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Tomáš Flouri (orcid: 0000-0002-8474-9507)1, Jun Huang (orcid: 0000-0002-4196-9729)1,2, Xiyun Jiao1,3,
Paschalia Kapli (orcid: 0000-0001-8769-8779)1, Bruce Rannala (orcid: 0000-0002-8355-9955)4 and Ziheng Yang
(orcid: 0000-0003-3351-7981) 1, *
1Department of Genetics, Evolution, and Environment, University College London, Gower Street, London WC1E
6BT, UK
2School of Biomedical Engineering, Capital Medical University, Beijing, 100069, China
3Department of Statistics and Data Science, China Southern University of Science and Technology, Shenzhen,
Guangdong 518055, China
4Department of Evolution and Ecology, University of California, Davis, CA 95616, USA

Received on xxxx, revised on xxxx, accepted on xxxx

The multispecies coalescent (MSC) model accommodates both species divergences and within-species coalescent
and provides a natural framework for phylogenetic analysis of genomic data when the gene trees vary across the
genome. The MSC model implemented in the program BPP assumes a molecular clock and the Jukes-Cantor model,
and is suitable for analyzing genomic data from closely related species. Here we extend our implementation
to more general substitution models and relaxed clocks to allow the rate to vary among species. The MSC-
with-relaxed-clock model allows the estimation of species divergence times and ancestral population sizes using
genomic sequences sampled from contemporary species when the strict clock assumption is violated, and provides
a simulation framework for evaluating species tree estimation methods. We conducted simulations and analyzed
two real datasets to evaluate the utility of the new models. We confirm that the clock-JC model is adequate for
inference of shallow trees with closely related species, but it is important to account for clock violation for distant
species. Our simulation suggests that there is valuable phylogenetic information in the gene-tree branch lengths
even if the molecular clock assumption is seriously violated, and the relaxed-clock models implemented in BPP are
able to extract such information. Our Markov chain Monte Carlo (MCMC) algorithms suffer from mixing problems
when used for species tree estimation under the relaxed clock and we discuss possible improvements. We conclude
that the new models are currently most effective for estimating population parameters such as species divergence
times when the species tree is fixed.
Multispecies coalescent | molecular clock | relaxed clock | BPP | species tree

Introduction
The multispecies coalescent (MSC) model (Rannala
and Yang, 2003) combines the phylogenetic process of
species divergence with the population genetic process
of coalescent, providing a framework for phylogenetic
analysis of population samples (single or multi-
individual) of genomic sequence data from multiple
species. The MSC naturally accommodates gene tree
fluctuations across the genome and potential gene-
tree vs. species-tree discordance caused by incomplete
lineage sorting (ILS). ILS can occur when gene
sequences from different species coalesce not in their
most recent common ancestral species but in an older
ancestor (Maddison, 1997; Nichols, 2001; Szollosi
et al., 2015). MSC-based methods have proven useful
for resolving challenging species phylogenies with
short branches that arose from a rapid succession of
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speciation events (Edwards et al., 2016; Xu and Yang,
2016). See Edwards (2009), Rannala et al. (2020) and
Jiao et al. (2021) for recent reviews of the MSC and its
use in species tree estimation.

Full-likelihood (maximum likelihood or ML and
Bayesian) methods of inference under the MSC
applied to multilocus sequence alignments average
over the gene tree topologies and coalescent times
(node ages in gene trees) underlying the data at
each locus (Rannala and Yang, 2003; Burgess and
Yang, 2008; Yang and Rannala, 2014; Ogilvie et al.,
2016; Rannala and Yang, 2017; Douglas et al., 2022).
The methods make full use of information in the
gene trees while accommodating their uncertainties.
While such methods are computationally far more
demanding than heuristic methods using summary
statistics, recent breakthroughs in MCMC proposal
algorithms, especially those that make coordinated
changes to the species tree and the gene trees at all loci
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(Rannala and Yang, 2003, 2013; Yang and Rannala,
2014; Rannala and Yang, 2017; Jones, 2017; Douglas
et al., 2022), have improved the mixing efficiency
considerably. As a result, the Bayesian MSC program
BPP has been successfully applied to genome-scale
datasets with more than 10,000 loci, at least for a small
number of species or sequences per locus (Shi and
Yang, 2018; Thawornwattana et al., 2018, 2022).

A limitation of the current MSC implementation in
BPP is that it assumes a strict molecular clock and
the simple Jukes-Cantor (JC; Jukes and Cantor, 1969)
model of nucleotide substitution, making it best suited
for use with data from closely related species. For
such species, sequences are highly similar and a strict
clock may be approximately correct, while the JC
model may be adequate for accounting for multiple
substitutions at the same site. For distantly related
species, however, the molecular clock may be seriously
violated, and the JC model may be too simplistic for
multiple-hit corrections. It is important to note that ILS
or coalescent is as relevant to deep phylogenies as it
is to shallow trees: the issue has to do with the length
rather than depth of internal branches in the species tree
(Edwards et al., 2005).

Over the past two decades, a number of relaxed-
clock models have been developed for dating diverge-
nce events on phylogenies, allowing the substitution
rate to change over time and among branches of
the phylogeny; see Yang (2014, Chapter 10) and
Ho (2022) for comprehensive reviews. Thorne et al.
(1998) and Kishino et al. (2001) developed the earliest
models, using geometric Brownian motion (GBM)
to describe the evolution in the rate of molecular
evolution; in other words, the logarithm of the rate
drifts over time like Brownian motion. Evidence
from the fossil recorded is incorporated as bounds
on node ages to calibrate the tree. ‘Soft bounds’ and
arbitrary fossil-calibration densities were implemented
by Yang and Rannala (2006) and Drummond et al.
(2006). The independent-rates model is implemented
by Drummond et al. (2006) and Rannala and Yang
(2007) (see also Lepage et al., 2007), which describes
the variation in rate among lineages empirically
without a mechanistic basis like the GBM. Later
developments include the use of dated fossils and joint
analysis of morphological characters and molecular
alignments in the so-called tip-dating or total-evidence
dating analyses (e.g., Ronquist et al., 2012; Heath
et al., 2014; Zhang et al., 2016; Alvarez-Carretero
et al., 2019). See dos Reis et al. (2016), Lee and Ho
(2016) and Ho (2022) for recent reviews.

In this paper, we implement relaxed-clock models
in the MSC framework. We explicitly model the
process of the evolution in the evolutionary rate among
species, treating evolutionary rates and sequence
divergence times as latent variables and averaging over
them in the MCMC algorithm. We note two major
differences between the MSC-relaxed clock models

and the traditional phylogenetic relaxed-clock models.
First, under the MSC, different genes or genomic
regions may have different gene-tree topologies and
coalescent times, with their distribution specified by
the MSC model (Rannala and Yang, 2003). In contrast,
relaxed-clock methods used in phylogenetic dating
do not accommodate genealogical fluctuations among
genes and assume that all gene trees share a common
topology, leading to potentially biased divergence time
estimates (dos Reis et al., 2016; Ogilvie et al., 2016).
Second, in the MSC-relaxed clock models, the rates
are assigned to branches on the species tree (which
represent different species), rather than branches on
the gene tree (Xu and Yang, 2016; Rannala and Yang,
2017) (fig. 1a), whereas in the phylogenetic relaxed-
clock models there is no such distinction between the
species tree and the gene tree.

We accommodate variation in evolutionary rate both
among species and among loci. The among-loci rate
variation applies to both strict-clock and relaxed-clock
models. Under the relaxed-clock models, we allow
among-loci variation both in the overall rate and in
the degree of rate variation among species: some
loci may have limited among-species rate variation
and nearly satisfy a strict clock model, while others
may have serious rate variation that violates the
clock. Important parameters of the MSC model such
as species divergence times and population sizes
may be estimated jointly. This is the full-likelihood
approach, which extracts information available from
both gene tree topologies and coalescent times,
while accommodating their uncertainties due to finite
sequence length at each locus and allowing rate
variation among species (clock violations).

An alternative approach to accommodating violati-
ons of the molecular clock in an MSC framework is to
infer unrooted gene trees using phylogenetic methods
without assuming a clock and then to use the inferred
gene trees as data to estimate the species tree (with
internal branch lengths in coalescent units), using an
outgroup to root the tree. This is the two-step summary
approach, used in MP-EST (Liu et al., 2010), NJst (Liu
and Yu, 2011), and ASTRAL (Mirarab and Warnow,
2015).

The two-step methods are computationally efficient
but they ignore information in the branch lengths
(coalescent times) in gene trees. They often treat
inferred gene trees as observations without properly
accommodating phylogenetic reconstruction errors,
although some efforts have been made to account
for uncertainties in gene tree topologies (Sayyari and
Mirarab, 2016). The full-likelihood MSC approach is
computationally demanding. Furthermore, when the
clock is seriously violated, temporal information from
the coalescent times may be eroded even when among-
species variations of clock rates are accounted for in
the model. One may thus expect the full likelihood
approach to have an advantage over two-step methods
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when the clock holds or is violated only slightly, but
the benefit may diminish with increasing violations
of the clock. An advantage of the full-likelihood
approach over heuristic two-step methods is that it
additionally provides estimates of species divergence
times (measured in units of expected number of
substitutions per site), which may be converted to
estimates of absolute geological times when the tree
is calibrated using information from the fossil record
(Angelis and dos Reis, 2015; dos Reis et al., 2016).
Two-step methods using gene tree topologies can
identify internal branch lengths in coalescent units on
the species tree but these cannot be directly translated
into geological time units. Important parameters in
the MSC model, such as external branch lengths on
the species tree (or species divergence times) and
population sizes for modern and ancestral species are
simply not identifiable by those methods (Xu and
Yang, 2016; Zhu and Yang, 2021).

In this paper we extend the models implemented in
BPP to allow deep phylogenetic trees to be analyzed.
We incorporate two major changes to the program.
First, we implement the GTR+Γ substitution model
(Yang, 1994a,b) and its special cases, in addition
to JC. Second, we relax the strict clock assumption
by adapting the relaxed-clock models developed in
Bayesian phylogenetics for divergence time estimation
(Rannala and Yang, 2007) to the MSC framework. We
validate our implementation of the methods in BPP and
explore the impacts of clock assumptions on estimates
of the species tree and MSC model parameters using
simulations. We analyze two empirical datasets, one
of gibbons (Carbone et al., 2014; Shi and Yang, 2018)
and another of the flightless birds ratites (Cloutier
et al., 2019). The gibbon dataset represents a shallow
species tree, with an approximately constant rate of
evolution, so we expect that relaxed clocks with
GTR+Γ should produce similar results to the early
analyses under the clock+JC model (Shi and Yang,
2018). The ratite tree represents a deep phylogeny
with far more distantly related species and with the
molecular clock assumption seriously violated. In such
a case, we expect the use of a strict clock could lead
to seriously biased estimates, while the relaxed clock
may be a major improvement.

Theory
Overview of MSC+relaxed clock model
We develop MCMC algorithms for Bayesian inference
under the MSC model with relaxed clocks for sampling
from the joint posterior distribution of species trees,
species divergence times, and other parameters of
interest. The parameters of the MSC+relaxed clock
model are illustrated in figure 1a. The model is
specified using two variables (locusrate and clock)
in the BPP control file (fig. 2).

Let Ψ = {T,τττ,θθθ} represent the species tree for s
species, with T to be the species tree topology, τττ

the species divergence times, and θθθ the (effective)
population sizes for all populations on the species tree.
Both τ and θ are measured in the expected number of
substitutions per site. Let XXX = {Xi} be the multilocus
sequence data, with Xi to be a matrix of aligned
sequences for the sampled individuals at locus i, with
i = 1, · · · ,L. The sequences may be unphased diploid
sequences (Flouri et al., 2018; Huang et al., 2022). Let
GGG = {Gi, ttt i} be the gene trees at the L loci, where Gi
is the gene tree topology and ttt i the set of coalescence
times at locus i. The gene tree (Gi, ttt i) specifies the
probability distribution of the sequence alignment at
locus i but is not observed.

We assume that substitution rate varies both among
loci and, for each locus, across species-tree branches
(fig. 1). Let µi be the overall (mean) rate for locus
i, and νi be the rate variance parameter for locus i,
with µµµ = {µi} and ννν = {νi}. Parameter νi specifies
how fast the rate changes or evolves over time, with
a larger νi representing faster evolution of the rate
or more serious violation of the clock. Given µi
and νi for locus i, the rate evolves among species-
tree branches, thus relaxing the clock assumption.
Furthermore, we assume that the rates are changing
independently among loci (fig. 1). Let ri j be the rate
at locus i for species-tree branch j, with RRR = {ri j}.

We assign a prior on the locus rates µµµ with
parameters Ωµ = {αµ ,αµ̄ ,βµ̄}, and a prior on the
rate variance parameters ννν with parameters Ων =
{αν ,αν̄ ,βν̄}. Let Θ include parameters in the prior for
MSC model parameters (τ and θ ). Ωµ ,Ων and Θ are
parameters in the priors or hyper-priors, specified by
the user. The MCMC samples from the joint posterior
density

f (Ψ,µµµ,ννν ,RRR,GGG|XXX ,Ωµ ,Ων ,Θ)

∝ f (XXX |GGG,RRR) f (GGG|Ψ) f (RRR|Ψ,µµµ,ννν)

× f (Ψ|Θ) f (µµµ|µ̄,αµ) f (µ̄|αµ̄ ,βµ̄)

× f (ννν |ν̄ ,αν) f (ν̄ |αν̄ ,βν̄), (1)

where f (XXX |GGG,RRR) is the probability of the sequence
alignments given the gene trees and branch lengths
or the so-called phylogenetic likelihood (Felsenstein,
1981), f (GGG|Ψ) is the density of the gene tree under the
MSC (Rannala and Yang, 2003), f (RRR|Ψ,µµµ,ννν) is the
probability density of branch rates, and the remaining
terms are priors (and hyper-priors) in the rate-evolution
model. The conditional independence of components
in the model is illustrated in figure 3.

Overall rate parameter for a locus
We implemented two choices for the prior probability
distribution of the overall substitution rates, µµµ =
{µi}, at the L loci: the gamma-Dirichlet (dir) prior
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(Burgess and Yang, 2008; dos Reis et al., 2014)
and the conditional i.i.d. (iid, for identically and
independently distributed) prior (Zhu et al., 2015)
(table 1). Both prior models make use of the mean
overall rate across all loci, µ̄ , which is treated in two
ways. If there are fossil calibrations on the species
tree, to allow estimation of absolute species divergence
times and absolute substitution rates, we assign a
gamma hyper-prior, µ̄ ∼ G(αµ̄ ,βµ̄), with density

f (µ̄|αµ̄ ,βµ̄) =
β

αµ̄

µ̄

Γ(αµ̄)
µ̄

αµ̄−1 e−βµ̄ µ̄ . (2)

Alternatively, if no fossil calibrations are available,
in which case the rates are relative and species
divergence times are measured in the expected number
of substitutions, we fix µ̄ = 1 (specified by αµ̄ =
βµ̄ = 0; fig. 2). Analysis in this paper use this second
formulation.

In the gamma-Dirichlet (dir) prior, the total rate
Lµ̄ = ∑i µi is partitioned into rates for loci (µi)
according to a Dirichlet distribution with concentration
parameter αµ . Smaller values of αµ mean greater
variation in rates among loci. The joint density of the
L locus rates, µµµ = (µi), is

f (µµµ|αµ̄ ,βµ̄ ,αµ) =
(βµ̄/L)αµ̄

Γ(αµ̄)
·

Γ(Lαµ)

Γ(αµ)L

×
( L

∑
i=1

µi

)αµ̄−Lαµ

× e−βµ̄ ∑ µi/L
( L

∏
i=1

µi

)αµ−1
(3)

(dos Reis et al., 2014, eq. 5; see also Burgess and
Yang, 2008). In the conditional i.i.d. (iid) prior the
overall rate µi for locus i has a gamma distribution
G(αµ ,αµ/µ̄) with shape parameter αµ and mean µ̄ ,
so that the joint prior for µµµ is

f (µµµ|µ̄,αµ) =
L

∏
i=1

f (µi|αµ ,αµ/µ̄). (4)

In this model, the rates µi at the L loci are parameters,
so the distribution is L-dimensional (table 1).

Note that in both the gamma-Dirichlet and conditio-
nal i.i.d. models, αµ and αµ̄ are distinct parameters: αµ̄

specifies how certain we are about the average rate (µ̄),
with a larger αµ̄ meaning more confidence, whereas αµ

specifies how similar the overall rates (µi) are among
loci, with a larger αµ meaning highly similar rates
among loci.

Rate variance parameter for a locus
We also implemented two prior distributions for the
variance parameter νi for locus i: the gamma-Dirichlet
(dir) prior and the conditional i.i.d. (iid) prior. For
both priors, the average variance parameter across all
loci ν̄ is assigned a gamma hyper-prior, ν̄ ∼ G(αν̄ ,βν̄),
with density

f (ν̄ |αν̄ ,βν̄) =
β

αν̄

ν̄

Γ(αν̄)
ν̄

αν̄−1 e−βν̄ ν̄ . (5)

In the gamma-Dirichlet prior the sum Lν̄ = ∑i νi is
partitioned into νi for loci according to a Dirichlet
distribution with concentration parameter αν . Smaller
values of αν mean greater variation in νi among loci
(e.g., the clock is seriously violated at some loci but
not at others). The joint density of the L locus-specific
rate-evolution parameters is thus

f (ννν |αν̄ ,βν̄ ,αν) =
(βν̄/L)αν̄

Γ(αν̄)
· Γ(Lαν)

Γ(αν)L

×
( L

∑
i=1

νi

)αν̄−Lαν

× e−βν̄ ∑νi/L
( L

∏
i=1

νi

)αν−1
. (6)

In the conditional i.i.d. model the rate variance
parameter for locus i is assigned a gamma prior, νi|ν̄ ∼
G(αν ,αν/ν̄) so the joint density is

f (ννν |ν̄ ,αν) =
L

∏
i=1

f (νi|αν ,αν/ν̄). (7)

In both priors for νi, αν̄ specifies our certainty
about the average rate variation among lineages (ν̄).
For closely related species, we expect the molecular
clock to hold approximately for every locus, so we
could specify a large αν̄ and a small mean αν̄/βν̄ (e.g.,
αν̄ = 10 and βν̄ = 1000 with mean 0.01). Conversely,
the concentration parameter αν specifies the degree of
similarity among loci in terms of their clock violation.
Larger αν (e.g., 10 or 100) may be used if clock
violations are similar among loci, while small values
(e.g., 1) may be used if the clock is seriously violated
at some loci but not others.

Rates for branches at a locus
Our MSC+relaxed clock model assigns rates at any
locus to branches on the species tree, rather than on
gene trees (fig. 1a) (Xu and Yang, 2016). A gene-
tree branch may pass through multiple species and
comprises multiple segments with different rates, and
the branch length is calculated by summing over the
segments, with each segment length being a product
of the rate and the time duration. In contrast, multiple
branches on a gene tree may all reside in a single
species and have the same rate. For example, if all
sequences at a locus are sampled from the same species
and all coalescent events occur in that species (before
reaching an ancestral species), all branches on the gene
tree will have the same rate even if the relaxed-clock
model allows different rates among species.

Given the overall rate µi and the rate variance
parameter νi at locus i, the branch rate ri j (for species-
tree branch j at locus i) is defined as the rate for the
mid-branch and applies to the whole time duration of
the population. For example, the rate for branch A in
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figure 1a is the rate for the mid-point of branch A and
applies to population A over its whole time duration
(0,τAB). We implement two models to describe the
rate-evolution process: the independent-rates (clock 2)
and the correlated-rates (clock 3) models. For each,
we used either a gamma or log-normal kernel. Note
that the root branch (stem) of the species tree has a rate
as well, which applies to gene-tree branches residing
in that species.

The independent-rates model assumes 2s− 1 inde-
pendent branch rates at every locus. While a rooted
species tree for s species has 2s−2 branches, we have
2s−1 branch rates, including a rate for the root branch
on the species tree. The joint density for the branch
rates is

f (RRR|µµµ,ννν ,Ψ) =
L

∏
i=1

2s−1

∏
j=1

f (ri j|µi,νi), (8)

where the density f is either the gamma or log-normal.
Under the independent gamma model,

ri j|µi,νi ∼ G
(

µ2
i

νi
,

µi

νi

)
, (9)

which has mean µi and variance νi. Under the
independent log-normal model,

ri j|µi,νi ∼ LN(µi,νi), (10)

with density

f (ri j|µi,νi) =
1

ri j
√

2πνi
exp

{
− 1

2νi

(
log ri j

µi
+ 1

2 νi
)2
}
,

0 < ri j < ∞. (11)

This has mean µi and variance
(
eνi −1

)
µ2

i . Note that µi
is the mean of the rate (rather than the mean of the log
rate) whereas νi is the variance of the log rate (rather
than the variance of the rate). The bias-correction term,
1
2 νi, was introduced by Kishino et al. (2001) to ensure
that the distribution has the mean µi.

The correlated-rates model specifies rates for
daughter branches conditional on the rate for the
mother branch, thus introducing correlation between
branches. Rates are assigned to the midpoints of
branches on the species tree and apply to the time
duration of the population represented by the branch.
The overall rate µi for locus i is also used as the rate for
the root population at the locus. With this formulation,
the correlated-rates model has L fewer parameters than
the independent-rates model (which uses rates for the
root branch at the L loci, distinct from µi). Again we
implement both the gamma (G) and log-normal (LN)
distributions of rates for the daughter branches given
the parental rate (fig. 2).

The correlated log-normal model specifies the
geometric Brownian motion model of Thorne et al.
(1998) and Kishino et al. (2001), modified by Rannala
and Yang (2007) to account for the correlation in rates

between the two daughter branches due to shared rate
evolution. There are 2s− 2 branch rates at each locus,
and their joint density is

f (RRR|µµµ,ννν ,τττ) =
L

∏
i=1

s−1

∏
j=1

f (ric j1 ,ric j2 |ria j ,µi,νi,τττ), (12)

where a j is the jth mother branch, and c j1 and c j2
are its two child branches. For each locus, the product
is over the s − 1 internal nodes on the species tree,
with the distributions of the branch rates specified
recursively starting at the root. Given the rate at the
species-tree root µi, the rates for its two daughter
branches are specified. Then given the rate for each
parental branch, the rates for its two daughter branches
are specified by integrating over the rate at the
internal node that is ancestral to the daughter branches
(Rannala and Yang, 2007, eq. 7). For example, given
the rate rAB for the parental branch AB in figure 1a,
the rates for the two daughter branches rA and rB
have a bivariate log-normal density f (rA,rB|rAB;νi),
where νi is the rate variance parameter at locus i. This
has mean E

( rA
rB

)
=

( rAB
rAB

)
and correlation depending

on both νi and the lengths of the daughter branches
(τAB). In other words, given rAB, the rates rA and rB
are correlated because both evolved from the same
rate at the ancestral node AB, and the correlation is
≈ 1 when τAB ≈ 0 and becomes weaker when τAB
increases. The probability density of the rates for the
whole tree is calculated using a pre-order tree traversal,
starting from the root moving towards the tips, until all
branches are visited.

The correlated gamma model has the joint density
of the rates for the 2s−1 branches as

f (RRR|µµµ,ννν ,τττ) =
L

∏
i=1

2s−1

∏
j=2

f (ri j|ria,µi), (13)

where ria is the rate for the branch ancestral to j at
locus i. We specify the rates for species-tree branches
recursively, starting from the root and moving towards
the tips. The species-tree root has rate µi at locus
i. Then given the rate for each parental branch ria,
the rates for its two daughter branches ri1 and ri2
are independent gamma variables with mean ria and
variance νi:

ri j|ria,νi ∼ G
(r2

ia
νi

,
ria

νi

)
, j ∈ {1,2}. (14)

Our correlated-gamma model assumes conditional
independence of the daughter rates given the parental
rate (eq. 14) and fails to account for the correlation
between daughter rates due to shared evolution (e.g.,
both daughter rates rA and rB in figure 1a evolved
from the same rate at the node AB). This is an
empirical model with no mechanistic basis, unlike
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the correlated log-normal model, which describes the
geometric Brownian motion (GBM) process.

Note that the rate variance parameter ν̄ has different
interpretations in clock 2 and clock 3 and between the
gamma and log-normal distributions. Brown and Yang
(2010) noted that ν̄ = 0.1 in the correlated log-normal
model means fairly strong violation of the clock; the
clock is easily rejected by a likelihood ratio test in data
simulated at ν̄ = 0.1.

Priors for τ and θ

As in previous versions of BPP a prior was placed on
the root age on the species tree with the remaining
node ages (τs) following a Dirichlet distribution
conditional on the root age. Two choices of prior
were implemented for the root age (τ0): a gamma
prior G(α,β ) with mean α/β and an inverse gamma
prior invG(α,β ) with mean β/(α −1). Three choices
of prior were implemented for θ : an inverse-gamma
prior invG(α,β ) with mean β/(α−1) (first introduced
in BPP3, Yang, 2015); a gamma prior G(α,β ) with
mean α/β , and a beta prior beta(α,β ,a,b), with shape
parameters α and β , in the range a < θ < b, and with
mean αb+βa

α+β
. The inverse gamma prior allows the θ

parameters to be integrated out analytically but has the
disadvantage that it is heavy tailed, which can cause
mixing problems. The beta density allows a hard upper
bound to be placed on θ which could also improve
mixing.

Outgroups and constraints on species tree topology
With deep phylogenetic trees and among-species rate
variation explicit inclusion of outgroup species in the
data may add phylogenetic information, although the
information may decrease with increased rate variation
among species. We therefore implemented topological
constraints on species trees during species tree search
(A01, Yang, 2015). Constraints are specified by
defining clades using the constraint and outgroup
keywords, the latter of which means that the ingroup
species form a clade. Note that species trees are
always rooted in BPP, under both the strict-clock and
relaxed-clock models.

Extension of the nucleotide substitution model
The mutation/substitution model in BPP is extended
from JC (Jukes and Cantor, 1969) to GTR+Γ (Yang,
1994a,b). Standard priors are assigned to the parame-
ters of the model and proposals are implemented to
modify them in the MCMC algorithm (Yang, 2014,
Chapter 8). A uniform Dirichlet prior is assigned to the
base frequencies (πT ,πC,πA,πG) and another uniform
Dirichlet prior is assigned to the ‘exchangeability’
parameters (a,b,c,d,e, f ) of the GTR model (Yang,
1994a). A gamma prior is assigned to the shape

parameter α for gamma-distributed rates among sites
(Yang, 1994b). Simpler models that are special cases
of GTR+Γ are implemented as well, including K80
(Kimura, 1980) and HKY (Hasegawa et al., 1984,
1985).

Implementation of the MCMC algorithms
We modified the subtree-pruning-and-regrafting (SPR)
algorithm for proposing changes to the species tree
(Yang and Rannala, 2014; Rannala and Yang, 2017)
under the MSC+relaxed clock models. An example is
illustrated in figure 1 for the case of three species, in
which case the SPR move is equivalent to the nearest-
neighbor-interchange (NNI) move. The move keeps the
MSC parameters (τs and θs) unchanged, and prunes
off and regrafts so-called affected nodes on the gene
trees to avoid conflicts with the proposed species tree,
keeping the coalescent times unchanged during the
move (fig. 1) (Yang and Rannala, 2014). Thus the
MSC density of gene tree and coalescent times may not
change in the move, but the likelihood for the sequence
alignments may change. As an extreme example, for
the species trees S and S′ of figure 1, suppose the
gene tree is ((a,b),c) with both inner nodes to reside
in the root species ABC so that there are no affected
nodes. While the gene tree topology and coalescent
times remain unchanged during the move, the branch
lengths and the likelihood change, due to the mapping
of the branch-rates in the relaxed-clock model.

Validation of the MCMC algorithms
We have conducted various tests to validate our
implementation of the MCMC algorithm (Yang, 2014,
pp.241-2). We ran BPP with the likelihood set to 1
to confirm that the MCMC samples from the prior
distribution of the parameters, and the gene tree
topologies and coalescent times match the expected
distributions. This test was effective during the early
stages of debugging. See the SI text for details.

We conducted a Bayesian simulation to confirm the
expectation that when model parameters are sampled
from the prior and used to simulate data, the posterior
matches the prior. From

f (X) f (Θ|X) = f (Θ) f (X |Θ), (15)

we have∫
f (X) f (Θ|X)dX =

∫
f (Θ) f (X |Θ)dX = f (Θ).

(16)
Thus any expectation of the prior distribution can be
written as an average over the replicate datasets and,
for each dataset, over the posterior distribution:
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h =
∫

h(Θ) f (Θ)dΘ

=
∫∫

h(Θ) f (X) f (Θ|X)dX dΘ

≈ 1
R

R

∑
i=1

∫
h(Θ) f (Θ|Xi)dΘ,

≈ 1
RN

R

∑
i=1

N

∑
t=1

h(Θ(i)
t ),

(17)

where Θ
(i)
t , t = 1, · · · ,N are an MCMC sample from

the posterior f (Θ|Xi) in the analysis of replicate dataset
Xi, while the function h(Θ) is calculated using the
sampled values from the posterior. Each replicate
dataset (Xi) is generated by sampling parameters Θ

from the prior f (Θ) and then simulating under the
likelihood model f (X |Θ) using those parameter values.
Each dataset is then analyzed to generate the posterior
f (Θ|Xi) and to calculate the posterior mean of h(Θ).
By averaging over R replicate datasets and over N
MCMC samples for each dataset, we recover the prior
expectation h.

Here the function h(Θ) is generic. If h(Θ) = φ ,
where φ is any scalar parameter (such as τ0, the age
of the species-tree root), h will be the mean of the
distribution. If h(φ) = Iφl<φ<φu , then h = P{φl < φ <
φu} will be the probability that φ falls in the fixed
interval (φl,φu). If h(φ) = Iφ<a, then h = P{φ < a}
will be the cumulative density function (CDF). Note
that the function h(Θ) can be multivariate, allowing the
estimation of joint densities, even though here we focus
on marginal distributions only.

Eq. 17 holds for any fixed size, L, of the dataset X (in
the current context, L is the number of loci). If L = 0,
the posterior distribution for each dataset will match
the prior, and eq. 17 will not constitute a useful test.
If L is very large, however, analysis of each dataset by
MCMC will be more expensive and furthermore the
posterior distribution for each dataset will be highly
concentrated so that more replicate datasets (large R)
may be needed to produce a smooth estimation of the
average posterior density. Note that when L → ∞, the
posterior distribution for each dataset degenerates to a
point mass at the true parameter value. In sum, ideally
the datasets should be small enough to avoid heavy
computation but large enough so that the posterior
distribution for each parameter is influenced by both
the prior and the data likelihood. It is advisable to plot
the posterior densities for replicate datasets to confirm
that they are different (i.e., X is sufficiently large so that
the posterior is influenced by the data). In our analyses,
10 loci were used in each dataset. Some authors have
advocated the use of a formal statistical test to evaluate
the difference between the average posterior and the
prior (e.g., Cook et al., 2006). However, failure to
detect a difference with a formal test could be due
to either the low power of the test or small sample

size (small R and N in eq. 17) and may not indicate
a genuine match between the average posterior and
the prior or the correctness of the MCMC algorithm.
Thus to ensure that any test has nearly 100% power,
a very large number of simulated datasets (R) may be
necessary, and furthermore, the impact of L needs to be
considered.

We let Θ represent both the parameters in the
MSC+relaxed clock model and the gene trees (which
are latent variables in the model). We let X represent
the data of multi-locus sequence alignments, and use
eq. 17 to recover the whole prior distribution via
simulation. The prior distributions for some parameters
are analytically available: for example, the age of the
root of the species tree (τ0) and the θ parameters
are assigned independent gamma priors, and the GTR
exchangeability parameters a,b,c,d,e, f are assigned
a Dirichlet prior. The prior distributions for other
parameters, and for the gene trees, may be intractable
analytically but can be estimated numerically by sam-
pling parameters from the prior f (Θ) and simulating
the gene trees from f (G|Θ). These methods were
used to conduct a Bayesian simulation to validate our
BPP implementation of the MSC-relaxed clock models
using a species tree for three species. See the SI text
for details.

We also simulated datasets under relaxed clock
models and confirmed that the Bayesian estimates
converged to the true values when the data size (the
number of loci) increases. See the Results section for
more details.

While we were able to validate the correctness of all
three clock models for small datasets, we encountered
serious mixing problems in large datasets, in particular
for species tree estimation under the correlated-rates
model (clock 3). Our analysis of the two real datasets
thus relied on the independent-rates model (clock 2).
MCMC mixing problems are discussed below in the
Results section.

Results
Validation of the MCMC algorithms
We present two sets of test results to validate our
implementation in BPP of the MCMC algorithms
under MSC-relaxed clocks. In the first set, we ran
BPP with the likelihood fixed at 1 to confirm that
the posterior distribution of the parameters, which
BPP samples from, matches the prior. We used the
species tree ((A,B),C) (fig. 1) and monitored 12
parameters in the MSC-relaxed clock model, for
which the prior marginals are analytically available
for comparison. These include θA, θAB, θABC, τABC,
τAB, and the locus-specific substitution parameters in
the GTR+Γ5: the exchangeability rates a,b,c,d,e, f
and the gamma shape parameter α . We used both
the independent-rates (clock 2) and correlated-rates

7



FLOURI ET AL.

(clock 3) models, and for each examined four model
settings, with different prior distributions of the overall
rate and variance parameters (µi and νi) among
loci (conditional i.i.d. versus gamma-Dirichlet), and
different kernel distributions of branch rates (gamma
versus log-normal). Close matches were observed
between the prior and the posterior in each of the eight
settings (figures S1&S2).

In the second set of tests, we conducted a Bayesian
simulation, generating 200 replicate datasets, each of
10 loci, with each dataset simulated by using parameter
values sampled from the prior, and then analyzing
the datasets using BPP. Averaged over the replicate
datasets, the posterior of parameters is expected to
match the prior (see eq. 17). This is a stringent test,
and validates both the simulation program and the
inference program.

We used the same species tree for three species and
the same eight relaxed-clock settings as in the first
test. Besides the 12 parameters mentioned above, we
monitored four additional locus-specific parameters:
µ1 (the overall rate at locus 1), ν1 (the variance
parameter at locus 1), and gene-tree tree height (TH
or the gene-tree root age) and tree length (TL or the
sum of branch lengths). The branch length on the
gene tree is calculated as a sum over the different
segments and is a function of species divergence times
(τs), coalescent times (ts), and branch rates for the
locus (fig. 1a). In this test, we estimated the priors
empirically using sampled values in the simulation
even if their analytical forms may be available. See
the SI text for the details of the procedure. Figures
S3&S4 show the prior and average posterior densities
for clock 2 and clock 3, respectively, with excellent
match as expected from theory. Note that the posterior
varies among replicate datasets (figs. S5& S6), because
the datasets are generated by using different parameter
values and because the datasets have a finite size
so that the posterior is influenced by the random
sampling errors due to the finite data size. However,
by averaging over replicate datasets one recovers the
prior distribution. The Bayesian simulation tests both
the simulation and inference components of the BPP
program.

Simulation to evaluate species tree estimation
We simulated multilocus sequence data under the
MSC+relaxed clock model and analyzed them using
BPP, in comparison with ASTRAL and MP-EST. The
species tree of figure 4 was used. Species O was
used as the outgroup to root the tree in ASTRAL and
MP-EST, while the BPP analysis used either the three
ingroup species only or all four species, in which case
species O was specified as the outgroup. Note that
BPP operates on rooted species trees under both the
strict- and relaxed-clock models so that an outgroup is
not required. Data were simulated under the GTR+Γ5

substitution model while both JC and GTR+Γ5 models
were used in the analysis. We used the independent-
rates model (clock 2) to simulate data, with two
values for the average rate variance parameter: ν̄ =
0.01 representing slight clock violation while ν̄ = 0.1
serious clock violation. All three clock models were
used for data analyses. This is the A01 analysis (Yang,
2015), with the SPR algorithm (Rannala and Yang,
2017) used to move between species trees generating
a posterior distribution. The maximum a posteriori
probability (MAP) tree is the Bayesian estimate of
the true species tree and its posterior probability is a
measure of confidence in the estimate. The results are
summarized in table 2.

As mentioned above, we observed mixing problems
for clock 3 (correlated rates) when the data comprised
20 or more loci. While the results at L = 10 loci
are similar to those for clock 2, performance under
clock 3 was poorer in larger datasets (with L ≥ 20),
and sometimes performance even deteriorated when
more loci were included in the data (table 2). We
suggest that the poor performance in recovering the
true species tree under clock 3 is due to mixing
difficulties of the MCMC algorithm, and does not
reflect the true performance of the inference method.
A typical symptom was that different runs of the
same analysis produced inconsistent results. We thus
disregard the results for clock 3 with L > 20.

At ν̄ = 0.01, the molecular clock holds approxi-
mately, and all three clock models are expected to
perform well, with perhaps an advantage for clock
1 (strict clock), due to its smaller size (with fewer
parameters). This expectation held for clock 1 and
clock 2 (independent rates) (table 2). Also clock 1
and clock 2 recovered the true species tree with higher
probabilities than the two-step methods ASTRAL and
MP-EST. For example, in the simulation with locus-
rate variation at L = 200, clock 1 and clock 2 recovered
the true species tree in 81% and 86% of the replicates,
while the proportions were 66% and 65% for ASTRAL
and MP-EST. This may be explained by the fact that
BPP uses information in the gene-tree branch lengths
(while accommodating their uncertainties) whereas
ASTRAL and MP-EST do not. Note that ASTRAL
and MP-EST should, in theory, be equivalent to one
another in the case of three species plus the outgroup
with one sequence sampled per species. The observed
differences between the two methods (table 2) are due
to the different ways in which they treat ties in the
estimated gene trees.

When the species are closely related so that
the molecular clock holds approximately and the
sequences are highly similar, we expect the mutation
model to be unimportant and the clock1+JC model to
be adequate for inference using BPP, as the role of
the mutation model is to correct for multiple hits in
the likelihood calculation in BPP (Shi and Yang, 2018;
Xu and Yang, 2016). We examined this expectation by
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comparing the posterior probabilities for MAP trees
inferred under JC and GTR+Γ for datasets simulated
under ν̄ = 0.01 in figure S7. With outgroup, GTR+Γ

recovered the true tree more often than JC, and JC
tends to produce posterior probabilities that are too
high. Without outgroup, the two models are much more
similar. This may be because the sequence divergence
levels are far higher when the outgroup is included
in the data. The largest average sequence distance
between species is approximately 2τR + θR = 0.41
mutations per site in datasets with outgroup, and ∼
0.22 without outgroup (fig. 4). At such high levels of
sequence divergence, correction for multiple hits may
be important. For comparison, the sequence divergence
between any gibbon species and the human outgroup
is ∼ 3.1% and ∼ 3.6% for coding and noncoding
loci, respectively (Shi and Yang, 2018, table 7). The
results suggest that JC+clock should be adequate for
analysis of genomic data from closely related species,
in which the molecular clock holds approximately and
the between-species sequence divergence is low, within
10-15%, say. Note that here the data were simulated
under GTR+Γ, and the JC model was grossly wrong in
its goodness of fit to the data.

At ν̄ = 0.1, the molecular clock assumption is
seriously violated, and the strict-clock model (clock
1) is expected to perform more poorly than clock 2
or clock 3. Clock 1 was indeed poorer than clock 2,
especially at L = 100 or 200 loci (table 2). Also clock 2
recovered the true species tree with higher probabilities
than the two-step methods ASTRAL and MP-EST. For
example, in the simulation with locus-rate variation at
L = 200, clock 2 recovered the true species tree in 76%
of replicates, while the proportions were 61% and 63%
for ASTRAL and MP-EST, respectively.

Finally the impact of the outgroup is noteworthy.
When the outgroup was excluded, BPP performed
consistently worse. For example, in the simulation
with ν̄ = 0.1 and with locus-rate variation, clock
2 recovered the true species tree with probability
76% at L = 200 when the outgroup was used,
but this dropped to 56% when the outgroup was
excluded. Even though BPP operates on rooted
trees, including an outgroup adds useful phylogenetic
information. In particular, outgroups may be expected
to provide important information about the placement
of the root for the ingroup, and closely related
outgroups may be expected to be more informative
than distant outgroups. Nevertheless, BPP/clock 2
recovered the true species tree without the outgroup
with increasingly higher probability when the number
of loci increased from 10 to 200 (table 2), suggesting
that the method is statistically consistent. The results
confirm that there is valuable phylogenetic information
in the gene-tree branch lengths even when the clock
is seriously violated, and that the MSC+relaxed clock
model can extract that information. Note that the two-
step methods (ASTRAL and MP-EST) cannot produce

an estimate of the species tree at all in the case of
three species without an outgroup as there is only one
unrooted gene tree for three species.

Simulation to evaluate parameter estimation
In the second set of simulations, we examined the
performance of BPP for parameter estimation under
the MSC+relaxed clock model. We used estimates of
MSC parameters obtained from the BPP analysis of the
250 UCE loci for the ratites to simulate biologically-
realistic datasets under the independent-rates model
(clock 2) using species tree 1 of figure 5 both to
simulate and to analyze the data (see Materials and
Methods). The GTR+Γ5 model was used to simulate
data, with model parameters sampled for each locus.

The results are summarized in figure 6. Para-
meters were well estimated under the true model:
clock2+GTR+Γ, although the population size para-
meters for ancestral species corresponding to short
branches on the species tree (θ20,θ21,θ23, etc.)
had large 95% highest probability density (HPD)
credibility intervals (CIs). In particular, all species
divergence times were well estimated, with the HPD
CIs including the true values. Note that here the
replicate datasets are simulated using fixed parameter
values, so we are evaluating the Frequentist properties
of a Bayesian estimation method. The results are
similar to those from the simulation under the strict
clock of Huang et al. (2020), in which it was found that
the coverage probability of the Bayesian CI exceeds the
nominal 95% for well estimated parameters.

Assuming either the strict clock or the JC substi-
tution model led to biased parameter estimates; in
particular, species divergence times were seriously
underestimated. The incorrect assumption of the strict
clock had greater impact than the incorrect assumption
of JC, with the biases being the greatest in the
JC+clock setting (fig. 6a).

Analysis of the gibbon datasets
Species tree estimation under different clock models
and priors

We analyzed two datasets from five species of gibbons,
with the human used as the outgroup (fig. 7). The
datasets consist of 500 noncoding loci and 1000 coding
loci, respectively, and were analyzed previously under
the strict clock and the JC model (fig. 3A&B in Shi and
Yang, 2018). Here we used the strict clock, either with
or without locus-rate variation, and the independent-
rates model (clock 2) with different distributions of
overall rates (µi) and rate variance parameters (νi)
among loci (iid vs. dir) and different distributions of
branch rates for each locus (LN vs. G), with 4 = 2× 2
prior settings. Both JC and GTR+Γ were used. The
results are summarized in figure 8.

The strict clock (clock 1) and the independent-rates
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models (clock 2) produced very similar results in both
datasets (fig. 8). For the coding dataset, all analyses,
under both JC and GTR+Γ and under both clock 1 and
clock 2, favored tree 1, with posterior ∼0.6 while tree 2
had ∼0.2 (fig. 8). For the noncoding dataset, tree 2 was
the MAP tree with posterior ∼ 0.53 under JC while tree
1 had 0.20, as in Shi and Yang (2018). Under GTR+Γ,
trees 1 and 2 received nearly equal support. As the
substitution model had some impact on the posterior
probabilities of species trees in one of the two datasets,
we conducted the same analysis using each of the 35
blocks of loci from the gibbon genome of Shi and Yang
(2018, figure 3A&B), with the results summarized
in figure S8. Each block was analyzed under the JC
or GTR+Γ4 models and the strict clock (clock 1).
The results for JC are nearly identical to those in
Shi and Yang (2018, figure 3A&B). Overall, the two
mutation models produced highly similar results, no
more different than in the simulated datasets of figure
S7.

We evaluated the impact of different priors for the
average rate variance parameter, ν̄ ∼ G(αν̄ ,βν̄), on
species tree estimation, assuming the GTR+Γ model.
We used αν̄ = 1, 2, 10 and βν̄ = αν̄ ,10αν̄ ,100αν̄ ,
generating 3×3 = 9 priors in total. Note that the prior
has mean αν̄/βν̄ and variance αν̄/β 2

ν̄
, so that the mean

reflects our prior assumption about the extent of clock
violation while αν̄ measures the confidence in the prior
mean. The prior mean varied from 0.01 (very slight
clock violation) to 1 (very severe clock violation). The
different priors produced the same MAP trees with
very similar posterior probabilities, suggesting that the
analyses were robust to the priors (fig. 9).

Parameter estimation under different clock models and
priors

We then examined the estimates of parameters in the
MSC model under the same six clock models as in
figure 8, with results shown in figure 10. First, we
note that species divergence times (τ) and population
sizes (θ ) for modern species were well estimated with
narrow CIs, but population sizes for ancestral species
were poorly estimated with wide CIs, especially for
species corresponding to short internal branches in the
tree.

Second, parameter estimates were overall very
similar between the mutation models (JC and GTR+Γ)
and between the strict clock (clock 1) and relaxed-
clock (clock 2) models (fig. 10). One exception was
the impact of the locus-rate variation on estimation of
species divergence time and population size for the root
population on the species tree (τr and θr in fig. 7).
Ignoring mutation rate variation among loci is known
to lead to overestimation of the ancestral population
size and underestimation of the species divergence
time. This effect was noted by Burgess and Yang
(2008) and affects mostly the root of the species tree

only. For those data, the locus-rate variation had a
slightly larger effect than the clock models.

Third, estimates of the rate variance parameter were
overall small (ν̄ < 0.1) and had large uncertainties,
consistent with our expectation that the clock holds
approximately for those data as the species are closely
related. The large uncertainties in ν̄ may be due to
the small species tree with only five species. We
note that in this case estimates of ν̄ were similar
between the gamma and log-normal models, even
though the parameter has different interpretations in
the two models.

Finally, estimates of τs and θs were smaller
for the coding data than for the noncoding data.
This is because the neutral mutation rate is reduced
in the coding loci by purifying selection removing
deleterious nonsynonymous mutations. Indeed Shi and
Yang (2018) found that the posterior means under the
JC+clock model were nearly perfectly linear between
the two sets of data, with the regressions τ(C) =
0.73τ(NC) and θ(C) = 0.62θ(NC). Since our estimates
under clock 2 and GTR+Γ were nearly identical to
those under JC+clock, the same relationships apply to
the estimates here.

We then evaluated the impact of the different priors
for the rate variance parameter (ν̄) on parameter
estimation, with the GTR+Γ model assumed (fig. 11).
The different priors had virtually no impact on the
species divergence times (τ) and population sizes
(θ ) for modern species, parameters that were well
estimated, but had some minor effects on the ancestral
population sizes, which were poorly estimated.
However, estimates of the variance parameter ν̄ were
affected by the prior (fig. 11). The posterior mean
of ν̄ and the CI width increased with the increase in
the prior mean, αν̄/βν̄ , and the prior mean had more
impact than the prior variance. The sensitivity of ν̄

estimates to the prior (fig. 11) and the large CIs (figs. 10
& 11) both reflect the low information content about
the parameter in the data.

In sum, our BPP analyses of the gibbon datasets
(figs. 8–11) confirmed the expectation that JC+clock
is adequate for shallow species trees when the species
are closely related, the molecular clock approximately
holds, and the sequences in the alignments are highly
similar. JC is clearly an extremely unrealistic model
(for example, the frequencies of the four nucleotides
are rarely ∼0.25 each), but because the role of
the mutation model in BPP is mainly to correct for
multiple hits, the realism of the mutation model used
is unimportant when the sequences are highly similar.
We recommend the use of JC+clock for analysis of
genomic data for closely related species, as it is far
more efficient computationally than GTR+Γ.
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Analysis of the ratite data
We used the independent-rates model (clock 2) to
analyze a dataset of 250 UCE loci to infer the
species tree for the flightless birds (Palaeognathae)
(fig. 5). Four clock models were used with either
the iid or dir distributions of overall rates (µi) and
variances (νi) among loci, and with either the log-
normal (LN) or gamma (G) distributions of branch
rates. Preliminary runs suggested that several clades
had total support (with posterior ∼1), irrespective of
the model and prior. We thus applied four clades or
topology constraints to reduce the space of MCMC
species-tree search: the kiwis (4 species), tinamous
(4 species), rheas (2 species), and emu+cassowary
(2 species), besides using the ostrich as the outgroup
(fig. 5). We ran each of the four analyses 40 times, with
four different starting species trees. The MAP trees
and posterior probabilities are shown in figure S9. The
MCMC algorithm for stochastic tree search showed
serious mixing problems, as seen by the differences
among the replicate runs. The starting trees did not
have an impact in this case. Tree 2 was the MAP
tree in more replicate runs than any other tree under
all four models (it was the MAP tree in 48.1% of
the 4× 40 runs) (fig. S9). We suggest that the MAP
tree was tree 2 under all four models, and combined
samples across replicate runs in which the MAP tree
was tree 2 to calculate the posterior probability for
tree 2 to be 0.90, 0.87, 0.92, 0.85, for the four
models. We discuss MCMC mixing problems later in
the Discussion section.

In tree 2 (fig. 5), the rheas diverged first, followed
by the divergence of the tinamou+moa clade from the
kiwi-emu clade. Cloutier et al. (2019) analyzed the
full UCE data of 3158 loci and used both ostrich and
chicken as the outgroups, recovering tree 1 (fig. 5) as
the estimate using both ASTRAL and MP-EST, which
has the tinamou+moa clade diverging first. A number
of factors might explain the difference, including data
filtering, the use of all or a subset of the loci, the
different outgroups, and the different methods (BPP vs.
summary methods).

To identify the possible reasons, we applied our
filters to all three types of noncoding nuclear markers
from Cloutier et al. (2019): the UCEs (ultraconserved
elements), the introns, and the CNEEs (conserved
nonexonic elements). For each filtered dataset we used
ASTRAL to infer the species tree with different subsets
of loci, with three outgroup options: i) the chicken and
the ostrich, ii) the ostrich only, and iii) the chicken
only. The results are summarized in table S1. With
the ostrich as the outgroup, the ASTRAL analysis of
the 250-loci UCE data produced tree 2 as the estimate
(table S1), consistent with the BPP analysis. However,
tree 1 was recovered when the chicken was used as the
outgroup. With the ostrich+chicken outgroup, ASTRAL
analyses of the full UCE and introns data recovered

tree 2 as the estimate, while Cloutier et al. (2019)
recovered tree 1; this difference should be due to our
filtering of the data (table S1). In sum, data filtering and
the different outgroups had major impacts on species
tree estimation in the ratite datasets. We note that
Simmons et al. (2022) found similar dependence of
the ASTRAL and MP-EST results on the use of the
outgroup species and argued that the chicken may not
be the best outgroup species for rooting the ratite tree.

In the analysis of the same 250-loci UCE dataset,
both BPP and ASTRAL produced tree 2 as the estimate,
but the posterior probabilities for tree 2 from BPP
were much higher than the local node support values
from ASTRAL, i.e., 0.93 for N1 and 0.67 for N2 in
tree 2 (fig. 5, table S1). This may be due to the fact
that ASTRAL uses reconstructed gene tree topologies
as data and ignores information in gene-tree branch
lengths whereas BPP makes use of both sources of
information, potentially increasing power. However,
the two measures of support may not be directly
comparable.

Next we ran BPP to estimate the parameters under
the MSC+relaxed clock model with the species tree
fixed. Clock 2 (independent rates) was used together
with GTR+Γ. This is the A00 analysis (Yang, 2015),
which did not suffer from serious mixing problems as
in the A01 analysis. The posterior means and 95%
HPD CIs for all parameters for species trees 1 and
2 of figure 5 are shown in figure 12. The CIs for
most parameters were narrower than those from the
simulated data (fig. 6), suggesting that the real dataset
was more informative than the simulated datasets,
presumably due to the fact that the average sequence
length among the 250 UCE loci is 2525, much greater
than the sequence length used in the simulation (500
sites).

Discussion
Simulation of gene trees and sequence alignments
under the MSC+relaxed clock model
We have implemented a simulation procedure to
generate gene trees with branch lengths and sequence
alignments at multiple loci under the MSC+relaxed
clock model. The simulation follows the model
formulation of figure 3 (see the Methods section)
and can adopt the GTR+Γ substitution model (Yang,
1994a,b) or its special cases, with the substitution
parameters such as base frequencies or the gamma
shape parameter for rate variation among sites sampled
randomly among loci. We generate gene trees
(topologies and coalescent times) on a rooted species
tree with node ages representing species divergences
times, and then use a rate-evolution model to simulate
the substitution rates for different branches at different
loci. The species divergence times, coalescent times
and branch rates determine the branch lengths on the
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gene trees (fig. 1a), which can be used to generate the
sequence alignment for the locus. Parameters in this
MSC+relaxed clock model include species divergence
times (τs), population sizes for both modern and
ancestral species (θs), and parameters in the rate-
evolution model (e.g., µi and νi). The species tree is
always rooted and ultrametric, whereas the gene trees
are rooted but not ultrametric, with the branch lengths
given by the products of time duration and species-
specific and locus-specific substitution rates (fig. 1a).
The asymptotic performance of the inference method
is then assessed by letting the number of loci approach
infinity while the sequence length is finite and fixed.

Recently, Roch et al. (2019) studied the inconsiste-
ncy of coalescent-based summary methods, as well as
partitioned and unpartitioned concatenation methods,
for species tree estimation when the molecular clock
is violated. An unrooted gene tree for four taxa
was used to generate sequence data at multiple loci,
which had two long external branches (with length
ρ , measured in the probability of different sites) on
two sides of the short internal branch, while the other
three branches (one internal and two external) had
the length ρ3. This is the characteristic long-branch
attraction (LBA) tree studied by Felsenstein (1978).
When ρ is small and the sequence length is fixed,
all summary methods of species tree estimation were
found to be inconsistent, converging to an incorrect
species tree when the number of loci or the number
of gene trees approach ∞. Even though the maximum
likelihood (ML) method is consistent in recovering the
gene trees (when the number of sites in the sequence
approaches ∞, at a fixed finite sequence length it
may recover a wrong gene tree (the LBA tree) with a
higher probability than the true gene tree. As a result
the more probable incorrectly reconstructed gene tree
becomes a (statistically inconsistent) estimate of the
species tree, when the number of loci approaches ∞.
The result is interesting and highlights the importance
of accounting for gene-tree reconstruction errors in
species tree estimation. Nevertheless, the framework
adopted by Roch et al. (2019) for evaluating the
statistical properties of a species tree estimation
method does not appear to be valid. The gene trees
considered by Roch et al. (2019) vary in branch lengths
in only one dimension, and are akin to isolated datasets
which in total have near-zero probability of occurrence
under an MSC model with violated clocks. One cannot
draw valid statistical conclusions about the inference
method based on such isolated datasets. Correctly gene
trees with branch lengths are random variables, and
both the gene-tree topology and all its five branch
lengths should vary, as specified by the MSC and the
rate-change model.

The simulation procedure implemented in BPP
may provide a flexible tool for generating multilocus
sequence datasets under the MSC with relaxed clocks
and realistic substitution models, useful for studying

the statistical performance of methods for estimating
the species tree and divergence times.

Mixing issues of the MCMC algorithm in BPP

Our comprehensive tests suggest that our implemen-
tation of the relaxed clock models (clock 2 and clock
3) are correct in that the MCMC samples from the
posterior under the model. However, we observed
MCMC mixing issues in the algorithm for changing
species tree, in particular under the correlated-rates
model (clock 3). Mixing is considerably poorer under
the relaxed-clock models than under the strict clock.
The main reason appears to be the increased dimension
in the trans-model move. Note that species trees
correspond to different statistical models, while τs,
θs, and the locus-specific rate variance parameters
and branch rates (µi,νi,ri j) may all be considered
parameters in the model. When we change a species
tree through an NNI or SPR move (Yang and Rannala,
2014; Rannala and Yang, 2017), we modify the gene
trees at the multiple loci to avoid conflicts, and the
branch rates (ri j) are transferred to the new trees
at each locus, necessitating the re-evaluation of the
sequence likelihood. The branch rates ri j did not exist
under the clock, and their introduction in the relaxed-
clock models increases the dimension of the MCMC
algorithm considerably, leading to much reduced
acceptance rate of the species-tree proposal. Similarly,
the SPR move is ‘larger’ under the correlated-rates
model (clock 3) than under the independent-rates
model (clock 2), involving changes to more variables,
which may explain why clock 3 had even more severe
mixing problems. While we were able to run BPP
under the strict clock on datasets with >10,000 loci
(Shi and Yang, 2018; Rannala and Yang, 2017), here
we encountered mixing problems with species tree
estimation with hundreds or even dozens of loci.

It may be noted that mixing under the relaxed-clock
models was better for the two gibbon datasets with 500
or 1000 loci than for the ratite dataset with only 250
loci. This may be because there are more sequences
per locus in the ratite dataset and furthermore the
ratite sequences are more divergent so that each ratite
locus is more informative than a gibbon locus. In large
or informative datasets, the within-model parameter
posterior becomes sharper, making it harder to move
across models as the proposed parameters are likely to
miss the spike in the parameter posterior under the new
model.

Thus, our implementation in BPP of the MSC+relaxed
clock model for species tree estimation (Yang, 2015,
the A01 analysis) is currently only feasible for use
with small datasets, and should be considered a proof
of concept. We leave it to future work to improve the
mixing properties of the algorithm, so that the models
can be applied to datasets with thousands of loci. We
note that the prior on θ may affect MCMC mixing,
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and in particular the gamma and inverse-gamma priors
have different features related to mixing. First, heavy-
tailed priors on θ may cause mixing problems because
they sometimes generate implausibly large θs for
populations represented by short internal branches on
the species tree (e.g., θt and θu in the gibbon trees in
fig. 10), possibly because extremely large ancestral θs
may make an implausible species tree look reasonable.
The gamma is a light-tailed distribution while the
inverse-gamma is heavy-tailed. Second, integrating out
θs analytically reduces the dimension of the MCMC
algorithm and helps mixing. The inverse-gamma is a
conjugate prior for θs and allows θs to be integrated
out analytically, while the gamma does not. Whether
the gamma or the inverse-gamma is a better prior may
thus depend on the particular datasets.

One idea worth exploring is to discretize the branch
rates as an approximation to the continuous rates
generated in the rate-evolution process and then to
sum over the discrete rates analytically in the pruning
algorithm, as achieved in the so-called speed-dating
algorithm (Akerborg et al., 2008). If the branch rates
are integrated out, they will not contribute to the
dimension of the problem in the cross-tree proposal.
Another idea is to simultaneously change the branch
rates and coalescent times for each locus such that
the gene-tree branch lengths stay fixed. This was
originally proposed by Thorne et al. (1998) in the
phylogenetic dating context and recently implemented
in the context of MSC with relaxed clocks by Douglas
et al. (2022) in STARBEAST3. We note that recent
algorithmic improvements in STARBEAST3 have made
the program feasible for datasets as large as 100 loci
(Douglas et al., 2022, table 3).

Assumptions and utility of the current algorithms
Our algorithm for parameter estimation when the
species tree is fixed (the A00 analysis, Yang, 2015)
does not seem to suffer from the mixing problems
mentioned above. While the GTR+Γ model involve
much more computation than the JC model, proposals
changing the parameters in GTR+Γ at different
loci are parallelized. We suggest that the current
implementation in BPP may be most useful for
estimating important population parameters (such
as species divergence times, population sizes, and
even the magnitude of rate variation over time),
after the species tree topology is estimated using
computationally efficient two-step methods such as
ASTRAL or MP-EST.

We also envisage examining the posterior distribu-
tion of gene trees at individual loci to identify genes
that show unusual phylogenetic relationships as a
possible indication for natural selection. The posterior
distribution of substitution rates between loci might
be used to identify genes that are co-evolving, for
example, with strongly correlated branch rates. We

expect such analysis to have power only if large species
trees with many species are analyzed.

Here we examine some of the assumptions made
in the MSC-relaxed clock models. First the models
implemented here ignore cross-species introgression or
migration. Ignoring gene flow when it exists may cause
serious underestimation of species divergence times, as
the model of no gene flow will then misinterpret the
reduced sequence divergences between species due to
gene flow as evidence for recent species divergence.
We have recently implemented the multispecies-
coalescent-with-introgression (MSci) model in BPP
assuming the strict clock model (Flouri et al., 2020).
It will be straightforward to extend the model to work
under the relaxed clocks.

Similarly both the independent- and correlated-rates
models may be unrealistic for some species groups.
One assumption made by all current relaxed-clock
models is that substitution rates evolve independently
among loci, whereas there exists evidence for strong
lineage effects in substitution rates, in that almost all
genes from a fast-evolving lineage tend to have high
rates (Lee and Ho, 2016; Xu and Yang, 2016). For
example, in mammals, rodents tend to have high rates
than primates, and the effect is correlated with life-
history traits of the species which affect all genes in
the genome (Li et al., 1987; Amster and Sella, 2016).
We leave it to future work to implement such models
of rate evolution with lineage effects or correlated
rate evolution among loci. Models of independent rate
evolution that ignore the correlation among loci are
still able to fit arbitrary rates to branches on the gene
trees, but may be expected to exaggerate the amount
of information in the data. In other words, under
relaxed-clock models accommodating lineage effects
of rate evolution, the lineage rates will be confounded
with species divergence times, making relaxed-clock
dating extremely challenging (Yang and Donoghue,
2016). Under the independent-rates model, the infinite-
sites and finite-sites theories (Rannala and Yang, 2007;
Zhu et al., 2015) predict that when the number of
loci increases, the precision of species divergence
times will approach a fixed limit given under the
strict-clock model, reflecting the uncertainties in the
fossil calibrations. Strong lineage effects in rate
evolution may change the asymptotics of relaxed-clock
dating, and in particular, the prior of divergence times
specified by the model of cladogenesis is expected
to have a significance impact on the posterior of
divergence times (Xu and Yang, 2016).

Materials and Methods
Simulation to evaluate species tree estimation
We conducted two sets of simulations to evaluate the
performance of the relaxed clock models implemented
in BPP for species tree estimation and parameter
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estimation, respectively. In each, data of sequence
alignments at multiple loci were simulated using
the simulate option of BPP4. Simulation consisted
of three steps: (i) generation of gene trees and
coalescent times for each locus under the MSC model,
(ii) simulation of substitution rates for each locus
along species-tree branches (which determine gene-
tree branch lengths), and (iii) simulation of sequences
along branches of the gene trees. The resulting
sequences at the tips of the gene trees constitute the
data. A sample BPP control file (MCcoal.ctl) used for
the simulation is shown in figure S10.

The first set of simulations used the four-species
tree (A,B,C, and outgroup O) of figure 4 with an
independent-rates model (clock 2). The simulated
sequences were analyzed using BPP under all three
clock models, and using two summary methods,
ASTRAL (Mirarab and Warnow, 2015) and MP-EST
(Liu et al., 2010). The species tree had divergence
times τR = 0.2, τS = 0.105, and τT = 0.1, and
population size parameters θR = θS = 0.01, θT = 0.05
(fig. 4). The short internal branch, in 2(τS − τT )/θT =
0.2 coalescent units, makes the species tree challenging
to recover. We sampled one sequence per species per
locus.

Overall rates (µi) among loci were either constant or
variable, and in each case, the same model is used in
both simulation and analysis of the data. With variable
rates, µi for locus i was sampled from a gamma
distribution G(αµ ,αµ) with αµ = 5 (locusrate =
1 5 iid). Given ν̄ (either 0.01 or 0.1), the rate
variance parameter νi for locus i was generated from
G(αν ,αν/ν̄) with αν = 5 (with the specification
clock = 2 0.1 5 iid g in the case of ν̄ = 0.1, for
example). Given the overall rate µi and the variance
parameter νi for each locus i, the rate ri j for (species-
tree) branch j at locus i was sampled from the gamma
distribution with mean µi and variance νi (eq. 9). A
branch length on a gene tree is specified as the sum of
branch segments corresponding to populations that the
branch traverses (see fig. 1a).

Sequences were simulated under a GTR+Γ5 sub-
stitution model (Yang, 1994a,b), with the parame-
ters in the model varying among loci. For each
locus, the base frequencies π = (πT ,πC,πA,πG)
were generated from a Dirichlet distribution π ∼
Dir(αT ,αC,αA,αG) with parameters (αT , αC, αA,
αG) = (10, 10, 10, 10). The exchangeability
parameters for the GTR model (Yang, 1994a) were
also generated from a Dirichlet distribution q =
(a,b,c,d,e, f ) ∼ Dir(αa,αb,αc,αd ,αe,α f ) with para-
meters (αa,αb,αc,αd ,αe,α f ) = (10,5,5,5,5,10); that
is, the prior mean of the transition/transversion rate
ratio (κ) is 2. The shape parameter for gamma
distributed rates among sites at a locus was generated
from G(2,2), with k = 5 categories in the discrete-
gamma model (Yang, 1994b). Four values were used
for the number of loci: L = 10,20,100,200, with 500

sites per sequence and four sequences per locus. The
number of simulated replicate datasets was 100. Using
two rate variance (ν̄) values, two locus-rate variation
models, four data sizes (L) and 100 replicates, we
simulated a total of 2×2×4×100 = 1600 datasets.

The simulated multilocus sequence datasets were
analyzed to infer the species tree using BPP4 (Flouri
et al., 2018) as well as ASTRAL (Mirarab and Warnow,
2015) and MP-EST (Liu et al., 2010). The outgroup
was used to root the tree in both ASTRAL and MP-EST.
In both the ASTRAL and MP-EST analyses, RAXML
was used to infer the unrooted gene trees under the JC
model and the most common gene tree was the species
tree estimate. The BPP analysis used either sequences
of only the three ingroup species, or sequences of all
four species. In the latter case, O was used as the
outgroup. Note that BPP always operates on rooted
trees with node ages, so that rooted trees are inferred
under relaxed-clock models whether or not outgroups
are included in the data. We expect that use of an
outgroup should provide additional information about
the rooted species tree. We assign gamma priors on the
age of the root, τ0 ∼ G(2,15) with mean 0.133, which
is too small for the 3-species data and too large for
the 4-species data. The population size parameters are
assigned the gamma prior θ ∼ G(2,200) with mean
0.01. When analyzing sequences simulated with rate
variation among loci, the locus-rate option was used in
the BPP analysis (locusrate = 1 0 0 5 iid), with
αµ = 5, so that the overall rates for loci have the i.i.d.
prior µi ∼ G(αµ ,αµ) with mean 1.

We used all three clock models to analyze the data:
clock 1 (strict clock), clock 2 (independent rates),
and clock 3 (correlated rates). We expect clock 1 to
work best when ν̄ = 0.01 (slight clock violation) and
worst when ν̄ = 0.1 (serious clock violation). For data
simulated with ν̄ = 0.01 the clock 2 prior is specified
as clock = 2 2 200 5 iid g, with αν̄ = 2,βν̄ =
200,αν = 5, so that ν̄ ∼ G(2,200) with prior mean
0.01, and the rate variance parameters for loci νi|ν̄ ∼
G(5,5/ν̄) (fig. 2). For data simulated with ν̄ = 0.1
the clock 2 prior was adjusted to clock = 2 2 20
5 iid g. In both cases the rates for branches were
modelled using a gamma kernel. The prior for clock 3
was specified similarly to clock 2, using clock = 3 2
200 5 iid g with αν̄ = 2,βν̄ = 200,αν = 5 for data
simulated with ν̄ = 0.01; and clock = 3 2 200 5
iid g with αν̄ = 2,βν̄ = 20,αν = 5 for data simulated
with ν̄ = 0.1. The rates for branches were modeled
using the bivariate lognormal density. The nucleotide
substitution model assumed was either JC or GTR+Γ5
(the true model). Uniform Dirichlet priors are used for
the exchangeability parameters in the GTR model and
for the stationary base frequencies.

With 1600 datasets, 3 clocks, 2 substitution models,
and 2 outgroup choices, we conducted a total of 1600×
3×2×2= 19,200 BPP analyses. A sample BPP control
file is provided in figure S10b. We conducted pilot runs
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to determine the length of the Markov chain needed
for convergence. In the final setting, we used 32,000
iterations for burn-in, and then took 2×105 samples,
sampling every 2 iterations. Running time for each
analysis ranged from ∼30 secs for the small datasets
of L = 10 loci analyzed under the strict clock and JC
without outgroup and without locus-rate variation to
∼15hrs for the large datasets of L = 200 loci analyzed
under clock 2 and GTR+Γ5 with locus rate variation
and with outgroup.

Simulation to evaluate parameter estimation
The second set of simulations assessed the performa-
nce of parameter estimation under the MSC model
when the clock is violated. We used parameter
estimates for the ratites species tree of Cloutier
et al. (2019) (species tree 1, fig. 5a) obtained from
the BPP analysis of the 250 UCE loci to simulate
datasets under the independent-rates model (using
clock = 2 0.35 5 iid g, with ν̄ = 0.35). The
species divergence times (τ) were estimated from the
UCE data, with τ16 = 0.0783 for the root of the non-
ostrich Palaeognathae clade and τ15 = 0.0820 for the
separation of the ostrich (fig. 5a). For the population
size parameters (θ ), we used two values 0.001 and
0.005, and assigned the small value to six branches
with small empirical estimates and the large value to
the branches with large estimates. The GTR+Γ5 model
was used to simulate data, with parameters in the
model sampled for every locus, as described above.
We simulated 100 replicate datasets, each of 250 loci,
with one sequence sampled per species and with the
sequence length of 500 sites. The simulation control
file is included as SI.

Each simulated dataset was analyzed using BPP4 to
estimate the model parameters with the species tree
fixed (the A00 analysis, Yang, 2015). Both JC and
GTR+Γ (the true model) were used in the analysis,
assuming either the strict clock or clock 2 (i.e., clock
= 2 2 5 5 iid g). With two substitution models
and two clocks, there are in total 400 BPP analyses.
In all runs rates were assumed to vary across loci
(locusrate = 1 0 0 5 iid) (fig. 2). The age of
the root was assigned the inverse-gamma prior τ15 ∼
invG(3,0.2) with mean 0.2/(3− 1) = 0.1. Population
sizes were assigned the prior θ ∼ invG(3,0.006) with
mean 0.003. We used 32,000 iterations for burn-in, and
then took 2× 105 samples. Running time was ∼7 hrs
under the clock+JC model, ∼11 hrs under clock 2+JC,
∼41 hrs under clock 1 with GTR+Γ, and ∼154hrs
under clock 2 with GTR+Γ.

Analysis of the gibbon datasets
We analyzed two datasets from the gibbon genomes
(Shi and Yang, 2018) using the relaxed clock models.
The coding and noncoding genomic data sets were

generated by Carbone et al. (2014) and Veeramah
et al. (2015) for five gibbon species: Hylobates moloch
(Hm), Hylobates pileatus (Hp), Nomascus leucogenys
(N), Hoolock leuconedys (B), and Symphalangus
syndactylus (S), plus an outgroup (human). There were
12,413 noncoding loci, each of 1,000 bp, and 11,323
coding loci, each of 200 bp, with 17 sequences per
locus. Here we used the first 500 noncoding loci and
the first 1000 coding loci, which correspond to block 1
in figure 3A&B of Shi and Yang (2018), who analyzed
the data under the JC+clock model.

We used both the strict clock (clock 1) and the
independent-rates model (clock 2) to estimate the
species tree, assuming either the JC (Jukes and
Cantor, 1969) or GTR+Γ4 (Yang, 1994a,b) substitution
models. We assigned inverse-gamma priors τ0 ∼
IG(3,0.03) with mean 0.015 for the age of the species-
tree root, and θ ∼ IG(3,0.004) with mean 0.002 for
the population sizes, allowing θ to be integrated out
analytically. For the GTR+Γ model, a gamma prior
is assigned on the shape parameter α for among-sites
rate variation: α ∼ G(1,1). We conducted pilot runs
to determine the MCMC settings for convergence. The
final settings are 16,000 iterations for burn-in, followed
by 8 × 105 samples (or 4 × 105 samples when the
influence of priors was examined), with a sampling
frequency of 2 iterations. Each analysis is run twice to
confirm consistency between runs. Running time using
one thread was ∼57hrs under the clock+JC model or
∼13 days under clock 2 with GTR+Γ for the coding
dataset. For the noncoding dataset, it was ∼34hrs under
JC or ∼10 days under GTR+Γ.

We then examined the impact of the different prior
assumptions about the rate variance parameter ν̄ .
Running time was ∼6 days for the coding dataset and
∼5 days for the noncoding dataset.

The species tree analysis recovered trees 1 and 2 of
figure 7 as the maximum a posteriori (MAP) tree, as in
Shi and Yang (2018). We then fixed the species tree to
estimate the parameters in the MSC model including
species divergence times and population sizes under
different models about the molecular clock (clock 1
and clock 2). We used 16,000 iterations for burn-
in, then taking 2 × 105 samples, sampling every 2
iterations. Running time using two threads was ∼6hrs
under clock+JC or 66hrs under clock 2 with GTR+Γ

for the coding dataset. For the noncoding dataset, it
was ∼8hrs under clock+JC or ∼38hrs under clock 2
with GTR+Γ.

We used the GTR+Γ model to analyze the data under
different priors on the rate variance parameter (ν̄) in
clock 2 to evaluate the posterior sensitivity to the prior
in the estimation of the species tree and parameters.
The MCMC settings were the same as above. Running
time using two threads was ∼44hrs for the coding
dataset and ∼34hrs for the noncoding dataset.
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Analysis of the ratite dataset
We used a subset of 250 loci from the data of 3,158
UCEs from the flightless birds (Palaeognathae) analy-
zed by Cloutier et al. (2019). There are 13 species,
including the extinct little bush moa (Anomalopteryx
didiformis), plus the ostrich as the outgroup (Cloutier
et al., 2019). We omitted the more distant outgroup,
chicken (see fig. 5). Manual inspection suggested
that alignments at some loci had poor quality. We
thus applied the following filters to improve the data
quality.

• Step 1: remove sequences with on average >40%
differences from other sequences in the alignment.

• Step 2: remove columns with no states (all gaps).
• Step 3: remove sequences that have >50% missing

data.
• Step 4: remove columns with no states (all gaps).
• Step 5: remove loci that comprise >50% columns

with missing data.

The number of UCE loci (alignments) after filtering
was 2,278. Most sequences removed in steps 1 and
3 were from white-throated tinamou. The sequence
length ranged from 966 to 11,018 sites among loci,
with the mean 2510. We used the first 250 loci, with
mean sequence length of 2525.

We estimated the species tree under clock 2
with four different prior settings, with either the
iid (conditional i.i.d.) or dir (gamma-Dirichlet)
distributions for the overall rate (µi) and variance
parameter (νi) among loci, and either the gamma
(G) or the log-normal (LN) distributions for species-
tree branch rates at each locus. A typical setting is
locusrate = 1 0 0 5 iid and clock = 2 2 20
5 iid G, specifying the iid prior for µi and νi, and the
gamma distribution for the branch rates (fig. 2). In all
four prior settings, the mean rate variance parameter
ν̄ ∼ G(2,20) with mean 2/20 = 0.1, representing
serious clock violation.

Gamma priors are assigned to the MSC parameters:
τ0 ∼ G(2,20) with mean 2/20 = 0.1 for the age
of the species-tree root, and θ ∼ G(2,2000) with
mean 0.001 for the population sizes. We assumed the
GTR+Γ substitution model, with the gamma shape
parameter for the rate variation among sites (Yang,
1994b) assigned a gamma prior, α ∼ G(2,1).

Preliminary runs suggested that several clades had
complete support, with posterior ∼1, irrespective of
the model and prior. They were defined as five clade
constraints during the Bayesian species tree search,
to reduce the search space. These were the kiwis (4
species), tinamous (4 species), rheas (2 species), and
emu+cassowary (2 species), with the ostrich as the
outgroup (meaning that all 13 ingroup species form
a clade) (see fig. 5). We used 32,000 iterations for
burn-in, then taking 105 samples, sampling every 2
iterations. Each of the four prior settings was run 40

times, using four different starting trees (10 runs for
each starting tree). Each run took ∼10 days using two
threads. This analysis produced species tree 2 of figure
5 as the best estimate.

We then reran BPP with the species tree fixed to
estimate the parameters of the MSC model, such as
species divergence times, population sizes, and the rate
variance parameter (ν̄). The same settings were used as
above except that 2×105 samples were taken. Running
time using 4 threads was ∼7 days.

Software and Data Availability
Simulation and inference under the MSC+relaxed
clock models are implemented in BPP Version 4 or later
(Flouri et al., 2018), using the --cfile and --simulate

switches of the program, respectively. The software is
distributed at its github site (https://github.com/bpp/).
The models and methods implemented include the
independent-rates model (clock 2), the correlated-rates
model (clock 3), the MCMC proposals for species-
tree change under the MSC+relaxed clock models,
the GTR+Γ substitution model and its special cases,
as well as simulation of gene trees and sequence
alignments under the MSC+relaxed clock models.
Data files for the gibbon and ratite datasets and
the BPP control files for simulating and analyzing
data under the relaxed-clock models are archived at
http://abacus.gene.ucl.ac.uk/ziheng/data.html.
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Table 1. Parameters in the prior model for the overall locus rates (µi)
and rate variance parameters (νi) for L loci

Model No. parameters Parameters

Gamma-Dirichlet (dir) 2L µ1,µ2, · · · ,µL
ν1,ν2, · · · ,νL

Conditional i.i.d. (iid) 2(L+1) µ1,µ2, · · · ,µL, µ̄
ν1,ν2, · · · ,νL, ν̄

Note.— Under the Gamma-Dirichlet model, µ̄ = 1
L ∑

L
i=1 µi and ν̄ =

1
L ∑

L
i=1 νi are printed out by BPP, but they are not free parameters in

the model.
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Table 2. Probability (estimated using 100 simulated replicates) that the
true species tree is recovered by BPP under different clock models and

by ASTRAL and MP-EST

GTR+Γ JC

ν̄ LR Loci C1 C2 C3 C1 C2 C3 AST MP

With outgroup
0.01 No 10 54 55 56 52 51 53 50 44
0.01 No 20 51 50 46 49 50 48 44 43
0.01 No 100 77 77 33 74 74 54 71 70
0.01 No 200 87 87 44 75 75 50 64 65

0.01 Yes 10 45 44 45 51 52 47 45 46
0.01 Yes 20 53 54 48 47 48 42 39 36
0.01 Yes 100 77 81 46 71 71 51 52 52
0.01 Yes 200 81 86 40 79 81 46 66 65

0.1 No 10 35 39 40 39 43 46 44 42
0.1 No 20 39 53 48 46 44 42 46 45
0.1 No 100 50 63 35 48 51 43 52 52
0.1 No 200 72 84 51 66 75 48 75 76

0.1 Yes 10 47 46 47 43 47 45 40 38
0.1 Yes 20 49 54 56 49 52 50 52 51
0.1 Yes 100 59 72 40 63 70 43 54 55
0.1 Yes 200 69 76 44 66 72 46 61 63

Without outgroup
0.01 No 10 47 49 43 47 47 44
0.01 No 20 48 47 48 50 49 43
0.01 No 100 58 56 33 65 60 35
0.01 No 200 78 78 42 78 78 52

0.01 Yes 10 45 41 46 48 45 49
0.01 Yes 20 52 53 56 53 53 52
0.01 Yes 100 69 71 41 69 69 47
0.01 Yes 200 75 73 47 77 75 34

0.1 No 10 33 36 35 30 36 36
0.1 No 20 39 40 40 39 39 41
0.1 No 100 41 43 33 40 39 27
0.1 No 200 58 65 43 58 65 43

0.1 Yes 10 45 44 43 43 44 43
0.1 Yes 20 38 42 36 38 40 36
0.1 Yes 100 47 51 37 49 54 27
0.1 Yes 200 52 56 37 51 57 35

Note.— Data were simulated under the independent-rates model
(clock 2) with and without locus-rate variation (LR) using the four-
species tree of figure 4. One sequence was sampled per species
per locus. The simulation options are clock = 2 ν̄ 5 iid g

(where ν̄ = 0.01 or 0.1), and locusrate = 1 5 iid. The data
were analyzed using BPP to infer the species tree under the strict
clock (C1 = clock 1), the independent-rates (C2 = clock 2) and the
correlated-rates (C3 = clock 3) models, and using ASTRAL (AST)
and MP-EST (MP). The control files for simulating and analyzing
the data using BPP are shown in figure S10. Results for clock 3 with
L ≥ 20 loci are unreliable due to MCMC mixing problems.
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(a) Species tree S with parameters

(b) Species tree S' after NNI manipulation

Figure 1: (a) A species tree (S) for three species (A,B,C) with a gene tree for six sequences (a1,a2,b1,b2,c1,c2) inside to illustrate the
parameters in the MSC+relaxed clock model. At any locus each population on the species tree has its own rate so that rates are assigned to
species-tree branches, indicated by different colors. A branch on the gene tree may pass several populations, consisting of segments with
different rates, and the branch length is the sum of the segments. For instance, branch su in the gene tree consists of two segments with rates
rA and rAB, and has the length (τAB − tu)rA +(ts − τAB)rAB. (b) Another species tree S′ after an NNI/SPR perturbation of S, illustrating the
mapping of branch rates at an example locus. In the NNI/SPR move under the MSC+clock model (Yang and Rannala, 2014; Rannala and
Yang, 2017), MSC parameters (τττ and θθθ ) as well as the ages of ‘affected nodes’ on the gene trees (ts) are transferred from S to S′ without
modification. For example, τAB in S becomes τAC in S′, θAB in S becomes θAC in S′, and ts in the gene tree becomes ts in the new gene
tree. Here in the MSC+relaxed clock model, rates for (species-tree) branches at each locus are mapped onto the new species tree without
modification as well (for example, rAB in S becomes rAC in S′ for the locus).
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locusrate = 0                       # (0: One rate for all loci, default)

locusrate = 1 10 10 5 iid     # (1: estimate locus rates mui)

locusrate = 1 0 0 5 iid          # (1: estimate locus rates mui)

locusrate = 1 a_mubar b_mubar a_mu <prior>

locusrate = 2 LocusRateFileName # (2: locus rates from file)

clock = 1                                           # (1: strict clock, default)

clock = 2 10 100 5 iid G            # (2: independent‐rates)

clock = 2 a_vbar b_vbar a_v <prior> <distribution>  # (2: independent‐rates)

clock = 3 10 100 5 iid G             # (3: correlated‐rates)

clock = 3 a_vbar b_vbar a_v <prior> <distribution>  # (3: correlated‐rates)

Figure 2: The relaxed-clock models are specified using two control variables in BPP: (i) locusrate concerning the overall rate µi for locus
i and (ii) clock concerning the rate variance parameter νi for locus i. The locusrate variable is used with any of the three clock models
(clocks 1, 2, 3). In the example αµ̄ = 10 and βµ̄ = 10 specify the mean overall rate µ̄ ∼ G(αµ̄ ,βµ̄). When there are no fossil calibrations
on the species tree, µ̄ = 1 is fixed, specified using αµ̄ = βµ̄ = 0. Given the mean overall rate µ̄ , the overall rates for loci (µi) are generated
from the conditional-independence model (iid) or the gamma-Dirichlet model (dir), with the shape parameter αµ ( = 5 in the example)
specifying how similar µi are among loci. The clock variable specifies the three clock models: clock 1 (strict clock), clock 2 (independent-
rates model), and clock 3 (correlated-rates model). Under both clock 2 and clock 3, the average rate variance parameter is specified as ν̄ ∼
G(αν̄ ,βν̄); in the example αν̄ = 10 and βν̄ = 100 with mean 0.1. Given ν̄ , the variance νi for locus i is similarly generated from the iid or
dir models. Given the overall rate µi and the rate variance parameter νi for locus i, rates for branches at locus i are specified for clock 2 and
clock 3 using either the gamma (G) or log-normal (LN) distributions.

, , 
(species tree)

(Gi, ti) 
(gene trees at locus i)

(rij) 
(branch rates at locus i)

(i) 
(overall rates for loci)

(Xi) 
(Alignment at locus i)

,  

(i) 
(variance parameters for loci)

Mean variance (   )

,  

 Mean rate (    )

Figure 3: DAG (for directed acyclic graphical model) representation of the MSC+relaxed clock model implemented in this paper, illustrating
the conditional independence of different components in the model. The species tree (Ψ) and the parameters on the species tree including
species divergence times (τs) and population sizes (θs) specify the probability density of the gene trees at the multiple loci (gene tree
topology Gi and coalescent times ttt i for locus i) (Rannala and Yang, 2003). The relaxed-clock or rate-evolution model is specified by two
components, the overall rates for loci (µi) and the rate variance parameters for loci (νi). The overall rates for loci (µi) are specified using
either the gamma-Dirichlet or conditional i.i.d. priors conditioned on the mean overall rate (µ̄). Similarly the variance parameters for loci
(νi) are specified using the gamma-Dirichlet or conditional i.i.d. priors conditioned on the mean variance parameter (ν̄). Given the overall
rate µi and the variance parameter νi for locus i, the species-specific branch rates (ri j for branch j at locus i) are specified using either the
independent-rates model (clock 2) or the correlated-rates model, based on either a log-normal or gamma kernel. For each locus i, given the
gene tree topology (Gi), the coalescent times (ttt i), and the branch rates (ri j), the branch lengths on the gene tree are specified as the sum of the
segments for each branch (fig. 1a). Finally, the gene tree topology (Gi) and branch lengths specify the phylogenetic likelihood (Felsenstein,
1981) or allow a sequence alignment for the locus to be simulated.
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Figure 4: A species tree for four species (A,B,C, with O to be the outgroup) used to simulate multilocus sequence data for species tree
estimation. The MSC parameters used are τR = 0.2, τS = 0.105,τT = 0.1, θR = θS = 0.01, and θT = 0.05.

Tau estimates next to nodes.  (d) dir G (locusrate = 1 0 0 5.0 dir, clock = 2 2 20 5.0 dir G).
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Figure 5: Three species trees for the ratites that differ concerning the placement of the rheas (node 1). Node 2 is in all three trees but received
weak support in some analyses (see text). Nodes are numbered to identify parameters in figures 6 & 12. Branches are drawn to represent the
posterior means of species divergence times (τ) obtained from BPP analyses of the 250-loci UCE dataset under the independent-rates model
(clock 2) accounting for among-loci rate variation (locusrate = 1 0 0 5 dir; clock = 2 2 20 5 dir G).
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Figure 6: Posterior means and 95% HPD intervals for parameters when the data were simulated under the independent-rates model (clock
2) using parameter estimates from the ratite dataset (tree 1 in fig. 5) and analyzed under either the strict clock (clock 1) or the relaxed clock
(clock 2). The species tree was fixed in the BPP analysis. Horizontal lines represent the true values. Note that both τs and θs are measured in
the expected number of mutations per site, while ν̄ is the rate variance parameter in the rate-evolution model.

Figure 1
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Figure 7: Species trees 1 and 2 for five species of gibbons: Hylobates moloch (Hm), H. pileatus (Hp), Nomascus leucogenys (N), Hoolock
leuconedys (B), and Symphalangus syndactylus (S), with the human as the outgroup (O). These are the top two species trees in the species-
tree analysis of genomic data by Shi and Yang (2018) (the A01 analysis of Yang, 2015). Branches are drawn to represent the posterior means
of divergence times (τs) in the BPP analysis of the noncoding data under the JC+clock model.
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Figure 8: Posterior probabilities for species trees 1 and 2 for the gibbons (fig. 7) obtained from BPP analysis of the coding and noncoding
datasets under different clock models. In each panel are presented two replicate runs for each of six analyses, specified as
(1) clock = 1 (strict clock, one rate for all loci);
(2) locusrate = 1 0 0 5 iid, clock = 1 (strict clock, i.i.d. rates µi among loci);
(3) locusrate = 1 0 0 5 iid, clock = 2 10 100 5 iid LN (clock 2, i.i.d. prior for µi and νi among loci, and log-normal kernel);
(4) locusrate = 1 0 0 5 iid, clock = 2 10 100 5 iid G (clock 2, i.i.d. prior for µi and νi among loci, and gamma kernel);
(5) locusrate = 1 0 0 5 dir, clock = 2 10 100 5 dir LN (clock 2, dir prior for µi and νi among loci, and log-normal kernel);
(6) locusrate = 1 0 0 5 dir, clock = 2 10 100 5 dir G (clock 2, dir prior for µi and νi among loci, and gamma kernel).
The strict clock (clock 1) is assumed in the first two analyses while the independent-rates model (clock 2) is assumed in the next four analyses.
The substitution model is either JC or GTR+Γ. Inverse-gamma priors are assigned on τ and θ .
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Figure 9: Posterior probabilities for species trees 1 and 2 (fig. 7) for the gibbon datasets under different priors in the relaxed-clock models.
Two replicate runs are presented for each of nine priors, specified by locusrate = 1 0 0 5 iid, clock = 2 αν̄ βν̄ 5 iid G, where
the parameters are given as (αν̄ , βν̄ ) = (1, 100), (2, 200), (10, 1000), (1, 10), (2, 20), (10, 100), (1, 1), (2, 2), and (10, 10). Note that the prior
ν̄ ∼ G(αν̄ ,βν̄) has the mean αν̄/βν̄ and the variance αν̄/β 2

ν̄
. The GTR+Γ substitution model is assumed.
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Figure 10: Posterior means and 95% HPD CIs for the 16 parameters in the MSC model on species tree 1 (fig. 7) in analyses of the gibbon
datasets under different clock models. Estimates of θs and τs are multiplied by 103. Each panel includes two replicate runs under six clock
models as in figure 8, specified by
(1) clock = 1 (strict clock, one rate for all loci);
(2) locusrate = 1 0 0 5 iid, clock = 1 (strict clock, i.i.d. rates µi among loci);
(3) locusrate = 1 0 0 5 iid, clock = 2 10 100 5 iid LN (clock 2, i.i.d. prior for µi and νi among loci, and log-normal kernel);
(4) locusrate = 1 0 0 5 iid, clock = 2 10 100 5 iid G (clock 2, i.i.d. prior for µi and νi among loci, and gamma kernel);
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The panel for ν̄ shows two replicate runs for each of the four clock-2 analyses.
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Figure 11: Posterior means and 95% HPD CIs for 16 parameter in the MSC model on species tree 1 for the gibbons (fig. 7) using different
priors. The prior is specified as follows, as in figure 9: locusrate = 1 0 0 5 iid, clock = 2 αν̄ βν̄ 5 iid G, with (αν̄ , βν̄ ) = (1,
100), (2, 200), (10, 1000), (1, 10), (2, 20), (10, 100), (1, 1), (2, 2), and (10, 10). Estimates of τ and θ are multiplied by 103.
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Figure 12: Posterior means and 95% HPD CIs for the 27 parameters in the MSC model on species tree 1 (fig. 5) in analyses of the ratite
dataset under different clock models. The independent-rates model (clock 2) was assumed, with four prior settings concerning the distribution
of overall rates (µi) and rate variance parameters (νi) among loci (iid vs. dir) and concerning the distribution of the branch rates (G vs. LN).
Each panel shows four replicate runs for each of the four clock model settings.
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