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Abstract

Theoretical accounts suggest heightened uncertainty about the state of the world underpin

aberrant belief updates, which in turn increase the risk of developing a persecutory delusion.

However, this raises the question as to how an agent’s uncertainty may relate to the precise

phenomenology of paranoia, as opposed to other qualitatively different forms of belief. We

tested whether the same population (n = 693) responded similarly to non-social and social

contingency changes in a probabilistic reversal learning task and a modified repeated rever-

sal Dictator game, and the impact of paranoia on both. We fitted computational models that

included closely related parameters that quantified the rigidity across contingency reversals

and the uncertainty about the environment/partner. Consistent with prior work we show that

paranoia was associated with uncertainty around a partner’s behavioural policy and rigidity

in harmful intent attributions in the social task. In the non-social task we found that pre-exist-

ing paranoia was associated with larger decision temperatures and commitment to subopti-

mal cards. We show relationships between decision temperature in the non-social task and

priors over harmful intent attributions and uncertainty over beliefs about partners in the

social task. Our results converge across both classes of model, suggesting paranoia is

associated with a general uncertainty over the state of the world (and agents within it) that

takes longer to resolve, although we demonstrate that this uncertainty is expressed asym-

metrically in social contexts. Our model and data allow the representation of sociocognitive

mechanisms that explain persecutory delusions and provide testable, phenomenologically

relevant predictions for causal experiments.

Author summary

Responding to shifts in inanimate and social environments is important for adaptation

and appropriate communication. Studies have demonstrated generic cognitive distortions
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to the processing of information in shifting contexts to underpin or accompany the devel-

opment of symptoms of severe mental disorders, such as persecutory delusions. However,

given the clear social phenomenology and clinical needs regarding social function which

accompany persecutory delusions, explanations that detail how changes in generic cogni-

tion dovetail with social cognition are urgently needed. We addressed this gap by measur-

ing the relationship between computational mechanisms governing non-social decision

making and social inferences upon reversal of task contingencies, and the impact of pre-

existing paranoia. We found that paranoia was related to uncertainty in both non-social

and social contexts, and crucially, increased non-social uncertainty was related to changes

in sociocognitive parameters. Paranoia was related to context-dependent, asymmetric

biases in prior beliefs and belief-updating in social contexts. Importantly, paranoia

increased the propensity to explain behaviour shifting away from beliefs about harm

intent through alternative attributions. Our model and data bridges non-social and social

theory explaining persecutory delusions and provides a mechanistic, phenomenologically

relevant framework for causal experiments.

Introduction

The ability to make inferences about the environment when it changes is crucial to survival

and adaptation. This is especially important when interacting with other people, where recog-

nising and interpreting violations of our predictions is crucial for communication, cooperation

and taking defensive action.

Psychiatric disorders are characterised by difficulties in social interaction and poor adapta-

tion to new environments. In the case of persecutory delusions, individuals hold unwarranted

beliefs that others intend to harm them, even in the absence of tangible evidence. Formal

modelling of choice behaviour has suggested paranoia is characterised by increased persevera-

tion and greater non-deterministic action preferences which are attributed to higher expecta-

tions of volatility in the environment [1–4]. These studies used probabilistic learning tasks

with changing reward probabilities over time, in the absence of a discernible agent controlling

the contingency shifts (e.g., [5–6]). To examine reinforcement learning observations within

social contexts relevant to paranoia, experimenters have also framed probabilistic tasks in

terms of interaction with social agents, demonstrating that those with higher paranoia are

slower learners and more sensitive to changes in the social environment [7], more rigid in

their beliefs about partners [8], and less likely to take advice from partners [9–10].

Experimentally demonstrating the phenomenological relevance of reinforcement learning

in paranoia is important as we move as a field to develop more precise formal models of perse-

cutory delusions. Current neurocognitive theories of persecutory delusions suggest associative

learning mechanisms underpin the development of positive symptoms in psychosis [11–12],

particularly through poor integration of lower perceptual information leading to uncertainty

over beliefs about the world [13]. However, theories that implicate the role of reinforcement

learning biases in persecutory delusions need to explain how learning biases lead to phenome-

nologically relevant experiences that form the basis for current cognitive models of persecutory

delusion formation and maintenance in the clinic [14–16]. Indeed, the necessity to build for-

malised model which can accommodate the rich state space of social contexts have been called

for more broadly [17]; formal explanations of social interaction must ensure learning is out-

lined explicitly in relation to how we probabilistically represent beliefs about ourselves and

others.
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In this set of experiments, we build bridges between formal, domain-general accounts of

probabilistic reasoning and changes to social-cognitive representations central to paranoia.

We tested whether participants varying in paranoid ideation displayed differences and/or

commonalities in social and non-social reversal learning, inference, and decision consistency.

If paranoia is simply an example of a dysfunctional but general reinforcement learning mecha-

nism applied to social interaction, we should expect all types of motivational attributions to be

influenced in similar ways, irrespective of content: harmful intent and self-interest judgements

should both be affected in parallel by higher pre-existing paranoid beliefs when changes in a

partner’s behaviour could be due to either motive. Alternatively, if intention attributions are

not affected in the same way by a partner’s behavioural changes, it is likely that domain-general

neurocomputational changes are subject to differentiated interactions with the specifics of

social cognition. This makes it important to understand the mechanisms giving rise to social

asymmetries. We used conceptually similar probabilistic social and non-social tasks in the

same large population to detect such key cognitive differences. Building on previous work

[18], we built separate computational models to capture behavioural (choice) and inferential

differences within each task. Each model quantified decision/inferential uncertainty as preci-

sion in the agent’s decision making, or precision of an agent’s beliefs about how closely their

partner’s decisions reflected their true intent, respectively. Each model also quantified partici-

pants’ response to contingency reversals.

In line with prior evidence, we predicted that during the probabilistic reversal learning task

paranoia would be associated with lower decision consistency, greater win-switch rates, and

greater perseveration errors following the reversal. In the modified repeated reversal Dictator

game, we hypothesised that higher paranoia would lead to rigidity in harmful intent attribu-

tions formed about a partner when a partner’s behaviour changes, regardless of whether they

were fair or unfair pre-reversal. In an exploratory analysis we tested the relationship of individ-

ual parameter values in the non-social task with parameters derived from the social model to

understand how biases in probabilistic learning may be expressed in social contexts.

Results

We administered a non-social probabilistic reversal learning task and a modified repeated

reversal Dictator Game to 693 participants, in addition to collecting data on participants perse-

cutory ideation (hereafter termed ‘paranoia’; measured via subscale B of the Revised Green

Paranoid Thoughts Scale; R-GPTS [19]), general cognitive ability (using the International Cog-

nitive Ability Resource–Progressive Matrices {ICAR} [20]), age, sex, and task comprehension.

We conducted computational model-agnostic and model-based analyses; in model-based anal-

yses, we tested a range of associative models for the non-social task (k = 8), and a range of asso-

ciative (k = 7) and Bayesian-belief (k = 6) models in the social task to account for participant

choice and attributional behaviour, respectively. In addition to reporting model-based and

model-agnostic outcomes for each paradigm, we report the relationship between key parame-

ters across winning non-social and social computational models (see Fig 1 and Methods for

more details).

R-GPTS scores were highly skewed to the left and low (mean [sd] = 3.88 [6.18],

skew = 2.22, range = [0, 33]). Compared to previously reported norms on the R-GPTS subscale

B (mean = 2.53; [19]), our population had significantly higher scores on average (t(692) = 5.72,

p< 0.001), but lower than the typically reported cut-off clinical mean (mean discriminatory of

clinical populations = 11; t(692) = -30.29, p< 0.001). ICAR scores were normally distributed

(mean [sd] = 4.96 [2.42], skew = 0.08) and not significantly different to previously reported

means ([20]; mean = 4.97; t(692) = -0.16, p = 0.87).
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Fig 1. Study design. (A) Experimental design and analysis plan for each paradigm. (B) An example of a trial from the

probabilistic reversal paradigm. There were 60 trials in total, and after 30 trials, the contingency of the rewarding card

changed unknown to the participant. (C) Example trial from the modified repeated reversal Dictator Game, where

participants had to infer their partner’s intent. There were 20 trials in total, and after 10 trials, the contingency of the

Dictator changed unknown to the participant. Participants were paired with a partner who was either at first more

likely to be fair or unfair, and then changed their policy after the reversal. (D) Model space. Reversal learning was

assessed across both non-social decision making and social attributions, using a probabilistic reversal learning task and

modified repeated reversal Dictator game as measurement tools, respectively. All models were assessed using MAP

estimation with weak priors. The winning models across both Bayesian-belief and associative classes within the

repeated reversal Dictator Game were further assessed using Concurrent Bayesian Modelling (Piray et al., 2019).

https://doi.org/10.1371/journal.pcbi.1010326.g001
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Computational model-agnostic analysis

Probabilistic reversal learning task. In sum, after controlling for confounders, paranoia

was positively associated with choosing the worst card following a reversal. Paranoia was only

associated with earning fewer rewards and win-switch biases following reversals. Paranoia was

not associated with less accurate forced-choice self-reports asking which was the best card.

We first report raw associations between paranoia and cognition, and then account for key

covariates, as per pre-registration. Paranoia was not associated with the trial-by-trial probabil-

ity of choosing the optimal card (80/20 card) before the reversal (-0.01, 95%CI: -0.06, 0.11),

but was after the reversal (-0.12, 95%CI: -0.22, -0.02; S1 Fig). The worst card (with a 20/80

chance of reward) was chosen significantly more on a trial-by-trial basis in those with higher

paranoia after the reversal (0.06, 95%CI: 0.02, 0.09; S2 Fig), but there was no relationship

between paranoia and the probability of choosing the card with 50/50 probability of reward

after reversals. Paranoia was not associated with fewer rewards prior to reversal (0.05, 95%CI:

-0.02, 0.13) but was after reversal (-0.12, 95%CI: -0.20, -0.05). Paranoia was associated with

win-switch rates after reversals (the probability that after receiving a reward, participants

selected a different card on the next turn; 0.12, 95%CI: 0.05, 0.19) and lower lose-stay rates

after reversal (after not receiving a reward, participants stick with the card they last selected;

-0.08, 95%CI: -0.15, -0.00). Calculating rates across all trials as previously analysed [21]

showed paranoia was associated with win-switch rates (0.10, 95%CI: 0.03, 0.17) but not

lose-stay rates (-0.05, 95%CI: -0.12, 0.02). Finally, when participants self-reported which card

gave the most rewards at the end of the task, paranoia was not associated with fewer correct

answers before the reversal (0.00, 95%CI: -0.03, 0.03), nor after reversal (-0.02, 95%CI: -0.05,

0.01)

When we adjusted for age, sex, ICAR score, and task comprehension, the remaining associ-

ations with paranoia were the relationships with fewer optimal card selections (-0.08, 95%CI:

-0.20, -0.00; see online code supplement; regression model P2; S1 Fig), selections of the worst

card after the reversal (0.04, 95%CI: 0.01, 0.08; model P2b), greater rewards prior to reversal

(0.08, 95%CI: 0.01, 0.16; model P4a), fewer rewards after reversal (-0.11, 95%CI: -0.18, -0.03;

model P4b), and larger win-switch rates after reversal (0.09, 95%CI: 0.02, 0.17; model P5a).

Accounting for covariates abolished win-switch rates across all trials (0.06, 95%CI: -0.01,

0.13; model P5a), as well as lose-stay associations after reversal (-0.06, 95%CI: -0.14, 0.02;

model P5b). Paranoia was still not associated with the probability of choosing the optimal card

before the reversal (0.03, 95%CI: -0.06, 0.11; model P1), nor with lose-stay rates (-0.01, 95%CI:

-0.09, 0.04; model P5b), and nor with fewer self-reported correct answers before the reversal

(0.04, 95%CI: -0.15, 0.24; model P4a) or after the reversal (-0.01, 95%CI: -0.29, 0.11; model

P4b).

ICAR scores were associated with both lower win-switch (-0.15, 95%CI: -0.22, -0.08; model

P5a) and greater lose-stay rates (0.19, 95%CI: 0.12, 0.26; model P5b) across all trials in the

same adjusted models where it was included as a covariate. In exploratory analysis we also

allowed paranoia and ICAR scores to interact in separate auxiliary models. Paranoia and

ICAR scores did not interact to predict win-switch rates (0.04, 95%CI: -0.01, 0.15; model P5a-

Aux), nor interacted to predict lose-stay rates across all trials (interaction not included in final

top model; model P5b-Aux).

Modified repeated reversal dictator game. In brief, after controlling for confounders,

paranoia was associated with larger and less flexible harmful intent attributions (HI). Paranoia

did not influence self-interest attributions (SI).

Again, we first report raw associations with paranoia, and then account for key covariates.

Across all trials there was an influence of initial partner behaviour on HI (0.44, 95%CI: 0.32,
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0.55) and SI (0.81, 95%CI: 0.71, 0.91), such that initially unfair partners were associated with

greater HI and SI. There was also an interaction between initial partner behaviour and attribu-

tions before and after the reversal (HI: -0.93, 95%C: -0.98, -0.89; SI: -1.20, 95%CI: -1.25, -1.15),

such that both HI and SI less after an initially unfair dictator became fair, compared to when

an initially fair dictator became unfair. Paranoia was associated with HI (0.12, 95%CI: 0.06,

0.17), but not SI (-0.03, 95%CI: -0.07, 0.02) across all trials. Paranoia interacted with reversals,

such that HI changed less after reversal as paranoia increased (-0.05, 95%CI: -0.08, -0.03).

There was no interaction between paranoia and trials after reversal concerning SI (-0.01, 95%

CI: -0.04, 0.02).

We then examined adjusted effects. There was an influence of initial partner behaviour on

both attributions, with partners who were initially more unfair inducing higher attributions

compared to partners who were initially fairer (HI: 0.43, 95%CI: 0.31, 0.55; model S1a; SI: 0.82,

95%CI: 0.72, 0.91; model S1b). There was still also an interaction between initial partner

behaviour and attributions before and after the reversal (HI: -0.93, 95%C: -0.98, -0.89; SI:

-1.20, 95%CI: -1.25, -1.15), such that both HI and SI changed less after an initially unfair dicta-

tor became fair, compared to when an initially fair dictator became unfair. Paranoia was asso-

ciated with higher HI (0.10, 95%CI: 0.04, 0.16; model S1a) but not SI (-0.01, 95%CI: -0.07,

0.03; model S1b) across the board. Paranoia interacted with reversals, such that HI changed

less after reversal as paranoia increased (-0.05, 95%CI: -0.08, -0.03). There was no interaction

between paranoia and trials after reversal for SI (-0.02, 95%CI: -0.07, 0.03). We additionally

allowed paranoia and initial partner behaviour to interact. There was no meaningful interac-

tion between paranoia and initial partner behaviour for either attribution (HI: 0.07, 95%CI:

-0.04, 0.18; model S3a; SI: -0.01, 95%CI: -0.07, 0.03; model S2b).

ICAR scores were associated with lower HI (-0.14, 95%CI: -0.20, -0.09; model S1a) but not

SI (model S1b). In exploratory auxiliary models, we allowed paranoia and ICAR scores to

interact, although this interaction was not associated with HI (0.01, 95%CI: -0.03, 0.10) nor SI

(0.01, 95%CI: -0.01, 0.10).

Computational model-based analysis

Probabilistic reversal learning task. As an overview, we found that paranoia was only

associated with decision temperature (τ) and absolute trial-wise prediction errors after adjust-

ing for confounders.

We tested how well several models captured choice behaviour across all participants. These

models were variants of the Q-learning model [22–23] with a Softmax response function, so

that all models included a decision temperature (higher values mean noisier choice behaviour),

and a learning rate (λ), although some included additional parameters (see Methods). We

found that a modified Pearce-Hall model including a ‘reset-at-reversal’ parameter (ηpr) best

accounted for the data while retaining rich enough a parametrization to allow straightforward

comparisons across individuals (see methods for full model comparison statistics, equations,

and model fitting procedure; S1 Table). We were able to recover all model parameters very

well and generate simulated data that closely matched the real data observed (S4 Fig).

Prior to applying statistical controls (model P7a), we found that paranoia was associated

with a reduced learning rate (-0.09, 95%CI: -0.16, -0.01) and increased decision temperature

(95%CI: 0.17, 95%CI: 0.09, 0.24).

After controlling for general cognitive ability, age, and sex, we found that only decision

temperature was associated with paranoia, with all other parameters sharing non-significant

relationships (see Table 1; model P7b). As decision temperature can be conflated with model

fit, we additionally regressed paranoia against decision temperature, statistical controls, and
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included the sum loglikelihood score for each participant as an extra regressor (model P8).

Decision temperature was still associated with paranoia in this adjusted model (0.11, 95%CI:

0.04, 0.19).

Paranoia was not associated with larger average absolute trial-wise prediction errors (i.e.,

prediction error size regardless of whether it was positive or negative; 0.10, 95%CI: -0.002,

0.19; model P6). There was an interaction of paranoia with trials pre- and post-reversal, with

smaller absolute prediction errors after the reversal in those with higher paranoia compared to

before the reversal (-0.25, 95%CI: -0.37, -0.12; model P6).

Modified repeated reversal dictator game. To outline, data was best explained by a

Bayesian-Belief model that hypothesised that participants’ separately weight changes to harm-

ful intent and self-interest attributions following changes to a partner’s behaviour. After

adjusting for confounders, paranoia was associated with greater uncertainties over a partner’s

policy (uπ) and stronger priors over harmful intent (pHI0; but not self-interest, pSI0). We

found that paranoia was not associated with general, non-specific fixity in attributions (ηdg),

but rather was associated with a higher sensitivity to explain changes in behaviour by adjusting

SI (wSI), but not adjustments to HI (wHI).

After comparing original belief-based [18], extended belief-based (Fig 2), and associative

social attribution models (see methods and S1 Text), we found the extended belief-based social

attribution model best fitted the data—this model allowed participants to weight their explana-

tions of behavioural change through independent adjustments of HI and SI, rather than prior

iterations that fixed these parameters. We were able to recapitulate observed data with our

winning model (see S7 Fig) and recovered our parameters very well (S11 Fig).

We also replicate prior results [18]: using bootstrapped network analysis we observed posi-

tive associations between the strength (pHI0) and uncertainty (uHI0) of the prior over a part-

ner’s harmful intent (0.19, 95%CI: 0.11, 0.26), the strength of priors over harmful intent and

paranoia (0.13, 95%CI: 0.05, 0.20), and paranoia and uncertainty over a partner’s policy (uπ;

0.12, 95%CI: 0.04, 0.20), and a negative association between strength (pSI0) and uncertainty

(uSI0) of the prior over a partner’s self-interest (-0.11, 95%CI: -0.20, -0.03). We also found a

positive relationship between uncertainty over a partner’s policy and how much participant’s

reset their beliefs following a reversal (ηdg; 0.09, 95%CI: 0.01, 0.16; See S12A Fig and S3 Table).

An unexpected negative relationship between the strength of priors over harmful intent and

uncertainty over a partner’s policy (-0.13, 95%CI: -0.21, -0.05) may also exist, suggesting that it

is normative to have a more consistent map of a partner if priors over harmful intent are larger.

Table 1. Top Model Average of Parameters Associated with Pre-Existing Paranoia in the Probabilistic Reversal Task. All regression estimates are extracted from

Model P6 in the analysis code.

Parameter Estimate Std. Error 95% CI Relative Importance

lower Upper

(Intercept) -0.07 0.05 -0.16 0.02

Sex (Male | Female) 0.21 0.08 0.05 0.36 1

Decision Temperature (τ) 0.13 0.04 0.05 0.20 1

Reset-at-reversal (ηpr) 0.01 0.04 -0.04 0.10 0.20

Salience (S) 0.01 0.02 -0.04 0.01 0.22

Memory decay (φ) 0.00 0.04 -0.04 0.10 0.18

Learning Rate (λ) -0.02 0.03 -0.13 0.03 0.46

Control Questions -0.10 0.03 -0.17 -0.03 1

ICAR Score -0.11 0.04 -0.18 -0.04 1

Age -0.17 0.04 -0.24 -0.10 1

https://doi.org/10.1371/journal.pcbi.1010326.t001
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However, this relationship may be a result of collider bias due to their independent positive

relationships with paranoia (S13 Fig) and therefore needs to be interpreted with caution.

Following the generative and replication analysis, we asked how parameters might be asso-

ciated with paranoia, controlling for age, sex, general cognitive ability, and initial partner

behaviour. As expected from our previous study [18] we found that paranoia was associated

with higher strength of priors over harmful intent and uncertainty over a partner’s policy

(Table 2). In contrast to our preregistered predictions, we did not find that the reset-at-reversal

parameter was associated with paranoia (which might account for general, non-specific fixity).

Instead, we found that paranoia was associated with policy, i.e., the propensity to give unfair

returns, being more sensitive to adjustments in self-interest (wSI). While this may sound

counter intuitive, in fact, greater sensitivity to adjustment self-interest means that those who

are more paranoid are more likely to explain changes in behaviour through SI, rather than

changing beliefs their beliefs about HI (see S11 Fig for a simulation and illustration of this

change with a range of wSI values).

Fig 2. Extended belief-based social attribution model schematic. White nodes represent free parameters of the model. Grey shaded nodes represent

numerical probability matrices built from free parameters. Thick solid and thick dotted lines represent transitions between trials. Thin solid lines represent the

causal influence of a node on another node or variable. The agent or participant updates their initial beliefs (starting prior) about the partner’s intentions (p(HI,

SI)t = 0) each trial using their policy matrix of the partner (πgen) which maps the likelihood between a partner’s return to the participant and the partner’s true

intentions weighted by three free parameters: a policy-map intercept (w0), sensitivity to update self-interest attributions (wSI), and sensitivity to update harmful

intent attributions (wHI). The integration between the likelihood and prior belief from the previous trial is also subject to another free parameter, uncertainty

over partner policies (uπ). We assume that upon detecting a change (in this task, a reversal), participants re-set their beliefs, using their priors about people in

general (thin dotted line), biased by what they have learnt already about their present partner (reset-at-reversal—ηdg). Both the policy matrix and initial beliefs

about the partner are numerical matrices that assigned probabilities to each grid point of values of harmful intent (0–1) and self-interest (0–1). The model can

be used to simulate observed attributions of intent given a series of returns, or inverted to infer the parameter values for participants, using experimentally

observed attributions.

https://doi.org/10.1371/journal.pcbi.1010326.g002
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Association between social and non-social parameters. Finally, we examined the rela-

tionship between derived parameters that shared independent relationships with paranoia

across both tasks. In brief, we found that decision temperature (τ) was positively associated

with HI (but not SI), the strength of priors over harmful intent of the partner (pHI0; but not

pSI0), and pre-existing paranoia.

We initially tested the relationship between decision temperature from the probabilistic reversal

learning task and observed attributions in the modified repeated reversal Dictator game. In unad-

justed analysis, we found that decision temperature was positively associated with HI (0.14, 95%CI:

0.08, 0.19; model J1a), and negatively associated with SI (-0.07, 95%CI: -0.13, -0.01; model J1a; see

Fig 3 for spearman correlations). Adjusting for statistical controls did not influence the effect of HI

(0.08, 95%CI: 0.02, 0.13; model J1b) but attenuated the effect of SI (-0.02, -0.09, 0.02; model J1b).

We then tested the associations of all social parameters with decision temperature. Indepen-

dent spearman correlations suggested that decision temperature was associated with greater

strength of priors over the harmful intent (ρ = 0.16, ppermuted ~ 0), uncertainty over partner pol-

icies (ρ = 0.09, ppermuted = 0.015), and paranoia (ρ = 0.16, ppermuted ~ 0; See Fig 3). We then

regressed all social parameters together against decision temperature. In this model (model

J2a), decision temperature was only associated with the strength of priors over harmful intent

(0.17, 95%CI: 0.09, 0.24). After including statistical controls (model J2b), decision temperature

was still associated with the strength of priors over harmful intent (0.10, 95%CI: 0.02, 0.18).

After introducing paranoia (model J2c), decision temperature was associated with both para-

noia (0.11, 95%CI: 0.03, 0.18) and the strength of priors over harmful intent (0.09, 95%CI:

0.01, 0.16; see S4 Table for all estimates and 95%CIs).

Discussion

We assessed the association between social and non-social reversal learning, and the impact of

paranoia on both, in a large sample of non-clinical individuals. In the non-social task, paranoia

was associated with suboptimal choices following a reversal, and greater decision temperature.

In the social task, attributional model comparison uncovered that a Bayesian-Belief model that

Table 2. Top Model Average of Parameters Associated with Pre-Existing Paranoia in the Modified Repeated Reversal Dictator Game. All regression estimates are

extracted from Model S5 in the analysis code. NA indicates that the parameter was not included in the final top model.

Parameter Estimate Std. Error 95% CI Relative Importance

lower Upper

(Intercept) -0.06 0.05 -0.15 0.03

Sex (Male | Female) 0.18 0.08 0.03 0.33 1

Strength of priors over harmful intent (pHI0) 0.16 0.04 0.09 0.24 1

Uncertainty over partner policies (uπ) 0.17 0.04 0.10 0.25 1

Sensitivity to update self-interest attributions (wSI) 0.15 0.04 0.08 0.22 1

Uncertainty of priors over harmful intent (uHI0) 0.00 0.02 -0.04 0.10 0.11

Control Questions 0.00 0.02 -0.11 0.04 0.10

Strength of priors over self-interest (pSI0) 0.00 0.01 -0.09 0.06 0.08

Reset-at-reversal (ηdg) 0.00 0.02 -0.10 0.04 0.11

Uncertainty of priors over self-interest (uSI0) 0.00 0.02 -0.11 0.04 0.06

Initial Partner Behaviour (Fair | Unfair) 0.00 0.02 -0.12 0.17 0.08

Sensitivity to update harmful-intent attributions (wHI) NA NA NA NA NA

Policy-map intercept (w0) -0.06 0.04 -0.14 0.01 0.89

ICAR -0.07 0.04 -0.15 -0.00 1

Age -0.16 0.04 -0.23 -0.08 1

https://doi.org/10.1371/journal.pcbi.1010326.t002
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used separate weights on harmful intent and self-interest attributions to explain a partner’s

behavioural change best fit the data. From this we found that paranoia was associated with pol-

icy uncertainty, larger strength of priors over beliefs about a partner’s harmful intent (but not

self-interest), and that paranoia was associated with greater sensitivity to explain a partner’s

behavioural change through self-interest rather than harmful intent. Finally, we observed that

decision temperature in the non-social task was associated with larger strength of priors over a

partner’s harmful intent (but not self-interest), harmful intent attributions over all trials, and

uncertainty over partner policies in the social task, and with pre-existing paranoid beliefs. Our

model and data raise hypotheses that may bridge general reinforcement learning and specific

phenomenological explanations of the paranoia and allow experimental testing of predictions

with formalised computational targets.

In line with predictions, we found elevated decision temperature in the non-social task in

those with higher paranoia, although the interpretation of this is not straight forward. Higher

decision temperature can be indicative of different causes: it could be signs of information-

seeking behaviours (e.g., strategic or directed), or instead random stochastic exploration with-

out any reward or information gain [24–25]. The former would reflect lower-valued options

being selected less frequently over time, and the latter demonstrated by frequent switching

trial to trial with repetitions of the same actions regardless of reward. Prior work has found

Fig 3. The relationship between decision temperature, attributions, and social task parameters. (A) Spearman correlations between decision temperature

and mean attributions observed summed across 20 trials for each participant. (B) Permutation analysis of the relationship between decision temperature, and

computational model-based parameters from the winning model and pre-existing paranoia. The grey distribution represents the null distribution following

random sampling of the population for each Spearman pairwise correlation. The true Spearman correlations of each social parameters against tau are depicted

for each parameter. Only the strength of prior beliefs over harmful intent (pHI0; ρ = 0.16, ppermuted ~ 0), uncertainty over partner policies (uπ; ρ = 0.09, ppermuted
= 0.015), and paranoia (ρ = 0.16, ppermuted ~ 0) were associated with decision temperature. Red lines denote that the observed correlation with tau is very

unlikely due to chance (p < 0.05). Black lines denote the observed correlation is more likely due to chance (p > 0.05).

https://doi.org/10.1371/journal.pcbi.1010326.g003
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noisier decision making is associated with high risk and clinical participants after initial rever-

sals [1–2], in those reporting psychotic experiences [26], and in healthy populations with

higher paranoia [3,24]—these latter studies in particularly found larger win-switch rates across

all trials in addition to larger decision noise. This would suggest decision temperature in para-

noia might be related to more random behaviour. However, in one study, global impairment

was found to confound random trial by trial switching behaviour: those with a schizophrenia

diagnosis but higher in verbal and working memory showed win-stay behaviour no different

to healthy controls [3]. Converging with this finding, and using a larger sample than previously

employed, we found no increased win-switch or lose-stay rates when examined across all trials

after statistical adjustment for fluid intelligence. Instead, we found increased win-switch rates

and choosing suboptimal choices in the more paranoid only after reversals. Along with prior

work, we suggest: 1) paranoia is related to directed exploratory behaviour when the environ-

ment changes with the overestimation of previously optimal cards and 2) optimal choices are

not ignored in those who are more paranoid but may instead take longer on average to become

exploited, leaving more room for ambiguity.

We replicated key parameter relationships from the social model [18]. We found that larger

priors over beliefs about a partner’s harmful intent conferred greater prior uncertainty over

harmful intent, whereas the opposite was true for self-interest: larger prior beliefs concerning a

partner’s self-interest were held with more certainty. We also replicated the relationship

between paranoia and uncertainty regarding how strongly a partner’s actions relate to their

true intentions. Unexpectedly, we found that uncertainty over partner policies were positively,

rather than negatively, associated with the switch parameter. This means that as individuals

become more uncertain over partner behaviour, they become more rigid in their attributional

changes after the reversal. This disparity may have been due to our different task design and

our extended model: the original task was used to explain between-partner adaptation [18]

whereas in this task we model within-partner adaptation. Therefore, we are estimating qualita-

tively different changes in behaviour. This suggests that believing the same partner to be incon-

sistent with their actions is linked to less inferential flexibility when a partner’s behaviour

changes.

Unexpectedly we found that paranoia was associated with a greater weight being placed on

a partner’s policy of self-interest, rather than a general fixity in attributional dynamics. Our

winning model allowed participants to hold asymmetric sensitivities to whether fluctuations in

a partner’s behaviour was attributed to changes in their underlying harmful intent or self-

interest. This won over and above our previous model [18] which held the partner’s policy

map with fixed parameters. Contrary to our prior hypothesis, rigidity over harmful intent was

not due to a lack of sensitivity to changing partner behaviour, but rather a hypersensitivity to

explain changes in behaviour with counter factual reasoning. Specifically, simulations using a

range of wSI values demonstrated that this led to greater flexibility over self-interest attribu-

tions but not harmful intent attributions following a change in behaviour from a partner. Our

results are congenial with models of general belief fixity (cf. [27]) that explain delusional main-

tenance through a desire to dismiss incongruent, counterfactual evidence with alternative

hypotheses, although our model allows for the measurement of clinically relevant phenomena.

Decision temperature in a non-social task was associated with larger priors over harmful

intent, uncertainty over beliefs about a partner in unadjusted analyses, and pre-existing para-

noia, but not parameters that control self-interest attributions. Given the empirical relation-

ship between pre-existing paranoid beliefs and psychosis on uncertainty over environments [2,

3, 7, 21, 28–30] it is unsurprising that both non-social and social uncertainties are jointly

related to paranoia in this present experiment, although we demonstrate this explicitly in
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relation to pre-existing paranoia and attributions in the moment. There may be several reasons

for these associations.

First, there may be a common biological mechanism responsible for the expression of

uncertainty in both non-social and social contexts. Prior theoretical work explains the relation-

ship between dopamine (dys)regulation, psychosis, and probabilistic reasoning [11,13], and

empirical evidence has supported the common role of dopamine (dys)regulation in influenc-

ing uncertainty about the world [3, 31], the learning of information from primary vs secondary

sources [32], adjusting harmful intent and externalising attributions [33–34], and increasing

psychotic experiences [35–36]. While we do not use psychopharmacological manipulations in

this paper, evidence to date is consistent with dopaminergic signalling being causally impli-

cated in the basic computational processes underlying decision making (e.g., decision temper-

ature) and should also be tested to assess whether changes to dopamine signalling also

underlies uncertainty about a social partner, and whether this added uncertainty mediates

increases in harmful intent attributions.

A second, non-mutually exclusive explanation may be that increases in non-social decision

temperature is a response to second-order social uncertainty made about the experimenters.

In one study, paranoia was found to increase belief that a cards task was intentionally sabotag-

ing the participant [21] and may have been responsible for the studies reported increase in

overall win-switch behaviour. This raises the question: to what extent can ‘non-social’ task

designs can be considered to measure non-social behaviour uncorrupted by agentive attribu-

tions? Not only is this question important for psychological measurement of behaviour, but

the attribution of agency also has implications when associating neural activity with perfor-

mance in tasks: prior work has demonstrated differential temporal-parietal junction activity as

part of the ‘mentalising network’ dependent on whether a participant is perceiving to play

against a computer, robot, or human social partner [37]. A way to remedy this would be to

control for first- and second-order agency attributions, i.e., whether a partner was perceived to

be ‘real’, or the inference that experimenters were intentionally trying to mislead the partici-

pant, respectively.

Our belief-based model explicitly defines parameters that capture sociocognitive processes

outlined in prior descriptive theory that explain the formation and maintenance of persecutory

ideation. Rich state space models are required to capture the added complexity of a social

interaction over and above those which quantify leaner learning processes [17, 38] belief-based

model contributes to this theoretical requirement. First, uncertainty over others or over the

self as a prerequisite for persecutory ideation has been theoretically [13–16] and empirically [7,

39–40] supported. Our model identifies the consistency to which we hold our internal statisti-

cal map of social others (uπ), which when elevated, causes greater uncertainty in a participant’s

beliefs about a partner. Secondly, persecutory ideation has been robustly associated with exter-

nalised attributions of harmful intent [15, 34, 41–42]. The degree to which one holds strong

beliefs of harmful intent at the start of an interaction is formalised in our model (pHI0), which

when increased, leads to higher initial expectations of harmful intent from a partner before

interaction. Importantly, this parameter can be dissociated from priors over other, qualita-

tively different attributions (pSI0). Finally, cognitive models of persecutory delusions [16] and

in silico demonstrations [27, 43] suggest disconfirmatory evidence is explained away with alter-

natives when evidence deviates from a delusional belief. In our model, two parameters (wHI,

wSI) quantify attributional flexibility which may be used to probe how pre-existing beliefs bias

asymmetric interpretations of behavioural change.

We offer several predictions: 1) as demonstrated in our non-social task, it may be that

healthy participants with higher paranoia need longer to gauge a social partner’s intentions,

but over longer periods may eventually reach the same conclusions as the group. We predict
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that when partners become more consistent in their social behaviours, a high-paranoia partici-

pant’s map of an interaction partner will become more precise (uπ will reduce). 2) In line with

prior work examining the influence of cannabis on paranoia [44] and the specific role of dopa-

mine modulation on attributions of harmful intent [45], we predict dopamine potentiation

will increase uncertainty over partner policies (uπ) and the strength of priors over harmful

intent (pHI0), but not the strength of priors over self-interest (pSI0). 3) On a neural there is evi-

dence that social context may be biologically realised through the engagement of different

structures [46], including the dorsomedial prefrontal cortex where social computations may

be implemented [9]. We predict that dopaminergic changes that underlying learning in multi-

ple contexts may lead to context specific effects (e.g., social vs non-social learning) such as a

participant’s uncertainty over their partner (uπ). 4) In clinical populations with a history of

aversive or traumatic social environments during childhood and adolescence, belief maps will

be more uncertain (uπ will remain high), harmful intent attributions will remain higher

(higher initial priors, pHI0) and less flexible (lower wHI or higher wSI) than that of healthy

controls.

We note three limitations. While the similarity of constructs across different, ecologically

valid tasks is a strength of our study, it also means we cannot directly compare behaviour in

one task to another as they require different models/task content. An alternative would be to

create a ‘social’ version of a non-social task (e.g., [21]). Suthaharan and colleagues [21] aimed

to assess whether probabilistic reversal learning in those with higher paranoia differed between

card decks that were and were not putatively controlled by a social agent, finding no difference

in parameter estimates in those more paranoid across both tasks. However, tasks such as that

used by Suthaharan and colleagues may be measuring social observation more than they are

measuring social interaction; the latter requires an interaction partner’s behaviour to be

‘online’ (i.e., the decisions of the partner result in outcomes for both the partner and the partic-

ipant; [47]). Secondly, we use a non-clinical population, and it is unclear whether the parame-

ter estimates derived from our models in those with higher pre-existing paranoia would exist

in clinical populations, although as mentioned above, we make some predictions about how

the transition to clinical populations may unfold. Finally, we did not use varying volatility in

our non-social task, keeping the same probabilistic environment with a single reversal. It may

be that our single reversal meant participants had less time to build up expectations of contin-

gency changes, despite not being told when the reversal might occur.

Methods

Ethics statement

The experiments were internally reviewed and approved by the Research Ethics Committee at

King’s College London, UK (ref: RESCM-19/20-0603). Participants gave consent by ticking

checkboxes online following the information sheet, and prior to the administration of ques-

tionnaires or tasks.

Participants

As with prior experiments (e.g., [34, 48]), demographics (age, sex, education), pre-existing

paranoia (using the persecutory subscale of the R-GPTS-B; [19]) and general cognitive ability

measured using ICAR matrices ([20]) was measured seven days prior to the experimental

paradigms.

We recruited 750 participants at baseline. We lost 54 participants in the follow up between

baseline questionnaires and administration of the tasks. 7 participants had incomplete data for

at least one of the tasks. Therefore, we analysed 693 participants (66% female) for the modified
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repeated reversal Dictator game, 692 participants for the probabilistic reversal learning task

(66% female), and 689 for the joint analysis. Data were collected in September 2020 through

Prolific Academic. All participants were aged between 18–65, had no prior or current psychiat-

ric or neurological diagnosis (established through screening tools on Prolific academic during

population filtering), were fluent in English, and were residents of the UK.

Paradigms

Participants took part in two tasks during the experimental phase. These were the probabilistic

reversal learning tasks and modified repeated reversal Dictator Game.

The probabilistic reversal learning tasks presented three symbols to the participants over 60

trials. Symbols could either provide +10 or -5 points. They were instructed at the start that

there would be one symbol that had a high chance (80%), one had an even chance (50%), and

one a low chance (20%) of providing +10 points. Participants were also told that the symbol

contingencies could change at any point during the game. Halfway through the game (after

trial 30), participants were asked to explicitly choose which symbol they thought provided the

highest probability of giving points. After trial 30, the contingencies of the card changed for

the last 30 trials, such that the lowest probability card became the high probability card, the

highest probability card became the even probability card, and the even probability card

became the low probability card. At the end, participants were once again asked which symbol

they thought had been providing the most points.

The modified repeated reversal Dictator game comprised 20 trials. In the task, each partici-

pant was paired with a partner, with the partner represented by different avatars to than the

participant. The ‘social’ game was based on a modified Dictator Game [49]. In this game, the

participant’s partner was given 10 points in each trial and could choose whether to split this

equally with the participant or to keep the points for themselves.

After each human decision, participants rated on a scale of 0–100, initialised at 50, how

much they believed their partner’s intentions were to reduce their bonus, and rated on (a sepa-

rate scale of 0–100, initialised at 50) how much they believed their partner’s intentions were to

try and earn as much money as possible for themselves (hereafter ‘self-interest’).

Participant would either be matched with initially unfair humans (80/20 probability of not

splitting the points) or initially fair humans (80/20 probability of splitting the points). After

trial 10 if their partner had been unfair their policy would change to being fair (with a proba-

bility of 80/20 fair returns), and vice versa.

After taking part in the social task, participants were assigned to the role of the dictator in a

final game. These dictator decisions were not used for analysis but were collected for ex-post

matching to truthfully inform participants that their partner’s decisions in the social game

were real (c.f. [50]).

Preregistered hypotheses

Probabilistic reversal learning task (https://aspredicted.org/57p5e.pdf) and modified repeated

reversal Dictator game (https://aspredicted.org/ds9bf.pdf) predictions were registered online

at AsPredicted.org.

We deviate from our preregistered predictions by using general linear models rather than

cumulative link models for attributional analysis and deviate through the insertion of interac-

tions stepwise–we felt this to be more interpretable than assessing all interactions at once. In

the social task, we included unplanned analyses not recorded in preregistered predictions to

better explore the relationship of paranoia to social task parameters, and to explore the interre-

lationship between non-social and social task parameters.
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Behavioural analysis

All statistics reported in the text are standardised regression coefficients following linear

model averaging (to control for variable order and to find the most parsimonious, adjusted

regression model) and reported with their 95% confidence intervals, as per (b, 95%CI: lower

bound, upper bound). All model code in the text is included in the analysis code posted online

for cross checking and replication.

All linear mixed models were constructed using the ‘LME4’ package (v1.1–23) and averaged

using the ‘MuMln’ package (v1.43.17) with data wrangling using ‘tidyR’ (v1.1.2) and plotting

using ‘ggplot2’ (v3.3.3) in R (Version 4.0.0, 2020/04/24) on a mac OS (Big Sur v11.1). All con-

tinuous variables were centred and scaled.

For unadjusted analyses, when outcomes were binary, we used general linear mixed models,

and when outcomes were continuous, we used linear mixed models, both with ID used as a

random variable.

For adjusted analyses we used general linear (when outcomes were coded as binary 1/0

responses) and mixed linear regression models (when outcomes were continuous) for numeric

variables of interest. We analysed each model using multi-model selection with model averag-

ing. The Akaike information criterion, corrected for small sample sizes (AICc), was used to

evaluate models, with lower AICc values indicating a better fit [51]. The best models are those

with the lowest AICc value. To adjust for the intrinsic uncertainty over which model is the true

‘best’ model, we averaged over the models in the top model set to generate model-averaged

effect sizes and confidence intervals [52]. In addition, parameter estimates, and confidence

intervals are provided with the full global model to robustly report a variable’s effect in a

model [53].

Win-switch and lose-stay behaviour was calculated as in a previous study [21]. Win-switch

rates were calculated as the number of times a participant switched options after receiving pos-

itive feedback, divided by the total number of trials where they received positive feedback.

Lose-stay rates were calculated as the number of times participants stayed on an option after

receiving negative feedback, divided by the total number of times they received negative

feedback.

Importantly, we planned to control for general cognitive ability and task comprehension in

our modelling. General cognitive ability has been previously identified as a confounder of the

association between probabilistic reasoning using a canonical beads task and paranoia [54].

Likewise, not assessing whether participants recruited in online samples are attentive or under-

stand the task can lead to spurious correlations [55]. To control for both the possibility that

results may arise from 1) poorer general cognitive ability or 2) poor task comprehension

instead of pre-existing paranoia we include a measure of non-verbal cognitive ability (ICAR

matrices; [20]).

Computational modelling

Probabilistic reversal learning task. As participants were aware that the task was divided

in two blocks, they were more likely to suspect that a change could have taken place between

blocks, despite instructions stating that reversals may occur at any moment. Inspired by non-

associative change-detection models [6], we tested whether a reset parameter (ηpr) by which

participants reset the values of the cards towards the mean value at the point of reversal

(trial 30) improved model-fit, over, and above mechanisms used to adapt learning rates in pre-

viously successful associative models of reversal learning [56]. The reset parameter thus cap-

tured descriptively (rather than through a detailed change-point detection algorithm) the
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extent to which participants specifically responded to the reversal. At the same time, we tested

whether learning rates were adjusted through a Pearce-Hall salience mechanism [56].

We also considered a potential memory parameter (φ) that could account for the decay in

unobserved symbol values, a lapse rate parameter (z), or a separate learning rate (λ2) that

allowed the learning rate to change from block 1 (before reversal) to block 2 (after reversal).

We thus compared models with 2 to 7 parameters.

In addition to our range of Q learning variations, we considered pure ‘win-stay, lose-switch’

models and Pearce-Hall models as nested within our complex RW model (setting τ = 0.01, λ =

0.99 for WSLS) and keeping parameters θ = [τ, λ, S] for Pearce-Hall. We first used grid-fit and

simulated annealing procedures to increase the chance of fitting to the global optima in maxi-

mum-likelihood estimations for each model for every participant, and then refined parameter

estimates by gradient descent using MAP estimation procedures with weak regularising priors.

Formalism. We constructed a variation on the classic Q-learning model system (Watkins

& Dayan, 1992) that computes the subjective internal value of a series of agents or symbols in

the environment. The classic model computes a value function for each option Qc, in our case

for three symbols. Qt¼0
c was initialised to 2.5 (the mean reward expected given that each symbol

has P probability of giving a +10 or -5 point outcome). Then on every action taken, after a par-

ticipant has chosen option c on trial t and received an outcome r, the value of each Qt
ĉ is

updated as follows:

Qt
ĉ ¼ Qt� 1

ĉ þ l � ðr
t � Qt� 1

ĉ Þ ð1Þ

λ is the learning rate over the entire task which was calculated using the single parameter λ1

in models that used a single learning rate for all 60 trials. We also fitted models where the

learning rate was determined by a new free parameter, λ2, after trial 31.

For the Pearce-Hall modification [57] of the learning rate, we adjusted the learning rate in

Eq1. by a salience parameter, where Salience for trial t given action Qt
ĉ is defined by:

Saliencet ¼ S � jPEj þ ½ð1 � SÞ � Saliencet� 1�

Learning rate ¼ Saliencet � l ð2Þ

Qt
ĉ ¼ Qt� 1

ĉ þ Learning rate � PE

This replaces Eq 1. Where PE ¼ ðrt � Qt� 1
c Þ for the previous trial, as per Eq 1. To imple-

ment our memory parameter, φ, we decayed all Qt
c values that were not selected (-c) for any

given trial t, towards the mean value (2.5) of possible returns. This replaced Eq 1. Where 2{c1,

c2, c3}:

Qt
c ¼

Qt� 1
ĉ þ l � ðr

t � Qt� 1
ĉ Þ if ĉ ¼ chosen

2:5 � φ � ð2:5 � Qt� 1
ĉ Þ if ĉ 6¼ chosen

ð3Þ

(

To implement our reset parameter, ηpr, we shifted all Q values towards the same mean

value, 2.5, by ηpr before trial 31 (immediately after the reversal):

�Qt¼30 ¼ Qt¼30 þ ½Zpr � ð2:5 � Qt¼30Þ� ð4Þ

�Qt¼30 then became the new prior for trial 31. Policy probabilities for any given trial were cal-

culated using a SoftMax function of the current Q value at trial t subject to a decision
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temperature, τ:

pðĉt ¼ cÞ ¼
exp Qt� 1

c
t

� �

P
c02fC1 ;C2 ;C3g

exp
Qt� 1

c0
t

� � ð5Þ

Finally, we also allowed for a lapse parameter, z. This allows for processes that are indepen-

dent of motivated choice, as estimated by Eq 5, so that in a fraction z of trials an unknown pro-

cess, approximated by a flat distribution over the choices, is assumed to operate (for example,

a complete lapse of attention):

pt ¼
z

3
þ 1 � zð Þ � pðĉt ¼ cÞ

LL ¼ log ðptÞ ð6Þ

Modified repeated reversal dictator game. The original model formalism used in the

analysis of the social task can be found in a previous paper [18].

We compared a previously derived probabilistic Bayesian model, augmented by a ‘switch-

ing parameter’ (ηdg) analogous to the resetting parameter above, to fit to the modified repeated

reversal Dictator Game [18]. We also compared several associative models inspired by prior

work modelling self-esteem [58]; this set of associative models employ the same conceptual

structure as non-social associative learning models (see S1 Text for the full formalism of all

social associative models). In essence, this suite of models used logistic mappings, each includ-

ing intercept (wHI0, wSI0) and weighting (wHI, wSI) parameters to predict each attribution

with a single ‘expected social value’ as independent variable–a cached, Markovian latent vari-

able. This value was subject to an initial expected social value parameter (ESV0) and was

updated through a learning rate (α). An attribution noise parameter (σ) completed the genera-

tive model. We also considered two-η models, where detecting a change (reversal) had a differ-

ent impact depending on harm- vs. self-interest intent. Finally, we built a set of models using a

similar, logistic mapping between the partner’s attributes and their policy (the likelihood func-

tion) based on the belief-based (Bayesian) models of our previous work [18]. This was possible

as the more powerful manipulation of contingency reversal allowed for individual fitting of

parameters of the attribute-policy map for each person (w0, wHI, wSI; see Fig 2).

The models were initially fitted with Maximum A Posteriori (MAP) estimation on 100 ran-

dom participants, i.e. penalizing maximum likelihood with a weak, regularizing prior restrict-

ing parameter values to their psychologically meaningful ranges (e.g. learning rate between 0

and 1, etc.). A simulated annealing approach on parameter values was followed by gradient-

ascent on MAP to minimize the chance of missing important MAP maxima. A belief-based

model with a single switching parameter (ηdg) best fitted the data (S4 Table) when assessing

the BIC and AIC values from the discovery subset (n = 100) of participants.

We then sought to fit all participants. As all belief-based models showed better fits than

associative models, we applied concurrent Bayesian model comparison [59] to no-, one- and

two- ηdg belief-based models, in addition to the best fitting associative model, to look for par-

ticipants better accounted by an associative framework (see methods). We fitted each series of

models on four groups within our population, divided by high/low paranoia and high/low gen-

eral cognitive ability. This was to ensure group-level empirical priors were able to capture the

potential nuance within each class of participant.
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We observed that the belief-based model with a single switching parameter still fitted the

data best (S8 Fig). We assessed the candidate winning model for predictive and generative per-

formance. The ability of a model to simulate data is necessary to assess its validity and falsifica-

tion [60–61]. This centred around our ability to replicate our effects documented from our

reported behavioural results in this same paper. We then aimed to assess our model fitting by

using the log-likelihood values across trials, dictators, and divisions of GPTS score (z scaled,

continuous GPTS scores). Following this, we aimed to statistically interrogate the generated

data in the same manner as we did with the behavioural data.

Winning model formalism. We model effective beliefs about dictator’s attributes as rang-

ing along two dimensions, harmful intent, and self-interest attributions. We can discretise

them into Likert-like bins (Nb = 9). Here, we discretised along 9 bins, from ’totally altruistic’

(HI = 1, SI = 1) to ’totally antisocial’ (HI = 9, SI = 9). The prior beliefs about Others formed the

most important part of our modelling, parametrized by a central tendency parameter pHI0,
pSI0 and an uncertainty uHI0, uSI0 along each dimension. Inference over such discrete distri-

butions can be conveniently parametrized the Binomial distribution with n bins and parameter

p, sharpened (or blunted) by an uncertainty parameter u:

Pk / Binðk; p; nÞu≔NBðk; p; u; nÞ ð7Þ

When the exponent in Eq 7 is greater than 1, the distribution keeps the same mode but is

sharpened; when less than 1, it is blunted. The prior belief over both HI and SI can then be

written as a product of the independent prior probabilities, p(HI)t = 0 � p(SI)t = 0. This assump-

tion of independence is conservative, minimizing the number of free parameters:

pðHIÞt¼0
¼ BinðHI; pHI0; uHI0;NbÞ

pðSIÞt¼0
¼ BinðSI; pSI0; uSI0;NbÞ

pðHI; SIÞt¼0
¼ pðHIÞt¼0pðSIÞt¼0

To make inferences based on the feedback they get from dictators, participants must also

hold a correspondence between attributes and behaviours. We emphasise that participants

hold maps from attributes to behaviour, and not directly from observations of returns to attri-

butes. Therefore, participants must invert these maps to update their beliefs, which will typi-

cally result in asymmetric belief updates depending on further detail (so that Eq 7 uses full

joint probabilities, breaking the initial independence). To build a map from attributes to

behaviour that could capture a full range of possibilities we first provided for a range of possi-

ble dictator behaviours, discretising returns using a similar resolution as attitudes. We imple-

mented this general template map πgen using free parameters, where πgen is a Nb x Nb

numerical matrix. The corresponding equations (Eq 8) are given below for completeness:

pgen r ¼ 0;HI; SIð Þ ¼ s
�
w0 þ ½wHI �

�
HI �

Nbþ 1

2

�
� þ ½wSI �

�
SI �

Nbþ 1

2

��
Þ

pgenðr ¼ 0:5;HI; SIÞ ¼ 1 � pgenðr ¼ 0:5;HI; SIÞ ð8Þ

where σ is a logistic sigmoid.
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For each potential attribute pair (HI, SI) of the Dictator (which is a numerical matrix) we

multiply the likelihood, π(r; HI, SI), by the prior, p(HI, SI)t−1:

pðHI; SIÞt ¼
pðr;HI; SIÞpðHI; SIÞt� 1

P
HI0 ;SI0pðr;HI0; SI0ÞpðHI0; SI0Þ

t� 1
ð9Þ

This completes the participants’ generative beliefs of the Dictator’s behaviour, and provides

for exact, numerically tractable Bayesian updates in the beliefs of the participant when they

receive feedback. One additional parameter was introduced, to quantify individual variation in

the consistency agents expected between beliefs and behaviours. Based on previous work, a

small, fixed lapse rate ξ = 0.02/n2 was also added to increase numerical stability. This was

another noise or uncertainty parameter uπ, over the dictator’s policies. We thus used:

dpðHI; SIÞt / pðHI; SIÞ
1
up þ x ð10Þ

Where ^pðHI; SIÞt then becomes the generative belief distribution to emit attributions for

each trial. We note that in our experiment it is not possible to clearly distinguish between

uncertainty participants display due to their own noisy cognition, as opposed to noisy deci-

sion-making that they expect their partners to display. In our case, both would result in greater

participant uncertainty and noisier reporting of inferred attributes.

We also considered that participants inform their beliefs about the change in a partner’s

policy observed after trial 10 by what they learnt about the first set of outcomes. The simplest

approximation is to add a small admixture of the posterior beliefs about the initial actions of

the Dictator to the priors they used for the new action policy, weighing this posterior by an

individually fitted learning rate ηdg. This then creates a new prior ( �pðHI; SIÞt¼10) to be used in

Eq 9. This parameter was used to assess perseveration of beliefs between trials 1–10 and 11–20:

pðHI; SIÞt¼10 ¼ ðpðHI; SIÞt¼0
� ½1 � Zdg�Þ þ ðpðHI; SIÞ

t¼10
� ZdgÞ ð11Þ

Network analysis. To assess the interrelationship of social and non-social parameters,

and to replicate prior work, we applied regularised Gaussian Graphical Model estimation tech-

niques implemented in the R programming language through the ‘bootnet’ and ‘qgraph’

libraries [62] using the ‘huge’ nonparanormal function. Nonparanormal network analyses

relax the assumption of normally distributed variables when estimated regularised network

and were appropriate given several our parameters were non-normally distributed (S3 and S6

Figs; [63–64]). Networks in this sense are the conditional relationships (edges) between vari-

ables (nodes). Networks that were estimated using ‘bootnet’ apply Least-Absolute Shrinkage

and Selection Operator that shrinks very small edges to zero.

We generated a network to replicate our prior work [18]. We computed edge-weight accu-

racy and node stability using bootstrapping with the ‘bootnet’ function [62]. While somewhat

arbitrary, simulation studies suggest that node stability metrics should be no lower than 0.25

and ideally above 0.5; these figures represent the correlation stability coefficient of a network,

and the maximum cases that can be dropped to retain a correlation between the original cen-

trality indices and the case-dropped networks on subsets of 0.7 or higher (CS(Cor = 0.7); [62]).

The replication network demonstrated adequate stability (CS(Cor = 0.7) = 0.361 for all statis-

tics) and robust bootstrapped edge estimates (S13 Fig).
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Supporting information

S1 Fig. Behaviour of the participants in the probabilistic reasoning task. Top panel: rela-

tionship of paranoia and ICAR total score with the proportion of correct cards chosen in each

block. Bottom panel: Sum of each chosen card by paranoia and ICAR total score for each

block. In Block 1, Card 1 was the optimal card to choose with an 80/20 probability of reward.

In Block 2, Card 3 was the optimal card to choose, with 80/20 probability of reward.

(DOCX)

S2 Fig. Probability of choosing a particular card in each block for high and low paranoia.

In Block 1, Card 1 was the optimal choice with an 80/20 probability of reward. In Block 2,

Card 3 was the optimal choice, with 80/20 probability of reward. This graph demonstrates that

those with higher paranoia were significantly and more consistently likely to choose the subop-

timal 20/80 card (Card 2) in block two, and significantly less and more consistently likely to

ignore the optimal card (Card 3) in block 2. However, those with higher paranoia were still

able to learn which was the more optimal card by the end of block 2. � = p<0.05, �� = p<0.01
��� = p<0.001.

(DOCX)

S3 Fig. Histogram and point distributions of the individual-level fitted parameters derived

from the computation model (Probabilistic reversal learning model). (A) Our model was

able to recapitulate the real data well. The real (Q1 –Q3) and simulated (simQ1 –simQ3) Q val-

ues generated by the model for each trial across all participants for each different symbol. (B)

All parameters were recovered very well. Correlation matrix showing the Pearson correlations

between the real (X axis) and recovered (Y axis) parameter. (C) The 5-parameter model pro-

duced equivalent to better BIC values compares to the 3-parameter core model. In these plots,

blue dots below the line indicate better fit than the reference model (model 3) and above the

line indicate the reference model fits better. Correlation comparisons between the BIC values

for each alternative model (named in the facet title) and the core 3-parameter model (X axis);

reference lines on each plot indicate +/- 6 and +/- 10 BIC values. Models 4 and 5 were not sig-

nificantly different in individual BIC values from Model 3 (χ2(2) = 2.13, p = 0.345).

(DOCX)

S4 Fig. Probabilistic Reversal Learning Model Fit and Recovery. X = non-significant rela-

tionship.

(DOCX)

S5 Fig. Probabilistic Reversal Learning Partial Correlation Matrix. (A) Sum loglikelihood

for each integer of pre-existing paranoia. Grey horizontal line indicates the sum loglikelihood

at which the model is predicting the data by chance. (B) Sum loglikelihood for each integer of

ICAR score. Grey horizontal line indicates the sum loglikelihood at which the model is pre-

dicting the data by chance. (C) Distribution of sum loglikelihood for each social condition.

Grey vertical line indicates the sum loglikelihood at which the model is predicting the data by

chance. (D) Correlation between real and simulated harmful intent and self-interest attribu-

tions. (E) Averaged real (grey) and simulated (coloured) harmful intent and self-interest attri-

bution for each condition across all trials. Analysis of simulated data using a mixed effects

model with ID as a random variable suggested pre-existing paranoia was positively associated

with harmful intent (0.11, 95%CI, 0.05, 0.16; model S5a) but not self-interest (-0.02, 95%CI:

-0.07, 0.03; model S5b), and being paired with an initially unfair Dictator did not influence

harmful intent attributions, but led to larger self-interest attributions (0.27, 95%CI, 0.18, 0.37;
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model S4b; see S6 Fig for comparison with real data across both conditions).

(DOCX)

S6 Fig. Smoothed posterior density distributions of the individual-level fitted parameters

derived from the hierarchical Bayesian fit (using CBM; modified repeated reversal Dicta-

tor Game).

(DOCX)

S7 Fig. Social model assessment. (A) Sum loglikelihood for each integer of pre-existing para-

noia. Grey horizontal line indicates the sum loglikelihood at which the model is predicting the

data by chance. (B) Sum loglikelihood for each integer of ICAR score. Grey horizontal line

indicates the sum loglikelihood at which the model is predicting the data by chance. (C) Distri-

bution of sum loglikelihood for each social condition. Grey vertical line indicates the sum

loglikelihood at which the model is predicting the data by chance. (D) Correlation between

real and simulated harmful intent and self-interest attributions. (E) Averaged real (grey) and

simulated (coloured) harmful intent and self-interest attribution for each condition across all

trials. Analysis of simulated data using a mixed effects model with ID as a random variable sug-

gested pre-existing paranoia was positively associated with harmful intent (0.11, 95%CI: 0.05,

0.16; model S5a) but not self-interest (-0.02, 95%CI: -0.07, 0.03; model S5b), and being paired

with an initially unfair Dictator did not influence harmful intent attributions, but led to larger

self-interest attributions (0.27, 95%CI: 0.18, 0.37; model S4b; see S6 Fig for comparison with

real data across both conditions).

(DOCX)

S8 Fig. Model comparison for the belief-based social model. The 1-ηdg Bayes-Belief model

(BB1eta) came first overall across the groups. Each model set was fitted using mixed-effect

concurrent Bayesian modelling (Piray et al., 2018) for each group in our population. Model

frequency represents the predominance of model k in the population; it is the frequency of

times model k best fits all participants. Exceedance probabilities demonstrate the probability

that model k is more commonly expressed than any other model in model space. Protected

exceedance probabilities are more conservative as they also include the null–that no model

best describes the data (Piray et al., 2018). HP = High Paranoia; HI = High ICAR score;

LP = Low Paranoia; LI = Low ICAR score.

(DOCX)

S9 Fig. Partial spearman correlation matrices. (A) Partial correlations between all social

parameters only. (B) Partial correlations between social parameters and tau from the non-

social model.

(DOCX)

S10 Fig. Recovery analysis of the winning social model. X = non-significant relationship.

(DOCX)

S11 Fig. Simulated differences of policy and attributions at several wSI values. (A & B) Ini-

tial policy map differences between those with high and low paranoia. Plots were constructed

by using the mean w0, wSI, and wHI of those with high (persecutory ideation > 3.66) and low

(persecutory ideation < 3.66) paranoid participants within our sample. Mean parameter esti-

mates for low paranoia: w0 = -0.935, wHI = 0.102, wSI = 0.129. Mean parameter estimates for

high paranoia: w0 = -1.174, wHI = 0.121, wSI = 0.158. (C) Simulated attributional changes at

10 different values (0–1) of wSI with all other parameters fixed (pHI0 = 0.5, uHI0 = 2,

pSI0 = 0.5, uSI0 = 2, uPi = 2, w0 = -1, wHI = 0.1, wSI = 0.1–0.9, ηdg = 0.5). For each wSI value,
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100 synthetic participants were created.

(DOCX)

S12 Fig. Network analysis between social parameters and paranoia from Barnby et al.,

2020. (A) Our nonparanormal network replicated results from Barnby et al., (2020). (B) Stabil-

ity analysis demonstrated satisfactory case-dropping estimates. (C) Bootstrapped edge weights

demonstrated satisfactory estimates. See S3 Table for all edge statistics in the network.

(DOCX)

S13 Fig. Isolated network to test collider bias between nodes. Paranoia is robustly correlated

with pHI0 and uπ; the independent relationship between pHI0 and uπ may therefore be at

high risk of collider bias.

(DOCX)

S1 Table. Non-Social Associative Model Statistics. ‘RW’ refers to the Rescorla-Wagner (RW)

/ Q-learning learning model. ‘PH’ refers to the Pierce-Hall salience model. ‘WS’ refers to the

‘Win-Stay; Lose-Switch’ model.

(DOCX)

S2 Table. Social Model Comparison Statistics. LL, BIC, and AIC figures are indicative of the

summed log probability from the combination of harmful intent and self-interest estimates for

each model fitted using Maximum-A-Priori techniques. Bold highlighting represents winning

models in each class.

(DOCX)

S3 Table. Bootstrapped estimates for each edge in the replication network.

(DOCX)

S4 Table. Top Model Average of Variables Associated with decision temperature (τ). All

regression estimates are extracted from Model J2c in the analysis code. wSI was not included in

the final top model and therefore excluded from this table.

(DOCX)

S1 Text. Associative Social Model Formalism.

(DOCX)
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