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Abstract. Free Point Transformer (FPT) has been proposed as a data-driven, non-

rigid point set registration approach using deep neural networks. As FPT does 

not assume constraints based on point vicinity or correspondence, it may be 

trained simply and in a flexible manner by minimizing an unsupervised loss based 

on the Chamfer Distance. This makes FPT amenable to real-world medical 

imaging applications where ground-truth deformations may be infeasible to 

obtain, or in scenarios where only a varying degree of completeness in the point 

sets to be aligned is available. To test the limit of the correspondence finding 

ability of FPT and its dependency on training data sets, this work explores the 

generalizability of the FPT from well-curated non-medical data sets to medical 

imaging data sets. First, we train FPT on the ModelNet40 dataset to demonstrate 

its effectiveness and the superior registration performance of FPT over iterative 

and learning-based point set registration methods. Second, we demonstrate 

superior performance in rigid and non-rigid registration and robustness to 

missing data. Last, we highlight the interesting generalizability of the ModelNet-

trained FPT by registering reconstructed freehand ultrasound scans of the spine 

and generic spine models without additional training, whereby the average 

difference to the ground truth curvatures is 1.3º, across 13 patients. 
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1 Introduction 

Registration is a fundamental problem wherein corresponding features of images, point 

sets, or other data that define two objects are transformed spatially so that they are 

aligned. Registration algorithms determine the rigid or non-rigid transformation which 

aligns a source object to a target object. 

In point set registration, iterative optimization minimizes alignment metrics or cost 

functions which quantify the misalignment between the source and target points. 

Usually, methods are unable to handle large point sets in real-time owing to their 

computationally intense nature. In contrast, the efficient inference and the ability to 
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model complex, non-linear transformations of learning-based methods have seen the 

development of neural networks which infer the optimal transformation [1-7].  

Non-rigid registration is important in image-guided interventions as it permits the 

fusion of imaging with spatial information and enables soft tissue motion 

compensation. Models which integrate local deformations have demonstrated improved 

registration in soft tissues by compensating for patient motion and other anatomical 

deformations [8]. However, these methods often rely on constrained models or need to 

explicitly model noise, outliers, and missing data. As such, they may be inadequate to 

handle real-world data. An additional problem, partial registration, is a common real-

world application of registration methods where part of either or both input point sets 

are missing. This is often the case in the registration of point sets or images from 

different modalities or points in time as there may not be a one-to-one correspondence 

between the data, requiring a series of consecutive components to be used to create a 

global alignment.  

While iterative non-rigid point set registration methods exist [5, 9-13], few are 

learning-based [5, 12-13]. One method which has been applied successfully is the Free 

Point Transformer (FPT) [12-13]. Importantly, FPT is not limited by the inherently 

unordered structure of point sets and requires no iterative inference or refinement 

process, unlike many existing methods [1-4]. As such, FPT could directly perform 

intra-operative prostate biopsy guidance via point set registration of prostate glands 

extracted from paired magnetic resonance and transrectal ultrasound imaging [12-13].  

In this work, we demonstrate the generalizability of FPT for point set registration. 

First, we demonstrate robustness to deformation and missing data on the ModelNet40 

dataset. Second, using FPT’s model-free approach and data-driven learning process, we 

apply a pre-trained FPT to real-world medical imaging data from an external domain, 

registering 3D reconstructions of segmented ultrasound (US) scans and a generic spine 

atlas. In this real-world use case for non-rigid point set registration, we investigate 

FPT’s effectiveness to quantify spinal curvature for scoliosis measurement. Scoliosis is 

a spinal deformity identified in 3% of adolescent children [14]. It is often monitored 

and measured with X-ray imaging (X-ray), however, repeated use of X-rays has been 

linked to an increased incidence of cancer [15]. US has been proposed as a safer, more 

accessible option for scoliosis monitoring and measurement [16-18], and deep learning 

methods for automatic US bone segmentation have been shown to adequately 

reconstruct the spinal curvature in pediatric patients with scoliosis [18]. However, 

compared to X-rays, reconstructions alone are not sufficient. The registration of such 

reconstructions to a generic spine model may provide appropriate and meaningful 

visualizations. Manual registration of such reconstructions to generic spine models for 

visualization and measurement is possible, though the process is time-consuming, 

error-prone, and operator-dependent [17]. These limitations reveal the need for fast, 

automatic methods which register US-based reconstructions to generic anatomical 

models for use in place of or to supplement traditional medical imaging. 
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2 Methods 

2.1 Network Architecture 

The FPT network architecture is comprised of two modules: a global feature extractor, 

and a point transformer [13]. To perform the feature extraction, FPT utilizes a modified 

version of PointNet [19], a neural network architecture previously proposed by Qi et 

al. for converting point sets into permutation and rotation invariant feature vectors for 

classification and segmentation. These modifications ensure the translation is captured 

in the feature vectors, primarily through the removal of Batch Normalization [13]. 

In FPT, twin, weight-sharing PointNets generate feature vectors from each of the 

source and the target point sets. These are concatenated into a global feature vector,  

paired with the source points, and fed into a multi-layer perceptron (MLP). The MLP 

yields a per-point estimation of the unique displacement vector that transforms each 

point of the source point set without any smoothness or coherence constraints.  

2.2 Implementation and Training Details 

FPT was trained on the ModelNet40 dataset, consisting of 12,311 geometric surface 

models of 40 object categories, split into a 9,843 object training set and 2,468 object 

testing set [20]. Input point sets comprised 2048 points sampled from the surfaces of 

ModelNet40 shapes and were used as target and source point sets in training and testing. 

Our implementation of FPT and the hyperparameters described below are consistent 

with the original defaults, as described in [13]. 

We apply an unsupervised training strategy. This requires the indirect computation 

of a distance metric between point sets without a known bijective correspondence. 

Therefore, we utilized the Chamfer Distance [21], as it suits the registration problem 

well, among distance metrics or losses that do not require bijective correspondence. 

FPT was trained with the Adam optimizer [22], a minibatch size of 32, and a learning 

rate of 0.001. Models were trained on a NVIDIA DGX-1 system using a single Tesla 

V100 GPU. During training, points were transformed on-the-fly with scaling, 

deformation, rotation, and displacement. Points were scaled, per-sample, between [-1, 

1] in the X, Y and Z directions. The scaled points were used as the target point set. 

Rotations were sampled from [-45º, 45º] about the X, Y, and Z axes. Displacements 

were sampled from [-1, 1] in the X, Y, and Z directions. Non-rigid deformation was 

simulated by a radial basis function (RBF) deformation model with a Gaussian kernel. 

RBF deformation was defined by a perturbation of the control points by Gaussian 

random shift (µ = 0, σ = 0.1). These points were used as the source point set. A RBF 

was chosen as our deformation model as it produces smooth deformations and is 

sufficiently computationally efficient to apply on-the-fly during training. Experiments 

with other deformation models, such as elastic body spline models [23], are needed to 

assess FPT’s ability to reconstruct more localized displacements. 

When training FPT for partial registration, occlusion occurred after scaling, and was 

simulated by selecting a random point on the model surface, and discarding the 512 
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(25% of the input points) nearest neighbour points. Following point removal, 

translation, rotation, and deformation were performed as described above. 

3 Experiments 

We present FPT’s performance in rigid and non-rigid registration and scenarios with 

partially occluded data. In these experiments, we used the 2,468 object ModelNet40 

testing set to compare FPT with existing and classical and learning-based methods. 

Furthermore, we demonstrate how a pre-trained FPT model may generalize to data 

outside its training domain in an application whereby segmented US imaging and a 

generic spine model are non-rigidly registered. Root mean square error (RMSE) is used 

to evaluate errors in rotation (R) and translation (t). Inference time is also reported. 

3.1 Registration on ModelNet40 

Unseen Objects. We evaluated FPT on rigid and non-rigid transformations. 

Transformations are generated as in training, although for the rigid transformations, no 

non-rigid deformation was added. As such, the inherent design and training of FPT is 

unchanged – meaning it may predict a transformation which contains deformation to 

the input point sets, but the ground truth transform between the input point sets does 

not have any deformation added for the rigid transformation registrations. We 

compared FPT to rigid iterative and learning-based methods, as well as non-rigid 

iterative methods. 

Partial Registration with Unseen Objects. We evaluated the performance of FPT for 

partial registration. Transformations are generated as in training for the ‘partial-to-full’ 

registrations, where point removal is only performed on the source point set. For 

‘partial-to-partial’ registrations, point removal is performed on both the source and 

target point sets. We compare FPT to rigid iterative and learning-based methods. 

Notably, one such method [4] is designed explicitly for partial registration, whereas 

FPT is not. In this comparison, we note that we modify only the data, as in Section 2.2, 

and not the FPT architecture. 

3.2 3D Spine Ultrasound Reconstruction Registration 

We evaluate FPT for a medical image registration task. Using Ungi et al.’s method for 

automatic bone segmentation from US [18], 13 different curvatures from 7 different 

patients were reconstructed. The surfaces of the reconstructions and a generic spine 

model were resampled into point sets, and subsequently used to evaluate FPT’s ability 

to register the two. As discussed previously, this task is well-suited to a non-rigid partial 

point set registration method given the inherent differences in the appearance and 

geometry of the 3D US reconstructions and the generic spine models (Figure 1) due to 

the fact that the reconstruction may feature partial occlusions due to segmentation 

quality or operator error during the scanning process. As such, to demonstrate FPT’s 

generalizability to unseen objects from outside the domain of our training set and FPT’s 
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ability to perform partial registration; we use the pre-trained FPT model trained for the 

experiments described in Section 3.1 for ‘Partial Registration with Unseen Objects’.  

Spinal curvature is commonly quantified by the Cobb angle; the angle between the 

end-plates of vertebrae above and below the main curvature [25]. However, as vertebral 

end-plates are not visible in US, they do not appear in the 3D reconstructions. As such, 

we report spinal curvature using the transverse process angle (TxA) as it is visible in 

X-ray and US, and has a very strong correlation to Cobb angle [16]. TxA is defined by 

the angle between the lateral ends of each transverse process above and below the main 

curvature [16]. TxAs were calculated on the X-ray and the deformed spine model. The 

reported TxA in the X-ray was defined by two lines in 2D. The TxA in the deformed 

model was defined by two lines in 3D, with the reported TxA being that which was 

computed by projecting the lines into 2D in the coronal plane. 

 

Fig. 1. Sample 3D reconstruction of a patient’s spine and generic spine model. 

4 Results and Discussion 

4.1 Registration on ModelNet40 

Unseen Objects. Table 1 presents registration performance on unseen objects. Figure 

2 shows FPT’s registration performance with rigid and non-rigid input transformations. 

FPT outperformed all other evaluated methods with respect to rotational error. FPT was 
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comparable or superior to other methods with respect to translational error when 

presented with rigid and non-rigid input transformations. FPT was comparable to other 

learning-based methods with respect to inference time, and was over 50 times faster 

than CPD - an established and widely used iterative non-rigid registration method. 

Additionally, FPT performed consistently in both rigid and non-rigid registration, 

demonstrating its ability to effectively perform both types of registration. 
 

Table 1. Registration performance of FPT and other methods on complete point sets of unseen 

ModelNet40 objects.  

Method Transformation Time (s) RMSE (R) RMSE (t) 

ICP (10 iter.) [24] Rigid 0.05 28.84 0.193 

PointNetLK [4] Rigid 0.14 14.47 0.045 

CorsNet [3] Rigid 0.08 16.24 0.012 

CPD [10] Rigid 5.94 8.29 0.049 

CPD [10] Non-Rigid 6.01 8.39 0.051 

FPT Rigid 0.08 5.01 0.015 

FPT Non-Rigid 0.08 5.18 0.032 

 

 

Fig. 2. Rigid (top) and non-rigid (bottom) registrations with FPT. Blue: source, yellow: target, 

gray: transformed source. 

Partial Registration with Unseen Objects. Table 2 gives registration performance for 

‘partial-to-full’ and ‘partial-to-partial’ registrations. Figure 3 shows FPT’s ‘partial-to-

full’ and ‘partial-to-partial’ non-rigid registration performance. Here, we see that FPT 

was comparable or superior to other learning-based methods. While PRNet maintains 

superior performance in both rotational and translation error, it is explicitly designed 

for partial registration and iteratively refines the predicted registration [4]. Furthermore, 

our use of a modified Chamfer Distance limits FPT’s ability to perform partial 

registration as it relies on the existence of a one-to-one correspondence between point 
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sets. When points are removed from the source or target point set, as in partial 

registration, a two-way Chamfer Distance will compute distances in a one-to-many 

manner, as some points will be distant to the other point set. However, this limitation 

may be alleviated through the formulation of a one-way Chamfer Distance loss for 

partial registration applications. As such, FPT’s performance in partial registration must 

be further validated with other losses and training protocols in future work. 
 

Table 2. Registration performance of FPT and other methods on partially occluded point sets of 

unseen ModelNet40 objects.  

Method Transformation Tranformation Type RMSE (R) RMSE (t) 

ICP (10 iter.) [24] Rigid Partial-to-partial 32.40 0.279 

PointNetLK [1] Rigid Partial-to-partial 16.58 0.048 

PRNet [4] Rigid Partial-to-partial 3.20 0.016 

FPT Rigid Partial-to-partial 6.97 0.063 

FPT Non-Rigid Partial-to-partial 7.99 0.082 

FPT Rigid Partial-to-full 5.79 0.053 

FPT Non-Rigid Partial-to-full 6.34 0.068 

 
Fig. 3. Non-rigid ‘partial-to-full’ registrations at 25% occlusion of the source point set (top) and 

‘partial-to-partial’ registrations at 25% occlusion of the source and target point sets (bottom) with 

FPT. Blue: source, yellow: target, gray: transformed source. 

4.2 3D Spine Ultrasound Reconstruction Registration 

TxAs were measured in the X-ray and deformed spine models to permit comparison 

between the clinical standard for scoliosis measurement and FPT’s registration. The 13 

spinal curvatures acquired from X-ray in our dataset measured between 6.4º and 11.5º. 

The maximum difference between TxA measurements from X-ray and deformed model 

was 2.3º. The average difference between TxA measurements from X-ray and deformed 

model was 1.3º. Figure 4 graphically demonstrates these results. Figure 5 illustrates an 

anterior-posterior and lateral visualization of a representative case from our dataset.  
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Fig. 4. Scatter plot of per-patient transverse process angles (TxA) measured from deformed spine 

models vs. X-ray based measurements. 

In practice, curvatures larger than 5º are considered clinically significant. 

Additionally, curvatures from X-ray measurements may vary by up to 5º due to inter-

observer variability and the time of day at which the images are acquired [26]. As such, 

for monitoring and measuring of scoliosis, an accuracy within 5–10º is considered 

acceptable for determining the next steps and course of care for a patient. While this 

proof-of-concept experiment is limited by the patient sample size, and the scale of the 

curvatures, given the availability of paired US imaging and corresponding X-rays, it is 

clear that the results we have presented are clinically acceptable. Without any fine-

tuning, and having provided FPT with geometries which are external to the training set, 

FPT was able to register the spine models with an average error of less than 1.5º. 

Importantly, all measured differences fell within the 5º clinical error range, permitting 

a promising future use for the creation of accurate 3D visualizations that may be used 

for monitoring and measuring scoliosis without the need for error-prone manual 

registration processes, or the use of X-ray imaging and its associated ionizing radiation. 
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Fig. 5. Sample anterior-posterior (top) and lateral (bottom) visualization from patient data. Left 

to right: X-ray image, 3D reconstruction, deformed spine model, deformed spine model overlaid 

on 3D reconstruction, deformed spine model overlaid on X-ray image. Solid lines show 

measurements in X-ray images, dashed lines show measurements on deformed spine models. 

5 Conclusion 

Through evaluation with synthetic non-medical data and with US-based spine 

reconstructions, demonstrating a real-world clinical application, we demonstrated the 

effectiveness of the FPT architecture for point-set registration using deep neural 

networks. FPT is robust to deformation, and through our evaluation of atlas-based 

registration to US-based spine reconstructions, shown to be generalizable to geometries 

external to its training data domain. In other medical imaging problems where training 

data may be limited, FPT’s generalizability may be of interest, given its ability to 

rapidly register point sets extracted from imaging acquired at different times or from 

different modalities. This further demonstrates FPT’s utility as a generally-applicable 

method for learning-based non-rigid registration, representing significant progress for 

non-iterative, non-rigid point set registration without need for point correspondence. 
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