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Abstract. Neural networks have been proposed for medical image registration 

by learning, with a substantial amount of training data, the optimal 

transformations between image pairs. These trained networks can further be 

optimized on a single pair of test images - known as test-time optimization. This 

work formulates image registration as a meta-learning algorithm. Such networks 

can be trained by aligning the training image pairs while simultaneously 

improving test-time optimization efficacy; tasks which were previously 

considered two independent training and optimization processes. The proposed 

meta-registration is hypothesized to maximize the efficiency and effectiveness of 

the test-time optimization in the “outer” meta-optimization of the networks. For 

image guidance applications that often are time-critical yet limited in training 

data, the potentially gained speed and accuracy are compared with classical 

registration algorithms, registration networks without meta-learning, and single-

pair optimization without test-time optimization data. Experiments are presented 

in this paper using clinical transrectal ultrasound image data from 108 prostate 

cancer patients. These experiments demonstrate the effectiveness of a meta-

registration protocol, which yields significantly improved performance relative 

to existing learning-based methods. Furthermore, the meta-registration achieves 

comparable results to classical iterative methods in a fraction of the time, owing 

to its rapid test-time optimization process. 
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1 Introduction 

“Classical” pairwise approaches pose the image registration problem as an optimization 

for transformation, which maximizes a given image similarity measure between the 

transformation-warped moving image and the fixed image. Much work has been 

dedicated to variants in transformation models, similarity metrics and optimization 

algorithms [1]. These classical methods are usually applied to a single pair of images; 

those to be aligned. Recent learning-based methods utilize deep neural networks to 

predict the transformation, or simply dense displacement field (DDF), between the 

moving and fixed images. The networks can be optimized with a set of training pairs 

of images, minimizing a loss function that is based on image similarity measures or 



2 

distance between corresponding segmentations [2-4]. A recent work [5] proposed to 

use meta-learning to adapt registration networks to new types of images, with a distinct 

aim of efficient domain adaptation.  

More recently, deep neural networks have also been proposed to represent, or 

parameterize, the spatial transformation between a single pair of images. This becomes 

analogous to classical methods, permitting the network to be optimized “without 

training data”1 [6]. It follows that the same optimization of a single pair of images may 

then also be applied to improve a registration network obtained from the learning-based 

methods – as a case of test-time optimization [7]. Both single-pair optimization 

approaches have shown to improve on existing methods which use learning-based 

registration networks alone. This may be due to the use of networks or data which are 

prone to overfitting, perhaps due to sensitivity to initialization, limited available 

training data or highly variable clinical imaging, and sometimes to underfitting due to 

over-constrained transformation. 

Observed from these prior studies, both the single-pair methods, including those 

using neural networks, and the learning-based methods may have advantages in seeking 

pair-specific features and population-statistics-based features that are useful to align the 

image pair of interest. In this work, we propose using meta-learning to combine 

population learning and single-pair optimization, by considering image pairs in training 

as different meta-tasks. This allows the meta-training to optimize a meta-registration 

network which can be effectively and efficiently adapted to individual test image pairs, 

using single-pair test-time optimization. 

This is particularly useful for registering ultrasound images. Ultrasound often creates 

challenging registration tasks with clinically acquired data given their known high 

variability and varying quality, due to user- and view-dependency. A rapid optimization 

process is also critical in enabling real-time image guidance in potentially many 

surgical and interventional applications. In this work, we use 3D ultrasound images 

obtained from transrectal ultrasound (TRUS)-guided prostate cancer interventions to 

demonstrate the feasibility, accuracy, and speed of optimization using the proposed 

meta-registration algorithm. 

2 Methods 

This section describes the proposed meta-registration using an unsupervised loss, as 

outlined in Fig.1. However, available segmentations of corresponding structures may 

readily be added for weak supervision.  

 
1 Single-pair optimization is considered as an iterative optimization in this paper to 

avoid confusion, as opposed to a learning-based problem where the phrase “learning 

without training data” may be used. 
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2.1 Unsupervised learning-based image registration 

Given 𝑁  pairs of training moving and fixed images, {𝒙𝑛
𝑚𝑜𝑣} and {𝒙𝑛

𝑓𝑖𝑥
}, where 𝑛 =

1, … , 𝑁, existing approaches predict the voxel correspondence 𝒖𝒏
𝜔 = 𝒇𝜔(𝒙𝑛

𝑚𝑜𝑣 , 𝒙𝑛
𝑓𝑖𝑥

), 

i.e. the transformation that aligns the two images, using a registration network 𝒇𝜔 with 

network parameters 𝜔. For an unsupervised learning algorithm, the training goal thus 

is minimizing a loss function over 𝑁 training pairs, to obtain the optimal 𝜔∗: 

𝜔̂ = arg min
𝜔

∑ [
ℒ𝑠𝑖𝑚(𝜔; 𝒙𝑛

𝑚𝑜𝑣 , 𝒙𝑛
𝑓𝑖𝑥

) +

𝛼(𝜔) ∙ ℒ𝑑𝑒𝑓(𝜔; 𝒙𝑛
𝑚𝑜𝑣 , 𝒙𝑛

𝑓𝑖𝑥
)

]𝑁
𝑛=1 , Eq.(1) 

where ℒ𝑠𝑖𝑚(𝜔; 𝒙𝑛
𝑚𝑜𝑣 , 𝒙𝑛

𝑓𝑖𝑥
) = ℒ𝑠𝑖𝑚(𝒙𝑛

𝑚𝑜𝑣(𝒖𝒏
𝜔), 𝒙𝑛

𝑓𝑖𝑥
)  is a negative image similarity 

measure, a function between the transformation-warped moving images 𝒙𝑛
𝑚𝑜𝑣(𝒖𝒏

𝜔) and 

the fixed images 𝒙𝑛
𝑓𝑖𝑥

, and ℒ𝑑𝑒𝑓(𝜔; 𝒙𝑛
𝑚𝑜𝑣 , 𝒙𝑛

𝑓𝑖𝑥
) = ℒ𝑑𝑒𝑓(𝒖𝒏

𝜔)  is the deformation 

regularization, encouraging the smoothness of the transformation 𝒖𝒏
𝜔  weighted by a 

hyperparameter 𝛼(𝜔). When available, a negative weak-supervision loss based on label 

similarity may be added, but is omitted here for brevity. 

During test time with an unseen pair of images, 𝒙𝑡𝑒𝑠𝑡
𝑚𝑜𝑣  and 𝒙𝑡𝑒𝑠𝑡

𝑓𝑖𝑥
, the trained network 

𝒇𝜔̂ predicts the transformation that aligns the two, 𝒖𝑡𝑒𝑠𝑡
𝜔̂ = 𝒇𝜔̂(𝒙𝑡𝑒𝑠𝑡

𝑚𝑜𝑣 , 𝒙𝑡𝑒𝑠𝑡
𝑓𝑖𝑥

). 

 

Fig. 1. Schematic representation of the proposed unsupervised meta-registration method for 

single-pair test-time optimization. A learning-based registration is trained over multiple episodes 

during the training phase (left). In each episode, a pair of images is sampled and repeatedly 

registered. Following each episode, the meta-update updates the registration model based on the 

learned gradients from the episode which was just completed. Once training is complete, we may 

optimize the registration model at test-time for a single pair of images (right) using few-shot 

learning to yield a registration model optimized for a specific pair of input images.  

2.2 Test-time single-pair optimization 

Now consider an optimization problem to align a pair of test images 𝒙𝑡𝑒𝑠𝑡
𝑚𝑜𝑣  and 𝒙𝑡𝑒𝑠𝑡

𝑓𝑖𝑥
: 
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𝜃̂ = arg min
𝜃

[ℒ𝑠𝑖𝑚(𝜃; 𝒙𝑛
𝑚𝑜𝑣 , 𝒙𝑛

𝑓𝑖𝑥
) + 𝛼(𝜃) ∙ ℒ𝑑𝑒𝑓(𝜃; 𝒙𝑛

𝑚𝑜𝑣 , 𝒙𝑛
𝑓𝑖𝑥

)], Eq. (2) 

where 𝛼(𝜃)  is the deformation hyperparameter. This is equivalent to the classical 

pairwise registration, iteratively optimizing a transformation network 𝒇𝜃  with its 

randomly initialized parameters 𝜃, which (re-)parameterize the transformation 𝒖𝒏
𝜃 =

𝒇𝜃(𝒙𝑡𝑒𝑠𝑡
𝑚𝑜𝑣 , 𝒙𝑡𝑒𝑠𝑡

𝑓𝑖𝑥
) between 𝒙𝑡𝑒𝑠𝑡

𝑚𝑜𝑣  and 𝒙𝑡𝑒𝑠𝑡
𝑓𝑖𝑥

.  

Alternatively, when the parameters are initialized by the trained registration network 

parameters 𝜃 = 𝜔̂ as obtained in Eq. (1), Eq. (2) represents test-time optimization for 

the given test pair.  

It is also noteworthy that the transformation network 𝒇𝜃 could be a different network 

to the registration network 𝒇𝜔, whilst this study uses a single network to facilitate a 

model-agnostic implementation of the proposed meta-registration algorithm. 

2.3 Model-agnostic meta-learning for improving test-time optimization 

This section describes the proposed meta-registration algorithm. Each pair of images is 

considered a different meta-task, such that a meta-training scheme can be adopted to 

improve the test-time optimization. During the meta-training, different meta-tasks are 

sampled. The resulting bi-level optimization thus becomes: 

𝜔∗ = arg min
𝜔

∑ [
ℒ𝑠𝑖𝑚 (𝜔; 𝒙𝑛

𝑚𝑜𝑣 , 𝒙𝑛
𝑓𝑖𝑥

, 𝜃∗(𝑛)(𝜔)) +

𝛼(𝜔) ∙ ℒ𝑑𝑒𝑓 (𝜔; 𝒙𝑛
𝑚𝑜𝑣 , 𝒙𝑛

𝑓𝑖𝑥
, 𝜃∗(𝑛)(𝜔))

]𝑁
𝑛=1 , Eq. (3) 

s.t. 𝜃∗(𝑛)(𝜔) = arg min
𝜃

[
ℒ𝑠𝑖𝑚(𝜃; 𝒙𝑛

𝑚𝑜𝑣 , 𝒙𝑛
𝑓𝑖𝑥

, 𝜔) +

𝛼(𝜃) ∙ ℒ𝑑𝑒𝑓(𝜃; 𝒙𝑛
𝑚𝑜𝑣 , 𝒙𝑛

𝑓𝑖𝑥
, 𝜔)

], Eq. (4) 

where, the outer optimization in Eq. 3 obtains the optimum meta-parameters 𝜔∗, such 

that 𝜃∗(𝑛)(𝜔) is an optimized network for individual 𝑛𝑡ℎ tasks. In the proposed meta-

registration, 𝜃 and 𝜔 are shared network parameters. Therefore, model-agnostic meta-

learning algorithms such as MAML [8] or Reptile [9] can be readily applied to solve 

this bi-level optimization problem.  

The proposed meta-registration may be considered by two different views of 

combining the learning-based method and the test-time optimization: 1) it optimizes a 

learning-based registration network that can be used for better test-time optimization; 

2) it can also be considered as an iterative method for registering a single pair of images, 

using a neural network to parameterize the spatial transformation, which can be 

initialized with prior knowledge learned from training image pairs. It is also interesting 

to note that data augmentation methods, commonly applied spatial variation, may be 

considered as the samples of individual tasks in the proposed meta-registration.  
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3 Experiments 

3.1 The Reptile Algorithm and Meta-Registration Implementation  

We adopt Reptile [9] as our gradient-based meta-learning strategy as it provides a 

computationally efficient optimization of the gradient-update procedure. Reptile was 

designed to quickly learn to perform a new task with minimal training, which suits our 

test-time single-pair optimization process. This is achieved in practice through a bi-

level optimization. In the inner optimization loop, an episode of task-level learning is 

applied over k mini-batches. In the outer optimization loop, Stochastic Gradient 

Descent is performed by using the difference between the model weights prior to and 

after the inner optimization loop’s episode of task-level learning. 

The meta-learning methodology described in this work adapts a learning-based 

registration method available from the unsupervised image registration framework 

within DeepReg, an open-source Python package for medical image registration [10]. 

This ‘Baseline’ meta-registration model architecture utilizes LocalNet [11], and was 

trained for 200000 iterations with the Adam optimizer [12], a mini-batch size of 4, and 

an initial learning rate of 1 × 10−5. Through the meta-training phase, the value of 𝑘 

used was 10, with an initial meta-learning rate, 𝛽𝑚𝑒𝑡𝑎 , of 0.5, linearly decaying to 

1 × 10−5  over the course of the 200,000 iterations. We utilize the sum of squared 

difference loss as ℒ𝑠𝑖𝑚 and bending energy as ℒ𝑑𝑒𝑓 . The deformation hyperparameter 

𝛼(𝜃) was set to 10.0 to weight the deformation regularization relative to the image 

similarity loss. During the inner optimization, we apply data augmentation to the 

moving and fixed images. Each image was independently transformed by a random 

affine transformation, without flipping, prior to being used as input. Training required 

approximately 120 hours on a NVIDIA DGX-1 system using a single Tesla V100 GPU. 

In the meta-test phase, we perform test-time optimization via few-shot learning with 

5 gradient updates on the sampled pair of test images. This yields a test-time optimized 

registration model which can perform accurate registrations on the test data. In this 

optimization process, we use a mini-batch size of 1 and perform 5 gradient updates. 

Apart from these values, the few-shot learning uses the same hyperparameters as in the 

inner optimization loop during the meta-training phase. 

3.2 Data 

To train and evaluate the meta-registration, we used 108 intraoperative TRUS images 

from 76 patients, acquired during the SmartTarget clinical trials [13]. The TRUS 

images were split into a training set and a test set, with each comprising 88 and 20 

images, respectively, where no patient appears in both sets. Images were normalized 

and resampled to an isotropic voxel size of 0.8×0.8×0.8 mm3. The TRUS segmentations 

of the prostate gland boundary were acquired automatically [14], and any additional 

landmarks were segmented manually. 
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3.3 Comparison Studies 

To demonstrate the effectiveness of the meta-registration approach, we compare to a 

classical iterative non-rigid registration method, and two state-of-the-art architectures 

for deformable medical image registration [3, 11]. Additionally, we demonstrate the 

effects of the test-time optimization by comparing to our meta-registration baseline 

without any few-shot learning. 

We first compare our meta-registration method with a conventional iterative 

registration approach, whereby stochastic gradient descent (SGD) is applied over 3000 

iterations to directly learn a DDF which describes the transform between a given pair 

of fixed and moving images. Here, we apply a learning rate of 0.01, and use the same 

loss and deformation hyperparameter as in the training of our meta-registration method. 

We subsequently compare our meta-registration method to two widely-used 

approaches, LocalNet [11] and VoxelMorph [3], for deformable pairwise medical 

image registration using unsupervised learning. In both instances, we train the networks 

with identical loss, training, and deformation hyperparameters to our meta-registration 

method. To illustrate the effects of the test-time optimization process, as well as 

demonstrate the effectiveness of the meta-learned initialization, we additionally 

provide a comparison to only the meta-learned initialization without any test-time 

optimization or fine-tuning applied.  

3.4 Evaluation of Registration Methods 

The accuracy of the prostate surface registrations was quantified using the Dice 

similarity coefficient (DSC), and target registration error (TRE); calculated as the 

distance between the 3D locations of corresponding, manually identified anatomical 

landmarks in the TRUS images [11, 15]. Reported DSCs are computed between the 

transformed prostate gland label of the moving image and the ground-truth prostate 

gland label of the fixed image. We report TRE as the root-mean-square of the distances 

between landmark centroids of the pairs between the transformed moving image and 

the fixed image. We additionally present the computational time required at inference, 

on GPU, for each method.  

4 Results and Discussion 

During few-shot learning in the test-time single-pair optimization process, a gradient 

update and inference step require approximately 0.67s and 0.37s, respectively. 

Therefore, during the test-time optimization, our meta-registration method requires 

approximately 3.7s to be fine-tuned and provide a prediction for the specific image pair. 

This is notably much less than the classical method evaluated by nearly 100 times, 

while delivering comparable performance. Conversely, this 3.7s is nearly 10 times 

slower than other existing and evaluated learning-based methods which do not use any 

test-time optimization. 

While requiring an additional 3s compared to other existing learning-based methods, 

the performance of DSC and TRE is improved. This performance is significantly 
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different with respect to DSC and TRE from LocalNet and VoxelMorph, based on two-

tailed paired t-tests, at a significance level of α = 0.05.  

Inference time, DSC and TRE are summarized in Table 1. Detailed results presenting 

DSC and TRE for each method are summarized in Figures 2 and 3. Example slices of 

input TRUS image pairs are provided in Figure 4 for qualitative visual assessment of 

the registration results for each method based on samples from the test data.  

 
Table 1. Summary of DSC, TRE and computation time for our Meta-Registration method as 

compared to the others methods evaluated. 

Method 
Time (s) DSC TRE (mm) 

Mean Mean ± STD Mean ± STD 

Classical Non-Rigid 372.36 0.72 ± 0.07 6.5 ± 2.1 

LocalNet [11] 0.38 0.68 ± 0.09 7.5 ± 4.3 

VoxelMorph [3] 0.39 0.68 ± 0.10 7.6 ± 4.5 

Meta-Registration 0.38 0.73 ± 0.10 6.2 ± 3.8 

Meta-Registration with Test-Time Optimization 3.74 0.74 ± 0.06 6.1 ± 3.7 

 

Fig. 2. Tukey's boxplots of DSC for all methods. Whiskers indicate 10th and 90th percentiles. 

 

Fig. 3. Tukey's boxplots of TRE for all methods. Whiskers indicate 10th and 90th percentiles. 
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Fig. 4. Example image slices from one test case. The left-most column contains image slices 

from the fixed and moving images. Other columns present the warped image, a checkerboard of 

the warped and fixed images, warped prostate gland contour (Red) overlaid on the target prostate 

gland contour (Green), and resulting DDF using the above-labelled method. 
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5 Conclusion 

We have presented a meta-registration framework for test-time single-pair optimization 

of ultrasound images. We obtain comparable results to time-consuming classical 

iterative methods in a fraction of the time, and outperform existing learning-based 

methods with minimal additional time required during inference for the test-time 

optimization process. These results demonstrate a critical step in enabling adaptive, 

tailored real-time image guidance in many surgical and interventional applications. 
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