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Abstract

Multi-view learning exploits structural constraints among multiple views to effec-

tively learn from data. Although it has made great methodological achievements in

recent years, the current generalization theory is still insufficient to prove the merit

of multi-view learning. This paper blends stability into multi-view PAC-Bayes

analysis to explore the generalization performance and effectiveness of multi-

view learning algorithms. We propose a novel view-consistency regularization

to produce an informative prior that helps to obtain a stability-based multi-view

bound. Furthermore, we derive an upper bound on the stability coefficient that

is involved in the PAC-Bayes bound of multi-view regularization algorithms for

the purpose of computation, taking the multi-view support vector machine as an

example. Experiments provide strong evidence on the advantageous generalization

bounds of multi-view learning over single-view learning. We also explore strengths

and weaknesses of the proposed stability-based bound compared with previous
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non-stability multi-view bounds experimentally.

Key words: Multi-view Learning, PAC-Bayes Analysis, Stability, Generalization

1. Introduction

Data in the real world may come from multiple views. For example, in the

web page classification task, a web page is described by two views where one

is the content in the web page itself and the other is the anchor text of any web

page linking to it. In the medical diagnosis field, diagnostic decisions are usually

taken by various results of examinations (3D labeled magnetic resonance image,

ultrasonic image, etc). Multi-view learning was proposed to learn from this type

of data and leverage peculiarities owned by these views [1]. Intuitively, multi-

view learning performs better than single-view learning since single-view learning

neglects the consistency between different views by simply concatenating them

together into a single long view.

In recent years, multi-view learning has made great progress in both practice

and algorithms. On one hand, there are numerous practical applications related to

multi-view learning, such as health [2], biology [3], multimedia [4] and ecology

[5]. On the other hand, a large number of multi-view learning algorithms in various

settings have been constructed, including multi-view transfer learning [6], multi-

task multi-view learning [7], multi-view semi-supervised learning [8], multiple

kernel learning [9], etc. However, theoretical analysis of multi-view learning is

still insufficient. For instance, there is a lack of explicit theoretical evidence that

multi-view learning is often superior to single-view learning.

In statistical learning theory, PAC-Bayes bounds provide state-of-the-art pre-
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dictions of the generalization performance compared with bounds employing

Rademacher complexity and VC dimension [10]. PAC-Bayes theory gives an upper

bound on the true generalization error by the empirical error and the Kullback-

Leibler (KL) divergence between prior and posterior distributions of a learning

algorithm. It has great flexibility because it allows selecting prior distributions

of learners that are not necessarily correct [11, 12, 13]. There are two ways to

investigate the PAC-Bayes theory. Data-dependent priors usually split the data

into two parts, one of which is used to learn a meaningful prior because the prior

cannot depend on the data used in the empirical risk term of the PAC-Bayes bound

[14, 15, 16]. Distribution-dependent priors could be well-designed for directly

computing the KL term [17, 18, 19].

PAC-Bayes analysis has recently surged in popularity, but most studies concen-

trate on the generalization performance of single-view learning algorithms. The

latest work derived relatively tighter PAC-Bayes bounds from different aspects.

Dziugaite and Roy [20] reduced the PAC-Bayes bound from the perspective of dif-

ferential privacy with the strategy of data-dependent priors, while Rivasplata et al.

[21] shrank the bound from the stability of learning algorithms with the strategy of

distribution-dependent priors. A learning algorithm is stable if slightly changed

training sets yield similar solutions [22]. Previous experiments demonstrated the

feasibility of blending stability into PAC-Bayes analysis. The more restrictive a

stability criterion is, the tighter the generalization bound will be [23, 24].

The first PAC-Bayes analysis of multi-view learning algorithms was conducted

by Sun et al. [25], who obtained multiple bounds by considering different prior

distributions. Experiments on the multi-view support vector machine (MvSVM)
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[26, 27] demonstrated the feasibility and rationality of adopting PAC-Bayes theory

to analyze the generalization performance of multi-view algorithms. However,

multi-view bounds were lower than single-view bounds only on two of six datasets,

which could not provide strong support that multi-view learning is usually theoreti-

cally advantageous over single-view learning.

This paper adopts the latest development of shrinking PAC-Bayes bounds with

stability to analyze generalization bounds of multi-view learning algorithms. The

highlights of this paper are summarized as follows.

• We propose a novel view-consistency regularization which produces an

informative prior to deduce an effective stability-based PAC-Bayes bound

for general multi-view learning algorithms.

• For computing specific bounds of multi-view algorithms in practice, we

upper-bound the stability coefficient where the MvSVM is taken as an

example.

• Experimental results demonstrate the superiority of multi-view learning over

single-view learning in terms of classification errors and stability-based

PAC-Bayes bounds on nine datasets.

• We also illustrate advantages and disadvantages of the stability-based multi-

view bound compared with previous non-stability multi-view bounds pro-

posed by Sun et al. [25] from two aspects of tightness and ability to support

model selection.

To the best of our knowledge, this is the first exploration to analyze the generaliza-
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tion performance of multi-view learning algorithms by blending stability into the

PAC-Bayes framework.

The rest of the paper is organized as follows. First, we introduce the multi-

view learning problem and the related PAC-Bayes bounds as preliminaries in

Section 2. Section 3 derives our main stability-based multi-view PAC-Bayes

bound with a new view-consistency regularization and also delivers a stability-

based multi-view PAC-Bayes bound without the view-consistency regularization

for performance comparisons. The upper bound on the stability coefficient of a

multi-view regularization algorithm, taking the MvSVM as an example, is derived

in Section 4 for computation purposes. Experimental results are reported in Section

5 and finally conclusions are presented in Section 6.

2. Preliminary Work

We first introduce the multi-view learning problem, and then present relavant

PAC-Bayes bounds to pave the way for the proposed stability-based multi-view

bound.

2.1. Multi-view Learning

Consider a multi-view learning algorithm which maps a multi-view dataset

X to a function f where X =
{(

x
(i)
1 ,x

(i)
2 , y

(i)
)}

i=1,2,...,m
with x

(i)
v ∈ Rnv and

v = 1, 2. For binary classification, the label y ∈ {−1, 1}. Multi-view learning

aims to learn one function from each view and jointly optimize the two functions

to promote the generalization performance.
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Consistency and diversity are two fundamental properties for designing multi-

view algorithms [28], where the consistency principle intends to maximize the

agreement between two views and the diversity principle tries to increase the

disagreement of examples misclassified by the two classifiers. Diversity-based al-

gorithms mostly rely on ensemble learning. In the current work, consistency attracts

more attention. The representatives of consistency-based algorithms contain co-

training styles [29, 30], margin-consistency styles [31, 32] and co-regularization

styles [33, 34]. Co-training algorithms mean that multiple learners are trained

alternately and they can predict labels for unlabeled data for each other. Margin-

consistency algorithms restrict the margin variables from multiple views to be

consistent. Co-regularization algorithms regard the disagreement of two views as a

regularization term of the objective function.

In this paper, we focus on the theoretical analysis of co-regularization algo-

rithms. A commonly used co-regularization term is the sum of pairwise distances

between the outputs from the two views evaluated at the training examples. Spe-

cialized to the MvSVM algorithm which is employed in the experiments, the

regularization term can be represented as
m∑
i=1

(
uT

1x
(i)
1 − uT

2x
(i)
2

)2

, (1)

where u1 and u2 are weight vectors of view 1 and view 2, respectively. The inputs

x1 and x2 can be transformed into another feature space by some kernel function.

2.2. Basic Single-view PAC-Bayes Bounds

Consider a single-view learning algorithm, which learns a function f on a

training sample X that includes m instances. Suppose D is the true distribution
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of an example (x, y). For binary classification, the output label y ∈ {−1, 1} and

the classifier uses the 0-1 loss function. Assume that Q is the posterior distribution

and P is the prior distribution of the classifier.

The true error eD and empirical error eX of the classifier are defined as

eD = Pr
(x,y)∼D

(f(x) 6= y), (2)

eX = Pr
(x,y)∼X

(f(x) 6= y) =
1

m

m∑
i=1

I
(
f
(
x(i)
)
6= y(i)

)
, (3)

where I(·) is an indicator function. Define the average true error as

EQ,D = Ef∼QeD, (4)

and the average empirical error as

EQ,X = Ef∼QeX , (5)

in terms of the posterior distribution of the classifier. The following Theorem 1

provides the basic PAC-Bayes bound on EQ,D for the current binary classification.

Theorem 1 (Langford [13] [Theorem 5.1]). For any data distribution D, for any

prior distribution P of a classifier f , for any δ ∈ (0, 1]:

Pr
X∼Dm

(
∀Q : KL+(EQ,X ||EQ,D) ≤

KL(Q||P ) + ln(m+1
δ

)

m

)
≥ 1− δ. (6)

The KL divergence KL(Q||P ) = Ef∼Q ln Q
P

measures the difference between

the prior distribution P and the posterior distribution Q of the classifier. KL+(q||p)

is defined by q ln q
p

+ (1− q) ln 1−q
1−p for p > q and 0 otherwise.

For an SVM classifier represented by fu(x) = sign(uTφ(x)) where φ(x) is a

projection from the original space to the feature space by some kernel function,
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the corresponding PAC-Bayes bound is the following where prior and posterior

distributions of the classifier are reduced to prior and posterior distributions of its

weight vector u.

Corollary 1 (Langford [13] [Corollary 5.4]). Consider the prior is P (u) = N (0, I)

and the posterior is Q(u) = N (µω, I) where µ and ω separately indicate the

norm and the direction of the mean vector. For any data distribution D, for any

δ ∈ (0, 1]:

Pr
X∼Dm

(
∀ω, µ : KL+(EQ,X ||EQ,D) ≤

µ2

2
+ ln(m+1

δ
)

m

)
≥ 1− δ. (7)

To bound the average true error EQ,D, it is necessary to calculate the average

empirical error EQ,X . Equation (8) shows how to compute it under the posterior

distribution Q(u) = N (µω, I) with ||ω|| = 1,

EQ,X = EX
[
F

(
µ
yωTφ(x)

||φ(x)||

)]
, (8)

where F (x) =
∫∞
x

1√
2π
e−

x2

2 dx. The generalization error of the original SVM

classifier is upper-bounded by at most twice the average true error on the Gibbs

classifier [35].

2.3. Stability-Based Single-view PAC-Bayes Bounds

Define z = (x, y) for shortening the notation. For a single-view learning

algorithm A, it learns a function f on the training set X and learns another function

fz(i)→z(j) on the changed training set where an example z(i) is substituted by

another example z(j). The stability coefficient of A is defined as

βm = sup
i∈[m]

∣∣∣∣∣∣fz(i)→z(j) − f
∣∣∣∣∣∣
∞
, (9)
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where m is the number of instances. Obviously, the smaller the stability coefficient

is, the more stable the learning algorithm is. To blend the stability into the PAC-

Bayes analysis for getting a tighter bound, Rivasplata et al. [21] proposed a new

Gaussian assumption for the prior distribution of the classifier and gave the stability-

based single-view PAC-Bayes bound as follows.

Theorem 2 (Rivasplata et al. [21] [Theorem 2]). Let A be a single-view learning al-

gorithm, whose stability coefficient is βm. Consider the prior is P = N (E[f ], σ2I)

and the posterior is Q = N (f, σ2I). For any data distribution D, for any variance

σ2, for any δ ∈ (0, 1], with probability at least 1− δ the following holds:

KL+(EQ,X ||EQ,D) ≤
1

2σ2mβ
2
m

(
1 +

√
1
2

ln
(

2
δ

))2

+ ln
(
m+1
δ
2

)
m

. (10)

For a specific learning algorithm, it is necessary to calculate the upper bound on

the stability coefficient βm. Taking the SVM as an example, the optimal function is

SVMλ(u) = arg min
u

(
1

m

m∑
i=1

l
(
fu
(
x(i)
)
, y(i)

)
+ λ||u||2

)
, (11)

where l is the hinge loss which is convex. In this context, stability of the SVM

reduces to stability of its learned weight vector u [21]. Then the upper bound on

its stability coefficient [22, Theorem 22] is

βm ≤
K2

2mλ
, (12)

whereK2 is the upper bound of the taken kernel function. Hence, the stability-based

PAC-Bayes bound of an SVM classifier is given below.
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Corollary 2 (Rivasplata et al. [21] [Corollary 3]). Let u be weight vector of an SVM

algorithm and βm be the stability coefficient of u. Consider the prior distribution is

P = N (E[u], σ2I) and the posterior distribution is Q = N (u, σ2I). For any data

distribution D, for any variance σ2, with probability at least 1− δ the following

holds:

KL+(EQ,X ||EQ,D) ≤
K4

8mσ2λ2

(
1 +

√
1
2

ln
(

2
δ

))2

+ ln
(
m+1
δ
2

)
m

. (13)

In general, the above stability-based bound is competitive with the non-stability

bound whenQ in Corollary 1 equalsN (u, σ2I). Furthermore, it can achieve tighter

performance when the hyper-parameters λ takes larger values.

2.4. Non-stability Multi-view Generalization Bounds

Previous theoretical research of multi-view learning mostly focused on co-

regularization algorithms. Rademacher complexity was adopted to analyze the

generalization performance of the SVM-2K [36], which was extended to the semi-

supervised learning setting by Szedmak and Shawe-Taylor [37]. The corresponding

bound relies on the empirical estimate for Rademacher complexity and takes

expectation under the data generating distribution. That means, this approach

implicitly depends on the data generating distribution to define the function class,

while PAC-Bayes framework explicitly defines the prior which benefits to encoding

complex prior knowledge in terms of the data generating distribution. Sridharan and

Kakade [38] provided an analysis of multi-view learning in an information theoretic

framework and also gave performance bounds of co-regularization algorithms and

SVM-2K with respect to Rademacher complexity. Their bounds compares to the
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Bayes optimal predictor and relies on unlabeled data. Different from these works,

we provide generalization bounds of multi-view regularization algorithms from the

PAC-Bayes framework.

Sun et al. [25] adopted the PAC-Bayes framework to evaluate the generalization

performance of the MvSVM algorithm. They considered two prior distributions

of weight parameters u1 and u2 from two views and multiplied them with a view-

consistent function in order to obtain the prior distribution of the concatenated

weight u. The posterior was isotropic Gaussian distribution N (µω, I) where µ

and ω are the norm and the direction of the mean vector, respectively. Four bounds

were proposed with the same view-consistent function

V (u1,u2) = exp
{
− 1

2σ2
2

E(x1,x2)

[
xT

1u1 − xT
2u2

]2}
. (14)

The view-consistent function made the prior distribution more concerned with

weights which produced agreement of classifiers from two views. Choosing priors

of isotropic Gaussians centered at origin N (0, I), they obtained Theorem 3 and

Theorem 4. Theorem 5 and Theorem 6 were provided by considering priors of

isotropic Gaussians centered at the expected outputs of the algorithm N (ηωp, I)

where ωp = E(x,y)∼D[yx]. The difference between Theorem 3 and Theorem 4

(Theorem 5 and Theorem 6) was whether they involved the dimensionality n,

which was caused by different inequalities. The n-independent bounds could be

utilized when the dimensionality of the feature space using the kernel trick went

to infinity. Their experimental results indicated that there was much space and

possibility for further developments of multi-view PAC-Bayes analysis. Based on

that, our paper proposes a novel view-consistent function and blends the uniform
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stability of algorithms to promote theoretical analysis.

Theorem 3 (Sun et al. [25] [Theorem 5]). For any data distribution D, for any

δ ∈ (0, 1], with probability at least 1− δ, the following formula holds:

∀ω, µ : KL+(EQ,X ||EQ,D) ≤

−n
2

ln

[
hm −

(
n

√(
R
σ2

)2

+ 1− 1

)√
1

2m
ln
(

3
δ

)]
+

m

+

rm
2σ2

2
+ R2

2σ2
2

(1 + µ2)
√

1
2m

ln
(

3
δ

)
+ µ2

2
+ ln

(
m+1
δ
3

)
m

,

(15)

where hm = 1
m

∑m
i=1

∣∣∣I + x̃(i)x̃(i)T

σ2
2

∣∣∣ 1n , rm = 1
m

∑m
i=1

[
x̃(i)Tx̃(i) + µ2

(
ωTx̃(i)

)2
]
,

R = supx̃||x̃|| and x̃ =
[
xT

1 ,−xT
2

]T.

Theorem 4 (Sun et al. [25] [Theorem 6]). For any data distribution D, for any

δ ∈ (0, 1], with probability at least 1− δ, the following formula holds:

∀ω, µ : KL+(EQ,X ||EQ,D)

≤
hm
2

+ 1
2

(
(1+µ2)R2

σ2
2

+ ln
(

1 + R2

σ2
2

))√
1

2m
ln 2

δ
+ µ2

2
+ ln

(
m+1
δ
2

)
m

,

(16)

where hm = 1
m

∑m
i=1

(
1
σ2
2

[
x̃(i)Tx̃(i) + µ2

(
ωTx̃(i)

)2
]
− ln

∣∣∣I + x̃(i)x̃(i)T

σ2
2

∣∣∣).

Theorem 5 (Sun et al. [25] [Theorem 7]). For any data distribution D, for any

δ ∈ (0, 1], for any ω, µ, and η, with probability at least 1−δ, the following formula
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holds:

KL+(EQ,X ||EQ,D)

≤
−n

2
ln
[
hm −

(
n
√

(R/σ2)2 + 1− 1
)√

1
2m

ln 4
δ

]
+

+ rm
2σ2

2
+ ln

(
m+1
δ
4

)
m

+

1
2

(
ηR√
m

(
2 +

√
2 ln 4

δ

)
+ ||ηωp − µω||+ µ

)2

+
R2+µ2R2+4ηµσ2

2R

2σ2
2

√
1

2m
ln 4

δ

m
,

(17)

where ωp = E(x,y)∼D[yx], hm = 1
m

∑m
i=1

∣∣∣I + x̃(i)x̃(i)T

σ2
2

∣∣∣ 1n and

rm = 1
m

∑m
i=1

[
x̃(i)Tx̃(i) − 2ηµσ2

2y
(i)
(
ωTx(i)

)
+ µ2

(
ωTx̃(i)

)2
]
.

Theorem 6 (Sun et al. [25] [Theorem 8]). For any data distribution D, for any

δ ∈ (0, 1], for any ω, µ, and η, with probability at least 1−δ, the following formula

holds:

KL+(EQ,X ||EQ,D) ≤
1
2

(
ηR√
m

(
2 +

√
2 ln 3

δ

)
+ ||ηωp − µω||+ µ

)2

+ hm
2

m

+

R2+4ηµσ2
2R+µ2R2+σ2

2 ln

(
1+R2

σ22

)
2σ2

2

√
1

2m
ln 3

δ
+ µ2

2
+ ln

(
m+1
δ
3

)
m

,

(18)

where hm = 1
m

∑m
i=1

(
1
σ2
2

[
x̃(i)Tx̃(i) − 2ηµσ2

2y
(i)
(
ωTx(i)

)
+ µ2

(
ωTx̃(i)

)2
])

+ 1
m

∑m
i=1

(
− ln

∣∣∣I + x̃(i)x̃(i)T

σ2
2

∣∣∣).

Another relevant work was done by Goyal et al. [28]. They considered a

two-level hierarchy for distributions of multiple views. Specific prior and learned

posterior distributions were utilized for specific views. Hyper-prior and learned
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hyper-posterior distributions were considered over the views. Based on this strat-

egy, they derived both probabilistic and expected risk bounds theoretically which

exhibited a notion of diversity, and designed two multi-view algorithms based on

the two-level PAC-Bayes strategy. Compared with their bounds, our probabilistic

PAC-Bayes bound is derived by the consistency-dependent prior distribution which

combines the priors from each view. As another difference, our bound is proposed

to analyze the generalization performance of multi-view algorithms, rather than

design algorithms and optimize the model parameters.

3. Stability-Based PAC-Bayes Bounds for Multi-view Algorithms

We firstly describe the stability-based multi-view PAC-Bayes bound with a

novel view-consistency regularization which makes a constraint between the out-

puts of the two views. Then we also derive a stability-based multi-view PAC-Bayes

bound without the view-consistency constraint for performance comparisons.

We consider the linear classifiers of the form f(x) = sign
(
uTx

)
where u =[

uT
1 ,u

T
2

]T is the concatenated weight vector from two views and x =
[
xT

1 ,x
T
2

]T is

the concatenated feature vector. Note that the feature vector can be transformed

into another feature space by some kernel function φ(x). The average weight vector

is E[u] =
[
E[u1]T,E[u2]T

]T where E[u] is the expected output of the multi-view

learning algorithm. We also define x̃ =
[
xT

1 ,−xT
2

]T for marking conveniently.

3.1. The Bound with the View-Consistency Regularization

Consider that the prior distributions of weights from the two views are

P1(u1) = N (E[u1], σ2
1I), (19)
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P2(u2) = N (E[u2], σ2
1I). (20)

The prior distribution of the weights on the concatenated space is defined as

P (u) ∝ P1(u1)P2(u2)V (u1,u2), (21)

where V (u1,u2) is a view-consistency regularization function.

The previous view-consistency regularization function used in Sun et al. [25]

was defined in Equation (14), which made the prior place large probability mass

on weight vectors where the random classifiers from two views agree well on all

examples averagely. To produce a stability-based prior distribution, we define our

novel view-consistency regularization function as

V (u1,u2) = exp
{
− 1

2σ2
2

E(x1,x2)

[
xT

1 (u1 − E[u1])− xT
2 (u2 − E[u2])

]2}
. (22)

It indicates that the prior distribution focuses more on the weights which result in

less fluctuations of agreements between the random classifiers from two views on

all instances averagely.

According to Equation (21), we firstly obtain the prior distribution of the

weights as follows (the detailed derivation is given in Appendix A).

P (u) = exp

{
−1

2
(u− E[u])T

(
I

σ2
1

+
E
[
x̃x̃T

]
σ2

2

)
(u− E[u])

}
. (23)

Hence, P (u) = N (E[u],Σ) with Σ =

(
I
σ2
1

+
E[x̃x̃T]
σ2
2

)−1

. Suppose that the

posterior distribution is Q(u) = N (u, I). With the following formula of the KL

divergence between two Gaussian distributions

KL(N (u0,Σ0)||N (u1,Σ1))

=
1

2

(
ln

(
|Σ1|
|Σ0|

)
+ tr

(
Σ−1

1 Σ0

)
+ (u1 − u0)TΣ−1

1 (u1 − u0)− n
)
,

(24)
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where n is the dimensionality of the feature space, we obtain the KL divergence

between the prior distribution P (u) and the posterior distribution Q(u) of a multi-

view learning algorithm as follows (the derivation is provided in Appendix B).

KL(Q(u)||P (u)) = 1

2

[
− ln

(∣∣∣∣ Iσ2
1

+
E[x̃x̃T]

σ2
2

∣∣∣∣)+
1

σ2
2

E
[
x̃Tx̃

]]
+

1

2

[
+(E[u]− u)TE

[
I

σ2
1

+
x̃x̃T

σ2
2

]
(E[u]− u) +

n

σ2
1

− n
]
.

(25)

Since our defined prior distribution involves the input distribution via the view-

consistent function, Equation (25) contains expectation over the input distribution

which is unable to be computed directly. Hence, we upper-bound the KL term

to provide the stability-based multi-view PAC-Bayes bound that considers the

view-consistency regularization. The detailed derivation is given in Appendix C

and the corresponding bound is as follows.

Theorem 7. Let A be a multi-view learning algorithm, whose stability coefficient

is βm. Consider that the prior distribution is given in (23) and the posterior

distribution is Q(u) = N (u, I). For any data distribution D, for any δ ∈ (0, 1],

with probability at least 1− δ, the following inequality holds:

KL+(EQ,X ||EQ,D) ≤

−n
2

ln

[
hm −

(
n

√(
R
σ2

)2

+ 1
σ2
1
− 1

σ2
1

)√
1

2m
ln
(

3
δ

)]
+

+R2

m

+

(
1
σ2
1

+ R2

σ2
2

)
mβ2

m

(
1 +

√
1
2

ln 3
δ

)2

+ n
σ2
1
− n+ ln

(
m+1
δ
3

)
m

,

(26)

where hm = 1
m

∑m
i=1

∣∣∣ I
σ2
1

+ x̃(i)x̃(i)T

σ2
2

∣∣∣ 1n , (·)+ = max(0, ·), R = supx̃||x̃|| and n is

the dimensionality of the feature space.
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It is clear that the stability coefficient βm controls the tightness of the PAC-

Bayes bound. The smaller the upper bound on the βm is, the tighter the multi-view

PAC-Bayes bound will be. Hence, a more stable algorithm will likely lead to a

tighter PAC-Bayes bound and achieve better generalization performance.

3.2. The Bound without the View-Consistency Regularization

To illustrate the performance of our proposed view-consistency regularization

function, we now neglect the view-consistency constraint and directly adapt the

single-view stability-based PAC-Bayes bound to the multi-view learning setting.

It means that the outputs among different views are independent, which may

cause large differences when data in different views reveal different extents of

information.

Without the view-consistency regularization between two views, the prior

distribution of weights on the concatenated space is simply proportional to the

product of prior distributions of weights from two views. Consider that P (u1) =

N (E[u1], σ2I) and P (u2) = N (E[u2], σ2I). Then the prior distribution of a

learner is given by

P (u) ∝ P (u1)P (u2) = exp
{
−1

2
(u− E[u])T

1

σ2
(u− E[u])

}
. (27)

That is, P (u) = N (E[u], σ2I). Given that Q(u) = N (u, σ2I), we obtain the KL

divergence between the two distributions according to Equation (24) as follows

KL(Q(u)||P (u)) =
1

2

(
tr
(

I

σ2
· σ2I

)
+ (E[u]− u)T

1

σ2
(E[u]− u)− n

)
=

1

2σ2
(E[u]− u)2.

(28)
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We give the stability-based multi-view bound without the view-consistency

regularization below (the detailed derivation is given in Appendix D).

Theorem 8. Let A be a multi-view learning algorithm, whose stability coefficient

is βm. Consider that the prior distribution is given in (27) and the posterior

distribution is Q(u) = N (u, σ2I). For any data distribution D, for any variance

σ2, for any δ ∈ (0, 1], with probability at least 1 − δ, the following inequality

holds:

KL+(EQ,X ||EQ,D) ≤
1

2σ2mβ
2
m

(
1 +

√
1
2

ln
(

2
δ

))2

+ ln
(
m+1
δ
2

)
m

. (29)

Lacking the view-consistency constraint, the priors of weights from different

views are independent of each other which produce the same prior distribution as

that in the single-view learning setting. In addition, the above formula again shows

that if an algorithm is more stable, its generalization performance will be better.

4. Upper-Bounding the Stability Coefficient of Multi-view Algorithms

To compute the specific PAC-Bayes bound of a multi-view learning algorithm,

it is necessary to derive the upper bound on its stability coefficient βm. The multi-

view regularization algorithm minimizes the following objective to learn an optimal

weight vector u∗ on the training set X

J (u) =
1

2m

m∑
i=1

l
(
fu
(
x(i)
)
, y(i)

)
+ λ1N(u) + λ2M(u), (30)

where l is the loss function, N and M are convex functions from U to R ∪

{−∞,+∞}, and λ1 and λ2 are regularization coefficients. Consider the loss

function is σ-admissible, whose definition is provided in Definition 1.
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Definition 1. A loss function l is σ-admissible if possible predictions y1, y2 satisfy

the following inequality:

|l(y1, y)− l(y2, y)| ≤ σ |y1 − y2| . (31)

When J is everywhere differentiable, the Bregman divergence associated to J

of u to v is defined by ∀v,u ∈ U , dJ (v,u) = J (v)− J (u)− 〈v − u,5J (u)〉

where 5J (u) is a subgradient of J in u. We give Lemma 1 to prepare for

upper-bounding the stability coefficient. The proof is given in Appendix E.

Lemma 1. Let l be α-admissible and uz(i)→z(j)

∗ denote a new optimal weight

vector on the changed training set where the example z(i) is substituted by another

example z(j). When l, N , and M are differentiable, we have

λ1dN

(
u∗,u

z(i)→z(j)

∗

)
+ λ2dM

(
u∗,u

z(i)→z(j)

∗

)
+ λ1dN

(
uz(i)→z(j)

∗ ,u∗

)
+ λ2dM

(
uz(i)→z(j)

∗ ,u∗

)
≤ α

2m

(∣∣∆uT
∗x

(i)
∣∣+
∣∣∆uT

∗x
(j)
∣∣) ,

where ∆u∗ = uz(i)→z(j)

∗ − u∗, dN
(
u∗,u

z(i)→z(j)

∗

)
and dM

(
u∗,u

z(i)→z(j)

∗

)
are the

Bregman divergences associated to N and M of u∗ to uz(i)→z(j)

∗ , respectively.

We specialize Lemma 1 to the MvSVM, whose objective function is

MvSVMλ1,λ2(u) = arg min
u1,u2

1

2m

m∑
i=1

l
(
fu
(
x(i)
)
, y(i)

)
+ arg min

u1,u2

(
λ1

(
||u1||2 + ||u2||2

)
+ λ2

m∑
i=1

(
uT

1x
(i)
1 − uT

2x
(i)
2

)2
)
,

(32)

where l is the hinge loss function and u = [uT
1 ,u

T
2 ]T. In this context, the upper

bound on the stability coefficient of the MvSVM algorithm is given by Theorem 9.
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Theorem 9. Consider an MvSVM algorithm with a stability coefficient βm. Let

K2 be the upper bound of some kernel function. We obtain the upper bound on the

stability coefficient

βm ≤
K2

2m (λ1 + λ2R2)
, (33)

where R = supx̃ ||x̃|| and x̃ = [xT
1 ,−xT

2 ]T.

Proof. Comparing the target function of the MvSVM algorithm with the general

form of multi-view regularization algorithms, we get N(u) = ||u||2, M(u) =

(uTx̃)2 where x̃ = [xT
1 ,−xT

2 ]T. The Bregman divergences associated to N and M

of u∗ to uz(i)→z(j)

∗ are given as follows

dN

(
u∗,u

z(i)→z(j)

∗

)
=
∣∣∣∣∣∣u∗ − uz(i)→z(j)

∗

∣∣∣∣∣∣2 = ||∆u∗||2 .

dM

(
u∗,u

z(i)→z(j)

∗

)
=
(
uT
∗ x̃− uz(i)→z(j)T

∗ x̃
)2

=
(
∆uT

∗ x̃
)2

=
∣∣∣∣∆uT

∗ x̃
∣∣∣∣2 ≤ ∣∣∣∣∆uT

∗
∣∣∣∣2 ||x̃||2 ≤ ∣∣∣∣∆uT

∗
∣∣∣∣2R2 = ||∆u∗||2R2,

where R = supx̃ ||x̃||. Applying Lemma 1, we obtain

2λ1||∆u∗||2 + 2λ2||∆u∗||2R2 ≤ α

2m

(∣∣∆uT
∗x

(i)
∣∣+
∣∣∆uT

∗x
(j)
∣∣) .

The reproducing property of a reproducing kernel Hilbert space (RKHS) is

written as ∀x,uTx = 〈u, k(x, ·)〉. With Cauchy-Schwarz’s inequality, we have

∀x, |uTx| ≤ ||u||
√
k(x,x). It is direct to get that∣∣∆uT
∗x

(i)
∣∣ ≤ ||∆u∗||

√
k (x(i),x(i)) ≤ K||∆u∗||,

where we denote
√
k(x,x) ≤ K. In the same way,

∣∣∆uT
∗x

(j)
∣∣ ≤ K||∆u∗||. Hence,

2λ1||∆u∗||2 + 2λ2||∆u∗||2R2 ≤ α

2m
· 2K||∆u∗|| ≤

αK
m
||∆u∗||.
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Then we get

||∆u∗|| ≤
αK

2m(λ1 + λ2R2)
,

and thus ∣∣∆uT
∗x

(i)
∣∣ ≤ αK2

2m(λ1 + λ2R2)
.

Since the loss function is the hinge loss which is 1-admissible, that is, α = 1.

Recalling the definition of βm in Section 2.3, we give the upper bound on the

stability coefficient

βm = sup
i∈[m],∀x

∣∣∣∣∣∣uz(i)→z(j)T
∗ x− uT

∗x
∣∣∣∣∣∣
∞
≤ sup

i∈[m]

∣∣∆uT
∗x

(i)
∣∣ ≤ K2

2m(λ1 + λ2R2)
.

Consequently, a direct application of Theorem 7 together with Theorem 9 gives

the view-consistency stability-based PAC-Bayes bound for the MvSVM algorithm

as below.

Corollary 3. Consider an MvSVM algorithm with a stability coefficient βm. Sup-

pose that the prior distribution is given in (23) and the posterior distribution is

Q(u) = N (u, I). For any data distribution D, for any δ ∈ (0, 1], with probability

at least 1− δ, the following inequality holds:

KL+(EQ,X ||EQ,D) ≤

−n
2

ln

[
hm −

(
n

√(
R
σ2

)2

+ 1
σ2
1
− 1

σ2
1

)√
1

2m
ln
(

3
δ

)]
+

+R2

m

+

(
1
σ2
1

+ R2

σ2
2

)
K4

4m(λ1+λ2R2)2

(
1 +

√
1
2

ln 3
δ

)2

+ n
σ2
1
− n+ ln

(
m+1
δ
3

)
m

,

(34)
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where hm = 1
m

∑m
i=1

∣∣∣ I
σ2
1

+ x̃(i)x̃(i)T

σ2
2

∣∣∣ 1n , (·)+ = max(0, ·), R = supx̃||x̃|| and n is

the dimensionality of the feature space.

Compared with the four non-stability PAC-Bayes bounds of the MvSVM

algorithm which are introduced in Theorems 3, 4, 5, and 6, our stability-based

bound has a term involving the hyper-parameters λ1 and λ2 of the algorithm. This

term decreases as the values of λ1 and λ2 increase, which control the strength

of penalization on the norms of classifiers from two views and the disagreement

between the classifiers, respectively. It indicates that the stability-based bound is

sensitive to the hyper-parameters of the algorithm.

The following expressions list the convergence rates of these bounds as func-

tions of the number of examples m:

O
((

ln
√

1/m+
√

1/m+ lnm
)
/m
)
, (Theorem 3) (35)

O
((√

1/m+ lnm
)
/m
)
, (Theorem 4) (36)

O
((

ln
√

1/m+ 1/m+
√

1/m+ lnm
)
/m
)
, (Theorem 5) (37)

O
((

1/m+
√

1/m+ lnm
)
/m
)
, (Theorem 6) (38)

O
((

ln
√

1/m+ 1/m+ lnm
)
/m
)
. (Corollary 3) (39)
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Although convergence rates of all these bounds are dominated by the lnm
m

term, our

stability-based bound improves the rate in the other terms. Specifically, we have the

inequality when m > 1:
(

ln
√

1/m+ 1/m
)
/m <

(
ln
√

1/m+
√

1/m
)
/m <√

1/m/m, which means that the stability-based bound shrinks faster than the

bounds delivered by Theorems 3 and 4. The bounds presented by Theorems

5 and 6 drop slower than the stability-based bound since the inequality holds

when m > 1:
(

ln
√

1/m+ 1/m
)
/m <

(
ln
√

1/m+ 1/m+
√

1/m
)
/m <(

1/m+
√

1/m
)
/m. We present quantitative comparisons of these bounds in the

experiments.

For experimental comparisons, we give the stability-based multi-view bound

without the view-consistency regularization as follow by combining Theorem 8

and Theorem 9.

Corollary 4. Consider an MvSVM algorithm with a stability coefficient βm. Sup-

pose that the prior distribution is given in (27) and the posterior distribution

is Q(u) = N (u, σ2I). For any data distribution D, for any δ ∈ (0, 1], with

probability at least 1− δ, the following inequality holds:

KL+(EQ,X ||EQ,D) ≤
K4

8σ2m(λ1+λ2R2)2

(
1 +

√
1
2

ln
(

2
δ

))2

+ ln
(
m+1
δ
2

)
m

. (40)

The stability-based bound without the view-consistency constraint seems simi-

lar to the single-view stability-based bound presented by Corollary 2, expect for

the first term on the right hand side. This term comes from the upper bound on the

stability coefficient of the MvSVM, which is different from that of the SVM.
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4.1. Remarks on the Regularization Parameters λ1 and λ2

To theoretically illustrate benefits of multi-view learning and stability, we

investigate the influence of the regularization hyper-parameters λ1 and λ2 on

different bounds, including the single-view non-stability bound (Corollary 1), the

single-view stability-based bound (Corollary 2), the multi-view non-stability bound

(Theorem 3), and the multi-view stability-based bound (Corollary 3). To this end,

we apply the multi-view bounds to the multi-view regularization problem (32) and

the single-view bounds to the same problem but without the co-regularization term.

Since the non-stability bounds do not depend on λ1 and λ2 explicitly, we first

use the following relationship, due to the equivalence between regularization and

constraint for convex optimization problems,

||u1||2 + ||u2||2 ≤
k1

λ1

, (41)

m∑
i=1

(
uT

1x
(i)
1 − uT

2x
(i)
2

)2

≤ k2

λ2

, (42)

where k1, k2 > 0 are some constants, to bound the corresponding terms in the

single-view non-stability bound and the multi-view non-stability bound. We have

∀ω, µ : KL+(EQ,X ||EQ,D) ≤
k1

2λ1
+ ln(m+1

δ
)

m
, (43)

and

∀ω, µ : KL+(EQ,X ||EQ,D) ≤

−n
2

ln

[
hm −

(
n

√(
R
σ2

)2

+ 1− 1

)√
1

2m
ln
(

3
δ

)]
+

m

+

R2

2σ2
2

+ k2
2mσ2

2λ2
+ R2

2σ2
2

(
1 + k1

λ1

)√
1

2m
ln
(

3
δ

)
+ k1

2λ1
+ ln

(
m+1
δ
3

)
m

,

(44)
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where hm = 1
m

∑m
i=1

∣∣∣I + x̃(i)x̃(i)T

σ2
2

∣∣∣ 1n , R = supx̃||x̃|| and x̃ =
[
xT

1 ,−xT
2

]T.

Comparison of multi-view stability-based bound with single-view bounds

On one hand, note that the single-view non-stability bound and the single-view

stability-based bound depend on λ1 in the forms of 1
λ1

and 1
λ21

, respectively, which

suggests that the stability-based bound is more sensitive to the change in the

strength of regularization than the non-stability one. Our multi-view stability-based

bound relies on λ1 and λ2 in the form of 1
(λ1+λ2R2)2

, where the additional view-

consistency constraint could directly empower the L2-regularization to decrease

the bound. This provides an explanation on how view-consistency regularization

in multi-view learning algorithms can lead to better generalization.

Comparison of multi-view bounds On the other hand, the multi-view non-

stability bound depends on λ1 and λ2 in a different way, which is in the forms

of 1
λ1

and 1
λ2

separately. Although increasing the strength of view-consistency

regularization could decrease the bound, it is unclear whether the multi-view non-

stability bound could improve over the corresponding single-view non-stability one

by comparing Equation (44) and Equation (43). However, our multi-view stability-

based bound is controlled by λ1 and λ2 in a coupled way due to stability, which

could indicate the potential superiority over the single-view stability-based bound

by comparing 1
(λ1+λ2R2)2

in Corollary 3 and 1
λ21

in Corollary 2. This demonstrates

the advantage of stability on explaining why the multi-view stability-based bound

may outperform the single-view stability-based bound. Furthermore, the multi-

view stability-based bound decreases faster than the multi-view non-stability bound

when enhancing the strength of regularization, since the multi-view stability-based
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bound is influenced by the hyper-parameters λ1 and λ2 in a higher order. This

provides another benefit of stability on tightening multi-view bounds.

5. Experiments

We train the SVM and MvSVM on nine datasets to compare multi-view learning

algorithms with single-view learning algorithms and evaluate the performance of

the proposed stability-based multi-view bound. We first introduce datasets and

experimental configurations, and then report the experimental results.

5.1. Datasets

We describe the characteristics of all nine datasets in detail. Table 1 lists the

number of instances, the number of positive instances, the number of negative

instances, the feature dimensionality of view 1, the feature dimensionality of view

2, the features of view 1, and the features of view 2.

Ads The Ads dataset is used to classify web images into advertisements and

non-advertisements [39]. The two views represent the image itself (terms in the

image’s caption, URL and alt text) and other objects in the web page (terms in the

page and destination URLs), respectively.

Course The Course dataset is used for the web page classification problem,

which judges whether a web page is a course web page or not [40]. A web page

is described by two views where one is the content in the web page itself and the

other is the anchor text of any web page linking to it.

Hand The Hand dataset is taken from the UCI machine learning repository [41]

to distinguish images of ten handwritten digits. For simplicity, we recognize two
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classes where one is (1, 2, 3) and the other is (4, 5, 6). Each example is represented

by Fourier coefficients and Karhunen-Loéve coefficients, which serve as two views,

respectively.

Syn We treat two randomly generated direction vectors as two different views

and sample 2000 points, half of which belong to the positive class. If the inner

product between the direction vector and the feature vector is positive, the point

is considered as the positive, otherwise as the negative class. Finally, we add

Gaussian white noise to form the Syn dataset.

Cora The Cora dataset classifies the fields to which scientific publications

belong [42]. There are seven categories. We take the field of the most publications

as the positive class and the rest fields are set to be the negative. Each instance

is expressed by words used in the publication and citation links between other

publications and itself, respectively.

Wis The Wis dataset is a subset of the Course dataset, used to distinguish

whether a web page is a student web page or not. The two views of each web page

are words in the page and words in the links referring to it.

Attack The Attack dataset is used for classifying types of violent attacks. The

original dataset contains six categories and we take the types of the two most violent

attacks as the positive and the negative class. One view shows the information of

the violent attack and the other view expresses the relations between the current

violent attack and other violent attacks that occurred in the same place and were

held by the same organization.

Ionos The Ionos dataset is extracted from the UCI machine learning repository

for classifying the types of structure in the ionosphere [41]. We randomly divide
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Table 1: Descriptions of nine datasets

datasets #samples #pos #neg #view 1 #view 2 view 1 view 2

Ads 3279 459 2820 587 967 images objects except images

Course 1051 230 821 500 87 web contents anchor texts

Hand 1200 600 600 76 64 Fourier coefficients Karhunen-Loéve coefficients

Syn 2000 1000 1000 50 50 one direction vector the other direction vector

Cora 2708 818 1890 1433 2708 words citation links

Wis 265 122 143 1703 265 web contents anchor texts

Attack 1060 498 562 106 1060 violent attacks relationships

Ionos 351 225 126 7 17 randomly split randomly split

Breast 699 458 241 4 5 randomly split randomly split

the features into two views by a ratio of 2:8.

Breast The Breast dataset is also from the UCI machine learning repository and

is used to decide whether one has breast cancer or not [41]. We split the features

into two views averagely.

5.2. Configurations

Each dataset is randomly split into a training set and a test set with a proportion

of 8:2. All the experiments are performed 10 times. We train the SVM classifier

and the MvSVM classifier using the linear kernel with data of different views. In

the training process, we adopt the standard forms of the SVM algorithm and the

MvSVM algorithm, which are

SVMC(u) = arg min
u

(
C

m∑
i=1

l
(
fu
(
x(i)
)
, y(i)

)
+

1

2
||u||2

)
, (45)
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MvSVMC1,C2(u) = arg min
u1,u2

C1

m∑
i=1

l
(
fu
(
x(i)
)
, y(i)

)
+ arg min

u1,u2

(
1

2

(
||u1||2 + ||u2||2

)
+ C2

m∑
i=1

(
uT

1x
(i)
1 − uT

2x
(i)
2

)2
)
.

(46)

The model parameters C in the SVM and C1, C2 in the MvSVM are selected

by three-fold cross-validation, whose ranges are {2−8, 2−7, · · · , 1, 2, 4} × C0 and

{2−4, 2−3, · · · , 1, 2, 4} × C0, respectively, where C0 is the reciprocal of the upper

bound of the feature space transformed by the kernel function.

To compute the upper bounds on the stability coefficients of the SVM algorithm

and the MvSVM algorithm which are separately presented in Equation (12) and

in Equation (33), we illustrate the conversions between the standard forms and

the λ-forms. The λ-forms of the SVM algorithm and the MvSVM algorithm

are presented as Equation (11) and Equation (32), respectively. Comparing the

standard forms with λ-forms of the SVM and the MvSVM, we could get

λ =
1

2mC
, (47)

and

λ1 =
1

4mC1

, λ2 =
C2

2mC1

. (48)

According to the forementioned theoretical analysis, the stability-based multi-

view bound will tend to decrease when the hyper-parameters λ1 and λ2 take larger

values. Therefore, smaller values of C1 and larger values of C2 might lead to a

tighter bound.

In addition, all PAC-Bayes bounds are computed with a confidence of δ = 0.05.

Let σ2 be 100 to calculate the multi-view PAC-Bayes bounds. For view-consistency
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multi-view stability-based bounds, σ1 is equal to 100. For multi-view stability-

based bounds without the view-consistency constraint and single-view stability-

based bounds, we fix σ to be 1.

5.3. Results

To illustrate the superiority of multi-view learning algorithms over single-

view learning algorithms, we compare classification errors and the corresponding

stability-based PAC-Bayes bounds. We are interested in the strengths and weak-

nesses of various multi-view bounds, especially in their tightness and their ability

to support model selection.

5.3.1. Multi-view Algorithms vs. Single-view Algorithms

We illustrate the superior performance of multi-view learning over single-view

learning in terms of classification errors and stability-based PAC-Bayes bounds.

Classification Errors The averages and standard deviations of classification

errors of different learning algorithms are shown in Table 2. To illustrate the

significance of these empirical errors, it also includes the confidence intervals when

the confidence is 95%. SVM-v1 and SVM-v2 are the SVM classifiers trained

on view 1 and view 2, respectively. By concatenating view 1 and view 2 into a

long single view, we obtain results of SVM-v3 with the SVM algorithm. The

MvSVM-v3 classifier is trained on view 1 and view 2. By randomly dividing view

1 (2) into two parts, we obtain the MvSVM-v1 (MvSVM-v2) classifier.

From the table, the MvSVM algorithm achieves the highest performance on

seven of the nine datasets. It demonstrates that simply concatenating two views

into a single long view usually cannot capture the structural information among

30



Table 2: Averages (%), standard deviations (%) and confidence intervals (%) of classification errors.

Each dataset contains two rows where the first row shows averages and standard deviations, and

the second row is confidence intervals at the 95% confidence. The bold numbers mean the best

performance.

Error SVM-v1 SVM-v2 SVM-v3 MvSVM-v1 MvSVM-v2 MvSVM-v3

Hand
5.25±1.69 3.58±1.01 1.33±0.38 6.21±1.32 5.17±0.95 1.92±0.93

[4.20, 6.30] [2.96, 4.20] [1.09, 1.57] [5.39, 7.03] [4.58, 5.76] [1.35, 2.49]

Cora
12.03±1.76 18.60±1.11 10.44±1.02 13.39±1.54 18.89±0.65 11.68±1.06

[10.94, 13.12] [17.81, 19.29] [9.81, 11.07] [11.86, 14.93] [18.49, 19.29] [11.02, 12.34]

Attack
7.78±2.11 43.07±3.14 8.07±2.67 7.52±0.82 39.46±1.18 10.39±0.98

[6.47, 9.09] [41.13, 45.01] [6.41, 9.73] [7.01, 8.03] [38.73, 40.19] [9.78, 11.00]

Ionos
15.29±5.39 18.43±6.44 15.00±5.31 13.29±3.02 18.14±3.69 13.71±3.88

[11.95, 18.63] [14.44, 22.42] [11.71, 18.29] [11.42, 15.16] [15.85, 20.43] [11.30, 16.12]

Ads
4.48±0.70 3.66±0.55 3.19±0.47 5.08±0.62 4.16±0.45 2.85±0.65

[4.05, 4.91] [3.32, 4.00] [2.90, 3.48] [4.70, 5.46] [3.88, 4.44] [2.45, 3.25]

Course
9.33±1.08 6.38±1.27 5.24±0.98 17.14±1.37 5.43±1.44 4.62±0.90

[8.66, 10.00] [5.59, 7.17] [4.36, 5.85] [16.29, 17.99] [4.54, 6.32] [4.06, 5.18]

Syn
13.45±1.60 17.08±0.90 8.12±1.21 39.97±1.93 38.90±2.62 7.30±0.75

[12.46, 14.44] [16.52, 17.64] [7.37, 8.87] [38.77, 41.17] [37.27, 40.53] [6.83, 7.77]

Wis
13.21±12.00 33.21±6.55 10.38±2.85 14.15±9.30 38.49±4.46 10.19±4.81

[5.77, 20.65] [29.15, 37.27] [8.62, 12.14] [8.39, 19.91] [35.27, 41.26] [7.21, 13.17]

Breast
5.36±1.23 5.79±1.76 7.57±1.82 6.14±1.76 8.50±4.40 4.29±1.78

[4.60, 6.12] [4.70, 6.88] [6.44, 8.70] [5.50, 7.23] [5.82, 11.22] [3.19, 5.39]
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multiple views well, while multi-view learning provides the merit by constraining

outputs of multiple views. It also reflects the advantage of multi-view learning

over single-view learning in terms of empirical errors. Furthermore, for the Ionos

and Breast (artificial constructed multi-view datasets), they all get the smallest

classification errors with multi-view learning algorithms. This illustrates that

multi-view learning may improve the performance of single-view learning on a

single-view dataset in some cases.

Stability-Based PAC-Bayes Bounds Table 3 presents the stability-based PAC-

Bayes bounds of multi-view random classifiers and single-view random classifiers.

SPB represents the stability-based single-view bound which is introduced in Corol-

lary 2. MPB and MPBc correspond to directly adapted and view-consistency

multi-view bounds, respectively. The MPBc bounds are always tighter than the

SPB bounds on all the nine datasets, which demonstrates that multi-view learning

algorithms are superior to single-view learning algorithms in terms of generaliza-

tion performance. In addition, the MPB bounds are clearly worse than the MPBc

bounds. This demonstrates that the newly proposed view-consistency function

indeed contributes to tightening the multi-view bounds.

5.3.2. Stability-Based Multi-view Bounds vs. Non-stability Multi-view Bounds

We explore the strengths and weaknesses of various multi-view bounds from

the aspects of tightness and the ability to support model selection. Since the MPB

bound is not our focus, it is not compared with other non-stability multi-view

bounds. MPBod and MPBoi are separately dimension dependent and independent

non-stability multi-view bounds where the priors of isotropic Gaussians centered
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Table 3: Averages (%) and standard deviations (%) of multi-view and single-view stability-based

PAC-Bayes bounds over expected Gibbs errors. SPB-∗ are the single-view bounds over the SVM-∗

Gibbs classifiers. MPB-∗ and MPBc-∗ correspond to directly adapted and view-consistency multi-

view bounds over the MvSVM-∗ Gibbs classifiers, respectively. The tightest bounds are shown in

bold.

Bound Ads Course Hand Syn Cora Wis Attack Ionos Breast

SPB-v1
41.16 41.30 50.34 55.52 52.07 64.29 52.89 55.37 59.47

(±0.00) (±0.00) (±0.30) (±0.00) (±0.00) (±0.00) (±0.14) (±0.17) (±0.00)

MPB-v1
37.36 35.36 57.77 58.13 54.59 70.71 60.63 55.23 68.17

(±0.10) (±0.00) (±0.00) (±0.19) (±0.00) (±0.00) (±0.00) (±0.00) (±0.00)

MPBc-v1
22.28 22.78 21.43 46.56 28.99 40.64 30.36 31.85 47.66

(±0.11) (±0.15) (±0.27) (±0.20) (±0.82) (±0.17) (±0.31) (±0.56) (±0.12)

SPB-v2
42.62 39.29 37.84 55.09 46.22 64.24 57.04 60.00 59.45

(±0.17) (±0.00) (±0.26) (±0.00) (±0.00) (±0.00) (±0.00) (±0.18) (±0.00)

MPB-v2
41.43 34.48 56.41 58.07 43.47 65.12 62.17 62.88 68.52

(±0.11) (±0.00) (±0.20) (±0.00) (±0.00) (±0.00) (±0.00) (±0.00) (±0.00)

MPBc-v2
25.47 20.85 16.16 45.69 26.84 36.40 40.32 36.07 47.03

(±0.00) (±0.28) (±0.29) (±0.12) (±0.17) (±0.64) (±0.36) (±0.49) (±0.31)

SPB-v3
46.46 41.98 45.54 55.26 52.29 64.29 55.93 59.68 59.44

(±0.22) (±0.00) (±0.36) (±0.00) (±0.00) (±0.00) (±0.00) (±0.00) (±0.00)

MPB-v3
45.66 35.94 53.09 58.91 56.10 71.39 64.30 64.59 68.87

(±0.21) (±0.00) (±0.43) (±0.00) (±0.12) (±0.00) (±0.00) (±0.11) (±0.00)

MPBc-v3
26.75 16.00 12.35 36.79 31.67 45.03 34.11 35.46 46.92

(±0.12) (±0.31) (±0.32) (±0.00) (±0.17) (±0.15) (±0.16) (±0.42) (±0.16)
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at origin N (0, I), which are introduced in Theorem 3 and Theorem 4. MPBed and

MPBei are separately dimension dependent and independent non-stability multi-

view bounds where the priors of isotropic Gaussians centered at expected outputs

of the algorithms N (ηωp, I) where ωp = E(x,y)∼D[yx], which are introduced in

Theorem 5 and Theorem 6. MPBc is our proposed stability-based bound.

Tightness To explicitly illustrate the tightness of various multi-view bounds,

we present the differences between these bounds and their corresponding expected

Gibbs errors estimated on test data over different hyper-parameters C1, C2 on Ionos,

Hand, Syn, and Breast datasets which are separately shown in Figure 1, Figure

2, Figure 3, and Figure 4. All PAC-Bayes bounds upper-bound the MvSVM-v3

algorithm. There is no doubt that the discrepancies between the MPBod and MPBoi

bounds are subtle since they are derived in the same way though with different

inequalities. This is also true for the MPBed and MPBei bounds.

From these figures, the obvious difference among the non-stability bounds

and the stability-based bound is that the MPBc bound is sensitive to the value of

C1 and it becomes loose for large values of C1. Meanwhile, the MPBc bound is

slightly sensitive to C2 where the bound becomes tighter for larger values of C2.

This relationship becomes more obvious when C1 is small, which is demonstrated

by Figure 1, Figure 3, and Figure 4. This is in line with our expectations. The

dependency of the non-stability multi-view bounds on C1 and C2 is irregular since

it varies in different ways on different datasets. For example, the MPBod and the

MPBoi bounds achieve better performance when C1 and C2 take smaller values on

the Hand dataset, while for the Syn dataset, they become tighter when C1 and C2

are set to larger values. The MPBed and MPBei bounds perform better with larger
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(a) MPBod (b) MPBoi (c) MPBed

(d) MPBei (e) MPBc

Figure 1: Tightness of multi-view bounds on Ionos dataset shown as the difference between these

bounds and the corresponding expected Gibbs errors. Smaller values are preferred.

(a) MPBod (b) MPBoi (c) MPBed

(d) MPBei (e) MPBc

Figure 2: Tightness of multi-view bounds on Hand dataset shown as the difference between these

bounds and the corresponding expected Gibbs errors. Smaller values are preferred.
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(a) MPBod (b) MPBoi (c) MPBed

(d) MPBei (e) MPBc

Figure 3: Tightness of multi-view bounds on Syn dataset shown as the difference between these

bounds and the corresponding expected Gibbs errors. Smaller values are preferred.

(a) MPBod (b) MPBoi (c) MPBed

(d) MPBei (e) MPBc

Figure 4: Tightness of multi-view bounds on Breast dataset shown as the difference between these

bounds and the corresponding expected Gibbs errors. Smaller values are preferred.
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C1 and smaller C2 on the Ionos dataset, while they become looser on the Breast

dataset in the same condition.

We also present advantages and disadvantages of our MBPc bound over the

previous non-stability bounds on Ionos, Hand, Syn, and Breast datasets which are

shown in Figure 5, Figure 6, Figure 7, and Figure 8, respectively. The stability-

based MPBc bound obviously performs better than other non-stability bounds

when C1 takes smaller values on the four datasets. While C1 is set to larger

values, the MPBod and MPBoi bounds achieve comparatively better performance

on the four datasets. Figure 5 and Figure 7 also illustrate the better performance

of the MPBc bound over other bounds with larger values of C2. In a nutshell,

our proposed MPBc bound is superior to previous non-stability bounds when the

hyper-parameter C1 is within the smaller range or C2 is in the larger range, that is,

when the algorithm is strongly regularized or the outputs of two view tend to agree.

(a) MPBc vs. MP-

Bod

(b) MPBc vs. MPBoi (c) MPBc vs.

MPBed

(d) MPBc vs. MPBei

Figure 5: Differences among the MPBc bound and the MPBod, MPBoi, MPBed, MPBei bounds

over expected Gibbs errors on Ionos dataset. The MPBc bound is preferred when differences are

negative and it performs worse than other bounds when differences are positive.

Model Selection It is worth comparing correlations between the bounds and

their corresponding expected Gibbs errors estimated on test data in order to illus-
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(a) MPBc vs. MP-

Bod

(b) MPBc vs. MPBoi (c) MPBc vs.

MPBed

(d) MPBc vs. MPBei

Figure 6: Differences among the MPBc bound and the MPBod, MPBoi, MPBed, MPBei bounds

over expected Gibbs errors on Hand dataset. The MPBc bound is preferred when differences are

negative and it performs worse than other bounds when differences are positive.

(a) MPBc vs. MP-

Bod

(b) MPBc vs. MPBoi (c) MPBc vs.

MPBed

(d) MPBc vs. MPBei

Figure 7: Differences among the MPBc bound and the MPBod, MPBoi, MPBed, MPBei bounds

over expected Gibbs errors on Syn dataset. The MPBc bound is preferred when differences are

negative and it performs worse than other bounds when differences are positive.
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(a) MPBc vs. MP-

Bod

(b) MPBc vs. MPBoi (c) MPBc vs.

MPBed

(d) MPBc vs. MPBei

Figure 8: Differences among the MPBc bound and the MPBod, MPBoi, MPBed, MPBei bounds

over expected Gibbs errors on Breast dataset. The MPBc bound is preferred when differences are

negative and it performs worse than other bounds when differences are positive.

trate their ability for model selection. Figure 9, Figure 10, Figure 11, and Figure

12 show the correlations over different hyper-parameters C1, C2 on Ionos, Hand,

Syn, and Breast datasets, respectively. All the PAC-Bayes bounds are calculated on

the MvSVM-v3 algorithm. The MPBod and MPBoi bounds (MPBed and MPBei

bounds) perform similarly again.

From these figures, the behaviors of the non-stability bounds follow more

closely the behaviors of the corresponding Gibbs errors surfaces, while the MPBc

bounds tend to perform consistently with their Gibbs errors for small values of

C1 or for large values of C2. However, our MPBc bounds are able to select better

values for C1 and C2 which lead to smaller Gibbs errors. For example, on the Ionos

dataset, the MPBc bound identifies classifiers with smaller Gibbs errors around

0.16 compared with the Gibbs errors of 0.22 corresponding to the MPBod and

MPBoi bounds and the Gibbs errors of 0.31 corresponding to the MPBed and

MPBei bounds.
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(a) MBPod: Gibbs

Errors

(b) MBPod: Bounds (c) MBPoi: Gibbs Er-

rors

(d) MBPoi: Bounds

(e) MPBed: Gibbs

Errors

(f) MBPed: Bounds (g) MBPei: Gibbs Er-

rors

(h) MBPei: Bounds

(i) MPBc: Gibbs Er-

rors

(j) MPBc: Bounds

Figure 9: Ability to support model selection of various multi-view bounds on Ionos dataset shown

as the bounds and the corresponding expected Gibbs errors in pairs.
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(a) MBPod: Gibbs

Errors

(b) MBPod: Bounds (c) MBPoi: Gibbs Er-

rors

(d) MBPoi: Bounds

(e) MPBed: Gibbs

Errors

(f) MBPed: Bounds (g) MBPei: Gibbs Er-

rors

(h) MBPei: Bounds

(i) MPBc: Gibbs Er-

rors

(j) MPBc: Bounds

Figure 10: Ability to support model selection of various multi-view bounds on Hand dataset shown

as the bounds and the corresponding expected Gibbs errors in pairs.
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(a) MBPod: Gibbs

Errors

(b) MBPod: Bounds (c) MBPoi: Gibbs Er-

rors

(d) MBPoi: Bounds

(e) MPBed: Gibbs

Errors

(f) MBPed: Bounds (g) MBPei: Gibbs Er-

rors

(h) MBPei: Bounds

(i) MPBc: Gibbs Er-

rors

(j) MPBc: Bounds

Figure 11: Ability to support model selection of various multi-view bounds on Syn dataset shown

as the bounds and the corresponding expected Gibbs errors in pairs.
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(a) MBPod: Gibbs

Errors

(b) MBPod: Bounds (c) MBPoi: Gibbs Er-

rors

(d) MBPoi: Bounds

(e) MPBed: Gibbs

Errors

(f) MBPed: Bounds (g) MBPei: Gibbs Er-

rors

(h) MBPei: Bounds

(i) MPBc: Gibbs Er-

rors

(j) MPBc: Bounds

Figure 12: Ability to support model selection of various multi-view bounds on Breast dataset shown

as the bounds and the corresponding expected Gibbs errors in pairs.
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6. Conclusion

In this paper, we have proposed a stability-based multi-view PAC-Bayes bound

with a novel view-consistency regularization. To employ the stability-based bound

in experiments, we have derived an upper bound on the stability coefficient of

the MvSVM algorithm. Experimental results have provided strong evidence to

demonstrate the superiority of multi-view learning over single-view learning and

have validated the advantages and disadvantages of the proposed stability-based

bound over the previous non-stability multi-view bounds. Furthermore, the de-

signed view-consistency regularization function has been shown to be beneficial

to tightening the PAC-Bayes bound. In the future, it would be interesting to ex-

ploit the view-consistency regularization and the proposed bound to motivate new

multi-view algorithms.

Acknowledgements

This work is supported by the National Natural Science Foundation of China

under Project 62076096, Shanghai Municipal Project 20511100900, and Shanghai

Knowledge Service Platform Project (No. ZF1213). The authors also acknowl-

edge support of the UK Defence Science and Technology Laboratory (DSTL)

and Engineering and Physical Research Council (EPSRC) under grant number

EP/R013616/1. This is part of the collaboration between US DOD, UK MOD and

UK EPSRC under the Multidisciplinary University Research Initiative.

44



A. Derivation of the Prior Distribution

Consider that the prior distributions of weight vectors from the two views

are P1(u1) = N (E[u1], σ2
1I) and P2(u2) = N (E[u2], σ2

1I). We derive the prior

distribution of the weight vector on the concatenated space as follows

P (u) ∝ P1(u1)P2(u2)V (u1,u2)

∝ N
(
E[u1], σ

2
1I
)
· N

(
E[u2], σ

2
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· V (u1,u2)
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{
− 1

2σ2
2

Ex̃

[
(u− E[u])Tx̃x̃T(u− E[u])

]}
= exp

{
−1

2
(u− E[u])T

1

σ2
1

(u− E[u])
}

exp
{
− 1

2σ2
2

(u− E[u])TE
[
x̃x̃T

]
(u− E[u])

}
= exp

{
−1

2
(u− E[u])T

(
I

σ2
1

+
E
[
x̃x̃T

]
σ2

2

)
(u− E[u])

}
.

(49)

B. Derivation of the KL-Divergence Between the Prior and Posterior Distri-

butions

Consider a given prior distribution P (u) = N (E[u],Σ) with Σ =

(
I
σ2
1

+
E[x̃x̃T]
σ2
2

)−1

and a posterior distribution Q(u) = N (u, I), the KL divergence between them is
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derived as follows

KL(Q(u)||P (u))
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C. Derivation of Theorem 7

We upper-bound the KL divergence between the prior and the posterior distri-

butions of a multi-view learning algorithm which is presented in Equation (25).

With Jensen’s inequality we have
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(51)
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where R = supx̃ ||x̃||. By McDiarmid’s inequality, we have for all ε > 0,
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Therefore, we get the following inequality
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where [·]+ = max(·, 0).

With R = supx̃ ||x̃||, we have
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1

+
x̃x̃T

σ2
2

]
(E[u]− u)

= E
[

1

σ2
1

(E[u]− u)T
(
I +

σ2
1

σ2
2

x̃x̃T

)
(E[u]− u)

]
≤ 1

σ2
1

E
[(

1 +
σ2

1

σ2
2

||x̃||2
)
||E[u]− u||2

]
≤
(

1

σ2
1

+
R2

σ2
2

)
||E[u]− u||2

(57)

According to the following inequality (see Corollary 8 of Rivasplata et al. [21]),

||E[u]− u||2 ≤ mβ2
m

(
1 +

√
1

2
ln

3

δ

)2

, (58)

we have

(E[u]− u)TE
[
I

σ2
1

+
x̃x̃T

σ2
2

]
(E[u]− u) ≤

(
1

σ2
1

+
R2

σ2
2

)
mβ2

m

(
1 +

√
1

2
ln

3

δ

)2

.

(59)
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With the basic PAC-Bayes theorem, we have with probability at least 1− δ
3
,

PX∼Dm

KL+(EQ,X ||EQ,D) ≤
KL(Q||P ) + ln

(
m+1
δ
3

)
m

 ≥ 1− δ

3
. (60)

Combining the inequalities (55), (56), (59), (60), we therefore reach the

stability-based multi-view PAC-Bayes bound as follows

KL+(EQ,X ||EQ,D) ≤

−n
2

ln

[
hm −

(
n

√(
R
σ2

)2

+ 1
σ2
1
− 1

σ2
1

)√
1

2m
ln
(

3
δ

)]
+

+R2

m

+

(
1
σ2
1

+ R2

σ2
2

)
mβ2

m

(
1 +

√
1
2

ln 3
δ

)2

+ n
σ2
1
− n+ ln

(
m+1
δ
3

)
m

.

(61)

where hm = 1
m

∑m
i=1

∣∣∣ I
σ2
1

+ x̃(i)x̃(i)T

σ2
2

∣∣∣ 1n and n is the dimensionality of the feature

space.

D. Derivation of Theorem 8

Suppose the prior distribution is P (u) = N (E[u], σ2I) and the posterior distri-

bution is Q(u) = N (u, σ2I). For the directly adapted multi-view bound, the KL

divergence between the prior and the posterior distributions of a learner is given as

KL(Q(u)||P (u)) =
1

2σ2
(E[u]− u)2. (62)

Applying Equation (58) and Equation (60), we can get the multi-view PAC-Bayes

bound without the view-consistency regularization as follows

PX∼Dm

KL+(EQ,X ||EQ,D) ≤
1

2σ2mβ
2
m

(
1 +

√
1
2

ln
(

2
δ

))2

+ ln
(
m+1
δ
2

)
m

 ≥ 1−δ.

(63)
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E. Proof of Lemma 1

For a multi-view regularization algorithm, it aims to minimize the following

objective function on the training set X ,

J (u) =
1

2m

m∑
i=1

l
(
fu
(
x(i)
)
, y(i)

)
+ λ1N(u) + λ2M(u). (64)

If an example z(i) is replaced by another example z(j), the objective function could

be written as

J z(i)→z(j)(u) =
1

2m

m∑
t=1,z(i)→z(j)

l
(
fu
(
x(t)
)
, y(t)

)
+ λ1N(u) + λ2M(u). (65)

The original empirical error function and the empirical error function after substi-

tuting examples are defined by

R(u) =
1

2m

m∑
i=1

l
(
fu
(
x(i)
)
, y(i)

)
, (66)

Rz(i)→z(j)(u) =
1

2m

m∑
t=1,z(i)→z(j)

l
(
fu
(
x(t)
)
, y(t)

)
. (67)

Define u∗ and uz(i)→z(j)

∗ as the minimizers of Equation (64) and Equation

(65), respectively. When J is differentiable everywhere, the Bregman divergence

associated to J of v to u is defined by

∀v,u ∈ U , dJ (v,u) = J (v)− J (u)− 〈v − u,5J (u)〉, (68)

where 5J (u) is a subgradient of J in u. When u is a minimizer of J (u), the

following equality holds

∀v ∈ U , dJ (v,u∗) = J (v)− J (u∗). (69)
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Employing Equation (69), we have

dJ

(
uz(i)→z(j)

∗ ,u∗

)
+ dJ z(i)→z(j)

(
u∗,u

z(i)→z(j)

∗

)
= J

(
uz(i)→z(j)

∗

)
− J (u∗) + J z(i)→z(j)(u∗)− J z(i)→z(j)

(
uz(i)→z(j)

∗

)
=

1

2m
l
(
uz(i)→z(j)T
∗ x(i), y(i)

)
− 1

2m
l
(
uT
∗x

(i), y(i)
)

+
1

2m
l
(
uT
∗x

(j), y(j)
)
− 1

2m
l
(
uz(i)→z(j)T
∗ x(j), y(j)

)
.

(70)

By the nonnegativity of divergences, we have

dR

(
uz(i)→z(j)

∗ ,u∗

)
+ d

Rz(i)→z(j)

(
u∗,u

z(i)→z(j)

∗

)
≥ 0. (71)

Hence, the following inequality holds

λ1dN

(
uz(i)→z(j)

∗ ,u∗

)
+ λ2dM

(
uz(i)→z(j)

∗ ,u∗

)
+ λ1dN

(
u∗,u

z(i)→z(j)

∗

)
+ λ2dM

(
u∗,u

z(i)→z(j)

∗

)
≤ 1

2m
l
(
uz(i)→z(j)T
∗ x(i), y(i)

)
− 1

2m
l
(
uT
∗x

(i), y(i)
)

+
1

2m
l
(
uT
∗x

(j), y(j)
)
− 1

2m
l
(
uz(i)→z(j)T
∗ x(j), y(j)

)
≤ 1

2m

(
l
(
uz(i)→z(j)T
∗ x(i), y(i)

)
− l
(
uT
∗x

(i), y(i)
))

+
1

2m

(
l
(
uT
∗x

(j), y(j)
)
− l
(
uz(i)→z(j)T
∗ x(j), y(j)

))
≤ α

2m

(∣∣∆uT
∗x

(i)
∣∣+
∣∣∆uT

∗x
(j)
∣∣) ,

(72)

where the last inequality holds since the loss function l is α-admissible and ∆u∗ =

uz(i)→z(j)

∗ − u∗. Therefore, we obtain Lemma 1.
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