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ABSTRACT

Objective The COVID-19 pandemic and subsequent
government restrictions have had a major impact on
healthcare services and disease transmission, particularly
those associated with acute respiratory infection. This
study examined non-identifiable routine electronic
patient record data from a specialist children’s hospital
in England, UK, examining the effect of pandemic
mitigation measures on seasonal respiratory infection
rates compared with forecasts based on open-source,
transferable machine learning models.

Methods \We performed a retrospective longitudinal
study of respiratory disorder diagnoses between January
2010 and February 2022. All diagnoses were extracted
from routine healthcare activity data and diagnosis rates
were calculated for several diagnosis groups. To study
changes in diagnoses, seasonal forecast models were fit
to prerestriction period data and extrapolated.

Results Based on 144704 diagnoses from 31002
patients, all but two diagnosis groups saw a marked
reduction in diagnosis rates during restrictions. We
observed 91%, 89%, 72% and 63% reductions in peak
diagnoses of 'respiratory syncytial virus', ‘influenza’,
‘acute nasopharyngitis” and ‘acute bronchiolitis’,
respectively. The machine learning predictive model
calculated that total diagnoses were reduced by up to
73% (z-score: —26) versus expected during restrictions
and increased by up to 27% (z-score: 8) postrestrictions.
Conclusions We demonstrate the association between
COVID-19 related restrictions and significant reductions
in paediatric seasonal respiratory infections. Moreover,
while many infection rates have returned to expected
levels postrestrictions, others remain supressed or
followed atypical winter trends. This study further
demonstrates the applicability and efficacy of routine
electronic record data and cross-domain time-series
forecasting to model, monitor, analyse and address
clinically important issues.

INTRODUCTION

The COVID-19 pandemic had a major impact
on healthcare services, with significantly reduced
service utilisation.! In addition, the mitigation
measures implemented, such as lockdowns, social
distancing and personal protective/hygiene actions,
have significantly reduced rates of other infec-
tious agents, for example, transmission of noro-
virus.? Previous pandemics, such as influenza, have
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WHAT IS ALREADY KNOWN ON THIS TOPIC?

= The literature states that (non-COVID-19)
respiratory diagnoses have broadly reduced
during the periods of government interventions
as resulting from the COVID-19 pandemic,
across the world.

= General reductions in respiratory infection
diagnoses are generally in contravention with
the typical seasonal trends.

= Research has predicted an increase in
respiratory infections once government
interventions and restrictions are removed.

WHAT THIS STUDY ADDS?

= This study analyses respiratory infections
observed at a specialist children’s hospital
during and after the implementation of
restrictions resulting from the COVID-19
pandemic.

= The results show a significant reduction in
rates of major respiratory diagnoses during
restrictions but further illustrate the variation in
responses post-restrictions.

= The study demonstrates how open-source,
cross-domain, forecasting tools can be applied
to routine health record activity data to provide
evaluation of deviations from historical trends.

HOW THIS STUDY MIGHT AFFECT RESEARCH,
PRACTICE OR POLICY

= This study shows that, in our population,
hypothesised excess post-COVID-19 respiratory
syncytial virus infections did not occur, with
implications for health policy planning.

= The results indicate that rates for several
respiratory infections continue to remain
below typical pre-COVID-19 levels, and further
research is required to model future effects.

= The electronic health record data-based
forecasting method, using cross-domain
tools, is applicable to a range of health policy
applications, including service usage planning
and case surge detection.

demonstrated that associated public health measures
can impact rates of other respiratory infections such
as respiratory syncytial virus (RSV),> and reduced
rates of RSV infection and other respiratory
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pathogens have been reported in several countries during the
COVID-19 pandemic.*™®

The value of routine electronic health record (EHR) data for
research is increasingly recognised and has been highlighted
by the pandemic,”' and the UK Government has recently
published a data strategy emphasising the value of healthcare
data for secondary purposes.'* The aim of this study is to analyse
routine electronic patient record data from a specialist children’s
hospital to examine the effect of the COVID-19 pandemic
mitigation measures on rates of seasonal respiratory infections
compared with expected rates using an openly available trans-
ferable machine learning model.

METHODS

Design

We performed a retrospective longitudinal study of coded respi-
ratory disorder diagnoses made at the Great Ormond Street
Hospital for Children (GOSH), a specialist paediatric hospital
in London, that typically receives 280000 patient visits per year
and includes several large paediatric intensive care units.

The respiratory disorder data were extracted and aggregated
from the Epic patient-level EHR and legacy clinical data ware-
houses'® using a bespoke Digital Research Environment.'* Diag-
noses were labelled with codes from the International Statistical
Classification of Diseases and Related Health Problems 10th
Revision (ICD-10)."* All diagnoses from inpatients and outpa-
tients recorded between 1 January 2010 and 28 February 2022
were collected for the study.

The diagnosis rates and trends of four respiratory disease cate-
gories that are reported to be particularly prevalent during the
UK winter were analysed in this study (‘Respiratory Infection
due to the Respiratory Syncytial Virus’ (RSV), ‘Respiratory Infec-
tion due to the Influenza Virus’, ‘Acute Nasopharyngitis due to
any Virus’ and ‘Acute Bronchiolitis due to any Virus (excluding
RSV)’). In addition, diagnoses were aggregated into catego-
ries based on respiratory hierarchical groupings of ICD-10 to
provide a wider picture of diagnosis rates and seasonal trends"’
(the full list of associated ICD-10 codes for each aggregated cate-
gory is shown in online supplemental table 1).

Each diagnosis category was divided into three time periods,
corresponding to before, during and after the enforcement of
national restrictions in England in response to the COVID-19
pandemic. The prerestriction period was designated as 1 January
2010-25 March 2020. The during restriction period was desig-
nated from 26 March 2020 (the date ‘The Health Protection
(Coronavirus, Restrictions) (England) Regulations’ legally
came into force) to 18 July 2021. The postrestriction period
was taken from 19 July 2021 (the date “The Health Protection
(Coronavirus, Restrictions) (Steps etc.) (England)’ was revoked)
to 28 February 2022.'° England was subject to a range of inter-
ventions in the period during restrictions. At their most strin-
gent, these restrictions included full national ‘lockdowns’ where
meeting was disallowed, and it was a legal offence to leave your
place of living except for a small range of ‘essential activities’.
Conversely, at their least stringent, the restrictions permitted
gatherings of up to 30 people and only had requirements for
face coverings in enclosed spaces and minor personal social
distancing measures.

All analysis and modelling for this study were carried out
using the R programming language.'”

All data were deidentified using the established digital research
environment mechanisms, with analysis carried out in a secure
virtual environment; no data left the hospital during the study.

Statistical analysis

For each respiratory disorder diagnosis category, data for
the cohort of patients with an associated ICD-10 diagnosis
were extracted, and the start date of the period of diagnosis
was identified. The daily diagnosis frequency (diagnoses/day)
was calculated for each diagnosis category by aggregating the
diagnosis dates of all patients with a diagnosis in the category
across the period.

The diagnosis rate data were sparse for some categories;
therefore, a 30-day moving average filter'® with a centre-
aligned, rectangular window was applied to the raw diagnosis
frequency series to provide an averaged representation of the
diagnosis rate trends, y (¢), that was used for the subsequent
analysis and modelling.

Statistical modelling
To understand the impact of restrictions on GOSH diagnosis
rates for each category, a statistical model for the typical
trend was built from the diagnosis rate trends for the prere-
strictions period using the Prophet forecasting procedure.”
Prophet is a robust, open source tool that fits additive and
multiplicative seasonal models to time-series data that have
strong cyclical/seasonal effects. With Prophet, an input time-
series is decomposed into a non-periodic trend that changes
non-linearly over time, multiple periodic seasonalities, an
irregular holiday effect and a noise signal. Prophet fits the
model to the input time-series within the Bayesian statis-
tical inference framework with Markov chain Monte Carlo
(MCMC) sampling implemented in the Stan programming
language. "’

For this study, the diagnosis rate model was designed as a
multiplicative model, as follows.

y(t) =g(t) (@)«
where y (¢) is the diagnosis rate time series, g (¢) is the non-

periodic trend modelled as a piecewise linear trend with
changepoints, s (¢) is the annual periodic seasonal trend

modelled as a five term Fourier series, and ¢ ~ N (O, crz) is

a normally distributed model error function. A multiplicative
model, whereby the trends and seasonalities are multiplied
together to model the time-series, was used because diagnosis
rates clearly showed annual seasonality to be approximately
proportional to the overall trend. Details of the implementa-
tion of g (¢) and s (¢) are available elsewhere."”

Since y (t) > 0 the multiplicative model was log-transformed
and implemented as the following additive model

loga (v (2)) = loga (g (2)) + loga (s () + &
where x is the input diagnosis rate, loga (x) = log (x + A)
approximates the log transformation and is finite for zero valued
x for an arbitrary small constant A.

To quantify the degree of seasonality in each diagnosis cate-
gory, a ‘Seasonality Amplitude’ score was calculated from the
Prophet model generated for each diagnosis category. The score,
ascore, was calculated as the ratio of the peak-to-peak ampli-
tude, dpeap—t0—peaks and the peak amplitude, appq, of the model
forecast for the year immediately prior to the introduction of
restrictions.

Apeak —to— peak

Ascore = peak

To understand the significance of any deviation in the observed
diagnosis rate from that predicted by the Prophet models,
discrete daily z-scores were calculated, as follows:

20f8

Bowyer SA, et al. Arch Dis Child 2022;107:e36. doi:10.1136/archdischild-2022-323822

1ybuAdoo
Ag peosioid s8dines Arelqi] 10N 18 €202 ‘0€ 41290100 U0 /wod fwg-ope//:dny woly papeojumoq Zz0z 1Snbny QT U0 ZZ8EZE-2Z0Z-PIYISIPY2Ie/9ETT 0T Sk paysiignd 1s1 :pjiyd sia Yoy


https://dx.doi.org/10.1136/archdischild-2022-323822
http://adc.bmj.com/

Original research

Table 1 Table of summary characteristics for the population of
diagnoses analysed in the study

Characteristic Value (7=106222) (%)

Sex
Female 42.30
Male 57.69

Ethnic groups
White 42.66
Not stated 23.30
Asian or Asian British 13.36
Black, black British, Caribbean or African 8.80
Other ethnic group 1.77
Mixed or multiple ethnic groups 411

Age at diagnosis
Minimum 0.00 years
Quartile 1 1.39 years
Median 4.20 years
Quartile 3 9.48 years
Maximum 18.00 years

Zi=27, (P [Yi < Y,})
where z; is the i-th observed diagnosis rate z-score, y; is the i-th
observed diagnosis rate, Y; is the random variable defining the
i-th value of the posterior predictive distribution from the raw

MCMC samples in Prophet and Zg4(.) is the mapping of proba-
bility quantiles to z-scores.

RESULTS

Data from 30199 patients with a diagnosis from Chapter X
‘Diseases of the respiratory system’ of ICD-10 at the centre between
1 January 2010 and 28 February 2022 were included in the study,
with a total of 141003 diagnosis records in the dataset (including
repeats). Full summary statistics for the study population are shown
in table 1.

A total of 1060 diagnoses of ‘RSV’, 471 diagnoses of ‘Influ-
enza’, 2214 diagnoses of ‘Acute Nasopharyngitis’ and 1568 diag-
noses of ‘Acute Bronchiolitis (excl. RSV)’ were made across the
period of study. Online supplemental table 1 shows the patient
cohort summary for these diagnosis categories during the three time
periods, in addition to those from the ICD-10 hierarchy.

The 30-day moving average diagnosis rates for the respiratory
disorder diagnosis categories are shown in figure 1. The four diag-
nosis rate plots for the respiratory disorder diagnosis categories
show clear seasonal trends and exhibit peaks in winter months and
troughs in summer months.

For RSV, the prerestrictions period maximum diagnosis frequen-
cies were 1.8 diagnoses/day. During the restrictions period, the
maximum was 0.17 diagnoses/day, representing an 91% reduction.
These results are shown for the other categories in table 2.

The Prophet seasonal model was calculated for all diagnosis
categories based on the prerestriction period (figure 2, table 3).
The seasonality amplitude of all four seasonal diagnosis cate-
gories were greater than 0.5, demonstrating notable seasonality.
Additionally, three respiratory infection categories from the
ICD-10 hierarchy (‘acute upper respiratory infections’, ‘influ-
enza and pneumonia’, and ‘other acute lower respiratory infec-
tions’) were found to have seasonality amplitudes greater than
0.5. All categories had their seasonal peak identified between 26
November and 30 January annually (online supplemental table
2).

Comparing observed diagnosis to forecast diagnoses across
the restriction period for the four seasonal diagnoses, all showed
a greater than 50% reduction from expected rates. This included
a 73%, 849%, 70% and 55% reduction for ‘RSV’, ‘influenza’,
‘acute nasopharyngitis’ and ‘acute bronchiolitis (excl. RSV)’,
respectively. These categories also had significant negative
minimum z-scores of less than —10.0 during the restrictions
period.

Across the restrictions period, there was a general reduction of
26% in all ‘Diseases of the Respiratory System’ (JO0-J99). Of the
ICD-10 hierarchy categories considered in the study, all reduced
against forecast rates except ‘Influenza and pneumonia’ (which
contains pneumonia as the result of coronavirus infections)
and the aggregated category ‘Other non-infectious diseases of
the respiratory system’. All categories had negative minimum
z-scores of less than —2.0 (outside the 95% CI); however, values
were generally closer to zero than observed for the typically
seasonal categories.

During the postrestriction period, there were large differences
in diagnosis categories responses to the lifting of restrictions.
Most categories have returned to, and remained, in-line with
prerestriction forecasts; however some have not. RSV diag-
nosis rates rose most notably and were found to be consistently
and significantly above the prerestrictions modelled forecast
(maximum z-score 8.13), however subsequently returned to
within forecast by the end of winter 2021/2022 (z-score <2.0).
Additionally, both ‘influenza’ and ‘acute nasopharyngitis’ cate-
gories continue to show significantly reduced diagnosis rates in
comparison with prerestrictions forecasts (z-scores —4.0 and
—2.9 respectively).
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Figure 1  Diagnosis frequency plots for the four commonly seasonal
respiratory disease categories. The blue line shows the observed 30-
day moving average of daily diagnosis rate between 2010 and 2022.
The vertical dark red lines define the start and end of widespread
restrictions in response to the COVID-19 pandemic in England, UK. The
light red sections show the three periods of national lockdowns.
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Figure 2 Diagnosis frequency forecast plots for the four seasonal respiratory disease categories: (A) RSV, (B) influenza, (C) acute nasopharyngitis
and (D) acute bronchiolitis (excl. RSV), and three seasonal ICD-10 categories: (E) acute upper respiratory infections, (F) influenza and pneumonia

and (G) other acute lower respiratory infections. In the diagnosis frequency plots, the blue line shows the observed 30-day moving average of daily
diagnosis rate between 2010 and 2022. The white line shows the seasonal model forecast with the light blue 95% Cls. In the z-score plots, the blue
line shows the observed diagnosis rate z-score against the forecast model. The light blue section shows the range for absolute z-score of less than
1.96 (95% Cl). The vertical red lines define the start and end of widespread legal restrictions in response to the COVID-19 pandemic in England, UK.
The light red sections show the three periods of national lockdowns. Specifically, note the marked reduction in rates for all respiratory infection groups
during the pandemic restriction period but also the greater than expected rates for the period immediately postrestrictions relating to rising RSV
infection rates. RSV, respiratory syncytial virus.

DISCUSSION in the rates of children with a diagnosis of specific respira-
In this study we have demonstrated, first, that mitigation tory infections, particularly due to ‘RSV’, ‘influenza’, ‘acute
and prevention measures put in place during the COVID-19 nasopharyngitis’ and ‘acute bronchiolitis’, at a large chil-
pandemic period were associated with significant reductions dren’s hospital in England, UK. Furthermore, the removal of
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prevention measures has resulted in widely varied responses in
subsequent months. Second, we demonstrate the feasibility of
applying an openly available machine learning forecasting model
from another domain to routine electronic healthcare data
within a secure digital hospital environment. Third, we use our
method in analysing the seasonality of respiratory infections to
showcase the potential of this model to clinical phenomena that
are cyclical (eg, seasonal/diurnal). Our findings are consistent
with known epidemiological data, suggesting robustness of the
approach. Finally, the use of such a forecasting tool can identify
unexpected deviations from normal, in this case the increasing
rates of RSV infection in mid-late 2021 beyond the expected,
allowing modelling of the likely peak in future months, hence
aiding resource planning and public health measures. Again, the
potential utility of this approach extends beyond the seasonality
of respiratory infection alone.

Clinical

The almost complete absence of the seasonal RSV infection
pattern during the COVID-19 pandemic has been previously
reported internationally,*” 2° with larger than expected numbers
susceptible postpandemic,®’ and based on simulated trajectories
from past data, significant RSV outbreaks had been predicted for
the winter of 2021-22.%** Indeed, a resurgence of RSV infec-
tions above normal levels and at different times of the season
has been reported in several countries.”* * The data presented
here confirm the significant reduction in RSV and other acute
respiratory infections in London during the restriction period
and further confirm greater than normal (predicted) rates occur-
ring immediately following the lifting of restrictions. However,
the peak diagnosis frequency rate was largely equal to that
predicted for a ‘typical’ winter, based on our machine learning
modelling, and by 28 February 2022 has returned to within the
expected range. All other seasonal respiratory infections cate-
gories studied exhibited similar suppression in diagnoses during
the restrictions period; however, (unlike RSV) they have all seen
within or below forecast diagnosis rates postrestrictions. GOSH
does not have an emergency department and is unique in rela-
tion to its patient population among children’s hospitals in the
UK. Our absolute numbers of diagnoses for different respira-
tory infections including RSV are relatively low compared with
district general hospitals, though the same seasonal and restric-
tions related effects have been widely observed.*”2® Despite this,
the model was still able to forecast expected trends and devia-
tions from previous years.

The results for diagnosis rate and number observed during
winter 2021/2022, relative to forecast (particularly for RSV),
are contrary to some of the previously published suggestions
that a lack of population immunity due to the absence of cases
during restrictions would lead to increased disease prevalence.
Further study is required to explore if this finding is observed in
larger, less selective populations as global restrictions are fully
removed. However, if replicated elsewhere, these findings could
imply that the risk of elevated infections and resulting disease
is less of a risk for further increases in health service demand
during periods where they are recovering from delays to a range
of services during the pandemic.

Machine learning modelling

The study illustrates the value of using routine healthcare data
for secondary analyses within a bespoke data infrastructure
based around well-defined data definitions and data models
allowing data harmonisation, combined with the use of open and

commonly used analytic tools such as R and Python,'” *” within

a cloud-based trusted research environment allowing secure
and auditable collaborative data analysis of non-identifiable
data. This approach supports transferability to other organisa-
tions, and all code is available at https://github.com/goshdrive/
seasonality-analysis-forecasting.

By applying a seasonal forecasting model®® to diagnosis data,
we show how it is possible to generate forecasts with narrow
confidence intervals from routine healthcare data, even when the
underlying healthcare indicators are highly variable throughout
a periodic cycle and/or involve moving year-on-year trends. By
using a forecasting model that explicitly includes cyclical compo-
nents described as a Fourier series, instead of a more generalised
machine learning model, the library was able to tightly model
the data with few parameters requiring domain-specific config-
uration. Specifically, these results were achieved by setting just
three parameters specific to the indicators being studied. For
this reason, the Prophet forecasting model has been successfully
used in diverse areas including finance,”” temperature predic-
tion,*® cloud computing resource requirements®’ and predicting
COVID-19 infection rates.’*

CONCLUSION

In conclusion, these data, based on routine EHR data combined
with cross-domain time-series forecasting machine learning
tools, demonstrate the near-complete absence of the seasonal
acute respiratory infection-related diagnoses in a specialist chil-
dren’s hospital during the period of the COVID-19 pandemic
mitigation measures in 2020 and 2021. In addition, the data
show an earlier-than-usual spike in RSV infection in 2021 but
remained within the forecast range. The study illustrates the
value of curated real-world healthcare data to rapidly address
clinical issues in combination with the use of openly available
machine learning tools, which can be applied to a range of
scenarios relating to forecasting cyclical time series data.
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