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Hybrid quantum-classical algorithms are central to much of the current research in quantum computing,
particularly when considering the noisy intermediate-scale quantum (NISQ) era, with a number of experimental
demonstrations having already been performed. In this perspective, we discuss in a very broad sense what it
means for an algorithm to be hybrid quantum-classical. We first explore this concept very directly, by building a
definition based on previous work in abstraction-representation theory, arguing that what makes an algorithm
hybrid is not directly how it is run (or how many classical resources it consumes), but whether classical
components are crucial to an underlying model of the computation. We then take a broader view of this question,
reviewing a number of hybrid algorithms and discussing what makes them hybrid, as well as the history of how
they emerged and considerations related to hardware. This leads into a natural discussion of what the future holds
for these algorithms. To answer this question, we turn to the use of specialized processors in classical computing.
The classical trend is not for new technology to completely replace the old, but to augment it. We argue that the
evolution of quantum computing is unlikely to be different: Hybrid algorithms are likely here to stay well past
the NISQ era and even into full fault tolerance, with the quantum processors augmenting the already powerful
classical processors which exist by performing specialized tasks.
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I. INTRODUCTION

The first proposals for the creation of computing resources
based on the principles of quantum mechanics emerged in the
1980s [1–3]. This led quickly to the discovery, throughout the
1990s, of a number of quantum algorithms for toy problems
designed to show a complexity theoretic separation between
quantum and classical computation [4–6]. In the mid- to late
1990s, however, Peter Shor developed the polynomial-time
quantum algorithm for factoring products of large prime num-
bers [7,8], now widely regarded as the first useful quantum
algorithm that achieves a speedup over purely classical coun-
terparts.

The explosion of interest in quantum computing that re-
sulted from Shor’s work is partly responsible for the rapid
development thereafter of early experimental quantum hard-
ware that could run small, noisy instances of quantum
algorithms (see Refs. [9–22], among others). However, as
these experimental platforms with severe limits on compu-
tation size and quality emerged, it quickly became apparent
that for quantum computers to be useful in the near and
mid-term, the community needed to find algorithms tailored
to this era of quantum computing (later termed the “noisy
intermediate-scale quantum” (NISQ) era [23]). This includes
not only algorithms run on gate model quantum devices, but
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also analog optimization, simulation, and machine learning
through quantum annealing [24].

Perhaps the most influential development in the field of
gate-model NISQ-suitable quantum algorithms is the frame-
work of variational quantum algorithms (VQAs) that was
introduced with the variational quantum eigensolver (VQE)
[25]. These algorithms make use of short-depth parametrized
quantum circuits, particularly suited to NISQ hardware, em-
bedded in an otherwise classical variational loop, a structure
that is manifestly hybrid quantum-classical. While some of
the other quantum algorithms discovered previously are also
hybrid, VQAs offered a clear demonstration on the potential
computing power available by coupling quantum and classical
resources together. Thus, due to VQAs, hybrid quantum-
classical algorithms have been an integral part of quantum
algorithms research ever since, including through experimen-
tal demonstrations of applying NISQ devices to problems in
quantum chemistry [25–27], machine learning [28,29], and
combinatorial optimization [30].

Separately from VQAs, the key advance which has allowed
for hybrid techniques in analog quantum computing is the
notion of biased search [31–34], a family of techniques that
allow the system to be called as a subroutine within a broader
algorithm, aided by previously results [33,35]. These can be
used in simple ways such as biasing toward a previously found
good solution from a classical greedy search [36], or in more
complicated ways such as in genetic algorithms [37].

In this perspective, we take a broad view of hybrid
quantum-classical algorithms, going beyond variational al-
gorithms and hybrid quantum annealing. We discuss what
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it means to be a hybrid algorithm, in the broadest sense of
being necessarily a combination of quantum and classical
computation. We explore this question both in the literal sense
of developing a definition and in the more abstract sense
of where these algorithms sit within the space of quantum
computing and more broadly computing in general.

First, we propose that defining hybrid algorithms should be
done in terms not of the computation itself but of the abstract
model of the computation, and whether that model requires
significant classical computation (computation which does
not need a quantum hardware to be performed). We further
examine how hybrid algorithms are developed and find that
there are many paths, and that this development can be driven
by any number of factors, including the capabilities and lim-
itations of the hardware, the discovery of issues with “pure”
quantum algorithms, and the identification of bottlenecks in
current classical methods.

Furthermore, we consider the long and successful history
of specialized processors being used within classical com-
puting and note that while quantum computers can be very
powerful and greatly enhance computational capabilities, it
is likely that they will play a role similar to many of these
other accelerators. Finally, looking to the future, we see no
clear advantage in algorithms being “purely” quantum, and
therefore argue that hybrid algorithms are likely here to stay,
rather than just an artifact of the NISQ era.

We start in Sec. II by discussing how a useful definition
can be constructed and how to make the distinction between
pure and hybrid quantum algorithms meaningful. Within this
discussion, we reference two of the most iconic quantum
algorithms: Shor’s algorithm, which we argue is in fact hybrid,
and Grover’s algorithm, which we argue is not. In Sec. III,
we discuss examples of hybrid quantum-classical algorithms
and how they fit into the definition. Next, in Sec. IV, we
examine the considerations that must be made when thinking
of how hybrid algorithms will be run on real hardware. We
then, in Sec. V, examine the bigger picture, in particular, how
classical computation makes use of heterogeneous hardware
arrangements as specialized accelerators and argue that quan-
tum processors are likely to follow as similar path. Finally,
in Sec. VI, we conclude by discussing the future of hybrid
algorithms.

II. WHAT IT MEANS TO BE HYBRID

To begin a meaningful discussion of hybrid quantum-
classical algorithms, it is first necessary to establish an
understanding of what it means for a quantum algorithm to
be considered a hybrid algorithm and what makes hybrid
algorithms different from other quantum algorithms. For this
task, it is essential to develop a working definition of the term
“hybrid” in this context. An agreed upon, meaningful, and
useful definition can help facilitate communication and allow
a useful grouping of similar algorithms. It is tempting to argue
that simple techniques such as “repeat until success” play an
important role in almost all quantum algorithms, and therefore
almost all quantum algorithms should be considered hybrid.
While potentially a valid viewpoint, this approach does not
lead to a useful definition: If everything is hybrid, then the
term “hybrid quantum algorithm” has little meaning.

Rather than considering to be hybrid any quantum algo-
rithm for which the implementation is supported by classical
computing, it seems that the salient feature connecting hybrid
quantum-classical algorithms is that the use of classical pro-
cessing is fundamentally inseparable from the computational
model. While we will discuss later in this section what exactly
this term means, for now it suffices to think of this as the basic
theoretical description of how a system solves problems. As a
starting point, therefore, we propose the following definition
of a hybrid quantum-classical algorithm:

Definition. An algorithm that requires nontrivial amounts
of both quantum and classical computational resources to
run, and which cannot be sensibly described, even abstractly,
without reference to the classical computation.

While the term “nontrivial” in this context is open to
interpretation, a sensible interpretation is that the classical
computation should go beyond simple repetition and condi-
tioning on measurement outcomes.

Quantum error correction [38] (QEC) provides a simple ex-
ample of classical computers supporting quantum algorithms,
but in which the classical computation is not fundamentally
tied into the computational model. In devices with QEC,
the quantum computation occurs only on a small part of the
device’s Hilbert space, known as the logical subspace. The
logical subspace is chosen such that almost all physical errors
will take the system out of this subspace; that is, errors within
the subspace are unlikely. Well chosen measurements then can
be performed to detect whether the state has left the logical
subspace without destroying the quantum information (more
correctly, the error will lead to a superposition over the logical
subspace and the error subspaces, but the measurement will
force the state to collapse onto one of the subspace, a mech-
anism referred to as error digitization). Classical analysis on
these measurement outcomes can then be used to diagnose
the error and to determine the quantum operations required to
rotate the state back into the logical subspace, in a mechanism
known as decoding. The high-level structure of typical QEC
strategies is shown in Fig. 1, and a thorough review can be
found in Ref. [38].

Decoding of quantum error correction can be very inten-
sive in terms of classical computing resources [39]; however,
the fundamental model of (noise-free) gate-model quantum
computing does not depend on how the errors are corrected.
Similarly, the classical strategy for decoding does not depend
on exactly what quantum algorithm is running, only on the
device architecture. We would therefore argue that the fact
that classical computing resources are required to protect a
fault-tolerant quantum algorithm does not in itself make the
algorithm hybrid. A fault-tolerant algorithm can be hybrid in
the sense that the quantum component of the algorithm can
be run in a fault-tolerant way, but the fact that the algorithm
relies on QEC does not in itself make it hybrid.

To approach the question of when a quantum computa-
tion is hybrid, it is useful to first look at work which has
already been done in understanding when a physical system
computes. The abstraction-representation theory [40] of com-
putation was motivated by exactly this question [41]. The key
distinction which abstraction-representation theory draws be-
tween a physical system which is computing and one which is

010101-2



HYBRID QUANTUM-CLASSICAL ALGORITHMS IN THE … PHYSICAL REVIEW A 106, 010101 (2022)

FIG. 1. High-level schematic of typical forms of QEC in which
some classical processing is used to protect a quantum algorithm
from errors.

not is that a system undergoing computation has information
encoded in it and a corresponding abstract model for the com-
putation it is doing. In other words, computation is not about
what a system is doing so much as what it is representing.

By abstraction-representation theory, a physical system
needs to be paired with a (possibly imperfect) abstract model
of the computation it is doing. For example, a gate-model
quantum computer can be abstractly represented by a quan-
tum circuit (possibly including random elements from noise),
a coherent quantum annealer could be represented by the
Schrödinger equation, and a dissipative quantum annealer by
a master equation.

To understand whether a computation is hybrid or not,
it is necessary to think in terms of what the role classical
computation plays within this model. Returning to the exam-
ple of QEC, the model for fault-tolerant quantum computing
is already a (noise-free) quantum circuit, and the classical
computation is just performing a supporting role in ensuring
that the model is accurate enough. For contrast, consider a
variational algorithm: In this case, the classical computation
is directly involved within the computational model; it gives
the updates for the gate parameters and fundamentally cannot
be removed from the computational model.

To demonstrate the differences between pure quantum al-
gorithms and hybrid quantum-classical algorithms, we now
turn to two widely known algorithms: Grover’s algorithm for
searching unsorted databases and Shor’s algorithm for integer

factorization. In what follows, we argue that Grover’s algo-
rithm should not be considered meaningfully hybrid, while
Shor’s algorithm should. We discuss other example of hybrid
algorithms in more detail in Sec. III.

A. Grover’s algorithm

Grover’s algorithm [42] is a well-known quantum algo-
rithm for solving the “unstructured search” problem. For the
purpose of this section, we limit ourselves to “pure” imple-
mentations of Grover’s algorithm, where the entire problem is
phrased as an unstructured search; we discuss more sophisti-
cated algorithms based on the same amplitude amplification
principle as Grover’s algorithm in Sec. III C. Very simply, this
is the problem of finding any of M marked labels among a
set of N � M of labels, given knowledge of the numbers M
and N access to an oracle that is able to check whether a
particular label j is marked. Many computational problems
can be phrased as unstructured search, such as database search
and some forms of constraint satisfaction. Without access
to additional structure among the labels, the only option for
solving unstructured search classically is to repeatedly select
labels, either randomly or in a particular order, which has a
time complexity that scales as O( N

M ).
The labels j are mapped to computational basis states | j〉

of a Hilbert space of size N , and we assume coherent access
to the oracle; that is, it is possible to apply a unitary operator
Ocheck defined by

Ocheck| j〉 =
{−| j〉 for marked j
| j〉 for unmarked j.

(1)

It can be shown that by initializing the quantum computer in
the uniform superposition state |s〉 = 1√

N

∑N
j=1 | j〉 and apply-

ing r iterations of the Grover operator

QGrover = (2|s〉〈s| − I)Ocheck, (2)

a state is produced that can be measured in the computational
basis to return a marked state with probability

Pmarked(r) = sin2 ((2r + 1)θ ), (3)

where θ =
√

M
N . Thus, by choosing

r = Round

(
π

4

√
N

M
− 1

2

)
∈ O

(√
N

M

)
, (4)

a marked state can be found with a probability that quickly
approaches unity for M � N . This represents a quadratic
speedup over what is possible classically.

While single run of the algorithm does not guarantee a
marked state with unit probability, the output can be checked
via the oracle and the algorithm repeated a small number
of times until a marked state is confirmed, without affecting
the quadratic speedup. It would not be useful to consider a
quantum algorithm with this trivial level of classical postpro-
cessing to be hybrid, as it is difficult to imagine any useful
quantum algorithms which did not contain at least these ele-
ments of classical control.
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Algorithm 1. Structure of Shor’s algorithm

1: Randomly select a from 1 < a < N
2: Compute K = gcd(a, N ) classically, via Euclidean algorithm
3: If K �= 1, K is a factor of N , so return a and exit. Otherwise,

continue to step I.
4: Implement the a-dependent unitary Ua that acts as

Ua|x〉n = |ax mod N〉.
5: Perform quantum phase estimation (QPE), via a circuit like the

one shown in Fig. 2, with a q-qubit control register where
N2 < 2q < 2N2, on Ua with the initial state of the target register
set to |1〉 (the binary representation of 1), to produce an integer y.

6: Use classical continued-fraction expansion to produce an
irreducible fraction approximation d

r of y
2q for which r < N and

the approximation error is small (< 1
2q+1 ).

7: If r is odd or it is true that a
r
2 = −1 mod N , go back to step I.

Otherwise r is highly likely to be the period of the modular
exponentiation with base a, f (x) = ax mod N , so continue to
step I.

8: If r is the period of the modular exponentiation (which can be
checked classically), continue to step I. Otherwise, go back to
step I, and find a different irreducible fraction with a different r.
If out of candidates, go back to step I.

9: Compute gcd(a
r
2 − 1, N ) and gcd(a

r
2 + 1, N ) classically, via

the Euclidean algorithm. These are now guaranteed to be
nontrivial factors of N , so return these and exit.

B. Shor’s algorithm

Shor’s polynomial-time algorithm [8] for factoring prod-
ucts N = p1 p2 of two large prime numbers p1 and p2, a feat
thought to be impossible classically, is regarded as the first
useful quantum algorithm to have been invented. Given the
risk a practical implementation of Shor’s algorithm would
have on much of modern computer security, it is perhaps
the most high-profile quantum algorithm and is seen as a
quintessential example of the power of quantum computing.

However, Shor’s algorithm is far from being a purely quan-
tum algorithm and should certainly be considered a hybrid
algorithm. The algorithm relies on a polynomial-time reduc-
tion of the factoring problem to the problem of finding the
order r of a periodic function and is described in Algorithm I.
It can be seen that almost all of the steps are entirely classical,
including the calculation of greatest common divisors via the
classical Euclidean algorithm in steps I and I and the classical
continued-fraction expansion in step I. The only part of the
algorithm that is quantum is the call to the quantum phase
estimation circuit (see Fig. 2) in step I, which forms the core
of the order-finding subroutine.

While it is absolutely true that the quantum part of Shor’s
algorithm provides the speedup over the best known purely
classical methods, a significant (but polynomial) amount of
classical processing is done before and after the call to the
quantum subroutine in step I in order to transform the problem
into a specific form that the quantum processor can handle
efficiently. This classical processing includes calls to identifi-
able classical algorithms such as the Euclidean algorithm, In
other words, what is being calculated by the quantum com-
puter is not directly useful without the surrounding classical
steps.

. . .

. . .

. . .

...
...

. . .

. . .n

|0〉 H

QFT−1

|0〉 H

|0〉 H

...

|0〉 H

|ψ〉 U2 U2 U2 U2

FIG. 2. Phase estimation circuit.

Having discussed two of the possibly most iconic quantum
algorithms, in the next section we get into a more detailed
discussion about other important examples of hybrid algo-
rithms. This is not intended to be an exhaustive list, but to
start a discussion on what it means to be hybrid under different
contexts, and to provide examples that can help extend these
to other algorithms.

III. ALGORITHM EXAMPLES

A. Quantum annealing and continuous-time quantum
computing

Quantum annealing (QA) consists of using continuous-
time dynamics of a quantum system to solve an optimization
problem by searching the solution space through quantum
fluctuations. QA as we know it today was proposed in the late
1990s by Kadawaki and Nishimori [24] (although a similar
suggestion for chemistry-related problems had been made ear-
lier [43]). After the development of the basic principles of QA,
Farhi et al. introduced the specific case of adiabatic quantum
computing (AQC) [44] in which the adiabatic theorem of
quantum mechanics guarantees a solution if the algorithm is
run long enough. Roland and Cerf than showed that AQC can
attain the same speedup as the gate model Grover’s algorithm
on unstructured search [45], while around the same time San-
toro et al. further developed the theory of QA and showed that
it can in some cases outperform classical annealing algorithms
[46]. For a complete review of AQC, see Ref. [47], and for a
more application-focused review of QA, see Ref. [48]. For
a forward-looking perspective on techniques which operate
outside of the adiabatic limit, see Ref. [49].

Since its inception, QA has grown to encompass a variety
of protocols, but the typical structure involves implementing
a time-dependent transverse Ising model Hamiltonian

H (t ) = −A
( t

T

) n∑
j=1

Xj + B
( t

T

)
HP, (5)

where T is the total annealing time, A and B are monotonic
control functions such A(0) � B(0) and A(1) � B(1), and the
problem Hamiltonian HP is of the form

HP = −
n−1∑
j=1

n∑
k= j+1

JjkZ jZk −
n∑

j=1

h jZ j, (6)
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where the couplings Jjk and fields h j define the problem of
interest such that lower energy eigenstates of HP correspond
to better quality solutions. In this way, QA is qualitatively
similar to its classical analog simulated annealing, but with
the physical quantum fluctuations and/or tunneling induced
by the transverse-field driver term −∑n

j=1 Xj playing the role
of a simulated temperature. QA protocols typically start the
system in the ground state of the transverse-field driver term
and aim to set the controls functions A and B such that the
system is driven toward low-energy states of the problem
Hamiltonian.

1. Hybrid forms of quantum annealing

Much of the work on hybrid algorithms in continuous-time
quantum computing has focused on protocols which allow
an educated guess at the solution to be incorporated into the
protocol.

The idea of incorporating a heuristic guess was first pro-
posed by Perdomo-Ortiz et al. [31], in a scheme which has
come to be known as (one variant of) reverse annealing. In this
scheme, the standard QA Hamiltonian of Eq. (5) is replaced
with

Hrev,1(t ) =
[
1 − s

( t

T

)]
Hinit

+ hat
[
s
( t

T

)](
−

n∑
j=1

Xj

)
+ s

( t

T

)
HP, (7)

where s is a schedule function that starts at s(0) = 0, ends
at s(1) = 1, and monotonically increases in between. The hat
function premultiplying the transverse field driver is a func-
tion that begins and ends at zero, but is positive in between,
such as hat(s) = sin(πs); that is, the transverse field driver is
turned on and then off during the anneal. The completely new
ingredient is the initial Hamiltonian

Hinit ≡ −
n∑

j=1

g jZ j, (8)

where g j is a sign such that g j = 1 (g j = −1) if the jth bit
of the heuristic guess is 0 (1). The ground state of the initial
Hamiltonian Hinit is then the guess state, and the annealing
protocol aims to transfer a nontrivial amount of the amplitude
into the true ground-state of the problem Hamiltonian HP,
with the transverse field turned up and then down in order to
assist this transfer via quantum fluctuations. It is worth noting
that since the aim of a reverse annealing run is to improve
upon a a previously known reasonable solution, it is possible
to embed reverse annealing in a classical loop, whereby the
output state measured one run is then incorporated as the ini-
tial state (with the appropriate initial Hamiltonian) for the next
run. This hybrid structure was suggested in Ref. [31], and
schemes of this sort have come to be known as iterated reverse
annealing.

Other protocols have been proposed that have also come
to be known as reverse annealing. For example, Chancellor
[33] and Yamashiro et al. [50] propose using the standard QA
Hamiltonian of Eq. (5), but simply initializing to the guess
state and using a schedule that begins entirely in the problem
Hamiltonian HP with A(0) = 0, B(0) = 1, anneals to some

intermediate values 0 < A(tintermediate/T ), B(tintermediate/T ) <

1, and then back to A(1) = 0, B(1) = 1. These protocols often
include pausing the schedule for some time at the intermediate
values [51]. In Ref. [50], this two-term form of reverse anneal-
ing is embedded in a classical loop and is also called iterated
reverse annealing (in fact, this is where the term was coined).

A third form of reverse annealing, proposed by Ohkuwa
et al. [52], uses a Hamiltonian of the form

Hrev,2(t ) =
[
1 − s

( t

T

)][
1 − λ

( t

T

)]
Hinit

+
[
1 − s

( t

T

)]
λ
( t

T

)(
−

n∑
j=1

Xj

)
+ s

( t

T

)
HP,

(9)

where s(0), λ(0) = 0, s(1), λ(1) = 1, and both are monotoni-
cally increasing between. Recognizing that the system begins
in the instantaneous ground state at t = 0 and is targeting
the instantaneous ground state at t = T , this protocol can in
principle be run adiabatically and has come to be known as
adiabatic reverse annealing. This Hamiltonian in Eq. (9) is
quite similar to that described by Eq. (7) [in principle, the
Eq. (7) protocol could also be run adiabatically], but the addi-
tional freedom that arises from having two schedule functions,
s and λ, offers additional flexibility for the annealing path.

An independent proposal that incorporates a heuristic
guess by using a biased driver Hamiltonian, instead of by
reverse annealing, was given by Duan et al. [32] (later studies
of this protocol can be found in Ref. [34] and to a lesser extent
in Ref. [53]). An example of such a protocol is to modify
the transverse-field driver term to include a bias toward a
particular guess state; that is,

−
n∑

j=1

Xj → −
n∑

j=1

(Xj + g jb jZ j ), (10)

where b j is a positive number representing the strength of the
bias and g j = 1 (g j = −1) is the jth bit of the guess is 0 (1).
The initial state should also be biased toward the guess state,
such that it remains the ground state of the biased driver.

Graß [34] showed numerically that biasing both toward
and away from solution candidates can improve performance
of annealing protocols, and has also experimentally demon-
strated that biased-driver QA can work in practice [54]
(although technical limitations meant the bias had to be in-
cluded as part of the problem Hamiltonian instead). Callison
et al. [53] demonstrated that traditionally formulated QA is
subject to an energy redistribution mechanism if certain con-
ditions are met, and the conditions are met in the biased-driver
protocols proposed of Refs. [32,34] (but not in the reverse
annealing protocols).

Since both reverse QA and biased-driver QA fundamen-
tally incorporate classical information, in the form of previous
knowledge of the solution, into the protocol itself, any algo-
rithm which makes use of them is necessarily hybrid. Many
of the earlier papers focused on how closed system quantum
annealing could incorporate prior knowledge, but later work
explored how these ideas can be used in more sophisticated al-
gorithms that use QA as a subroutine. An influential example
is the work by Chancellor [33], in which it was proposed how
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a known experimental protocol (see Ref. [55]) on a dissipative
quantum annealer could be used within analogues of classical
population annealing [56,57] and parallel tempering [58,59]
algorithms. Furthermore, Chancellor [35] proposed a general
formalism to understand annealing protocols that accept ini-
tial conditions, such as reverse anneals. Within a week of the
first appearance of this paper on the arχ iv preprint repository,
Neven independently proposed a QA-based parallel temper-
ing algorithm in the AQC 2016 opening remarks [60]. After
this, D-Wave Systems Inc. made the necessary controls to
perform a reverse annealing protocol (and, in fact, coined the
term “reverse annealing” [61]) using a method similar to the
proposal in Ref. [33]. The D-Wave implementation of reverse
annealing most closely resembles the two-term proposals of
Ref. [33,50], except that it operates in the dissipative regime.

The capability to perform reverse annealing has lead to
numerous experimental studies. Venturelli and Kondratyev
[36] demonstrated that incorporating the result of a greedy
search can improve the performance of a quantum annealer
on a portfolio optimization problem. Ottaviani and Amendola
[62] as well as Golden and O’Malley [63] demonstrated that
reverse annealing can aid in matrix factorization. Chancellor
[64] demonstrated how these techniques can be combined
with other advanced controls to trade off between optimality
and flexibility within solutions. Chancellor and Kendon [65]
demonstrated that the underlying principle behind using re-
verse annealing for local search was correct and examined the
effect of noise levels.

Data from an experimental demonstration of using reverse
annealing for local searching, first presented in Ref. [65],
are shown in Fig. 3. These experiments were performed by
constructing an Ising system with known pathological behav-
ior for QA. This was achieved by creating a “broad” false
minimum where strong quantum fluctuations were allowed.
The system was than initialized near (in the sense of number
of bit flips) a much “narrower” true minimum (see the cartoon
inset of Fig. 3). The results demonstrate that searching the
solution locally by starting from a good guess and accessing
only moderate fluctuations through reverse annealing allowed
the broad false minimum to be avoided, thereby validating
reverse annealing as a tool for search solution spaces locally,
a key ingredient for hybrid QA algorithms.

A clear demonstration of a hybrid quantum-classical algo-
rithm employing reverse annealing as a quantum (although not
fully coherent) subroutine was provided by King et al. [37]. In
that work, reverse annealing is used as the mutation operator
in an otherwise classical genetic algorithm. The algorithm is
shown in Algorithm II.

Perhaps most surprisingly, reverse annealing has aided not
just optimization but also quantum simulation using quantum
annealers, in particular, demonstrations that quantum anneal-
ers can be used to simulate geometrically frustrated spin
systems. The quantum simulations by King et al. [66,67] are
only feasible through use of the reverse annealing feature to
initialize the system in a previously found configuration. This
is of particular interest since the work in Ref. [67] shows
potential evidence of a scaling advantage over classical tech-
niques based on path-integral quantum Monte Carlo.

There has also been significant numerical and theoreti-
cal work on understanding reverse annealing. Ohkuwa et al.

FIG. 3. Experimental demonstration of dissipative reverse an-
nealing with a cartoon representation of an engineered energy
landscape in the inset. Biasing toward a true solution leads to the
problem being solved with a high probability, while traditional
forward annealing (approximated in the limit of large fluctuation
strength) does not solve the problem. Data plot reproduced from
Ref. [65]; cartoon illustration is original. The colors (shades of gray
in print) and symbols in the cartoon reproduce those in the figure. The
cross symbol indicates probability to be found in the false minimum,
while the circles represent the probability to be found in the true
minimum. The squares indicate probability to be found in the original
starting state, and diamonds indicate probability to be found in all
states not previously mentioned.

[52] showed that reverse annealing techniques could miti-
gate or even remove a first-order phase transition in highly
symmetric problems, though the analysis assumes a coherent
rather than dissipative setting. In a similar vein, Yamashiro
et al. [50] showed that a more coherent version of reverse
annealing works better than dissipative reverse annealing
for solving highly symmetric problems, and discussed how
protocols similar to those proposed here could be experi-
mentally implemented with an existing feature on D-Wave

Algorithm 2. Quantum-assisted genetic algorithm of Ref. [37]

1: classically initialize the population as N random states
2: FOR generation IN generations:
3: FOR individual IN population:
4: with probability mutation_rate, use quantum reverse

annealing, starting from individual to create
mutated_individual

5: add mutated_individual to population

6: END FOR
7: randomly match pairs of individuals to create list pairs (of

size recombination_rate × |population|)
8: FOR pair IN pairs:
9: classically combine pair to create offspring
10: add offspring to population

11: END FOR
12: exit loop if a stopping condition is met
13: discard old individuals from population to maintain desired

size N
14: END FOR
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devices. Furthermore, in a pair of papers considering the p-
spin model as the problem Hamiltonian, Passarelli et al. show
that open quantum system effects can enhance the perfor-
mance of iterated reverse annealing [68] [using a Hamiltonian
of the form of Eq. (5) with a nonmonotonic schedule], but
could be detrimental in the case of adiabatic quantum anneal-
ing [69] [using a Hamiltonian of the form of Eq. (9)].

Overall, reverse annealing has been identified as a key tech-
nique to eventually realizing a quantum advantage through
annealing techniques, especially in settings where coher-
ence is low. In fact, in a recent forward-looking perspective,
Crosson and Lidar [49] only rank QA in a moderately deco-
herent setting as promising if reverse annealing techniques are
used.

Moving away from strategies that incorporate prior knowl-
edge into the anneal, there are a number of other approaches
to hybridizing QA, many of which involve optimizing QA
schedules to increase success probability without requiring
the runtime to grow toward the adiabatic limit, and fall under
the umbrella of shortcuts to adiabaticity [70]. For example, in
Ref. [71], a parameterized counterdiabatic term is introduced
to the Hamiltonian to mitigiate harmful aspects of the dia-
batic evolution, and its parameters are variationally optimized
in a classical loop, similar to variational algorithms in the
gate model (see Subsec. III B). Related work is presented in
Refs. [72,73].

An alternative approach to hybridizing QA is to use
classical machine-learning techniques to design annealing
schedules for particular problems or problem types. For ex-
ample, Chen et al. [74] show that a combination of tree-search
algorithms and neural networks can be used to learn effective
annealing schedules that appear to have the same effect as de-
liberately including counterdiabatic driving terms and which
can be transferred between instances. A genetic algorithm is
used for similar purposes by Hegde et al. in Ref. [75].

B. Variational algorithms

1. Variational quantum eigensolver

The NISQ era of quantum computing is characterized by
devices with limited spatial (e.g., number of qubits) and tem-
poral (e.g., achievable coherence time) resources. As such,
near-term quantum algorithm design must focus on extract-
ing as much performance as possible out of these limited
resources. Hybrid algorithms offer a natural way to do this,
by performing much of the computational effort on clas-
sical hardware and calling the quantum processor only for
small subproblems to which it is particularly well suited. A
well-known and illustrative example is the variational quan-
tum eigensolver (VQE) [25], a class of algorithms intended
for NISQ devices that combines small quantum circuits and
classical optimization techniques to approximate eigenstates
of a Hamiltonian H, typically ground states, and associated
eigenenergies. Comprehensive overviews of VQEs and re-
lated variational algorithms are available elsewhere [76,77],
but we give a brief description here to illustrate a key example
of a hybrid algorithm.

In VQE, a quantum processor is used to prepare a state

|�(θ)〉 = U (θ)|�init〉, (11)

FIG. 4. Schematic showing a high-level overview of the structure
of VQE algorithms.

where |�init〉 is an easily prepared initial state. The unitary
operator U (θ) is the action of a parameterized quantum circuit
(PQC); that is, a circuit with a fixed form (a carefully chosen
ansatz) but a dependence on a set of parameters θ. For Hamil-
tonians H which can be expressed as sums over polynomially
many products of Pauli operators, the state |�(θ)〉 can be
repeatedly prepared and measured O(1/ε2) times to efficiently
estimate the expectation value E�,H(θ) = 〈�(θ)|H|�(θ)〉 to
some desired precision ε. The variational principle gives the
inequality

〈�(θ)|H|�(θ)〉 � E (H)
0 , (12)

where E (H)
0 is the ground-state energy of the Hamiltonian

H, and Eq. (12) becomes an equality only when |�(θ)〉 is a
ground state of the Hamiltonian H. Thus, if the ansatz U (θ)
is sufficiently expressive, minimizing the expectation value
E�,H(θ) over the parameters θ will yield a good approxi-
mation to the ground state |� (H)

0 〉. The minimization can be
performed by inserting the quantum processor into a feedback
loop that incorporates a classical optimization algorithm; the
original proposal [25] used the Nelder-Mead simplex method
[78], but more recent work has used other optimization meth-
ods (see the reviews [79,80] for examples). Figure 4 shows a
schematic of the VQE algorithm.

2. Quantum approximate optimization algorithm

The quantum approximate optimization algorithm
(QAOA) is an algorithm for combinatorial optimization
first proposed in Ref. [81] and which quickly inspired a
number of others works developing the idea further [82–87].
While some forms of QAOA may be considered to be purely
quantum algorithms [81], it is typically hybrid in form. In
fact, QAOA in its most common form can be considered to
be an example of a VQE algorithm applied to combinatorial
optimization, with an ansatz inspired by QA (see Subsec.
III A). The ansatz usually takes the form

|�(α,β)〉n =
p∏

j=1

[exp (−iα jHD)

× exp (−iβ jHP )]|gs(HD)〉n (13)

where p is the number of QAOA layers and α = (α1, . . . , αp),
β = (β1, . . . , βp) are 2p variational parameters. The classi-
cal problem Hamiltonian HP is a Hamiltonian into which,
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as in QA, a combinatorial optimization cost function has
been mapped such that its eigenstates correspond to candidate
solutions and its eigenvalues correspond to their costs. The
driver or mixing Hamiltonian HD is a Hamiltonian which
induces transitions between basis states. As in QA, this is
typically a simple single-body transverse field Hamiltonian
HD = −∑n

k=1 Xk applied to the qubits, although this has been
generalized [87] to include a much broader class of mixing
Hamiltonians, in a similar algorithm known as the quantum
alternating operator ansatz, sharing an acronym with the orig-
inal algorithm. In a typical QAOA implementation, the initial
state |gs(HD)〉 is the ground state of the mixer Hamiltonian
HD.

The ansatz in Eq. (13) is inspired by the QA algorithm in
the sense that the parameters α,β can be chosen such that
the unitary that prepares the ansatz can be expressed as a
Trotterization of a QA protocol; that is,

lim
p→∞

{
p∏

j=1

exp

(
− i

[
1 − s

(
jT

p

)]
HD

)

× exp

[
− is

(
jT

p

)
HP

]}

= T exp

[∫ t=T

t=0
dt ((1 − s(t ))HD + s(t )HP )

]
. (14)

In practice, running a QAOA algorithm with a large num-
ber p of layers in order to approach the QA limit requires a
large circuit depth that quickly becomes impractical, particu-
larly in the NISQ era. Instead, QAOA algorithms are typically
considered at a small number of layers, even sometimes p = 1
(e.g., in Ref. [88]). For a small number of layers, there are
a manageable number of parameters α,β which can be opti-
mized in a classical variational loop as with other variational
algorithms, as described in Sec. III B 1. Other strategies for
optimizing the parameters have also been considered, such as
posing the optimization as a learning and task and employing
reinforcement learning [89] to find good parameters that can
even be transferred between problem instances of different
sizes.

3. Difficulties with variational algorithms

The performance of a variational algorithm, including
QAOA, will depend strictly on the choice of ansatz for the
PQC U (θ). Most critically, if the ansatz is too simple, the set
of accessible states {|�(θ〉) : ∀θ} may exclude a large portion
of the physically relevant state space, meaning that it is not
possible to achieve a good approximation to the target state
|� (H)

0 〉. This can be avoided by increasing the number of inde-
pendent parameters θ in the ansatz, but this comes at the cost
of increased circuit depth, which for NISQ devices will lead
to increased noise, again limiting the quality of achievable
solutions.

In principle, matching the form of the ansatz to the prob-
lem under consideration can also improve VQE performance;

for example, the unitary coupled cluster ansatz is known
to be particular suitable for problems in quantum chemistry
[25,90,91]. However, such domain-specific ansatze often re-
quire large circuit depths to implement in terms of gates
native to quantum processors. An alternative approach is to
employ hardware-efficient ansatze, which are designed to be
easy to implement on real hardware [25,92]. Unfortunately,
the hardware-efficient approach has been observed to lead to
“barren plateaus,” regions of the optimization landscape with
vanishing gradients, making the classical optimization much
harder to perform. A useful discussion of ansatz design is
available in Ref. [93].

An understanding is emerging that the origin of the bar-
ren plateaus relates to the expressivity of the ansatz [94]. In
particular, if an ansatz is too expressive, then the broadness
of the search of the space leads to barren plateaus since the
majority of the solution space will consist of low-quality
solutions which are relatively unaffected by small changes.
This leads to tension between having an ansatz which is
expressive enough to accurately describe a desired solution,
but not so expressive that it is no longer trainable. It has also
been found that there is a distinct mechanism by which noise
in the circuit can lead to barren plateaus [95]. The fact that
barren plateaus cause gradients to vanish begs the question
whether they will be problematic if optimization of parame-
ters is performed with a gradient-free method; unfortunately,
recent work suggests that they are still an impediment [96].
While barren plateaus are a significant obstacle to variational
algorithms, the situation is far from hopeless, and there are
strategies which have shown some success. For example, it
has been demonstrated in Ref. [97] that reducing the size
of the search space by correlating circuit parameters can
lead to large gradients (therefore destroying the plateaus).
While many error-mitigation strategies do not improve the
trainability of noisy variational algorithms, some can [98].
Furthermore, progress may be made by choosing ansatze or
starting conditions which are inspired by the problem being
solved. For example, it is known that QAOA can describe
digitized QA, and indeed optimal QAOA protocols have been
found to be very similar (but not identical) to digitized anneal-
ing [99,100] and sophisticated mathematical tools have been
developed to understand when an ansatze will and will not be
trainable due to barren plateaus [101].

A related but distinct question is how to encode informa-
tion which is not naturally binary into a quantum computer. In
particular, this raises the question of binary encodings, where
bit strings are used directly to represent configurations, or en-
coding individual variables using unary (qubits required scale
linearly with the number of configurations) encodings. In the
case of annealing, the inability to efficiently engineer higher
order terms means that it can be shown mathematically that
a kind of unary encoding (domain wall) is the most efficient
method in terms of qubit usage for completely general interac-
tions [102]. However, for gate model approaches, the tradeoff
is far more complicated and encoding strategies remain an
area of active research [103–106] with many open questions.
For example, to the best of our knowledge only Plewa et al.
[106] have performed simulations to test the domain-wall
encoding in a gate model setting.

010101-8



HYBRID QUANTUM-CLASSICAL ALGORITHMS IN THE … PHYSICAL REVIEW A 106, 010101 (2022)

C. Quantum amplitude estimation

Quantum amplitude estimation (QAE) algorithms are col-
lection of quantum methods to solve the following problem.
Given black-box access to some unitary quantum algorithm A
on n qubits a unitary oracle O that partitions the computational
basis states into a set of good states G and bad states B,

O| j〉 =
{| j〉, for j ∈ G
−| j〉, for j /∈ G,

(15)

find the probability (referred to as the amplitude in this
context) a that a computational basis measurement on the
output of the algorithm |ψ〉 = A|ψ0〉, where |ψ0〉 is an eas-
ily prepared reference state (typically the all-zero state |0〉n),
produces a good state.

Given no other information about the structure of the al-
gorithm A or the good-bad partition, the only option to solve
this problem classically (aside from the unavoidable quantum
run of the algorithm A and the call to the oracle O to check
the state) is to simply run the algorithm A, measure the output
state, check if it is good, and repeat to build up statistics. To
achieve an estimate ã of the amplitude a to within an error
ε, this approach requires a number of calls N (sampling)

calls to the
algorithm A that scales as

N (sampling)
calls ∈ O

(
1

ε2

)
. (16)

The first QAE algorithm was proposed in Ref. [107] and
achieves a quadratic speed-up over classical sampling; that
is, the required number of calls N (QAE)

calls to the algorithm A to
achieve an estimate ã of the amplitude a to within an error ε

scales as

N (QAE)
calls ∈ O

(
1

ε

)
. (17)

It was later shown that practical implementations of a
QAE algorithm would have the potential to speed up a wide
range of important applications; in particular, it was shown
in Ref. [108] that QAE can be used to achieve a quadratic
(up to logarithmic factors) speedup for Monte Carlo algo-
rithms by enhancing the sampling convergence rate. Given
the importance of Monte Carlo algorithms in a broad range
of areas, from chemistry [109] to statistical physics [110]
to computational finance [111], practical implementations of
QAE algorithms would have a significant impact.

The QAE algorithm of Ref. [107] is a purely quantum
algorithm, relying on the phase-estimation procedure similar
to that shown in Fig. 2, and involves many complicated con-
trolled unitary operations that may be difficult to implement.
After the work in Ref. [108] showed potential uses of QAE,
many new forms of QAE were developed [112–115] that
replaced the phase-estimation procedure with classical post-
processing, but the core workings of the algorithm remained
the same. All forms of QAE involve constructing Grover-like
iteration operators [42]

Q = (A(1 − 2|0〉n〈0|n)A†)O, (18)

similar to Eq. (2). The algorithms work by repeating the
Grover iteration operator different numbers of times to am-
plify the amplitude a by different amounts and detecting

which numbers of iterations produce a large probability of
measuring good states. The original algorithm of Ref. [107]
uses phase estimation to do this, while more recent QAE
algorithms make use of classical postprocessing instead.

An illustrative example of a hybrid QAE algorithm is the
maximum-likelihood QAE (MLQAE), proposed by Suzuki
et al. [113]. In MLQAE, Grover-type circuits are run at vari-
ous different numbers m of iterations to produce the states

|ψ (m)〉 ≡ (Qm)A|ψ0〉 (19)

= sin ((2m + 1)θa)
�G|ψ0〉

||�G|ψ0〉||
+ cos ((2m + 1)θa)

�B|ψ0〉
||�B|ψ0〉|| , (20)

where the angle θa is defined by sin2 θa ≡ a and �G (�B) is
a projection operator on to the good (bad) subspace of the
computational basis. Then, these output states are measured,
and it is recorded whether the outcome is good or bad. This
process is repeated for some number Nshot of shots, and a
measurement record h = (hm)m is constructed, where hm is the
number of good states produced by Nshot shots of the circuit
with m Grover iterations.

A likelihood function L(θã; h) for the measurement record
is then built,

L(θã; h) =
∏

m

Lm(θã; hm) (21)

=
∏

m

(sin2 ((2m + 1)θã))hm

× (cos2 ((2m + 1)θã))(Nshot−hm ). (22)

By classically maximizing this likelihood function (or its
logarithm), the angle θa, most likely to produce the mea-
surement record can be determined, and hence an estimate
ã for amplitude a can be found. This is illustrated in Fig. 5.
Figure 5(a) shows an illustration of the likelihood Lm(θã; hm)
of a Grover-like QAE circuit with m Grover iterations (m
larger for lower plots) to produce hm good states from Nshot

runs, with the angle θã. It can be seen that smaller numbers m
of iterations produce a small number of broad peaks (a small
number of rough regions where the true θa might be), while
larger m values produce many sharp peaks (which can help
identify an accurate estimate if the rough region is known).
The overall likelihood function, illustrated in Fig. 5(b), can
be maximized to find an accurate estimate of the angle θa

(and hence the amplitude a). It can be shown [113] that for
some sequences of choices of m, MLQAE can achieve the
same quadratic speedup [Eq. (17)] compared to the scaling
of classical sampling [Eq. (16)].

Various modifications to MLQAE have been developed,
including dealing with limited circuits depths and with noisy
circuits [116–118], but all versions offer a clear illustration
of the power of (nontrivial) classical and quantum processing
working together to produce speedups over what is possible
by classical processing alone.
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FIG. 5. (a) Illustrations of the likelihood Lm(θã; hm ) of a Grover-
like QAE circuit with m Grover iterations (m larger for lower plots)
to produce hm good states from Nshot runs, with the angle θã. The
actual angle θa that generated the outcomes is indicated by the dashed
line. (b) The overall likelihood Lm(θã; h) produced by multiplying
together the likelihoods for each m.

D. Quantum subroutines within quantum chemistry and
materials simulations

A promising direction of research for early quantum al-
gorithms is the development of quantum methods for solving
problems in quantum chemistry. Systems for which quantum
mechanics must be taken into account to calculate important
properties tend in the general case to be hard to treat with
purely classical techniques; this is due to the exponential
growth of the size of the Hilbert space compared to the sys-
tem size. Directly exploiting the quantum nature of quantum
computers could lead to very natural techniques for these
problems.

One approach that is the subject of much recent research
[76,119] is to apply the hybrid VQE algorithm described in
Subsec. III B 1. By choosing the Hamiltonian Ĥ used in the
VQE loop to be the Hamiltonian of the chemical system under
study (as well as suitable VQE ansatz), the VQE procedure
can be used to find the ground state (or other eigenstates) of
the Hamiltonian, from which other important properties can

FIG. 6. Schematics showing the high-level structure of the hy-
brid algorithm for correlated materials proposed in Ref. [120].
(a) The outer loop in which a DFT solution is iteratively improved.
The step in which the Green’s function for the impurity model is cal-
culated is shown with a dashed border to indicate that it is this piece
of the algorithm that can be swapped out for a quantum subroutine.
(b) The expanded version of the impurity model Green’s function
calculation from Fig. 6(a), indicating that it can be achieved either
purely classically or in a hybrid quantum-classical way.

be calculated (e.g., the Green’s function [120]), or various
chemical properties.

While the direct VQE approach may be suitable for prob-
lems that are small enough to fit on near-term quantum devices
(but are nonetheless large enough to be difficult for classical
methods), for larger problems (such as for correlated materials
simulations) a more involved approach must be taken. One
proposal from Ma et al. [121] considers separating a full
system into a small active space, with an effective quantum
Hamiltonian, and its environment, which can be treated less
accurately via density functional theory (DFT). The small
active space can then be treated with VQE to learn about the
electronic properties of the whole system.

Many purely classical algorithms for quantum chemistry
and materials rely on quantum Monte Carlo [122,123], a fam-
ily of classical algorithms which can, to some extent, emulate
quantum systems in thermal equilibrium. Quantum Monte
Carlo is limited for fermionic systems, however, by what is
known as the sign problem, where accurate sampling can
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become computationally infeasible below certain tempera-
tures [124]. These algorithms have the advantage of providing
ready-made classical wrappers to add in quantum compo-
nents, and are therefore natural candidates for early hybrid
quantum-classical algorithms, such as the example presented
in Ref. [120]. While a full review of hybrid quantum-classical
materials and chemistry algorithms, including methods which
are based on time evolution rather than ground-state prepa-
ration is beyond the scope of our current work, Bauer et al.
review the algorithmic opportunities in Ref. [119].

To give a flavor of how these algorithms work, we focus
on work by Bauer et al. [120], which addresses the significant
computational challenge to simulate the properties of strongly
correlated materials where the independent-electron approxi-
mation intrinsic to the standard DFT breaks down. This work
explores the dynamical mean field theory (DMFT) method
(see Ref. [125] for a thorough review), which can be applied to
materials expressible as lattice models. The DMFT approach
which recasts the material as a local site (known as an “im-
purity”) interacting with the rest of the system expressed as a
noninteracting bath. The total Hamiltonian is written as

HDMFT = Himp + Hbath + Hmix, (23)

where

Himp =
N∑

a,b=1

tab f †
a fb +

N∑
a,b,c,d=1

Uabcd f †
a f †

b fc fd (24)

is the impurity Hamiltonian that will be treated carefully,
where f † ( f ) operators create (annihilate) a fermion in one of
N local orbitals and the hopping and interaction integrals tab

and Uabcd are determined from the underlying material. The
noninteracting bath Hamiltonian has the form

Hbath =
∑

j

ε jb
†
jb j, (25)

(26)

where the b† (b) operators create (annihilate) a fermion in one
of the bath modes (considered to be infinitely many, but can
be truncated to a finite number of modes if necessary). The
remaining term,

Hmix =
N∑

a=1

∑
j

(Va j f †
a b j + V ∗

a jb
†
j fa), (27)

(28)

describes the interaction between the impurity and the bath.
While at this level of description the bath mode energies
ε j and interactions Va j are free parameters, the core of the
DMFT algorithm is to iteratively update these parameters in a
self-consistent way until the Green’s function of the impurity
model and the relevant local terms of the lattice Green’s func-
tion converge to match. This DMFT scheme is used within
an additional outer loop that uses the information it provides
about the correlated electrons to iteratively improve a DFT
solution.

The structure of the outer loop is shown in Fig. 6(a).
The step in which the impurity Green’s function is calcu-
lated is shown with a dashed border to indicate that it is

this piece of the algorithm that can be swapped out for a
hybrid quantum-classical subroutine. This step is expanded
in Fig. 6(b). Classically, there are various ways to calculate
the Green’s function, such as by a quantum Monte Carlo
algorithm, as discussed previously in this section. However, to
overcome the inherent computational challenges of classical
approaches, Bauer et al. [120] propose using a combination
of adiabatic state preparation (using AQC to compute ap-
proximations to Hamiltonian eigenstates) and quantum phase
estimation [126] to prepare the ground state, from which the
Green’s function can be measured.

IV. HARDWARE CONSIDERATIONS

A. Larger computations on smaller hardware:
Entanglement forging

Since near-term quantum processors will have only a lim-
ited number of qubits available, it is worthwhile to consider
how classical processing can be used to apply hybrid algo-
rithms to problems that may not otherwise fit on small devices.
An illustrative example of such a method is the recent en-
tanglement forging, due to Ref. [127]. In that work, Eddins
et al. show how a quantum system mapped to 2N qubits can
be studied on a device with only N qubits, by breaking the
2N-qubit system into two N-qubit partitions and expressing
the density operator ρ = |�〉〈�| of the system in terms of the
Schmidt decomposition

|�〉 = (U ⊗ V )
2N −1∑
k=1

λk|bk〉〈bk|⊗2, (29)

where |bk〉 are computational basis states for an N qubit
and U,V are unitary operators local to each half of the
bipartition. The non-negative, real-value Schmidt coeffi-
cients λk are treated as variational parameters for a VQE
circuit (see Subsec. III B 1). In this representation, expec-
tation values 〈�|O|�〉 of 2N-qubit operators of the form
O = O1 ⊗ O2 can be decomposed into terms of the form
〈φ1|UO1U †|φ1〉〈φ2|V O2V †|φ2〉, where |φ〉 can be single-basis
states |bk〉 or uniform superpositions of two basis states. These
expectation values can be computed on N qubits, and are then
sampled in a weighted way according to the coefficients λkλ j .

While this will not scale well in the general case, sys-
tems that are only weakly entangled across the bipartition
will have only a small number of dominant Schmidt co-
efficients λk; thus, the expectation value 〈�|O|�〉 can be
well approximated with a manageable number of samples. In
Ref. [127], entanglement forging (along with some heuristic
enhancements) is used to find ground-state energies of various
geometries of the water molecule with high accuracy, via a
ten-qubit mapping, usimg only five superconducting qubits on
real quantum hardware.

B. Additional controls

In the case of QA and other nonuniversal analog pro-
cessors, we see that sometimes hybrid techniques required
additional controls. The most prototypical example here is re-
verse annealing, as discussed in Subsec. III A 1, which allows
for hybrid techniques. These controls are important because
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they allow a much richer variety of techniques which have
demonstrated real gains in experiments. In particular, in this
example the controls were actually already available within
the underlying device (the protocol described in Ref. [55]
is essentially reverse annealing combined with some other
techniques), but had not been made available to external users.
It is therefore highly important to think about how existing
experimental techniques could be used in computation for
different purposes than they were originally intended.

C. Co-locating the quantum and classical computing power

When discussing computations at the abstract level we
have so far, it is easy to forget that communication between
classical and quantum systems is not free. While the currently
dominant model of cloud access to quantum computers is very
useful for proof-of-concept experiments, the time required to
send signals over the internet between quantum and classical
components could prove to be a major barrier. There are
already efforts to colocate quantum computing resources with
powerful classical high-performance computing, for example
through the Jülich supercomputing center’s JUNIQ program
[128].

Some computation may require even faster communication
between quantum and classical components; for qubit tech-
nology such as superconducting qubits which operate on chip
substrates at ultralow temperatures, this means that classical
computation at cryogenic temperatures (although possibly not
as cold as the quantum computer) could be beneficial. In-
spired by the quantum computing use cases, there have been
numerous studies in this direction [129–133]. As we discuss
in Sec. V, there are also many types of classical processors,
each with their strengths and weaknesses; any of these could
potentially be useful candidates to colocate with quantum
computers.

V. THE BIG PICTURE: SPECIALIZED ACCELERATORS

Throughout this work, we have offered many examples
showing how classical and quantum processors can poten-
tially be used together to perform computational tasks much
more efficiently than what is possible with a classical pro-
cessor alone. While a quantum processor is certainly quite
different, both practically and theoretically, from any kind
of classical processor, different types of processors working
together is already a common structure within purely classical
computing; there are many classical examples of specialized
coprocessors, to which specific kinds of processing are off
loaded, and this is sometimes known as heterogeneous or
heterotic. A thorough discussion of heterotic computing is
available in Ref. [134]. In this section, we will briefly describe
some examples of classical heterotic computing and offer
some intuition for how quantum processors can naturally fit
into this framework.

A. Graphics processing unit

The clearest example of classical heterogeneous computing
is that of a computer’s central processing unit (CPU) working
together with graphics processing unit (GPU) [135]. A typical
GPU consists of, among other things, a much larger number

of cores than a typical CPU, and these cores are particularly
suited to the kinds of three-dimensional vector-matrix oper-
ations needed for graphics processing, such as translations
and rotations in space. Typically, the same calculation needs
to happen many different times on independent inputs; for
example, every point on a three-dimensional object needs
to move in the same way, with only the starting conditions
different for each point. The large number of small cores on a
GPU allows this to happen to happen at a greatly accelerated
pace [135] compared to the relatively small number of (more
general purpose) cores on a CPU can manage. Typically, the
computation is arranged such that the CPU hands off these
specific tasks to the GPU when needed.

More recently, GPU technology has been used for appli-
cations beyond graphics processing but which also require
the same large-scale parallelization of small numerical op-
erations, such as machine learning calculations (e.g., via
TensorFlow [136]).

B. Application-specific integrated circuit

An application-specific integrated circuit (ASIC) [137] can
be thought of as a processor designed and manufactured to
carry out a specific computational task much more quickly and
with much more energy efficiency than can be achieved by
a programming a general-purpose processor such as a CPU.
An example of an ASIC with these properties is Intel’s Quick
Sync video technology; these circuits are used for rapidly
converting video between different formats and are integrated
with Intel CPUs to handle these specific workloads [138].
Similar hardware, known as field-programmable gate arrays
(FPGAs) [139], can be reprogrammed at the hardware level
after being deployed.

1. Neuromorphic processors

Many modern classical algorithms are based mimicking
the behavior of the human brain through the use of software-
defined neural networks. While this approach is proving
successful in many areas, standard processors are proving to
be limited by particular bottlenecks, such as the communica-
tion between the core and memory. To avoid these limitations,
the emerging development of neuromorphic processors [140]
aim to emulate the behavior of the human brain directly at
the hardware level, leading to hardware that can run artificial
intelligence applications much more efficiently than standard
processors.

2. Quantum computers as specialized coprocessors

The specialized accelerators described here all show how
hardware designed and optimized for a specific type of
computational work can operate in tandem with a standard
processor, such as a CPU, to enhance overall computational
efficiency. Hybrid quantum-classical algorithms, including
the ones described in this work, fit naturally into this frame-
work; a quantum processing unit (QPU) can be called by a
general purpose classical CPU to accelerate specific compu-
tational subroutines, such as the phase estimation component
of Shor’s algorithm (see Subsec. II B) or the ansatz prepara-
tion component of a VQE algorithm (see Subsec. III B 1).
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From this perspective, hybrid quantum-classical algorithms
are a continuation of a traditional pattern in the development
of computer technology. While the operating principles of
a quantum computer are quite different from their classical
counterparts, the way they fit into larger architectures (and
the surrounding concerns) are not fundamentally something
which has not been encountered before.

VI. THE FUTURE OF HYBRID ALGORITHMS

The development path of hybrid algorithms is not uni-
versal and does not always involve a nonhybrid precursor;
while hybrid forms of QAE grew out of the original pure
form of QAE (and indirectly out of Grover’s search, a pure
quantum algorithm), many others came about in different and
varied ways. Shor’s algorithm, for example, emerged from
the fact that a quantum algorithm fulfilled a niche application
which allowed for a very powerful computational tool. This
is similar to many hybrid materials and chemistry algorithms,
which have developed out of classical algorithms by replacing
classical methods such quantum Monte Carlo with quantum
computing calls. In the case of variational algorithms, as well
as hybrid forms of quantum annealing, the capabilities of the
hardware has driven the development of algorithms. A key
lesson to draw from these stories is that there is not one way
to develop hybrid algorithms: They can emerge in a multitude
of different ways.

An immediate question which arises from this discussion
is whether hybrid algorithms are just a phase in the evolu-
tion of quantum computing, and when (and if) large, fully
fault-tolerant quantum computers come into existence, will
hybrid algorithms still be used? If we look at the evolution of
classical computing technologies, we can find a hint. As new,
advanced coprocessors have been developed classically they
have not displaced older paradigms, but rather been added to
them to perform specialized tasks. We do not see any reason
to believe that the evolution of quantum computers will be
any different. Quantum computers are not intrinsically faster
at simple applications like adding numbers, and even if large

numbers of high-quality qubits became readily available, it
is doubtful that they would ever be better than classical bits
by all metrics, in which case heterotic computing would be
the most sensible paradigm, as it currently is in the world of
classical computing. We find it unlikely that once quantum
hardware advances to the stage of genuine usefulness non-
hybrid algorithms will ever be deployed in a “production”
setting, for the simple reason that it is likely that further
improvements could be made by adding a hybrid component.

From our discussion so far, we have seen that hybrid algo-
rithms are most meaningfully classified in terms not of how
much classical computing power they use, but how that com-
putation fits into the overall model. While there are notable
algorithms which are both hybrid and nonhybrid, a pattern
which has appeared both in terms of Grover’s algorithm and
subsequent QAE techniques, and quantum annealing and sub-
sequent hybrid versions, is that nonhybrid algorithms often
evolve into richer, more powerful, hybrid variants. This pat-
tern is likely not incidental; it is often easier to first imagine
algorithms in a more “pure” setting and then allow them
to evolve. This suggests an interesting relationship between
hybrid and nonhybrid algorithms: The nonhybrid setting is
a useful incubator for hybrid techniques which will later be
implemented. As such, we are not suggesting that hybrid
algorithms are the only class of quantum algorithms which are
worthwhile to study, but that it is probably most appropriate
to think of nonhybrid algorithms as the foundations of new
algorithms which are yet to be developed.
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[28] V. Havlíček, A. D. Córcoles, K. Temme, A. W. Harrow, A.
Kandala, J. M. Chow, and J. M. Gambetta, Supervised learning
with quantum-enhanced feature spaces, Nature (London) 567,
209 (2019).

[29] R. LaRose, A. Tikku, É. O’Neel-Judy, L. Cincio, and
P. J. Coles, Variational quantum state diagonalization, npj
Quantum Inf. 5, 57 (2019).

[30] M. P. Harrigan, K. J. Sung, M. Neeley, K. J. Satzinger, F.
Arute, K. Arya, J. Atalaya, J. C. Bardin, R. Barends, S.
Boixo, M. Broughton, B. B. Buckley, D. A. Buell, B. Burkett,
N. Bushnell, Y. Chen, Z. Chen, B. Chiaro, R. Collins, W.
Courtney et al., Quantum approximate optimization of non-
planar graph problems on a planar superconducting processor,
Nat. Phys. 17, 332 (2021).

[31] A. Perdomo-Ortiz, S. E. Venegas-Andraca, and A. Aspuru-
Guzik, A study of heuristic guesses for adiabatic quantum
computation, Quant. Info. Proc. 10, 33 (2011).

[32] Q.-H. Duan, S. Zhang, W. Wu, and P.-X. Chen, An alternative
approach to construct the initial Hamiltonian of the adiabatic
quantum computation, Chin. Phys. Lett. 30, 010302 (2013).

[33] N. Chancellor, Modernizing quantum annealing using local
searches, New J. Phys. 19, 023024 (2017).

[34] T. Graß, Quantum Annealing with Longitudinal Bias Fields,
Phys. Rev. Lett. 123, 120501 (2019).

[35] N. Chancellor, Modernizing quantum annealing II: Ge-
netic algorithms with the inference primitive formalism,
arXiv:1609.05875.

[36] D. Venturelli and A. Kondratyev, Reverse quantum anneal-
ing approach to portfolio optimization problems, Quantum
Machine Intelligence 1, 17 (2019).

[37] J. King, M. Mohseni, W. Bernoudy, A. Fréchette, H. Sadeghi,
S. V. Isakov, H. Neven, and M. H. Amin, Quantum-assisted
genetic algorithm, arXiv:1907.00707.

[38] J. Roffe, Quantum error correction: An introductory guide,
Contemp. Phys. 60, 226 (2019).

[39] N. P. Breuckmann, K. Duivenvoorden, D. Michels, and B. M.
Terhal, Local decoders for the 2D and 4D toric code, Quantum
Info. Comput. 17, 181 (2017).

[40] D. Horsman, V. Kendon, and S. Stepney, Abstrac-
tion/Representation Theory and the Natural Science of
Computation (Cambridge University Press, Cambridge, UK,
2018), pp. 127–150.

[41] C. Horsman, S. Stepney, R. C. Wagner, and V. Kendon,
When does a physical system compute? Proc. R. Soc. A 470,
20140182 (2014).

[42] L. K. Grover, A fast quantum mechanical algorithm for
database search, in Proceedings of the 28th Annual ACM
Symposium on the Theory of Computing (ACM, New York,
1996), pp. 212–219.

[43] A. B. Finnila, M. A. Gomez, C. Sebenik, C. Stenson, and J. D.
Doll, Quantum annealing: A new method for minimizing mul-
tidimensional functions, Chem. Phys. Lett. 219, 343 (1994).

[44] E. Farhi, J. Goldstone, S. Gutmann, and M. Sipser, Quantum
computation by adiabatic evolution, arXiv:quant-ph/0001106.

[45] J. Roland and N. J. Cerf, Quantum search by local adiabatic
evolution, Phys. Rev. A 65, 042308 (2002).

010101-14

https://doi.org/10.1038/414883a
https://doi.org/10.1038/nature01336
https://doi.org/10.1103/PhysRevA.70.032324
https://doi.org/10.1103/PhysRevLett.96.170501
https://doi.org/10.1038/nphys507
https://doi.org/10.1103/PhysRevLett.98.140501
https://doi.org/10.1103/PhysRevLett.102.030502
https://doi.org/10.1038/nature10012
https://doi.org/10.1103/PhysRevA.94.032329
https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.1126/science.abe8770
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.1103/PhysRevE.58.5355
https://doi.org/10.1038/ncomms5213
https://doi.org/10.1103/PhysRevX.6.031007
https://doi.org/10.1038/s41586-019-1040-7
https://doi.org/10.1038/s41586-019-0980-2
https://doi.org/10.1038/s41534-019-0167-6
https://doi.org/10.1038/s41567-020-01105-y
https://doi.org/10.1007/s11128-010-0168-z
https://doi.org/10.1088/0256-307X/30/1/010302
https://doi.org/10.1088/1367-2630/aa59c4
https://doi.org/10.1103/PhysRevLett.123.120501
http://arxiv.org/abs/arXiv:1609.05875
https://doi.org/10.1007/s42484-019-00001-w
http://arxiv.org/abs/arXiv:1907.00707
https://doi.org/10.1080/00107514.2019.1667078
https://doi.org/10.1098/rspa.2014.0182
https://doi.org/10.1016/0009-2614(94)00117-0
http://arxiv.org/abs/arXiv:quant-ph/0001106
https://doi.org/10.1103/PhysRevA.65.042308


HYBRID QUANTUM-CLASSICAL ALGORITHMS IN THE … PHYSICAL REVIEW A 106, 010101 (2022)
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