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Serotonin modulates asymmetric learning from
reward and punishment in healthy human
volunteers
Jochen Michely 1,2,3,4✉, Eran Eldar 5, Alon Erdman 5, Ingrid M. Martin4,6 & Raymond J. Dolan 3,4

Instrumental learning is driven by a history of outcome success and failure. Here, we

examined the impact of serotonin on learning from positive and negative outcomes. Healthy

human volunteers were assessed twice, once after acute (single-dose), and once after pro-

longed (week-long) daily administration of the SSRI citalopram or placebo. Using computa-

tional modelling, we show that prolonged boosting of serotonin enhances learning from

punishment and reduces learning from reward. This valence-dependent learning asymmetry

increases subjects’ tendency to avoid actions as a function of cumulative failure without

leading to detrimental, or advantageous, outcomes. By contrast, no significant modulation of

learning was observed following acute SSRI administration. However, differences between the

effects of acute and prolonged administration were not significant. Overall, these findings

may help explain how serotonergic agents impact on mood disorders.
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To maximize reward, and minimize punishment, agents need
to learn from a history of past success and failure1. Evidence
suggests that, rather than being represented on a continuous

scale, reward and punishment may represent distinct categorical
events2,3. This is corroborated by findings that exposure to reward
and punishment engage distinct brain networks4–7. This triggers
distinct types of behaviour, such as approach and invigoration for
reward, and avoidance and inhibition for punishment8,9.

Numerous studies report an asymmetric impact of positive and
negative outcomes during human instrumental learning10–12.
Interestingly, such valence-dependent learning asymmetries are
characterised by remarkable flexibility, for example an adjustment
to environmental volatility13 or contextual information14. More-
over, learning asymmetries are linked to interindividual variability
in brain structure and function7,15, and are thought to play a role
in the emergence of mood disorders, often characterised in terms
of aberrant processing of reward and punishment16,17.

Previous research shows that the neuromodulators dopamine
and serotonin play a key role in modulating reward and pun-
ishment learning. Whilst there is ample evidence for a role of
dopamine in learning from reward18–21, the evidence in relation
to serotonin is less clear. Some studies indicate a specific role in
punishment learning22–26, while others report that serotonin
impacts learning from both reward and punishment27,28.

A key challenge studying the human serotonergic system is the
manipulation of central serotonin levels. In previous studies,
serotonin has often been modulated via a dietary depletion of
tryptophan, a precursor of serotonin29. However, conclusive
evidence supporting the effectiveness and specificity of this
dietary manipulation in humans is lacking30, but cf.31.

Arguably, a more specific method involves a pharmacological
enhancement of central serotonin via the use of selective ser-
otonin reuptake inhibitors (SSRIs). To date, SSRI studies of

learning asymmetries have been mainly limited to single dose
administration or assessment of clinical populations, which
makes interpretation problematic26,27,32. Human and non-
human animal data suggest a pharmacological modulation of
serotonin can impact brain function at different timescales, with
distinct effects of single dose, one-day intervention, and pro-
longed, repeated administration over several days33–37. This
accords with the fact that SSRIs reach steady-state peak plasma
levels only after a prolonged treatment spanning multiple days38.
This renders it likely that prolonged and repeated administration
of serotoninergic drugs is necessary to impact on behaviour, such
as inducing a substantial modulation of learning processes28,39.

Based on these considerations, we examined the impact of an
extended exposure to a serotonergic treatment on human reinfor-
cement learning. Healthy human volunteers were assessed twice,
once after single dose, and once after repeated daily administration of
either 20mg of the SSRI citalopram, or placebo, across seven con-
secutive days. Subjects performed a task specifically tailored to study
an asymmetry in learning from reward and punishment7. We used
computational modelling to examine fine-grained characteristics of
learning over time. We show prolonged SSRI treatment exerts an
asymmetric impact on reinforcement learning, reducing learning
from reward and enhancing learning from punishment. We discuss
the implications of these findings with respect to potential mode of
action of serotonergic treatment in the context of mood disorders.

Results
We administered sixty-six healthy volunteers either a daily oral
dose of the SSRI citalopram (20 mg) or placebo, across seven
consecutive days. Subjects performed two experimental sessions,
once after administration of a single dose on day 1 and once, after
exposure to repeated daily administration, on day 7 (Fig. 1b).

Fig. 1 Experimental task, pharmacological procedure, and learning performance. a Experimental design: On each trial, participants were presented with
one of three possible decks and a number between 1 and 9 drawn by the computer. If participants decided to gamble, they won £5 if the number they drew
was higher than the computer drawn number, and lost £5 if the number was lower. Participants were only informed whether they won or lost the gamble,
not which number they drew. Participants had to learn by trial and error how likely gambles were to succeed with each of the three decks. One deck
contained a uniform distribution of numbers between 1 and 9 (even deck), one deck contained more 1’s (low deck), making gambles 30% less likely to
succeed, and one deck contained more 9’s (high deck), making gambles 30% more likely to succeed. Opting to decline the gamble resulted in a 50%
probability of win/loss, regardless of which number was drawn by the computer. b Pharmacological procedure: Subjects were randomly allocated to take a
daily dose of 20mg citalopram or placebo for seven days and participated in two sessions: session I took place on day 1 after single administration, session
II took place on day 7, at a time when citalopram reaches steady-state plasma levels. Subjects played an identical game on both sessions, but with two
independent sets of three decks, where colour order and colour-associated win probability randomly varied across participants. c, d Learning performance:
Gambles taken with each deck as a function of time. Percentages were computed separately for each set of 15 contiguous trials (4 sets/60 trials per block),
for session I (c), and session II (d), respectively. Error bars indicate SEM.
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During each session, subjects performed a modified version of a
gambling card game (Fig. 1a;7), where the goal was to maximize
monetary wins and minimize monetary losses.

In brief, on each trial participants were presented with a
number between 1 and 9 as drawn by a computer. Subjects could
gamble that the number they were about to draw would be higher
than this computer drawn number. Critically, participants played
with one of three possible decks on each trial, where the decks
differed in how likely gambles were to succeed. One deck con-
tained a uniform distribution of numbers between 1 and 9 (even
deck), one deck contained more 1’s (low deck, gambles 30% less
likely to be successful), and one deck contained more 9’s (high
deck, gambles 30% more likely to be successful).

Subjects were informed that an unsuccessful gamble would
result in a loss (−£5), and a successful gamble would result in a
win (+£5). Subjects learnt through trial and error about each of
the decks’ success likelihood. Alternatively, subjects could decline
a gamble and instead opt for a fixed 50% known probability of
winning or losing, respectively. After a decision to decline a
gamble, the outcome was not shown to participants.

On a second session, the game was identical, and the only
difference being that subjects played with three novel decks,
indicated by different colours, where colour order and colour-
associated win probability was randomly varied across partici-
pants (Fig. 1b). Subjects had to learn about these decks anew as
they were unrelated to the ones from the first session.

The experiment was designed such that the computer numbers
changed over time to ensure subjects gambled on approximately
50% of trials across all decks (cf. Methods). Indeed, this adapta-
tion worked, and overall proportion of accepted gambles did not
differ between drug groups (session I: SSRI 49.0%, placebo 49.3%,
t65= 0.1, p= 0.846; session 2: SSRI 50.6%, placebo 51.2%,
t65= 0.4, p= 0.641). Thus, evidence of learning manifested in
how the rate of accepted gambles differed between decks, and in
an observation that this difference grew over the course of the
experiment, i.e., from 1st to 3rd block (Fig. 1c/d; session I: low vs.
even, t65= 3.2, p= 0.0016; low vs. high, t65= 6.1, p= 6.0e−8;
even vs. high, t65= 3.0, p= 0.003; session II: low vs. even,
t65= 2.9, p= 0.003; low vs. high, t65= 6.1, p= 6.2e−8; even vs.
high, t65= 2.7, p= 0.007). There was no significant difference
between the groups in this respect (session I: low vs. even, SSRI
vs. placebo: t64= 1.4, p= 0.159; low vs. high, SSRI vs. placebo:
t64= 1.0, p= 0.291; even vs. high, SSRI vs. placebo: t64=−0.2,
p= 0.783; session II: low vs. even, SSRI vs. placebo: t64= 0.06,
p= 0.949; low vs. high, SSRI vs. placebo: t64= 0.6, p= 0.491; even
vs. high, SSRI vs. placebo: t64= 0.6, p= 0.549). Overall, this
demonstrates that subjects learned to dissociate decks, as their

willingness to gamble differed depending on each deck’s win
likelihood as a function of time, and this effect was not modulated
by the drug.

Next, we used a trial-by-trial logistic regression approach (cf.
Methods) to assess whether subjects’ decisions to gamble were
dependent upon the computer number and previous receipt of
positive, or negative, outcomes over time. First, we found that
subjects, over both sessions, gambled more against lower com-
puter numbers (session I: t64= 14.7, p= 3.0e−22; session II:
t65= 20.9, p= 1.3e−30; Fig. 2), with no evidence for a difference
between drug groups (drug: F1,63= 0.4, p= 0.505; drug x session:
F1,63= 0.06, p= 0.805).

Second, participants, over the course of each session, gambled
more with decks with which they had experienced more success
(session I: t64= 10.3, p= 3.0e−15; session II: t65= 15.7, p= 8.2e
−24) and less failure (session I: t64= 10.2, p= 4.3e−15; session
II: t65= 11.0, p= 1.6e−16). This result indicates subjects suc-
cessfully learned about the decks from the outcomes of their
gambles. When assessing data across both sessions, the phar-
macological effect on gambling preferences as a function of
outcome type was not statistically significant (drug: F1,63= 1.7,
p= 0.194, drug x valence: F1,63= 2.6, p= 0.108, drug x session x
valence: F1,63= 2.4, p= 0.124). However, analysing both sessions
separately, effects were similar across drug groups for cumulative
success and failure on session I (drug x valence: F1,63= 0.3,
p= 0.844; drug: F1,63= 0.9, p= 0.345; Fig. 2a), whereas on ses-
sion II we found evidence for an asymmetric impact of success
and failure outcomes, as a function of treatment (drug x valence,
F1,64= 10.5, p= 0.0018; drug: F1,64= 2.4, p= 0.126; Fig. 2b),
attributable to an enhanced impact of failure (t64= 2.3, p= 0.024)
but not of success (t64= 0.1, p= 0.892), in SSRI treated as
compared to placebo subjects. This differential pattern suggests
that SSRI treatment increased an impact of negative outcomes,
enhancing a gamble avoidance tendency in response to failure.

Next, we used computational modelling (cf. Methods) to assess
the precise learning mechanism underlying the asymmetric
effects of success and failure evident in the regression analysis.
Replicating results from an earlier study using an identical cog-
nitive task7, model comparison showed task behaviour was best
explained by a model that accounted for an asymmetry in
learning from the two outcome types. Specifically, the best-fitting
model included two different learning rates, one for wins (η+),
and one for losses (η−), where these determine the degree to
which an outcome type impacts on subsequent expectations
(model 6: ‘adjusted & asymmetric Q-learning’; cf. Supplementary
Table 1 for iBIC scores). These expectations, in combination with
the numbers drawn by the computer, shape whether gambles are

Fig. 2 Results of trial-by-trial logistic regression model. Fitting a logistic regression model to subjects’ decisions showed that participants gambled more
against lower computer numbers, with no drug differences on session I (a), and session II (b), respectively. Additionally, subjects, over the course of a
session, gambled more with increasing success with each deck, and gambled less with increasing failure with each deck. On session I, impact of cumulative
success and failure was unaffected by treatment (a). On session II, however, SSRIs enhanced the impact of failure but not wins (b), indicating an
asymmetric drug effect on reward and punishment. **p < 0.01, *p < 0.05, n.s.= not significant (p > 0.05). Error bars indicate SEM.
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likely to be taken or declined. The predictive accuracy of the
model (absolute fit), i.e., the proportion of subjects’ choices to
which the model gives a likelihood greater than 50% (percent
correct), was 87.71% for session I, and 87.92% for session II
(Supplementary Fig. 1).

When assessing computational parameters across data from both
sessions, we found a significant asymmetric effect of SSRIs on
learning rates (drug x valence: F1,62= 4.1, p= 0.046; drug: F1,62= 0.8,
p= 0.365), but no significant three-way interaction (drug x valence x
session: F1,62= 1.0, p= 0.305, controlling for an overall gambling
bias, Supplementary Fig. 3). Follow-up tests revealed that, on session
I, there was no evidence for computational parameters governing the
rate of learning from reward and punishment being different between
treatment groups (drug x valence: F1,64= 0.007, p= 0.933; drug:
F1,64= 0.3, p= 0.553; Fig. 3a). However, by session II, a significant
serotonergic impact on learning asymmetry was evident (drug x
valence: F1,64= 8.2, p= 0.006; drug: F1,64= 3.2, p= 0.075; Fig. 3b),
such that in SSRI, as compared to placebo subjects, learning from
reward was reduced (t64= 2.7, p= 0.008) while learning from pun-
ishment was enhanced (t64= 2.0, p= 0.041).

Overall, these results indicate that a prolonged regimen of SSRI
treatment resulted in a modulation of learning asymmetries.
Importantly, there were no between-group differences for the
remaining model parameters (Supplementary Fig. 3). With
regards to the impact of a single SSRI dose, on the one hand there
was no significant impact following a single dose, while on the
other the impact following a single dose did not significantly
differ from the impact following prolonged SSRI treatment.

Additionally, an asymmetric effect of cumulative success and
failure on gambling, as derived from the logistic regression, cor-
related significantly with an asymmetry in learning, as derived
from the computational reinforcement learning model, in both
sessions for both drug groups (session I, placebo: r= 0.873,
p= 7.1e−11, session I, SSRI: r= 0.819, p= 5.7e−9; session II,
placebo: r= 0.841, p= 8.7e−10; session II, SSRI: r= 0.737,
p= 9.8e−7; Fig. 4).

The benefit of having both analyses is that the model-based
analysis is more sensitive, albeit at a cost of greater flexibility in
fitting the data. Specifically, reinforcement learning modelling can
mimic our regression analysis by fitting the data with very low
learning rates, thus weighting outcomes almost equally. However,
by fitting the data with higher learning rates, it can also place
substantially greater weight on recent outcomes. We additionally
illustrate the correspondence between these two measures

(regression and reinforcement learning modelling) in simulations
with a wide range of parameter settings. Briefly, we simulated
artificial data from five models, in which we randomly varied
positive and negative learning rates independently across agents.
Next, we ran logistic regression analyses on the artificial data and
computed correlations between an asymmetric effect of cumula-
tive success and failure on gambling (regression) and an asym-
metry in learning (computational model). Here, we found a
highly significant relationship across all simulated data sets (r
ranging between 0.82–0.87, all p < 2.6e−17), providing further
evidence for the relationship between these two measures.
Overall, these analyses jointly indicate asymmetric learning from
positive and negative outcomes related to an altered gambling
preference and was influenced by prolonged serotonergic
intervention.

Note in addition we tested a model with differing sensitivity to
outcome valence (positive and negative, respectively), and a
model that modulates both a sensitivity to distinct outcomes and
learns differently from these distinct outcomes. Across both ses-
sions, the models provided a worse fit than a model that learns
asymmetrically from distinct outcomes (Supplementary Table 1).
Although the latter model was clearly not the best-fitting model,
we used it for a joint test of drug effects on both outcome sen-
sitivity and learning parameters from session II. Here we found
that a sensitivity to outcomes did not differ between drug groups
(t64= 0.5, p= 0.582), but that asymmetric learning was modu-
lated by SSRIs (drug x valence: F1,64= 10.4, p= 0.0019), with
reduced learning from reward (t64= 2.9, p= 0.004), and an
increased learning from punishment (t64= 2.1, p= 0.032) fol-
lowing serotonergic intervention, mirroring the drug effects on
parameters of our winning model.

Note that, across all subjects and sessions, we found no sig-
nificant difference between positive and negative learning rates
(F1,65= 2.1, p= 0.151). However, in placebo subjects alone, we
found a statistical trend for greater learning from positive as
compared to negative outcomes (F1,32= 3.7, p= 0.063). This is in
line with recent work showing a learning asymmetry towards
greater updating from positive information healthy individuals,
without pharmacological intervention15. We found no difference
between drug groups in net reward gained, a key measure for task
performance (session I: t64= 1.2, p= 0.201; session II: t64= 0.4,
p= 0.650). Thus, we found no evidence that changes in asym-
metric learning were detrimental, or advantageous, for task
performance.

Fig. 3 Learning asymmetry and its serotonergic modulation. a On session I, computational modelling showed learning from reward (η+) and learning
from punishment (η−) was unaffected by drug treatment. b On session II, SSRI treatment had a significant effect on learning asymmetries, such that it
reduced learning from reward (η+), and enhanced learning from punishment (η-). Note that data simulation showed that an ‘optimal’ learning rate for the
task, maximizing net reward gained, was in the range of ≈0.3–0.6 (Supplementary Fig. 2). **p < 0.01, *p < 0.05, n.s. = not significant (p > 0.05). Error bars
indicate SEM.
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We performed several analyses to assess the validity of our
computational modelling approach. First, we generated simulated
data based upon model parameters derived from fitting to real
data. This ‘posterior predictive check’ confirmed that the model
captured core features of the real data (Supplementary Fig. 4).
Additionally, we simulated sets of choices from artificial agents
with specific sets of parameters (‘ground truth’) and then fitted
models to those choices to recover the values of the parameters
(‘recovered parameters’). To ensure the results of the parameter
recovery test were applicable to the analysis of the real data, we
selected the ground truth parameters such that they covered the
empirical range. This analysis revealed that individual parameter
estimates could be accurately recovered (Supplementary Figs. 5/6).
Lastly, we validated our model comparison procedure by gen-
erating simulated data using each model and applying our model
comparison procedure to identify the model that generated each
dataset (Supplementary Fig. 7).

Discussion
Here, we show that boosting central serotonin by means of week-
long SSRI administration enhanced learning from punishment
and reduces learning from reward. This SSRI-induced learning
asymmetry increased subjects’ tendency to avoid actions as a
function of cumulative failure.

Serotonin is an evolutionary conserved neurotransmitter
though its precise effects on cognition has evaded a definite
mechanistic understanding40,41. One influential proposal is that
serotonin plays a specific role in processing aversive outcomes42.
Indeed, several studies in humans show that serotonin is involved

in punishment learning22–26, but other studies suggest that it
impacts learning from both positive and negative outcomes27,28.

In our study, we replicate findings from a previous study that
used an identical learning task7, showing behaviour is best
explained by an asymmetry in reward and punishment learning.
A strength of our task is that learning from reward and punish-
ment are each assessed via their naturally associated go (i.e.,
accept gamble) or no-go (i.e., reject gamble) Pavlovian
responses9. Additionally, reward and punishment are adminis-
tered within the same block, in an interleaved manner, thereby
competing for a subject’s learning resources43. Unfortunately, in
this study, we were not in a position to acquire neural data. In
light of previous studies on interindividual variability in human
learning asymmetries, it is tempting to speculate that serotonergic
agents may act preferentially in the striatum and prefrontal cortex
to alter the relative degree of impact from positive and negative
outcomes7,15,44.

The effects of a serotonergic manipulation we highlight require
a temporally extended treatment in order to evolve. This accords
with human and non-human animal studies showing that only a
prolonged modulation of serotonin induces a substantial
impact33,36,45,46, particularly with respect to learning28,35. The
fact that changes in learning emerge after an extended interven-
tion may reflect two processes, or a synergism of both. First,
citalopram reaches steady-state plasma levels after seven days38,
and a single dose administration is unlikely to suffice for induc-
tion of a substantial modulation of learning. Second, plasticity
that may underlie this modulation, such as s neurogenesis,
synaptogenesis, or changes in BDNF levels, require days or weeks
to emerge47.

Fig. 4 Asymmetric effects of reward and punishment. An asymmetric effect of cumulative success and failure on gambling, as derived from the logistic
regression, significantly correlated with an asymmetry in learning, as derived from our computational model, in both sessions for both drug groups.
a Session I, placebo. b Session I, SSRI. c Session II, placebo. d Session II, SSRI.
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A learning asymmetry, involving a greater impact of losses
than wins, can lead to increased avoidance relative to approach
behaviour. This can result in an aversion to risk-taking and action
over time, and potentially maladaptive risk-avoidant behaviour48.
However, studies specifically assessing the impact of serotonin on
human risk-taking have, thus far, proven inconclusive29,49–51.
Notably, in these studies, decision variables are typically not
learned by trial and error but are instead presented to subjects
explicitly, which contrasts with the learning design utilised in the
current study. Thus, the relationship between a serotonergic effect
on asymmetric learning and the development of risk tendencies
remains a question for pursuit in future studies.

Aberrant processing of reward and punishment is assumed to
play a role in the emergence of mood disorders16,17. Although
SSRIs constitute a first-line pharmacological intervention in
mood disorders52, the cognitive and computational mechanisms
that underpin treatment effectiveness remain an unresolved
issue53. We suggest the asymmetric effects we highlight can help
explain the clinical impact of SSRIs. Specifically, recent lab-
based54–57 and real-world studies58,59 show that outcome pre-
diction errors, or positive and negative surprise, strongly impact
on subjects’ emotional state. Here, an agent’s mood depends not
only on how well things are going in general, but whether things
are better, or worse, than expected. Our results indicate that a
serotonergic intervention can, in principle, influence the affective
impact of reinforcement, by lowering positive expectations
through slowing reward learning, thereby giving rise to more
positive surprise, and minimizing the impact of aversive out-
comes by enhancing negative expectations as a function of
increased punishment learning. Overall, a consequence is an
increase in positive as compared to negative surprise, an effect
that may contribute to a gradual emergence of better mood60.

A related line of work shows that healthy individuals learn
more from positive, relative to negative, information leading to an
‘optimism bias’61,62, where the latter is lacking in depressed
patients63,64. This might seem to suggest that an increased
learning from positive information acts to protect against
depression. It is worth highlighting, however, that these studies
typically assay updating expectations about oneself given infor-
mation about an average person. This type of assay is important,
but it involves an additional critical factor—the degree to which
subjects accept that information about the average applies to
themselves. There are a range of reasons to discount the relevance
of average statistics, and such discounting can be applied asym-
metrically to positive and negative information. We propose this
factor, rather than differences in learning per se, might explain
depression-related individual differences in optimism bias. In
contrast, our approach strives to assess a more basic process of
learning from reward and punishment. For this we designed our
study such that the feedback from which subjects learn is
unequivocal, as is typically applied in the basic reinforcement
learning literature7,10,11.

Overall, we consider that results, alongside its putative impact
on changes in mood, do not contradict findings on optimism bias
in depression. On the contrary, both processes can be expected to
contribute to an emergence of better mood60. Here, a limitation
of our study is its restriction to non-depressed healthy indivi-
duals. Moreover, week-long SSRI treatment does not typically
result in a meaningful mood improvement in a clinically
depressed population65. Furthermore, our task did not contain a
concurrent mood measurement. Ultimately, testing both self-
referential and basic reinforcement learning, alongside tracking of
subjective changes in mood in clinical cohorts, will be an
important next step for examining a temporal evolution of
changes in learning and the emergence of clinical effects
over time.

Although our data suggests an emergence of serotonergic
effects after a temporally extended intervention, it is of note that a
three-way interaction (drug x session x valence) was not sig-
nificant. Thus, we tentatively conclude that prolonged treatment
induced a learning asymmetry, but the interpretation of this
needs to be tempered by the fact that there was no difference
between prolonged (week-long, on day 7) as compared to acute
(single-dose, day 1) treatment. To unravel the precise trajectory of
any such effect, future studies should ideally include a pre-drug
testing session as well as multiple sessions over several weeks of
treatment.

In summary, we show that week-long SSRI treatment reduces
reward and enhances punishment learning. This learning asym-
metry can, in theory, result in lowered positive and enhanced
negative expectations, and consequentially, to more rewarding,
and less disappointing experience. We suggest this modulation of
computations that guide reinforcement learning may contribute
to a known serotonergic impact on mood.

Methods
Subjects. Sixty-six healthy volunteers (mean age: 24.7 ± 3.9; range 20–38 years; 40
females; Supplementary Table 2) participated in this double-blind, placebo-
controlled study. All subjects underwent an electrocardiogram to exclude QT
interval prolongation and a thorough medical screening interview to exclude any
neurological or psychiatric disorder, any other medical condition, or medication
intake. Subjects were reimbursed for their time. Additionally, subjects were
informed that, at the end of the experiment, one trial was randomly selected, and
the outcome of that trial was added to the overall payment. Thus, performance was
incentivised as choosing good gambles resulted in a higher probability of earning
additional monetary reward. Data from different tasks of the same participants are
reported elsewhere66,67. The experimental protocol was approved by the University
College London (UCL) local research ethics committee, with informed consent
obtained from all participants.

Pharmacological procedure. Participants were randomly allocated to receive a
daily oral dose of the SSRI citalopram (20 mg) or placebo, over a period of seven
consecutive days. All subjects performed two laboratory testing sessions. Session I
was on day 1 of treatment, 3 h after single dose administration, as citalopram
reaches its highest plasma levels after this interval68. On the following days, sub-
jects were asked to take their daily medication dose at a similar time of day, either
at home or at the study location. Session II was on day 7 of treatment, a time when
citalopram is known to reach steady-state plasma levels38, with the tablet being
taken 3 h before test. Thus, subjects were assessed twice, once after single-dose, and
once after week-long administration of the drug. This repeated-measures study
design enabled (i) an assessment of a pharmacological effect overall, as both ses-
sions were performed under the influence of the drug, and (ii) an assessment of
putative differences between acute (single-dose) and prolonged (week-long)
treatment.

Affective state questionnaires. To examine putative effects of the drug on sub-
jective affective states over the course of the study, participants completed the
Beck’s Depression Inventory (BDI-II,69), Snaith-Hamilton Pleasure Scale
(SHAPS,70), State-Trait Anxiety Inventory (STAI,71), and the Positive and Negative
Affective Scale (PANAS,72) on two different occasions: (i) pre-drug, day 1; (ii) peak
drug, day 7.

Experimental task. To examine differences in learning from success and failure,
we used a modified version of a gambling card game7, in which subjects’ goal was
to maximize monetary wins and minimize monetary losses.

The game consisted of 180 trials, divided into three 60-trial blocks. On each trial
(Fig. 1a), subjects were shown with which one of three possible decks (each
designated by distinct colour and pattern) they will be playing. After a short
interval (2 to 5 s, uniformly distributed), the computer drew a number between 1
and 9, and participants had up to 2.5 s to choose whether they wanted to gamble
that the number, which they are about to draw, will be higher than the computer
drawn number. If participants chose to gamble, they won £5 if the number that
they drew was higher than the computer’s number, and they lost £5 if it was lower
(as well as in half of the trials in which the numbers were equal). If subjects opted
to decline the gamble, they won/lost with a fixed 50% known probability. On such
trials, the outcome was not shown to participants. Not making any choice always
resulted in a loss. Feedback was provided 700 ms following each choice and
consisted of a ‘+£5’ (win), ‘−£5’ (loss), or ‘+£5 / −£5’ (win or loss, 50%
probability) visual symbol. The drawn number was not shown. Subjects were told
that each of the three decks contained a different proportion of high and low
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numbers, and they could learn by trial and error about each of the decks’ likelihood
of success.

Unbeknownst to participants, one deck contained a uniform distribution of
numbers between 1 and 9 (‘even deck’), one deck contained more 1’s than other
numbers (‘low deck’), making gambles 30% less likely to succeed, and one deck
contained more 9’s than other numbers (‘high deck’), making gambles 30% more
likely to succeed. In the first 15 trials, the computer drew the numbers 4, 5, and 6
three times each, and the other numbers once each. To ensure that all participants
gambled in approximately 50% of trials, the numbers that the computer drew three
times each were increased by one (e.g., [4, 5, 6] to [5, 6, 7]), in each subsequent set
of 15 trials, if subjects took two thirds or more of the gambles against these
numbers in the previous 15 trials, or decreased by one if participants took a third or
less of the gambles. Participants’ decks were pseudorandomly ordered while
ensuring that the three decks were matched against similar computers’ numbers
and that no deck appeared in successive trials more than the other decks.

On both sessions, the game was identical, with the only difference being subjects
played with distinct sets of three decks, indicated by different colours, where colour
order and colour-associated win probability randomly varied across participants
(Fig. 1b). Subjects were informed that the decks from session II were entirely
unrelated to the ones from session I, and they had to learn about the novel
decks anew.

To familiarize participants with the basic structure of the task, subjects, on both
sessions, performed a 60-trial training block with an ‘even’ deck, where visual
feedback indicated the number that participants drew.

Logistic regression analysis. We fitted a trial-by-trial logistic regression model to
subjects’ decisions:

p ct ¼ 1
� � ¼ 1

1þ e� β0þβ1x1t þβ2x2t þβ3x3tð Þ ; ð1Þ

where a subject either accepted (ct= 1) or declined (ct= 0) a gamble on trial t.
Here, x1t is the computer number, scaled to range between −1 (for number 9) and
1 (for number 1). x2t represents cumulative success, reflecting, for the deck played
with on trial t, the sum of previous positive outcomes, computed as +1 multiplied
by the computer’s number against which it was received. x3t represents cumulative
failure, reflecting, for the deck played with on trial t, the sum of previous negative
outcomes, computed as −1 multiplied by (10 - computer’s number), against which
it was received. The multiplications by the computer’s number reflect the fact that a
win against a higher computer number provides stronger evidence in favour of a
deck, and in a similar vein, a loss against a lower computer number provides
stronger evidence against a deck. Thus, we refer to regressors as cumulative suc-
cess/failure, instead of merely cumulative wins/losses. To adequately compare effect
sizes between coefficients, x2t and x3t were range-normalized between −1 and 1.
Positive coefficients for the first predictor (β1) indicate that subjects were more
likely to gamble against lower computer numbers. Positive coefficients for the
second predictor (β2) indicate that subjects were more likely to gamble given a deck
with which they had experienced more cumulative success. Positive coefficients for
the third predictor (β3) indicate that subjects were more likely to decline a gamble
given a deck with which they had experienced more cumulative failure. β0 is the
intercept.

Note that the regression did not converge for one subject on session I, thus we
discarded this data from the group analysis.

Computational modelling
Model space. To account for the precise mechanisms that guided learning from
reward and punishment, we compared a set of computational learning models in
terms of how well each model explained subjects’ choices. Note that although our
task involves gambling, it contrasts with typical risky decision-making paradigms
(e.g.,54,73) in that decision variables need to be learned by trial and error. Moreover,
the typical approach in risky decision-making studies for estimating a utility
function is not suitable here, since gains and losses have only one possible size.
Thus, we modelled the data using a variety of reinforcement learning models,
which have been shown previously to adequately capture risk sensitivity in the
context of trial-and-error learning7,10. In all models, the probability of taking a
gamble was modelled by applying a logistic function to a term that represented
available evidence.

Model 1 (‘gambling bias’) and model 2 (‘gambling bias & computer number’) are
oblivious to previous experience with the decks, and do not assume any learning
to occur.

Here, model 1 computes the evidence as:

β0; ð2Þ
where β′ is a gambling bias parameter, determining a subject’s general propensity
to gamble, thus allowing the model to favour either gambling or declining to
begin with.

Model 2 computes the evidence as:

β0 þ β00Nt ; ð3Þ
where N is the computer drawn number at trial t, scaled to range between −1 (for

number 9) and 1 (for number 1), equivalent to the logistic regression, and β″ is an
inverse temperature parameter, determining the strength, with which the
computer’s number is determining a decision to gamble.

Model 3 (‘Q-learning’) learns the expected outcome of gambles with each deck d
as follows:

Qdt
tþ1 ¼ Qdt

t þ ηδt ; ð4Þ
where

δt ¼ rt � Qdt
t ð5Þ

is an outcome prediction error, reflecting the difference between the actual (rt) and

the expected (Qdt
t ) outcome of a gamble (initialized as Qd0

0 = 0). rt = 1 represents a
win, and rt = −1 represents a loss, and η is a learning rate parameter that weights
the influence of prediction errors on subsequent expectations. Model 3 then
computes the evidence as:

β0 þ β00Nt þ β000Qdt
t ; ð6Þ

where β′″ is a free parameter that determines the strength, with which choices are
directed towards higher Q-value options.

In contrast to the previous model, model 4 (‘adjusted Q-learning’) computes
prediction errors with respect to expectations that additionally factor in the
computer’s number:

δt ¼ rt � Qdt
t � Nt ; ð7Þ

which means the model learns more from more surprising outcomes, i.e., from win
outcomes of gambles against higher numbers, and from loss outcomes of gambles
against lower numbers.

Based on prior work7,11, we assumed subjects would learn at a different rate
from successful, i.e., reward, and unsuccessful gambles, i.e., punishment. In
contrast to the gambling bias parameter (β′) that was included in all models,
allowing them to favour either gambling or declining to begin with, an asymmetric
learning bias can make such a tendency evolve with learning over time.

To this end, model 5 (‘asymmetric Q-learning’) and model 6 (‘adjusted &
asymmetric Q-learning’) incorporate two distinct learning rate parameters (η+ & η−),
that allow learning at a different rate from different outcome types, i.e., from wins:

Qdt
tþ1 ¼ Qdt

t þ ηþδt ; ð8Þ
and from losses:

Qdt
tþ1 ¼ Qdt

t þ η�δt ð9Þ
Note that a model with different positive and negative learning rates for each

deck could not be estimated due to the number of outcomes subjects observed
varying substantially across decks and outcome type, such that not all subjects
observed both positive and negative outcomes for each of the decks. Thus, in
accordance with our earlier work using an equivalent task7, we assumed the same
two learning rates characterized learning about all decks. We acknowledge a
limitation of this approach is that learning rate estimation is more heavily
influenced by trials from the high, followed by the even and then the low deck, as
subjects gambled more often with better decks and consequently observed more
outcomes from which they could learn.

Model fitting. To fit the parameters of the different models to subjects’ decisions, we
used an iterative hierarchical expectation-maximization procedure across the entire
sample, separately for each session56,74. We sampled 105 random settings of the
parameters from predefined prior distributions. Then, we computed the likelihood
of observing subjects’ choices given each setting and used the computed likelihoods
as importance weights to re-fit the parameters of the prior distributions. These
steps were repeated iteratively until model evidence ceased to increase. To derive
the best-fitting parameters for each individual subject, we computed a weighted
mean of the final batch of parameter settings, in which each setting was weighted
by the likelihood it assigned to the individual subject’s decisions. Note that the
hierarchical fitting procedure, including all priors, were applied to the entire
sample without distinguishing between SSRI and placebo subjects. This ensured
that the parameter estimates, at the level of individual subjects, were mutually
independent given the shared prior, rendering it appropriate to assess between-
group differences. Learning rate parameters (η, η+ & η−) were modelled with Beta
distributions (initialized with shape parameters a = 1 and b = 1). The gambling
bias parameter (β′) was modelled with a normal distribution (initialized with μ = 0
and σ = 1), and inverse temperature parameters (β″ & β′″) were modelled with
Gamma distributions (initialized with κ = 1, θ = 1).

Model comparison. We compared between models in terms of how well each model
accounted for subjects’ choices by means of the integrated Bayesian Information
Criterion (iBIC56,75). Here, we estimated the evidence in favour of each model (λ)
as the mean likelihood of the model given 105 random parameter settings drawn
from the fitted group-level priors. We then computed the iBIC by penalizing the
model evidence to account for model complexity as follows: iBIC = − 2 ln λ + κ ln
n, where κ is the number of fitted parameters, and n is the total number of subject

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-022-03690-5 ARTICLE

COMMUNICATIONS BIOLOGY |           (2022) 5:812 | https://doi.org/10.1038/s42003-022-03690-5 | www.nature.com/commsbio 7

www.nature.com/commsbio
www.nature.com/commsbio


choices used to compute the likelihood. Lower iBIC values indicate a more par-
simonious model fit.

Statistics and reproducibility. Drug effects were assessed using repeated measures
analyses of variance (rm-ANOVA) and independent samples t-tests. Our sample
size (n= 66) was similar to related studies related using a comparable pharma-
cological protocol, e.g.,26,28. We did not attempt to reproduce the pharmacological
results. However, the results of our study on learning asymmetries replicate pre-
vious findings using an identical cognitive task7.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The data analysed during this study are available on GitHub (https://github.com/
jmichely/ssri_asymmetric_learning) and Zenodo (https://zenodo.org/badge/latestdoi/
262273939). Supplementary Data 1 contains all source data underlying the graphs and
charts presented in the main figures of the manuscript.

Code availability
The custom computer code used to generate the reported results are available GitHub
(https://github.com/jmichely/ssri_asymmetric_learning) and Zenodo (https://zenodo.
org/badge/latestdoi/262273939).

Received: 19 November 2020; Accepted: 8 July 2022;

References
1. Skinner, B. F. The behavior of organisms: an experimental analysis. (Appleton-

Century, 1938).
2. Kubanek, J., Snyder, L. H. & Abrams, R. A. Reward and punishment act as

distinct factors in guiding behavior. Cognition 139, 154–167 (2015).
3. Palminteri, S. & Pessiglione, M. In Decision Neuroscience (eds. Dreher, J. C.

& Tremblay, L.) (Academic Press, 2017).
4. Wachter, T., Lungu, O. V., Liu, T., Willingham, D. T. & Ashe, J. Differential

effect of reward and punishment on procedural learning. J. Neurosci. 29,
436–443 (2009).

5. Monosov, I. E. & Hikosaka, O. Regionally distinct processing of rewards and
punishments by the primate ventromedial prefrontal cortex. J. Neurosci. 32,
10318–10330 (2012).

6. Palminteri, S. et al. Critical roles for anterior insula and dorsal striatum in
punishment-based avoidance learning. Neuron 76, 998–1009 (2012).

7. Eldar, E., Hauser, T. U., Dayan, P. & Dolan, R. J. Striatal structure and
function predict individual biases in learning to avoid pain. Proc. Natl Acad.
Sci. USA 113, 4812–4817 (2016).

8. Huys, Q. J. et al. Disentangling the roles of approach, activation and valence in
instrumental and pavlovian responding. PLoS Comput Biol. 7, e1002028
(2011).

9. Guitart-Masip, M., Duzel, E., Dolan, R. & Dayan, P. Action versus valence in
decision making. Trends Cogn. Sci. 18, 194–202 (2014).

10. Niv, Y., Edlund, J. A., Dayan, P. & O’Doherty, J. P. Neural prediction errors
reveal a risk-sensitive reinforcement-learning process in the human brain. J.
Neurosci. 32, 551–562 (2012).

11. Gershman, S. J. Do learning rates adapt to the distribution of rewards.
Psychon. Bull. Rev. 22, 1320–1327 (2015).

12. Caze, R. D. & van der Meer, M. A. Adaptive properties of differential learning
rates for positive and negative outcomes. Biol. Cyber. 107, 711–719 (2013).

13. Pulcu, E. & Browning, M. Affective bias as a rational response to the statistics
of rewards and punishments. Elife 6, https://doi.org/10.7554/eLife.27879
(2017).

14. Palminteri, S., Khamassi, M., Joffily, M. & Coricelli, G. Contextual modulation
of value signals in reward and punishment learning. Nat. Commun. 6, 8096
(2015).

15. Lefebvre, G., Lebreton, M., Meyniel, F., Bourgeois-Gironde, S. & Palminteri, S.
Behavioural and neural characterization of optimistic reinforcement learning.
Nat. Hum. Behav. 1, 0067 (2017).

16. Murphy, F. C., Michael, A., Robbins, T. W. & Sahakian, B. J.
Neuropsychological impairment in patients with major depressive disorder:
the effects of feedback on task performance. Psychol. Med. 33, 455–467
(2003).

17. Eshel, N. & Roiser, J. P. Reward and punishment processing in depression.
Biol. Psychiatry 68, 118–124 (2010).

18. Frank, M. J., Seeberger, L. C. & O’Reilly, R. C. By carrot or by stick: cognitive
reinforcement learning in parkinsonism. Science 306, 1940–1943 (2004).

19. Bodi, N. et al. Reward-learning and the novelty-seeking personality: a
between- and within-subjects study of the effects of dopamine agonists on
young Parkinson’s patients. Brain 132, 2385–2395 (2009).

20. Cools, R. et al. Striatal dopamine predicts outcome-specific reversal learning
and its sensitivity to dopaminergic drug administration. J. Neurosci. 29,
1538–1543 (2009).

21. Palminteri, S. et al. Pharmacological modulation of subliminal learning in
Parkinson’s and Tourette’s syndromes. Proc. Natl Acad. Sci. USA 106,
19179–19184 (2009).

22. Chamberlain, S. R. et al. Neurochemical modulation of response inhibition
and probabilistic learning in humans. Science 311, 861–863 (2006).

23. Cools, R., Robinson, O. J. & Sahakian, B. Acute tryptophan depletion in
healthy volunteers enhances punishment prediction but does not affect reward
prediction. Neuropsychopharmacology 33, 2291–2299 (2008).

24. Tanaka, S. C. et al. Serotonin affects association of aversive outcomes to past
actions. J. Neurosci. 29, 15669–15674 (2009).

25. den Ouden, H. E. et al. Dissociable effects of dopamine and serotonin on
reversal learning. Neuron 80, 1090–1100 (2013).

26. Skandali, N. et al. Dissociable effects of acute SSRI (escitalopram) on
executive, learning and emotional functions in healthy humans.
Neuropsychopharmacology 43, 2645–2651 (2018).

27. Palminteri, S., Clair, A. H., Mallet, L. & Pessiglione, M. Similar improvement
of reward and punishment learning by serotonin reuptake inhibitors in
obsessive-compulsive disorder. Biol. Psychiatry 72, 244–250 (2012).

28. Scholl, J. et al. Beyond negative valence: 2-week administration of a
serotonergic antidepressant enhances both reward and effort learning signals.
PLoS Biol. 15, e2000756 (2017).

29. Faulkner, P. & Deakin, J. F. The role of serotonin in reward, punishment and
behavioural inhibition in humans: insights from studies with acute tryptophan
depletion. Neurosci. Biobehav Rev. 46, 365–378 (2014).

30. van Donkelaar, E. L. et al. Mechanism of acute tryptophan depletion: is it only
serotonin? Mol. Psychiatry 16, 695–713 (2011).

31. Crockett, M. J. et al. Converging evidence for central 5-HT effects in acute
tryptophan depletion. Mol. Psychiatry 17, 121–123 (2012).

32. Guitart-Masip, M. et al. Differential, but not opponent, effects of L -DOPA
and citalopram on action learning with reward and punishment.
Psychopharmacology 231, 955–966 (2014).

33. Burghardt, N. S. & Bauer, E. P. Acute and chronic effects of selective serotonin
reuptake inhibitor treatment on fear conditioning: implications for underlying
fear circuits. Neuroscience 247, 253–272 (2013).

34. Burghardt, N. S., Sullivan, G. M., McEwen, B. S., Gorman, J. M. & LeDoux, J.
E. The selective serotonin reuptake inhibitor citalopram increases fear after
acute treatment but reduces fear with chronic treatment: a comparison with
tianeptine. Biol. Psychiatry 55, 1171–1178 (2004).

35. Bari, A. et al. Serotonin modulates sensitivity to reward and negative feedback
in a probabilistic reversal learning task in rats. Neuropsychopharmacology 35,
1290–1301 (2010).

36. Baldinger, P. et al. Regional differences in SERT occupancy after acute and
prolonged SSRI intake investigated by brain PET. Neuroimage 88, 252–262
(2014).

37. Correia, P. A. et al. Transient inhibition and long-term facilitation of
locomotion by phasic optogenetic activation of serotonin neurons. Elife 6,
https://doi.org/10.7554/eLife.20975 (2017).

38. Gutierrez, M. & Abramowitz, W. Steady-state pharmacokinetics of citalopram
in young and elderly subjects. Pharmacotherapy 20, 1441–1447 (2000).

39. Godlewska, B. R. & Harmer, C. J. Cognitive neuropsychological theory of
antidepressant action: a modern-day approach to depression and its
treatment. Psychopharmacology, https://doi.org/10.1007/s00213-019-05448-0
(2020).

40. Dayan, P. Twenty-five lessons from computational neuromodulation. Neuron
76, 240–256 (2012).

41. Olivier, B. Serotonin: a never-ending story. Eur. J. Pharm. 753, 2–18 (2015).
42. Crockett, M. J. & Cools, R. Serotonin and aversive processing in affective and

social decision-making. Curr. Opin. Behav. Sci. 5, 64–70 (2015).
43. Moustafa, A. A., Gluck, M. A., Herzallah, M. M. & Myers, C. E. The influence

of trial order on learning from reward vs. punishment in a probabilistic
categorization task: experimental and computational analyses. Front Behav.
Neurosci. 9, 153 (2015).

44. Macoveanu, J. Serotonergic modulation of reward and punishment: evidence
from pharmacological fMRI studies. Brain Res 1556, 19–27 (2014).

45. Maya Vetencourt, J. F. et al. The antidepressant fluoxetine restores plasticity in
the adult visual cortex. Science 320, 385–388 (2008).

46. Karpova, N. N. et al. Fear erasure in mice requires synergy between
antidepressant drugs and extinction training. Science 334, 1731–1734 (2011).

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-022-03690-5

8 COMMUNICATIONS BIOLOGY |           (2022) 5:812 | https://doi.org/10.1038/s42003-022-03690-5 | www.nature.com/commsbio

https://github.com/jmichely/ssri_asymmetric_learning
https://github.com/jmichely/ssri_asymmetric_learning
https://zenodo.org/badge/latestdoi/262273939
https://zenodo.org/badge/latestdoi/262273939
https://github.com/jmichely/ssri_asymmetric_learning
https://zenodo.org/badge/latestdoi/262273939
https://zenodo.org/badge/latestdoi/262273939
https://doi.org/10.7554/eLife.27879
https://doi.org/10.7554/eLife.20975
https://doi.org/10.1007/s00213-019-05448-0
www.nature.com/commsbio


47. Krishnan, V. & Nestler, E. J. Linking molecules to mood: new insight into the
biology of depression. Am. J. Psychiatry 167, 1305–1320 (2010).

48. Hauser, T. U., Eldar, E. & Dolan, R. J. Neural Mechanisms of Harm-
Avoidance Learning: A Model for Obsessive-Compulsive Disorder? JAMA
Psychiatry 73, 1196–1197 (2016).

49. Campbell-Meiklejohn, D. et al. Serotonin and dopamine play complementary roles
in gambling to recover losses. Neuropsychopharmacology 36, 402–410 (2011).

50. Macoveanu, J. et al. Effects of selective serotonin reuptake inhibition on neural
activity related to risky decisions and monetary rewards in healthy males.
Neuroimage 99, 434–442 (2014).

51. Macoveanu, J. et al. Playing it safe but losing anyway–serotonergic signaling of
negative outcomes in dorsomedial prefrontal cortex in the context of risk-
aversion. Eur. Neuropsychopharmacol. 23, 919–930 (2013).

52. Hieronymus, F., Lisinski, A., Nilsson, S. & Eriksson, E. Efficacy of selective
serotonin reuptake inhibitors in the absence of side effects: a mega-analysis of
citalopram and paroxetine in adult depression. Mol. Psychiatry 23, 1731–1736
(2018).

53. Harmer, C. J., Duman, R. S. & Cowen, P. J. How do antidepressants work?
New perspectives for refining future treatment approaches. Lancet Psychiatry
4, 409–418 (2017).

54. Rutledge, R. B., Skandali, N., Dayan, P. & Dolan, R. J. A computational and
neural model of momentary subjective well-being. Proc. Natl Acad. Sci. USA
111, 12252–12257 (2014).

55. Rutledge, R. B., Skandali, N., Dayan, P. & Dolan, R. J. Dopaminergic
Modulation of Decision Making and Subjective Well-Being. J. Neurosci. 35,
9811–9822 (2015).

56. Eldar, E., Roth, C., Dayan, P. & Dolan, R. J. Decodability of Reward Learning
Signals Predicts Mood Fluctuations. Curr. Biol. 28, 1433–1439.e1437 (2018).

57. Eldar, E. & Niv, Y. Interaction between emotional state and learning underlies
mood instability. Nat. Commun. 6, 6149 (2015).

58. Otto, A. R. & Eichstaedt, J. C. Real-world unexpected outcomes predict city-
level mood states and risk-taking behavior. PLoS One 13, e0206923 (2018).

59. Villano, W. J., Otto, A. R., Ezie, C. E. C., Gillis, R. & Heller, A. S. Temporal
dynamics of real-world emotion are more strongly linked to prediction error
than outcome. J. Exp. Psychol. Gen. 149, 1755–1766 (2020).

60. Eldar, E., Rutledge, R. B., Dolan, R. J. & Niv, Y. Mood as Representation of
Momentum. Trends Cogn. Sci. 20, 15–24 (2016).

61. Sharot, T., Guitart-Masip, M., Korn, C. W., Chowdhury, R. & Dolan, R. J.
How dopamine enhances an optimism bias in humans. Curr. Biol. 22,
1477–1481 (2012).

62. Sharot, T., Riccardi, A. M., Raio, C. M. & Phelps, E. A. Neural mechanisms
mediating optimism bias. Nature 450, 102–105 (2007).

63. Garrett, N. et al. Losing the rose tinted glasses: neural substrates of unbiased
belief updating in depression. Front Hum. Neurosci. 8, 639 (2014).

64. Korn, C. W., Sharot, T., Walter, H., Heekeren, H. R. & Dolan, R. J. Depression
is related to an absence of optimistically biased belief updating about future
life events. Psychol. Med 44, 579–592 (2014).

65. Taylor, M. J., Freemantle, N., Geddes, J. R. & Bhagwagar, Z. Early onset of
selective serotonin reuptake inhibitor antidepressant action: systematic review
and meta-analysis. Arch. Gen. Psychiatry 63, 1217–1223 (2006).

66. Michely, J., Eldar, E., Martin, I. M. & Dolan, R. J. A mechanistic account of
serotonin’s impact on mood. Nat. Commun. 11, 2335 (2020).

67. Michely, J., Martin, I. M., Dolan, R. J. & Hauser, T. U. Boosting serotonin
increases information gathering by reducing subjective cognitive costs.
bioRxiV https://doi.org/10.1101/2021.12.08.471843 (2021).

68. Noble, S. & Benfield, P. Citalopram: A Review of its Pharmacology, Clinical
Efficacy and Tolerability in the Treatment of Depression. CNS Drugs 8,
410–431 (1997).

69. Beck, A. T., Steer, R. A. & Brown, G. K. Manual for the Beck Depression
Inventory-II. (Psychological Corporation, 1996).

70. Snaith, R. P. et al. A scale for the assessment of hedonic tone the Snaith-
Hamilton Pleasure Scale. Br. J. Psychiatry 167, 99–103 (1995).

71. Spielberger, C. D., Gorsuch, R. L., Lushene, R., Vagg, P. R. & Jacobs, G. A.
Manual for the State-Trait Anxiety Inventory. (Consulting Psychologists Press,
1983).

72. Watson, D., Clark, L. A. & Tellegen, A. Development and validation of brief
measures of positive and negative affect: the PANAS scales. J. Pers. Soc.
Psychol. 54, 1063–1070 (1988).

73. Sokol-Hessner, P. et al. Thinking like a trader selectively reduces individuals’
loss aversion. Proc. Natl Acad. Sci. USA 106, 5035–5040 (2009).

74. Bishop, C. M. Pattern Recognition and Machine Learning. (Springer, 2006).
75. Huys, Q. J. et al. Bonsai trees in your head: how the pavlovian system sculpts

goal-directed choices by pruning decision trees. PLoS Comput Biol. 8,
e1002410 (2012).

Acknowledgements
J.M. was supported by a fellowship from the German Research Foundation (MI 2158/1-
1) and is participant in the BIH Charité (Junior) (Digital) Clinician Scientist Program
funded by the Charité – Universitätsmedizin Berlin, and the Berlin Institute of Health at
Charité (BIH). R.J.D. holds a Wellcome Trust Investigator award (098362/Z/12/Z). The
Max Planck UCL Centre for Computational Psychiatry and Ageing Research is a joint
initiative supported by the Max Planck Society and University College London. The
Wellcome Centre for Human Neuroimaging is supported by core funding from the
Wellcome Trust (091593/Z/10/Z).

Author contributions
J.M. and E.E. designed the experiments. J.M. and I.M.M. performed the experiments.
J.M., E.E., A.E. and R.J.D. analysed and interpreted the data. J.M., E.E. and R.J.D. wrote
the paper.

Funding
Open Access funding enabled and organized by Projekt DEAL.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s42003-022-03690-5.

Correspondence and requests for materials should be addressed to Jochen Michely.

Peer review information Communications Biology thanks the anonymous reviewers for
their contribution to the peer review of this work. Primary Handling Editors: Enzo
Tagliazucchi and George Inglis. Peer reviewer reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2022

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-022-03690-5 ARTICLE

COMMUNICATIONS BIOLOGY |           (2022) 5:812 | https://doi.org/10.1038/s42003-022-03690-5 | www.nature.com/commsbio 9

https://doi.org/10.1101/2021.12.08.471843
https://doi.org/10.1038/s42003-022-03690-5
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/commsbio
www.nature.com/commsbio

	Serotonin modulates asymmetric learning from reward and punishment in healthy human volunteers
	Results
	Discussion
	Methods
	Subjects
	Pharmacological procedure
	Affective state questionnaires
	Experimental task
	Logistic regression analysis
	Computational modelling
	Model space
	Model fitting
	Model comparison
	Statistics and reproducibility

	Reporting summary
	Data availability
	References
	Code availability
	References
	References
	Acknowledgements
	Author contributions
	Funding
	Competing interests
	Additional information




