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ABSTRACT

INTRODUCTION: Multiple sclerosis (MS) is a chronic autoimmune disease characterized by

demyelinating lesions that are often visible on magnetic resonance imaging (MRI). Segmentation

of these lesions can provide imaging biomarkers of disease burden that can help monitor disease

progression and the imaging response to treatment. Manual delineation of MRI lesions is tedious

and prone to subjective bias, while automated lesion segmentation methods offer objectivity and

speed, the latter being particularly important when analysing large datasets. Lesion segmentation

can be broadly categorised into two groups: cross-sectional methods, which use imaging data

acquired at a single time-point to characterise MRI lesions; and longitudinal methods, which use

imaging data from the same subject acquired at two or more different time-points to characterise

lesions over time. The main objective of longitudinal segmentation approaches is to more

accurately detect the presence of new MS lesions, and the growth or remission of existing lesions,

which may be effective biomarkers of disease progression and treatment response.

PURPOSE: This paper reviews articles on longitudinal MS lesion segmentation methods published

over the past ten years. These are divided into traditional machine learning methods, and deep

learning techniques.

METHODS: PubMed articles using longitudinal information and comparing fully-automatic two time

point segmentations in any step of the process were selected.

RESULTS: 19 articles were reviewed.

CONCLUSION: There is an increasing number of deep learning techniques for longitudinal MS

lesion segmentation that are promising to help better understand disease progression.

3



1 INTRODUCTION

Multiple sclerosis (MS) is a chronic autoimmune disease of unknown aetiology, and is

characterized by demyelination of the central nervous system (CNS), often visible by magnetic

resonance imaging (MRI). MS can be diagnosed after a single clinical episode if lesions are visible

on MRI [1–3]. Lesions may appear anywhere in the CNS parenchyma, for example the brain, the

spinal cord or the optic nerve. The latest McDonald criteria emphasizes the importance of

dissemination of the lesions in both time and space, shortening MS diagnosis time [2].

Dissemination in space (DIS) mean snew T2 lesions, which can be within the brain, optic nerve or

the spinal cord. Dissemination in time (DIT) is proven when asymptomatic gadolinium-enhancing

lesions appear together with non-enhancing lesions, or new lesions appear in follow-up studies.

Lesion load quantification on serial MRI provides a sensitive and objective measure of disease

activity, and is a surrogate marker in treatment trials [4]. Clinical and anatomical reality supports the

usefulness of using serial MRI studies to delineate and characterise lesions; however, very few

approaches exploit the consistency of this longitudinal data to define new [5], enlarging [6] and

shrinking lesions [7]. Increasing the number of neuroradiologists in order to cope with increasing

numbers of MRIs and the time-consuming task of looking for new, enlarging or shrinking lesions

puts hospital radiology departments under considerable pressure. Hence, the importance of

translating automated methods for detecting new or enlarging lesions into clinical practice, thus

enabling neuroradiologists to simply verify lesions, and amend existing delineations if necessary,

rather than having to visually inspect or, in the case of clinical trials, manually delineate all lesions.

It is expected that these automated methods will increase the sensitivity of measures used to

detect changes (better confidence in findings), reduce inter-rater variability and decrease

assessment time.

MRI lesion segmentation enables us to extract imaging biomarkers of disease burden, and can

assist in MS diagnosis and monitoring disease progression, as well as imaging treatment

response. MRI lesion segmentation consists of a set of techniques focused on differentiating focal

MS lesions from normal appearing tissues. Until recently, MRI lesion segmentation was primarily

performed manually [8, 9], or with the help of semi-automated tools such as JIM software (Xinapse

Systems, Northans, UK; http://www.xinapse.com). However, new advances in machine learning

(ML) algorithms, and the improved quality of MRI acquisition have enabled automatic segmentation

techniques to achieve remarkable performance across a wide range of medical applications,

including more accurate MRI automatic MS lesion segmentation.

Over the past decade, several attempts have been made to improve MS lesion segmentation using

fully automatic algorithms. One example is cross-sectional methods, which take a single MRI

time-point. The majority of studies in the literature use this method on the brain [5, 10–16], a few
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use it on the spinal cord [11, 17], and a semi-automatic method is used on the optic nerve region

[18]. Cross-sectional methods have been widely used to analyse longitudinal data, including most

teams in the ISBI 2015 longitudinal lesion segmentation challenge [12]. However, the main

disadvantage of using this method to analyse longitudinal data is the lack of consistency in timing

between consecutive scans. Furthermore, longitudinal approaches specifically use the biological

temporal consistency from two or more images of the same subject acquired at different

time-points to detect changes in size or appearance of new lesions more accurately (see Figure 1

for an example of new and enlarging MS lesions). Recently, Longitudinal MS lesion segmentation

methods have become a very active field of research, and several longitudinal segmentation

challenges have been organized such as the ISBI 2015 [12], and more recently, the MICCAI21 MS

new lesions segmentation challenge (MSSEG-2- https://portal.fli-iam.irisa.fr/msseg-2/). Two of the

main challenges of using longitudinal MRI segmentation methods are their effectiveness in the

registration procedure in highly pathological brains, and the differing image acquisition protocols in

diverse MRI machines. Evaluating longitudinal segmentation methods can be addressed in two

ways: (1) according to the number of new or enlarging lesions detected; or (2) by assessing the

whole volumetric lesion segmentation. From a clinical perspective, the detection of two or more

new MS lesions, separated in time, is used as diagnostic criteria [2]. On the other hand, the precise

segmentation and the volume change derived over time is of interest for clinical trials, as outcomes

can be used to assess treatment response [19].

This article reviews published research on fully automatic longitudinal MS lesion segmentation on

MRI over the past decade. This study expands on the previous longitudinal lesion segmentation

review by Llado et al., [20] in 2012. Our review includes only fully automated longitudinal

approaches, and these have been classified according to their core architectures into either deep

learning or traditional machine learning techniques.
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Figure 1 - Example of new and enlarging MS lesions in a MS patient (ISBI 2015 dataset [12]).
First row (a) axial view of the baseline and follow-up FLAIR MR images; in the last column,
new or enlarging lesions superimposed in red. Second row (b) shows the sagittal view.

2 MATERIAL AND METHODS

Searches on PubMed were made to identify relevant peer-reviewed papers. Search terms

combined “image segmentation”, and “multiple sclerosis”, with “longitudinal” or "serial" with and

without “MR” or “magnetic resonance” keywords. Bibliographic references cited on the papers

found were also reviewed if they included these keywords. All articles using longitudinal data to

automatically compare two time-points for new, enlarging or shrinking MS lesion segmentation in

any step of the process were selected. The only limit applied was to only selected articles

published after Llado et al., 2012 review [20], as this exhaustive review reflected the current

state-of-the-art at that time. Papers focusing on other areas were excluded. The flowchart (Figure

2) summarizes the steps taken to refine the search and obtain the papers included in this review.

Non-peer-reviewed works (i.e. ArXiV) or conference proceedings were excluded, unless they

appeared in the bibliographic references of the PubMed search results.
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Figure 2 - Schematic representation of the search strategy used to select the papers
included in this review

3 RESULTS

Since the review by Llado et al. in 2012 [20], only 19 papers met our research criteria for fully

automatic longitudinal MS lesion segmentation. The results section divides findings into four

subsections: the common pre-processing steps used in these methods; the validation metrics used

to analyse performance; the datasets included in each study; and finally, a chronological summary

of the techniques used, categorised into traditional machine learning techniques and deep learning

based methods.

3.1 PREPROCESSING STEPS FOR LONGITUDINAL LESION SEGMENTATION

It is not usually possible to make comparisons between MRI studies directly. All studies require

pre-processing steps to homogenize the distinct MRI patterns so different image acquisitions can

be accurately compared across time. Indeed, the pre-processing steps are a critical procedure that

play a key role in identifying new or enlarging lesions. In this section, we number the most common

pre-processing steps used in the reviewed articles on improving longitudinal lesion segmentation.

Whether these pre-processing steps are used or not may vary, and will depend on the method and

dataset selected.
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1. Bias field correction
Bias inhomogeneity corrupts MRI images, especially in older MRI scanners, and also presents

similar regions with different intensity values [21]. The most commonly used pre-processing

techniques for counteracting the effect of the intensity inhomogeneity are N3 or N4 (Nonparametric

Nonuniform Intensity Normalization) techniques [22]. The nonparametric nonuniform intensity

normalization algorithm corrects the bias field without any pre-segmentation of the image, and is

robust to the presence of pathologies [23]. Uncorrected MRI bias field signals could be problematic

in longitudinal lesion segmentation procedures based on intensity differences across timepoints.

2. Noise reduction
The primary source of noise that needs to be filtered in MRI images is thermal noise from the

patient's body. A widely used approach is the Non-Local Means (NLM) technique, which smooths

small intensity variations [23]. Noise reduction often affects the accuracy of brain tissue

segmentation methods, and plays an important role in the processing pipeline by distinguishing

new or enlarged lesions.

3. Image registration
This is a mandatory step in any longitudinal lesion segmentation method. To compare MRI images

across time, the longitudinal acquisitions need to be aligned in the same coordinate system. A rigid

linear transformation is employed to register all the MRI modalities acquired from the same subject

at different scan times. Specifically, it has been proven that registration needs to be in a halfway

position between baseline and follow-up images in order to avoid any potential bias caused by the

transformation being applied to a single image [24–26]. Registration can also be made to a

standard space such as the MNI (Montreal Neurological Institute) [27] or to a within-subject

template [25].

4. Skull stripping
This refers to the process of removing extra-meningeal tissue from the brain MRI image to subtract

all non-brain signals from the image. There are four methods: morphology-based; intensity-based;

deformable surface with templates; atlas-based; and hybrid. One of the most frequently used

methods is the Brain Extraction Tool (FSL-BET), which uses a deformable surface model that

evolves until it locates the brain’s boundary [28]. However, this approach can introduce bias and

false positives [29; 30]. Recently, newer and more robust techniques such as the HD-BET

algorithm [31] have been developed.
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5. Longitudinal intensity normalization
Longitudinal intensity normalization by applying linear intensity correction functions are mandatory

to compensate for global intensity changes [32]. This step is crucial for homogenising serial MRI

image signal intensity and to avoid the appearance of false positives caused by the distinct

acquisition parameters, or changes in the scanner hardware settings.

6. Priors
This widely used step applies anatomical prior constraints from predefined atlases in order to

define areas where the targeted lesions could not be presented [14] (i.e. white matter (WM) lesions

in the cortical grey matter (CGM)). These priors are commonly propagated using registration

methods and can include cerebrospinal fluid (CSF), or CGM regions in cases where MS lesion

segmentation solely centres on detecting WM lesions.

3.2 VALIDATION METRICS FOR LONGITUDINAL LESION SEGMENTATION METHODS

A number of measures are used to calculate goodness of fit. Some are used at segmentation level

(the overall voxel mask is considered, which means lesion segmentation), and others at regional

level (one lesion overlap if there is at least one voxel overlapping, which means lesion detection)

[16]. These two different approaches to presenting results make it difficult to compare methods as

there is no agreement on which method and measure best reflects each algorithm’s performance,

and each study uses them to their own convenience. Also it is important to note that we can report

the metrics over the new lesion only, or over the whole lesion load at followup.

The most frequently used measures evaluate the relationships between true positives (TP), false

negatives (FN) and true negatives (TN) at voxel and lesional level. These can be summarized as:

- Sensitivity (also known as recall, or true positive rate, or fraction when it is a percentage), is

the proportion of those with a positive test result (correctly identified) out of those having

the condition: , the best value being 100%, as there are no false positives.𝑇𝑃
𝑇𝑃+𝐹𝑁

- Specificity (also known as true negative rate or fraction, or 1-false positive rate), is the

proportion of those with a negative test result (correctly identified) out of those not having

the condition: , the best value being 100%, as tests identify all non-lesional voxels as𝑇𝑁
𝑇𝑁+𝐹𝑃

negative.

- Accuracy, degree of the result of a measurement conforms to the correct value given by the

formula , the best value being 1, as there are no false positives nor false𝑇𝑃+𝑇𝑁
𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁

negatives] .
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- Positive Predictive Value (PPV), also known as precision, is the proportion of predicted

positives actually being positive: 𝑇𝑃
𝑇𝑃+𝐹𝑃

- Sorensen-Dice Similarity Coefficient (DSC or DICE score) is a statistic of similarity between

two samples: . Its values range between 0 (no overlap) and 1𝐷𝑆𝐶 =  (2 𝑥 𝑇𝑃 )
(2 𝑥 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁)

(perfect agreement).

- Area Under ROC Curve (AUC) and Receiver Operating Characteristic (ROC): ROC is a

probability curve obtained by plotting True Positive Rate (TPR) against False Positive Rate

(FPR), and its area under the curve represents the measurement separating and

distinguishing between two classes, where a higher AUC value means better performance.

- Kappa (K) index: statistic to measure inter-rater reliability. Given (expected ratio if raters𝑝𝑒

gave a random prediction) and (observed prediction of inter-rater agreement). The𝑝𝑜

formula is .𝐾 = (𝑝𝑜−𝑝𝑒)
(1−𝑝𝑒)

- False discovery rate: the ratio of false positive discoveries over the sum of true positives

and false positives, then .𝐹𝐷𝑅 = 𝐹𝑃
𝐹𝑃+𝑇𝑃

Table 1 shows a meta comparison of published methods for detecting new or enlarging lesions at

longitudinal level over the past decade. As each method has been validated with different input

data and different gold standards that include whole lesion segmentation at follow-up, it is not

possible to make a direct comparison. Moreover, not all the methods used are publicly available.

However, the overall results point in the same direction: at segmentation level mean DSC is 0.59

with 95% CI [0.53-0.64]: and at lesional level, mean DSC increases to 0.69 with 95% CI

[0.59-0.80].

In 2015 and 2021, two longitudinal MS segmentation challenges were organised: ISBI 2015

(https://smart-stats-tools.org/lesion-challenge); and MSSEG2

(https://portal.fli-iam.irisa.fr/msseg-2/). Most of the proposed measures were similar, and the

organisers of these challenges made a website and/or the code available so the metrics explored

could be computed automatically. We therefore encourage researchers working in this field to use

these measures in the coming years to better understand the outcomes of each new method.

3.3 DATASETS

The design of test datasets directly affects results. However, in recent years, little effort has been

made to homogenise or release a common longitudinal, rich dataset, in comparison to work carried

out on cross-sectional datasets [33]. Key aspects of conceptualising a dataset are number of

subjects, MS phenotype, length of follow-ups, scan strength, and which MRI modalities to include.

Furthermore, during the first half of the last decade, inhouse datasets were widely used as publicly
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available datasets were scarce. However, the 2015 ISBI challenge, and the release of subsequent

datasets and associated labels meant that the methods published began to include both inhouse

and ISBI 2015 challenge datasets. In 2016, Lesjak et al. [34] released a dataset with twenty

subjects imaged twice, which covered different MS phenotypes and variable length between scans.

In 2021, a new public dataset was released following the MSSEG-2 new lesion segmentation

challenge.

In the studies reviewed, the ISBI dataset is the most widely used public MR image set. The dataset

comprises twenty-one studies from five subjects, and includes T1, T2, proton density (PD) and

fluid-attenuated inversion recovery (FLAIR) with the ground-truth segmentations, and is known as

the training dataset. There is also a test dataset without segmentations. All the images were

skull-stripped using the Brain Extraction Tool (BET) [28], rigidly registered to the 1mm3

MNI-ICBM152 template [28, 35, 36] using FMRIB’s Linear Image Registration tool (FLIRT) [37] and

N3 intensity normalization [38]. Two experts manually detected and delineated all the MS lesions in

the longitudinal data.

Similarly, Lesjak et al.’s dataset [34] also has conventional MRI images (T1w, T2w, FLAIR and post

gadolinium enhancement image), which are co-registered to the FLAIR image and the N4 bias

correction was performed. The raw, pre-processed images are available here:

https://github.com/muschellij2/open_ms_data.

3.4 METHODS INCLUDED

In 2012, Lladó et al. [20] provided the last comprehensive review on using longitudinal methods in

MRI segmentation in MS in 2012. This exhaustive review examined 34 longitudinal image

segmentation papers published up to that date. The authors proposed classifying techniques into

two categories: a first lesion detection, and change detection methods. Lesion detection methods

could be further classified as supervised or unsupervised; and change detection methods could be

further classified as intensity and deformation, the latter including vector displacement field and

deformation field morphometry. The largest group from the reviewed models used subtraction of

baseline and follow-up images. Associated techniques, ordered by frequency, were

expectation-maximization algorithms, K-nearest neighbours, Bayesian classifiers and artificial

neural networks.

Since 2012, nineteen new studies have been published (see Figure 3). The emergence of deep

learning methods has had an enormous impact over the last decade, hence the various methods
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have been classified into either traditional machine learning techniques or deep learning methods.

Figure 3 - Bar plot showing the number of papers included in this review (y-axis) for each
publication year (x-axis).

3.4.1-Traditional machine learning techniques

This group includes methods based on the latest advances in image analysis techniques.

In 2013, Sweeny et al. [5] developed SuBLIME, an unsupervised fully automated and

computationally fast method to identify lesion incidence between two voxels from different

time-points. The validation was performed using an in-house dataset from 10 patients with

longitudinal MRI studies. The gold standard was a manual segmentation by neuroradiologists

between consecutive studies. This was an intensity-based approach that used logistic regression

coefficients to identify possible changing voxels. After normalizing and registering the images, the

T2 hyperintense candidate voxel selection was made. FLAIR, PD, T2 and T1-weighted voxels were

subtracted using logistic regression coefficients obtained from the modelled probability of a voxel

being part of a lesion. Model performance had 95% sensitivity and 99% specificity with AUC on the

ROC curve was 99%. The main weakness of the proposed model was sensitivity to registration

errors. In 2013, Elliot et al. [39] also proposed a two-stage automated probabilistic framework to

identify new MS lesions, providing a multimodal MRI baseline and follow-up images. A generative

Bayesian model was used to infer classes at each voxel, and those identified as possible new
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lesions were assigned a confidence value using a random forest classifier. There were four

approaches to developing the Bayesian model, and that gave the probability of each voxel a

random variable, which defined class label. Bayes' model was intended to define the probability of

a voxel being a lesion and the probability of a new lesion appearing.

The following year, Battaglini et al. [40] published a paper using intensity thresholding over the

subtracted image from the baseline and follow-up PD MR images. After pre-processing input

images of brain extraction, spatial alignment and intensity normalization, the subtraction image was

generated. The authors applied 30% intensity threshold over the voxels within the WM mask, then

filtered the clusters using shape, extent and intensity constraints. Model segmentation was tested

on healthy volunteer datasets and two MS patient datasets. In 2014, Ganiler et al. [14] proposed a

fully unsupervised automated subtraction pipeline based on a thresholding intensity strategy for

detecting new MS lesions. After normalization and pre-processing, images were subtracted and

differences selected using an atlas-based WM tissue mask. Two types of thresholding were used:

intensity values larger than mean-plus-five standard deviation; and volume lesions occupying three

or more voxels.

In 2015, Roy et al. [41] proposed a supervised 4D image segmentation from serial MPRAGE, and

FLAIR images from a relapsing remitting MS patients’ dataset, each with three time points one

year apart. Taking a new approach, and instead of using differences between time points, the

authors used features from all the time-points simultaneously, building patches that contained

information about the temporal trajectories of every lesion. Using norm minimization and other

algebraic techniques, the authors developed several atlases of brain characteristics for lesion

segmentation.

In 2016, the work of Lesjak et al. [34] validated three previously published strategies: confidence

level thresholding (CLT) by Ganiler et al. [14]; change vector angular thresholding (CVAHT) by

Simoes and Slump [42]; and manual thresholding based on logistic regression by Sweeney et al.

[5]. Although all three are intensity subtraction-based studies, they differ in the way they compute

dissimilarity maps between baseline and follow-up images. In order to avoid false positives, Ganiler

et al. used a threshold of mean-plus-five standard deviations, Simoes and Slump used the

generalized likelihood ratio, and Sweeney et al. used logistic regression. Ground truth data,

dissimilarity map segmentation and postprocessing varied among models, which made precise

comparison between methods extremely difficult. Surprisingly, the authors were unable to

reproduce results comparable to the original authors, arguing that this may be due to data

overfitting, or a different rater accuracy defining ground truth.
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In 2016 Cabezas et al. [43] developed a deformation field-based approach to longitudinal

segmentation using non-rigid registration of baseline and follow-up images to obtain a deformation

field between images. Only candidates with WM lesions were selected, and an intensity threshold

used. The deformation vectors around a candidate’s lesion were used to detect lesions by

employing three metrics: divergence, jacobian and concentricity.

Finally, also in 2016, Jain et al. [15] also presented a framework for MSmetrix-long, an iterative

WM lesion segmentation based on a joint expectation-maximization (EM) framework, taking 3D T1

and FLAIR of two time points as input. Step one of the segmentation process is a cross-sectional

segmentation of the two time-points into WM, GM, CSF and lesions. Step two differentiates

between an image subtracting baseline and follow-up FLAIR after bias correction, co-registration

and intensity normalization. Step three is joint EM, and uses the output of steps one and two. Step

four is a pruning process to eliminate non-lesion candidates.

In 2017, Carass et al. [12] published the ISBI 2015 conference longitudinal lesion segmentation

challenge outcomes, comprising the eleven approaches presented in the challenge. Since the

dataset was made publicly available, it has been the most widely used longitudinal MS dataset for

testing longitudinal and cross-sectional lesion segmentation methods. Moreover, the challenge site

remains open to submissions to enable method comparison.

In 2018, Salem et al. [16] published their first paper on longitudinal segmentation using non-rigid

registration between baseline and follow-up. At each voxel of the deformation field, Jacobian,

Divergence and NormDiv operators were computed. A logistic regression model was computed at

voxel level, and several model configurations explored using four image densities T1, T2, PD and

FLAIR, both from baseline and follow-up, in order to decide if a voxel belongs to a lesion or not.

Schmidt et al. [44], also used this approach to apply a lesion growth algorithm, also published by

the same author, to segmentate the baseline and follow-up images individually, first using

T1-weighted images to map CSF, GM, WM, and then combining this information with FLAIR to

obtain a lesion probability map. After registering both images to the within-subject common space,

each voxel was classified one by one as lesion containing or not, both in baseline and follow-up

giving six patterns of lesion evolution.

Research by Cerri et al. work [13] expands on a cross-sectional generative Bayesian model with

prior segmentation for longitudinal tissue and lesion segmentation. This method can be used

longitudinally by computing an unbiased within-subject template to estimate the initial model, which

is then propagated to the different time points. The intensity probability segmentation approach

uses a Gaussian intensity model for each structure.

14

https://paperpile.com/c/IOPKzR/ujyU1
https://paperpile.com/c/IOPKzR/nPSpS
https://paperpile.com/c/IOPKzR/B8zPH
https://paperpile.com/c/IOPKzR/DUesm
https://paperpile.com/c/IOPKzR/8AvQt
https://paperpile.com/c/IOPKzR/tcP2j


3.4.2-Deep learning based methods

In 2016, developments in machine learning techniques and their dissemination drove research in

this field towards advanced deep learning models.

In 2017 Birenbaum et al. [45] published the first study on applying convolutional neural networks

(CNN) to longitudinal data for MS lesion segmentation. This segmentation method involves three

phases: pre-processing, candidate extraction, and CNN prediction. Candidate voxels were

selected from hyperintense FLAIR lesions. A probabilistic WM template was used to locate lesions

in WM only, or near the union of GM and WM, helping to reduce the CNN computation load. The

input was an image voxel, and the output a lesion probability value. Four types of CNN architecture

were used: SCSTP (Single Contrast Image Single Time Point), MCSTP (Multiple Contrast Images,

Single Time Point), SCMTP (single contrast image, multiple time points), and MCMTP (Multiple

Contrast images Multiple Time Points). All models used Single View V-Net of convolution and max

pool layers. For longitudinal models (SCMTP and MCMTP), a longitudinal net (L-Net) was made

from a V-Net, with input for each time point and output then concatenated. In turn, this output was

convoluted and its output fed to a fully connected layer. The multi-view longitudinal network

processes the input axial, coronal, and sagittal views separately using a different L-Net for each

concatenated view, and finally connecting them to two fully connected layers with final binary

output. Several techniques were used to avoid overfitting: weight sharing using identical weights in

all V-Nets, dropout layer, and data augmentation. The authors performed cross-validation (four

patients for training and one as a test) to evaluate the model. Best Dice score was obtained using

MCMTP. Using all contrast images and two consecutive time points improves segmentation

accuracy with close to human rater performance. CNNs that make use of longitudinal information

can produce better segmentation than standard CNNs.

In 2019, Fartaria et al. [46] also presented two models to differentiate WM and GM, and

LeMan-PV, a Bayesian partial volume estimation algorithm: LeMan, a supervised KNN classifier

using features from images, and an atlas for prior probability maps.

In 2020, the number of publications increased, and convolutional neural networks (CNN) became,

as still is, the dominant technique. Salem et al. [47] published a model inspired by the VoxelMorph

method developed by Balakrishnan et al. [48]. Using voxel-type patches of paired images at

consecutive time points from T1, T2, PD and FLAIR, their deformation field was obtained during a

registration process. Two fully convolutional neural networks (FCNN) U-Nets are used, and

although the authors defined various models, their main model trains all registration and

deformation blocks end to end simultaneously. The first segmentation U-Net learns the nonlinear

deformation between baseline and follow-up time point. The second U-Net takes as input baseline
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and follow-up voxels together with its deformation field and outputs the new T2 lesion

segmentation mask. In 2020, Denner et al. [49] also published a model inspired by the Voxelmorph

method, where concatenating multimodal (FLAIR, T1, PD, T2) images are fed to an encoder that

carries out a segmentation task using a CNN. The non-rigid registration task learns deformation

fields between the already coregistered images at different time points in order to find what has

changed (mainly lesions). Segmentation is performed on the three orthogonal slices crossing the

voxel of interest, also called 2.5D approach. A fully convolutional and densely connected neural

network (known as Tiramisu) was used for each slide image segmentation [50]. The authors of this

study developed a multitask learning framework that joined segmentation and non-rigid registration

tasks sharing the same encoder, but using separate decoders. A combination of techniques

enabled the use of different methods: longitudinal network, multitask longitudinal network, and

longitudinal network with pretraining. In another study, Krüger et al. [51] developed a two-path 3D

CNN in a U-Net- like architecture. This included a fully convolutional network with residual blocks

and deep supervision, and Leaky ReLU, instance normalization, Adam optimizer and data

augmentation were used to increase performance. In the same year, 2020, McKinley et al. [52]

introduced DeepSCAN MS, which was a hybrid of U-net [53] and Densenet [54], a CNN based

architecture with pooling and upscaling replaced by dilated convolutions for automatic lesion load

change detection. Here, a new loss function called label-flip was used, where the probability of

containing a certain tissue class and the probability of corresponding to the ground-truth annotation

was calculated at each voxel. Given the baseline image, baseline and follow-up segmentations and

the label-flip probability, each voxel was classified as a new lesion with segmentation confidence.

In 2020 Gessert et al. [55] proposed the ResNet-based multiencoder-decoder 3D CNN using

convolutional recurrent units (convGRUs) to address longitudinal segmentation of new and

enlarged lesions. The authors transformed the single path CNN U-Net [55] into a two-path

architecture, where baseline and follow-up volumes are first processed individually, and then jointly,

combining convolution down, ResBlock and fusion blocks. The authors then introduced an

attention-guided interaction block to control the flow of information between the two paths.

Finally, results from the recent MSSEG-2 challenge are still pending. This extremely well-organised

challenge was attended by 20 international teams, and is yet further proof of the interest this topic

is currently drawing.

Table 3 summarises the methods published on longitudinal MS lesion segmentation over the past

decade.
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4 DISCUSSION

A reliable method for assessing the presence of new MS lesions and evidence of no new disease

activity is key to evaluating the efficacy of disease-modifying therapies [56]. MRI is a biomarker of

MS progression and useful for both diagnosis and monitoring disease activity, as well as treatment

response. Radiological MS progression is defined as the appearance of new or enlarging lesions in

T2 weighted imaging and new enhancing lesions on T1 weighted imaging with Gadolinium-based

contrast [2]. Conventional MRI provides reliable markers of acute inflammatory activity, but has low

specificity and sensitivity for those tissue changes that characterize the chronic phase of MS.

Sometimes lesions do not show intensity changes, but can affect surrounding tissues. Noise and

residual MRI artifacts must also be taken into account, and this can be evaluated by comparing

baseline and follow-up scans [43, 49]. Manual delineation is the highest sensitivity technique, and

provides higher reliability in the detection of enlarging lesions and new lesions close to areas with

large lesion accumulation (such as periventricular regions) when performed by a single rater.

However, manual expert segmentation is time-consuming and is subject to inter-observer variability

[15]. Furthermore, automatic lesion segmentation has three advantages over manual segmentation

in that it offers more consistent segmentations, especially in longitudinal studies; it displays more

reproducible results between datasets; and it improves processing speed. Numerous

cross-sectional automatic image segmentation methods have been published, but few focus on

longitudinal approaches, which appear to obtain better results [12]. The main advantage of lesion

segmentation methods is the precise quantification of the volume of the brain lesion, which is

extremely useful for lesion filling, and therefore improving brain atrophy quantification [57, 58].

Over the past decade, comparing methods has been an impossible task because this requires

using the same dataset, but the data used in each paper is highly heterogeneous. Two issues

hinder making comparisons: firstly, using inhouse vs publicly available datasets; and secondly, the

different MRI modalities needed for each method. In addition to this, further issues have appeared,

some of which are related to the disease, or others to the ground truth design. The main issue

associated with the disease is that the methods are focused on detecting new and enlarging

lesions. However, disease activity varies across phenotypes; for example, the number of new or

enlarging lesions will differ in CIS, SPMS or PPMS subjects, hence results may vary. It is therefore

important to choose a large dataset with subjects from all the phenotypes and different levels of

disease activity. Another issue is labelling, or creating ground truth. Some methods have used a

single rater as ground truth; however, labelling new and enlarging lesions has proven to be

extremely difficult, with considerable variability between experts [12]. Using a small number of

experts has failed to reach a good agreement; hence, including a large number of experts and

understanding inter-method variability (e.g. automatic methods vs manual labelling) will be helpful

in showing a better performance for any method.
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Using a common dataset across the papers would help estimate the proposed methods more

accurately. Therefore, in coming years it will be useful for all new methods to use the publicly

available datasets and their labels, such as those released by the ISBI 2015 and MSSEG-2

organisers. The inclusion of these datasets, along with other inhouse datasets, will benefit the

entire MS research community. However, ISBI 2015 and MSSEG-2 are small datasets and have

been labelled by only a small number of experts. Therefore, it would be advantageous in the near

future to organise a national or international consortium to gather and release a bigger,

multi-centre, labelled (ideally by a large number of experts) dataset that could boost the

development of this key research field.

This review has incorporated papers published on longitudinal MS lesion segmentation between

2012 to January 2022. The techniques that stand out, from older to newer, are as follows: image

subtraction and thresholding, pure mathematical image differences, Bayesian generative models

and deep neural network-based methods.

Chronologically, the main features of the first articles published used baseline and follow-up image

segmentation subtraction, with thresholds on image intensity values being this a trade-off between

sensitivity and specificity [5]. Bayesian-inspired models are a very powerful method as their

effectiveness rests on the anatomical probability distribution of finding a lesion in a tissue, which is

supported by the pathophysiology of the disease. Mathematical techniques based on the matrix

comparison of the intensity values ​​of the images have given way to more powerful techniques such

as deformation fields, which have also been used with CNN successfully [47]. Deep learning

U-Nets and other CNN-based architectures comprise the majority of more recent articles on

cross-sectional and longitudinal approaches to MRI image segmentation, and can be classified into

patch-wise, semantic and cascaded CNNs[59]. However, CNNs still have challenges that limit their

potential. One is data class imbalance when the number of voxels with lesions is much smaller

than those without, which is a common MS segmentation problem that causes overfitting. A special

loss function based on the Tversky index is used to mitigate the issue of MS data imbalance[60],

and transfer learning is used for small datasets.

As stated above, direct comparison between the techniques reviewed is difficult because they use

different datasets. We only found one article comparing different longitudinal models using a

common dataset [34], and that most datasets are private with implementation codes that are not

usually published. Nevertheless, some authors offer resources in public code repositories such as

Github [43, 49], and some procedures are available in software suites such as FreeSurfer

(http://surfer.nmr.mgh.harvard.edu/)) [13]. Table 2 summarises the code and data availability for

each method. Several initiatives have been launched to keep track of the accuracy of different
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methods and enable direct comparison between them. For example, the organizers of the ISBI

2015 challenge have made their dataset publicly available and its website continues to accept

submissions. However, detailed descriptions of the models submitted to the website are not always

provided.

Our literature search results show that there is an increasing interest in finding automated methods

to enable the detection of new or enlarging lesions, and ways to compare the effectiveness of

current longitudinal models (Figure 3). Most studies in this review used FLAIR acquisitions (clinical

settings being the most common) and when additional MRI modalities are used (e.g. T1, T2, PD)

the models become more accurate. This requires more computational resources and is more

difficult to translate to clinical practice, as some image modalities may not be routinely available at

all healthcare centres [61]. The methods reviewed could also be classified under the categories

“supervised” and “unsupervised”. The main drawback of unsupervised approaches is that they

assume perfect registration and intensity normalization [15], while supervised approaches often

require large training datasets. As demonstrated, longitudinal image segmentation is a very active

research field that has shifted from image analysis to machine learning and AI techniques, which

are mainly CNN based architectures. Future challenges cover both domain shifting (i.e. enabling a

change in input MRI modality) and domain adaptation (i.e. performing to the same level, regardless

of the MR scanner used) and the introduction of attention mechanisms such as transformer

architectures, as proposed by Gessert for MS brain MR segmentation [55].

Recently, the MSSEG-2 challenge has only focused on new lesions, but for an effective translation

to clinical practice, and to draw up precise patient prognosis, the methods employed will not only

need to detect new MS lesions, but also lesion changes between time-points, such as lesion

growth or shrinkage. New and enlarging lesions have been widely explored in recent years;

however, research on shrinking lesions is still lacking, and is an area that needs to be carefully

examined in the future. Accomplishing automated segmentation of new and changing MS lesions

would be beneficial for disease and care management programs. Hence, implementing and

adopting automated aid systems to assist radiologists and neurologists is key to leveraging reading

time and ensuring similar diagnoses by different radiologists. Adopting quantitative image-based

biomarkers in the clinic addresses these issues [62], and is a process with three main steps. Firstly,

a credibility study is carried out, which involves a technical validation and a limited clinical

inspection by an expert clinician who confirms usability and findings. Secondly, the tool needs to

undergo an accuracy study to confirm its beneficial impact on clinical routine. A large multi-centre

dataset with clinical MRI quality is used to do this. Thirdly, the methods developed need to meet

safety, health and environmental protection requirements in order to get approval from regulatory

bodies prior to final integration into care centre workflows.

19

https://paperpile.com/c/IOPKzR/WMBrF
https://paperpile.com/c/IOPKzR/nPSpS
https://paperpile.com/c/IOPKzR/FGGPX
https://paperpile.com/c/IOPKzR/FO3wh


5 CONCLUSIONS

In MS, longitudinal MR image segmentation is key to assessing disease progression and response

to treatment. This review describes approaches published on longitudinal MRI lesion segmentation

in MS patients over the past ten years. Over this period, we have seen an increasing interest in

automatically detecting new and enlarging or shrinking MS lesions, and a transition from

image-processing based techniques towards mainly machine learning-based methods. To boost

this research field, gathering and making available a larger, longitudinal, multicentre MS dataset

with the associated labelling should be mandatory. Finally, these new methods need to be

validated through clinical trials to increase automatisation and then transferred to a clinical setting

by integrating them into automatic quantitative reports. In coming years, this important endeavour

will have a significant positive impact on patient care and the overall healthcare system.
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Table 1 - Summary of the published results for each multiple sclerosis longitudinal lesion segmentation method included in this review at
segmentation (voxel by voxel) and lesional (whole mask) level. Only the most common measures and the best results have been included. Results
were obtained using different datasets.

YEAR REFERENCE Segmentation level Lesional level Others

DSC Sensitivity/TPR Specificity/TNR DSC Sensitivity/TPR Specificity/
TNR

1 2013 [5] -- 0.95 0.99 -- -- - AUC=0.99

2 2013 [39] -- -- 0.84 0.80 - FDR=0.08

3 2014 [40] -- -- -- -- 0.91 --
Kappa=0.82 [95%CI: 0.77-0.87]
Spearsman R=0.92

4a/12M 2014 [14] 0.51 0.91 -- 0.64 -- -- FDR=0.5

4b/48M 2014 [14] 0.58 0.80 -- 0.63 -- -- FDR=0.48

5 2015 [41] 0.50 0.46 0.42 -- -- -- VD=0.03

6 2016 [34] 0.58 -- 0.91 -- -- -- --

7 2016 [43] 0.52 0.91 -- 0.68 -- -- Average surface distance = 7.89

8 2016 [15] 0.63 0.57 0.75 -- -- -- Pearson correlation coefficient=0.96
Absolute volume difference=1.48 ml

9 2017 [12] 0.64 - - - - - -

10 2017 [45] 0.73 -- -- -- -- -- -

11 2018 [16] 0.56 0.74 0.89 0.77 -- -- -

12 2019 [44] 0.72 0.74 -- -- -- -- FDR=0.08

13 2019 [46] -- 0.87 -- -- -- -- -

14 2020 [47] 0.55 0.83 0.91 0.83 - -- -
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15 2020 [52] -- -- -- 0.45 0.60 0.59 -

16 2020 [49] -- -- -- 0.70 0.68 0.80
ISBI Score=92.12
PPV=0.77
Volume difference=0.22

17 2020 [51] 0.45 0.60 0.59 -- -- -- -

18 2020 [13] 0.57 0.42 - - - - -

19 2020 [55] 0.64 -- -- - 0.77 0.75 -

SUMMARY

Mean 0.58 0.73 0.78 0.69 0.75 0.71

95% CI [0.54-0.63] [0.620.85] [0.59-0.97] [0.59-0.80] [0.61-0.90] [0.44-0.99]
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Table 2 - Brief dataset description, data and code availability for each longitudinal multiple sclerosis lesion segmentation method included in this
review.

YEAR REFERENCE DATASET DATASET AVAILABILITY CODE AVAILABILITY

1 2013 [5]
10 MS patients, 11 scans each separated a mean of about 2
months between them Not available

Only web interface:
https://smart-stats-tools.org/subl
ime-interface

2
2013 [39]

a) Dataset A: 95 RRMS patients, 2-7 scans separated 3-12
months apart
b) Dataset B: 160 MS patients, 2 scans separated 2-7 months

Not available Not available

3 2014 [40]
a) 10 healthy volunteers, 2 scans separated 24 months
b) 19 MS patients, 2 scans separated 9 months
c) 103 MS patients, 2 scans separated 18 months

Not available Not available

4 2014 [14]
a) 10 MS patients, 2 scans separated 12 months
b) 10 MS patients, 2 scans separated 48 months Not available Not available

5 2015 [41] 10 MS patients, 3 scans separated 12 months Not available Not available

6 2016 [34] 20 MS patients, 2 scans separated by different follow-up
lengths

https://johnmuschelli.com/o
pen_ms_data/ Not available

7 2016 [43] 36 CIS patients, 2 scans separated 12 months Not available
https://github.com/NIC-VICORO
B/braintools

8 2016 [15]
a) 12 RRMS patients, 2 scans separated 12 months
b) 10 MS patients, 2 scans with repositioning (5-10 minutes)
using 3 different scanners

Not available Not available

9 2017 [12] ISBI Challenge dataset https://smart-stats-tools.or
g/lesion-challenge Not available

10 2017 [45] ISBI Challenge dataset
https://smart-stats-tools.or
g/lesion-challenge Not available
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11 2018 [16] 60 MS patients, 2 scans separated 12 months Not available https://github.com/NIC-VICO
ROB/LR-T2-w-Lesions

12 2019 [44] 55 MS patients from different hospitals in the National cohort
study of the German Competence Network Multiple Sclerosis Not available

Lesion Segmentation Tool
(LST):
https://www.applied-statistics.de
/lst.html

13 2019 [46] 32 RRMS patients, 2 scans separated 12 months Not available Not available

14 2020 [47] 60 MS patients, 2 scans separated 12 months Not available Not available

15 2020 [52]

a) 26 MS patients, 4-5 scans separated a mean of about 4
months (Bernese MS bank dataset)
b) 8 MS patients, 4 scans separated without specifying length
of the follow-ups (Zurich dataset)
c) 53 MS patients, 2 scans separated without specifying
length of the follow-ups (Munich dataset)

Not available Not available

16 2020 [49]
a) 70 MS patients, 2 scans separated without specifying
length of the follow-ups
b) ISBI Challenge dataset

Not available
https://github.com/StefanDenn3r
/Spatio-temporal-MS-Lesion-Se
gmentation

17 2020 [51]

a) 1574 MS patients, 2 scans separated a mean of about 12
months (Rou2 and PhIng datasets)
b) 89 MS patients, 2 scans separated a mean of about 27
months (Zurich dataset)
c) 32 MS patients, 4 scans separated a mean of about 12
months (Dresden dataset)

Not available Not available

18 2020 [13]

a) 2 MS patients, 6 scans in 3 differents scanners within 3
weeks
b) 86 RRMS patients, 3-6 scans separated 6-12 months
c) 135 non-MS patients 2-6 scans separated 6-12 months

‘a’ and ‘b’ are not available
‘c’ can be found at:
http://adni.loni.usc.edu

Available through Freesurfer
software package
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19 2020 [55]
a) 89 MS patients, 2 scans separated a mean of about 27
months (Zurich dataset)
b) 33 MS patients, 3 scans separated 12 months

Not available Not available
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Table 3 - Longitudinal multiple sclerosis lesion segmentation methods summary in chronological order. Publication year, reference,
descriptive summary of the method, combination of used MRI modalities and segmented lesion type for each method are provided.

YEAR REFERENCE APPROACH MRI MODALITIES LESION TYPE

0 2012 [20]
Latest review on longitudinal multiple sclerosis lesion segmentation techniques, it
divides them into intensity-based and deformation-based methods.

Depending on paper:
T1, T2, PD, FLAIR

Mainly WM, also GM and
Gadolinium enhancing lesions

1 2013 [5]
SuBLIME (subtraction-based logistic inference for modeling and estimation):
lesion incidence in a voxel as a probability map calculated by a logistic regression
model

T1, T2, PD, FLAIR WM

2 2013 [39] Bayesian classifier and Random Forest Classifier
T1, T2, PD, FLAIR,
some T1 with
Gadolinium

WM and GM

3 2014 [40] Subtraction and threshold using PD images PD WM

4 2014 [14] Fully automated subtraction pipeline based on threshold strategy T1, T2, PD WM

5 2015 [41]
Supervised 4D image segmentation using features from all the time points
simultaneously.

T1, FLAIR WM

6 2016 [34]
Validation of approaches proposed by Ganiler et al., Simoes and Slump and
Seeney et al. T1, T2, FLAIR WM

7 2016 [43]
Mask obtained by image subtraction and thresholding. Then, around each lesion a
deformation field is calculated. The lesion mask is refined applying divergence,
jacobian and concentricity metrics.

T2, PD, FLAIR WM

8 2016 [15]
Used MSmetrix-long an expectation maximization (EM) framework. First
cross-sectional, after subtraction, next joint EM, next pruning non-lesions
candidates.

T1, FLAIR WM and GM

9 2017 [12]
ISBI Longitudinal MS lesion segmentation challenge. Several methods that
segment longitudinal lesions in a cross-sectional fashion.

T1, T2, PD, FLAIR WM
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10 2017 [45] First CNN applied to longitudinal data, different architecture, Longitudinal net
(L-Net) made from V-Net FLAIR WM

11 2018 [16]
At every jacobian voxel, the Divergence and NormDiv operators were computed.
Baseline and follow-up voxels were subtracted, and the deformation field
calculated. A logistic regression model at voxel level was computed using these
features.

T1, T2, PD, FLAIR WM

12 2019 [44]
Baseline and follow-up images were individually segmented using a lesion growth
algorithm and after a probabilistic map was obtained. After registration of both
images is done, six patterns of lesion evolution at every voxel are determined.

T1, FLAIR WM and GM

13 2019 [46]
LeMAN (knn plus atlas approach to differentiate WM from GM)
LeMAn-PV (Bayesian partial volume estimation with spatial GM constraints)

T1, FLAIR, DIR WM and GM

14 2020 [47]
U-Net to learn deformation fields and registering. The U-Net has as input a
deformation field, baseline and follow-up images and it outputs final segmentation

T1, T2, PD, FLAIR WM

15 2020 [52]

2.5D approach (3 orthogonal slices over voxel) CNN adapted to 2D inputs using
Tiramisu architecture (fully convolutional and densely connected neural network)
a) Early multimodal fusion as input to network
b) Adding structural changes to a first model with deformable registration

T1, T2, PD, FLAIR WM

16 2020 [49] The main model is a two-path 3D CNN in a U-Net- like architecture. FLAIR WM

17 2020 [51]
Fully convolutional encoder-decoder U-Net using residual blocks and deep
supervision, and leaky ReLU as activation function. Instance normalization, Adam
optimizer and data augmentation were used.

FLAIR WM

18 2020 [13] Bayesian generative model T1, FLAIR WM

19 2020 [55]
Multiple sclerosis lesion activity segmentation with attention-guided by two-path
CNNs

FLAIR WM
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