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Abstract 17 

 18 

Inherited retinal diseases (IRD) have been in the frontline of gene therapy development for the last decade, providing a 19 

useful platform to test novel therapeutic approaches. More than 40 clinical trials have been completed or are on-going, 20 

tackling autosomal recessive and X-linked conditions, mostly through adeno-associated viral (AAV) vector delivery of a 21 

normal copy of the disease-causing gene. However, only recently has autosomal dominant disease (ad/AD) been 22 

targeted, with the commencement of a trial for rhodopsin (RHO) associated retinitis pigmentosa (RP), implementing 23 

antisense oligonucleotide (AON) therapy, with promising preliminary results (NCT04123626).  24 

Autosomal dominant RP represents 15 to 25% of all RP, with RHO accounting for 20-30% of these cases. Autosomal 25 

dominant macular and cone-rod dystrophies (MD/CRD) correspond to approximately 7.5% of all IRDs, and approximately 26 

35% of all MD/CRD cases, with the main causative gene being BEST1. Autosomal dominant IRDs are not only less 27 

frequent than recessive, but also tend to be less severe and later onset; e.g. an individual with RHO-adRP typically would 28 

be severely visually impaired at an age 2 to 3 times older than in X-linked RPGR-RP.   29 

Gain-of-function and dominant negative aetiologies are frequently seen in the prevalent adRP genes RHO, RP1, and 30 

PRPF31 among others, which would not be effectively addressed by gene supplementation alone and need creative, 31 

novel approaches. Zinc fingers, RNA interference, AON, translational read-through therapy, and gene editing by 32 

CRISPR/Cas are some of the strategies that are currently under investigation and will be discussed herein.   33 



Introduction 34 

The complex group of inherited retinal dystrophies (IRDs) has been under the spotlight for the last two decades.1,2 The 35 

accessible ocular anatomy, relative immune privilege, lack of photoreceptor mitosis, state-of-the-art instruments to 36 

evaluate the retina, nearly-exclusive monogenic aetiology, and small volume of the eye, have made IRDs a promising field 37 

for the development of cutting-edge gene therapies.  38 

Autosomal recessive and X-linked IRDs have been the main therapeutic target, with gene supplementation being the 39 

leading technique.3 Over 40 clinical trials have been completed or are on-going, using mostly adeno-associated viral 40 

(AAV) vectors to supply a normal copy of the disease-causing gene and create a normal, fully functioning protein. In 2019, 41 

the first gene-specific nucleic acid therapeutic approach phase 1/2 trial for an autosomal dominant (ad/AD) IRD started, 42 

recruiting individuals with RHO P23H-related retinitis pigmentosa (RP; NCT04123626). Preliminary results of 43 

improvements in best corrected visual acuity (BCVA) and retinal sensitivity are promising 44 

(https://www.proqr.com/files/2021-11/Analyst-Event-2021_FOR-DOWNLOAD_OK.pdf). It is anticipated that this will be the 45 

first of a new wave of clinical trials for the large unmet need of treatments for AD IRDs.  46 

Herein, we discuss the current clinical and preclinical landscape of the therapeutic approaches for ad-IRD, and prioritise 47 

the most investigated genotypes and most likely to be translated to clinical trial(s).  48 

 49 

Dominant IRD and potential therapeutic approaches 50 

Autosomal dominant RP accounts for approximately 15 to 22% of all RP.4–6 The most common causative gene is 51 

rhodopsin (RHO), found in 20-30% of cases.7–9 The missense p.(P23H) is the most common variant, as well as the first 52 

point mutation identified to cause adRP in humans.7,10 Rhodopsin is followed in frequency by PRPF31 (8-10%),11 RP1 (8-53 

https://www.proqr.com/files/2021-11/Analyst-Event-2021_FOR-DOWNLOAD_OK.pdf


10%),8,12 PRPH2 (10%),13 IMPDH1 (5-10%),14 NR2E3 (1-3.5%, with p.(G56R) being the second most commonly 54 

associated variant with adRP),15 SNRNP200 (1.5-2.3%),9,16 and CRX (1%).9,16 55 

AD macular and cone-rod dystrophies (MD/CRD) account for approximately 7.5% of IRD, and 34% of MD/CRD cases in 56 

total.17,18 The main causative gene is BEST1 (3.5%), followed by PRPH2 (2%), and then EFEMP1, TIMP3, GUCA1A, 57 

GUCY2D, PRDM13, ELOVL4 and PROM1, each with less than 1% frequency.17 58 

Dominant conditions are not only less frequent than recessive, but also tend to be less severe. Individuals with RHO-59 

related RP are reported to reach legal blindness at a mean age of 79 years old.19 Whilst in patients with recessive 60 

USH2A-RP, this occurs at a median of 58 years old,20 and in X-linked RPGR-RP, by the third to fourth decade of life.21 61 

Patients with Best disease (BEST1) can maintain good BCVA over time, often showing no significant differences between 62 

baseline and follow up acuity in longitudinal studies.22,23 On the other hand, individuals with recessive ABCA4-related 63 

Stargardt disease, often lose three or more ETDRS lines over 10 years.24  64 

A challenge that AD conditions face is that haploinsufficiency is rarely their mechanism of disease. Gain-of-function and 65 

dominant negative aetiologies are frequently seen in the most prevalent AD genes: RHO, RP1, and PRPF31, among 66 

others.25 These cannot be treated by gene supplementation alone and need creative, novel approaches that are in the 67 

early stages of first in man testing (Table 1). These methodologies (Figure 1) include: 68 

• Zinc fingers (ZFs), are proteins that bind promoters and function as artificial transcription factors, 69 

enhancing/supressing transcription;26  70 

• Antisense oligonucleotides (AONs), single-stranded RNA or DNA molecules that bind pre-mRNA or mRNA, and 71 

alter its splicing, and/or block translation;27  72 

• RNA interference (RNAi), a naturally occurring pathway that identifies viral RNA and prevents their translation 73 

through: (i) short-interfering RNA (siRNA), highly selective double-stranded complex that binds and cleaves mRNA; 74 



(ii) microRNA (miRNA), single-stranded RNA molecules that commonly bind to the 3’ untranslated region and block 75 

mRNA translation;27 and (iii) short-hairpin RNA (shRNA), double-stranded RNA sequences linked by a short loop, 76 

capable of DNA integration, are subsequently transformed into siRNA in the cytosol.28 77 

• Translational read-through therapy, is an approach applicable for nonsense point mutations where drugs bind to 78 

ribosomes and force translation beyond the erroneous stop codon, leading to a full-length protein;29,30  79 

• And CRISPR (clustered regularly interspaced short palindromic repeats)/Cas genome editing system, correcting 80 

disease-causing variants in native alleles.31  81 

 82 

Prioritised Disease-Causing Genes  83 

RHO 84 

RHO encodes rhodopsin, a G protein–coupled receptor located in the disc membrane of rod outer segments, which is the 85 

first component of the phototransduction cascade.32 RHO-related retinopathy is common, with a well understood 86 

molecular basis. It can be classified either according to the genotype or phenotype. Sung et al. divided the causative 87 

variants into two classes according to their biochemical properties: Class I - accumulating in the plasma membrane and 88 

resembling the wild-type regarding regeneration of 11-cis-retinal; and Class II - with variable regeneration of the 89 

chromophore and accumulation in the endoplasmic reticulum.33 Cideciyan et al. classified on the basis of disease severity, 90 

where class A presents with severe, widespread loss of rods, and class B corresponds to sector RP, often involving the 91 

inferior retina.34 Genotype-phenotype correlations have been attempted, with a relationship observed between rhodopsin 92 

destabilization and phenotype severity. However, disease often presents with markedly variable severity, even within 93 

families, indicating possible epigenetic interactions.35,36   94 



RHO-adRP is characterized by a slow rate of progression (particularly Class B), posing a challenge when determining 95 

clinical endpoints. It has been suggested that a vertical foveal photoreceptor and retinal pigment epithelium (RPE) band 96 

thickness and ellipsoid zone (EZ) width may be possible outcome measures,37 as well as the hyperautofluorescent ring 97 

diameter seen on short wavelength-autofluorescence (SW-AF).37–39 98 

The most common disease-causing variants in RHO are gain-of-function and have a dominant negative effect.40,41 This 99 

means that the defective protein is retained intracellularly, inducing the unfolded protein response and the degradation of 100 

both the abnormal and wild-type protein. Animal models resembling the human disease have been successfully achieved 101 

in mice,42,43 setting the basis for testing novel preclinical therapeutic approaches.44 A natural history study for RHO-RP is 102 

currently active and taking place in USA and France (NCT04285398, Table 2). 103 

Many techniques have been explored to treat RHO-retinopathy. Price et al. have used the somewhat classical technique 104 

of AAV-associated gene supplementation in P23H mice, and found that the retinal degeneration persisted, suggesting that 105 

excessive amounts of rhodopsin alone cannot rescue photoreceptors.25,45 AAV-delivered ZFs have also been employed, 106 

targeting the RHO promoter, and were associated with mutation-unspecific decreased translation and improved disease in 107 

a mouse model.26 Another method to interfere with promoter function that has been tested is through AAV–mediated 108 

ectopic expression of a transcription factor capable of silencing RHO (KLF15), with structural and functional protection 109 

observed in mouse models.46 110 

Post-transcriptional protein knockdown has also been attempted through hammerhead and hairpin ribozymes designed to 111 

target and cleave P23H, with good specificity in vitro.47 In addition, a dual-approach to both suppress the mutated gene 112 

and supplement a wild type gene is being actively developed. Suppression has been implemented via RNA silencing (e.g. 113 

RNAi and siRNA)48–50 and CRISPR/Cas9 51, combined with gene supplementation (RNAi-resistant where applicable), 114 

leading to visual function improvement in mouse models. This was assessed by electrophysiology, where rod-isolated 115 



responses improved significantly post-treatment, and by histology, with preservation of the outer nuclear layer (ONL) and 116 

the outer segments of photoreceptors.48–51 Different groups have tried allele specific CRISPR/Cas9 editing alone, with VA 117 

and retinal function improvement in RhoS334 and Rho+/P23H mouse models.52–54 RNA knockdown alone has also shown 118 

significant improvement in retinal function and structure in P23H rats and mice.55 The latter has led to a phase I/II clinical 119 

trial of AON and targets patients with P23H RHO-RP (NCT04123626), with favourable preliminary results.  120 

Translational read-through drugs have also been tested in RHO S334ter rat models, with an increased number of 121 

surviving photoreceptors and improved electroretinography (ERG) recordings.56 Gregory-Evans et al. tested the use of a 122 

read-through drug combined with neuroprotection in the same rats, and found indistinguishable histology from unaffected 123 

controls.57  124 

Neuroprotection has also been investigated with a subretinal injection of an AAV vector expressing a glial cell line derived 125 

neurotrophic factor (GDNF), which was shown to result in preservation of ONL thickness and increased ERG responses in 126 

mouse models.58 Lastly, Yao et al. found that reducing autophagy in P23H photoreceptors through hydroxychloroquine 127 

oral treatment and/or deletion of the autophagic gene ATG5, decreased cell death in mice and had a protective effect.59 128 

This led to another ongoing clinical trial (NCT04120883), which uses oral hydroxychloroquine to alter the autophagy 129 

pathway in P23H-RHO photoreceptors.  130 

In summary, individuals will likely need detailed genetic characterization to determine the most suitable therapeutic 131 

approach. Allele-specific approaches may lead to fewer eligible patients, small cohorts, and conclusions with limited 132 

external validity. Nevertheless, the breadth of treatment avenues being explored in RHO-retinopathy has resulted in the 133 

first on-going dominant IRD gene therapy clinical trial, with several more approaches anticipated to be in early phase trials 134 

in the near future.  135 

 136 



PRPF31  137 

PRPF31 encodes one of the core components of spliceosomes and has a key function in RNA splicing processes and in 138 

modulating alternative splicing.60,61 Most variants in PRPF31 are loss-of-function and cause decreased splicing efficiency 139 

and mis-splicing.62 Haploinsufficiency with dominant negative effect has been proposed as the pathogenic mechanism, 140 

given the milder presentation in patients with large deletions versus in those with point mutations.11,63 This gene affects 141 

ciliogenesis in the retina,64 and therefore PRPF31 could be considered a ‘ciliopathy gene’.65  142 

Individuals carrying a heterozygous disease-causing variant in PRPF31 can develop RP, however marked intrafamilial 143 

variability and incomplete penetrance is one of the hallmarks of this gene.66 Age of onset is also highly variable, reported 144 

between 6 and 71 years of age.66 PRPF31 non-penetrance has been associated with the co-inheritance of a 4-copy 145 

MSR1 repeat, with the complete underlying basis of variable expressivity remaining unclear.67 Genotype-phenotype 146 

correlations have been investigated, with an earlier age of onset observed in those with null versus missense variants.11 147 

An exponential yearly decline in kinetic visual field, cone ERG responses, and EZ area, has been reported.66 However, 148 

others have identified heterogeneous disease progression.68 149 

Mouse models with late-onset RP,69 and induced pluripotent stem cells (iPSC) have been developed from a patient with 150 

PRPF31-RP and a related non-penetrant subject, to improve our understanding.70 The latter have been used to create 151 

iPSC-RPE cells PRPF31+/− and conduct a proof of concept AAV-mediated gene augmentation. Brydon et al. reported a 152 

rescue in ciliogenesis, phagocytosis, and cell morphology.71  153 

A natural history study for individuals with PRPF31-RP and non-penetrant subjects is currently ongoing (NCT04805658, 154 

Table 2), which will likely be informative in terms of clinical endpoints. Developing a treatment trial for PRPF31 will likely 155 

require further preclinical work of different approaches that take into account its dominant negative basis, potentially 156 



regulating interacting genes such as MSR1, and possibly considering alternative disease models which better recapitulate 157 

human disease.  158 

 159 

RP1 160 

RP1 protein is located in the connecting cilia of photoreceptors,72 and is thought to have a role in the stacking of outer 161 

segment discs.73 It can cause adRP and autosomal recessive (ar) RP, early onset severe retinal dystrophy (EOSRD), MD 162 

and CORD.74,75 Genotype-phenotype correlations have been described, where truncations affecting the middle portion of 163 

the gene were associated with adRP (Arg677Ter being the third most common adRP variant described), while those in 164 

the N- and C-terminals caused arRP.76,77 adRP1 has a similar phenotype to RHO-RP, and also often presents with wide 165 

phenotypic variability, with asymptomatic carriers described.8   166 

The disease mechanism is reported to be dominant negative, where the truncated RP1 competes with the wild type 167 

protein for binding to axonemal microtubules.78 Mouse models of heterozygous RP1 damaging variants had half the 168 

normal protein concentration, but did not show significant retinal structural or functional abnormality.78 Gene 169 

supplementation has been tested in the aforementioned mouse models and proven successful in biallelic RP1 disease, 170 

but no preclinical work towards treating adRP1-retinopathy, which is by far the most common mode of inheritance, is 171 

present in the literature to date.78  172 

 173 

PRPH2 174 

PRPH2 has great phenotypic variability, being associated with adRP, MD, pattern dystrophy, central areolar choroidal 175 

dystrophy, and EOSRD.75,79–81 Despite the noteworthy inter- and intrafamilial variation and even incomplete penetrance, 176 



genotype-phenotype correlations have been developed, where Arg142Trp and Arg172Trp generally result in MD, and 177 

variants between Pro210 and Pro216, in adRP.82 Patients with pattern dystrophy tend to remain asymptomatic until the 178 

fifth decade of life, while the majority of individuals with adRP have symptoms between the third and fifth decade.82  179 

PRPH2 encodes a tetraspanin transmembrane protein, key in the formation and stabilization of outer segment discs.83 180 

Homozygous and heterozygous mouse models have been developed, with similar phenotype to their human 181 

counterparts.84 No outer segments were noticed in Prph2−/− mice,85 while disorganised yet present discs were found in 182 

Prph2+/−, suggesting a dose-dependent variation in phenotypic expression.86 Loss-of-function,87 dominant negative,88 a 183 

combination of the two,89 and gain-of-function have been described as the pathophysiology of PRPH2-associated 184 

diseases.90 However, it is thought that rod-dominant RP generally occurs due to haploinsufficiency, while cone-dominant 185 

MD and pattern dystrophy are secondary to dominant-negative effect.91 186 

Nour et al. had good structural results when supplementing a wild-type copy of PRPH2 in a loss-of-function transgenic 187 

mouse model of RP, but failed in a gain-of-function, CORD model.92 Compacted DNA nanoparticles (NP) injection caused 188 

sustained gene expression, and long term, yet circumscribed, structural and functional improvement in a heterozygote 189 

mouse model.93 Although over-expressing PRPH2 appears to be well tolerated by the retina,94 complete, widespread, 190 

longstanding rescue has not been accomplished thus far through gene supplementation alone.91  191 

Subretinal injections of siRNA and siRNA-resistant PRPH2 has shown efficacy in a mouse model and mouse retinal 192 

explants, with preserved ERG responses and decreased Prph2 mRNA and protein expression, becoming a promising 193 

mutation-independent approach for this gene.95,96 Georgiadis et al. also used AAV-mediated subretinal injections of 194 

miRNA-adapted shRNA in mice, finding silencing of PRPH2 as early as three weeks post-injection.97 AAV was also used 195 

to deliver ciliary neurotrophic factor into the subretinal space, showing long-term rescue of photoreceptors, however with 196 

panretinal rod photoreceptor nuclear changes that require further investigation.98,99  197 



PRPH2 has well-characterized animal models and a small size (∼1.1 kb coding region). However, the large phenotypic 198 

variability, the multiple postulated disease mechanisms, and often relatively good prognosis till later adult age, makes 199 

therapy development challenging.91 Gene augmentation could indeed work for loss-of-function alleles, and gene 200 

knockdown combined with supplementation may have a positive effect on gain-of-function alleles.  201 

 202 

IMPDH1  203 

Disease-associated variants in inosine monophosphate dehydrogenase 1 (IMPDH1) are known to cause adRP and, less 204 

frequently, EOSRD.100 IMPDH1-RP has been characterised as having a relatively rapid rate of progression, with early 205 

decreased VA.101 Significantly decreased VA and visual fields usually occurs within the second decade of life.102 The 206 

D226N allele accounts for about 1% of all adRP cases,103 and families with incomplete penetrance have also been 207 

reported.104  208 

IMPDH proteins form homotetramers and are key in the synthesis of guanine nucleotide, having a direct effect on the 209 

intracellular concentration of GMP, GDP, and GTP.100 Although having ubiquitous expression, IMPDH1 transcripts have a 210 

high concentration in the retina, particularly in the periphery.105 Alternative splicing-resulting transcripts are also expressed 211 

solely in the retina.105 Given that disease-associated variants in IMPDH1 cause protein misfolding and aggregation, with 212 

preserved enzymatic activity, it is likely that the disease mechanism is due to a dominant-negative effect exerted by the 213 

abnormal protein.106  214 

 215 

Mouse models have been developed through AAV inoculation of the mutant allele. Double knock-out mice models and 216 

mice with an additionally inoculated copy of IMPDH1 displayed only minimal retinopathy, proving that both scenarios are 217 

well tolerated.102,106 Tam et al. used an AAV-mediated RNAi suppression strategy in vitro and in vivo (mice), and found 218 



effective and sequence-specific suppression of IMPDH1 mRNA and protein, and preserved retinal structure.102 It appears 219 

that by suppressing both normal and mutant IMPDH1 alleles, the dominant negative effect exerted by the mutant protein 220 

might be abolished and the retinal degeneration slowed. This strategy, with the possible inclusion of an RNAi-resistant 221 

IMPDH1 transgene, holds substantial promise, however characterisation studies are not yet in place and preclinical work 222 

still needs to show extensive conclusive data.  223 

 224 

BEST1 225 

BEST1 encodes a transmembrane, calcium-activated chloride channel that is located in the RPE.107 Autosomal dominant 226 

disease-associated variants lead to Best Disease (BD) and adult vitelliform macular dystrophy, the latter with a later 227 

disease onset.81,108 These two conditions are characterized by an excess of lipofuscin within the RPE cells and the 228 

formation of subretinal vitelliform lesions.109 BEST1 can also cause vitreoretinochoroidopathy (ADVIRC) and 229 

Bestrophinopathy, both affecting the retina in a broader, more severe fashion.  230 

BD can have a variable age of onset and progression rate, even among family members.109 Although this phenotypic 231 

heterogeneity makes VA prediction challenging, visual impairment occurs mostly in adulthood. The disease-causing 232 

mechanisms of BD entail loss-of-function in a dominant-negative manner in most cases, particularly in the alleles 233 

associated with the chloride and calcium binding sites.110,111 Variants linked to the channel gate/neck, outside the neck, 234 

and also some at the calcium binding sites, appear to have a gain-of-function mechanism.111,112 235 

Animal models for BEST1-associated diseases have naturally occurred in dogs (recessive models),113 and have also 236 

been developed in mice (dominant).114 In vitro models have been generated from patient samples, iPSC-RPE emulating 237 

both the ad and ar forms.115 Different treatment approaches have been tested in these models. Lentivirus- and AAV2-238 

mediated gene augmentation increased wild-type protein transduction and improved retinal detachments both in biallelic 239 



models of BD in vitro and in vivo.116,117 Lentivirus gene augmentation was also tested in BD in vitro models and the result 240 

depended on the variant affected.117 Arg218Cys and Asn296His were fully responsive, with a functioning calcium channel 241 

and preserved voltage, while Ala146Lys did not show any changes. Sinha et al. have attempted gene editing through 242 

CRISPR-Cas9 in these three heterozygous variants, demonstrating efficient editing and high in vitro allele specificity in 243 

all.117   244 

BD is certainly an attractive target, with strengths such as a significant prevalence, wide window of opportunity, extensive 245 

preclinical data, and multiple approaches showing promise, however, the not insignificant challenges include patient 246 

selection given often the relatively good prognosis. 247 

 248 

Gene-independent approaches 249 

Novel approaches that could apply to many genes by targeting cellular metabolomics, proteomics, and oxidative stress 250 

are currently under development. Although not specific and with possibly dose-dependent toxicity, they could slow down 251 

progression until a long-term treatment was administered.118 252 

The insulin/mammalian target of rapamycin (mTOR) pathway has been found to be neuroprotective in mouse models.119–253 

121 Adenosine monophosphate activated protein kinase (AMPK) regulates mTOR and is activated by metformin. Treating 254 

mice with metformin has shown a positive effect on photoreceptors, preserving their function and structure, possibly by 255 

reducing oxidative stress.122 Metformin has also been tested in iPSC-derived RPE from patients with late onset retinal 256 

dystrophy, alleviating the disease cellular phenotype.123 A clinical trial of metformin in individuals with ABCA4-retinopathy 257 

is currently ongoing (NCT04545736).  258 



N-acetylcysteine (NAC), a commonly used mucolytic, also serves as an enhancer of the formation of glutathione, a 259 

powerful neuronal antioxidant.124 An active phase I clinical trial (NCT03999021) is assessing the effects of oral NAC in 260 

patients with RP, with promising early results.125 A phase 3 NAC trial is planned. 261 

 262 

Conclusions 263 

RHO-RP is the most advanced ad IRD with respect to potential therapy, with multiple mechanisms tested and various 264 

animal models developed. BEST1 and PRPF31 are the next likely targets, with extensive pre-clinical data and various 265 

approaches under investigation (Table 1). Key factors in the design of an IRD treatment trial include the determination of 266 

(i) eligibility criteria, (ii) endpoints for the evaluation of clinical efficacy, (iii) a window of opportunity, and (iv) the suitability 267 

of the contralateral eye as the control (symmetry between eyes). The phenotypic heterogeneity and wide range of severity 268 

of ad IRD,126,127 usually not associated with age and often slow progression or relative stability, may thereby be 269 

challenging. The ability to predict participants who will have a poor prognosis would be valuable. 270 

Nevertheless, cutting edge techniques are being developed, showing promising results at a cellular level. Dominant-271 

negative mechanisms, in which the abnormal protein competes with the wild-type, are potentially amenable through gene 272 

augmentation therapy. Gain-of-function variants, on the other hand, will require gene or RNA editing/knockdown to 273 

suppress the mutant allele and prevent toxic protein production.78 Promising results in mouse models have been seen by 274 

delivering these components through AAV vectors or NP.128  275 

However, modulation of these silencing therapeutics will be key to their success, aiming for optimal protein concentrations 276 

that can lead to photoreceptor survival, also importantly avoiding off target effects.26 Regulatory agencies closely 277 

overseeing the safety of novel therapeutic approaches such as CRISPR-mediated DNA (Cas9) and RNA (CasRx)129 278 



editing will be necessary. Gene regulation of certain novel approaches, including the RNA editors, might also aid their 279 

safety profile. 280 

Although the development of mutation-specific therapies may not be time or economically efficient at present, 281 

personalized medicine is increasingly being championed, and may become more feasible with technological 282 

advancements e.g. through faster and cheaper personalized iPSCs.130 There is no doubt that IRD will continue to be on 283 

the frontline of novel therapies for the next decade, with dominant diseases at the heart of these developments.  284 



Legend Figure 1: Disease mechanisms and therapeutic approaches for autosomal dominant inherited retinal dystrophies 285 

(IRDs).  286 

A) Normal. We see the normal process of DNA transcription to messenger RNA (mRNA), and then RNA 287 

translation to protein. The wild type gene is depicted in yellow and its promoter in darker shade. Normal proteins 288 

are seen in pink, two of them bound to their receptor.  289 

B) Loss-of-function (LOF), where the gene is seen in red. In this case, the mRNA transcript is shorter due to a 290 

null disease-causing variant prematurely stopping transcription, consequently halting translation and leading to 291 

truncated/absent protein. The yellow squares represent the therapeutic approaches under development to treat 292 

LOF IRDs, at the location where they have their therapeutic effect. The * corresponds to the only mechanism 293 

currently approved to treat LOF RPE65-associated retinal dystrophy.  294 

C) Gain-of-function (GOF), with the gene in blue. We see abnormal protein formed (light blue), toxic to the cell, 295 

and the yellow squares representing therapeutic avenues.  296 

D) Dominant negative effect (DNE), with a light green gene. In this situation, abnormal proteins (green) compete 297 

with the wild type for binding receptors. In yellow, therapeutic mechanisms.  298 

AON: antisense oligonucleotides; CRISPR: clustered regularly interspaced short palindromic repeats.   299 
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Table 1: Gene therapy strategies currently being investigated for autosomal dominant inherited retinal dystrophies 622 

 623 

Gene Variant Mechanism (drug) Route of 
delivery 

Status 

RHO P23H Antisense oligonucleotide (QR-1123) Intravitreal Phase I/II CT (NCT04123626; ProQR 
Therapeutics) 

RHO P23H Autophagy reduction (Hydroxychloroquine) Oral Phase I/II CT (NCT04120883; University 
of Michigan) 

RHO P23H Transgenic gene supplementation - Mouse models45 

RHO Unspecific Zinc Fingers  Subretinal Mouse models26 

RHO Unspecific Ectopic silencing transcription factor (KLF15) Subretinal Mouse models46 

RHO P347S Coadministration of two AAV containing RNAi 
and a codon-modified gene replacement  

Subretinal Mouse models48 

RHO P23H Administration of one AAV containing both 
siRNA and a codon-modified gene 
replacement  

Subretinal Mouse models49 

RHO P347S Administration of shRNA-expressing AAV and 
an AAV expressing shRNA-resistant rhodopsin 

Subretinal Mouse models50 

RHO P23H & 
D190N 

Ablate-and-replace strategy, with dual AAV 
injection of CRISPR/Cas9 and gene 
replacement 

Subretinal Mouse models51 

RHO S334 Allele-specific ablation using CRISPR/Cas9 
with targeting-guide RNA constructs 

Subretinal Mouse models52 

RHO P23H AAV delivered CRISPR/Cas9 with short guide 
RNA  

Intravitreal Mouse models and human cells53 

RHO P23H AAV delivered CRISPR/Cas9 with short guide 
RNA 

Subretinal Mouse models54 

RHO P23H Antisense oligonucleotide  Intravitreal Mouse and rat models55 



RHO S334 Aminoglycoside read-through (gentamicin or 
geneticin) 

Subcutaneous Rat model56 

PRPF31 Unspecific AAV-mediated gene augmentation - Induced pluripotent stem cells - RPE 
cells71 

PRPH2 Unspecific Nanoparticles containing wild-type PRPH2 Subretinal Mouse models93 

PRPH2 Unspecific AAV-delivered siRNAs and resistant PRPH2  Subretinal Mouse models95 

PRPH2 Unspecific si/shRNAs and resistant PRPH2 - Retinal organotypic culture96 

PRPH2 Unspecific AAV-delivered shRNAs Subretinal Mouse models97 

IMPDH1 Unspecific AAV-delivered shRNA and resistant IMPDH1  Subretinal Mouse models102 

BEST1 R218H, 
234P, 
A243T, 
293K, & 
D302A 

AAV-mediated gene augmentation - iPSC-RPEs110 

BEST1 D203A, 
I205T, & 
Y236C 

Baculovirus-based silencing vector delivery of 
CRISPR/Cas9 and resistant BEST1 

- iPSC-RPE cells111  

BEST1 R218C & 
N296H 

Lentivirus mediated gene augmentation  - iPSC-RPE117 

BEST1 R218C, 
N296H, & 
A146K 

Lentivirus construct delivery of CRISPR/Cas9  - iPSC-RPE117 

 624 

Abbreviations: CT: clinical trial; AAV: adeno-associated virus; RNAi: RNA interference; siRNA: short-interfering RNA; 625 

shRNA: short-hairpin RNA; CRISPR: clustered regularly interspaced short palindromic repeats; RPE: retinal pigment 626 

epithelium; iPSC: induced pluripotent stem cells. 627 

628 



Table 2: Ongoing natural history studies being conducted on autosomal dominant IRD genes. 629 

Gene ClinicalTrials.gov 

Identifier  

Status Location Estimated 

completion date 

Sponsor 

RHO NCT04285398 Active, not 

recruiting 

USA and France June 2026 SparingVision 

PRPF31 NCT04805658 Recruiting Norway February 2025 Oslo University 

Hospital 
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