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Abstract—This work proposes a framework to design a cost-
efficient unmanned aerial vehicle (UAV)-based energy-neutral
(EN) system deployed to harvest data from a set of internet-of-
things (IoT) nodes. The energy-neutrality refers to the zero-sum
balance between energy harvested, stored, and consumed during
operation, which is a game-changer when a connection to the
electricity grid is not available/feasible. This involves employing
an off-grid charging station (CS) comprising of photovoltaic (PV)
panels and batteries that provide enough energy to recharge
the UAV-based aerial access points (AAPs). The investment
cost is determined by the number of AAPs, PV panels, and
ground battery units. Its minimization cannot be achieved using
conventional optimization tools due to the non-tractable form of
the CS load. Therefore, a novel wave-based method is proposed
to represent the load profile as a proportional function of the
required number of AAPs, so as to directly relate the CS design
to the trajectory optimization. Compared to baseline scenarios,
the proposed trajectory design can halve the time and energy
consumption; the investment cost varies with the time and season
of service; the off-grid CS is particularly advantageous in rural
areas, while in urban areas its cost is comparable to that of a
grid-connected alternative.

Index Terms—Communication systems, solar energy, energy
storage, load modeling, remotely piloted aircraft.

I. INTRODUCTION

HE use of unmanned aerial vehicle(s) (UAVs) provi-

sioned with on-board next-generation small cell radio
access node as aerial access point(s) (AAPs) to harvest data
from a set of Internet-of-Things (IoT) nodes has gained
much attention in the recent years [1]. A separate study item
has been released by the third generation partnership project
(3GPP) detailing the architecture and link-level requirements
of an AAP [2]. If the system is deployed for a short-term
event, such as data harvesting from a rural IoT network that
is widely spread geographically, deploying a grid-connected
fixed infrastructure would be cost-inefficient, since this would
require a large number of telco modules with under-utilized
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capacity. Additionally, a connection node to the electricity
grid may not be available in some areas, and installing one
might not be feasible due to the high installation costs. A
potential solution to this is to employ an off-grid system that
harvests (and stores) the required energy from the surrounding
environment. In the proposed instance, the system is a UAV-
based mobile network that consists of a set of UAVs and
a ground charging station (CS). By virtue of limited on-
board battery capacity, the available service time of an active
(flying) AAP is a function of the on-board battery pack and
its trajectory; consequently, in order to guarantee continuity of
service beyond the active time of a single AAP, a set of fully
charged idle (not active) AAPs is needed, so as to replace the
out-of-power AAP(s), as shown in Fig. 1. Moreover, given the
high cost of AAPs, the out-of-power AAP should be recharged
while its replacement is active, thereby justifying the use of
a CS. Hence, to guarantee 100% reliability, the load to the
CS should be modeled as a function of the UAV-and mission-
related time factors, such as the active time of a UAV, time
between successive data harvesting from an IoT node, etc.
Inspired by the above facts, in this work, we model both the
energy demand and supply of an energy-neutral (EN) UAV-
based mobile network as respective functions of the mission-
related time factors and the solar irradiation. These are then
used to develop a general framework that uses the trajectory
of the AAP as a tool to minimize the investment cost.

A. Related Works

The sizing of a photovoltaic (PV)-battery system for supply-
ing a CS is challenging due to factors such as the associated
costs, the volatility of solar irradiation, varying load, and
physical location constraints [3]. The focus of the work in [3] -
[8] is on supplying the energy required by base stations in mo-
bile networks through PV-battery systems. In [3] and [4], the
authors optimize the size of the energy system used to power a
fixed telecommunication infrastructure, but they do not control
the load profile, which is taken as a design requirement. The
works in [5] and [6] model the performance of renewable
energy source (RES)-based base stations to size the energy
system based on Markovian models. [7] proposes a multi-
objective wind-driven optimization (MO-WDO) algorithm to
size an off-grid energy system. The number of PV panels
and battery cells are optimized based on the ‘annual total life
cycle cost’. In [8], a genetic algorithm-based methodology is
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proposed to design a PV-battery system with the objectives
of minimizing CAPEX and OPEX. The load profile to the
charging station used in [3]- [8] is not suitable for a UAV-
based mobile network, since it is not a function of UAV-related
time factors.

The articles in [9]- [13] consider an off-grid UAV-based
architecture to serve a set of users with the objective of
minimizing the investment cost or maximizing the energy
storage. In [9] and [10], the authors minimize the installation
cost of a UAV-based cellular network in rural areas while
considering UAV recharge over time, coverage, and installation
constraints. However, the UAVs hover while serving the users,
thereby making the proposed frameworks less efficient. The
work in [11] proposes a GA-based solution to maximize the
energy stored in UAVs and the ground sites while providing
cellular coverage to the considered area; there is no attempt
to minimize the investment cost. The authors of [12] propose
an energy-efficient mission planning for a UAV-based cellular
network to minimize the energy consumed by UAVs and
ensure cellular coverage to the users. However, [12] does
not consider the power constraints related to the recharging
sites. Moreover, it uses the results of [10] to design the
energy systems of the UAV recharging sites. [13] proposes
an optimization framework to minimize the financial cost of
a PV-battery-powered off-grid UAV-based cellular telecom-
munication network by sizing the energy system using the
derived power consumption profiles for three recharging sites.
The work uses the results of optimal mission planning in [12]
as input to obtain the load profile of each recharging site.
However, for real-world IoT applications, the mission planning
of the UAVs and the design of the energy system should be
investigated as a united problem.

The work in [14] - [26] consider efficient deployment of
UAV-based systems to maximize performance metrics such
as coverage area, number of covered users, sum rate, and
energy efficiency. The placement optimization of a UAV-
based communication system can be generally divided into
two categories: quasi-stationary deployment and optimal tra-
jectory design. The first scenario determines optimal hovering
position(s) of UAV(s) [14] - [19]; in the second scenario, a
set of UAVs move along a designed path that maximizes the
considered performance metric [20] - [26]. The authors of
[14] and [15] use analytical tools to maximize the coverage
region of a UAV-based system by varying the altitude of the
UAV. In [16] and [17], the authors use circle packing-based
algorithms for the optimal quasi-stationary deployment of a
multi-UAV system to maximize the global energy efficiency
and throughput, respectively. In [18] and [19], the authors pro-
vide multi-UAV deployment strategies based on the K-mean
and mean-shift algorithms to maximize the coverage region
and the minimum achievable rate, respectively. The authors of
[20] and [21] design a UAV-enabled system based on covert
wireless communications to enable the ground users to hide
their transmissions from each other while conveying critical
information to the UAV. The work in [20] uses a penalty
successive convex approximation (P-SCA) scheme to jointly
design the UAV trajectory and its maximum transmit power
of the artificial noise (AN), together with the user scheduling
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strategy subject to covertness constraint, whereas, [21] uses a
heuristic approach to optimize the flying location and transmit
power. The trajectory design or placement methods proposed
in [20] - [25] formulate the problem to either maximize the
energy efficiency or throughput as a mixed-integer non-linear
problem (MINLP). This is then solved using the sequential
convex programming technique. A comprehensive list of pa-
pers that consider UAV placement optimization is available in
[26].

B. Major contributions and paper structure

The work in [3] - [8] consider supplying the power required
by a fixed base station using PV and battery storage systems.
The load to the energy system is modeled as a function of the
traffic demand of the base station. However, the load to the
CS in a UAV-based architecture is a function of the service
demand of the users, as well as the trajectory of the UAV.
Although the works [9]- [13] tackle the cost minimization of
a UAV-based architecture, they consider a simple hovering
UAV scenario. These are sub-optimal solutions for an IoT
application since they do not exploit the mobility of UAVs
as a tool to minimize the cost by reducing both their number
and the load to the CS. Moreover, the load profiles do not
present an interactive formulation that allows us to show its
response to the mission and UAV-related time factors, such as
the delay between the successive data harvesting from a node,
active and charging time of a UAV, etc. Coverage and energy-
efficient UAV deployment strategies are proposed in [14]- [26].
However, the authors do not consider the presence of a ground
CS, and all the missions are set to have a duration less than
or equal to the active time of a UAV. The objectives are either
to determine an optimal altitude that maximizes the coverage
area or to find the trajectory parameters that maximize the
number of bits transmitted per Joule of Energy consumed.
Maximizing the coverage area/ energy efficiency might not
always minimize the cost. For instance, the energy efficiency
can be improved by flying the AAP at an optimal velocity
which is not equal to the maximum velocity. This increases
the delay, which forces the system to deploy another AAP if
the delay in visiting the same user in succession is greater
than the network’s time difference of arrival (TDOA), thereby
increasing the cost. Therefore the trajectory design to minimize
the cost requires further attention. In this work, the objective of
cost-efficient design and deployment of a UAV-based system
in areas without access to a reliable electricity grid is pursued.
The major contributions of this paper can be summarized as
follows:

o Proposing a novel wave-based method to generate the
load profile of a CS in an EN UAV-based mobile network
as a function of the number of AAPs and its mission
parameters.

o Designing an efficient AAP path design based on the
mean-shift algorithm that minimizes the number of AAPs
subject to data harvesting and trajectory constraints. This
method makes it possible to solve the problem using
convex optimization techniques and can be tweaked to
optimize any performance metric.
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o Employing the above to minimize the overall cost of
deploying an EN UAV-based communication network that
harvests data from a set of IoT nodes over set intervals
of time.

Section II describes the considered scenario and the applied
models. Section III illustrates the problem formulation and the
wave-based load profile modeling, as well as the mean-shift
clustering-based trajectory design. The main findings of this
paper are summarized in Section IV.

II. SYSTEM MODEL AND DEFINITIONS

In this work, a delay-tolerant IoT network is considered,
in which a UAV-based EN system is deployed to collect ()
bits of data from a set of ground users (GUs) every Theriod
seconds. In practice, Tperioq 1s the time difference of arrival
(TDOA) of the IoT network, and is a function of the memory
capacity of the IoT sensor nodes. The EN system, as shown in
Fig. 1, consists of a flock of AAPs, and a CS on the ground to
harvest and store the required energy for the AAPs. The CS
is formed by two elements:

¢ an energy harvesting PV system, consisting of a number
Npy of solar panels, each of cost C,, €, that harvest
energy from solar irradiation;

o a battery unit of Ny units, each costing C} €, to store
the energy harvested in surplus and use it to supplement
the PV module when this cannot sustain the load by itself.

A flying AAP is called active AAP, whereas one at the CS,
either charging or waiting to be deployed, is called idle AAP.
The system is assumed to work for an amount of time Tyeyvices
measured in hours, within a given time slot of a day: T =
[Tstart, Tstart + Tservice], Where Tiiare is the time of the day,
thus ranging from from 00:00hrs to (24:00 — Tyervice) hrs.
For tractability, the trajectory of the AAP corresponding to
one data harvesting cycle is divided into R path segments,
represented using R + 1 waypoints [23]. The length of each
segment is constrained to be small enough as to assume the
channels between the AAP and each GU to remain stationary:

b1 — Thr|| < min {6, 7 - vmax} V7 € R = {1,2,..R})
where § is chosen so that, within each path segment, the
AAP can be assumed to either hover or fly at a constant
velocity v, which cannot be higher than the maximum AAP
velocity Umax. Th» = (%, y,) represents the horizontal-plane
coordinates of the 3D position of the r path segment of
the AAP r, = (ry,,Iyv,), in which ry , corresponds to the
vertical coordinate of the AAP; the AAP is assumed to fly at
a constant altitude: 7, = h,Vr € R. The AAP schedules
one GU at a time for data uplinking, thereby following a time
division multiple access (TDMA) scheme to serve the GUs. If
T, is the time that the AAP spends in the r path segment,
and T, , is the time allocated to the n™ GU when the AAP is
in the r™ path segment, then Thcycle = Zle T, is the time
it takes the AAP to harvest (Q bits of data from N GUs such
that,

N
Z To,<T, VreR. )
n=1
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Figure 1: Considered application scenario: the AAP(s) is (are) deployed to
collect data from a set of ground IoT nodes; an active AAP with little energy
left is replaced by a fully charged idle AAP.

Also, the n™ GU is located at ground level with the corre-
sponding horizontal plane coordinates uy ,, = (Zp,yn) V1 €

N ={1,2,.N}.

A. How is data harvested from the GUs?

At Tyiart, a fully charged AAP ascends from the CS and
follows the optimal trajectory (designed as explained in Sec-
tion III-B). If the time it takes the AAP to complete one cycle
of data harvesting is greater than the TDOA of the network
(THeycle > Tperiod), then a second AAP from the ground
station is deployed at Tyiart + (Tperiod/3600) hours, following
the same trajectory as that of the previously deployed AAP'.
This data harvesting cycle continues for Tgice hrs. The
AAPs are assumed to be operating in orthogonal frequency
bands to minimize the inter-user interference (e.g., narrow-
band frequency division multiple access systems [34]). The
frequency reuse technique used in the conventional fixed-
telecommunication system can be used to accommodate any
number of AAPs without increasing the available bandwidth.
Additionally, at the beginning of each cycle of data harvesting,
the on-board battery of the AAP is checked to guarantee that
it has enough energy to complete the cycle; if not, it returns to
the CS for recharging, and it is replaced by a fully recharged
AAP, as shown in Fig. 1.

B. Propagation Environment

The communication channel between the AAP and a GU
can be either line-of-sight (LoS) or non-LoS (NLoS), depend-
ing on the relative position of the GU with respect to the
AAP and the building profile of the region [14]- [25]. Hence,
the probability of having a LoS channel between the n" GU
and the AAP while the AAP is in the r'" path segment is
determined using,

P (1) =

\T

1
N €))
1+a-exp{-b-[enr(r;) —a)]}
where a,b are the environment-dependent parameters that
are fundamentally decided by the building profile of the

region [14], and €,, ,-(r,,) = (180/7)tan~! [ } is the

ha
[[rn,r—un ol

'In this work, we are not considering the case Tperioa = 0; when
Therioa = 0, a suitable aerial cell planning is required to minimize the
number of AAPs, as proposed in [17] and [25].
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corresponding elevation angle. The LoS and NLoS path loss
values in dB are expressed as [14], [17], [25], ,

L, . (ry) = 20 - logdy, ,(r;) + 20 - log f

4
+20~log< i >+ng @)
Vlight

where g € {los,nlos}, dy, (1) = \/Hrh,r —Up p % + ha2; f
and viign; are the respective signal frequency and the velocity
of light; 7' and 7™° are the mean values of the additional
path loss for LoS and NLoS links due to the environment,
respectively. For a given elevation angle, this additional loss
has a Gaussian distribution [27], and it depends on the building
profile of the region. However, from [27], it is noticed that
the change in the additional path loss within a particular
propagation group (LoS/NLoS) is insignificant compared to
the change in path loss value from one group to the other: the
NLoS path loss value depends on the scattering and reflections
from the surrounding buildings which depend largely on the
frequency of operation and the building profile of the region
rather than the distance. This allows us to model the path
loss with a constant gap between the two propagation groups.
Consequently, the average amount of exchanged data in bits-
per-seconds-per-Hertz (bps/Hz) is given by,

P
__ 1plos
nlos
+Py.27 (rr)logy <1 + W) , (5)
where P5o%(r,) = 1 — P)%.(r,), and P and o are the

signal and noise power, respectively. The principal reason for
considering a probabilistic LoS-NLoS air to ground channel
model is the lack of the building map of the region. If the
building map of the region is available, the value of Pi%% (r,.)
can be determined using ray tracing methods, and (5) can be
modified accordingly. Hence, the mean shift clustering-based
trajectory design we propose in Section III-B can be used for
several scenarios, including a channel estimated using a deep

neural network [28].

C. UAV Power consumption Model

In the considered system, the AAP takes off vertically
from the CS to replace an out-of-power AAP, then the latter
descends vertically for recharging; during data harvesting, the
AAP flies horizontally or hovers to collect the data from the
users. The total power consumption of the AAP is the sum
of the power consumed by the UAV and the radio access
node; since the power consumed by the radio access node
is negligible compared that consumed by the UAV (by two
orders of magnitude) [17], [23], it is assumed that the power
consumption of the whole AAP is equal to that of the UAV.
The UAV parameters are summarized in Table I. From [25],
the power required by the AAP for flying horizontally and
vertically is given by (6) and (7), respectively:

31)7% 1 3
Ph(vr) = NrotorPb | 1+ 5 + §UdAfp(ha)’U7.
tip N ,

H’usela
selage
Phae
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Py(ve) = — | ve + /02 +
( ) 2 ( \/ Nrotorp(ha)Arotor>
+Nr0toer- (7)

where B, = ép(ha)sAmtorugp, plha) = (1 —
2.2558.10*5%)4'257&. Pilage and Ppyselage are the power levels
required to overcome, respectively, the profile drag forces of
the rotor blades and the fuselage of the aerial vehicle opposite
to its forward movement; Pquce represents the power required
to lift the payload. Replacing v, = 0 in (6) gives the power
level required for hovering.

D. PV-battery system modeling

1) PV modeling
The considered model for the PV power generation has the
following expression:

Poy(Npy, 1) = Line(t) - Apy - Npy * Npv, ®)
where ;. (t) is the solar irradiance at time ¢ on a south-
oriented plane with tilt angle of 30°, measured in W/m?; Apy
is the panel area (m?), and 7, is the panel efficiency (assumed
constant).

2) Ground battery modeling

Battery storage devices are combined with RESs, such as
PV panels, to offset the intermittency of these resources. The
power needed by the CS to recharge the AAPs is supplied by
either the PV panels or the ground battery, depending on the
availability of the solar energy. If there is a surplus of power
generation, the extra power is redirected towards recharging
the batteries of the charging station, as long as their capacity
allows it. If, on the other hand, the power generation is not
sufficient, the remaining power is drawn from the ground
battery. The battery model, including its boundary conditions,
is adapted from that in [32], and it is the following:

Evi(t) = Ept(t — At) + Poy(t) - At - ot (Pot) (9a)
Ept(0) = NptBmoduleSOCrax, (9b)
Nbt BrnoduleSOCrmin < Ebt(t) < NptBmoduleSOCmax  (9¢)
Poi(t) < Pch,max; ~ wWhen Py (t) >0 (9d)
|Pot(t)] < Pochmax,  When Py (t) <0, (9e)

where Ey(t) is the energy stored in the battery at time ¢;
Py (t) is the power flowing into the battery (negative when
the battery is discharging); At is the time interval considered,
and 7yt (Ppt) is the battery efficiency, which depends on the
sign of P because charging and discharging efficiencies
are different. As per the constraints, Ny is the number of
battery modules, ,04ule 18 the capacity of one battery module,
SOCpin and SOC,,,ax are the minimum and maximum State-
of-Charge (SOC) of the battery, which indicates the level of
charge relative to the capacity. Hence, conditions (9b) and
(9c) mean that the battery pack is initially fully charged,
(SOC = SOC,ax), while the battery is considered depleted
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Table I: UAV Parameters [25].
Label Definition Value [ Label Definition Value
W Weight of the UAV 3234 N p(ha)  Air density -
Nriotor Number of rotors 4 Uq Drag coefficient 0.9
U UAV’s horizontal flying velocity - Arotor  Rotor disc area 0.06 m2
A Profile drag coefficient 0.002 Viip Tip speed of the rotor 102 m/s
s Rotor solidity 0.05 Ag Fuselage area 0.038 m?
Ve ascent/descent velocity 5 m/s
. . . T.
when SOC = SOC,,;,. Finally, (9d) and (9e) impose maxi- — Twait = (Naap — 1) Tactive — Teharge — Naap?.(lz)

mum input and output powers, as specified in the battery data-
sheet.

Active
state

Idle
state

e

Tweycle Tiervice

Figure 2: Time components of an AAP work cycle.

E. AAP mission breakdown

The time intervals that define the work cycle of an AAP
during a mission are displayed in Fig. 2, and are defined as
follows:

e T,ctive 18 the active time of an AAP, i.e., the total time
it spends flying before recharging. Tyctive 1S given by the
sum of the horizontal flying time Tj, and the exchange
time Tiy:

Tactive = NHcycle : THcycle + Tdescent + Tascenty (10)
Tex

Try
where Tj, is the product of the duration of a cycle of
data harvesting and the number of cycles, Nycycle, an
AAP can withstand before running out of energy; Tex is
the time spent in the exchange process, from when the
substitute AAP leaves the CS to when the discharged
AAP reaches the CS. It is obtained by summing the
descent and ascent times, Tgescent and Thgcent, Which are,
respectively, the time an AAP needs to return to and to
leave the CS.

e Ttharge is the time needed to fully recharge an AAP,
which is calculated based on the capacity of each AAP’s
on-board battery B,ap, its Depth-of-Discharge DOD,,y,
(the proportion of capacity that is used during each work
cycle), and its average charging power Poarge:

Tcharge = BaapDODaachharge- (1 1)

o Tait 1s the interval in which an AAP is charged, but it is

waiting for the an active AAP to finish its mission before

being deployed. Its value is determined by using the two

definitions of Tyycycle, One referring to a single AAP, and
the other to a whole flock, as follows:

Tchclc = Tactivc + Tchargc + Twait

Tex
= Naap (Tactive - ;)
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 The period Tyycycle is the interval corresponding to a full
AAP work cycle, given by the sum of the time the AAP
spends in each of the three states: active, charging, and
idle,

TWCyCle = lactive T Tcharge + Twait- (13)

III. OPTIMAL DESIGN OF AN ENERGY-NEUTRAL SYSTEM

In this section, it is explained how a cost-efficient EN
system is achieved by optimally designing the trajectory of
the AAP and efficiently selecting the configuration of the CS.
The corresponding optimization problem can be formulated
as,

(P1) : minimize  Ciy [Npv, Not, Naap({T7})] (14a)
Npws N, {rr},
{1} AT}
PpV(vav t) + Pbt(th7 t)nbt
2 Pld [Naap({T’r})7t] ?Vtv (14b)
)
f < Umax vr (140)
> T+ BDy,(ry) > Q Vn, (14d)

Th1 = Phe(R+1) = ros, Ve € {1,2, ..., Nueyele }, (14€)
(1),(2),(8) — (%e). (141)
The objective function of (P1) is the total investment cost,
consisting in the costs of the PV panels, battery units, and the
AAPs:
C'inv(J\/vpva tha Naap({Tr}’)) = vacpv + thCbt
+Naap({T7-}) Caap,  (15)
where Nuap({T}) is the total number of AAPs, each costing
Caap €; Nagp({T}) is the sum of idle and active AAPs, where
the number of active AAPs is determined by the TDOA of the
network Tj,erioq and the time it takes an AAP to complete one
cycle of data harvesting:

Naclive({Tr}) = ’7

where [z] rounds x to the nearest integer greater than or
equal to z. Therefore, the total number of AAPs required to
guarantee that there is always a fully charged AAP ready to
be deployed to replace a depleted AAP is determined as [25],

N7 = [ (222 1) Mt 1)] . (19

active
with Tyeaq defined as the sum of charging and wait times,
Tacad = Teharge + Twait- Tactive 15 obtained from the data-

(16)
Tperiod

PO Tﬂ
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Figure 3: UAV power consumption as a function of the velocity.

sheet 2 of the UAV used. Usually, the UAV manufacturers
specify Tyctive as the hovering time for a given payload. Since
the hovering power is greater than the horizontal flying power
of the UAV until a particular velocity value, the maximum
AAPs flying speed is set to be vmax in (14c¢), where vpax 1S
obtained from the power profile of the AAP, as shown in Fig. 3.
This ensures that Tyctive Will be greater than or equal to the
hovering time indicated in the data-sheet. The corresponding
number of idle AAPs is then determined as Nigio({7:}) =
Naap({T+}) = Nactive({T-}). Constraint (14b) is the energy
neutrality constraint, which guarantees that the CS load power
requirement is always satisfied, regardless of whether power
is provided by the PV panels or the ground battery. One of
the challenges in solving (P1) is the difficulty in representing
the load to the CS at a given time ¢ as a function of T}ericd,
THeycles Tactives and Tgeaq. In Section III-A, a novel model
is developed to represent the load, Piq [Naap({T7}),t], as a
function of the number of AAPs. Eq. (14d) guarantees the
delivery of @ bits of data from all the GUs to the AAP within
THcycle s, With B being the available bandwidth. Eq. (14e)
ensures that each data harvesting cycle starts and ends above
the charging station location, rcs.

A. Wave-based load profile modeling of the CS

From the point of view of the CS, an AAP can only be in
two alternative states: charging or not charging. In the pre-
viously described scenario, these two states will periodically
repeat themselves within a given period of time. Let, K,ap ;(t)
be the function describing the state of the i™ AAP at time ¢,
such that:

=0, when AAP starts/stops charging; (18a)
K o= >0, when AAP is charging; (18b)
aapi(t) = < 0, when AAP is not charging; (18¢c)

is periodical with period Tywycycle. (18d)
The above conditions can be met by modeling Kap () as a
function of the following variables:

Kaap,i(t) =F (Tperiodu TWCycle7 THcyc187 Tactive7 Tcharge) . (19)

The solution to model F), inspired by the modulation of
power electronics, is to use a sinusoidal function that can be
converted into a square wave at a later stage, using a compar-
ative function. This approach allows synthetic expression for
whatever number of cycles and even AAPs, and it is easy to

Zhttps://dl.djicdn.com/downloads/m100/M100_User_Manual_EN.pdf
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implement in any programming language. Its expression is the
following:

Kaap,i(t) = asin {W(TWCycle) [t + ¢(Tactive7 Tcharge)
- Ci(THcyclea Tperiod) + "Y(TVchcley Tcharge)~ (20)
In order to meet the conditions described in (18a)-(18d), the

shape of (20) can be adjusted by tweaking its five coefficients,
as follows:

e « is the amplitude of the wave, but in this case it is
only used to specify the sign of the function. Its value is
a = —1 if the cycle starts with an already charged AAP
(or vice-versa);

o w(Tweycle) is the period of the sine wave, which can be
calculated as w(Tweycle) = Tvi’yrcle, as a consequence of
the definition of period applied to condition (18d);

o O(Tactives Teharge) 18 the phase of the wave, which estab-
lishes the shape of the function. It is found by imposing

(]88.) at t = Thctive and ¢ = Thctive + Tcharge, resulting
arcsin (— &
in ¢(Tactiv57 Tcharge) = w o
o (i(THeycle; Tperiod) s the delay between the launch of the
first and the 7 AAP, as explained in Section II-A:

Ci (THcycle7 Tperiod) =

actives

0 if 1=1
s . Tperiod : THcycle > Tperioda
=q=1 E== T vie @5 Nup((T)}
Tperiod .
Tactivea if THcycle < Tperiod~

2L

o Y(Tweycle, Tcharge) 18 @ constant that can shift the wave
upwards or downwards without affecting its shape. For
V(T weycles Tenarge) = 0, the ratio between Tcharge and
Tchcle would be 0.5, while for 'Y(Tchclea Tcharge) =1
the AAP would be charging the whole time. Thus, the

general formulation is y(Tweycle; Teharge) = ﬁ —

Now, all the cycle functions K,ap ;(t) are transformed into
state functions Saap i(t) of value 1 when the AAP is charging,
0 when it is not, consistently with the convention adopted
initially:
1, if Kaapa(t) >0,
Saap.i(t) = {o, i Kaapa(t) < 0.
Then, the sum of all the state functions S,,, provides the
number of AAPs recharging at the same time:
Naap({Tr})

> Saapalt).
i=1

The resulting curves are visualised in Fig. 4, where three AAP
curves exemplify two cases: one where a single active AAP is
enough to satisfy the delay constraint, and one where at least
two AAPs must be active at the same time. It is shown in grey
the load function defined by (23), i.e., the number of AAPs
connected to the CS at any given time. It can be observed how
the steps of the load function correspond with the intersection
between a state function K and the Time = 0 axis. Finally, the
load on the CS can be calculated by multiplying the number
of charging AAPs by the power consumed to charge a single

(22)

1d [Naap({Tr})7t] = (23)
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Figure 4: Visualization of three AAP state functions, and the consequent load
on the charging station.

AAP, Pj]%i;ge Hence, the RHS of (14b) becomes:
P 1ar,
Pla [Naap (T2 1), ] = =525 14 [Naap ({T: ) 1]+ ¥ 24)
aap

The function ¥ represents the power consumption associ-
ated with recalculating the optimal trajectory locally, a bi-
nary function assuming the value of computational power
when the computation is executed, and zero at all other
times. Since the charging power was assumed to be a
constant, Piq [Naap({Z}),t] will have the same shape as
1d [Naap({T-}), t], but it will be expressed in Watts. For a
given Tperiod, from (14b), the number of required PV panels
and battery units is proportional to the load profile on the CS;
from (24), the load profile of the CS is in turn a function of
the number of AAPs. Therefore, the size of the AAP fleet
has an impact on the number of PV panels and battery units.
Thus, from (14b) and (24), minimizing the number of AAPs
means minimizing the objective function of (P1). Once the
minimum number of AAPs required to harvest ) bits of
data from N GUs within Tjeri0q is determined, the cost-
efficient combination of PV panels and battery units is directly
consequential.

B. Minimum number of AAPs

In this section we design a trajectory that minimizes the
number of AAPs required to harvest data from the GUs
every Theriod during Tiervice- The corresponding problem is
formulated as,

(P1.1):  minimize

{Tr}y{Tn,r}v{TT}
Tdead
NalT:) 2 (

Naap({Tr})7 (25a)

+ 1) Nactive({Tr}) (25b)

Tactive
Nactive({Tr}) 2 % (25C)
period
(1), (14¢c) — (14e). (254d)

In (P1.1), we have relaxed the integer constraint on the number
of active and total AAPs. After determining the trajectory
variables, the values will be rounded to the nearest greater
integer. (P1.2) is a non-convex optimization problem due
to the non-convex form of D, .(r,), used in (14d). Hence,
the solution is found by dividing the problem into two sub-
problems: 1) AAP path design using mean-shift clustering; 2)
update of {7} and {7, ,} for the obtained AAP path.

In practice, the number of GUs is large, or they are
likely to form clusters. Thus, to find the cluster properties
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of user distributions, one can exploit the mean-shift algorithm
proposed in [19] to identify the locations with the highest
density of users. When the number of users is high, the cluster
centers are potential points for the AAP trajectory. In addition,
in cases where the users form clusters in advance, such as
in rural areas, referring to these centers prevents the AAP
from visiting locations where there are no GUs. The cluster
centers obtained from Algorithm 1 of [19] are the potential
points through which the AAP must pass. Since the active
number of AAPs can be reduced by minimizing Zle 7.,
the shortest path between the potential points is determined
using the traveling salesman algorithm [30]. The resulting
continuous path between cluster centers is then discretized into
small segments, each of length &, satisfying constraint (1), and
providing the set of waypoints {r,}. The values of D, ,(r,)
are then calculated using (5). The scheduling problem now
takes the following form:

Naap({T+});

(14c) — (14e), (25b), (25¢) (26b)

Problem (P1.2) is a convex optimization problem, and can be
solved with solvers like CVX.

(P1.2) : minimiz (26a)
{T T}

n,r s L

C. Cost-efficient CS design

In the previous section, the load to the CS was represented
as a function of the number of AAPs. Also, a trajectory was
found that minimizes the number of AAPs, thereby minimizing
the load on the CS and the economic impact of purchasing
AAPs. In this section, efforts are directed towards minimizing
the number of PV panels and ground battery units of the CS,
Npyv and Ny, while satisfying the power requirement of the
CS. The corresponding problem is formulated as,

(P1.3) : minimize  Clyy [Npy, Not, Naap({T7})], (27a)

v, Nbt

Pyy(Npy,t) + Pocn (Nb, £) bt
> IDld [Naap({Tr}), t] ,Vt,
(8) — (%e).

1) Constrained search algorithm

The constrained search algorithm proposed to solve (P 1.3)
is an enhanced version of a classic ‘brute force’ algorithm.
Brute force methods, also known as exhaustive search, of-
fer a forthright and very accurate optimization approach of
solving problems, visiting all possible search points in the
design space, in order to find the global optimum within
a given search space [33].Their main drawback is the high
computational load, but, in the present application, this is
acceptable due to the simple form of problem (P1.3). Since the
trajectory optimization is now decoupled from the CS design,
this can be carried out by manipulating only two variables:
Ny and Ny,i. With a classic extensive search, all the solutions
generated from the combination of these two variables would
be simulated to evaluate their cost and power profile. The ones
not satisfying constraint (27b) would be simply discarded, and
the remaining ones compared by their cost to find the global
minimum. However, the constrained search algorithm achieves
the same result with less iterations: for each number of PV
panels, the size of the battery is progressively increased until

(27b)
(27¢)
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Figure 5: Horizontal projection of a sample AAP trajectory to collect 200
Mbits of data from 10 randomly distributed users.

the condition posed by constraint (27b) is met. This skips
the simulation of several configurations that would be later
discarded for their excessive cost. Algorithm 1 summarizes
the steps involved in designing a UAV-based cost-efficient EN
system to serve a set of IoT ground units.

IV. RESULTS AND DISCUSSION

The simulation parameters used to generate the results
described in this section are listed in Table II. In Section IV-A,
the results related to the trajectory design are discussed, and
in Section IV-B the results of the cost-efficient system design
are presented.

A. AAP Trajectory

Fig. 5 shows a sample path an AAP follows to collect 200
Mbits of data from a set of 10 users, uniformly distributed
over a square region of side 600m. The CS is placed at
(0,0,0). The set of feasible points the AAP should pass
through are determined using the mean-shift algorithm. Fig. 6a
and Fig. 6b show the trajectory parameters and the user
scheduling obtained by solving (P 1.2); the flying velocity of
the AAP in each path segment shows how this AAP trajectory
satisfies the maximum velocity constraint (14c); also, by the
end of the trajectory, all the users have delivered 200 Mbits of
data, thereby satisfying the data harvesting constraint (14d).
Moreover, the horizontal projection of the trajectory starts
and ends above the CS location (14e). Fig. 7 shows the
advantage of the suggested mean-shift method path design
when compared to two baseline scenarios:

Algorithm 1: Cost-Efficient EN System Design

1 Initialize the locations of GNs;

2 Find the user-cluster centers using the mean-shift
algorithm;

3 Find the shortest path between the centers using the
travelling salesman algorithm;

4 Segment the path into R segments of length § and find
{Dn.r(rr)} using (5);

5 Solve (P1.2) to get the trajectory variables, the GU
scheduling, and the minimum number of AAPs;

6 Model the load to the CS using (23);

7 Use the constrained search algorithm to find the
minimum number of PV and battery units that allows
to meet the load requirement.
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Figure 7: AAP lap time energy consumption: the proposed method versus the
baseline scenarios.

1) the AAP flies at its maximum velocity to each user and
hovers right on top of it to complete the data transmis-
sion. This is widely known as fly-hover-communicate
protocol [23], [25];

2) the AAP hovers at the center of the coverage region
(hover-communicate) [14], [15].

As seen in Fig. 7, the proposed method outperforms the two
baseline scenarios in terms of both time and energy an AAP
needs to complete a cycle of data harvesting. The hover-
communicate scenario has the worst performance because the
mobility of the AAP is not exploited to optimize the channels
between AAP and users. The benefits of user clustering are
maximized when the number of users is large. Since the
expected number of user nodes in an IoT network is very
large, the proposed path design is an ideal candidate for an
IoT data harvesting application.

B. Charging Station design

This section explains the findings related to the design of the
CS using the trajectory information from the previous section.
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Table II: Simulation Settings

Label Definition Value [ Label Definition Value

Apy Area of PV panel 1.63 m? Npv Average efficiency of PV panel 17.1%

Bmodule Energy capacity of a battery module 37.44 Wh Mot Average efficiency of ground battery 90%

SOCmin  Minimum battery State-of-Charge 5% Tactive Active time of an AAP 1320 s

SOCmax  Maximum ground battery State-of-Charge  95% Ve AAP climbing velocity 5 m/s

Baap On-board battery capacity of an AAP 100 Wh Peharge  AAP nominal charging power 180 W

DODgap Depth-of-Discharge of AAP battery 90% TNaap Average efficiency of AAP battery 85%
Channel carrier frequency 5.8 GHz Q Data size -

B Channel bandwidth 20 MHz a P'°s Constant for suburban topology 4.88

No Noise spectral power -174 dBm/Hz b PMos Constant for suburban topology 0.43

VUmax AAP’s maximum speed 17 m/s loS additional mean path loss for LoS group 0.2

é Path discretization interval I m oS additional mean path loss for NLoS group 24

P Transmission power 23 dBm ha Flying altitude of an AAP 50 m

A Tperioa = 600s is considered, resulting in Nygive ({7 }) = 1 The optimization of the CS design is repeated using differ-
from (16); Tyeaa = 600s, giving Nup{Z7}) = 3. The ent values of the following variables:

irradiation data used in the simulations is obtained from the
online database in [31], which refers to the area of Milan,
Italy. This is provided with intervals of one minute, so the
irradiation was assumed to stay constant over a single interval.
The solar panels® considered in this study have a unit price
Cpv of 129.80€. Each battery unit is represented by a pack of
4 Li-ion cells*, with a unit cost Ch; of 39.59€. The load to
the CS corresponding to Naap({Z7}) = 3, Tperioda = 2580s,
Tchcle = 39005, THcycle = 1488, Tactive = 13205, and
Teharge = 1800s is then modeled using the the methodology
described in section III-C, and the result is shown in Fig. 8.
The cost-efficient PV-battery combination that serves the load
while satisfying the battery constraints (9a)- (9e) is determined
by solving (P 1.3) with the constrained search algorithm. The
effect of the battery constraints can be observed indirectly in
Fig. 8, as they produce a slightly over-sized battery, which is
not fully exploited, at least on an average day. Fig. 8 shows
the operation of the designed CS with Ty, = 11 : 15
and Tiervice = 2 hrs: as the irradiation starts to grow, the
solar panels begin to generate power, which goes all towards
charging the battery, since the load is nil until 11:00, when
the optimal trajectory is computed. This process takes one
minute using an average laptop with a power consumption of
50 W, and it does not impact the system significantly. After
11:15, when the mission starts, the generated power is not
enough to supply the load alone, so the battery kicks in, as
the drop in its SOC shows. It can be noticed in Fig. 8 how
the power consumption profile actually extends beyond the
mission duration Tyevice. This i1s because it is assumed that
the AAPs are fully charged in the morning, so they need to be
recharged in the evening. However, this can be done slowly, so
as to avoid unnecessary peaks of power consumption. For this

o mission duration, which measures the amount of time
during which the network is continuously operated;

e starting time, which indicates at what time the network
starts operating (this is assumed to be the same every
day);

e season, which is a binary variable: ‘winter’ goes from the
21 of September to the 21% of March, while ‘summer’
covers the remaining time.

These variables influence the CS design in different ways:
the first modifies the power profile shape shown in Fig. 4,
whereas starting time and season affect the irradiation data
I,+(t). This sensitivity analysis is summarized in Figs. 9a and
9b, which show how the cost of the system is affected by the
three aforementioned variables, respectively for the winter and
summer scenarios. The dotted line is included for comparison
with the grid-connected case in a urban scenario, which is
explained in more depth in Fig. 11. In both seasons, the
effect of the mission duration is particularly marked if the
mission starts in the afternoon. This is because, when the solar
irradiation is low, the task of satisfying the load is left to the
battery pack alone, which, as a result, must be made larger.
More in general, the greater the mismatch between energy
generation and load profile, the larger the battery will need
to be. The minimum point of the curves shifts to an earlier
starting time as the mission duration grows, suggesting that
the cost minimization can only be achieved as a combination
of these two variables. While short missions are feasible at
almost any time of the day even in winter, longer missions
at later times make the system cost soar at a growing pace,
due to the decreasing marginal returns of designing a larger
ground battery. Apart from this aspect, the curves look similar

reason, the number of AAPs simultaneously recharging during S I ———— ‘ ‘ ‘ 100
this phase was arbitrarily set equal to the number of active 500F | — power consumption oo E
AAPs. When this ‘constant consumption’ phase begins, the 400 | Ground batiery sOC e
solar panels are still producing enough power to recharge the %300 1% 3
battery. This example, representing a day when the irradiation H 1o &
is particularly low, shows how power constraint (27b) is always 20 %
satisfied. 100 3
6:00 8:‘03- 10:‘00 12:‘00 14;00 16;00 18:80
3https://www.futurasun.com/wp-content/uploads/2020/10/2020_ rime
FuturaSun_60p_260-285W_en.pdf?x78774 Figure 8: Power profiles and ground battery SOC for a 2 hours mission starting
“http://www.farnell.com/datasheets/3170915.pdf at 11:15 in February.
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in winter and summer, with a downward shift in the latter
case. However, more pronounced differences can be expected
if the ‘summer’ season is restricted to the actual summer,
instead of half a year. Fig. 10 shows how the cost of the
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Figure 9: Cost of the whole system, with 20 users and () = 200 Mb, compared
to grid-connected urban scenario.

system and the energy spent per data harvesting cycle change
according with the number of ground users and the amount of
data to be received from each of these. Both variables have
similar effects: the energy spent by an AAP to complete a data
harvesting cycle grows at a quasi-constant pace, whereas the
charging station cost grows intermittently, together with the
number of active AAPs. The latter represents the main voice
of expense for the system.

Constant users Constant data

w w
N @
a o2}
=] =}

w
=

IS

S

il

]

N
©

i

N
=]

Cost of system [k€]
w
o

S

N}
®

= w
o o
Energy spent per lap [Wh]

]

1k 10 40 70
Number of ground users

27
100

0
400 700 100

Data received per user [Mbits]

Figure 10: Cost of charging station and energy consumption trends as a
function of variable data size and number of users.

A cost comparison is presented in Fig. 11 between the
off-grid system described in this work and a grid-connected
scenario with the same modes of operation (UAV-based, mis-
sion of 2 hours, starting at 11:15). The left hand side of the
histogram shows the cost breakdown of the energy-neutral CS,
while the right hand side shows the voices of expense for
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the grid-connected scenario, namely the cost of connecting
to the electricity grid and that of the consumed energy. The
cost of the UAVs is the same on both sides, so the y-axis is
cut to improve readability. The cost of energy was calculated
as a cumulative sum on 10 years, assuming a fixed cost of
0.17€/kWh (average cost of electricity in the UK). The cost
of connecting the system to the electricity grid was estimated
using an online tool provided by an electricity provider in the
UK?, assuming a distance from the substation of 10 meters
both in the rural and the urban scenarios. It can be deduced
that the installation of a PV-based off-grid charging station is
particularly advantageous in rural areas, while the two options
have comparable costs in urban areas. It can be observed in
Fig. 9 how short missions taking place during the day make
the off-grid option less expensive than a grid-connected urban
scenario. For longer missions, or when these start later in
the day, the EN charging station is only advantageous when
compared to the rural scenario, which would be feasible for
continuous or nearly-continuous service.

Energy-neutral system Grid-connected system

2 Wases [ AAPs
[l Photovoltaic [ Grid connection
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Figure 11: Cost comparison between EN system designed for summer or

winter and a grid-connected one in urban or rural area.
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Figure 12: Load profiles comparison between the proposed method and the
two baselines.

A cost comparison is carried out between the proposed
method and two baseline scenarios considering the same target
area, UAV type, and mission duration:

o Baseline 1: The load profile is formed by considering

UAVs hovering all the time [12];

o Baseline 2: The CS is designed considering a constant
power consumption, corresponding to 2 tethered UAVs
[11].

The resulting load profiles can be observed in Fig. 12: the
green and orange curves represent the load profiles from
Baselines 1 and 2, respectively. In Baseline 1, the UAVs are
hovering all the time, thereby reducing their active time, with

Shttps://www.northernpowergrid.com/quick-calculator
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Table III: Numerical comparison between proposed methodology and two
baseline scenarios.

Naap  Npy  Battery capacity [Wh]  Total cost [£]
Proposed 3 2 936 13,814.85
Baseline 1 4 3 1273 18,489.46
Baseline 2 3 3 1498 14,538.50

higher peaks of power consumption and the need for an extra
UAV; As reported in the figure, the proposed solution has the
lowest value of energy consumption by a margin of over 50%,
which could be even higher for longer missions. Furthermore,
as reported in Table III, the higher load profiles clearly affect
the initial cost, either due to the larger CS or to the larger fleet
of UAVs. However, the effect of the latter is prominent due to
the high cost of UAVs. This explains why, despite consuming
less energy than Baseline 2, Baseline 1 is by far the most
expensive option.

V. CONCLUSION AND FUTURE WORK

In this article, a holistic design methodology was proposed
for a cost-efficient UAV-based EN system for the data harvest-
ing of IoT nodes. This methodology minimizes the investment
cost by acting on the planning (how), scheduling (when), and
energy supply of the AAP mission.

The main engineering insights derived from the results of
this study are listed below:

o The clustering protocol adopted in this study reduces the
time and energy an AAP needs to complete a cycle of
data harvesting, compared to other benchmark protocols.
This gap gets wider for higher numbers of users, up to
a 50% energy and time saving in our simulation setups.
The same is true for the cost of the system, which has a
linear relation with the data exchange.

o For short missions (30 minutes) the investment cost of the
system is minimized when the mission starts in the late
morning in winter, or in the early afternoon in summer.
Earlier times are preferred with longer missions. These
cost variations between seasons are mainly due to the
PV size required, while mission duration and time mostly
affect the ground battery size. However, the larger portion
of the investment cost is represented by the AAPs.

e In an urban setting, an EN UAV-based system has an
investment cost comparable to that of a grid-connected
one, whereas it is much cheaper in rural areas, even for
long missions.

The optimal solution is highly dependant on the afore-
mentioned time variables, and the EN option becomes anti-
economical when long missions are planned, especially in win-
ter or at night. These issues could be tackled by diversifying
the energy sources, which would complicate both the system
design and operation, thus representing an interesting topic for
future work.
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