
Quantum Liang Information Flow as Causation Quantifier

Bin Yi and Sougato Bose
Department of Physics and Astronomy, University College London, Gower Street, WC1E 6BT London, United Kingdom

(Received 30 January 2022; accepted 22 June 2022; published 5 July 2022)

Liang information flow is widely used in classical systems and network theory for causality
quantification and has been applied widely, for example, to finance, neuroscience, and climate studies.
The key part of the theory is to freeze a node of a network to ascertain its causal influence on other nodes.
Such a theory is yet to be applied to quantum network dynamics. Here, we generalize the Liang information
flow to the quantum domain with respect to von Neumann entropy and exemplify its usage by applying it to
a variety of small quantum networks.
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Introduction.—The significance of information flow lies
in its logical association [1] with the important notion of
causation [2–7]. Historically, various measures of classical
information flow were proposed, e.g., Refs. [2,5,7–12].
Nonetheless, limitations were pointed out, e.g.,
Refs. [11,13,14], the most severe being an incorrect
reflection of causality. In 2005, Liang and Kleeman found
a law for two-dimensional classical systems [5]. Later on,
the dimensionality and determinism limitations were over-
come, and eventually Liang was able to link information
flow to causality and establish a universally applicable
formalism within the framework of classical dynamical
systems [1,5,15–18]. This series ofworks puts the notion of
information flow and causation on a rigorous footing, as
Liang [1] argued: “Information flow and causality can be
derived ab initio.” The formalism has been validated with
various benchmark cases [1] and successfully applied to
many realistic problems: glaciology [19], neuroscience
[20], El Niño study [16] and prediction [21], precipitation-
soil moisture interaction [22], global climate change
[23,24], economics [25], etc.
The discussion of causality in quantum physics goes

back to the paradigmatic Bell experiment [26]. Causal
structure places constraints on the correlations that
can be generated in any classical hidden variable theo-
ries, which quantum physics violates [27–31]. Motivated
by the possible relation between causality and correla-
tions (Liang just put this relation in a mathematical
formula [1,16]), various attempts have been made to
estimate causal influences in certain quantum environ-
ments [32–39]. The quantification of causal effects in the
quantum regime sheds new light on quantum communi-
cation [40,41] and helps understanding information flow
in quantum processors [42,43]. Usually, correlation
functions of a Heisenberg picture evolving operators
are used to ascertain casual influences, but caution
should be exercised, since correlation does not imply
causation [1,16].

Surprisingly, the straightforward approach to ascertain-
ing causality that an experimentalist will naturally employ,
i.e., to subtract a given component from a network and
examine its influence, remains unexplored. Motivated by
that, we hereafter adopt Liang’s methodology to formulate
quantum information flow. As opposed to all the
approaches mentioned above in the quantum context, here
one detaches or freezes a certain subsystem of a network
(sender) in order to ascertain its causal influence on other
subsystems (target). The change of a target element’s von
Neumann entropy, which possesses various interpretations
[44], then gives the information flow from the sender.
Definition.—Consider a multipartite system with a den-

sity operator state ρ, evolving under a generic unitary
operator UðtÞ. The evolution leads to an entropy change of
its subsystems, as initial uncertainties can flow between the
subsystems as well as when they get correlated quantum
mechanically with each other (an open system is also
addressed here by tracing out the ancillary degrees of
freedom). Following Liang’s methodology (briefly
reviewed in Supplemental Material [45]), we decompose
the time rate of change of the von Neumann entropy of a
subsystem A, dSA=dt, into two parts: TB→A, the rate of
information flow from subsystem B to A, and ðdSAB=dtÞ,
the entropic evolution rate of subsystem A with the
influence from B excluded:

TB→A ¼ dSA
dt

−
dSAB
dt

: ð1Þ

S is the von Neumann entropy given by S ¼ −Trðσ log σÞ
for arbitrary state σ. SAB ¼ SðρABÞ ¼ S½εðtÞABρAð0Þ�,
where εðtÞAB is a map denoting the evolution of A with
B frozen. We will discuss the definition and properties of
εðtÞAB in the following section. If we consider time
evolution as a discrete mapping during interval Δt, the
cumulative information flow is then formulated in terms of
the change of entropy ΔS:
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TB→A ¼
Z

TB→Adt ¼ ΔðSA − SABÞ: ð2Þ

Note that the von Neumann entropy, and hence the
information flow formalism, possesses various interpreta-
tions [44]. Particularly distinct from the Shannon entropy,
the von Neumann entropy quantifies the entanglement
within a pure bipartite quantum system. SAB (or SA) can
then be interpreted as the entanglement between A and the
rest of the Universe with (or without) B frozen. The term
ðSA − SABÞ that appears in Eqs. (1) and (2) is then the
difference of these two entanglement measures, in units of
ebits. TB→A then quantifies the causal influence of B on A in
the sense of how much it causes the entanglement of A with
the rest of the Universe to change. Similarly, other
interpretations, such as the uncertainty of a given state,
also apply here.
Evolution of subsystem A with B frozen.—Since εðtÞ

AB
is

a mapping of states, it can be interpreted as a quantum

channel acting on subsystem A [44]: ρAð0Þ⟶
εðtÞAB

ρABðtÞ. We
further require that εðtÞAB corresponds to a physical
process; therefore, it can be obtained from taking the
partial trace of the full system, which evolves unitarily.
For tripartite system ρABC,

ρABðtÞ ¼ TrBCfUABCðtÞρABCð0ÞU†
ABCðtÞg ð3Þ

for some unitary operator UABC.
Moreover, we require that the evolution mechanism with

some subsystems frozen takes a product form between the
frozen qubits and the rest of the system:

UABCðtÞ ¼ VAC ⊗ WB; ð4Þ

where VAC and WB are unitary operators acting on
subsystems AC and B, respectively. The frozen mechanism
of the form Eq. (4) guarantees what Liang referred to as the
principle of nil causality [1] (see Supplemental Material
[45] for the proof):
TB→A ¼ 0 if the evolution of A is independent of B; that

is, the unitary evolution operator UABCðtÞ takes separable
form MA ⊗ N BC or OAC ⊗ QB.
Therefore, the causal structure of space-time in physics is

embedded in the formalism. If quantum operations, con-
ducted at four-dimensional coordinates x and y, are space-
like separated, and hence noncausal, then the operations
acting at x do not affect the state located at y and vice versa.
The quantum operations at x and y commute, and the joint
evolution is in product form. Thus, the quantum Liang
information flow from one coordinate to another vanishes.
Bipartite system.—Consider a bipartite state ρAB under

unitary evolution UABðtÞ. Comparing with Eq. (4), UAB
takes the form VA ⊗ WB in two dimensions. Since von
Neumann entropy is invariant under a unitary change of
basis, ρAB¼VAρAð0ÞV†

A and ðdSAB=dtÞ ¼ 0. Therefore, the

rate of information flow from B to A: TB→A ¼ ðdSA=dtÞ.
Similarly, TA→B ¼ ðdSB=dtÞ. If the initial state ρABð0Þ is
pure, that is, the system is closed, by Schmidt decom-
position, ρA and ρB share the same set of eigenvalues. Since
a closed bipartite system is symmetric, SAðtÞ ¼ SBðtÞ and
TB→A ¼ TA→B. In general, if the initial state ρABð0Þ is
mixed, which can arise from entanglement with some
external system, then we no longer have the symmetry
TA→B ≠ TB→A. Consider a CNOT gate with controlled qubit
A and target qubit B acts on the initial state ρABð0Þ ¼
ð1=2j0ih0jA þ 1=2j1ih1jAÞ ⊗ j0ih0jB; the system evolves
to 1=2j0ih0jA ⊗ j0ih0jB þ 1=2j1ih1jA ⊗ j1ih1jB. The
cumulative information flow for this discrete mapping
TB→A ¼ ΔSA ¼ 0 and TA→B ¼ ΔSB ¼ 1 bit. The asym-
metric quantum information flow obtained for an initially
mixed bipartite system parallels its classical counterpart
(see Supplemental Material [45] for details). For multipar-
tite system ρABCD…, the information flow from the rest
of a closed system toward a particular unit, say, A, is
equivalent to the bipartite scenario: TBCD…→A ¼ ðdSA=dtÞ,
TBCD…→A ¼ ΔSA.
Multipartite system.—Evaluation of the information flow

in a multipartite system requires a method to fix VAC in
Eq. (4). Here, we demonstrate this with a tripartite system
ρABC. We define the evolution of A with B frozen by
replacing the interaction terms relevant to B in the
Hamiltonian with the identity operator. For simplicity,
consider the evolution operator generated from a time-
independent Hamiltonian H, UðtÞ ¼ e−iHt, with ℏ set to
unity. For instance, let

HABC ¼ H0A þH0B þH0C þA ⊗ C þ B ⊗ C; ð5Þ

where H0i, with i ¼ A, B, C, is the free Hamiltonian.A, B,
and C, which occur in the interactions, are Hermitian
operators acting on subsystems A, B, and C, respectively.
The evolution mechanism with B frozen is then UABC ¼
e−iHABC

t, where

HABC ≡H0A þH0C þA ⊗ C þ IB: ð6Þ

UABC is clearly of the product form given in Eq. (4), with
WB ¼ I and VAC generated by Hermitian operator
H0A þH0C þA ⊗ C. The meaning of UABC is then evo-
lution of the system if subsystem B is removed from the
original evolution mechanism.
The operational meaning of the frozen mechanism

guarantees that this definition is basis (observable) inde-
pendent. Now, we are equipped with the tools needed to
evaluate quantum Liang information flow.
Application: Multiqubit spin system.—Consider a multi-

qubit spin chain. The interaction Hamiltonian between any
two interacting qubits i and j is given by [47]

Hspin;ij ¼ ηijðσþiσ−j þ σ−iσþjÞ; ð7Þ
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where σ� can be expressed in terms of Pauli matrices
fσx;y;zg, σ� ¼ 1

2
ðσx � iσyÞ, and ηij represents the coupling

strength. The interaction Hamiltonian for three interacting
qubits, labeled A, B, and C, of the form Eq. (5) is given by

Hint;ABC ¼ ηACðσþAσ−C þ σ−AσþCÞ
þ ηBCðσþBσ−C þ σ−BσþCÞ: ð8Þ

For simplicity, η has scaled value with respect to unit
relative coupling strength of frequency dimensions. Time t
is scaled inversely to unit relative coupling strength.
Relative coupling strength variation.—We here inves-

tigate the cumulative information flow T from A and B to C
with different coupling strengths; the classical counterpart
is seen in Ref. [48]. We set the initial state of the sending
qubits A and B being maximally mixed while the receiving
qubits C pure: ρð0Þ ¼ IA ⊗ IB ⊗ j0ih0jC. So the sending
qubits are competing to propagate uncertainty toward the
target qubit. The Hamiltonian with one qubit frozen, say, A,
is obtained by erasing the terms involving qubit A in
Hamiltonian Eq. (8):

Hint;ABC ¼ ηBCðσþBσ−C þ σ−BσþCÞ þ IA: ð9Þ

The evolution of ρABC is defined similarly by removing
Hermitian terms relevant to qubits A and B altogether.
Therefore, ΔSABC vanishes, and the joint cumulative
information flow from AB to C is TAB→C ¼ ΔSC. Set
ηAC ¼ 1 and ηBC ¼ 3; at time t ∼ 0.49, the entropy of C
reaches its maxima of 1 bit for the first time. This is the
maximum uncertainty qubit C can receive, determined by
its dimension. For the purpose of illustration, we compare
the cumulative information flow from different sending
qubits before this capacity is reached. The early time
behavior of cumulative information flow TAB→CðtÞ,
TA→CðtÞ, and TB→CðtÞ is plotted in Fig. 1(a).
From Fig. 1(a), we notice that the cumulative informa-

tion flow from B to C is greater than that from A to C:
TB→C > TA→C. This formalism is consistent with the
intuition that the strongly coupled qubit has greater impact
on the target. The direct addition of cumulative information
flow from individual qubits A and B is smaller than the joint
value: TB→C þ TA→C < TAB→C in this example. It means
that turning off qubits A and B altogether has more impact
on qubit C than the direct addition of turning A and B off
one at a time. A similar result is obtained for the early time
behavior of a five-qubit spin chain (see Supplemental
Material [45]).
Initial configuration dependence.—Note that the infor-

mation flow formalism also depends on the initial configu-
ration. To see how different initial states affect the informa-
tion flow, set the coupling constant equal: ηAC ¼ ηBC ¼ 1,
with initial state ρ0ð1Þ¼IA⊗ð0.9j0ih0jþ0.1j1ih1jÞB⊗
j0ih0jC and ρ0ð2Þ¼IA⊗ð0.1j0ih0jþ0.9j1ih1jÞB⊗j0ih0jC.

In both cases, the initial entropy of qubit B is ∼0.47 bit,
while A is 1 bit. At first glance, one may be expecting that A
is transmitting more uncertainty to C than qubit B. From
Fig. 1(b), we see this is indeed the case for initial state ρ0ð1Þ.
But when the initial state is switched to ρ0ð2Þ, we have
TB→C > TA→C. This is because increasing the vonNeumann
entropy could result from not only classical uncertainty
propagation, but also from entanglement generation. The
qubit interaction given in Eq. (7) entangles state j10i (j01i),
while it does not act on state j00i (j11i):

ðσþσ−þσ−σþÞj00i¼ 0; ðσþσ−þσ−σþÞj10i¼ j01i:

For initial state ρ0ð2Þ, qubitsB andC have 90%probability in
the j10iBC state; the entanglingmechanism greatly increases
TB→C compared to ρ0ð1Þ, for which the probability is only
10%.Changing the initial state to ρ0ð2Þ also suppresses TA→C

due to the growing competition from B.
Quantum superexchange.—Add a constant magnetic

field along the z axis with strength B on the intermediate
qubit C so that its energy is lifted by an amount Bσz, while
qubits A and B remain unaffected. The total Hamiltonian
acting on the system then gains an additional term:

Hadditional ¼ IA ⊗ IB ⊗ BσzðCÞ: ð10Þ

Set coupling strength ηAC ¼ ηBC ¼ 1 and initial state
ρð0Þ ¼ IA ⊗ j0ih0jB ⊗ IC. We wish to compare informa-
tion flow from A and C to B with various magnetic field
strengths. Note that, when B ¼ 0, the dynamics of infor-
mation flow in the XY model [Eq. (7)], which is not a priori
obvious, can be pictured from Fig. 2(a). The cumulative
information flow is initially from C to B, and it reaches a
high value of 1 bit before it declines and is overtaken by the
cumulative information flow from A to B. As the magnetic
field strength increases, the superexchange process [49]
between A and B becomes progressively dominant. Thus,
we see that information flow from C to B goes down, while
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FIG. 1. Three-qubit spin chain. (a) From top to bottom
(measured in bits): TAB→C, TB→C þ TA→C, TB→C, and TA→C.
Coupling strength: ηAC ¼ 1, ηBC ¼ 3. Initial state: ρð0Þ ¼ IA ⊗
IB ⊗ j0ih0jC. (b) Blue curves, TA→C; orange curves, TB→C. Solid
curves, initial state ρ0ð1Þ¼IA⊗ð0.9j0ih0jþ0.1j1ih1jÞB⊗ j0ih0jC;
dashed curves, initial state ρ0ð2Þ ¼ IA ⊗ ð0.1j0ih0j þ 0.9j1i
h1jÞB ⊗ j0ih0jC. Coupling strength ηAC ¼ ηBC ¼ 1.
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that from A to B becomes that dictated by an effective
weaker superexchange coupling η2AC=B between A and B
ðσþAσ−B þ H:c:Þ [49].
Five-qubit network.—Consider a five-qubit spin system,

labeled A, B, C, D, E, with E in the center; we wish to
investigate the information flow toward E. The total
Hamiltonian for the five-qubit spin chain is

Hspin;tot ¼
X
i

Hspin;iE ð11Þ

with i ¼ A, B, C, D. Set all the coupling strengths with E
identical: ηDE ¼ ηCE ¼ ηBE ¼ ηAE ¼ 1, and initial state of
sending qubits A, B, C, and D maximally mixed, receiving
qubit E pure. At time t ∼ 0.69, the entropy of E reaches its
maximum of 1 bit for the first time. The cumulative
information flow from each sending qubit, which is
identical TA→E ¼ TB→E ¼ TC→E ¼ TD→E, is plotted for
the time interval t ∈ ½0; 0.69� in Fig. 3(a).
Now let us add mutual interaction between C andD with

a relative coupling strength ηCD ¼ 5 and observe how the
information flow toward the central qubit E changes (a
schematic diagram of the interaction pattern is shown in
Supplemental Material [45]). The total Hamiltonian is now
given by

X
i

Hspin;iE þHspin;CD: ð12Þ

With this additional interaction term, the cumulative
information flow from each sending qubit to E is plotted in
Fig. 3(b). Comparing Figs. 3(b) to 3(a), the additional
interaction term between C and D greatly reduces the
transmitted uncertainty from qubit C (D) to qubit E while

increasing that from qubit A (B) to qubit E. After time
t ∼ 0.49, TC→E reaches a negative value; that is, the
presence of qubit C (D) reduces the uncertainty of qubit
E. The uncertainty from qubit C (D) now has two routes to
propagate, toward either E or D (C). Also, the relative
coupling strength ηCD is 5 times stronger than ηCE and ηDE.
The strongly coupled route connecting C and D then
diverts the uncertainty propagation away from the original
path between C (D) and E, so that TC→E (TD→E) decrease.
Qubits A and B now have less competition from qubits C
andD to propagate uncertainty toward qubit E. Then, TA→E
(TB→E) increases. The presence of certain coupling can,
thus, be used to preserve information. Although beyond the
scope of this proof of principle work, we point out that this
methodology could be exploited to design robust quantum
circuits. Take variational quantum algorithms on noisy
intermediate-scale quantum computers, for instance [50].
The parameters of a quantum circuit are optimized to give a
minimum cost function. Ground state energy is typically
the choice of cost function in many cases (e.g., solving
quantum many-body systems). One can add to this the
average quantum Liang information flow, for instance,
from one node to another as a supplementary cost function.
In that case, the optimized circuit will be more robust
against single-node failure.
Application: Two-qubit system in bosonic bath.—Let A

and B indicate two noninteracting qubits with ground and
excited states j0i and j1i, embedded in a common zero-
temperature bosonic reservoir labeled C. We wish to
compare the information flow between the two qubits.
The Hamiltonian governing the mechanism is given by
HSB ¼ H0 þHint, with

H0 ¼ ω0σ
AþσA− þ ω0σ

BþσB− þ
X
k

ωkb
†
kbk;

Hint ¼ αAσ
Aþ
X
k

gkbk þ αBσ
Bþ
X
k

gkbk þ H:c:; ð13Þ

where σAðBÞ� and ω0 are the inversion operator and transition
frequency of qubit A (B), respectively. bk and b†k are the
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FIG. 2. Quantum superexchange (in bits). Blue curves, TA→B;
orange curves, TC→B. In (a)–(d), magnetic field strength is set to
B ¼ 0, 3, 5, 15, respectively. Coupling strength ηAC ¼ ηBC ¼ 1.
Initial state IA ⊗ j0ih0jB ⊗ IC.
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FIG. 3. Five-qubit network. Cumulative information flow (in
bits). (a) From any sending qubit toward E with identical
coupling strength: ηDE ¼ ηCE ¼ ηBE ¼ ηAE ¼ 1. (b) With addi-
tional coupling ηCD ¼ 5. Orange curve, A (or B) to E; blue curve,
C (or D) to E.
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annihilation and creation operator, respectively, of the
environment C. αAðBÞ measures the coupling between
each qubit and the reservoir. In the limit αB or αA goes
to 0, that is, when one of the qubit decouples from the
setup, then ρA and ρAB obeys the same equation of motion
and ρAðtÞ ¼ ρABðtÞ. Therefore, TB→A ¼ TA→B ¼ 0.
We adopt the lossy cavity model given in Ref. [51].

The two-qubit dynamics is solved exactly at zero
temperature. Take initial state ρABð0Þ ¼ jψ0ihψ0j, where
jψ0i ¼ ð1= ffiffiffi

3
p Þðj01i þ ffiffiffi

2
p j10iÞ. Set λ and ℏ equal to unity,

αA=αB ¼ 10=1, and take strong coupling limit R ¼ 10,
where λ defines the spectral width of the coupling and R
determines the collective coupling strength. The rate of
information flow with respect to scaled time t from B to A
versus that from A to B is plotted in Fig. 4(a). The
cumulative information flow is shown in Fig. 4(b). From
Fig. 4(a), we see that the rate of information flow from the
weakly coupled qubit (B) toward the strongly coupled qubit
(A) possesses a higher peak than that from A to B. On the
other hand, as shown in Fig. 4(b), the cumulative informa-
tion flow from A to B grows steadily and surpasses that
from B to A as the system approaches equilibrium. Note
that the information flow formalism is generically asym-
metric T→A ≠ TA→B, as opposed to most quantum corre-
lation measures.
Conclusions.—We have generalized Liang’s theory and

methodology for classical systems to quantify causality in
quantum networks. A unique feature of quantum networks
is the possibility of entanglement. Thus, there are two
ways to increase the entropy of a node: (i) classical
uncertainty propagation and (ii) growth of entanglement.
It is found that the information flow between two qubits
through a common bath could be nontrivial: The weakly
coupled qubit has a higher rate of information flow,
while, in the long run, the strongly coupled qubit has
more impact. Another nontrivial result obtained for a
five-qubit network reveals that an additional strong
coupling diverts the directions of uncertainty propagation.
The information-flow-based causal measure may have
applications in parallel with its classical counterparts
[1,16–20,22,23,52,53].
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