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Abstract
Objective.We investigated whether a recently introduced transfer-learning technique based on
meta-learning could improve the performance of brain–computer interfaces (BCIs) for
decision-confidence prediction with respect to more traditional machine learning methods.
Approach.We adapted the meta-learning by biased regularisation algorithm to the problem of
predicting decision confidence from electroencephalography (EEG) and electro-oculogram (EOG)
data on a decision-by-decision basis in a difficult target discrimination task based on video feeds.
The method exploits previous participants’ data to produce a prediction algorithm that is then
quickly tuned to new participants. We compared it with with the traditional single-subject training
almost universally adopted in BCIs, a state-of-the-art transfer learning technique called domain
adversarial neural networks, a transfer-learning adaptation of a zero-training method we used
recently for a similar task, and with a simple baseline algorithm.Main results. The meta-learning
approach was significantly better than other approaches in most conditions, and much better in
situations where limited data from a new participant are available for training/tuning.
Meta-learning by biased regularisation allowed our BCI to seamlessly integrate information from
past participants with data from a specific user to produce high-performance predictors. Its
robustness in the presence of small training sets is a real-plus in BCI applications, as new users
need to train the BCI for a much shorter period. Significance. Due to the variability and noise of
EEG/EOG data, BCIs need to be normally trained with data from a specific participant. This work
shows that even better performance can be obtained using our version of meta-learning by biased
regularisation.

1. Introduction

1.1. Decisionmaking
Accurate decision making is an essential aspect in
human lives, especially in complex environments
such as police force, fire brigade, air traffic control-
ler etc where wrong decisions can endanger the well-
being of others. Making a decision is a deliberative
process in which the brain weighs contextual cues and
pre-existing knowledge that results in the commit-
ment to a categorical choice to achieve a particular
goal [1–4]. During the decision-making process, the
human brain accumulates and integrates all sources
of priors, evidence, and values to produce a choice.

From this information the decisionmaker derives also
an evaluation of the likelihood of the decision being
correct, which is known as the confidence [5–8]. Even
though confidence is a subjective measure, studies
have revealed that self-reports of confidence are gen-
erally good predictors of task performance and that
both confidence and performance also correlate with
secondary behavioural and physiological measures,
such as the response time (RT) [5, 8–11]. Confidence
estimation processes are also triggered when judging
the performance of decision tasks performed by other
people or even AIs [12].

Since real-life decisions are often not immedi-
ately followed up by objective feedback on their
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quality, decision confidence is one option to assess
the outcome, at least until more reliable information
becomes available.

1.2. Neural correlates of decisionmaking and
brain–computer interfaces
Neuro-imaging techniques like electroencephalo-
graphy (EEG) have identified multiple brain areas
that are relevant for the decision making process
[13–15]. In particular, activity in the pre-frontal and
parietal brain regions has been shown to correlate
with the reported confidence [7, 16–19]. Such neural
correlates, however, can only be measured on collec-
tions of tens or hundreds of trials/decisions, so they
do not allow a decision-by-decision analysis.

The field of brain–computer interfaces (BCIs) has
accumulated significant experience in detecting, pre-
dicting and classifying brain responses on a trial-by-
trial basis. BCIs establish a communication pathway
between the human central nervous system and elec-
tronic devices, such as computers [20]. In the more
widespread forms of BCI, which are called active BCIs,
normally the purpose is to classify the brain activ-
ity recorded in a trial into a command for the com-
puter. However, limitations in sensing technologies
and variability in brain signals result in active BCIs
being able to reliably recognise only a small number
of brain-activity patterns and to issue the correspond-
ing commands at a slow pace [21–23]. Other forms of
BCI, namely passive BCIs, do not directly map brain
activity into commands, instead focusing on assessing
the mental state of the user for other practical pur-
poses. Such BCIs have been used to predict mental
workload, valence, and arousal [24–26] but also the
probability of decisions being correct which was then
used to aid group decision making [27–33].

The prediction of decision confidence from EEG
has also recently gained popularity. However, such
a prediction is often not very precise as it is mostly
treated as a binary classification problem with the
two classes being ‘confident’ and ‘non-confident’
[17, 34, 35], which is a severe limitation, as confid-
ence admits of degree. Recently, we found that the
event-related potentials (ERPs) produced during the
decision also vary in shape and magnitude as a func-
tion of the reported confidence level and such vari-
ations allow for a trial-by-trial confidence prediction
with four different confidence levels [36], which is a
significant improvement over the state of the art, but
still not precise enough.

A challenge for BCIs is the variability of EEG sig-
nals across participants, sessions and experiments.
Given that modern BCIs are virtually all based on
machine learning algorithms, this results in a mis-
alignment between the data used to train algorithms
and new data, e.g. from a new participant, which is
referred to as a domain shift [37]. The issue increases
the time a participant needs to wait before using the
BCI (as training or retraining of the BCI is required

before use) and significantly limits BCI applicability
in many domains [38].

1.3. Transfer learning
In order to tackle the domain shift problem, trans-
fer learning techniques have been introduced, where
algorithms are trained with data from different sub-
jects to reduce the training needs [39, 40]. Essen-
tially transfer learning techniques learn which fea-
tures are transferable between different domains to
avoid degradation of algorithm performance. Trans-
fer learning techniques have been successfully applied
in classical BCIs paradigms such as ERP detection
[41–43], motor imagery [42, 44, 45] and steady-state
visual evoked potentials [42, 46]. Furthermore they
also have been applied to a more recent topic, the
detection and recognition of participants’ emotional
affective states [47–51]. In our own research, we used
a zero-training transfer-learning approach that could
successfully predict decision-making confidence for
each subject individually, across multiple subjects,
and even across different experiments [36]. However,
while transfer learning techniques generally perform
well, they still cannot achieve the performance of BCIs
trained for each individual participant.

A good compromise between the generalizability
of transfer learning and fast adaptation to individual
participants could be provided bymeta-learning tech-
niques. From a theoretical perspective, the problem
attacked by such techniques is the following. The
use of data mostly from other participants, as ordin-
ary transfer-learning does, introduces a possibly large
bias (i.e. the BCI learns to decode a hypothetical aver-
age participant rather than specialising to the target
participant). On the other hand, using only data from
target participants is likely to produce a large variance
(the degradation in performance due to training on
insufficient amounts of data), unless a large enough
amount of data is collected from the new participant,
which is often undesirable because it is time consum-
ing, tiring, etc. Meta-learning tries to achieve the best
of both worlds by using as much past data as possible
while also specialising to the target participant. In
other words, meta-learning algorithms learn certain
properties of a general problem to allow fast adapt-
ation to new problems or environments [52]. This
flexibility is achieved by introducing multiple learn-
ing episodes covering additional distributions of dif-
ferent tasks or participants [53].

Meta-learning has recently been tested in the field
of BCIs for motor imagery tasks [54, 55] and drowsi-
ness prediction [56], but not in decisionmaking tasks.

2. Related work and contributions

2.1. Meta-learning by biased regularisation
The meta-learning technique that was used in this
work belongs to the family of inner stochastic gradi-
ent descent algorithms with biased regularization
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[57, 58] and was introduced in [59]. Its online
algorithm has the advantage that it processes data
sequentially and does not have to keep previous train-
ing sets in memory compared to other online tech-
niques [60, 61]. The resulting low memory footprint
and complexity make this method particularly suit-
able for BCI applications. In this section we provide a
high-level description of the technique.

In the standard supervised learning setting, the
goal is to learn a functional relation between an input
space X and an output space Y from a finite num-
ber of training examples. Given a loss function ℓ :
Y ×Y → Rmeasuring prediction errors and given a
distribution µ on the joint data space Z = X ×Y ,
the goal is to find a function f : X →Y that min-
imizes the expected risk, i.e. the expectation of ℓ
over the unknown distribution µ. When moving to
a meta-learning setting, the addition is that we first
sample the distributionµ of each dataset fromameta-
distribution ρ, which is called environment.

In our experiment, participants were invited to
attend three experimental sessions held on different
days where they had to carry out a difficult decision
task and report their confidence after each decision.
The three sessions allowed us to capture session-to-
session variability both the physiological signals (EEG
and electro-oculogram or EOG) and subject men-
tal state. The objective was to obtain BCIs capable
of predicting the participants confidence from the
physiological data.

Fitting the general framework of meta-learning
described above to the confidence-prediction prob-
lem to be tackled by the BCI, we assume that for
each day t we observe a dataset (data sequence) Zt ≡
(zt,1, . . . ,zt,n), whose elements are sampled independ-
ently from the probability distribution µt for day
t. In other words we consider each separate session
with a participant as a new task to be learned by the
meta-learning algorithm.We assume that the probab-
ility distributions µ1, . . . ,µT are sampled independ-
ently from a ‘meta-distribution’ ρ, that is a probab-
ility measure over probability measures on Z . The
meta-distribution ρ can then be seen as the general
distribution of all possible subjects and days. The
main assumption we make in the current setting is
that the multiple datasets Z1, . . . ,ZT sampled via the
above process are captured by linear regression mod-
els. More importantly, we assume that the regression
vectors are perturbations of an underlying regression
model (common mean)4.

4 Meta-learning works also when such assumptions do not hold.
Indeed, previous theoretical work [59] has shown that when the
assumptions are valid, then meta-learning brings a substantial
advantage over learning in isolation, when they are not, meta-
learning performs as independent learning.

Let wt be the regression vector for task t and
θ the common mean5. We now outline the meta-
learning procedure to estimate the common mean.
The advantage of this is a faster adaptation to new
datasets (tasks/sessions) in the environment. Given
such a generic dataset Z= (xi,yi)ni=1 the correspond-
ing regression vectors are estimated by biased regular-
ization (more precisely biased ridge regression):

LZ(θ) = min
w∈Rd

1

n

n∑
i=1

ℓ
(
⟨xi,w⟩,yi

)
+

λ

2
∥w− θ∥22, (1)

where λ> 0 is the regularization parameter and ℓ :
R×R→ R is a loss function, e.g. the squared loss,
ℓ(y,y ′) = (y− y ′)2. We will also refer to the problem
in equation (1) as fine-tuning, as the meta-parameter
θ can be interpreted as a starting model which is fine-
tuned to the task at hand.

In turn, the common mean θ is updated as the
tasks are observed sequentially, with the ultimate goal
of solving the problem

min
θ∈Rd

Eµ∼ρEZ∼µnLZ(θ). (2)

The overall process consists of a bi-level optimization
problem in which equation (1) is the inner (or lower
level) problem and equation (2) the outer (or upper
level) problem. In the inner problem, the regulariza-
tion term is used to encourage the corresponding test
weight vectorw to be close to θ. This reduces the num-
ber of training points needed to learn a good model.
The degree of the regularization λ determines how
much the regression algorithm generalizes (i.e. trans-
fers knowledge) across tasks vs adapting to a parti-
cipant’s specific dataset. A higher λ means that the
algorithm regularizes towards the meta-parameter
relying more on source data to train the regression
coefficients. This leads to more transfer from source
data sets. A lower λ implies less regularization and so
the algorithm relies more on data from the target, res-
ulting in more adaptation.

The solution of the problem is implemented
through two stages:meta-training where the goal is to
solve problem equation (2) with respect to the mean
meta-parameter θ, and fine-tuning, which tunes the
optimal θ thus found in order to adapt it to a new task.
More details on the specific adaptations we made will
be provided in section 3.5.

2.2. Contributions of this study
In this study we investigate whether a suitably tailored
adaptation of a recently introduced transfer-learning
technique based on meta-learning—meta-learning
by biased regularisation [59]—could improve the

5 In order to improve readability we assume that all datasets consist
of the same number of points n.
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performance of BCIs for decision-confidence predic-
tionwith respect to other learningmethods.We chose
a linear algorithm for this problem since the amp-
litude of the ERPs associated with varying levels of
confidence is approximately linearly related to confid-
ence [16, 36, 62]. The algorithm has two phases: first,
it iteratively trains a BCI with data from previous par-
ticipants to learn domain-invariant features and then
it uses data from a new participant to quickly fine-
tune the BCI.

We compared the performance and behaviour
of this meta-learning algorithm with those of: (a)
individually-trained BCIs, (b) a simple form of trans-
fer learning obtained by adapting the zero-training
approach reported in our previous work [36], and (c)
a simple baseline algorithm.We found that our meta-
learning approach provides better performance,while
requiring smaller training sets, than individually-
trained BCIs and the other approaches tested.

Additional contributions of the study are the
increased precision of the confidence reporting sys-
tem, allowing for ten different levels, and the continu-
ous estimation of confidence, setting our setup apart
from the state of the art in previous work.

3. Materials andmethods

3.1. Participants
Prior to taking part, participantswere informed about
the experiment and gave their written consent. The
research received ethical approval by the UKMinistry
of Defence and the University of Essex in June 2017
(Application Number: 832/MoDREC/17). All experi-
ments were performed in accordance with the relev-
ant guidelines and regulations.

All subjects had normal or corrected to normal
vision. The experiment consisted of three sessions
for each participant that needed to be completed in
separated days within one week. Participants were
required to schedule the experiments so that the start-
ing time of the experiment across the three sessions
did not differ by more than 3 h. They were also
required to reach a minimum of 60% in decision
accuracy in each session to ensure that the task
was taken seriously. Sessions lasted just under 2.5 h
excluding preparation time. Participants were paid 15
GPB for each of the first two days and a further 20
GBP after the completion on the third day.

Twenty participants were enrolled in the study,
of which 12 attended all 3 days. Two of these had to
be discarded because one participant changed their
confidence reporting strategy during the experiment
while the other did not understand the experiment
correctly while still maintaining the required per-
formance. So, in total ten participants (five males,
mean age 26.6, SD 5.29) were included in this study.

3.2. Physiological signal acquisition
Participants sat comfortably during the whole exper-
iment approximately 80 cm in front of an LCD screen
while being connected to 64-electrode EEG, electro-
cardiogram (ECG), galvanic skin resistance (GSR),
respiration belt, and four-electrode EOG. All signals
were sampled at 2048Hz and synchronized using a
Bio Semi Active Two system. In this study, only EEG
and EOG signals were considered since the changes
in ECG, GSR and respiratory signals proved to be
too slow to capture meaningful correlates in our fast-
paced recognition task6.

The EEG recording system used Biosemi’s pin-
type wet active electrodes. The 64 electrodes were
positioned according to the international 10–20 sys-
tem. Additionally, two electrodes were placed on each
of the participants’ earlobes to serve as references.
Two EOG electrodes were placed above and below
the right eye and two near the other canthus of each
eye. These provided the vertical and horizontal ocu-
logram, respectively.

3.3. Decision task
Participants performed a visual object recognition
task (more details below). They reported decisions
and confidence values using a mouse. The mouse
was located within the reach of their preferred hand.
The experiment started by showing participants how
to correctly perform the task and allowing them to
familiarise with the two different stimuli that they
would be presented with. Then a practice block with
24 trials/decisions was started where feedback was
provided right after each decision.

After that, themain experiment started. This con-
sisted of 36 blocks of 24 trials each, for a total of
864 trials. After each block, feedback on the accur-
acy (the fraction of correct decisions) in that block
was provided and the participants could rest for a
short time. The timeline of each trial is shown in
figure 1. Each trial included the presentation of a
sequence of computer generated images that repres-
ented a corridor with doors at both sides. The images
were updated at a rate of ten frames per second to cre-
ate the feeling ofmovement along the corridor. At cer-
tain times, three characters in uniform would cross
the corridor coming from different doors at either
side of the corridor. The characters walked at the
same speed, but there was a delay of approximately
70ms between the movement onset of each charac-
ter to reduce occlusions. The time between the first
character starting to cross the corridor and the last
character completing the crossing was 1 s. Two of the
characters wore a cap, while the third wore either a

6 EOG has been recently applied to detect mental state like vigil-
ance [63] or drowsiness [64] and has increasingly been used in
combination with EEG to improve the robustness of BCIs [65, 66].
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Figure 1. Timeline of the experiment used in this study. Before each trial there is a variable waiting time. Stimuli are presented for
one second. When a decision is made by the participant by clicking the right or left mouse button, a bar representing the
confidence is displayed. Confidence is reported by using the mouse wheel.

helmet or a cap, with a 50/50 chance. Participants had
to decide, as quickly as possible, whether any of the
characters they had seen wore a helmet (left click) or
not (right click). Immediately after responding, they
had to report the confidence on the decision using the
scroll wheel of the mouse. Confidence was represen-
ted as a blue slider bar at the bottom of the screen.
Participants were told to use the lowest confidence
level (0%) to indicate that they knew that they had
made amistake, or that they hadmiss-clicked. Corres-
ponding trials were removed from the analysis. While
making decisions and reporting confidences, the sim-
ulated movement along the corridors continued (not
stopping even if a participant did not provide any
response).

3.4. Data pre-processing and feature extraction
The EEG channels were referenced to the average of
the ear electrodes, while horizontal and vertical EOG
were acquired by subtracting the corresponding elec-
trodes above and below or beside the eyes. After-
wards, EEG andEOGwere band-pass filtered between
0.05 and 64Hz using a 4th order Butterworth filter
and down-sampled to 128Hz for computational effi-
ciency. EOG artifacts in EEG were removed by first
creating a linear regression model to predict vertical
and horizontal EOG from each EEG channel. Then,
these predictions were subtracted from the corres-
ponding channels [67]. These data were split into
epochs starting 2 s before, and ending 0.5 s after, the
participants’ response. We then executed an artifact
rejection process inspired by [68]: (a) each EEG epoch
was baseline corrected using the average voltage from
between 0.1 s before to 0.1 s after the response; (b)
for each epoch and each channel a set of paramet-
ers, namely variance, amplitude range, channel devi-
ation (the deviation from the channel average for
each epoch), Hurst exponent and average correlation
between such a channel and all other channels were
calculated; (c) Z-scores for each epoch and parameter
were calculated across all channels; (d) artifactual
channel/epoch combinations were identified as those
where the Z-score of one or more parameters devi-
ated from zero by more than ±3 and were removed
from the data set. The remaining epochs were then
individually referenced to the mean of all channels

using a common average filter, Z-score normalised
and, again, baseline corrected as explained above.

Finally, EEG channels were averaged over four
key brain regions: occipito-parietal (electrodes P9,
P7, P5, P3, P4, P6, P8, P10, PO7, PO3, POz, PO4,
PO8, O1, Oz, O2 and Iz), central (electrodes FC1,
FCz, FC2, C3, C1, Cz, C2, C4, CP3, CP1, CPz, CP2,
CP4, P1, Pz and P2), left fronto-temporal (electrodes
Fp1, Fpz, AF7, AF3, AFz, F7, F5, F3, F1, Fz, FT7,
FC5, FC3, T7, C5, TP7 and CP5) and right fronto-
temporal (electrodes Fp2, FPz, AF6, AF4, Afz, F8, F6,
F4, F2, Fz, FT8, FC6, FC4, T8, T6, TP8 and TP6).
We chose these regions because typically brain activ-
ity associated with confidence evaluation is in the
frontal and parietal regions [7, 16–19]. EOG epochs
were Z-score normalised based on the average of both
the horizontal and vertical EOG. In order to fur-
ther reduce computational load, both EEG and EOG
epochs were then low-pass filtered to 4Hz and down-
sampled to 8Hz. This is appropriate as our findings
in eight other decisionmaking and confidence report-
ing experiments showed that the ERPs that varied as a
function of confidence were relatively low-frequency
P300-like potentials [36]. Finally, for each epoch, the
average EEG samples for the four regions and the
EOG samples in the epoch were concatenated to form
a feature vector to be used by the machine learning
component of the BCI. This feature vector had 120
elements: 6 (4 EEG+ 2 EOG features per sample)× 8
(sampling frequency in Hz)× 2.5 (epoch duration in
seconds).

3.5. Meta-learning algorithm adaptations
Following the formal framework provided in
section 2.1, below we provide details on our imple-
mentation and specialisation of meta-learning by
biased regularisation for confidence prediction.

An important adaptation is that we have added
a validation step called validation fine-tuning that
uses equation (1) but optimizes the hyperparameter
λ with unseen data (see below). This was added as
it was hoped it would improve the performance of
meta-learning when only little data from the target
evaluated participant was available. Furthermore, due
to the inter-session variability and non-stationarity of
EEG, as already explained section 2.1, in this study we
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Algorithm 1. General optimization framework.

1: requires: hyper-parameter λ
2: initialization: θ0 model meta-parameters
3: for t= 1 to T do
4: Sample µt ∼ ρ task, Zt ∼ µn

t dataset
5: Solve inner problem (e.g. gradient descent)
6: Update θt = θt−1 − 1√

2 t
∇LZt(θt−1)

7: end forreturn
∑T

t=1 θt
T estimate θ(λ) of the solution

of problem equation (2)

treat the data collected in each experimental session as
a individual dataset.

3.5.1. Meta-training
As explained in section 2.1, duringMeta-Training the
goal is to solve the problem in equation (2) with
respect to the mean meta-parameter θ. This optimiz-
ation is performed in an online fashion on one dataset
at each iteration using algorithm 1. For each regu-
larization parameter λ we estimate the best meta-
parameter θ(λ) through this process. This is then
repeated for a range of values of the hyper-parameter
λ, and the best value is selected by a validation pro-
cedure described in the next section.

3.5.2. Validation fine-tuning
Having recovered a meta-parameter θ(λ), we now
want to move on to unseen datasets and optimize
with respect to w for each dataset while evaluating
the performance. The idea is that themeta-parameter
will transfer some information from the training tasks
to the unseen tasks. In more detail, for the valida-
tion step we used previously unseen tasks. Using each
fixed θ(λ) meta-parameter we solve the ridge regres-
sion problem in equation (1) on a subset of datapoints
within each validation dataset, thereby computing a
weight vector w. For the same validation dataset, we
then compute the test error ofw on the hold-out sub-
set. Finally, we average that performance measure-
ment across all validation tasks and select the best
hyper-parameter λ∗ and corresponding mean vector
θ(λ

∗) that offers the best validation performance.

3.5.3. Target fine-tuning
For the test step of the process, naturally we fol-
low the exact same pipeline as we did for valida-
tion. We use the dataset of the to-be-evaluated parti-
cipant and optimise equation (1) using the fixed θ(λ

∗)

meta-parameter.

3.6. Confidence prediction approaches
We performed an evaluation of multiple alternat-
ive systems (including the meta-learning one) for
each participant independently. In each evaluation,
the participant whose confidence was predicted was
referred to as target, while the remaining nine

participants were referred to as source. The number
of samples used from each participant was defined
by two values: the source proportion and the target
proportion, which represent the proportion of source
data and target data used for training, respectively.We
performed different analyses by modifying these val-
ues (this will be explained in section 4).

3.6.1. Datasets
The data was divided into five sets (the subsection
architecture details how each one of these datasets was
used by each approach):

• Meta-training. This set comprised eight out of the
nine source participants, randomly selected. The
proportion of trials used from this dataset was
determined by the source proportion.

• Validation fine-tuning. Random samples from the
remaining source participant were selected for this
set. The number of samples was proportional to the
target proportion

• Validation assessment. The remaining samples for
the participant used in the previous set were used.

• Target train.Random samples from the target parti-
cipantwere selected for this set. The number of data
samples was proportional to the target proportion.

• Target assessment. The remaining samples from the
target participant were used.

Figure 2 shows an example of how the data was
divided for a given target participant for the meta-
learning algorithm.

Prior to use the data for training, an outlier detec-
tion algorithm based on Tukey’s fences was used. Spe-
cifically, for each feature, the first and third quartiles
of the training data were calculated. Two thresholds
were then defined: the third quartile plus 1.5 times the
interquartile distance, and the first quartile minus 1.5
times the interquartile distance. A samplewas deemed
an outlier if it was above the former or below the lat-
ter thresholds. Outliers were replaced with the value
of the closest threshold.

3.6.2. Prediction methods
We considered four confidence-prediction
approaches, most of which used ridge regression, and
which differed in how the five datasets defined above
were used to train, validate and test themodels (please
refer to table 1 for a summary):

• Naive. This predictor, which is a baseline for the
other approaches, used the average reported con-
fidence from the target train set as prediction for
the target assessment set.

• Single-subject (SS). We trained a ridge regression
model for each day of the target participant using
the target train set. Testing was done with the tar-
get assessment set.

6
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Figure 2. Example data split in this study. Here participant 10 is the target and participants 1 to 9 are the source. Participant 9 is
used for validation fine-tuning. In this example, 100% of the source proportion is used to meta-train the algorithm.

Table 1. Datasets used by each approach.

Dataset name for meta-learning Naive Single-subject Multi-subject

Meta-training Training
Validation fine-tuning Training
Validation assessment Training
Target train Training Training Training
Target assessment Test Test Test

• Multi-subject (MS). The meta-training, validation
fine-tuning, validation assessment and target train
datasets were concatenated for training, which
included the optimization of the regularization
parameterλ. Themodelwas trainedwith data from
all 3 days. The use of the target train dataset is a
departure from the zero-training approach repor-
ted in [36] where only data from source parti-
cipants were used for training7.

• Meta-learning (Meta). This method learns a meta-
parameter θ(λ) from the meta-training set, as out-
lined in section 3.5. Then the validation fine-tuning
set is used to determine the best hyper-parameter
λ (as described previously in section 3.5.2) while
the validation assessment set is used evaluate the
overall performance. Then, for each day, a model
was fine-tuned using the target train set and tested
using the corresponding target assessment set.

Two of the four described methods, MS and SS,
can be considered as extreme cases of Meta. SS works
like the implementation of Meta when only fine-
tuning is performed, i.e. the algorithm only uses data
from the current target. Conversely, MS can be seen
as the implementation of Meta where no fine-tuning

7 MS is an extremely simple formof transfer learning, which should
be expected to behave quite similarly to its zero-training ancestor.
Thus the models identified via MS will be general but are expected
to have a worse performance than those produced by Meta or SS.

is performed and knowledge is only transferred from
the source data.

For each training and validation step as well as
hyperparameter optimization we used the Normal-
ized mean squared error (NMSE) as a performance
measure (see section 3.7).

The regularization parameter λ used for the
regression models used in SS, MS and Meta were
selected from 100 values evenly spaced on a log scale
between 10−12 and 104.

For SS and MS the best λ was selected by splitting
randomly the training set into 70%–30% for train-
ing and validation, respectively. This splitting was the
same for all the values of λ. After selecting the best
regularization parameter as the one with the lowest
validation error, the model was trained again using
the full training data with the selected regularization
parameter to, then, be tested on the corresponding
test set.

For theMeta approach, three regularization para-
meters, all using the same range of values previ-
ously described, needed to be selected λtrain, λvalidation

and λtest. First, for each possible value of λtrain, a
model was trained using themeta-training data. Each
of these trained models, was then fine-tuned with
the validation fine-tuning data. To do this, the best
λvalidation was selected using the aforementioned ran-
dom 70%/30% split. Each fine-tuned model (one for
each possible λtrain) was evaluated using the valid-
ation assessment data. Then, the λtrain that lead to
the best performance, λ∗

train, was selected. Finally, the

7
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fine-tuning procedure of the model corresponding to
λ∗
train was repeated using the target train data. With

this last step, the optimal λtest was obtained in the
same way as the λvalidation.

3.7. Performance evaluationmetrics
To evaluate the performance of each system we used
three metrics: the NMSE, the Fisher discriminant
ratio (FDR) and the Pearson correlation coefficient.

The NMSE is defined as:

NMSE=
MSE(cp, cr)∑n
i=1(µ

r − cri )
2
, (3)

where n is the number of samples, cp is the array of
predicted confidence values, cr is the corresponding
array of reported confidence values, µr is the mean
reported confidence, and MSE is the mean squared
error defined as:

MSE(cp, cr) =
n∑

i=1

(cpi − cri )
2. (4)

This metric allows us to estimate how close the
prediction of the confidence is to the reported
one. NMSE is used here because it normalises the
error across different datasets, thus making them
comparable.

As discussed in [36], just considering the error of
the prediction is not enough to evaluate the quality
of the confidence prediction. In particular, given that
confidence is a (subjective) evaluation of task per-
formance, we need to evaluate how well the confid-
ence is modulated by decision accuracy. To measure
this, we calculated the FDR which evaluates how sep-
arable two distributions are and is defined as:

FDR(xc,xin) =
nc(µc −µ)2 + nin(µin −µ)2

ncσ2
c + ninσ2

i

, (5)

where xc and xin are the confidence predictions for the
correct and incorrect trials, nc and nin are the num-
ber of correct and incorrect trials, µc and µin are the
mean prediction for correct and incorrect trials, and
σc and σi are the standard variation of correct and
incorrect trials, respectively, while µ is the mean of
all the confidence predictions. Note that this value
can be calculated for both the predicted confidence
(splitting cp between correct and incorrect as incor-
rect trials) and the reported confidence (splitting cr

between correct and incorrect trials). However, in all
our analysis we used cp. FDR takes into consideration
not only the average and dispersion of each class but
also the imbalance in the number of samples in each
class, which is important as in our dataset there is a
significant imbalance between the correct and incor-
rect decision classes.

People can be systematically over or under con-
fident. Thus in some situations it may be important
for a predictor to capture the variations in confidence
relative to the participant’s average confidence, more

than the precise confidence values. Analyse this this
we used the Pearson correlation coefficient r, which
essentially describes the linear relationship between
predicted and reported confidence. This is given by

r=
cov(cp, cr)

σcpσcr
. (6)

3.8. State of the art
Naturally, Meta is not the only way of implementing
transfer learning. For instance, transfer component
analysis (TCA) [69] is a well known transfer learn-
ing algorithm that uses knowledge from a source
domain to adapt target data. Methods like TCA, that
focus on domain adaption, are not well suited for
our application as they need to have all the data in
advance or require retraining the whole algorithm
for each new data point, which is not practical as
the algorithms are too computational demanding.
Another way of transferring knowledge are methods
based on adversarial neural networks [37, 70–72].
Most of these methods, such as domain adversarial
neural networks (DANNs), were originally created for
image recognition but have since adapted for EEG
classification as well.

To compare Meta with a state-of-the-art
algorithm, we decided to implement the DANN
method using the configuration as given in [73]8. For
a fairer comparison, in [73] we used features extrac-
ted from the EEG as input for the network instead
of using the network itself for feature extraction so
that the same features were used for the all methods.
In [73] a three class classification problem was used
and, so, the output layer was a soft-max layer with
three neurons. Naturally, this is not appropriate for
the regression problem tackled in this paper. So, we
replaced the soft-max layer with a single neuron with
reLU activation.

4. Results

Most of the results reported in this section will com-
pare the four algorithms described in section 3.6.2 in
conditions where all of the data from the source par-
ticipants are available to the machine learning, but
we vary the amount of data available from the target
participant as this directly impacts how quickly the
participant can start using the BCI. More precisely,
we varied the target proportion from 2.5% to 80%
in steps of 2.5% while keeping the source proportion
constant at 100%. However, at the end of the section
we will also look at how performance changes as the
source proportion varies, as this would be important
for routine use, where data for training might be

8 We used this implementation even if the problem was different
because we were unable to find any paper using a domain trans-
fer learning approach using neural networks from EEG data for a
regression problem.
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acquired only in the initial phases of participants’ ses-
sions. Given that, as indicated in section 3.1, sessions
lasted approximately 2.5 h, a (training or source) pro-
portion p translates into a training-set acquisition
time of 150× pmin. So, for instance, a 30% tar-
get proportion requires participants to spend 45min
providing training data for the BCI.

In the analyses reported in this section, the data
were randomly sampled from the full source and tar-
get datasets without replacement until the desired
percentage was reached. To reduce stochastic effects,
we averaged the results over 30 different repetitions of
this random sampling where the same 30 randomizer
seeds were used when testing alternative confidence-
prediction methods.

4.1. Performance evaluation
Performance evaluation results are reported in
figure 3. This shows how the performance of the four
prediction approaches and the DANNmethod varies
as a function of the target proportion for the three per-
formance measures—NMSE, FDR and correlation
coefficient—described in section 3.7, averaged across
all participants (grand averages)9. The shaded area
around each line indicates the standard error across
the 30 independent randomisations of the data.

Looking at our primary performance measure,
NMSE (left plot) for which lower values are better
than higher ones, we see that Meta is superior to all
other approaches except for very small target propor-
tions where it is comparable to Naive (which returns
the average reported confidence from the target train
set). SS is second best but it needs at least 20% of tar-
get data to do any better than Naive, beyond which its
performance asymptotically approaches that of Meta.
SS can achieve similar performance to Meta, but it
needs more data. For instance, to reach the perform-
ance that Meta has at 20% of target proportion (which
corresponds to approximately 30 min of training-
data collection), SS needs double the data (approx-
imately 40%, i.e. one hour of data collection). After
a short transient required for the average to stabil-
ize, Naive’s performance does not improve with the
amount of target data and, so, it cannot compete
with Meta and SS. As expected, MS is significantly
worse than other algorithms since it learns primarily
from other participants, being only marginally differ-
ent from a zero-training approach. Interestingly, we
see that MS is also worse than Naive at all target pro-
portions considered.

Finally, DANN, the only method that used neural
networks, was unable to beatNaive in terms ofNMSE,
but it obtained better results than MS.

Looking at the FDR (middle plot) and correlation
(right plot) performance measures, for which higher

9 Due to the mini-batch size (96), we were not able to train the
DANN model with the two smallest target proportions (2.5%
and 5%) as there were not enough samples for the batch training.

values are better than lower ones, we see a slightly
different picture for very low values of target propor-
tion: MS does better than the other methods up until
a certain proportion, after which the picture becomes
the same as forNMSE:Meta dominating and SS being
second but asymptotically approaching the perform-
ance of Meta. For FDR, DANN shows worse values
than MS until 20% of target proportion after which
they are the same. The correlation values for DANN
never reach those of MS, getting closer as the target
proportion grows. Naturally, Naive offers the worst
performance as it always return the same value and,
so, both FDR and correlation are zero irrespective of
the target proportion.

4.2. Statistical analyses
To verify the statistical veridicity of these findings we
compared the results obtained with Meta in the 30
randomisations of the dataset for each level of target
proportion with the corresponding results obtained
with SS, MS and Naive using one-tailed Wilcoxon
rank sum tests. We accounted for the multiple com-
parison problem by applying a Benjamini–Hochberg
correction (which controls the false discovery rate).
The corresponding p-values for the three perform-
ance metrics are shown in the three plots in figure 4.

For NMSE (left plot), Meta is statistically super-
ior to all other prediction methods most of the time,
thereby confirming the findings of figure 3. There are
only two exception: (a) at target proportions above
70% Meta is not statistically better than SS (as one
would have expected seeing the asymptotic conver-
gence of the NMSEs for the two methods in figure 3),
(b) at extremely low target proportions (⩽ 2.5%),
Meta is not statistically better than MS and Naive.

Also the plots for FDR (middle) and correlation
(right) in figure 4 confirm the observations from
figure 3. Meta performs better than MS for target
proportion above 30% for FDR and 22% for correla-
tion. Also, Meta performs significantly better than SS
below target proportions of 27% for FDR and 60% for
correlation. Also, as expected, Naive is always signific-
antly worse than Meta.

To assess to what degree the relative perform-
ance of Meta might vary across participants, we per-
formed an additional analysis at individual parti-
cipant level and recorded the number of participants
for which Meta was significantly better than other
confidence-prediction approaches. Once again, we
used a one-tailed Wilcoxon rank sum test (p< 0.05)
with Benjamini–Hochberg correction.

Figure 5 reports the results for NMSE as this is
our key performance measure. Interestingly, Meta is
significantly better than all other methods for most
participants with the exception of very small and very
large target proportions where it is not statistically
superior to SS, Naive and MS.

Finally, the mean absolute error (MAE) of the
prediction is featured in figure 6 to give the reader

9
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Figure 3. Performance of NMSE, FDR and correlation for the four different approaches and the DANNmethod with a source
proportion of 100% and increasing target proportion.

Figure 4. Benjamini–Hochberg corrected p-values for the performance measures NMSE, FDR and correlation, when comparing
Meta with MS, SS and Naive different target proportions. Any p-values lower than 10−4 were clipped to 10−4 to improve
readability. Values below the dashed line indicate statistical significance.

a more intuitive reference to interpret the algorithm
performance. MAE for the four approaches is presen-
ted in a similar fashion as NMSE and denotes to:

MAE(cp, cr) =
n∑

i=1

|cpi − cri |. (7)

It also allows comparison with our previous publica-
tion [36]. The most comparable conditions are, SS at
80% target proportion which has a MAE of 0.14, and
MS at 0.025% target proportion which has a MAE of
0.2. Both values are nearly identical to those obtained

in our previous study, further validating these new
results.

4.3. Comparison of learnedmodels
The asymptotic convergence of all the performance
metrics for Meta and SS as the target proportion
increases seen in figure 3 suggests that the coeffi-
cients of the corresponding ridge regression mod-
els might also be converging. Conversely one would
expect the regression models of Meta and MS to be
significantly different at all target proportions. To
test these hypotheses, we measured the Euclidean

10
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Figure 5. Number of subjects for which Meta’s NMSE is statistically better than that of MS, SS and Naive for a source proportion of
100% and increasing target proportion.

Figure 6.MAE for the four different approaches with a source proportion of 100% and increasing target proportion.
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Figure 7. Euclidean distance between the vectors of regression coefficients produced by Meta and those produced by SS and MS as
a function of the target proportion.

distance between the vectors of regression coeffi-
cients found by Meta and those found by SS and MS
for varying target proportions. Results are shown in
figure 7.

While we see that the distance between the Meta
and SS models decreases as the target proportion
increases, the distance by no means drops down to
zero. This suggests that there are many model con-
figurations that roughly produce the same quality of
predictions, probably as a result of redundancies in
the input feature set. We also see, as expected, that
the MS and Meta models start different and remain
different (in fact even diverging slightly) as the target
proportion increases.

To look at this with a finer level of granularity,
in figure 8 we report the average (across participants
and seeds) of the sum (across time steps) of the coef-
ficients associated to each area of the brain (feature
group) defined in section 3.4 as a function of the
target proportion. The figure also reports the aver-
age (across participants and seeds) of the bias term.
For each confidence-prediction method, the sign of
the values being plotted indicates whether a positive
voltage/ERP in the corresponding areas of the brain
increases or decreases the confidence estimation (and
vice versa for negative voltages).

At this level of granularity it appears that MS is
very weakly influenced by the data from the target
participant, irrespective of its proportion. Also, MS’s
average coefficients (by brain area) appear to be quite
different from those used in SS and Meta. This is the
main reason for the dissimilarity between Meta and
MS highlighted in figure 7.

Also Meta’s brain-region average coefficients and
bias term appear to be weakly influenced by the data
from the target participant. However, adjustments
take place in the horizontal and vertical EOG coeffi-
cients as the target proportion varies.

Finally we see that SS’s coefficients typically start
far from the corresponding ones in MS and Meta.
However, the EEG coefficients of SS tend to become
quite similar to those ofMeta as the target proportion
is increased. Also, SS’s EOG coefficients and bias term
tend to move in the direction of the corresponding
terms in Meta. However, in this case they never get all
the way there. This is the main cause of the residual
differences between SS andMeta observed in figure 7.

4.4. Source analysis
The performance of machine learning algorithms
depend crucially on the amount of data available for
training. As explained above, in a transfer learning
setting, there are two types of training data: source
data (in our case, data from different participants)
and target data (data from the participant that will
use the BCI after training). In the previous sections
we have analysed in depth the performance and beha-
viour of different algorithms as we varied the target
proportion. In this section we want to briefly look at
the effects on performance of varying the proportion
of source data. So, for this analysis we varied the source
proportion from 5% to 100% in steps of 5% while
keeping the target proportion constant at 25% (the lat-
ter value was chosen as it represents a typical offline
training session for an online BCI).

12
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Figure 8. Normalized weights summed up for each feature group representing the importance of each feature group for source
proportion of 100% and increasing target proportion. The EEG groups are displayed in the top row while vertical and horizontal
EOG as well as the bias are displayed in the bottom row.

Figure 9. NMSE for the four different confidence-prediction approaches as a function of the source proportion (for 25% target
proportion).

Figure 9 shows how the NMSE performance met-
ric varied for the four different confidence-prediction
approaches considered in this study as a function of
the source proportion. Because Naive and SS do not

use any source data their NMSE is constant. Unsur-
prisingly, we see that MS’s performance is worse than
for other approaches and gets worse as more and
more source data ‘dilute’ that target data available to

13
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the algorithm. On the contrary, the performance of
Meta improves significantly as the source proportion is
increased, tending to plateau after the source propor-
tion reaches 70%or 80% indicating that the algorithm
has no problem correctly handling any amount of
source data.

5. Discussion

Due to the variability and noise of EEG/EOG data,
usually BCIs are trained with data from a specific
participant (i.e. using a single-subject approach).
Attempts to learn from multiple participants nor-
mally lead to BCIs that generalise somehow across
participants but at the cost of much reduced indi-
vidual performance. For instance, this is what
recently happened in [36], in the area of confidence
prediction.

When considering the main performance cri-
terion, NMSE, the present work shows that for the
task of confidence prediction even better perform-
ance can be obtained by training a BCI using a special-
isation ofmeta-learning by biased regularisation [59].
The meta-learning method was adapted from [59]
and has two phases: meta-training where the goal is
to iteratively train a BCI with data from previous
participants to learn domain-invariant features, and
fine-tuning, which uses data from a new participant
to quickly fine-tune the BCI. Our specialisation of it
is the addition of a validation fine-tuning step that
uses equation (1) but optimizes the hyperparameter
λ with unseen data. In effect this algorithm com-
bines the strengths of the mainstream single-subject
approachwith the generality ofmulti-subject, without
compounding their weaknesses, so that it outper-
forms them both in most conditions. Meta also per-
forms better that a state-of-the-art algorithm called,
DANN, under all criteria considered.

It is also important to note that Meta does
not only perform significantly better than most
algorithms, it also has unique positive properties set-
ting it further apart and making it harder to dir-
ectly compare it to other algorithms. For instance, the
training (with source data) and the fine-tuning (with
target data) can be done sequentially, i.e. the initial
training can be done in advance, leaving only the, rel-
atively fast, fine-tuning step to be performed during
the deployment, as only the Meta coefficients need to
be saved. Conversely, MS and DANN, require both
the source and target data to train themodel. This also
means that Meta does not have to be fully retrained
and can be updated with each new data point as
opposed to, for example, TCA. Since Meta only util-
izes one hyperparameter it does not need to be spe-
cifically tailored to a problem as compared to meth-
ods based on deep neural networks such as adversarial
discriminative domain adaptation. Finally, the low
computational demand allows it to be used easily as

opposed to the more demanding algorithms such as
TCA or deep neural networks.

Additionally, we found that, with meta-learning,
much less subject specific training data is required to
achieve a given level of performance than for the tra-
ditional single-subject approach. The superiority of
meta-learning algorithm in situations where limited
data from a new participant are available for train-
ing/tuning is a real-plus in BCI applications, as new
users need to train the BCI for a much shorter period.

Also, we found that meta-learning delivered reli-
able performance improvements across participants
having the best performance for most participants in
most conditions (see figure 5).

Another issue we explored is how sensitive to the
amount of source data (data from other participants)
our meta-learning algorithm was. We explored this
in section 4.4 and found that the meta-learning
algorithm asymptotically improves as more andmore
source data are available. Unsurprisingly, we found
that themulti-subject transfer-learning method is too
simple to make good used of large volumes of source
data.

While the performance of the machine learn-
ing algorithms was optimised during training using
NMSE, meta-learning provided a welcome superior-
ity with respect to the two additional metrics, FDR
and correlation, with respect to its most serious con-
tender, single-subject, for low data regimes (below a
target proportion of 27% for FDR and 60% for correla-
tion). Superior FDR indicates that the confidence pre-
dictions produced by meta-learning are better mod-
ulated by the correctness of the decision, i.e. it is a
superior (self) evaluation of task performance. Super-
ior correlation indicates that meta-learning predic-
tions better capture the variations in confidence rel-
ative to the participant’s average confidence.

A question that naturally comes to mind is: where
does the superiority of the regression models pro-
duced by meta-learning comes from? In other words,
what is special about such models that is not avail-
able in either the single-subject and multi-subject
regression models? Because each model is a 121-
dimensional vector and it is participant-dependent,
it is not trivial to answer such questions. The ana-
lyses reported in section 4.3 are our best first attempt
to understand differences and similarities between
the optimal regression models found by different
approaches. In this work we found thatmeta-learning
andmulti-subject tend to produce very differentmod-
els, particularly in relation to the EEG-feature coef-
ficients. Because there is so much more source data
than target data in multi-subject training sets, unsur-
prisingly, MS’s models do not change much as more
and more data from the target participant are avail-
able. In the meta-learning case, instead, we can see
that fine-tuning canmake use of the data, particularly
for adjusting the EOG coefficients of the model. The
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single-subject case is more extreme. Here we see a very
big influence of the target data, with the regression
models being quite different from the ones produced
bymeta-learning at low data regimes, but asymptotic-
ally getting nearer and nearer them as more andmore
target data are made available. They never fully con-
verge (see figure 7), and yet their performance nearly
converges (see red and blue lines in figure 3(left)). A
possible interpretation of this effect is that effect in
that there exist many local optimal solutions in the
feature space and since Meta is also minimizing with
respect to the meta-parameter θ it finds a different
solution than single-subject. An alternative hypothesis
is that there is in fact only one global optimum but
that the performance surface around it is nearly flat
and, had more (say twice as much) target data been
available, single-subject would have eventually found
the same solution as themeta-learning algorithm.

6. Conclusions

In this study we investigated whether a new powerful
transfer-learning algorithm, meta-learning by biased
regularisation, could improve the performance of
BCIs for confidence prediction in a difficult target dis-
crimination task based on video feeds with respect to
other machine learning methods.

We adapted the algorithm to the confidence pre-
diction problem from EEG and EOG data on a
decision-by-decision basis. The method exploits pre-
vious participants’ data to produce an algorithm that
is then quickly tuned to new participants. We com-
pared it with the traditional single-subject train-
ing almost universally adopted in BCIs, a transfer-
learning adaptation of a zero-training method we
used recently for a similar task, a state-of-the-art
transfer learning algorithm—DANNs—and with a
simple baseline algorithm. We found that meta-
learning is significantly better than other approaches
in most conditions, and much better in situations
where limited training/tuning data from a new par-
ticipant are available.

Meta-learning was also very robust in the pres-
ence of small training sets and across participants.
Furthermore, compared with many other transfer
learning techniques, meta learning requires less com-
putation, does not have to save all participant data,
can be partially trained beforehand, does not to
be specifically tailored to one problem and can be
updated fast with each new recorded data point. All
of these properties are beneficial in BCI applications.

Additionally, here confidence estimation was per-
formed on a continuous scale, as opposed to the few
discrete levels used in previous work.

The study has also some limitations. Firstly, we
used linear regressionmodels.While we have not seen
large performance differences between our current
model and the artificial neural network that we have
used in previous work [36], it is not unlikely that

non-linear models could further improved perform-
ance. Secondly, we did not explore in detail how the
models found by different methods differed at par-
ticipant level. Thirdly, we did not explore all pos-
sible proportions of source and target data. Fourthly,
we did not test the BCI in an online experiment. We
hope to address all these limitations in future work. In
future work we will also attempt to adapt the meta-
learning algorithm to other forms of BCI and and
compare it to deep neural network methods such
as adversarial discriminative domain adaptation that
can be specifically designed for confidence prediction.
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