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1  |  INTRODUC TION

Cenozoic opening of the Drake Passage, driven by growth of the 
Scotia Plate and westward subduction of the South American Plate, 
is widely seen as one of the major tectonic events that had a strong 
influence on the bathymetry and ocean dynamics linked to the for-
mation of the Antarctic Circumpolar Current (ACC). Drake Passage 
opening led to crustal block dispersal forming the present-day North 
and South Scotia ridges (Figure 1) that influence the flows that de-
fine the modern ACC. The pre-translation position of the elevated 
banks and crustal blocks of the Scotia ridges are largely unknown, 
hindered by almost no geological control on the submerged banks 
of the Scotia Sea. As a consequence, the nature of early ocean path-
ways during Drake Passage opening are unknown and ocean mod-
els cannot use realistic constraints to identify any climate impacts 
from palaeogeographic changes (Sarkar et al.,  2019; Toumoulin, 
Donnadieu, Batenburg, Poblete, & Dupont-Nivet, 2020).

Recent geological studies on the blocks that form the North Scotia 
Ridge have established connections to the Fuegian Andes (Dalziel, 
Macdonald, Stone, & Storey, 2021; Riley et al., 2019). However, the 
early development of the South Scotia Ridge (SSR), and how its geol-
ogy relates to South America, the Antarctic Peninsula and the South 
Orkney microcontinent (SOM) remain unclear. Bruce and Pirie banks, 
which have received no prior geological investigation, are studied 
here using dredge sampling and detrital zircon geochronology to in-
terpret their geological history. Our results and kinematic analysis in 
GPlates provide new constraints on the tectonic configuration that 
existed at the early stages of Drake Passage opening.

2  |  GEOLOGIC AL SET TING

The Scotia Plate is predominantly formed of Cenozoic oceanic crust 
created on the West Scotia Ridge and on the western flank of the 
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Abstract
The Cenozoic development of the Scotia Sea and opening of Drake Passage evolved in 
a complex tectonic setting with sea-floor spreading accompanied by the dispersal of 
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locations of many continental fragments prior to dispersal are largely unknown, with 
almost no geological control on the submerged banks. Detrital zircon analysis of 
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of the Antarctic Peninsula and components of the Cordillera Darwin Metamorphic 
Complex of Tierra del Fuego. Kinematic modelling indicates an Antarctic Plate origin 
for Bruce Bank and the SOM is the most plausible setting, prior to translation to the 
Scotia Plate during Scotia Sea opening.
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East Scotia Ridge (Figure 1), as well as a central zone, possibly con-
sisting of Cretaceous oceanic crust (Eagles, 2010).

The formation of oceanic crust of the Scotia Plate initiated during 
the Late Eocene/Early Oligocene (Maldonado et al., 2014) and led 
to the severance of the land bridge and rifting and dispersal of 
continental fragments, combined with westward dipping subduc-
tion at the Weddell Sea front (Maldonado et al., 2014; Figure 1). It 
is the phase of tectonic activity during the latest Oligocene to lat-
est Miocene that shaped the Scotia Sea that is recognizable today 
(Figure  1) with continental block dispersal along the North and 
South Scotia ridges and spreading along the segmented West Scotia 
Ridge (Eagles & Jokat, 2014).

The SSR is a fault-bounded array of mostly submerged continen-
tal fragments and discrete basins extending from the South Shetland 
Islands in the west to Herdman Bank in the east (Figure 2). The larg-
est continental fragment of the SSR is the SOM, which is emergent 
at the South Orkney Islands (Figure 2) where the geology is dom-
inated by an accretionary complex of metamorphosed Permian–
Triassic sedimentary rocks (Flowerdew, Riley, & Haselwimmer, 2011; 
Figure 3). North of the SOM, the submerged continental fragments 
of the SSR are separated by steep-sided discrete troughs and basins 
(Figure 2). The basins and banks are bounded to the south by a sinis-
tral transcurrent fault defining the boundary between the Scotia and 
Antarctic plates (Figure 1).

Several authors (e.g. Lodolo, Civile, Vuan, Tassone, & 
Geletti, 2010) have commented that the geology of the topographic 
highs from Terror Rise to Herdman Bank are largely unknown, al-
though they are broadly thought to represent thinned continental 
crust based on seismic reflection profiles that are not characteristic 
of basaltic crust (Galindo-Zaldívar et al.,  2002). However, at least 
parts of Discovery Bank and Jane Bank (Figure 2) have a significant 
magmatic component, which is linked to the Oligocene–Miocene 
(~30–10  Ma) development of the ancestral South Sandwich arc 
(ASSA; Pearce et al.,  2014; Riley, Burton-Johnson, Leat, Hogan, & 
Halton,  2021). The topographic highs of Bruce and Pirie banks 
(Figure 2) will be explored here to investigate their relationship to 
the geological successions of the South Orkney Islands, the northern 
Antarctic Peninsula and Tierra del Fuego.

The pre-Eocene configuration of the crustal blocks of the SSR 
prior to Scotia Sea development and Drake Passage opening has 

been discussed by many workers (e.g. Dalziel, Lawver, Norton, & 
Gahagan,  2013), but their pre-translation configuration is ham-
pered by uncertainty regarding their Palaeozoic–Mesozoic geolog-
ical history. The broad consensus is that the SOM separated from 
the Antarctic Peninsula during Oligocene opening of Powell Basin 
(Eagles & Livermore, 2002), and that the SOM originated close to the 
tip of the Fuegian Andes (van de Lagemaat et al., 2021).

3  |  GEOLOGIC AL SAMPLING

Geological samples were dredged at multiple sites from Bruce and 
Pirie banks during cruise DY088 on RRS Discovery (March–April 
2018). Sample sites with steep topography (>25°) were selected to 
reduce the risk of sampling glacial dropstones, and to increase the 
likelihood of recovering in situ lithologies.

3.1  |  Bruce bank

Five separate sites were dredged at Bruce Bank (Figure 2); at three 
sites (DR.223, DR.224, DR.226; Figure 2) the recovered samples 
are dominated (>70%) by a very fine-grained, pale grey/brown, 
poorly lithified sedimentary unit considered to represent more 
recent cover rocks. Alongside the poorly lithified units, coarse-
grained, in situ sedimentary lithologies were also recovered and 
represent the bedrock beneath the more recent cover sediments. 
The other two dredge sites (DR.225 and DR.227; Figure  2) are 

Statement of significance

The origin and dispersal of continental fragments that ac-
companied the opening of the Scotia Sea reflects the rela-
tive motions of the South American and Antarctic plates 
during the opening of Drake Passage and development 
of deep ocean gateways. We use geochronology and 
kinematic modelling to determine the tectonic setting of 
the Antarctic and South American plates from the mid 
Cretaceous to the present day.

F I G U R E  1  Tectonic setting of the 
Scotia Plate (Maldonado et al., 2006). BB, 
Bruce Bank; CDMC, Cordillera Darwin 
Metamorphic Complex; DB, Discovery 
Bank; PB, Pirie Bank; RVB, Rocas Verdes 
Basin; SFZ, Shackleton fracture zone; 
SOM, South Orkney microcontinent; SSIB, 
South Shetland Islands Block; SST, South 
Shetland trough. 
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dominated by mafic volcanic and intrusive rocks. Such an as-
semblage could represent a subvolcanic magmatic system, and 
lends support to the interpretation that the margins of Scan Basin 
(Figure  2) are characterized by widespread mafic intrusions and 
volcanic rocks (Pérez et al., 2019).

3.2  |  Pirie bank

Two sites (DR.220 and DR.221; Figure  2) were selected for rock 
dredging from Pirie Bank. Both dredge sites yielded a significant 
return of low-grade metasedimentary rocks akin to the geology of 

F I G U R E  2  (a) Bathymetric map of the Scotia Sea. The position of the ancestral South Sandwich arc (ASSA) is from Pearce et al. (2014); 
(b) newly acquired bathymetric data and dredge sites. DR.223: 60.539°S, 040.884°W; DR.225: 59.927°S, 039.154°W. 
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Bruce Bank. The provenances of the metasedimentary lithologies 
are interpreted to be locally derived, given their angular morphology 
and fresh broken surfaces, implying that they have been sampled in 
situ.

4  |  RESULTS

Although both Bruce Bank and Pirie Bank were dredged, only sam-
ples from Bruce Bank were suitable for detrital zircon geochronol-
ogy analysis due to their coarser grain size.

4.1  |  Detrital zircon geochronology (Bruce Bank)

Two sites from the southern and eastern flanks of Bruce Bank were 
selected for detrital zircon geochronology to investigate their prov-
enance history. Site DR.223 from the southern margin of Bruce Bank 
is adjacent to the South Orkney plateau, while site DR.225 is slightly 
inboard of the eastern margin of Bruce Bank (Figure 2).

Two metasedimentary samples (DR.223.5 and DR.223.6) were 
investigated from site DR.223 and their detrital zircon age profiles 
(Figure  4a) overlap with Cretaceous, Jurassic and Permo-Triassic 
lithologies (Figure  4b) reported from the South Orkney Islands 
(Carter, Riley, Hillenbrand, & Rittner,  2017). Sample DR.223.5 
is a sandstone and has two prominent age peaks (~265 Ma 
and ~ 520 Ma) and correlates almost exactly (Figure  4b) with the 
age profiles of Jurassic and Cretaceous (H.1305.1; H.2107.3; 
H.2113.2; Figure 3) lithologies from Coronation Island and Powell 
Island (Carter et al., 2017). Sample DR.223.6 has an almost iden-
tical age profile to DR.223.5, although the Permian age peak is 
marginally younger (~262 Ma) in DR.223.6. A strong correlation 
between Bruce Bank site DR.223 and Permo-Triassic lithologies 
from the SOM (H.1107.3; H.1118.1; Figure  3) and the Trinity 

Peninsula Group (TPG) metasedimentary rocks of the northern 
Antarctic Peninsula are also evident, as is the correlation to units 
of the Cordillera Darwin Metamorphic Complex (CDMC; Hervé 
et al., 2010) of Tierra del Fuego (Figure 4b). The detrital zircon ages 
from Bruce Bank site DR.223 suggest an Early Triassic maximum 
depositional age (~235 Ma; Vermeesch,  2021) for the metased-
imentary units, akin to the Greywacke Shale Formation of the 
South Orkney Islands (Figure 3) and the youngest successions of 
the TPG.

Sample DR.225.28, a silty sandstone, from the eastern sector of 
Bruce Bank yields a different age profile to site DR.223 (Figure 4b). 
It is characterized by a Mesozoic age profile, with prominent peaks 
representing input from Mesozoic age sources (Figure 4a). Relative 
to site DR.223, the sandstone DR.225.28 also has a broad age spec-
tra through the Neoproterozoic and a prominent Grenville-age peak 
(Figure 4a). Such an age profile is distinct to the lithologies reported 
from elsewhere in the region, with the closest correlation to compo-
nents of the CDMC (Figure 4b).

4.2  |  Recent sedimentary cover

At several dredge sites along the southern and eastern margins of 
Bruce Bank, sample recovery was dominated by a soft, fine-grained, 
pale grey/ silty sandstone. Two samples from dredge site DR.223 
were examined to investigate their nannofossil population in an 
attempt to determine their sediment source and age of deposition 
(full details in the supplementary material). Samples DR.223.3 and 
DR.223.4 both yielded well-preserved Palaeogene calcareous nan-
nofossils that strongly indicate an Eocene depositional age (45–
40 Ma), with a taxa consistent with cold water deposition. Reworked 
Cretaceous nannofossils have also been identified and were likely to 
have been sourced from the SOM and eroded during Eocene inver-
sion (Carter et al., 2017).

F I G U R E  3  Geological map of the South 
Orkney Islands (Flowerdew et al., 2011). 
The location of the Permian–Cretaceous 
samples analysed for their detrital zircon 
populations (Figure 4) is shown. 
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5  |  DISCUSSION

The SSR is an array of submerged and subaerial crustal blocks 
that rifted from the Antarctic Peninsula and Fuegian Andes. The 
current configuration of crustal blocks and basins (Figure  2) is 
the result of spreading on the West Scotia Ridge, ridge-trench 
collisions at the SOM and Jane Bank, and extension and oce-
anic spreading forming basins between the blocks (Maldonado 
et al., 2014).

Several authors favour a close affinity between Bruce and Pirie 
banks with the Fuegian Andes (Eagles & Jokat, 2014), however, the 
crustal blocks have received almost no prior geological investigation 
(Lodolo et al., 2010). Dredged samples from Bruce and Pirie banks 
were selected for detrital zircon analysis to help understand the 
provenance history of the SSR, however, samples from Pirie Bank 
were mostly fine-grained mudstones and were unsuitable for detri-
tal zircon analysis. Sandstone samples from Bruce Bank share a close 
affinity and likely continuation to the geology of the South Orkney 
Islands, with lithologies from Bruce Bank having detrital zircon age 
profiles (Figure 4) matching those of successions from Coronation 
and Powell islands (Figure  2). They also share a strong correla-
tion to the TPG metasedimentary rocks of the northern Antarctic 
Peninsula, as well as components of the CDMC (Figure 4b). In con-
trast, one sample (DR.225.28) investigated from the eastern flank 
of Bruce Bank has a detrital zircon age profile distinct to the SOM 
lithologies, and is closest in age structure to the southern CDMC of 
Tierra del Fuego (Figure 4b).

The provenance of the Eocene Bruce Bank cover sediments is 
considered to be reworking of SOM Mesozoic sedimentary rocks. 
Apatite fission track data from the SOM (Carter et al., 2017) and the 
Fuegian Andes (Gombosi, Barbeau, & Garver, 2009) record Eocene 
inversion and rapid cooling at 45–40 Ma, which overlaps with rift-
ing and extension during early opening of Powell Basin (Eagles & 
Jokat,  2014). This is coincident with a significant sediment prove-
nance shift at ~39 Ma in the Magallanes foreland basin, interpreted 
as evidence of uplift of the CDMC (Barbeau et al., 2009).

5.1  |  Tectonic implications

Most post-Eocene reconstructions (e.g. Eagles & Jokat, 2014) satisfy 
the geological criteria presented here, including a shared geologi-
cal history between Bruce Bank and the SOM (Figure 4). However, 
Cretaceous and older reconstructions do not account for the geo-
logical continuity of Bruce Bank and the SOM; Cretaceous con-
figurations show the SOM was adjacent to the northern tip of the 
Antarctic Peninsula, while Bruce Bank was located southeast of 
Tierra del Fuego (Figure 5).

To address this issue we present three GPlates-derived kine-
matic models for the development of the crustal blocks of the SSR 
(Figure  6), using the rotations for South America and Antarctica 
of van de Lagemaat et al.  (2021), illustrating an Antarctic Plate 
(Figure  6a) and South American Plate (Figure  6c) origin for Bruce 
Bank. The pre-Oligocene core of Discovery Bank was separated 
from Bruce Bank by the Palaeogene Scan Basin, so we have inter-
preted a shared Mesozoic kinematic history. In addition, given the 
similarity in lithotypes from Bruce and Pirie banks, we also interpret 
a common geological history.

A South American Plate origin for the SOM (Figure  6c) would 
account for the geological overlap between southern Bruce Bank 
and the SOM as well as the correlation between Bruce Bank with 
components of the CDMC (Figure 4b). However, this tectonic setting 
would indicate a strong geological relationship between Bruce Bank 
and the SOM with components of the North Scotia Ridge and South 
Georgia, which is not supported in the detrital zircon age profiles 
(Figure 4). The data presented here and in Riley et al. (2019) clearly 
indicate a distinct provenance difference between the North and 
South Scotia ridges.

Therefore, an Antarctic Plate origin for Bruce Bank and the SOM 
(Figure 6a) is favoured, which would have required translation of the 
crust forming the banks of the SSR to the Scotia Plate during Eocene 
Scotia Sea opening. An Antarctic Plate origin for the Bruce Bank is 
also supported by the close correlation to the TPG of the Antarctic 
Peninsula. The close correlation between Bruce Bank and parts of 
the CDMC lends support to the interpretation of Hervé et al. (2010) 
that the CDMC may represent a crustal block with a distinct his-
tory to units elsewhere in Tierra del Fuego and may also have orig-
inated on the Antarctic Plate prior to translation to the Scotia Plate 
(Figure 6b).

F I G U R E  5  Putative palaeo-location of the crustal blocks of 
the North (blue) and South (olive green) Scotia ridges in the Late 
Cretaceous (90 Ma) relative to the Fuegian Andes of southern 
South America and the Antarctic Peninsula. Modified from the 
reconstructions of Dalziel et al. (2021) and van de Lagemaat 
et al. (2021). Present day positions of the crustal blocks are shown 
in Figure 1. Part of the outcrop extent of the Duque de York 
metasedimentary complex (DdYC) and Trinity Peninsula Group 
(TPG) are also shown (Castillo et al., 2015). The extent of the 
Cordillera Darwin metamorphic basement (CDMC) is from Hervé 
et al. (2010). 
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F I G U R E  6  GPlates derived kinematic reconstructions of the 
Antarctic Peninsula–South America–Scotia Sea region from 120 Ma 
to the present (using the rotations of van de Lagemaat et al., 2021, 
constrained by the Antarctica–Africa–South America plate circuit). 
The lithological and zircon provenance data for Bruce Bank (BB) 
indicates a shared history with the South Orkney Microcontinent 
(SOM), northern Antarctic Peninsula (Trinity Peninsula Group—
TPG) and the Cordillera Darwin metamorphic complex (CDMC). 
This requires either: (1) that the SOM, BB and potentially the 
CDMC originated on the Antarctic Plate (a and b), the latter 
including relative motion between the CDMC and Patagonia); or (2) 
that the SOM originated on the South American Plate (c), and was 
transferred to the Scotia Plate during opening of Drake Passage. 
AP, Antarctic Peninsula; DB, Discovery Bank; E Ant, East Antarctic 
Plate; FI/Mv, Falkland Islands/Malvinas block; S Am, South 
American Plate; PB, Pirie Bank; SG, South Georgia; SSSZ, proto-
South Sandwich subduction zone; TR, Terror Ris. The GPlates files 
are available in the supplementary material. 
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