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Abstract

We examine the problem of state transformations in the framework of Gaussian
thermal resource theory in the presence of catalysts. To this end, we introduce
an expedient parametrisation of covariance matrices in terms of principal mode
temperatures and asymmetries, and consider both weak and strong catalytic sce-
narios. We show that strong catalysts (where final correlations with the system
are forbidden) are useless for the single mode case, in that they do not expand
the set of states reachable from a given initial state through Gaussian thermal
operations. We then go on to prove that weak catalysts (where final correla-
tions with the system are allowed) are instead capable of reaching more final
system states, and determine exact conditions for state transformations of a sin-
gle mode in their presence. Next, we derive necessary conditions for Gaussian
thermal state transformations holding for any number of modes, for strong cata-
lysts and approximate transformations, and for weak catalysts with and without
the addition of a thermal bath. We discuss the implications of these results for
devices operating with Gaussian elements.
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1. Introduction

The extension of thermodynamics outside of its original classical scope to include nano-scale,
fluctuating, and quantum systems has required the development of novel conceptual and the-
oretical approaches [1, 2]. In this regard, quantum resources theories [3], growing out of
quantum information, have attracted attention recently for their application to thermodynam-
ics [4]. Indeed, the resource theory approach enables precise definitions of work and heat as
well as novel insights into the role of quantum statistical quantities in small systems, such as
entropy, entanglement, and coherence [5]. Moreover, it led to the appropriate mathematical
formulation of the second law in quantum thermodynamics in terms of a family of free energy
quantities [6]. However, these works have typically considered discrete-variable systems with
the assumption that any energy-conserving dynamics are in principle possible. Thus, they have
limited applicability to continuous-variable (CV) systems, some of the most important physical
platforms for testing quantum thermodynamics and for quantum technologies more generally.
These include harmonic oscillators ranging from optics to mechanical systems; in such sys-
tems, the range of available operations and interactions is often limited to Gaussian elements
[7-9]. This argument has motivated the formulation of restricted Gaussian resource theories in
anumber of fields [10—12], and thermodynamics also requires a better adapted resource theory
in the Gaussian regime.

Outside of the resource theory context, the thermodynamics of Gaussian CV systems has
begun to be understood in various ways, including heat engines operating with squeezed reser-
voirs [13-17], studies of networks [18, 19], and via the notion of passivity [20-22]. However,
to unify these approaches and find general fundamental limits will require the relevant CV
resource theory to be fully developed. The first steps in this direction were made in references
[23, 24], which defined the resource theory of thermodynamics in Gaussian CV systems. Ref-
erence [24] identified a set of thermodynamical resources under passive linear interactions with
a thermal environment and found some second law-like statements, while reference [23] anal-
ysed a slightly more general context with arbitrary quadratic Hamiltonians and provided a full
characterisation of the possible dynamics of a single mode.

One element not yet considered in these works is the role played by catalysts. The notion of
a catalyst—a system that can be used but must be returned back to its initial state—is central
even to classical thermodynamics, applying to any machine that operates in a cycle. The impor-
tance of catalysts to quantum resource theories beyond thermodynamics was demonstrated
famously in entanglement theory [25]; in general, allowing catalysts realises more possible
state transformations under the same restricted set of operations. In discrete-variable thermo-
dynamics, it is known that one recovers a single inequality describing the second law involving
the Helmholtz free energy when looking at approximate transitions in the identical and inde-
pendently distributed (i.i.d.) limit [6] or we allow for correlations between system and catalyst
in the final state [26]. Other interesting phenomena with catalysts include embezzlement, which
occurs if one is not careful with the error bound for approximate catalysts [6, 27], a catalytic-
type property obeyed by coherence [28], and a universality enjoyed by all catalyst states given
sufficiently many copies [29].
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In this paper, we characterise possible state transformations for Gaussian states under Gaus-
sian thermal operations when catalysts are allowed. Our work can be considered an extension
of the initial studies [23, 24] in two ways: (i) we now allow for catalysts, and (ii) we obtain
state transition conditions for the multi-mode case. As the possible state transformations under
non-catalytic Gaussian thermal operations characterised in [23, 24] were very limited, we ask
whether catalysts can help us to perform more interesting thermodynamic tasks in the Gaussian
regime. We consider two different models for catalysts. The first type is called a strong catalyst,
which must not only come back to its original state but also end up uncorrelated from the sys-
tem. The second type, a weak catalyst, allows for final correlation with the system and requires
the catalyst only locally to return to its initial state. Despite the general usefulness of catalysts,
we find that the state transitions we can achieve with strong catalysts are exactly the same as
those without catalysts, while we can achieve more—yet still limited—state transformations
with weak catalysts. Further, we determine the full necessary and sufficient conditions for
single-mode catalytic Gaussian thermal transformations. For the multi-mode case, we intro-
duce a new set of resource monotones with clear physical interpretation and provide state
transition conditions in terms of them.

This paper is structured as follows. In section 2, we revise the definitions and properties
of Gaussian thermal operations and introduce a useful representation of Gaussian states and
operations. We first look at possible state transformations under non-catalytic Gaussian thermal
operations in section 3 and then formally define two different types of catalysts in section 4.
The full characterisation of state transformations under single-mode catalytic Gaussian ther-
mal operations is discussed in section 5, and the state transition conditions in the multi-mode
case are presented in section 6. Finally, we discuss the physical implications of our results in
section 7 and then conclude the paper in section 8.

2. Preliminaries

2.1. Gaussian thermal operations (GTO)

We consider an n-mode bosonic CV quantum system associated with a tensor product Hilbert
space H®" = @);_,Hx and the corresponding set of Hermitian quadrature operators {X;};
and {p;};. If we define a vector with these operators, © = (£1, P1, . . . , Xu, Pu) |, it satisfies the
bosonic commutation relations [7;, 7;] = i€2;;, equivalently [T, #T] = iQ with the symplectic

form matrix 2 = QIEB" where Q) = ( 01 . The quadrature operators are related to the

-1 0
bosonic field operators {&i,&j}i via a; = Lﬁ”” For a generic quantum state p, we define a
vector of first moments as

= (2, = ((£1) s (P1)ps -+ > (Zn)ps (Pu))» (1)

and the covariance matrix (CM) o as

Oij = —<{;'i - <;‘i>/)’;ﬁj - <;‘j>/’}>/)’ (2)

where {-, -} is the anti-commutator. A CM is physically realisable when it satisfies the uncer-
tainty principle, which can be written as o + %Q > 0 [30]. Gaussian states are defined as the
ground or thermal states of a second-order Hamiltonian H= %(f —1o)TH(# — r() with a sym-
metric Hamiltonian matrix A and a real vector ry [9]. They can be fully characterised by their
first moments and CMs.
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Gaussian operations are all quantum operations (i.e., completely positive trace-
nonincreasing maps) which map Gaussian states into Gaussian states [8, 9]. Any Gaussian
unitary operation admits a representation with a real 2n x 2n symplectic matrix S € Sp(2n),
meaning that it preserves the commutations relations, SQST = Q. Its action on a Gaussian
state with first moments r and CM ¢ can be described by r — Sr and o — SoST. The sub-
class of passive linear unitaries describes all operations implemented in optics with phase
shifts and beam-splitters—in other words, Gaussian unitaries that do not involve squeezing
[31]. These are represented by the set of operators that are both symplectic and orthogonal,
K(n) := Sp(2n) N O(2n). Since K(n) is isomorphic to U(n), any passive linear unitary can be
identified with an n X n unitary matrix U under which the ladder operators transform in the
Heisenberg picture as a; — ; Uija;.

In general, a Gaussian operation can be implemented by letting a system interact with
an environment in a Gaussian state under a joint Gaussian unitary and then measuring the
environment by projecting onto Gaussian states [7, 9]. For the thermodynamical context, we
consider the intersection of these with the thermal operations which define the relevant
resource theory for discrete-variable systems [4]. Thermal operations put minimal restric-
tions on processes in which energetic and entropic resources can be tracked explicitly: a
system is permitted to interact via any global energy-conserving unitary with an environ-
ment (of any dimension and Hamiltonian) starting in a thermal state at some fixed background
temperature’.

Gaussian thermal operations (GTOs) are a sub-class of Gaussian operations which can be
realised by energy-preserving interaction between a system and a thermal bath. More specifi-
cally, for a given second-order system Hamiltonian H and an inverse temperature § = 1 /kgT,
GTOs are defined as operations obtained by (i) preparing a thermal state with arbitrary second-

order Hamiltonian Hg, i.c., e 8 /Tr [e*BﬁB} , and (ii) applying an energy-preserving Gaus-

sian unitary 053 — e~ifss! with second-order Hamiltonian A sg such that [ﬁSB, ﬁs + I:IB] =0.
Note that, while Usg conserves total energy, it is not necessarily passive. However, the follow-
ing representation of GTOs on covariance matrices lets us reduce the problem to considering
only passive interactions:

Theorem 1 [23]. Ler Hs = iiTHsi be a system Hamiltonian with normal form
ST'Hg(SH™! = D wilan, where n; is the mode degeneracy of an eigenfrequency w;. For a given
system CM o, the transformation under generic GTOs at background inverse temperature 3
can be characterised by

8]

o S(@W, 0 ®02(S(0) |, (3)

1

where Wy and Z; are passive linear unitaries acting only on the modes with eigenfrequency wy,
and ®; are CP maps describing thermalisation as a result of interacting with thermal baths,
as follows:

®(0)) = XX + V), €]

where o, is the CM of the Ith degenerate sector, X; = P;_, cos 041, and
n Bwiyq . 2
Y, =@, :aw:l sin” Oy 1,, for some 0y, € R.

7 Note that measurements are not permitted for free.



J. Phys. A: Math. Theor. 55 (2022) 325301 B Yadin et al

Note that in equation (3), apart from the symplectic transformation S which brings the
system Hamiltonian into the normal form, modes with different eigenfrequencies transform
independently—GTOs cannot make modes with different eigenfrequencies interact with each
other. The characterisation in theorem 1 says that, once the Hamiltonian is transformed to its
normal form, a GTO can be implemented in three steps: (i) adding thermal bath ancillae with
same eigenfrequency and same number of modes to each different eigenfrequency sector of
the system; (ii) applying passive linear unitaries to each eigenfrequency sector separately; (iii)
tracing out the bath modes.

Since non-degenerate modes do not interact, in this work we only consider the interest-
ing case of degenerate modes—so we assume that all modes have the same eigenfrequency.
Moreover, we assume a mode basis has already been chosen such that the Hamiltonian is
in its normal form Hs = w1,,; equivalently Hs = w(Ns + %), where Ns is the total num-
ber operator. Under these conditions GTOs effectively reduce to only the three types of
operations described above, which were introduced as bosonic linear thermal operations in
reference [24].

2.2. State representation: principal mode temperatures and principal mode asymmetries

A generic Gaussian state can be represented by its vector of first moments r and its CM o. Here,
we consider the case of vanishing first moments, r = 0, and concentrate only on the thermo-
dynamical properties of the CM. We employ a decomposition of the CM, first introduced in
reference [30], that provides both a convenient mathematical description for analysing transfor-
mations under GTOs and a set of quantities with interesting physical interpretations. A 2n x 2n
CM can be decomposed into two n X n matrices:

M= <&}&,~> o, A= (aa), )

Sw . . . .
where v = ;wf} is the variance of any quadrature in a thermal state at background inverse

temperature /3. They are both complex matrices; M is Hermitian, and A is symmetric. M is
sometimes known as the single-particle density matrix, up to a constant shift. In terms of these
two matrices, we can recover the CM o via

(Xixj) = RIM;; + Aijl + 60, (6)
(Pipj) = RIM;j; — Aijl + 6ijv, (7)
1
5 ({8 bi}) = Ay — Myj1. (8)

This representation is convenient since a thermal state at the background temperature is char-
acterised by M = A = 0. Furthermore, these matrices evolve simply under the passive linear
unitaries on which GTOs are based. Under such an operation described by a unitary matrix U,
the matrices M and A transform as

Mij— Y UaMyUs, M UMU' 9)
kil

A,‘j — ZUikAklUjl, A UAUT. (10)
kil
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It is therefore possible to diagonalise M with an appropriate choice of U.% A can also be diag-
onalised with a generally different unitary V. An advantage of using M and A instead of o is
that we can identify some quantities that are invariant under passive linear unitaries and thus
equal for states that are thermodynamically equivalent due to being unitarily interconvertible
under GTOs.

In a basis where M is diagonal, we have M = diag(y, ..., i,). A is not in general diago-
nal in this basis, but we are free to make arbitrary phase rotations of the form U;; — U;; el
while leaving M unchanged, under which A;; — €“iT?)A;;. We can thus always leverage this
freedom to make the diagonals real and non-negative, i.e., A; > 0. Ordering the quadratures
as (X, p1, X2, P2, - . .), the resulting form of the CM is

p + A+ v 0 R[A12] S[A12]
0 1 — Ay +v S[A12] —R[A12]
R[A12] S[Ar2]  p2 + A2 +v 0

g = C\\Y[Alg] —§R[A12] 0 Mo — AQQ + v

Y

Aside from the eigenvalues {1, }; of M, another set of invariant quantities under passive linear
operations are the singular values «; > 0 of A, obtained by diagonalising A with the unitary V
by congruence [32, chapter 4]. In this paper, we characterise states in terms of the parameters
n= (..., 1, and @ = (o, . .., o). Without loss of generality, we assume that they are
arranged in descending order. Individually, & and o determine M and A up to passive linear
rotations—but it should be noted that they do not generally provide a full characterisation of
covariance matrices. The problem is that M and A are not in general simultaneously diagonal-
isable. However, when they are, these parameters are sufficient to determine o up to a passive
linear rotation:

Definition 1. A CM o is called decouplable if there exists a passive unitary that makes all
the modes uncorrelated. In this case, the normal form in equation (11) is fully diagonal and
A,',' = for all i.

The parameters p and o have interesting physical interpretations (see figure 1 for an illus-
tration). The quantities {yu; + v}; were named principal mode temperatures in [24] and
described as the most extreme effective temperatures that can be found in any mode decompo-
sition of a state. The mean energy of the ith mode is a function of (X% + p?)/2 = M; + v in
the case of vanishing first moments; phase-averaging the mode results in a thermal state with
the same mean energy. Note that this quantity is directly related to an effective temperature
bounding the efficiency of a proposed heat engine using general Gaussian reservoirs [13, 14].
Given the ordering p; > p, > - - -, i, is the greatest effective temperature found in any mode
decomposition. u, is the next greatest value found in any mode orthogonal to this, and so on.

The {«;}; instead describe the rotational asymmetry of modes in phase space, since
<)2,2 — j),z> /2 = MR[A;] = A;; using the aforementioned phase freedom. We name them princi-
pal mode asymmetries in this paper. Again ordering a; > «a; > - - -, we see that «v; describes

8 Note that diagonalisation of the CM with passive linear unitaries is not in general possible, since K(n) is strictly
smaller than the orthogonal group O(2n).
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Figure 1. Illustration of the parameters used to characterise covariance matrices (shown
for a single mode). We use a common visual representation of Gaussian states where an
ellipse indicates the size of fluctuations in every quadrature direction. Note that the quan-
tities indicated are the squares of the lengths. Dashed circle: thermal state at the back-
ground temperature 7, with variance v in all quadrature directions. Solid ellipse: arbitrary
Gaussian state (with vanishing first moments). y is the principal mode temperature and
« is the principal mode asymmetry.

the mode with the greatest asymmetry, a, the next greatest among modes orthogonal to that,
and so on. These are somewhat similar to squeezing, except that o > 0 does not necessarily
imply a sub-shot-noise quadrature variance.

3. Gaussian thermal operations without catalysts

In general, we would like to understand when one state p of a system can be transformed into
another state p’ via a GTO in the presence of catalysts when all modes are degenerate. In this

section, we revise state transformations under normal (non-catalytic) GTOs, focussing on the
principal mode temperatures and asymmetries.

When there exists a GTO which maps a state p of a system to another state p’, we write
P L1, p'. For Gaussian states with vanishing first moments, this is equivalent to the con-
version of one CM into another, denoted o 19, o, Alternatively, a simpler question can be
asked using our decomposition of the CM: does a GTO exist that maps a state with matrix
M into one with matrix M’, not concerned with what happens to the matrix A? When this is

. . T . . . T . . .
possible, we write M ﬂ> M'; likewise, the notation A ﬂ) A’ implies the matrix A can be
transformed into A" through GTOs.
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The following result from reference [23] (restated in terms of the parameters used here)
answers when one CM of a single mode can be converted into another under GTO (notice
that the matrices A and M, reducing to single numbers, necessarily commute for a single
mode):

Proposition 2 [23]. Let o, 0’ be covariance matrices of a single mode. Then o 510, 5 if
and only if there exists p € [0, 1] such that

u=pp, o =pa. (12)

One can state this condition alternatively as the existence of p € [0, 1] and S € K(1) such
that

o' =pSoST+ (1 - pvi,. (13)

In words, any single-mode GTO is equivalent to applying a phase rotation and mixing with
thermal noise.

For multiple modes, a set of necessary conditions in terms of principal mode temperatures
were found in reference [24]. We prove them again here with a different method that we also
generalise to the principal mode asymmetries. We first need to introduce some useful notation.
The parameters g can be divided into super- and sub-thermal (or ‘hot’ and ‘cold’) parts,

namely the positive and negative values: p = (;ﬁ, C, “'t’ 0,...,0,—p, ,...,—puy), where
phzp =z >0,
Py =y =2, >0. (14)

It will sometimes be convenient to extend these lists with zeroes, so that by convention z;* = 0
fori > ny.

The result presented here involves a kind of ordering between such vectors composed of
non-increasing elements: for x and y, we write x < y when x; <y, for all i.

Theorem 3.

(a) (Necessity proved in [24]). For M with eigenvalue vector p and M’ with ', M S0, wr

ifand only if W'+t <utand W'~ <pu .
(b) (New here). For A with singular-value vector o and A’ with o', A RNy if and only if
o <o

See the proof in appendix A. The main idea is that the matrices transform as M’ =
PMP', A’ = PAPT, where P is a submatrix of the unitary describing the coupling to the bath.
Since P is a contraction, it has a corresponding contractive effect on the eigenvalues and sin-
gular values. The sufficiency of the conditions results from finding a type of elementary GTO
which applies what we call an L-transform on the parameters (where ‘L’ stands for ‘lossy’),
which is able to perform the required transformations applied to each mode independently.
An L-transform is achieved by simply mixing a single system mode with a thermal mode at a
beam splitter of arbitrary reflectivity, and scales the parameters p, o towards zero. In essence,
this result says that the principal mode temperatures and asymmetries all converge individu-
ally towards the thermal values, i.e., zero. While the inequalities are necessary and sufficient
for GTO transformation between M or A matrices independently, we are not able to say any-
thing general about whether both sets of conditions can be simultaneously satisfied. Thus, the
inequalities are only necessary conditions for transformation of the CM, but not sufficient.

8
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4. Definitions of catalytic Gaussian thermal operations

In this paper, we are interested in state transformations under catalytic GTOs. We define two
different cases of catalytic GTO transformation.

Definition 2.

(a) (Strong catalysts). We say that a strong catalytic GTO transformation from pg to pg is
possible if there exists a state pc such that

ps ® pc %pé@pc. (15)

The same terminology applies to transformations at the level of the matrices o, M and

A—for example, Mg & Mc g1, M{ @ Mc.

(b) (Weak catalysts). We say that a weak catalytic GTO transformation from pg to pg is
possible if there exist a state pc and a final state pi such that

GTO .
ps ® pc —— psc with pc = Trs [psc] = pc. (16)

The same terminology applies to transformations at the level of the matrices o, M and

A—for example, As ® Ac — 2 Al with the catalyst sub-block A = Ac.

A strong catalyst must be not only returned to its original state but also uncorrelated from
the system at the end. This agrees with the most common definition that has been used for
instance in entanglement theory [25]. For a weak catalyst, arbitrary correlations between the
system and the catalyst in the final state are allowed. This weakening of the constraint has been
studied recently and shown to result in sensible versions of the second law [26, 33]. Note that
we use the same terminology for catalytic conditions on either the density matrix or the CM
and its submatrices, although these conditions are not equivalent. Catalytic behaviour of the
density matrix implies catalysis at the level of second moments, but not the reverse in general.
Aside from first moments, these conditions are indeed equivalent for Gaussian states. However,
one can have non-Gaussian states under GTO where the state transformation is not catalytic
but the second moments are (for instance, a Fock state mixing at a beam splitter with a thermal
mode with the same CM.)

A natural question is whether such catalytic GTO transformations allow for more state trans-
formations to be performed on a system. For the rest of the paper, we provide necessary or
sufficient conditions for these two different catalytic GTO transformations in terms of p and
o and compare them to the case where no catalyst is used.

5. Single mode with catalyst: full characterisation

We first consider the simplest case of catalytic GTO transformations, where both the system
and the catalyst are composed by a single mode. This single-mode case is a special case of
our formulation—since the initial state pg ® pc is naturally decouplable, pp = (ug, jic) and
a = (as, ac) fully characterise the initial state of the system and the catalyst. Indeed, the initial
Mgc and Agc describing the system and the catalyst can be written as

_(pns O _[as O
Msc = (0 ,uc>’ Asc = ( 0 ac)- (17)
Since we can perform any GTO transformation using as many bath modes as the total modes

of the system and the catalyst [23], we add a two-mode thermal bath at inverse temperature /3.

9
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Then the joint initial state of the system, the catalyst, and the thermal bath is described by the
following M and A matrices:

s 0 0 0 as 0 0 0
[0 w0 of [0 a 0 o]
0 0 0 O 0O 0 0 O
(18)

where O denotes here the 2 x 2 null matrix. As discussed in section 2, any GTO transformation
can be obtained by applying a passive linear unitary to the whole state and tracing out the bath
modes, and any passive linear unitary corresponds to a unitary U acting on M and A matrices.
Let us divide the interacting passive operation U into four 2 x 2 blocks,

_ (P Q
U_<R S). (19)

The submatrix P satisfies P P < 1 and PP' < 1 (denoting the usual matrix inequality). With
this notation, the evolution of the system and the catalyst is only affected by the sub-matrix P:

M = PMscP', Age = PAscP". (20)

The main question is: for a given description of the initial system, i.e., 15 and as, which final
parameters /15 and o can be reached via catalytic GTO transformations?

We first find that a strong catalyst does not enlarge the range of possible transformations on
a single mode:

Theorem 4 (Single-mode strong catalytic GTO). Ler o and o' be covariance matri-
ces of a single-mode bosonic Gaussian state. The state transition condition between o and ¢’
under single-mode strong catalytic GTOs is exactly the same as the one under non-catalytic
GTOs described in equation (13). In terms of principal mode temperatures and asymmetries,
the condition is same as equation (12).

See the proof in appendix C. On the other hand, with a weak catalyst, we show that a greater
range of transformations becomes possible:

Theorem 5 (Single-mode weak catalytic GTO).  Consider a single-mode bosonic
Gaussian system described by the parameters |15 and as. It can be mapped to the final
state described by 15 and o via single-mode weak catalytic GTOs if and only if there exist
p-q € [0, 1] such that p > q, and

Mg = pis, Qg = qas. (1)

See the proof in appendix B. These results are illustrated in figure 2(a). With a strong cat-
alyst, the only possible kind of transformation in y—a parameter space is to move along the
line towards the origin (representing the thermal state). Physically, this implies that, apart from
the symplectic transformation S to the normal form, all possible state transition under single-
mode strong catalytic GTOs can be described as thermalisation towards the bath mode, which
is same as the case of non-catalytic single-mode GTOs. By contrast, with a weak catalyst, a
triangular region (the blue region) becomes accessible. This requires not only p and « to be

10
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(s, as)

Inverse
Squeezing

Weak catalytic GTO

(a) (b)

Figure 2. Visualisation of possible state transformations under single-mode strong or
weak catalytic GTOs, when the initial state of the system is described by the parameters
s, as or the CM os. The grey regions represent physical regions in both figures. (a) In
the state space described by the principal mode temperature ;o and asymmetry «. Each
point in the physical region (grey) fully describes a CM of the single-mode system up to
passive linear rotations, and the origin represents the thermal bath. The red line describes
all final states achievable by strong catalytic GTOs; it is same as the non-catalytic single-
mode case (thermalisation). The blue region represents all possible final states with weak
catalytic GTOs. In this case, we can additionally perform inverse squeezing to the system
by coupling it to the catalyst. (b) In the state space described by the eigenvalues A, A, of
the final CM of the system, with A\; > \,. ot denotes the CM of the thermal bath. Again,
the red line represents all possible state transformations with strong catalytic GTOs, and
the blue region describes the same with weak catalytic GTOs. Note that the red line is
the same as what we could achieve with non-catalytic single-mode GTOs discussed in
proposition 2.

non-increasing, but also the ratio 2. This latter condition may be interpreted as the ‘aspect
ratio’ of the Gaussian distribution in phase space becoming less extreme. The same region
is also redrawn in terms of the eigenvalues of the final CM, A, A, with \; > Xy, in
figure 2(b).

Any point in the triangular region can be reached by concatenating two simple processes:
a reduction in « with fixed p, followed by a non-catalytic thermalisation which scales both
parameters similarly towards zero. The first of these involves a catalyst but no bath. In order
to map (us, as) — (us, as), we take pic = pg and ac = “5;@5 , and need the following unitary
operation between these two subsystems:

ag+ag
3ag—as

where a =
shift.

Note that, in the single-mode case, the parameters pig and ag fully characterise the system
state up to passive linear rotations. Thus, the conditions stated in theorems 4 and 5 are necessary
and sufficient conditions for state transformations under single-mode catalytic GTOs.

€ [%, 1], which can be performed with a suitable beam-splitter and phase
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6. Multiple modes with catalyst

Here, we explore state transformations under GTOs involving systems and catalysts of arbitrar-
ily many modes. Given the difficulty of completely characterising the equivalence of covari-
ance matrices under the set of passive linear unitaries, the above analysis solving the single-
mode case does not generalise to multiple modes. Instead, we determine the monotonicity
properties of the quantities pt, o with respect to the different types of catalysts.

6.1. Approximate transformations with strong catalysts

For a single mode, it was found above that a strong catalyst permits no more state transfor-
mations than are possible without a catalyst. One might wonder whether this is due to the
strict requirement that the catalyst be returned exactly to its initial state. To probe this, we
relax the condition to allow for an error with respect to the trace distance between covariance
matrices. In part, this choice of error measure is for mathematical convenience, however it is
also in keeping with the idea of quadratures representing all the accessible quantities in the
Gaussian context (aside from first moments). In this context, it may be more experimentally
relevant to distinguish the correlation properties of quadratures than to optimally distinguish
states according to some measure such as fidelity or trace distance between states.

Definition 3 (Approximate transformations). We write M % M’ if there exists M

such that M <225 7 and |M' — M||; <6, where || - ||; is the trace norm. An approximate

strong catalytic transformation then takes the form

Ms & Mc % M ® M. (23)

Note that d-closeness in terms of the matrix M implies d-closeness in terms of the eigen-
values, as the Wielandt—Hoffman inequality [32, corollary 7.4.9] for the trace norm says

> lph— il < ||M = M, (24)
i=1

where as usual we assume non-increasing ordering. The result for strong catalysts is the
following:

Theorem 6. There exists Mc such that M & Mc % M’ & Mc if and only if
5

Z{u’f—uﬂ++§;[u’i—uir

1

N

8. (25)

Similarly, there exists Ac such that A ® Ac % A" @ Ac if and only if
5

S [af -] <. (26)
Here, [x]" := max{x, 0} denotes the positive part of a real number.

See the proof in appendix D. The operations sufficient to perform the transformations when
the inequalities are satisfied are as in the non-catalytic case of theorem 3. Note that setting § = 0
recovers the same transformation laws as the non-catalytic case in theorem 3. Otherwise, the

12
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left-hand sides of equations (25) and (26) quantify the total amounts by which the laws are
violated—and these totals are bounded by the error 4. Also note that there is no possibility for
embezzlement here—such a phenomenon occurs, for instance, in entanglement theory [34],
whereby allowing for a small error in returning the catalyst state can permit arbitrary transfor-
mations on the system. Rather, the result that a strong catalyst cannot enable any additional
transformations is stable with respect to errors in the catalyst.

6.2. Necessary majorisation conditions for weak catalysts

For a weak catalyst, instead of the ordering relation denoted by the inequality symbol (<),
we instead find that majorisation (<) and weak majorisation (<) become relevant. Given
two non-increasingly ordered vectors x and y of length n, we say that y weakly majorises x,
denoted x <, y, if [35]

k

k
x> yi Vk=12...n (27)
i=1

i=1

If in addition the total sum is the same,

doxi=> v (28)
i=1 i=1

then we say that y majorises x, denoted x < y.

The transformation laws for M and A now differ from each other and from the non-catalytic
case. A weak catalyst on its own, without invoking a thermal bath, is also able to effect change
on g

Theorem 7.

(a) A weak catalytic transformation from M to M' is possible without use of a thermal bath if
and only if

W= (29)

If the system has n modes, then the catalyst only needs at most n — 1 modes.
(b) Allowing for the use of a thermal bath, the transformation is possible if and only if

W=wpt and g =up. (30)

The catalyst only needs at most n — 1 modes, and the bath at most n modes.

See the proof in appendix E. Note that no statement can be made about the number of
positive or negative principal mode temperatures. It is also worth noting that the construction
of the operation in part (b) shows that we may interact the system with just the catalyst first,
and then just with the bath as in the single-mode case.

For the parameters o, we find instead that the same set of transformations is possible,
whether or not a thermal bath is invoked:

Theorem 8. A weak catalytic transformation from A to A' is possible either with or without
use of a thermal bath if and only if

o' <, o (31)

13
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If the system has n modes, we require at most 2n — 1 catalyst modes, or otherwise n catalyst
modes plus n — 1 bath modes.

See the proof in appendix F. The key additional transformation provided by a weak catalyst
is an operation on a given pair of modes. For instance, the result on the M matrix is a so-called
T-transform [35, lemma 2.B.1] on its eigenvalues, resulting in p} = (1 — ) + tpo, ph =
(1 — Hpp + tyy for some ¢ € [0, 1]. Again, it is important to note that the above conditions
are only necessary conditions for state transformation due to the fact that M and A are in gen-
eral not simultaneously diagonalisable. Also, the derived multi-mode conditions do not fully
recover the single-mode results presented in section 5—we are missing the conditions on the
ratio between p and «v. It is an open question to see whether we can derive a generalised version
of the conditions on the ratio in the multi-mode case.

7. Physical implications

71. Concentration of athermal resources

Here we discuss the physical meaning of the monotonicity results found for the parameters g
and «; a summary of the different cases is given in table 1 and illustrated in figure 3.

First consider the matrix M: given a choice of orthogonal modes, the diagonals M;; in the
corresponding basis are related to the mean energy in each mode (recall that we assume van-
ishing first moments). The principal mode temperatures ; are the diagonals in a basis where
M is diagonal. In particular, these bases coincide if (but not only if, due to the other matrix A)
the chosen modes are uncorrelated. Due to the majorisation relation between the eigenvalues
of a matrix and its diagonals, the distribution of M;; is generally more uniform than that of
;. For a set of initially uncorrelated modes isolated from the thermal environment and which
interact with a passive linear unitary, this relation describes an approach to equilibrium via
what could be described as heat exchange, since these components of energy are related to the
quadrature fluctuations (rather than first moments). The y; are intrinsic to the closed system,
so are unchanged over this unitary evolution.

An important common feature of the relations in table 1 is a restriction on the concentra-
tion of resources. For instance, all the orderings <, <, <y, require u’1+ < uf“. This means it is
impossible to concentrate the energy of multiple modes in such a way that the ‘hottest’ mode
becomes hotter. The same rule applies inversely to modes below the background tempera-
ture, so the coldest sub-thermal mode cannot be cooled. Therefore an absorption refrigerator
is an impossible machine within the Gaussian framework. This observation was also made
in references [18, 19, 36]—however, we also see that further, more subtle conditions apply
to concentration into larger subsets of modes. For instance, either with no catalyst or with a
strong catalyst, ;57 < 15 so the second hottest mode also cannot become hotter. A weak cata-
lyst instead opens up the possibility of heating this mode, subject to the constraint that the two
hottest modes in total do not heat up, //IJF + u';r < ufr + uj —that is, energy in the first mode
can be traded for heating of the second mode.

Note that the case of a weak catalyst without interaction with a thermal bath makes no
distinction between super- and sub-thermal modes; this is to be expected since there is no
background reference temperature in this case. The effect of including a thermal bath is then
to separate the conditions on super- and sub-thermal modes, and also to allow for losses, in
the sense that the total >/, ui;" can decrease, for instance. So the super-thermal modes can in
total lose energy to the bath, and the sub-thermal modes can in total gain energy from the bath.

Similar considerations apply to the principal mode asymmetries «;. A notable difference
compared with y; is that the ‘lossy’ property exists for a weak catalyst with no bath interaction.

14
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Table 1. Summary of ordering relations on the p and o parameters for different types
of GTO transformations.

Transformation type Ordering

No catalyst wE <t o <«
Strong catalyst wE Lt o <a
Weak catalyst, no bath u =, o <y a
Weak catalyst, with bath wE <y pE, o <y«

k
Zi:l Xi

A

-k

Figure 3. Lorenz curves (i.e., partial sums) demonstrating the different kinds of order-
ings encountered here. If the top curve (solid, black) is x, then the lower curves from
top to bottom satisfy respectively ¥’ < x (solid, red), ¥’ <, x (dashed, blue), and ¥’ < x
(dotted, green).

Intuitively, this is due to the existence of operations that result in components of the asymmetry
being transferred to correlations between the system and the catalyst.

72. General limitations of Gaussian systems

In addition to the constraints described above, there is a deeper limitation preventing Gaussian
systems from making useful thermodynamical machines. In order to develop this argument, we
first need to understand how to describe work in the GTO framework. In the discrete thermal
operations resource theory [4, 6], a work battery is typically defined as a system that transitions
from one pure energy eigenstate to another so that it does not change entropy, and a definite,
non-fluctuating amount of work is exchanged with other systems’.

This definition cannot be used in GTOs because no energy eigenstate other than the vacuum
is Gaussian. Given the significance of quadratures in the Gaussian setting, it seems reasonable
to instead define a Gaussian work battery as a system that transitions from one Gaussian state
to another under the action of a displacement, D(§) = el —€a__go only its first moments
can change, but not its CM. The work is then defined as the change in mean energy of the

9 Generalisations do exist, for example see reference [37].
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battery. Apart from the change in first moments, the energy distribution changes too, so this is
necessarily a weakening of the usual requirements. However, its entropy is a function of the
CM and so is constant.

Depending on whether the work battery is allowed to become correlated with the system,
it therefore functions at the level of the CM as either a strong or a weak catalyst. Either way,
the final CM of the system is only a function of the initial CM and completely independent
of the first moments. Thus, the possible transformations of the system’s CM are the same no
matter how much energy is stored in the battery—work has no effect. In this Gaussian setting,
therefore, no useful machine can be constructed whereby work is traded for resources at the
CM level.

What, then, can a Gaussian work battery do? Only non-trivial transformations involving
first moments alone are possible. In general, given a system S and a work battery W with first
moments rs and rw, a joint passive linear unitary represented by S € K(ng + nw) has the action

(o) =)

i.e., the point in the combined phase space is simply rotated about the origin by an orthogonal
symplectic matrix. For example, with one mode each, a beam-splitter with reflectivity r has
the effect on a pair of coherent states |n)s|()w — [rn + V1 — r2()s|r¢ — V1 — r?n)w. One
could view this as a quasi-deterministic exchange of energy. In general, a displacement can be
applied to S by choosing a battery W with the same CM as S and suitably chosen first moments
along with a set of beam-splitters. So, while displacements are not free within GTO, they can
be accomplished with an additional system that exchanges energy in the form of first moments
but is strongly catalytic in its second moments. Alternatively, if we do not want to adapt W
to fit the CM of S, then we can use an arbitrary CM and a large displacement (—in the limit
|¢| = oo with r|¢| held constant, a displacement is performed on S [38]. For finite ¢, this is an
instance of an approximate strong catalytic transformation, so theorem 6 guarantees that the
thermal monotone laws found here still hold approximately.

73. Comparison with discrete-variable setting

At a broader level, it is also worthwhile noting that the direct-sum structure of multi-mode
Gaussian systems seems crucial for these general limitations in the Gaussian setting. The main
reason why introducing catalysts does not have as dramatic an impact on the ordering rela-
tions of p and « as in other resource theories is that catalysts do not change the pre-existing
elements of p and « but just add more elements to such vectors. In contrast, in the tensor-
product structure of the full Hilbert space, the catalyst’s vector elements are multiplied with the
system’s elements, which can significantly affect vector ordering. The direct-sum structure of
multi-mode Gaussian systems plays an important role in other limitations to Gaussian resource
theories as well; for example, in reference [10] it is shown that the tensorisation property of
a resource monotone, due to the direct-sum structure of CMs, results in a no-go theorem for
Gaussian resource distillation.

The fact that introducing catalysts cannot significantly change the state transition conditions
under GTOs causes some distinction from known results in the discrete-variable setting. As
already mentioned in section 6.1, we do not observe the phenomenon called thermal embezzling
[6, 27], mainly because approximate catalysts do not have much impact on the state transition
condition no matter what their size is—the amount by which the laws are violated is bounded
by the amount of error in approximate transformations regardless of the size of the catalyst
(see theorem 6).
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Some recent works in the discrete setting [26, 39] consider single-shot transformations using
weak catalysts in which the correlation, as measured by mutual information, is upper-bounded.
In particular, one asks for the transformations possible with arbitrarily small error on the sys-
tem and arbitrarily small amounts of final correlation. This question avoids the problem of
embezzling and thus does not trivialise the theory. In the GTO case, the analogous setting may
be described by an approximate strong catalyst with the additional constraint that the catalyst
side must be exactly returned. Again, such transformations are already restricted by theorem
6. To be more explicit, we could bound the error on the system and the correlations in the
following way: we take the final state to have for instance

. Ms My
Msc = ; , (33)
M!, Mc

with ||M§ — ]\7IsH1 < ¢ and ||[Mor||1 € €. Using the triangle inequality, we can then apply
theorem 6 with & = €] + 2¢,. As €1, €, — 0, we thus recover the same inequalities as the non-
catalytic case.

8. Conclusions

In this paper, we look at possible state transformations under GTOs when catalysts are allowed.
We define two different types of catalysts: strong catalysts which must not only come back
to the original state but also end up uncorrelated to the system, and weak catalysts whose
local state only needs to be reset. We ask whether exploiting these catalysts permits more state
transformations than the non-catalytic case. Despite the general benefit of catalysts in other
contexts, we find that strong catalysts do not enable more state transformations, while weak
catalysts can achieve more but limited state transformations compared to the non-catalytic case.
Alongside with the principal mode temperatures introduced in [24], we define another resource
monotone, the principal mode asymmetry, to describe the state transition conditions. We fully
characterise the necessary and sufficient conditions for state transformation under single-mode
catalytic GTOs for both types of catalysts, and also provide new necessary conditions for the
multi-mode case in terms of principal mode temperatures and asymmetries. We discuss phys-
ical implications of our results on Gaussian thermal machines such as Gaussian refrigerators
and Gaussian work batteries.

In general, due to the stringent requirement imposed by the direct sum composition of
phase spaces, resource theories in the Gaussian regime allow for very limited operations. It
is therefore natural to inject non-Gaussian elements into the theory. In this regard, it would
be interesting to see what transformations would be unlocked if GTOs are combined with
resourceful non-Gaussian catalysts. The conditions determined in this study would still hold at
the level of second moments (since Gaussian states allow one to reproduce all physical CMs and
their transformations would still be as described here), but more interesting dynamics could be
allowed at the full Hilbert space level. More fundamentally, however, non-Gaussian operations
need to be included as resources to break the constraints we have found on the manipulation
of second moments.
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Appendix A. Proof of theorem 3

The initial CM is g & op where op is thermal, so Msg = Mg & Og. Partitioning the interacting
passive linear unitary U in this way,

(P 0
U_<R S). (A1)

The submatrix P is a contraction, meaning that PP <1, PPt < 1. Partitioning the final matrix
M' = UMU'" in the same way (with stars denoting unspecified elements),

M (Mé :) (A2)

*

we find that M = PMgP!. An extension of Ostrowski’s theorem [32, corollary 4.5.11] says that
there exist r; € [p2, p?], where p; > - - - > p, are the singular values of P, such that z1} = r;p;.
The necessity of the conditions in part (a) follows from P being a contraction, so that r; € [0, 1].

Sufficiency is seen from the fact that p’ can be obtained from p by multiplying each ele-
ment by some 7 € [0, 1]. We call such an operation on each element an L-transform. This can
be performed on each mode by interacting with a single thermal mode via a beam splitter:
concentrating on just this pair of modes, take

Without loss of generality, we can assume the initial M-matrix of the system to be diagonal, so
for this pair of modes,

M= (“ O) —M = UMU' = ( i —vrd _r)“>, (A4)

0 0 —/r(l =rp (1 —=ru

and tracing out the bath just gives the diagonal element rp.

For part (b), we similarly have A’ = U(As @ 0g)U" so that Ay = PAsPT. A related result for
complex symmetric matrices [32, theorem 4.5.13] says that o, = r;«, where r; € [g,,¢;] and
q, = - -+ = g, are the eigenvalues of PP'—which again lie in the interval [0, 1]. Sufficiency
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follows from starting in a basis with A = diag(a) and then applying the same U as above for
each mode. The calculation proceeds identically since all matrix elements are real.

Appendix B. Proof of theorem 5

In this section, we will prove theorem 5, the state transition conditions under single-mode weak
catalytic GTOs. We prove the conditions with weak catalysts first as the proof for the conditions
with strong catalysts borrows a lot of results from this case.

Proof (Necessary conditions). We start from equation (20),

e ( \pulPus + [plfuc pupsus + PlzPZgMC)

SCT \ phupaips + Phapnnc  |palPus + |pol uc

/ ( pPhas +phac  pupnas + P12P2204C> E1

SC T \pupaas + prpnac Paias + proc

where p;; = (P);; are the elements of the sub-matrix P. The final state is described by

ps = |pul*ps + [pr2lPuc (B2a)

ag = phas + phac. (B2b)

We want to find the relations between the initial parameters jig, aes and the final parameters pg
and of. To do so, we need to exploit the catalytic conditions given by

|p21*1s + |2 1ic = pc, (B3a)

P3i0s + Phoc = ac. (B3b)

Firstly, let us assume |p,,|> = 1. This is a trivial case as it implies p;, = p,; = 0, so that j§ =
|11 |2/~Ls and o = p%las which satisfies the conditions in equation (21). In the following, we
will assume |py,|* # 1.

Assuming g # 0 and g # 0, we can rewrite the catalytic conditions in equation (B3) as

pe pnl ac P

ps 1 —[pnl?’ as  1—p3’

(B4)

which implies that 15221)12 is real and non-negative'?. Substituting these into the expressions of

22
the final state in equation (B2) obtains

2 2
|p12|*|pai ) ., (B5a)

I 2 2 2
Hs = |pul|” ps + [pi2|” pe = { Ipul” +
s = ol s+ P e = (I + 122028

ag = piyos + phac = (p%l + 1”21_2;; )as, (BSb)
22

which again implies that both expressions in the brackets are real. Then, we have

10 Recall the parameters « are real and non-negative—see section 2.2.
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Pzngl Pl ) pZZP%I
<
P+ =, S <+ = S |P11| +
2 2
=pul’ + |piol’ |p§1| <|pul + 7‘1721‘ Pra|
|1 | 1- \P22|

where we used the reverse triangle inequality, |x — y| > ||x| — |||, and |p22| < 1 in the last
inequality. This shows ag/as < /~L,s / ls.

The remaining part is to prove g/ us < 1. This can be easily shown using the condition of
the P matrix 1 — PP' > 0. We have that

1— 2 2 _ o 0
| _ppl— ( Ipul = lpol S, p12p222> >0, (B6)
—phpa — piepyn 1= |pul” = |pxn]

which implies
1—|pul’ = [pul* >0, (B7a)
L= |pul* = |pnl* > 0. (B7b)

Then, we obtain

A= [pu»H = |p2|®
1 —|pnl

\Pu\ \P21| 2
e < +
[~ |paf <P

lpul* + =1,

where we used equation (B7) in the first inequality. This completes the proof.

When pig = 0, the catalytic condition implies that either |p,,|*> = 1 or jic = 0. If [p,,|* = 1,
from the earlier argument on the case when |py,|> = 1, we have p§ = 0 and o = p} as <
as. If ue = 0, then pg = 0, and all the results on o are same as above; ag < as. A similar
argument works for the case when ag = 0.

(Sufficient conditions). We would like to show that for any pf and of satisfying
equation (21), we can find a weak catalytic GTO transformation which maps the initial state
to the final state described by 45 and a. To do so, we provide an explicit weak catalytic GTO
transformation which can map the initial state with 15 and «s to the final state with g and og.
Consider a weak catalytic GTO transformation consisting of the following two steps:

(a) By coupling the system with the catalyst, reduce the as to &s = (pus/ p1g)arg whilst keeping

the same /ig. This can be done with the catalyst described by jic = pg and ac = 2579,
and the following unitary operation U, acting on the matrices M and A:
va iWl-a
U = , B8
: (\/1 —a —iva ®8)

where a = 3“ (fst‘;’,fs € [%, 1]. U; can be realised by passive unitaries on the system and the
catalyst; coupling the system and the catalyst via a beam splitter with transmissivity a
together with a phase shift.

(b) Couple the system with the thermal bath and thermalise the system to the final state with
g and ag. This can be done by applying a beam splitter with transmissivity pg /s to
the bath and the system, which is now described by pg and &, and tracing out the bath
mode.

20



J. Phys. A: Math. Theor. 55 (2022) 325301 B Yadin et al

It is not difficult to check that above two steps transform fig, as to fig, g, and the whole
process is a GTO transformation. Geometrically, the first step describes moving vertically
(reducing the asymmetry «) in figure 2(a), and the second step is moving towards to the origin
(pure thermalisation)'!. O

Appendix C. Proof of theorem 4

In this appendix, we will derive the necessary and sufficient conditions for state transition under
single-mode strong catalytic GTOs. We will borrow a few results from the proof of theorem 5
for the case of weak catalysts, which is derived in appendix B.

Proof (Necessary conditions). We start again from equation (20), and the final state is
described by

ps = |piiPps + [pia uc (Cla)
as = piyos + phac. (Clb)

Again, we want to find the relations between the initial parameters /g, as and the final param-
eters yug, og. This time, we can exploit not only the catalytic conditions in equation (B3) but
also the no-correlation conditions given by vanishing off-diagonal elements,

Pi1Po s + przpypic = 0, (C2a)
pupaas + pupnoc = 0. (C2b)

As we are looking at a more restricted case (with more conditions) than the one with weak
catalysts, the conditions for weak catalysts must hold regardless of the no-correlation condi-
tions—the condition in equation (21) automatically holds due to the proof of theorem 5 in the

/ !
last appendix. Now, we just need to show that the ratios p = Z—z and g = Z—: are the same.
Firstly, let us assume g # 0 and as # 0. We notice from the no-correlation conditions in
equation (C2) that

he _ _Pib g 2C__PuPa o p (©3)

s DP12P5y as P12P22

which implies that uc/pug = £ac/as. Combining this result with the catalytic conditions in
equation (B3) gives us

Hc _ 21|

_ Pups _ PapuPy

= = - = pu= , (C4)
ps 1 —|pnf? Pi2Py Ip2|* -1
ac P%l pP11p21 P21P12P22
_— = = — et pll = —, (CS)
as  1—ph P12D22 P, —1

where we assume that |p,,| # 1, p;, # 0, and p,, # 0. Then, using this together with the
catalytic conditions, we can obtain from equation (B2) that

! This is because a thermal state at the background temperature is always described by M = A = 0. See section 2.2.

21



J. Phys. A: Math. Theor. 55 (2022) 325301 B Yadin et al

2 2
, |21l pr2ll 22l iz
_ _pn” C6
Hs ( P -1 ) + |pr2| T— |paP’s (Co)
_ PPl + (1 - \Pzz\z)\P12|2|P21|2M _ |pePlpa? s, (CT)
(1 — [l ST = pa?

Also, we can obtain that

2 4
o = <P21P12P22> as + p ( P as) _ PhP3 as = @ « P2 as,
RN A= 1 (I=p? " 2 (=pp)?

(C8)

where we assume p,, # 0 here'?. Since p3,/(1 — p3,) = ac/as = tuc/ps = £|pn|*/(1 —
|p22|?) € R, this leads to

I

P

I il’%z |1721|4 |2

- > 505 = ‘p21‘4 =1 |p12|2|1721
° P (1= [pn?)?

———a = +—m——as,
A= [pa? " "= |pu?®
(C9)

+

where we used the fact that the factor must be real in the second equality, and we chose a +
sign instead of a — sign at the end as « is always non-negative. This proves that o /as =
ps/ s

We have to look at the remaining cases: (i) when p;, = 0, then either p;, or p,; must be zero
because of the no-correlation conditions in equation (C2). When p, = p;; =0, s = o =
0, which means that the final state is thermal. When p,, = p,; = 0, then u§ = |p11|*us, and
ag = |pn|*as with |p;;|* < 1. (ii) When p,, = 0, again either p;, or p,; must be zero. If p,, =
pii =0, ps = [pial*[pai s, and o = [pia|*[par [Pas with [pyo [P oy [P < 1.1 pyy = py; = 0,
the catalyst is thermal, resulting in a normal non-catalytic single-mode GTO transformation.
(iii) When |py,|*> = 1, this implies p;, = p,; = 0, so that u§ = |pi1|*us, and o = |p11[*as
with |p;;|* < 1. All three cases satisfy the conditions in theorem 4.

When pig = 0, from the catalytic conditions, we have either |p,,|> = 1 or yc = 0, and from
the no-correlation conditions we have either p;, = 0 or p,, = 0 or i = 0. It is not difficult to
check that in all possible cases, it holds that M/s = 0and o/s < as, which satisfies the conditions.
A similar argument also holds for the case when ag = 0.

(Sufficient conditions). If we define v < 1 such that | 5| = 7|us| and |ag| = v|as], the state
transition condition can be expressed in terms of CMs as

og = y0s + (1 — 7)o, (C10)

where o is the CM of the bath mode. Thus, the state transformation described by strong
catalytic GTO transformations is mixing the initial CM of the system with the thermal bath,
which can be achieved by a non-catalytic single-mode GTO transformation. As non-catalytic
single-mode GTOs are included in single-mode strong catalytic GTOs, any final state satisfying
the conditions in equation (12) or equation (13) can be also achieved by single-mode strong
catalytic GTO transformations. (]

12If py; = 0, then |p,,|* = 1 because of the catalytic conditions in equation (B3), but we already assumed |p,,|> # 1.
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Appendix D. Proof of theorem 6

For this proof, we make use of two intermediate results.

Lemma 9. Letz,7 and Z be non-increasingly ordered lists of length | such that

l
i<z and > |z—3| <. (D1)
i=1
Then
1
S ld-u]" <o (D2)
i=1
Proof.

1
Slh-a"=Y 4~z

i=1 07>z

)~
E 3 —Zi

rool
l.4i>Zi

PN

rool
l.4i>Zi

!
> g -zl
i=1

<4 (D3)

N

N

N

O

Theorem 10. Let x = (xj,....x,), ¥ =(},....x)) and y=(y,...,y,) be non-
increasing lists of real numbers, and define the composite ordered listsz = (x, y)*, 7 = (X, y)*.
Suppose that there exists Z such that

n—+m
Z<z and ) |Gi—7| <6 (D4)
i—1
Then
Z [x: — xi]+ < 4. (D5)

i=1

Proof. The main useful idea is to construct a partition of the indices of z,z’ into contiguous
blocks By, B,, . . . such that in each block, the x; values either all increase or all decrease when
going from z to z/—see figure 4 for an illustration. This will let us separate out those values
that break the monotonicity condition and bound how much they do so. Let p(x;) denote the
index position of x; in z, and similarly p/(x}) for x! in z’. Note that a unique designation of
indices is possible if we adopt the convention that, if y; = x;, then y; appears before x; in the
list z.
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By B, B3

2| X X2 [ X3 Y2 X4 Y3

VARNY

X)X |y ys X X

high to low

Figure 4. Illustration of the block partitioning of non-increasingly ordered lists z =
(x, y)*, 7/ = (¢, y)*. In this case, B) is an increasing block, B, is decreasing, and so on
alternately. Therefore x| > xy, x5 > x;, x5 < x3 and x)y < x4.

The end result of all this is that the set of indices i of all x; in B, and x} in B, are the
same for each block B,. Within an ‘increasing’ block, x} > x; and within a ‘decreasing’ block,
x; < x; ¥V i. This claim will be proved separately below by showing how to construct the blocks.
Using this, it is easy to see that the set of y; is also the same in each corresponding block. In
other words, to send z — 7/, in each block we apply a permutation of the elements and replace
X; — xh.

Since the y ; values match up in each block Bj,, we have

dd—a= Y, x—x (D6)

keBy, i:p(x;)EBy,

Summing over all increasing blocks and using lemma 9,

n

Z[x;—xi]Jr: Z Z X — x;

i=1 By, increasing i:p(x;)EB),

= Z Zzﬁ(—a

By, increasing k€B),

n+m

< Z [Z;(—Zk]+

k=1

< 4. (D7)

Construction of the block partition:

Starting from the beginning of the list, suppose that x| > x, and find the lowest j such that
x; < xj. The list {1,2,..., p(x;_1)} is then called the first block B;—this is an ‘increasing’
block, such that x; > x; V p(x;) € B. If instead x| < x;, then we find the lowest j such that
x> xjand By :={1,2,..., p(x,_,)} is a ‘decreasing’ block. Moving along the list and repeat-
ing the process, we can then partition z into blocks By, B», . . . which are alternately increasing
and decreasing.

We can say something about the index positions of the x; according to whether they are
increasing or decreasing:

x; > x; = pl(x}) < p(xy), (D8)

) <
) = plxi). (D9)

X< xp = plxd
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To see this: suppose first that p/(x]) < p(x;), then there exists y; such that y; > x; and x} > y;
because x; has moved earlier in the list and thus displaced y ,—therefore x; > x;. This proves
(D9) via its contrapositive. The same argument works for the opposite inequality (D8). If
P(x}) = p(x;), then either case is possible.

Now our main claim is that the blocks B;, have the following property:

V By, p(xi) € By < P'(x) € By. (D10)

In other words, the blocks simultaneously partition z and z’ such that all pairs of x; and x! are
in the same blocks in their respective lists. We prove this claim by construction.

e If B, is increasing, then for all x; with p(x;) € By, we must have p/(x}) € B; due to (D8).
Also, whenever p/(x}) € By, we must have p(x;) € By, otherwise p/(x}) would be strictly
less than p(x;) and by (D8), there would have been another increasing x; not included in the
block. (It is also not possible to have some increasing x; in some later increasing block, for
example Bs, since then there would be some x; in B, such that x; > x; but x} > x&—and
this is incompatible with the ordering j < i.)

e For the next block B,, which is decreasing, by definition all x; are included. We already
know from the first step that there cannot be x; in B; such that x; is in B,. And by (D9),
for any x/ in By, p(x;) < p/(x}), so x; cannot be outside of B;.

o Iterate the procedure over all remaining blocks.

e Ifinstead B, is decreasing, then the argument proceeds similarly. (]

Proof of theorem 6: first note that the sufficiency of the conditions (25) is straightforward:
for each p} < 15, we use the same construction as in theorem 3, while for any violation of that
inequality, we simply do nothing to the corresponding mode.

The proof of necessity for A is an immediate application of theorem 10, setting x = s,
X = a,s, Y= oc andz = dsc.

For M we have more work to do because the eigenvalues must be divided into positive and
negative parts. Unlike the non-catalytic case, it is possible that p5 contains more positive or
negative values than pg. If the number #’, of positive pug is greater than the number ny of
positive pg, then we set x = (u;,o, ...), padding with zeroes to a total length of n/,. We
straightforwardly set X' = pg™ and y = p .

We also choose z = ([L;rc, 0,...), similarly padded to the same length as z—and need to

. . . . TO
check that this satisfies the assumptions of theogem 10. Since Ms ® Mc BSLEN M, theorem
3 ensures that the number of positive elements /  of figc is no more than the length /; of z.
Thus we have 7 < z. Moreover,

I+
Z|Zi—2” = lei—z§\+2\2i—z§|
i=1

i<i+ i>i+
_ ~ 4 1+ 1+
= E ‘Msc,i — Msci| T Wsci—0
i<ly >l
~+ 1+ 1+ ~
< E ‘NSC,i — Wsci| T § sci — Hsci
i<i+ i>i+
I+
= oo — fisci| =10 (D11)
:uSC,l Hsc,i U4

i=1
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where the third line uses figc; < 0 for i > I 4. So theorem 10 can now be applied with the
distance bound § ;. The same calculation can be done in exactly the same way for the negative
values; summing the two results gives the claimed result since 6y + §_ < 9.

Appendix E. Proof of theorem 7

We first prove the following useful characterisation of majorisation with an additive catalyst:
Lemma 11. Foranyy, (x,y) <o (x,y) © X <, xand (x',y) < (x,y) & x < x.

Proof. We use the following equivalent characterisation of majorisation [35, 4.B.3]: x <,, y
if and only if

24(X) < gu(y) V a €R, whereg,(x):=» [xi—al’. (ED)

For x < y we just have to add in the condition ) , x; = ), y;. Using additivity of g,

(X, 9) <w (X, 3) € ga(X) + 8a(y) < ga(x) + 8u(y) Voa
& g.(x) < gux) Va
X <, x (E2)
For x < x/, the sum condition is also clearly equivalent. (]

Proof of theorem 7: for part (a): the initial M matrix is of the form M = Mg & Mc, with
eigenvalues (ftg, tc). The final matrix is of the block form

;o o M'S *
M =UMU' = ( . Mc)' (E3)
Using local unitary rotations, we can diagonalise the principal blocks to obtain (g, tt) on the
diagonals of M’ (although the off-diagonal blocks need not vanish). The Schur—Horn theorem
[32, theorems 4.3.45, 4.3.48] says that the eigenvalues of a matrix majorise its diagonals in
any basis (and conversely that a basis can always be found giving any set of diagonals allowed
by this condition). Hence (g4, pic) < (g, pc) and lemma 11 gives the claimed condition as
necessary.

For the converse, we use the fact [35, 2.B.1] that if x < y, then x can be obtained from
y by a finite number (in fact, at most n — 1) T-transforms, namely partial swaps of pairs of
modes—represented by matrices of the form

T=d+1-0nQ, (E4)

where ¢ € [0, 1] and Q swaps two modes. In order to show that any T-transform can be per-
formed, we focus on an arbitrary pair of modes, labelling the eigenvalues without loss of
generality as p; > u,. This is equivalent to proving that any p} > p) satisfying pj < u; and
1y + w5 = g + po can be achieved with a single catalyst mode. This requires a unitary U such
that

w0 0 [T/ VI
Ulo w o U =0 u =|. (E5)
0 0 puc x %l
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Choose any pc € [, 441, which by assumption is also contained in [z, p;]. The necessary
and sufficient conditions for the existence of the eigenvalues ], 5 of the two-dimensional
upper-left block are [32, theorem 4.3.21], bearing in mind the ordering j1; > pc = s,

=y = pe >y 2 . (E6)

Evidently these are always satisfied under the assumed conditions.
Part (b) uses part (a) after extending the system to include the bath modes. This immediately
gives the necessary condition

Mg < psp = (g, 0p). (E7)

Since pg are eigenvalues of a principal submatrix of Mg, for any k < n, we have [32,
corollary 4.3.34] Zf:m/s,i < Zf:m/ss,i' Therefore

k k
Z :U’/gr,i = Z N/s,i
i=1 i=1
k
< Z :u/SB,i
i=1
k
< Z HsB.i
i=1

k

< Z [11sB.] *

i=1
k
= nd (E8)
i=1

where the second inequality follows from (E7). Hence u’+s<w uTs. The corresponding
necessary condition for the negative values follows by symmetry.

For sufficiency, we use the following result [35, 2.C.6.a] analogous to that used in part (a)
but for weak majorisation: for x, y composed of non-negative elements, x <, y if and only
if x can be derived from y by a finite number (<n — 1) of T-transforms, followed by a finite
number (<n) of L-transforms. The T-transforms were dealt with above; an L-transform can
be performed simply by mixing a single mode at a beam splitter with a thermal mode as in
theorem 3. The same construction works for the negative values independently.

Appendix F. Proof of theorem 8

We prove necessity of the condition including a bath, since this is more general. As in theorem
7, we have A’ = UAUT for some unitary U and the singular values of A are (as, Op, ).
The parameters (s, ac) are just diagonals of A’. A set of necessary conditions relating the
diagonals d; of a complex symmetric matrix to its singular values s; are [40]

k

k
Sl <> s Yk (F1)
i=1

i=1
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This implies (s, ac) <w (as, 0, c) and by lemma 11,
o'sp<w(as, 0p). (F2)

Therefore

=> as. (F3)

i=1

Sufficiency is proved without using a bath, using the same statement about weak majorisa-
tion used in theorem 7. It is easy to see that T-transforms can be performed by just considering
real matrix elements, so that U is orthogonal and A’ = UAU" is real and symmetric (since we
can take A as diagonal and containing its singular values without loss of generality). The same
statement [32, theorem 4.3.21] also guarantees that the required sets of eigenvalues can be
achieved with purely real matrix elements. L-transforms can be performed as before using a
thermal bath mode. Alternatively, a catalyst mode can be used instead with the same unitary
as in equation (B8) for the single-mode case. So with no bath, we need 2n — 1 catalyst modes,
otherwise we need n catalyst modes plus n — 1 bath modes.
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