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We solve analytically the differential equations for a skier on a hemispherical hill and for a particle

on a loop-the-loop track when the hill or track is endowed with a coefficient of kinetic friction l.

For each problem, we determine the exact “phase diagram” in the two-dimensional parameter

plane. # 2022 All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC
BY) license (http://creativecommons.org/licenses/by/4.0/).
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I. INTRODUCTION

Two classic homework exercises in an elementary
mechanics course are the skier on a hemispherical hill
(Fig. 1) and the particle on a loop-the-loop track (Fig. 2).1

Both problems illustrate nicely the use of conservation of
energy (to find the speed as a function of height) followed by
F ¼ ma (to find the normal force).

It is interesting to consider what happens when the hill or
track is endowed with a coefficient of kinetic friction l.
Somewhat surprisingly, the exact differential equations turn
out to be analytically solvable.2–11 Our purpose here is to
provide a unified treatment of the two problems, using only
elementary methods that are easily accessible to undergradu-
ates (e.g., linear first-order differential equations). Though
most of our results have been obtained previously—as we
shall document in detail—they are somewhat scattered in the
literature. It may thus be of some modest value to have a
complete elementary derivation collected in one place.

The skier and loop-the-loop problems give rise to very
similar differential equations, which differ only by some
sign changes. However, these sign changes lead to significant
differences in the qualitative interpretation of the solutions.
Since the skier problem turns out to be somewhat simpler,
we treat it first and give a complete solution; in particular,
we determine the exact phase diagram in the two-
dimensional parameter plane. For the loop-the-loop, we
solve the differential equations only up to the first time (if
any) that the particle halts or completes one cycle of the
loop, so we obtain only a partial phase diagram. The full
phase diagram will (as we explain later) contain an infinite
sequence of bifurcations, and we leave its computation to a
reader who wishes to take up where we have left off.

II. SKIER ON A HEMISPHERICAL HILL

Consider a skier of mass m on a hemispherical hill of
radius R (or more generally, any hill of circular cross sec-
tion) and coefficient of kinetic friction l, entering at the top
with forward velocity v0; let h denote the angle from the ver-
tical (Fig. 1). Then, the radial and tangential components of
F ¼ ma are12

N � mg cos h ¼ �mR _h
2
; (1)

mg sin h� lNsgnð _hÞ ¼ mR€h: (2)

This is a pair of coupled differential equations for the
unknown functions hðtÞ and N(t). We stress, however, that
these equations are valid only as long as N � 0; after that,
the skier flies off the hill. Since it is clear that the skier will
only go down the hill, not up, we have _h � 0 throughout the
motion, and the factor sgnð _hÞ in Eq. (2) can be dropped.13

Differentiating Eq. (1) with respect to time yields

dN

dt
¼ �ðmg sin hþ 2mR€hÞ _h; (3)

and inserting €h from Eq. (2) [with sgnð _hÞ ¼ 1] yields

dN

dt
¼ �ð3mg sin h� 2lNÞ _h: (4)

Using the chain rule dN=dt ¼ ðdN=dhÞðdh=dtÞ, we can elim-
inate _h from Eq. (4), leading to

dN

dh
� 2lN ¼ �3mg sin h: (5)

This is a first-order inhomogeneous linear differential equation
with constant coefficients for the unknown function NðhÞ, and it
can be solved by the method of integrating factors. Here, the
integrating factor is e�2lh, and the solution is14

NðhÞ ¼ N0e2lh � 3mg
e2lh � cos h� 2l sin h

1þ 4l2
; (6)

where N0 ¼ Nð0Þ. We again stress that this solution is valid
only where NðhÞ � 0; at the first angle (if any) where NðhÞ
crosses zero to a negative value, the skier flies off the hill.

Evaluating Eq. (1) at h¼ 0, where the skier’s angular

velocity is _h ¼ v0=R, we obtain N0 ¼ mg� mv2
0=R. In partic-

ular, if the dimensionless parameter k ¼def
v2

0=gR is � 1, then
N0 � 0 and the skier immediately flies off the hill;
we, therefore, assume henceforth that 0 � k < 1. Inserting
N0 ¼ ð1� kÞmg in Eq. (6), we obtain

NðhÞ ¼ ð1� kÞmg e2lh � 3mg
e2lh � cos h� 2l sin h

1þ 4l2
;

(7)

which is the closed-form solution giving the normal force as
a function of angle.
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In the absence of friction (l¼ 0), Eq. (7) simplifies to

NðhÞ ¼ ð3 cos h� 2� kÞmg: (8)

This is a decreasing function of h, and skier flies off the hill
when N¼ 0, i.e., when

h ¼ cos�1 2þ k
3

� �
: (9)

In the usual textbook problem, one has also v0 ¼ 0 (i.e.,
k¼ 0), and we obtain the standard answer that the skier flies
off at angle h ¼ cos�1ð2=3Þ � 48:19�.

When l > 0, by contrast, the normal force is no longer a
decreasing function of h, nor is it guaranteed to reach
zero within the interval 0 � h � p=2. Indeed, dN=dhjh¼0

¼ 2lð1� kÞmg > 0, so the normal force is initially
increasing.

We can also obtain the velocity as a function of angle. It is

convenient to define the dimensionless quantity K ¼def
v2=gR

¼ R _h
2
=g; its value at h¼ 0 is what we have called k. Then,

from Eq. (1) we have immediately

N ¼ ðcos h� KÞmg; (10)

[which reduces to N0 ¼ ð1� kÞmg when h¼ 0] or equivalently,

K ¼ cos h� N

mg
: (11)

In particular, from N � 0 we deduce that K � cos h: This
gives the maximum speed that the skier can have at any

given angle if she is to avoid flying off the hill. Combining
Eqs. (7) and (11) gives the closed-form solution for the speed
as a function of angle as follows:15

KðhÞ ¼ cos h� ð1� kÞ e2lh þ 3
e2lh � cos h� 2l sin h

1þ 4l2
:

(12)

Note, however, that this solution is valid only where
KðhÞ � 0; at the first angle (if any) where KðhÞ ¼ 0, the skier
comes to rest (perhaps only asymptotically as t!þ1). The
solution (12) must therefore be supplemented by the two
inequalities 0 � KðhÞ � cos h.

From Eqs. (5) and (10)/(11), we see that KðhÞ satisfies the
differential equation,16

dK
dh
� 2lK ¼ 2ðsin h� l cos hÞ: (13)

The solution of this differential equation with the initial con-
dition Kð0Þ ¼ k is of course Eq. (12).14

In the absence of friction (l¼ 0), Eq. (12) simplifies to

KðhÞ ¼ kþ 2ð1� cos hÞ; (14)

which is just the expression for conservation of energy:
1
2

mv2 ¼ 1
2

mv2
0 þ mgRð1� cos hÞ. More generally, the kinetic

energy plus gravitational potential energy is

E ¼ 1

2
mv2 þ mgRðcos h� 1Þ

¼ 1

2
mgR KðhÞ þ 2ðcos h� 1Þ½ �; (15)

so that

dE

dt
¼ 1

2
mgR

dK
dh
� 2 sin h

� �
_h: (16)

The work-energy theorem asserts that dE/dt must equal the
rate of work done by friction, which is �lNR _h; and this
equality is an immediate consequence of Eqs. (10), (13),
and (16). Conversely, the differential equation (13) could
alternatively be derived by combining the work-energy theo-
rem with Eqs. (10) and (16).17 It may be useful for students
to compare these two derivations: one directly from the
Newtonian equations of motion, and the other from the
work-energy theorem.

Finally, we can use Eq. (12) to obtain the time-
dependence of the motion. From K ¼ R _h

2
=g, we have

dh
dt
¼ g

R
KðhÞ

� �1=2

; (17)

and hence

tðhÞ ¼
ðh

0

dh0

g

R
Kðh0Þ

� �1=2
: (18)

We can now analyze the qualitative behavior of the
motion as a function of the two parameters l 2 ½0;1Þ and
k 2 ½0; 1Þ. We have seen that the skier halts when KðhÞ ¼ 0

Fig. 1. Skier on a hill of quarter-circular cross section. The horizontal por-

tion of the hill is frictionless; the circular portion has a coefficient of kinetic

friction l.

Fig. 2. Particle on a loop-the-loop. The horizontal portion of the track is fric-

tionless; the circular portion has a coefficient of kinetic friction l.
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or flies off the hill when KðhÞ ¼ cos h, whichever happens
first; if neither happens for h < p=2, then the skier reaches
the bottom of the hill. (We will see later that this last case
never occurs.) The critical solution that separates these two
scenarios is given by the trajectory for which the skier halts
at an angle h? (hence Kðh?Þ ¼ 0) that also satisfies K0ðh?Þ
¼ 0: See the curve marked k ¼ k? in Fig. 3. Applying this
condition in Eq. (13) leads immediately to18

h?ðlÞ ¼def
arctan l: (19)

Substituting this in Eq. (12), we obtain the relationship
between the initial velocity and the friction coefficient that
defines the phase boundary,19

k?ðlÞ ¼def 4l2 � 2þ 2e�2l arctan l
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ l2

p
1þ 4l2

: (20)

Please observe that k?ðlÞ is an increasing function of l that
runs from 0 to 1 as l runs from 0 to1 (see Fig. 4).

In this way, we have obtained a phase diagram that divides
the ðl; kÞ plane into three possible qualitative behaviors:

• For 0 � k < k?ðlÞ, the skier halts after a finite time at
some angle hhaltðl; kÞ: This angle is an increasing function
of k that runs from 0 to arctan l as k runs from 0 to k?ðlÞ.

• For k ¼ k?ðlÞ, the skier comes to rest asymptotically as
t! þ1 at the angle h ¼ arctan l.20

• For k?ðlÞ < k < 1, the skier flies off the hill at some angle
hflyðl; kÞ: This angle is a decreasing function of k that
tends to 0 as k! 1.

The curve k?ðlÞ thus forms the boundary between the
“halt” phase and the “fly-off” phase (see again Fig. 4).21 In
particular, the skier always either halts or flies off; she never
reaches angle p=2.

Some typical curves of KðhÞ for all three scenarios are
shown in Fig. 3. Note, in particular, that KðhÞ ¼ K0ðhÞ ¼ 0
when k ¼ k?ðlÞ and h ¼ h?ðlÞ; and note the fundamental
qualitative difference between the curves for k < k?ðlÞ,
which reach the K¼ 0 axis, and those for k > k?ðlÞ, which
do not.22

Some typical curves of hhaltðl; kÞ as a function of k are
shown in Fig. 5, and some typical curves of hflyðl; kÞ as a
function of k are shown in Fig. 6. Please note the discontinu-
ous change in behavior as the phase boundary k?ðlÞ is
crossed: hflyðl; k?ðlÞÞ (the dotted curve in Fig. 6) is much
larger than hhaltðl; k?ðlÞÞ (the dashed curve in Fig. 5).23 This
is a very simple example of sensitive dependence to initial
conditions, giving rise to a discontinuous phase transition—a
phenomenon pointed out already by James Clerk Maxwell in
1876.24

Since the proofs of all the previous claims involve some
slightly intricate calculus, we relegate them to Appendix A
in the supplementary material.25

Fig. 3. The curves KðhÞ for l¼ 1 and k ¼ 0:2, 0.4, and 0.45, and k?ð1Þ
� 0:517 594, 0.6, and 0.8. The skier halts when KðhÞ ¼ 0, or flies off the

hill when KðhÞ ¼ cos h (shown as a dotted curve), whichever happens first.

The critical curve is k ¼ k?. The dot indicates the point h ¼ h? (here h?
¼ arctan1 ¼ p=4).

Fig. 4. The curve k?ðlÞ that forms the boundary between the “halt” phase

and the “fly-off” phase.

Fig. 5. hhalt as a function of k in the halt phase 0 � k � k?ðlÞ, for l ¼ 0:5,

1, and 1.5. The endpoints lie on the dashed curve, defined parametrically by

k ¼ k?ðlÞ and h ¼ arctan l.

Fig. 6. hfly as a function of k in the fly-off phase k?ðlÞ < k � 1, for l¼ 0,

0.5, 1, and 1.5. The endpoints lie on the dotted curve, corresponding to

k! k?ðlÞ from above. For l¼ 0, we have the closed-form solution (9).
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Let us remark, finally, that by the same methods one can
study the more general problem in which the coefficient of
kinetic friction is an arbitrary function lðhÞ of the position
along the hill: The Eq. (5) is still a first-order inhomogeneous
linear differential equation for the unknown function NðhÞ—
albeit now one with nonconstant coefficients—so can still be
solved by the method of integrating factors (though the result
may not be analytically expressible in terms of elementary
functions). We leave it to interested readers to pursue this
generalization.

Some recent related articles are Refs. 10, 11, and 26,
which study a particle sliding down an arbitrary curve in the
presence of kinetic friction; Ref. 27, which uses the
Lagrangian formalism with Lagrange multipliers to analyze
a particle sliding without friction down an arbitrary concave
curve; and Ref. 28, which studies a ball rolling (initially
without slipping, later with sliding and kinetic friction) on an
arbitrary curve in the presence of gravity, including an
experimental realization.

III. PARTICLE ON LOOP-THE-LOOP TRACK

A block of mass m is injected with forward velocity v0

into a loop-the-loop track of radius R and coefficient of
kinetic friction l; let h denote the angle up from the bottom,
as shown in Fig. 2. (In one common version of the problem,1

the block is released from rest at height h and slides to the
bottom via a frictionless track; in this case, v0 ¼

ffiffiffiffiffiffiffiffi
2gh
p

.) The
radial and tangential components of F ¼ ma are

mg cos h� N ¼ �mR _h
2
; (21)

�mg sin h� lNsgnð _hÞ ¼ mR€h: (22)

As before, these equations are valid only as long as N � 0;
after that, the block falls off the track.

The loop-the-loop problem is more complicated than the
skier, for three reasons: The particle can cycle around the
track; it can reverse direction; and it can halt due to static
friction. Each time the particle reverses direction, we need to
apply Eq. (22) with a new value for sgnð _hÞ; this repeated
switching between different equations seems quite compli-
cated, and probably needs to be handled by numerical solu-
tion.29 To simplify matters, we will here follow the block
only until it first reaches _h ¼ 0 or falls off the track; we,
therefore, have _h � 0.

Proceeding as in Eqs. (3)–(5) leads to the differential
equation,

dN

dh
þ 2lN ¼ �3mg sin h; (23)

for the unknown function NðhÞ; this equation differs from
Eq. (5) only by the replacement l! �l. The solution is,
therefore,

NðhÞ ¼ N0e�2lh � 3mg
e�2lh � cos hþ 2l sin h

1þ 4l2
; (24)

where N0 ¼ Nð0Þ. Applying Eq. (21) at h¼ 0, where the

block’s angular velocity is _h ¼ v0=R, we see that N0 ¼ mg

þmv2
0=R. Using again the dimensionless parameter k ¼def

v2
0=gR,

we have N0 ¼ ð1þ kÞmg and hence

NðhÞ ¼ ð1þ kÞmg e�2lh� 3mg
e�2lh� coshþ 2l sinh

1þ 4l2
:

(25)

To obtain the velocity as a function of angle, we define

once again the dimensionless quantity K ¼def
v2=gR ¼ R _h

2
=g,

which takes the value k at h¼ 0. Then, from Eq. (21) we
have

N ¼ ðcos hþ KÞmg; (26)

[which reduces to N0 ¼ ð1þ kÞmg when h¼ 0] and
therefore30

KðhÞ ¼ �cos hþ ð1þ kÞ e�2lh

� 3
e�2lh � cos hþ 2l sin h

1þ 4l2
: (27)

Since K � 0, we must have N � mg cos h; and when
N ¼ mg cos h, the block comes instantaneously to rest. After
that, the particle might either reverse direction or halt due to
static friction. As mentioned earlier, we refrain from follow-
ing the particle beyond the first time it comes instantaneously
to rest.

The solution (25) must, therefore, be supplemented by the
two inequalities NðhÞ � 0 and NðhÞ � mg cos h. (Please note
that, unlike in the skier problem, both of these inequalities
point in the same direction; this radically changes the nature
of the qualitative analysis.) The block comes instantaneously
to rest when NðhÞ ¼ mg cos h or falls off the track when
NðhÞ ¼ 0, whichever happens first; if neither happens for
h < 2p, then the block completes one full cycle of the loop-
the-loop. Now, the inequality NðhÞ � mg cos h is the more
stringent one in the lower half of the loop-the-loop (that is,
�p=2 � h � p=2 modulo 2p), while the inequality NðhÞ � 0
is the more stringent one in the upper half of the loop-the-
loop (that is, p=2 � h � 3p=2 modulo 2p). Therefore, the
block can come instantaneously to rest only in the lower half
of the loop-the-loop, and it can fall off the track only in the
upper half of the loop-the-loop.

In the absence of friction (l¼ 0), Eq. (25) simplifies to

NðhÞ ¼ ðk� 2þ 3 cos hÞmg: (28)

If k � 2, then the block reverses direction at

h ¼ hmax ¼def
cos�1 2� k

2

� �
; (29)

(a value that follows immediately from conservation of
energy) and oscillates forever between �hmax and hmax; if
2 < k < 5, then the block falls off the track at

h ¼ hfall ¼def
cos�1 2� k

3

� �
; (30)

which lies between p=2 and p; if k¼ 5, then the block
asymptotically approaches h ¼ p as t! þ1; if k > 5, then
the block cycles forever around the track without loss of
energy.

In the presence of friction (l > 0), the analysis proceeds
as follows:
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(1) The first step is to determine the conditions under which
the particle halts in the first quadrant (0 � h � p=2). The
particle halts at angle h when KðhÞ ¼ 0, i.e., in case the
initial velocity satisfies

k ¼ khaltðh; lÞ ¼def 2

1þ 4l2

�
ð1� 2l2Þ þ e2lh

�
3l sin h

� ð1� 2l2Þ cos h
��
: (31)

Since

@khaltðh; lÞ
@h

¼ 2e2lhðl cos hþ sin hÞ; (32)

khaltðh; lÞ is an increasing function of h in the interval
0 � h � p=2 (as is intuitively clear: To reach a larger angle,
more initial velocity is needed). In particular, the particle
reaches h ¼ p=2 with _h > 0 if and only if

k > khaltðp=2; lÞ ¼def 2� 4l2 þ 6lepl

1þ 4l2
: (33)

(2) If the particle reaches angle p=2 without halting, the next
step is to determine the conditions under which the parti-
cle flies off in the second or third quadrant (p=2 � h
� 3p=2). The particle flies off at angle h when NðhÞ ¼ 0,
i.e., in case the initial velocity satisfies

k ¼ kflyðh; lÞ ¼def 2� 4l2 þ 3e2lhð2l sin h� cos hÞ
1þ 4l2

:

(34)

Note that kflyðp=2; lÞ ¼ khaltðp=2; lÞ. Since

@kflyðh; lÞ
@h

¼ 3e2lh sin h; (35)

we see that khaltðh; lÞ is an increasing function of h in
the interval from p=2 to p and then a decreasing function
in the interval from p to 3p=2. The first of these facts is
again intuitively clear: To survive to a larger angle with-
out flying off, more initial velocity is needed. The second
fact implies that if the particle reaches angle p without
flying off—that is, if

k � kflyðp; lÞ ¼def 2� 4l2 þ 3e2pl

1þ 4l2
; (36)

then it also reaches angle 3p=2 without flying off. This is
intuitively clear when there is no friction, but not so obvi-
ous in the presence of friction. This implies—analogously
to what happens in the skier problem—a discontinuous
change of behavior as k passes through kflyðp; lÞ. See Fig.
7 for plots of khaltðh; lÞ and kflyðh; lÞ versus h for some
selected values of l.

(3) If the particle reaches angle p (and hence also angle
3p=2) without halting or flying off, the next step is to
determine what happens in the fourth quadrant
(3p=2 < h < 2p). The particle halts at angle h in case k
equals the quantity khaltðh; lÞ defined in Eq. (31). From
Eq. (32), we see that @khaltðh; lÞ=@h is negative at
h ¼ 3p=2 and positive at h ¼ 2p, with a unique zero at
h ¼ 2p� arctanl. So khaltðh; lÞ is decreasing in the
interval 3p=2 � h � 2p� arctanl and increasing in the
interval 2p� arctanl � h � 2p. Its maximum value in
the interval ½3p=2; 2p�, therefore, lies either at h ¼ 3p=2
or at h ¼ 2p. Since we are in the situation k � kflyðp; lÞ
> kflyð3p=2; lÞ ¼ khaltð3p=2; lÞ, the only relevant

Fig. 7. The functions khalt (black) and kfly (green or gray) vs h for some selected values of l. The dominant (respectively, subdominant) condition is shown as a

solid (respectively, dotted) curve. A horizontal dashed line is shown at kflyðp;lÞ. The curve in the bottom-left panel corresponds to the value l ¼ lcrit � 0:713 089

where kflyðp;lÞ ¼ khaltð2p;lÞ. From Eq. (32), we see that khalt is increasing for 0 � h � p� arctanl, decreasing for p� arctanl � h � 2p� arctanl,

and increasing for 2p� arctanl � h � 2p. From Eq. (35), we see that kfly is increasing for 0 � h � p and decreasing for p � h � 2p. The two curves cross at p=2

and 3p=2.
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question is whether k is larger than khaltð2p; lÞ or not. If
it is, then the particle reaches angle 2p without halting. If
it is not, then the particle halts at some angle in the inter-
val ð2p� arctanl; 2p�, namely, the unique angle where
k ¼ khaltðh; lÞ. The first of these cases always occurs
when kflyðp; lÞ > khaltð2p; lÞ, i.e., when 0 � l < lcrit

� 0:713 089. (See Appendix B in the supplementary
material25 for the proof that there is a unique such value
lcrit.) When l � lcrit, then there is a “halt in fourth quad-
rant” phase at kflyðp; lÞ � k � khaltð2p; lÞ and a “survive
to angle 2p” phase at k � khaltð2p; lÞ. We record the
formula

khaltð2p; lÞ ¼def ð4l2 � 2Þðe4pl � 1Þ
1þ 4l2

: (37)

(4) If the particle survives to angle 2p, then it has there a for-
ward velocity corresponding to a value,

knew ¼def
Kð2pÞ ¼ ke�4pl þ ð2� 4l2Þð1� e�4plÞ

1þ 4l2
;

(38a)

¼ e�4pl k� khaltð2p; lÞ½ �; (38b)

� 0: (38c)

Since khaltð2p; lÞ > 0 in the survive to angle 2p phase, we
have knew < e�4plk: Thus, the kinetic energy is reduced by
at least a factor e�4pl at each revolution. The subsequent
motion can then be found by repeating the foregoing analysis
with k replaced by knew.

The resulting phase diagram is shown in Fig. 8. Since
khaltð2p; lÞ grows extremely rapidly with l, we have usedffiffiffi

k
p

instead of k on the vertical axis, to compress the plot.
This phase diagram agrees with the one found by Kłobus
(Ref. 8, Fig. 2); the value of khaltð2p; 1Þ also agrees with his.
All three phase boundaries are increasing functions of l: See
Appendices B1–B3 in the supplementary material.25

Of course, this phase diagram only follows the particle up
to the first time that it reaches _h ¼ 0 or h ¼ 2p. A more

complete analysis would show that the phase “survives to
angle 2p” is itself divided into sub-phases “halts in the first
quadrant” (2p < h < 5p=2), “flies off the second quadrant”
(5p=2 < h < 3p), “halts in the fourth quadrant”
(7p=2 < h < 4p), and “survives to angle 4p”; and this latter
phase is further divided into sub-phases; and so on infinitely.
We leave it to interested readers to work out the details of
this infinite sequence of bifurcations.
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