and presented in the analysis presented in this paper.

450 The indoor T_{as} fluctuated between 19.3 °C (18:30-20:00) and 7.9 °C (08:30-10:00), following
451 the outdoor pattern compounded by substantial time lag averaging nearly five hours. This features the
452 high thermal inertia of the dwellings' envelope and exhibits its strong thermal wave attenuation
453 properties.

454 • **Unoccupied and unheated dwellings**

455 D06 and D11 are an unoccupied dwelling and a dwelling with heating off, respectively. Their free-
456 floating T_{as} variations confirmed that despite behaving similarly, the unoccupied dwelling's thermal
457 amplitudes are steeper, averaging 2.5 °C between T_{aMAX} and T_{aMIN} (see Appendix E.2). The beneficial

458 thermal stability in both categories is evidenced by average decrement factors of 0.34 and 0.28,
459 respectively, over the course of the whole winter monitoring (Appendix F). Moreover, both dwellings
460 displayed indoor T_{aMAX} consistently below the outdoor DBT. Yet, D11 registered higher
461 temperatures than D06, especially when it came to T_{aMIN} (averagely 1 °C higher). The lack of thermal
462 loads from miscellaneous sources including, *inter alia*, radiant body heat emission, equipment, and
463 lighting, could hypothetically explain this dissimilarity.

465 Figure 9. Extract from the winter monitoring, displaying T_a and RH: a. D06, unoccupied dwelling
 466 (SE-NW); b. D07, electric heating from 07:30 to 23:00 (NE-SW); c. D11: heating turned off (E-W);

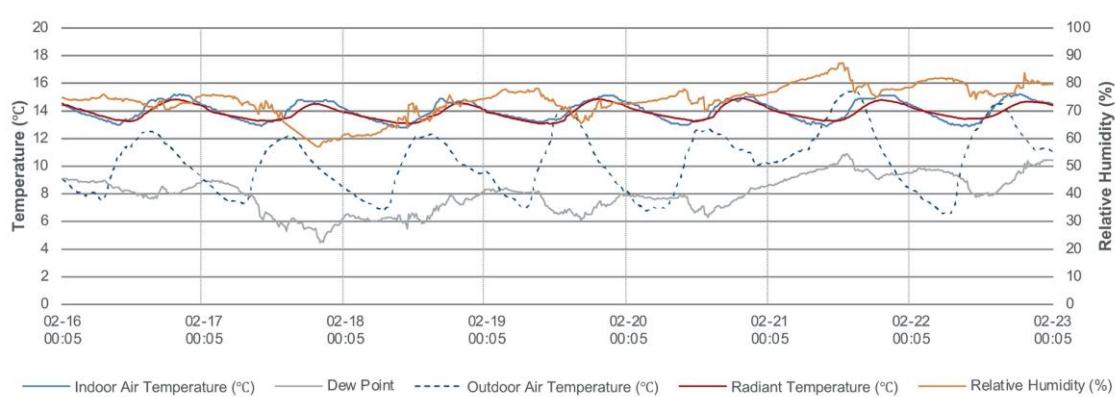
467 d. D16, electric heating from 07:30-09:30/17:00-23:00 (NE-SW); e. D15, Wood-burning stove
468 heating from 07:30 to 23:00 (E-W).

469
470 Furthermore, D11's thermal stability coefficient averages 0.25 computed for the whole winter
471 monitoring (Appendix F), which again indicates very high thermal stability [51]. This reflects the
472 heat storage capacity of the building's envelope, exhibiting a conspicuous delay of the outdoor
473 thermal wave, which is very apparent in the figure in the Appendix E.2 and in the decrement delay
474 presented in Table 2. In fact, the indoor thermal environment remains very stable between 14:00 and
475 the following day, with an average fluctuation of 0.7 °C. This capacity is especially valuable during
476 the nighttime, adequately responding to the site's sharp thermal amplitudes. All in all, D11
477 experiences T_{as} far removed from thermal comfort, averaging a daily T_{aMAX} of 11.1 °C.

478 • Approaches for regulating T_a and occupancy patterns

479 The self-reported bi-daily convection heating schedule roughly matches the pattern identified in D16
480 (see Fig. 9, diagram (d)). While the outdoor temperature starts increasing in the early morning only to
481 peak around 15:00, the T_a then drops until 8:00-08:30, when the electric heating is likely to kick in,
482 as it takes about an hour to fully heat the air, and sustains an increase until 17:00. T_{as} then remain
483 stable until approximately 19:30, in the face of a 3 °C outdoor dip, which could indicate that heating
484 would be turned on around 18:30. From there on, T_{as} rapidly rise until around 22:00 when it usually
485 reaches its peak. Moreover, between 08:00/09:00 and 16:30/17:30 the T_{as} are lower than the outdoor
486 DBT.

487 The occupancy patterns are also reflected in the thermal variation of D07, electrically-heated
488 from early morning to late evening. A temperature increase is consistently singled out, from early
489 morning until 15:00-16:00, after which it usually stabilizes until 23:00 while outdoor temperatures
490 drop sharply, and then smoothly descend until 08:00. However, temperature-wise, when we compare
491 it with D15's performance, using a wood-burning stove on an analogous schedule, the latter
492 unmistakably provided higher temperatures, 5 °C on average, at around 19.9 °C (see Appendix E.2).


493 The thermal inertia's impact on the indoor environment was distinctly observed in both
 494 categories. Yet, the radiant heat linked to wood-burning stoves keeps T_{as} stable at their peak for up to
 495 two hours. The results suggest that radiant heating systems provided more comfortable indoor
 496 temperatures, thus contributing more significantly to the thermal comfort of the occupants than
 497 convection ones, i.e. electric oil heating. Despite its efficiency, this traditional heating technique was
 498 nearly abandoned due to safety and maintenance concerns.

499 • **Indoor RH fluctuation**

500 The indoor RH fluctuated between 50.4 % and 94.5 %, against a 59.1 % to 100 % outdoor variation.
 501 This high level of airborne moisture leads to extremely saturated air in unheated and unoccupied
 502 dwellings, followed by electrically-heated ones (see overlay in Appendix E.2). Without adequate
 503 ventilation, moisture condensations and adverse health effects can arise, by causing microbial growth
 504 [62] and long-term discomfort [68]. The case studies' winter environment is in an extremely humid
 505 and cold spectrum, except for wood-heated dwellings, with RHs under 65 %.

506

507 *4.1.2.2. Globe temperature and T_{mrt} .* In wintertime, the T_{mrt} s and T_{as} s draw a similar curve with
 508 negligible differences, yet, conversely to summertime, the T_{mrt} s surpass the T_{as} s during the night until
 509 midday, denoting anew the thermal mass' stabilizing influence in preventing sharper nighttime
 510 thermal drops.

511

512 Figure 10. Median radiant temperature (T_{mrt}), indoor air temperature (T_a), and outdoor air
 513 temperature. D07 (NE/SW).

514

515 • **Thermal comfort perception**

516 Lastly, it should be mentioned that the subsequent paper of this series delves into the thermal comfort
517 evaluation of the case studies, including the thermal comfort perception based on the occupant survey
518 data and their comfort acceptability and satisfaction levels [41]. The analysis is conducted by means
519 of linear regression to derive the quantitative relationship between the Thermal Sensation Votes and
520 the indoor air temperature, and the indoor operative temperature and outdoor running mean
521 temperature. The high summer thermal acceptability rate of occupants found in that analysis ties in
522 with the discussion put forward in the representative week of indoor thermal fluctuation subsection of
523 the present paper, and would suggest that T_{as} fluctuate within a comfortable range. Yet, the
524 monitoring results indicated otherwise: with an average of 27.7 °C and T_{aMAX} of 28.9 °C during the
525 monitoring period, it is safe to say that the indoor temperatures in the case studies exceed
526 comfortable values. The main findings, corroborated by the neutral temperature range yielded in the
527 strong and statistically significant linear relationship between the occupants' thermal sensation votes
528 and the point-in-time monitoring, pointed to the focus group displaying a broader summer comfort
529 range than the average tolerance; more specifically, exceeding the maximum threshold set in the
530 national regulation at 25 °C [69], as well as the maximum indoor temperature recommended in EN
531 16798 even for category III buildings, i.e. existing buildings with a moderate level of expectation,
532 which is 27 °C [62]. These results are in line with previous vernacular dwellings studies [9,10,20,27]
533 and should be framed within the rural vernacular socio-cultural context and thermal expectations of
534 inhabitants, as these bear influence on thermal comfort acceptability [70].

535 **4.2. Indoor air quality conditions**

536 The IAQ monitoring and survey results confirmed cooking and heating emissions as the case studies'
537 main sources of indoor pollution.

538 In electrically-heated living rooms, when no cooking activities were occurring, average
539 minimal concentrations for CO, CO₂ and VOCs were yielded (0.1-0.2 ppm). During cooking, VOCs

540 emissions increased to 2 ppm and 10 ppm near the stove. Also noteworthy was the cooking CO
541 average concentration, at 3.5 ppm, which could be explained by accumulated cooking emissions due
542 to the lack of adequate ventilation or exhaust system. Moreover, gas stoves, which should be vented,
543 release ultrafine particles, hazardous pollutants, CO, and NO₂ [71]. The occupants' adaptive behavior
544 could help mitigate exposure, however, the former is limited by the dwellings' layout. Additionally,
545 winter adaptive behaviors focus on preventing heat loss, at the expense of healthy IAQ. Nonetheless,
546 the minimal values obtained in electrically-heated living rooms when no cooking is taking place
547 suggest that winter natural ventilation is still occurring, possibly with unsealed chimneys and the
548 envelope's pronounced air infiltration playing an important role in dissipating contaminants.

549 Over half the occupants customarily leave the heating on all day, which would amount to
550 daily 15-hour exposure periods. Prolonged periods of wood-based heating can be worrisome for
551 occupants' health due to PM2.5, ultra-fine particles and other VOCs, such as benzene and
552 formaldehyde, and hazardous pollutants such as Polycyclic-aromatic hydrocarbons, for which there is
553 no safe exposure level [71,72] and that can lead to respiratory ailments, lung tissue damage, and
554 carcinogenic effects. Even though the current analysis cannot elaborate on the individual levels of the
555 different VOCs, the results confirmed wood-burning heating as a critical source of indoor
556 contaminants, inducing a significant increase in VOCs compared to non-heating baseline values,
557 surpassing 100 ppm, which far exceeds the threshold established in the World Health Organization
558 (WHO) guidelines [71,73] by a thousand fold.

559 On top of VOCs, CO values occasionally exceeded these guidelines [73,74] by reaching 34
560 ppm (9ppm threshold), but averaged 8.8 ppm over a 15-hour period. *Per contra*, quite low absolute
561 CO₂ values were found [74] in spite of wood burning, qualifying as high IAQ (≤ 800 ppm) [75] and
562 below 1000 ppm, i.e. the threshold between hygienically harmless and conspicuous ranges, where
563 increased air exchange and improved ventilation behavior would be required.

564 The questionnaire-based surveys indicated that nearly half the occupants (44 %) perceive their
565 IAQ to be just acceptable in the long-term, against 37.5 % for unacceptable and 19 % for clearly

566 unacceptable (on a scale from clearly unacceptable to clearly acceptable). Over half the interviewees
567 perceived the odor intensity as moderate and only 12.5 % described it as overpowering. The results
568 also indicate that while there is little awareness of IAQ's impact on health, there is an overall
569 acknowledged need of increased ventilation rates for odor and moisture dissipation, especially in
570 winter when thermal comfort is prioritized to the detriment of ventilation. The sealing of chimneys
571 hampers the necessary ventilation in the cooking and heating area.

572 The survey results were consistent with the monitoring, in that all interviewees identified
573 cooking and heating, and lack of adequate ventilation as the leading sources of IAQ decline. 70 %
574 reported excessive winter RH levels, moisture, and water infiltration as the second leading cause of
575 odors. Hence, the findings suggest that measures focusing on promoting moisture control, increasing
576 natural ventilation rates and reinstating adequate air exchange, along with retrofitting the dwellings'
577 envelope and chimneys, would be pivotal for restoring a healthy IAQ.

578 **4.3. Indoor visual conditions**

579 In this section, the average daylight factor (DF) estimation and its comparison against daylight
580 recommendations for visual comfort, as well as the quality of the view out, i.e. the view outside
581 through the daylight openings [76] are analyzed. Based on the daylight provision calculation method
582 in EN 17037, the target daylight factor (D_T) was computed as follows:

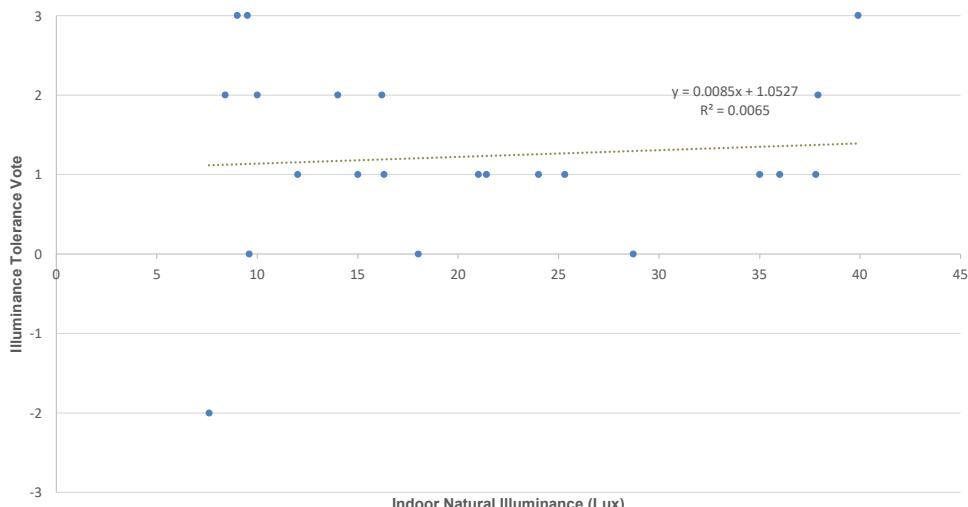
$$583 D_T = (E_{in}/E_{ext}) * 100 \quad (3)$$

584 Where, D_T is the target daylight factor, E_{in} is the indoor illuminance at a fixed point and E_{ext} is the
585 outdoor horizontal illuminance (OHI) under overcast CIE sky conditions. The value taken for the
586 average indoor illuminance was 20 lux (opened wicket and glass roof tile) and the average OHI
587 measured was 18280 lux. Hence, D_T was estimated to be 0.11 %, which is 15-fold lower than
588 recommended in EN 17037: the D_T and D_{TM} (Minimum Target Daylight Factor) should have been
589 around 1.64 % and 0.55 %, respectively, for the local outdoor illuminance. Moreover, the standard
590 Portuguese reference values, i.e. 1.7 % for D_T and 0.6 % for D_{TM} , suggested that the measured OHI
591 aligned with national values. The results pointed to the weak correlation between indoor illuminance,

592 and outdoor illuminance and sky conditions, as the average indoor illuminance yielded under clear-
593 sky conditions, i.e. 27 lux, did not differ significantly from that found under overcast conditions, i.e.
594 20 lux, for a fairly higher OHI, i.e. 85900 lux. International sustainability assessment schemes
595 address visual comfort, encompassing daylighting and view out; e.g., BREEAM determines that a 2
596 % average DF should be attained in living/dining rooms, and kitchens and that the average daylight
597 illuminance should exceed 100 lux for 3450 hours per year [77].

598 Regarding the quality of the view out, EN 17037 establishes the following criteria: the glazing
599 should provide a clear and neutrally-colored view; openings should have horizontal sight angles
600 higher than 14 °; the distance to the outside view should exceed 0.6 m; for a room depth of 4.0 m, the
601 view opening should be at least 1.0 m x 1.25 m; and at least urban and, or natural landscape should
602 be seen. While the case studies do not meet the distance and dimension criteria, they do provide
603 urban landscape. BREEAM states that all positions within relevant areas should be within 5.0 m of a
604 façade opening with adequate view out that is \geq 20 % of the surrounding wall area. The case studies'
605 openings account for less than 1 % of the façades, which additionally breaches the minimum ratio
606 glazing area for adequate daylight provision defined in the General Regulation of Urban Buildings
607 [78].

608 This analysis confirmed that the daylight availability is inadequate for any standard-
609 recommended task or permanence, on top of heterogeneously distributed. The fact that indoor
610 daylight levels stand below minimum recommended thresholds leads to inefficient artificial lighting
611 use throughout the day with its associated costs. This could also explain the rising appearance of
612 illegal façade openings, in spite of the protection of the Municipal Master Plan and the Municipal
613 Regulations for Building and Urbanization (RMUE) [79].


614 Given this scenario, it would be expected that the occupant surveys reflected the need for
615 increased daylight or the inadequacy of current levels, but a mismatch between quantitative and
616 qualitative findings was yielded. The data were processed according to two main indexes: lighting
617 dissatisfaction (occupants' sensation regarding illuminance levels) [80] and tolerance index [59]; and

three categories for assessing artificial light use, occupants' view out satisfaction, and their priorities linked to openings.

The level of satisfaction inferred revealed that over half the interviewees (57 %) are actually slightly satisfied with their daylight availability, while 37 % expressed slight dissatisfaction, and only 6 % reported being highly dissatisfied, mainly in wintertime. Tolerance-wise, 45.5 % of occupants found the daylight availability slightly bearable versus 22.7 % for moderately bearable and 13.6 % for perfectly bearable. Only 4.55 % reported high difficulty in bearing it (fairly difficult to bear, very difficult to bear, and unbearable) and 13.6 % felt neutral (Fig. 11). An extremely weak and non-statistically significant correlation was found between the occupants' illuminance tolerance votes (ITVs) and the point-in-time monitored data. The estimated equation relating the ITVs and the monitored illuminance is as follows:

$$ITV = 0.009 \text{ lux} + 1.053, R^2 = 0.007, S_e = 1.18 \quad (4)$$

Where, R^2 is the determination coefficient, S_e is the Standard Error of Estimate, and the respective error of estimation for each parameter is indicated underneath. The slope of the regression line is 0.009, which means that for each lux, the ITV increased by 0.009 units of scale. The R^2 value inferior to 0.1 implies a very weak positive correlation, which is non-statistically significant (p-value = 0.081, the variable association is significant when p-value is inferior to 0.05). In being a positive correlation, the ITVs are observed to increase proportionally to the lux measured. Yet, as can be seen in Fig. 11, the correlation is marked by strong incoherence and heterogeneity, with the bulk of moderately bearable and perfectly bearable votes being linked to a range between 8.4 and 16.2 lux for the former, and at opposite ends of the illuminance spectrum measured (9.5 and 39.9 lux) for the latter. Given that the DF estimation was based on the monitored data, it would be safe to say that findings also suggest a weak correlation between the tolerance levels and the DF estimated. Additionally, the results of the occupants' long-term perception and satisfaction with poorly-lit spaces surpassed the authors' expectations.

643

644 Figure 11. Point-in-time survey data: correlation between the occupants' tolerance votes and the
645 monitored illuminance data.

646

647 Though counterintuitive, these findings highlighted the determinant role of cultural
648 backgrounds in daylight acceptability and expectations, on top of the age of the focus group. When
649 requested to elaborate on their satisfaction and tolerance levels, those who had reported slight
650 satisfaction claimed being used to those conditions. In addition, the fact that the occupants spend
651 much time outdoors, in their courtyards or sitting on their front steps or benches, might also
652 contribute to attenuate the impact of living in poorly-lit dwellings.

653 Nearly 70 % of interviewees disagreed that it is possible to perform tasks relying on daylight
654 only. Those spending under one daily hour of artificial light emphasized the intentional avoidance as
655 a financial strategy. This is important to keep in mind since the quantification of artificial light usage
656 does not reflect actual requirements. The weight of financial constraints dictates the occupancy
657 patterns and adaptive behaviors of these dwellings, rather than the quest for greater comfort or health.
658 This is culturally acquired, deeply rooted in their socioeconomic background and living culture, and
659 should be understood within that context. In fact, when asked to rate fresh air, increased daylight,
660 view out, and reduced electricity consumption, linked to a façade opening or skylight, reduced
661 consumption was ranked the highest (70 %) to the detriment of other parameters. The view out was
662 the overall bottom-end voted (88 %). For increased daylight availability, however, the scoring was

663 quite scattered, with as many top scores as second-to-last scores (37 % respectively), revealing a
664 strong divergence in priorities.

665 Finally, lighting allows very little room for occupant behavior control, and, in the case
666 studies, it is mainly limited to the use of artificial light or adapting to performing tasks under
667 conditions that fall far from minimum recommendations. Nonetheless, as mentioned above, the
668 traditional pattern of spending long periods outdoors could be considered a coping behavior.

669 **4.4. Impact of passive strategies**

670 The main climate-responsive strategies found in the literature for vernacular dwellings in this region,
671 i.e. passive cooling, solar radiation shielding and minimizing summer heat gains, were mentioned in
672 3.1.3.. Additionally, this analysis allowed to pinpoint key passive strategies in view of their effect on
673 thermal performance (Table 6).

674

675 Table 6. Key passive strategies of a typical vernacular dwelling in SVV.

Bioclimatic strategies	Key features
Settlement pattern	<ul style="list-style-type: none">• continuous single row of dwellings along main road• alignment with predominant wind directions for airflow passage• secondary narrow streets to reduce solar incidence and heat gains
Façades without window openings	<ul style="list-style-type: none">• reduced summer solar gains and overheating• scarce indoor natural illuminance
Lime-washed walls	<ul style="list-style-type: none">• antibacterial and solar radiation protection
High thermal inertia walls	<ul style="list-style-type: none">• inhibited outdoor-indoor heat transfer, avoiding excessive temperature peaks and supporting thermal stabilization

- especially beneficial during the nighttime and for the site's sharp thermal amplitudes

- traditionally implemented during the nighttime
- performed via built-in wickets and chimney

Natural cross-ventilation

- symbiotic effect with high thermal inertia
- removal of diurnal thermal loads for summer cooling

Ceramic floor tiles

- possibility of evaporative cooling due to permeability

Courtyard

- private outdoor space with its own microclimate
- shading from vegetation and important for natural ventilation
- contrasting the scarce indoor illuminance

676

677 Concerning their impact on thermal performance, the following stood out:

678 • The predominant traditional typology was established as a resourceful bioclimatic adaptation
679 compared to variants lacking a courtyard.

680 • The role of natural ventilation through the courtyard in enhancing summer thermal behavior
681 and stability. It additionally helps mitigating the effects of poor indoor natural illuminance.

682 • Nighttime natural and mechanical ventilation was singled out as the best performing strategy,
683 leading to enhanced thermal performance and stability than the most common strategy, i.e.
684 daytime natural and mechanical ventilation.

685 • The relevance of the lack of windows for reducing summer solar gains and overheating was
686 evidenced through the comparison of two identically solar-oriented dwellings applying the
687 same strategies, where one had an unauthorized window and displayed significantly poorer
688 behavior under extreme outdoor heat.

689 • The dwellings' high thermal inertia and outdoor thermal wave attenuation properties were
690 highlighted in both seasons, adequately responding to sharp thermal amplitudes.
691 • The traditional chimney's heating role was backed by its efficiency in providing indoor T_{as}
692 over 18 °C, despite being dropped to the detriment of underperforming electric heating.

693 **5. Conclusions**

694 **Thermal performance and occupancy patterns**

695 Current occupancy patterns are suggested to be hindering the dwellings' thermal performance,
696 evidencing inadequate climate adaptation. Occupants are exposed to winter thermal discomfort and
697 health risks arising from cold temperatures, moldy spaces, and airborne toxins. However, even during
698 the summer hottest periods, occupants exhibited a much higher threshold tolerance than in winter.

699 **Key sources of indoor air pollution**

700 The compounded effect of wood-burning heating and cooking emissions were confirmed to be
701 crucial sources of indoor pollution, aggravated by the lack of adequate ventilation. Incorporating less
702 contaminant sources, and retrofitting the chimney to avoid *ad hoc* sealing schemes and improving
703 ventilation through an adequate exhaust system, could contribute to reducing the occupants' health
704 burden.

705 **The importance of sociocultural background in indoor environment perception and
706 acceptability in heritage dwellings**

707 Sociocultural background plays a determinant role in occupants' indoor environment perception and
708 acceptability in heritage dwellings. This was attested in this research by broader thermal ranges and
709 acceptability of inadequate natural illuminance levels and IAQ. When analyzing the indoor
710 environment of vernacular dwellings, it is imperative to consider how occupancy patterns and
711 behaviors can be dictated by financial constraints, rather than the quest for greater comfort or health.

712 **5.1. Key takeaways for the future conservation of the case studies and analogous typologies**

713 Reversing the decline of vernacular dwellings requires intentional investment in improving their
714 indoor conditions. In the case studies, the priority should be improving cold-related risks through
715 accessible and efficient solutions compatible with its conservation. Moreover, traditional efficient
716 practices were rejected in favor of less efficient measures linked to globalization. While some
717 strategies have lost adherence due to safety issues, there are anthropological variables leading to
718 traditional knowledge dilution and hindering the dwellings' performance. As architects it is our task
719 to consider these issues when suggesting adequate interventions that, not only enhance energy
720 efficiency and thermal comfort but also habitability, adapting the strengths of vernacular strategies
721 for a harmonious relationship between heritage and their occupants. Awareness-raising campaigns
722 could be undertaken, focusing on best practices for the use, maintenance, and conservation of
723 heritage dwellings. Some of the key interventions for future conservation are outlined hereunder:

- 724 • Improving the envelope's thermal insulation, as their inherent lack of insulation could
725 aggravate overheating and underheating. The roof solar absorptance could also be addressed.
726 The walls' external insulation would complement the high thermal inertia and contribute to
727 thermal stability and energy savings.
- 728 • The above addresses the high airflow leakage rate, but air proofing should be extended to
729 doors.
- 730 • Devising a safe nighttime ventilation system to improve summer thermal performance and
731 IAQ by retrofitting the chimney to vent the cooking area, mitigate humidity and water
732 infiltrations, but also incorporating a skylight, to restore healthy airflow and illuminance
733 levels.
- 734 • Devising an efficient and renewable heating system that does not compromise the occupants'
735 health, restoring the possibility for clean radiant heating, which was shown to overperform
736 electric heating.
- 737 • Considering solar water heating for improving hot water access.

738 • Replacing the courtyards' unauthorized settlements with annexed sanitation facilities
739 connected to the water supply network.

740 **5.2. Limitations of the study and suggestions for future work**

741 The dataloggers' accuracy was slightly out of range per the ISO 7726 and ASHRAE-55 2013 criteria
742 (Table 5). Nonetheless, dataloggers with analogous ranges have been successfully employed in the
743 thermal assessment of vernacular dwellings in the same region [26,27,81]. Additionally, the
744 calibration time of the dataloggers was longer than expected (ISO 7726). Hence, the initial 10 hours
745 of measured data were discarded, with no impact on the long-term analysis.

746 Furthermore, had it been available, with a surface probe of thermocouple type K for long-term
747 monitoring the ceilings' surface temperature measurements could have been conducted to further
748 understand its role in the indoor thermal environment and radiant temperature asymmetry.

749 The three-months monitoring period chosen encompassed the hottest and coldest annual
750 weeks, and the analysis was developed based on worst-case scenario weeks, following the
751 methodology of previous research in the same climate [26–28,82,83].

752 Given the occupants' advanced age, it would be interesting that future work considers the
753 impact of occupant switching. Newcomers would have different socioeconomic backgrounds and
754 thermal expectations, and may occupy the dwellings differently, which may lead to performance
755 discrepancies.

756 Finally, the lack of long-term studies on vernacular dwellings' indoor conditions stems from
757 the challenge of finding large samples, accessibility issues, occupants' availability and willingness,
758 elderly and illiterate focus groups, managing cultural specificity, sensitive information, survey bias,
759 and the inherent uncertainty linked vernacular architecture. The present research strove to contribute
760 with a long-term study of a larger sample than the bulk of previous work. Future research dedicated
761 to expanding a systematic, long-term, and large-scale approach to vernacular dwellings' indoor
762 conditions is warranted, as their preservation and legacy depend on it.

764 Acknowledgements

765

766 Disclosure statement

767 The authors report that there are no competing interests to declare.

768

769 References

770 [1] Fabbri, Pretelli, Bonora, The Study of Historical Indoor Microclimate (HIM) to Contribute
771 towards Heritage Buildings Preservation, *Heritage*. 2 (2019) 2287–2297.
772 doi:10.3390/heritage2030140.

773 [2] K. Fabbri, A. Bonora, Two new indices for preventive conservation of the cultural heritage:
774 Predicted risk of damage and heritage microclimate risk, *J. Cult. Herit.* 47 (2021) 208–217.
775 doi:10.1016/j.culher.2020.09.006.

776 [3] X. Du, R. Bokel, A. van den Doppelsteen, Building microclimate and summer thermal comfort
777 in free-running buildings with diverse spaces: A Chinese vernacular house case, *Build.*
778 *Environ.* 82 (2014) 215–227. doi:10.1016/j.buildenv.2014.08.022.

779 [4] T. Kubota, D.H.C. Toe, D.R. Ossen, Field Investigation of Indoor Thermal Environments in
780 Traditional Chinese Shophouses with Courtyards in Malacca, *J. Asian Archit. Build. Eng.* 13
781 (2014) 247–254. doi:10.3130/jaabe.13.247.

782 [5] J. Gupta, M. Chakraborty, A. Paul, V. Korrapatti, A comparative study of thermal
783 performances of three mud dwelling units with courtyards in composite climate, *J. Archit.*
784 *Urban.* 41 (2017) 184–198. doi:10.3846/20297955.2017.1355276.

785 [6] Z. Huang, J. Liu, H. Hao, Y. Dong, Indoor Humidity Environment in Huizhou Traditional
786 Vernacular Dwellings of China in Summer, *Procedia Eng.* 205 (2017) 1350–1356.
787 doi:10.1016/j.proeng.2017.10.121.

788 [7] T. Kubota, M.A. Zakaria, S. Abe, D.H.C. Toe, Thermal functions of internal courtyards in
789 traditional Chinese shophouses in the hot-humid climate of Malaysia, *Build. Environ.* 112
790 (2017) 115–131. doi:10.1016/j.buildenv.2016.11.005.

791 [8] S. Liu, C. Huang, Y. Liu, J. Shen, Z. Li, Retrofitting Traditional Western Hunan Dwellings
792 with Passive Strategies Based on Indoor Thermal Environment, *J. Archit. Eng.* 24 (2018)
793 04018017. doi:10.1061/(asce)ae.1943-5568.0000316.

794 [9] C. Xu, S. Li, X. Zhang, S. Shao, Thermal comfort and thermal adaptive behaviours in
795 traditional dwellings: A case study in Nanjing, China, *Build. Environ.* 142 (2018) 153–170.
796 doi:10.1016/j.buildenv.2018.06.006.

797 [10] Z. Zhang, Y. Zhang, L. Jin, Thermal comfort in interior and semi-open spaces of rural folk
798 houses in hot-humid areas, *Build. Environ.* 128 (2018) 336–347.
799 doi:10.1016/j.buildenv.2017.10.028.

800 [11] J. Zhu, P. Nie, R. Li, L. Tong, X. Zhao, Climate responsive characteristics of cliff-side cave
801 dwellings in cold area of China, *Energy Procedia.* 158 (2019) 2731–2736.
802 doi:10.1016/j.egypro.2019.02.030.

803 [12] G. Tsovoodavaa, I. Kistelegdi, Comparative analysis for traditional yurts using thermal
804 dynamic simulations in Mongolian climate, *Pollack Period.* 14 (2019) 97–108.
805 doi:10.1556/606.2019.14.2.9.

806 [13] L. Yang, R. Fu, W. He, Q. He, Y. Liu, Adaptive thermal comfort and climate responsive
807 building design strategies in dry–hot and dry–cold areas: Case study in Turpan, China, *Energy*
808 *Build.* 209 (2020) 109678. doi:10.1016/j.enbuild.2019.109678.

809 [14] X. Zhao, P. Nie, J. Zhu, L. Tong, Y. Liu, Evaluation of thermal environments for cliff-side
810 cave dwellings in cold region of China, *Renew. Energy.* 158 (2020) 154–166.
811 doi:10.1016/j.renene.2020.05.128.

812 [15] H. Djamila, C. Chu, S. Kumaresan, Effect of Humidity on Thermal Comfort in the Humid
813 Tropics, *J. Build. Constr.* (2015) 109–117. doi:10.3390/buildings5031025.

814 [16] K. Henna, A. Saifudeen, M. Mani, Resilience of vernacular and modernising dwellings in
815 three climatic zones to climate change, *Sci. Rep.* 11 (2021) 1–14. doi:10.1038/s41598-021-
816 87772-0.

817 [17] H.B. Rijal, Thermal adaptation of buildings and people for energy saving in extreme cold
818 climate of Nepal, *Energy Build.* 230 (2021) 110551. doi:10.1016/j.enbuild.2020.110551.

819 [18] A. Bassoud, H. Khelafi, A.M. Mokhtari, A. Bada, Evaluation of summer thermal comfort in
820 arid desert areas. Case study: Old adobe building in Adrar (South of Algeria), *Build. Environ.*
821 205 (2021) 108140. doi:10.1016/j.buildenv.2021.108140.

822 [19] Hermawan, E. Prianto, E. Setyowati, Thermal comfort of wood-wall house in coastal and
823 mountainous region in tropical area, *Procedia Eng.* 125 (2015) 725–731.
824 doi:10.1016/j.proeng.2015.11.114.

825 [20] A. Sarkar, S. Bose, Thermal performance design criteria for bio-climatic architecture in
826 Himachal Pradesh, *Curr. Sci.* 109 (2015) 1590–1600. doi:10.18520/v109/i9/1590-1600.

827 [21] M.K. Singh, S. Mahapatra, J. Teller, Development of thermal comfort models for various
828 climatic zones of North - East India, 14 (2015) 133–145. http://ac.els-cdn.com/S2210670714000973/1-s2.0-S2210670714000973-main.pdf?_tid=50d07d9e-acc1-11e4-9dc4-0000aacb361&acdnat=1423090881_01c49af4b88cdce8a3cd6689c6b63fe0.

830 [22] D.H.C. Toe, T. Kubota, Comparative assessment of vernacular passive cooling techniques for
832 improving indoor thermal comfort of modern terraced houses in hot-humid climate of
833 Malaysia, *Sol. Energy.* 114 (2015) 229–258. doi:10.1016/j.solener.2015.01.035.

834 [23] L. Huang, N. Hamza, B. Lan, D. Zahi, Climate-responsive design of traditional dwellings in
835 the cold-arid regions of Tibet and a field investigation of indoor environments in winter,
836 *Energy Build.* 128 (2016) 697–712. doi:10.1016/j.enbuild.2016.07.006.

837 [24] V. Shastry, M. Mani, R. Tenorio, Evaluating thermal-comfort and building climatic-response
838 in warm-humid climates for vernacular dwellings in Suggenhalli (India), *Archit. Sci. Rev.* 59
839 (2016) 12. doi:10.1080/00038628.2014.971701.

840 [25] H. Yan, L. Yang, W. Zheng, W. He, D. Li, Analysis of behaviour patterns and thermal
841 responses to a hot–arid climate in rural China, *J. Therm. Biol.* 59 (2016) 92–102.
842 doi:10.1016/j.jtherbio.2016.05.004.

843 [26] J. Fernandes, R. Mateus, H. Gervásio, S.M. Silva, L. Bragança, Passive strategies used in
844 Southern Portugal vernacular rammed earth buildings and their influence in thermal
845 performance, *Renew. Energy.* 142 (2019) 345–363. doi:10.1016/j.renene.2019.04.098.

846 [27] J. Fernandes, C. Pimenta, R. Mateus, S. Silva, L. Bragança, Contribution of Portuguese
847 Vernacular Building Strategies to Indoor Thermal Comfort and Occupants' Perception,
848 *Buildings.* 5 (2015) 1242–1264. doi:10.3390/buildings5041242.

849 [28] J. Fernandes, R. Mateus, L. Bragança, J.J. Correia da Silva, Portuguese vernacular
850 architecture: the contribution of vernacular materials and design approaches for sustainable
851 construction, *Archit. Sci. Rev.* 58 (2015) 324–336. doi:10.1080/00038628.2014.974019.

852 [29] J. Shaeri, M. Yaghoubi, A. Aflaki, A. Habibi, Evaluation of Thermal Comfort in Traditional
853 Houses in a Tropical Climate, *Buildings.* 8 (2018) 126. doi:10.3390/buildings8090126.

854 [30] J. Shaeri, M. Yaghoubi, A. Habibi, Influence of Iwans on the Thermal Comfort of Talar
855 Rooms in the Traditional Houses: A Study in Shiraz, Iran, *Buildings.* 8 (2018) 81.

856 doi:10.3390/buildings8060081.

857 [31] A. Foruzanmehr, Thermal comfort and practicality: separate winter and summer rooms in
858 Iranian traditional houses, *Archit. Sci. Rev.* 59 (2016) 1–11.
859 doi:10.1080/00038628.2014.939132.

860 [32] A. Michael, C. Heracleous, S. Thravalou, M. Philokyprou, Lighting performance of urban
861 vernacular architecture in the East-Mediterranean area: Field study and simulation analysis,
862 *Indoor Built Environ.* 26 (2017) 471–487. doi:10.1177/1420326X15621613.

863 [33] J. Zhu, C. Xing, R. Li, C. Li, X. Zhao, Experimental and theoretical investigation of thermal
864 performance of Yaokang heating system in China, *Energy Build.* 226 (2020) 110344.
865 doi:10.1016/j.enbuild.2020.110344.

866 [34] SNA, *Arquitectura Popular em Portugal*, 04–2004th ed., Sindicato Nacional dos Arquitectos,
867 Lisboa, 1961.

868 [35] M. Moutinho, *A Arquitectura Popular Portuguesa*, Editorial Estampa, Lisboa, 1979.

869 [36] J. Fernandes, *Alentejo and Algarve*, in: P. Oliver (Ed.), *Encycl. Vernac. Archit. World*,
870 Cambridge University Press, Cambridge, 1997.

871 [37] E. Veiga de Oliveira, F. Galhano, *Arquitectura tradicional portuguesa*, Publicações Dom
872 Quixote, Lisboa, 2003.

873 [38] E.A. Lima Basto, A. Faria e Silva, C. Silva, *Inquérito à Habitação Rural*, 02–2013th ed.,
874 Lisboa, 2013.

875 [39] I. Costa Carrapiço, J. Neila González, Study For the rehabilitation of vernacular architecture
876 with sustainable criteria, in: S.R. Mariana Correia, Gilberto Carlos (Ed.), *Vernac. Herit.*
877 *Earthen Archit. Contrib. Sustain. Dev.*, Taylor & Francis Group, London, UK, 2014: pp. 581–
878 586.

879 [40] I. Costa Carrapiço, *Rehabilitación medioambiental e arquitectura vernácula: el caso de São*
880 *Vicente e Ventosa, Alentejo*, García-maroto Editores S.L., Madrid, 2016.

881 [41] I. Costa Carrapiço, J.N. González, R. Raslan, C. Sánchez-Guevara, M.D. Redondas Marrero,
882 Understanding thermal comfort in vernacular dwellings in Alentejo, Portugal: A mixed-
883 methods adaptive comfort approach, *Build. Environ.* 217 (2022) 109084.
884 doi:10.1016/j.buildenv.2022.109084.

885 [42] I. Costa-Carrapiço, R. Raslan, J.N. González, A systematic review of genetic algorithm-based

886 multi-objective optimisation for building retrofitting strategies towards energy efficiency,
887 Energy Build. 210 (2020). doi:10.1016/j.enbuild.2019.109690.

888 [43] I. Costa-Carrapico, B. Croxford, R. Raslan, J. Neila González, Hygrothermal calibration and
889 validation of vernacular dwellings : A genetic algorithm-based optimisation methodology, J.
890 Build. Eng. 55 (2022). doi:10.1016/j.jobe.2022.104717.

891 [44] M. Fernandes, M. Correia, Arquitectura de Terra em Portugal/Earth Architecture in Portugal,
892 Argumentum, Lisboa, 2005.

893 [45] I. Fonseca, Arquitctura de terra em Avis, Argumentum, Lisboa, 2007.

894 [46] M. Correia, Rammed earth in Alentejo, Argumentum, Lisboa, 2007.

895 [47] VV.AA., Earth Architecture in Portugal, Argumentum, Lisboa, 2005.

896 [48] S. de E. da I. Direcção-Geral de Minas e Serviços Geológicos, Ministério da Economia,
897 Extract of the geological map of Portugal. Sheet 33-C Campo Maior, 1972.

898 [49] C.A. Pina dos Santos, R. Rodrigues, Coeficientes de transmissão térmica de elementos opacos
899 da envolvente dos edifícios - soluções construtivas de edifícios antigas. ITE 54., 8th ed.,
900 Lisboa, 2017.

901 [50] C.A. Pina dos Santos, Luís Matias, Coeficientes de Transmissão térmica de elementos da
902 envolvente dos edifícios - ITE 50, 24th ed., Lisboa, 2018.

903 [51] C. Bedoya Frutos, F.J. Neila González, Técnicas arquitectónicas y constructivas de
904 acondicionamiento ambiental, Editorial Munilla-Lería, Madrid, 2001.

905 [52] AEMET, IM, Iberian Climate Atlas (1971-2000), 2011.

906 [53] P. Miranda, F. Abreu, R. Salgado, Estudo de impacte ambiental do alqueva: Clima, (1995)
907 186.

908 [54] IPMA, (n.d.). <https://www.ipma.pt/> (accessed March 1, 2016).

909 [55] M. Correia, A Habitação Vernácula Rural no Alentejo, Portugal, Memorias Del IV Semin.
910 Iberoam. Sobre Vivienda Rural y Calid. Vida En Los Asentam. Rural. Santiago Del Chile,
911 Chile. (2002) 134–144.

912 [56] ANSI/ASHRAE 55-2020, Thermal Environmental Conditions for Human Occupancy, Ashrae.
913 (2020) 58. doi:ISSN 1041-2336.

914 [57] T.C. of the P. Environment, ed., ISO 7726, Ergonomics of the thermal environment -

915 Instruments for measuring physical quantities, 2nd ed., 1998.

916 [58] ISO 7730, Ergonomics of the thermal environment - Analytical determination and
917 interpretation of thermal comfort using calculation of the PMV and PPD indices and local
918 thermal comfort criteria, 3rd ed., International Organization for Standardization, Geneva,
919 2005.

920 [59] I.O. for Standardization, ISO10551 - Ergonomics of the thermal environment - Assessment of
921 the influence of the thermal environment using subjective judgement scales, 1995.

922 [60] W. health O. regional O. for Europe, WHO Environmental Noise Guidelines for the European
923 Region, Copenhagen, Denmark, 2018.

924 [61] I. Costa-Carrapico, F. Gomes, M. Correia, S. Rocha, Walls of High Thermal inertia, in: M.
925 Correia, L. Dipasquale, S. Mecca (Eds.), Versus Herit. Tomorrow Vernac. Knowl. Sustain.
926 Archit., Firenze University Press, Firenze, 2014: pp. 231–218.

927 [62] European Standard, EN 15251, Indoor Environmental Input Parameters for Design and
928 Assessment of Energy Performance of Buildings - Addressing Indoor Air Quality, Thermal
929 Environment, Lighting and Acoustics, 2007.

930 [63] P. Wolkoff, Indoor air humidity, air quality, and health – An overview, *Int. J. Hyg. Environ.*
931 *Health.* 221 (2018) 376–390. doi:10.1016/j.ijheh.2018.01.015.

932 [64] D.G. Leo Samuel, K. Dharmasastha, S.M. Shiva Nagendra, M.P. Maiya, Thermal comfort in
933 traditional buildings composed of local and modern construction materials, *Int. J. Sustain.*
934 *Built Environ.* 6 (2017) 463–475. doi:10.1016/j.ijsbe.2017.08.001.

935 [65] M.K. Singh, S. Mahapatra, S.K. Atreya, Thermal performance study and evaluation of comfort
936 temperatures in vernacular buildings of North-East India, *Build. Environ.* 45 (2010) 320–329.
937 doi:10.1016/j.buildenv.2009.06.009.

938 [66] N. Walikewitz, B. Jänicke, M. Langner, F. Meier, W. Endlicher, The difference between the
939 mean radiant temperature and the air temperature within indoor environments: A case study
940 during summer conditions, *Build. Environ.* 84 (2015) 151–161.
941 doi:10.1016/j.buildenv.2014.11.004.

942 [67] EN16798-1, Energy performance of buildings: Indoor environmental input parameters for
943 design and assessment of energy performance of buildings addressing indoor air quality,
944 thermal environment, lighting and acoustics, 2019.

945 [68] ASHRAE, 2017 ASHRAE Handbook - Fundamentals, SI, Atlanta, Georgia, 2017.

946 [69] Ministério das Finanças e da Economia e do Emprego, Decreto-Lei n.º 118/2013, Diário Da
947 República. 1.ª série (2013).

948 [70] J. van Hoof, L. Schellen, V. Soebarto, J.K.W. Wong, J.K. Kazak, Ten questions concerning
949 thermal comfort and ageing, *Build. Environ.* 120 (2017) 123–133.
950 doi:10.1016/j.buildenv.2017.05.008.

951 [71] W.H. Organization, WHO guidelines for indoor air quality: household fuel combustion, 2014.

952 [72] T. Salthammer, T. Schripp, S. Wientzek, M. Wensing, Impact of operating wood-burning
953 fireplace ovens on indoor air quality, *Chemosphere*. 103 (2014) 205–211.
954 doi:10.1016/j.chemosphere.2013.11.067.

955 [73] W.H.O. 2010, WHO Guidelines for Indoor Air Quality: selected pollutants, WHO Regional
956 Office for Europe, Copenhagen, Denmark, 2010.

957 [74] A. addendum ad to A.S. 62-2001, Ventilation for Acceptable Indoor Air Quality, 2003.

958 [75] CEN-European Committee for Standardization, EN 13779: Ventilation for non-residential
959 buildings - Performance requirements for ventilation and room-conditioning systems, 2004.

960 [76] CEN-European Committee for Standardization, EN 17037 European Daylight Standard, 2019.
961 <https://velcdn.azureedge.net/~/media/marketing/ee/professional/28mai2019seminar/veluxen17037tallinn28052019.pdf>.

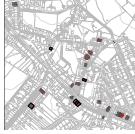
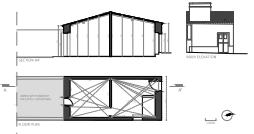
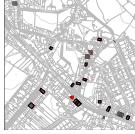
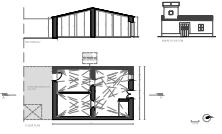
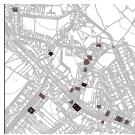
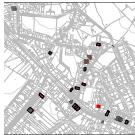
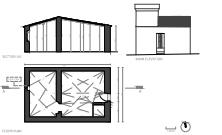
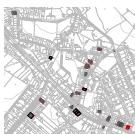
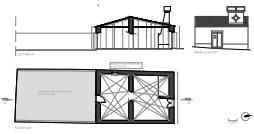
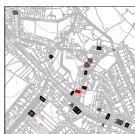
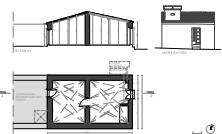
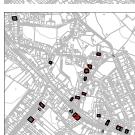
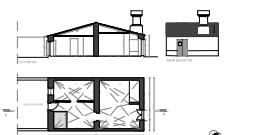
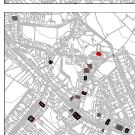
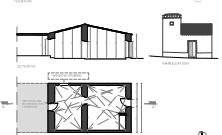
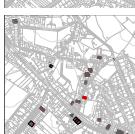
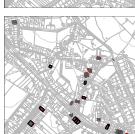
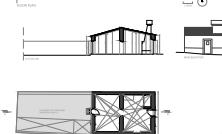
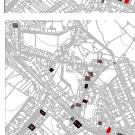
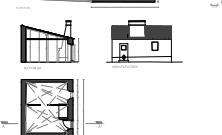
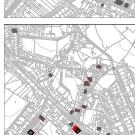
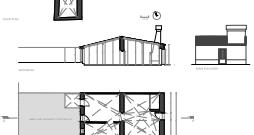
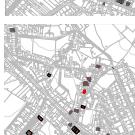
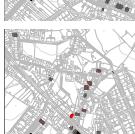
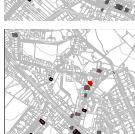
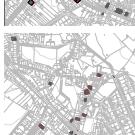
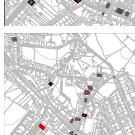
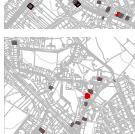
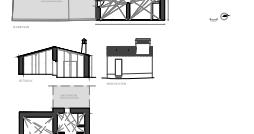
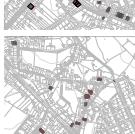
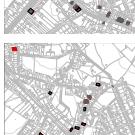
963 [77] BREEAM, BREEAM Health and Wellbeing, (n.d.).
964 https://www.breeam.com/BREEAMUK2014SchemeDocument/content/05_health/hea01_nc.htm (accessed June 3, 2020).

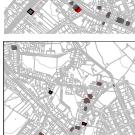
966 [78] RGEU, Regulamento geral das Edificações Urbanas, 1951.

967 [79] RMUE, Regulamento Municipal de Urbanização e Edificação (RMUE) DL. nº. 169/99, Diário
968 da República, 2.ª série, n.d.

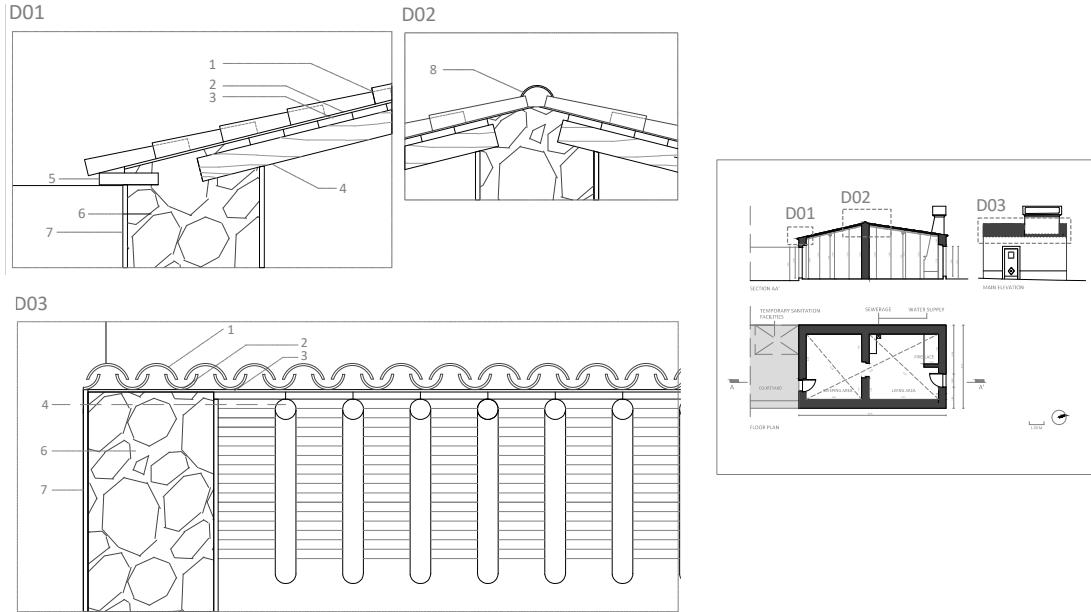
969 [80] Barbara Gherri, Assessment of daylight performance in buildings. Methods and design
970 strategies., WIT Press / Computational Mechanics, 2015.

971 [81] J. Fernandes, R. Malheiro, M. De Fátima Castro, H. Gervásio, S.M. Silva, R. Mateus, Thermal
972 performance and comfort condition analysis in a vernacular building with a glazed balcony,
973 *Energies*. 13 (2020). doi:10.3390/en13030624.


974 [82] C. Rubio-Bellido, J.A. Pulido-Arcas, J.M. Cabeza-Lainez, Understanding climatic traditions:
975 A quantitative and qualitative analysis of historic dwellings of Cadiz, *Indoor Built Environ.* 27

976 (2016) 665–681. doi:10.1177/1420326X16682580.

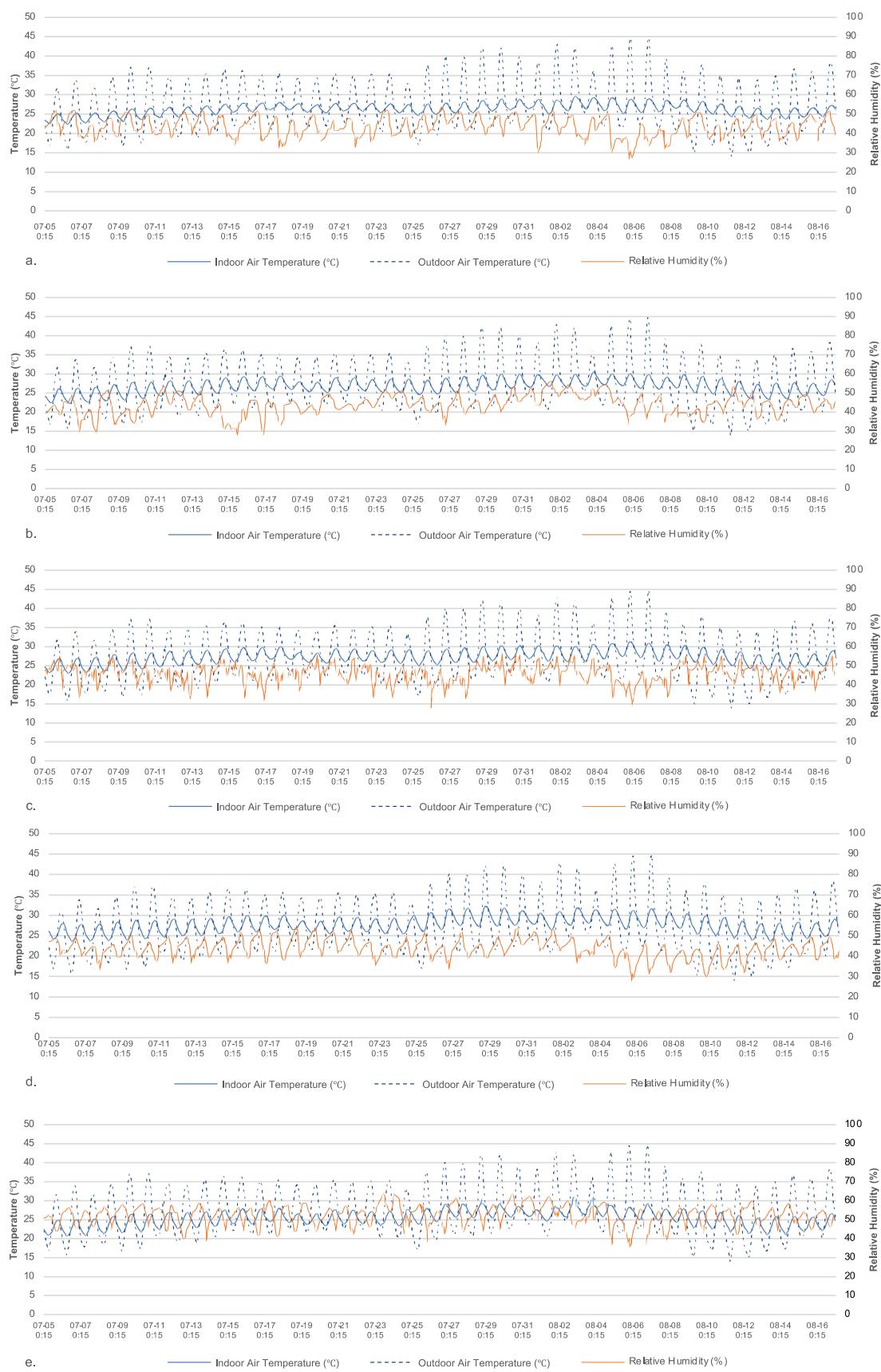

977 [83] B. Montalbán Pozas, F.J. Neila González, Hygrothermal behaviour and thermal comfort of the
978 vernacular housings in the Jerte Valley (Central System, Spain), Energy Build. 130 (2016)
979 219–227. doi:10.1016/j.enbuild.2016.08.045.

980

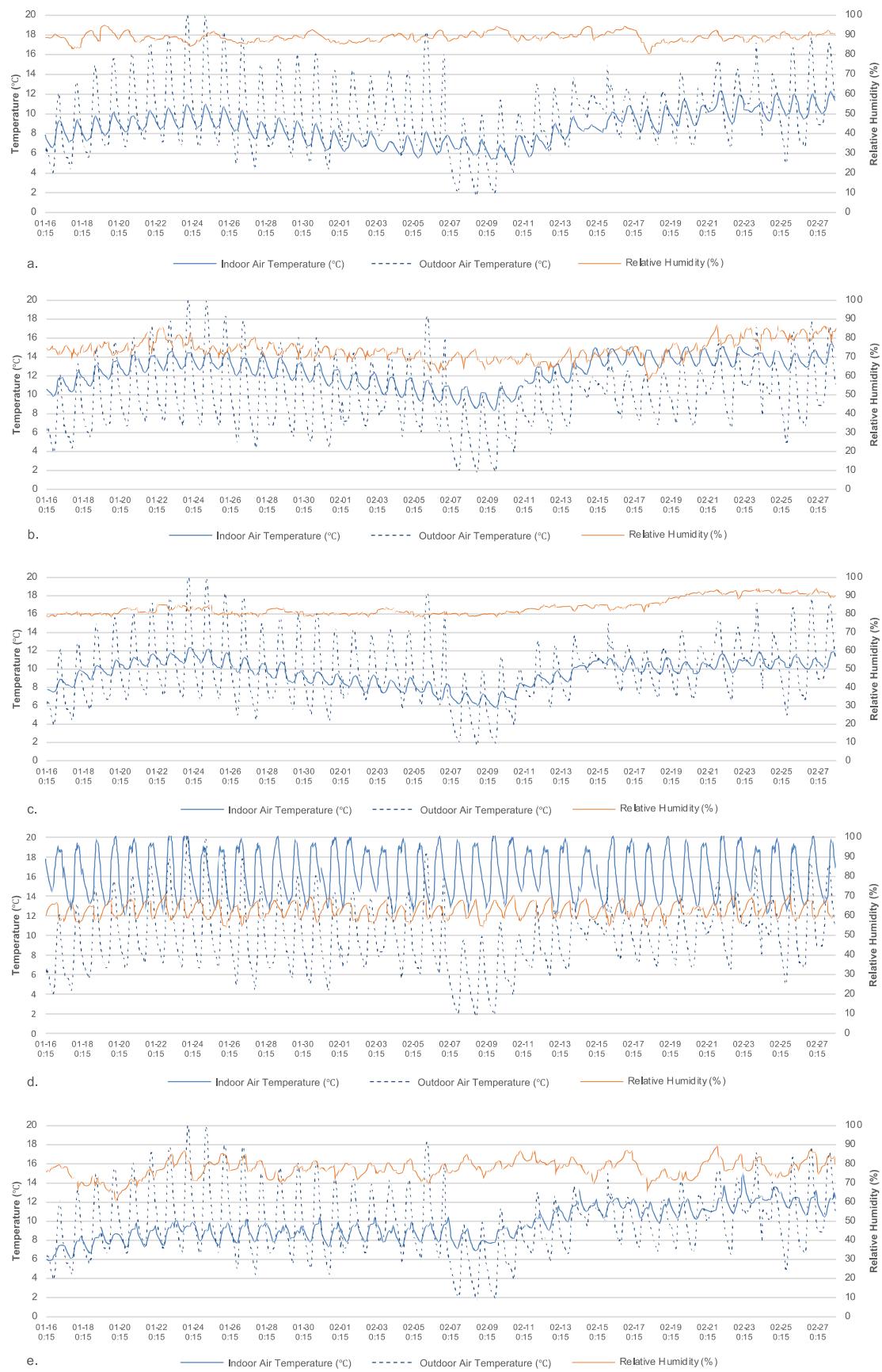
981

LOCATION	FAÇADES	DWELLING TYPOLOGY	LOCATION	FAÇADES	DWELLING TYPOLOGY		
D01				D12			
D02				D13			
D03				D14			
D04				D15			
D05				D16			
D06				D17			
D07				D18			
D08				D19			
D09				D20			
D10				D21			
D11				D22			

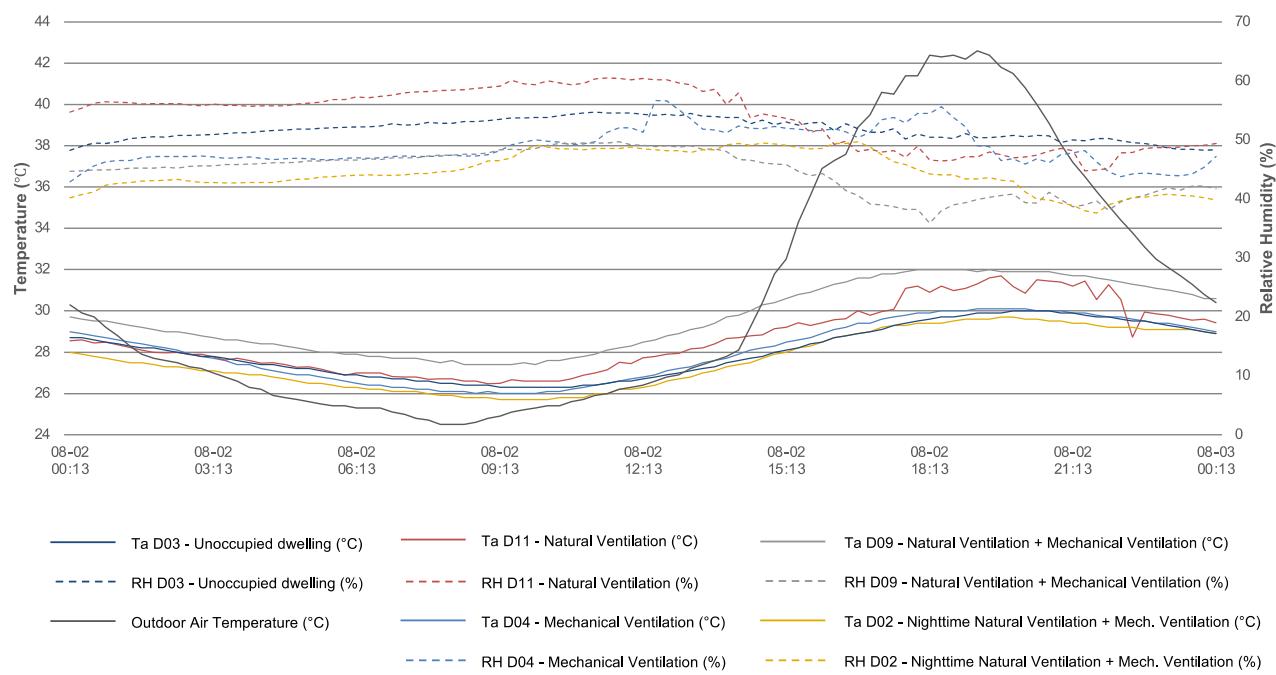
986 Appendix B. Constructive details D01, D02, D03. 1 – Traditional Arabic tile; 2 – Lime mortar; 3 –
987 Single hollow clay bricks; 4 - Wooden joists; 5 – Roof eaves with brick overhang; 6 – Limestone and
988 earth masonry; 7 – Lime plaster and lime wash; 8 – Ceramic ridge tile.

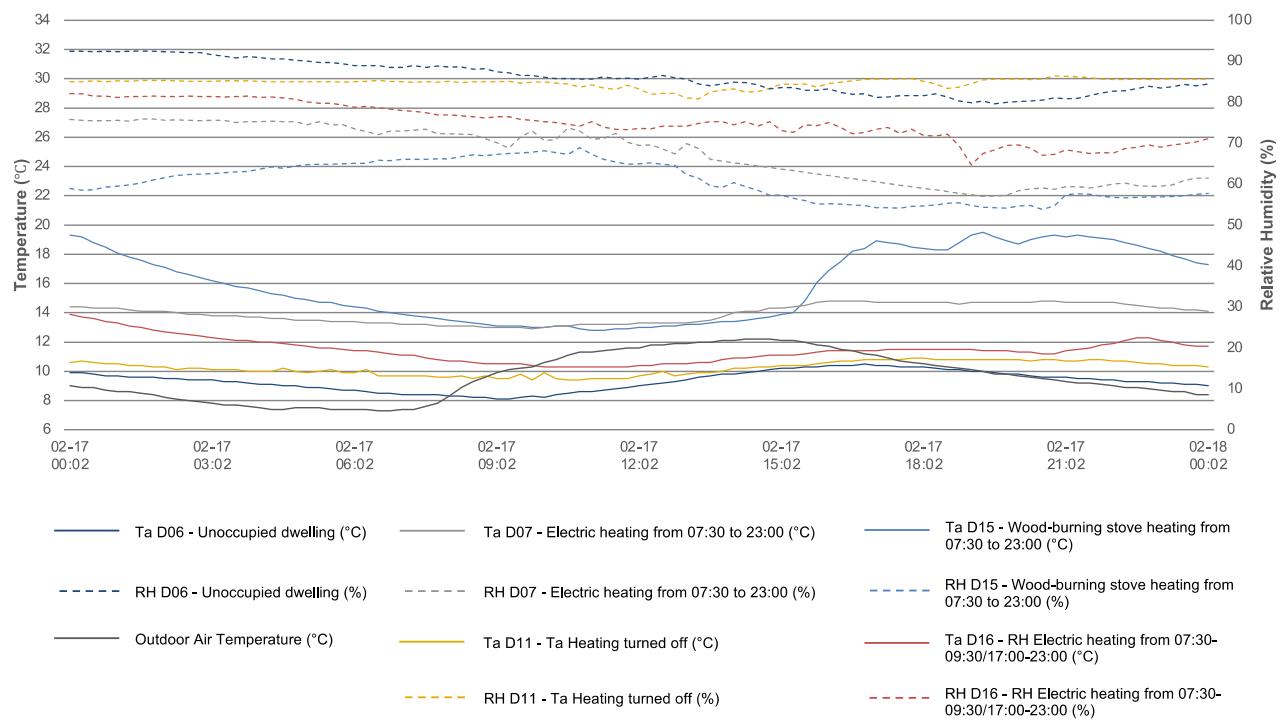


989


990

991


	Traditionally	Currently
Infrastructure and sanitation		
Sanitation facilities (SF)	Non-existent	50 % of case studies (CS) do not have access to basic SF, with unauthorized settlements. SF non-existent in 10 % of CS
Kitchen facilities (KF)	Non-existent. Fireplace cooking	25 % of CS have built KF in annex. 70 % of CS use a gas oven in the fireplace indoor space with no access to water supply
Sewerage system (SS)	Non-existent	Installed in the 1970s, connected to the public SS
Water supply network	Non-existent	Installed in the 1970s. To this day, 35 % of CS do not have water access in their sanitation facilities
Systems		
Heating system	Wood-burning fireplace	59 % are electric, only 5 % rely on a fireplace and 9 % on wood-burning stoves (wood-based heating 14 %), 4 % are gas heating and 9 % do not use any heating system (14 % unoccupied)
Cooling system	Natural ventilation	Stand-alone natural ventilation (18 %), natural ventilation with mechanical ventilation (40 %), nighttime nat. ventilation with mechanical ventilation (14 %) and stand-alone mechanical via pedestal fans (14 %) (14 % unoccupied)
Hot water system	Non-existent	70 % of CS now have 1 hot-water access point


997 Appendix D.2. Winter monitoring (January 16th – February 27th, D06 (a), D11 (b), D16 (c), D07 (d),
 998 D15 (e)

1000 Appendix E.1. Overlay of summer single-day temperature oscillation of the different categories of
1001 case studies identified.

1011 Appendix E.2. Overlay of winter single-day temperature oscillation of the different categories of case
1012 studies identified.

1013

1014

1015

1016 Appendix F. Average decrement factors/coefficients of stability and absolute depression values of the
 1017 maximum temperatures for the summer and winter monitoring.

SEASON	CATEGORY	CASE STUDY	AVERAGE DECREMENT FACTOR ⁽¹⁾	AVERAGE T _a MAX DEPRESSION (°C)
SUMMER				
	Unoccupied dwellings	D03	0.11	12.27
		D06	0.34	4.84
		D13	0.21	11.43
		\bar{x}	0.22	9.51
	Natural Ventilation	D05	0.3	5.71
		D08	0.45	3.32
		D10	0.07	9.06
		D11	0.18	7.08
		\bar{x}	0.25	6.29
	Natural Ventilation +	D01	0.33	3.14
	Mechanical Ventilation	D07	0.55	3.88
		D09	0.23	9.69
		D15	0.23	5.41
		D17	0.22	11.88
		D19	0.24	9.62
		D20	0.20	9.98
		D22	0.38	2.68
		\bar{x}	0.30	7.04
	Nighttime Natural Ventilation +	D02	0.19	10.06
	Mechanical Ventilation	D12	0.21	9.98

	D16	0.16	10.86
	D18	0.18	10.94
	̄x	0.19	10.46
Mechanical Ventilation	D04	0.33	3.92
	D14	0.27	4.42
	D21	0.26	5.35
	̄x	0.29	4.56
WINTER			
Unoccupied dwelling	D03	0.17	1.34
	D06	0.41	2.11
	D13	0.44	1.33
	̄x	0.34	1.59
Electric heating	D01	0.47	0.81
	D07	0.15	2.34
	D08	0.34	0.66
	D09	0.31	0.58
	D10	0.49	1.06
	D14	0.30	1.23
	D16	0.28	0.61
	D17	0.29	1.34
	D18	0.37	1.33
	D19	0.40	1.24
	D20	0.33	1.99
	D21	0.28	1.96
	D22	0.47	3.83

	\bar{x}	0.35	1.46
Wood-based heating	D04	1.03	8.31
	D05	2.11	16.30
	D15	0.67	3.96
Gas heating	\bar{x}	1.27	9.52
	D02	0.31	0.55
Heating system OFF	D11	0.25	1.90
	D12	0.31	1.53
	\bar{x}	0.28	1.71

1018

1019 ⁽¹⁾ The decrement factor or coefficient stability was computed based on the following formula given in [51]
1020 and for the entirety of each monitoring period:

1021
$$d_f = \frac{Ti_{MAX} - Ti_{MIN}}{Te_{MAX} - Te_{MIN}} \quad (5)$$

1022 Where, Ti_{MAX} is the maximum indoor temperature, Ti_{MIN} is the minimum indoor temperature, Te_{MAX} is the
1023 maximum outdoor temperature, and Te_{MIN} is the minimum outdoor temperature.

1024 Appendix G.1. Survey template with the thermal, visual, and indoor air quality sections.

Name:	Date and time:
Date of birth:	Outdoor temperature:
Marital status:	Weather conditions:

Employment status:	Occupation:
--------------------	-------------

Income bracket:	<input type="checkbox"/> Below minimum wage bracket <input type="checkbox"/> 650 - 1000 euros bracket	Occupants per household:
-----------------	--	--------------------------

Educational attainment:	<input type="checkbox"/> No education <input type="checkbox"/> Primary education. Literacy <input type="checkbox"/> Primary ed. Functional illiteracy <input type="checkbox"/> Lower secondary education	Occupant location during survey. Is the occupant near an external wall/opening?
-------------------------	---	---

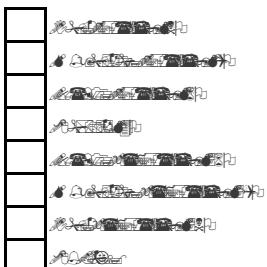
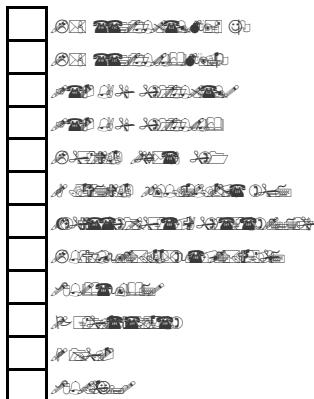
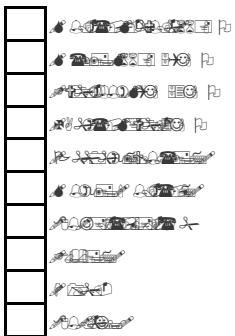
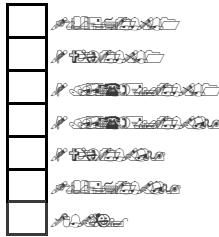
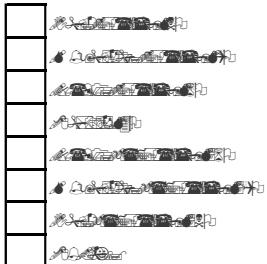
		Indoor thermal temperature and RH:
--	--	------------------------------------

Thermal comfort

1. Please check each item of clothing that you are wearing.

<input type="checkbox"/> Short-sleeve shirt	<input type="checkbox"/> Jacket	<input type="checkbox"/> Trousers	<input type="checkbox"/> Nylons
<input type="checkbox"/> Long-sleeve shirt	<input type="checkbox"/> Knee-length skirt	<input type="checkbox"/> Undershirt	<input type="checkbox"/> Socks
<input type="checkbox"/> T-shirt	<input type="checkbox"/> Ankle-length skirt	<input type="checkbox"/> Long underwear bottoms	<input type="checkbox"/> Shoes
<input type="checkbox"/> Long-sleeve sweatshirt	<input type="checkbox"/> Dress	<input type="checkbox"/> Long sleeve coveralls	<input type="checkbox"/> Sandals
<input type="checkbox"/> Sweater	<input type="checkbox"/> Shorts	<input type="checkbox"/> Overalls	<input type="checkbox"/> Other
<input type="checkbox"/> Vest	<input type="checkbox"/> Athletic sweatpants	<input type="checkbox"/> Slip	<input type="checkbox"/> No reply

2. What is your activity level right now?






<input type="checkbox"/> Reclining
<input type="checkbox"/> Seated
<input type="checkbox"/> Standing relaxed
<input type="checkbox"/> Light activity standing
<input type="checkbox"/> Medium activity standing
<input type="checkbox"/> High activity

3. What is your general thermal sensation?

<input type="checkbox"/> Hot (3)
<input type="checkbox"/> Warm (2)
<input type="checkbox"/> Slightly warm (1)
<input type="checkbox"/> Neutral (0)
<input type="checkbox"/> Slightly cool (-1)
<input type="checkbox"/> Cool (-2)
<input type="checkbox"/> Cold (-3)
<input type="checkbox"/> No reply

4. Which of the following do you personally adjust or control in your space?

<input type="checkbox"/> Opening/closing window
<input type="checkbox"/> Opening/closing door
<input type="checkbox"/> Mechanical ventilation/Portable fan
<input type="checkbox"/> Natural ventilation
<input type="checkbox"/> Heating (if so, which type)
<input type="checkbox"/> Clothing and bed clothing
<input type="checkbox"/> Other
<input type="checkbox"/> No reply

<input type="checkbox"/>	Much more daylight
<input type="checkbox"/>	More daylight
<input type="checkbox"/>	No change
<input type="checkbox"/>	Less daylight
<input type="checkbox"/>	Much less daylight
<input type="checkbox"/>	No reply

3. Personal tolerance (painfulness index according to the ISO 10551). Is it:

<input type="checkbox"/>	Perfectly bearable
<input type="checkbox"/>	Moderately bearable
<input type="checkbox"/>	Slightly bearable
<input type="checkbox"/>	Neutral
<input type="checkbox"/>	Fairly difficult to bear
<input type="checkbox"/>	Very difficult to bear
<input type="checkbox"/>	Unbearable
<input type="checkbox"/>	No reply

4. When is this most often a problem?

<input type="checkbox"/>	Morning (before 11am)
<input type="checkbox"/>	Midday (11am-2pm)
<input type="checkbox"/>	Afternoon (2pm-5pm)
<input type="checkbox"/>	Evening (after 5pm)
<input type="checkbox"/>	No particular time
<input type="checkbox"/>	Always

<input type="checkbox"/>	Winter
<input type="checkbox"/>	Spring
<input type="checkbox"/>	Summer
<input type="checkbox"/>	Autumn
<input type="checkbox"/>	Always

5. To what extent do you disagree with the statement: "It is possible to perform indoor tasks during the day by relying on daylight availability alone"?

<input type="checkbox"/>	Strongly agree
<input type="checkbox"/>	Agree
<input type="checkbox"/>	Neither agree nor disagree
<input type="checkbox"/>	Disagree
<input type="checkbox"/>	Strongly disagree
<input type="checkbox"/>	No reply

6. How many daily hours on average do you use artificial light?

<input type="checkbox"/>	> 10 hours
<input type="checkbox"/>	> 7 hours
<input type="checkbox"/>	> 3 hours
<input type="checkbox"/>	> 1 hour
<input type="checkbox"/>	< 1 hour
<input type="checkbox"/>	No reply

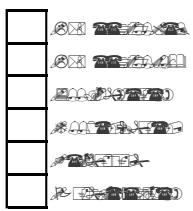
7. How satisfied are you with the view out from the wicket?

<input type="checkbox"/>	Very satisfied (3)
<input type="checkbox"/>	Moderately satisfied (2)
<input type="checkbox"/>	Slightly satisfied (1)
<input type="checkbox"/>	Neutral (0)
<input type="checkbox"/>	Slightly dissatisfied (-1)
<input type="checkbox"/>	Moderately dissatisfied (-2)
<input type="checkbox"/>	Very dissatisfied (-3)
<input type="checkbox"/>	No reply

8. How would you score the following as a result of introducing a façade opening/skylight? from 0 to 5, where 0 is the bottom classification and 5 the top one.

<input type="checkbox"/>	Fresh air
<input type="checkbox"/>	Increased daylight
<input type="checkbox"/>	View out
<input type="checkbox"/>	Electricity consumption reduction

Indoor Air quality


1. Do you perceive the air quality to be:

<input type="checkbox"/>	Clearly acceptable
<input type="checkbox"/>	Just acceptable
<input type="checkbox"/>	Just unacceptable
<input type="checkbox"/>	Clearly unacceptable

2. Do you perceive the odour intensity to be:

<input type="checkbox"/>	Non-existent
<input type="checkbox"/>	Weak
<input type="checkbox"/>	Moderate
<input type="checkbox"/>	Strong
<input type="checkbox"/>	Very strong
<input type="checkbox"/>	Overpowering

3. How would you best describe the source of this discomfort?

1030 Appendix G.2. Summary Table of the linear regression study between the survey's illuminance
1031 tolerance votes and the monitored data.

ITV = A. Lux + b		R²	p-value	S_e
A	b			
0.009	1.053	0.007	0.081	1.176

1032 A: coefficient of Lux, the slope of the regression line, how much ITV changes for each change in Lux; p-value: Pearson's
1033 chi-squared; b: constant, equals the value of ITV when the value of Lux = 0; R²: Coefficient of determination; S_e: Standard
1034 error of estimate; Lux: Indoor Natural Illuminance; ITV: Illuminance Tolerance Vote.

1035

1036