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Abstract— This paper assesses the use of a ground-based
wind measuring LiDAR (Light Detection and Ranging) for
remote sensing of incoming wind gusts at the landing site
of an autonomous quadrotor. The experimental verification
results show that the scalar measurements from the LiDAR
were able to recreate the horizontal wind vector even with
wind direction variation. Comparisons were conducted against
conventional cup anemometers with wind vanes, and these show
a good correlation. Upwind LiDAR measurements were used
to predict the downstream wind using a transport model. This
prediction compared with the downwind measurement shows
a good correlation. This wind preview information from the
LiDAR is then incorporated into a disturbance feedforward
control scheme to increase the gust resilience of the vehicle.
Simulation and experimental results demonstrate the system’s
efficacy.

I. INTRODUCTION

A challenging task in the outdoor autonomous operations

of quadrotors is to maintain baseline control performance in

the presence of wind/gusts. As a transient and unknown dis-

turbance input of the system, wind/gusts can cause significant

deviations in the quadrotor motion during its most vulnerable

stage in flight; its take-off and landing into a charging station.

Most research on quadrotor gust rejection control has mod-

elled wind as an external disturbance and used model-based

robust filters or observers to estimate the wind disturbance

[2], e.g. Active Disturbance Rejection Control (ADRC) [15],

[25], the Disturbance Observer (DOB) approach [5], [8]–

[11], and the Kalman filtering methods [1], [3], [7]. These

have mostly proved to be applicable but may suffer from

estimation phase delay and convergence error due to model

plant mismatch and the lack of systematic tuning methods.

The computation load raised by onboard wind estimation

is another limitation for smaller drones. Wind estimation

can also be achieved by using onboard wind measurement

devices [14], [24]. While these methods can measure the

wind at the exact location of the drone or provide the preview

wind information for control, the measurement values are

contaminated through the influence of the drone propellers

on the surrounding air. This could also induce some level of

unmodeled aerodynamic effects. Moreover, the added instru-

mentation also incurs a weight penalty. Some other methods
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Fig. 1. Autonomous quadrotor hovering above its ground/charging station

directly utilise the existing onboard sensor measurements

and the Wind Estimation Triangle to calculate the wind

vectors [6], [12], [13], but these methods are sensitive to

the measurements errors.

LiDAR (Light Detection and Ranging) is a form of

laser anemometry, which for wind measurement applica-

tions utilises the Doppler-shift in the frequency of back-

scattered light to measure wind speed. LiDAR’s remote

sensing capability has been used to detect wind disturbances

in the aerospace industry. For example, [23] used onboard

LiDARs mounted on the nose of a fixed-wing aircraft to

investigate the characterisation of wake vortices and improve

the gust load alleviation performance. In [24], two tethered

transceiver units (telescopes) of the LiDAR system mounted

on a multi-rotor UAV gives separate line-of-sight measure-

ments for wind vector reconstruction. Recently, [28], [29]

developed an H∞ inner-loop preview controller to aid the

autonomous landing of highly flexible aircraft. The LiDAR

was assumed to be mounted onboard and the simulation

results show the efficacy of the method.

Ideally, a wind preview system for gust rejection control

of autonomous quadrotors would be part of a ground-based

infrastructure such as the ground/charging station shown in

Fig. 1. Thus there would be no weight penalty. This paper

investigates this approach by using a ground-based LiDAR

system to remotely measure the incoming gusts at the landing

site and so improve the gust rejection capability of the

quadrotor. A line-of-sight (LOS) LiDAR unit is integrated

with the ground station. A motorised mount is devised for



the LiDAR unit to allow scanning and hence horizontal wind

reconstruction of the incoming gust. This scanning method

makes the estimation tolerant to wind direction changes

at the landing site. To verify the precision and accuracy

of the proposed scanning method, a pair of anemometers

are set up around the ground station. The wind preview

information, obtained from the LiDAR is then incorporated

into a disturbance feedforward controller for the quadro-

tor. This feedforward controller is designed based on an

aerodynamic trim analysis of the quadrotor at varying wind

speeds and it outputs attitude commands for the quadrotor’s

onboard attitude controller. In this system architecture, the

feedforward controller is implemented at the ground station

along with the LiDAR, and hence a modification of the

onboard inner-loop attitude controller or the addition of extra

hardware onto the vehicle is avoided.

The main contributions of this paper are the development

and experimental verification of a wind preview system

for a quadrotor using a miniaturised ground-based LiDAR

system. The methods ensure that the line-of-sight LiDAR

can capture both the amplitude and the direction of the

wind. The accuracy of the procedure is verified via a com-

parison of the LiDAR system with conventional wind-cup

anemometers and wind vanes. Flight tests were conducted to

verify the correlation between quadrotor motion and LiDAR

measurements. Finally, experimental data gathered from the

ground-based mini-LiDAR system was applied to a nonlinear

simulation model using aerodynamic coefficients obtained

from the Weybridge wind tunnel at Cranfield University.

These results demonstrate the efficacy of the gust rejection

control law for a quadrotor UAV.

The remaining sections are structured as follows, Section

II details the system architecture and introduces its various

components. Section III summarizes the methodologies used

for the wind preview estimation and gust rejection control.

Section IV details the experiments and discusses both the

nonlinear simulation and the experimental results. Finally,

Section V provides concluding remarks and future work to

be conducted.

II. THE SYSTEM ARCHITECTURE

The overall architecture of the gust rejection system for

a quadrotor UAV is shown in Fig. 2. To reduce the input

axis misalignment of the LiDAR’s LOS measurements, the

remote wind is estimated using a horizontal scanning proce-

dure. The wind predictor component in Figure 2 reconstructs

the wind vector from the LiDAR scanning and also utilises

a wind propagation model to predict the wind at the current

position of the quadrotor. The position of the quadrotor

within the landing site is acquired using a vision based

positioning system involving fiducial markers placed around

the landing pad and the ArUco library developed for the

camera-based navigation [22]. Note that in Fig. 2, the outer-

loop control law combines the feedforward and the baseline

guidance control outputs. These outputs are then used as the

commands for the on-board attitude controller which then has

the capability to compensate for the incoming wind. Here
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Fig. 2. Overall system architecture
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all the system components except for the onboard attitude

controller are ground-based and are integrated with the

ground station. The details of the wind measuring LiDAR,

the horizontal scanning procedure, and the flight validation

platform are described in the subsequent sections.

A. Wind Measuring Mini-LiDAR

The miniaturised LiDAR unit used in this research is a

continuous wave (CW) coherent wind LiDAR system that

utilises the infra-red band for measurement. The size of this

prototype unit is 35cm × 25cm × 12cm and its weight is less

than 5kg. It is a class 3b laser capable of measuring wind

speed at a high sample rate with a measurable range that

well exceeds the flight envelope of most multi-rotor UAVs.

Detailed specification of the LiDAR unit is omitted here due

to commercial sensitivity.

The LOS nature of the LiDAR measurements introduces

the possibility of misalignment between the LiDAR beam

direction and the actual wind direction [17], [27], [27]. A

common solution to which is to use a scanning procedure

to reconstruct the wind vector [17]. To carry out the LiDAR

scanning in the landing site, a mechanised mount was used.

The mount uses servo motors to pan and tilt the entire

LiDAR unit. Since the quadrotor is in close proximity with

the ground during its take-off and landing stage, it is as-

sumed that the vertical component of the wind is negligible.

Consequently, only the horizontal components of the wind

require reconstruction for gust rejection; this greatly reduces

the complexity of the scanning procedure which is further

discussed in Section III-B.

To verify the precision and accuracy of the mini-LiDAR

unit, standard off-the-shelf wind-cup anemometers with a

wind vane (see Fig. 3) were used to determine the wind

speed. The anemometers were calibrated in the open-circuit



• LiDAR motorised mount with pan and tilt capability

• Two identical DYNAMIXEL MX-64AT motors used for each 

axis rotation

• Pan/yaw range of 0 to 360 degrees

• Tilt range 0 to +45 degrees

• Scan rate constrained to 60 deg/s for pan due to mechanical 

limitations of mount.

• Calibrated wind speed range 3m/s to 15m/s

• No active electronics, uses magnets and magnetic reed 

switches to encode windspeed.

• Raw data output rate varies, higher wind speed results in 

more switch closes, averaged to a 10Hz output.

• Wind vane with 16 measurable positions, i.e. resolution of 

22.5 degrees. 

Hardware Description

Fig. 4. Key hardware components of the wind sensing system.

Weybridge wind tunnel at Cranfield University for a wind-

speed range of 3 to 15 ms-1. More details on the key hardware

components that make up the wind sensing system are shown

in Fig. 4.

B. Quadrotor Flight-test Platform

An autonomous quadrotor platform was integrated with

the wind sensing system to experimentally assess the gust

rejection control. Flight tests were conducted with the

quadrotor set to hover and hold a position above the ground

station while the LiDAR and anemometers were measuring

the wind around the test site. Fig. 5 shows the overall system

architecture of the flight validation platform.

A DJI Mavic 2 quadrotor was used for the tests. The

aircraft weighs approximately 900g with a maximum rated

wind speed resistance of approximately 24 mph. The on-

board sensor suite includes a vision-based system for ob-

stacle avoidance and translation velocity estimation, GPS

+ GLONASS for positioning, a downward-facing ultrasonic

sensor along with a barometer for height estimation, and dual

IMUs and magnetometer for velocity and attitude estimation.

The DJI Android software developer kit (SDK) was used to

access the onboard sensor data and to send control commands

to the onboard flight computer. The quadrotor position w.r.t.

the ground station is acquired using the ArUco positioning

system [22]. Its visual markers are placed on the landing pad

inside the ground station. The main onboard camera feed is

used for marker detection and localisation. This positioning

node along with the DJI SDK flight controller was deployed

as an Android application onto the DJI’s smart controller as

shown in Fig. 5.

The guidance controller outputs the attitude commands

and is housed in the ground station computer. The attitude

command outputs are the summation of the feedback con-

troller and the disturbance feedforward controller. It should

be noted here that only the outer-loop control of the quadro-

tor was taken off-board and housed in the ground station, the

inner-loop onboard controller was not modified.

The guidance controller with disturbance feedforward

control was developed in Simulink and deployed onto the

hardware using Simulink’s embedded coder. The ground

station computer also houses the wind predictor subsystem

which uses the upwind LOS measurements from the LiDAR

to reconstruct the horizontal wind vector and utilises the
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Fig. 5. Quadrotor flight-test platform architecture. Orange arrows indicate
radio based communication, blue for serial connection, and green indicates
communication through ROS.

• DJI Mavic 2 Enterprise Dual.

• Take-off weight 899 g and diagonal length 354 mm

• Max wind resistance speed of 24 mph

• Integrated on-board visual and thermal camera 

• DJI on-board flight computer with dual IMUs, magnetometer, 

ultrasonic, omnidirectional vision based obstacle sensing, and GPS + 

GLONASS. 

• Operating frequency 2.400 - 2.4835, 5.725 - 5.850 GHz

• DJI smart controller with Wi-Fi for android application deployment

• DJI sdk flight control programming for external source for outer-loop 

control of drone.

• Processes camera-feed for ArUco marker detection and localisation

• ROS node for receiving guidance control commands and sending DJI 

sensor and positioning data 

• Raspberry Pi 3+, quad Core 1.2GHz Broadcom BCM2837 64bit CPU, 1 

GB RAM

• Hosts the guidance controller with disturbance feedforward control

• Hosts the wind predictor algorithm

• ROS master node and hosts the ROS nodes for guidance controller and 

the wind sensors.

Hardware Description

Fig. 6. key hardware components of the quadrotor flight-test platform

wind propagation model (detailed in section III-A) to pro-

vide a wind preview signal for the feedforward controller.

Robot Operating System (ROS) www.ros.org is used as

the communication protocol between the guidance controller,

the smart RC, and the wind predictor nodes. The guidance

controller outputs from the ground station are first sent to

the smart RC application after which they are sent to the

onboard flight controller through the radio link between the

vehicle and the RC. The key hardware components used in

the test platform apart from wind sensors are detailed in Fig.

6.

III. METHODOLOGIES

The wind propagation/prediction, LiDAR scanning, and

gust rejection control methodologies are discussed in this

section.

A. Wind Propagation Model

This subsection describes the transport model used to

capture the wind propagation from the upstream to the



Fig. 7. LiDAR horizontal scan of the incoming wind plane

downstream location. The schematic is shown in Fig. 7. The

transport model is defined as

w′

d(t) = wu(t− τ) (1)

where w′

d(t) represents the predicted downstream windspeed,

wu(t) denotes the upstream wind measurement and τ is

the wind transport delay between the upstream and the

downstream wind planes given by

τ =
Dcos(MA(β))

MA(wu)
(2)

where β denotes the wind direction in the reference frame

of the LiDAR, MA(·) represents the moving average of

the measurements, and the parameter D denotes the known

distance between the upstream and downstream measurement

points.

B. Lidar Scanning Procedure

The scanning procedure used to reconstruct the wind speed

vector is outlined in this subsection. Because the vertical

component of the wind vector is negligible during the take-

off/landing process, only a horizontal wind vector needs

to be reconstructed. Fig. 7 shows the schematic of the

horizontal LiDAR scanning using two LOS measurements.

The LiDAR measures the wind vectors at two different

incidences, ζ1 and ζ2, in the anti-clockwise and clockwise

directions respectively.

From Fig. 7, the wind direction is expressed as:

β = tan−1

(

V2 cos ζ1 − V1 cos ζ2
V2 sin ζ1 + V1 sin ζ2

)

(3)

where V1 and V2 are the two LOS measurements from the

LiDAR during each scan cycle.

Let |ζ1| = |ζ2| = ζ, then (3) is equivalent to

β = tan−1

((

V2 − V1

V2 + V1

)

cot ζ

)

(4)

Suppose β is obtained from (4), then the magnitude of the

upstream horizontal wind vector is calculated as

|wu| =
V1

cos(β + ζ1)
=

V2

cos(ζ2 − β)
(5)

The upwind wind vector measurement in the LiDAR beam’s

reference frame is then obtained as:

[wu]l =
[

|wu| cosβ |wu| sinβ
]

(6)

Once are the wind direction and the upwind horizontal wind

vector obtained from (4) and (5), the downstream prediction

in the LiDAR’s reference frame, [w′

d]l, can be obtained using

(1) and (2).

C. Disturbance Feedforward Control

This section discusses the proposed feedforward controller

shown in Fig. 2. Once a prediction of the downstream wind

is obtained, a suitable control input needs to be calculated

to counter the disturbance on the quadrotor. The proposed

approach is to determine the trim state attitude of the aircraft

for the corresponding wind disturbance. The trim attitudes

for a set of wind speeds are pre-computed and deployed as a

look-up table in the feedforward controller. This reduces the

real-time computational requirements. Of course, this comes

with the assumption that the disturbance is steady-state when

in reality it is time-varying. The approach, although sub-

optimal, serves as a good starting point about which a

derivative component can be heuristically tuned to counter

the transient effects of the wind disturbance.

Before determining the necessary attitude commands, the

predicted downstream wind vector is rotated into the quadro-

tor body axes by:

[w′

d]b =

[

cosψl sinψl

− sinψl cosψl

]

[w′

d]l (7)

where the yaw orientation of the quadrotor in the LiDAR’s

reference frame, ψl, is obtained from measurements from

the LiDAR and vehicle magnetometers. Once the predicted

wind disturbance is obtained in the body axis of the drone,

the feedforward attitude commands, θf and φf , are computed

as follows:

θf = Kpθ̂ +Kd

d([w′

d]bx)

dt

φf = Kpφ̂+Kd

d([w′

d]by)

dt

(8)

where Kp and Kd denote the proportional and derivative

gains of the feedforward controller. These were determined

heuristically through simulations of a quadrotor model that

accounts for the aerodynamics of the propellers in the

presence of wind [21]. Here θ̂ and φ̂ denote the trim state

pitch and roll angles of the quadrotor for the specified wind

speed in its respective axes. The trim states are referenced

as a precomputed look-up-table (LUT) obtained through an

aerodynamic trim analysis of the quadrotor model in varying

wind speeds:
[

θ̂ φ̂
]

= LUT([w′

d]b) (9)
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The feedforward controller outputs are then cascaded with

a conventional PID-based feedback controller that provides

stability and robustness.

IV. RESULTS

In this section, the accuracy of the LiDAR, its scanning

procedure, and the wind prediction methodology are verified

using the upstream and downstream anemometers. Results of

flight tests conducted using the quadrotor flight-test platform

and the LiDAR are discussed. Finally, non-linear simulations

conducted with the data from the LiDAR are presented.

A. LiDAR Accuracy Verification

The accuracy of LiDAR’s LOS wind measurements is

verified using the upstream anemometer. The experimental

setup is shown in Fig. 8 where two anemometers are mounted

on tripods 2m high and placed 10m apart along the approx-

imate wind direction. As shown in Fig. 8, the LiDAR was

placed next to the downwind anemometer. The mount for

the LiDAR is inclined upwards to measure the wind speed

next to the upstream anemometer. Notice that the location

of the laser focus with respect to the LiDAR resolved in the

inertial frame is perpendicular to the upwind anemometer

wind plane.

The verification results are shown in Figs. 9 and 10.

Fig. 9(a) compares the LiDAR wind measurements with the

upstream anemometer. The LiDAR measurements bandwidth

is higher, this implies that LiDAR has a better ability to

capture gusts.

The cross-correlation analysis in Fig. 9(b) shows a max-

imum correlation of 0.9907 which is reached when the

LiDAR measurement is back-shifted by 0.52sec, i.e. the

LiDAR leads the upstream anemometer measurements by

half a second. This is due to the inertia of the wind-cup

anemometer. Because the LiDAR measurements are LOS

and no scanning is employed in this test, the misalignment

between the wind direction and the LiDAR’s beam axis

reduces the LiDAR’s measurement accuracy.

Fig. 10(a) shows moving averages of the wind vane

measurements about the LiDAR beam’s axial direction (blue

curve) along with the difference between the LiDAR and

the upwind anemometer measurements (red curve). The

peaks of the red curve are correlated to those of the blue

curve signifying that the LiDAR LOS measurements can be

corrected by considering the wind direction variation. The

cosine of the wind vane measurements was used to correct

the LiDAR LOS measurements, the results of which are

shown in Fig. 10(b) along with the upstream anemometer

measurements. Notice that in Fig. 10(b), the raw data from

the LiDAR were processed using a window size of 1 minute.

B. Scanning Procedure Verification

During the tests, the LiDAR mount scanned horizontally in

the general direction of the wind, i.e. according to the generic

wind direction observed for the day of the test. This allows

the sampling of multiple LOS measurements at different

angles against the wind thus enabling the estimation of wind

direction in the horizontal plane.

Fig. 11(a) shows the results of the estimation routine

compared with the wind vane measurements. It can be seen

that the wind direction estimated from the scan agrees well

with the wind vane measurements but lags behind them

slightly. This is primarily due to the time period of the scan

itself, which was limited to 3 seconds because of mechanical

constraints of the mount. The wind direction estimated from

the scan process can be used to correct/reconstruct the

horizontal wind vector. Fig. 11(b) compares the upwind

anemometer measurements with the LOS measurements cor-

rected using the wind direction estimates from the scan and

those corrected using the wind vane measurements. Clearly,

the LOS measurements corrected by the scanning routine are

capable of tracking those corrected by the wind vane for the

majority of the test duration.

C. Wind Propagation Model Verification

To verify the accuracy of the wind propagation model,

both the upwind anemometer and LiDAR measurements

were used to predict the wind speed at the downstream

location according to (1). A comparison is shown in Fig.

12(a). Note that the horizontal wind vector reconstructed

from the LiDAR measurements was used for the prediction.

Both the upwind anemometer and LiDAR with wind vector

reconstruction are capable of predicting the wind speed at

the downwind location using the wind propagation model de-

tailed in section III-A. Fig. 12(b) shows the cross-correlation

analysis of both predictions against the downstream measure-

ment. Both predictions are highly correlated; the LiDAR-

based prediction leads the downwind measurement by ap-

proximately 0.5 s again due to the inertia of the anemometer.

Fig. 12(a) also shows the ability of the wind prediction to

track the relatively small changes in wind speed magnitude

at the downwind location very accurately. The main error

between the predictions and the downwind measurement

is the difference in magnitudes at the peaks and valleys

of the wind speed variation. The temporal accuracy of the
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predictions is further verified in Fig. 13. Here the time delay

from a moving window cross correlation analysis between

the actual upwind LiDAR and downwind measurement is

plotted against the transport delay calculated during the run-

time of the wind propagation model. It should be noted

here that the red curve in Fig. 13 is obtained using just

the upwind measurements and the wind propagation model

while the blue curve is generated by comparing both up-

wind and downwind measurements. The correlation between

both signifies the ability of the wind propagation model

to accurately estimate the transport delay between both

measurement locations using just the upwind measurements.

D. Quadrotor Flight-test with LiDAR

The purpose of this flight test was an initial assessment of

the position response of the quadrotor in wind and to observe

correlations with the anemometer measurements and LiDAR

preview; the feedforward controller was not implemented

in the flight test. The main components of the flight test

system are shown in Fig. 5. The DJI Mavic 2 was set to

hover and hold position above the ground station. A guidance

controller using the visual ArUco markers for positioning

was implemented in the ground station electronics. The

downwind anemometer and LiDAR was set up next to the

ground station to measure both the wind next to the quadrotor

and the incoming wind respectively. Fig. 14 shows the

quadrotor forward and lateral position tracking errors (blue

curve) along with the anemometer and LiDAR measurements

resolved to the corresponding axes (red curves). Clearly, the

peaks in position tracking errors correspond to the transient

regions (gusts) of the wind speed measurement. This is

expected as the feedback controller drives the errors to zero

when transients have died down.

Fig. 15 plots the wind acceleration obtained through

numerical differentiation of the anemometer measurements

and LiDAR preview data against a moving average of the

quadrotor position error. Here a clear correlation is observed

between the wind acceleration peaks and the position error

with the wind acceleration signals having a slight lead. More-

over, the correlation becomes even more apparent and synced

in time when the LiDAR’s preview acceleration is passed

through a low-pass Butterworth filter. This demonstrates the

suitability of the wind acceleration to be used as a contributor

in the disturbance rejection controller, realised through the

feedforward controller derivative term detailed in Sec. III-C.

E. Quadrotor Gust Simulations

Gust simulations were conducted using a nonlinear

quadrotor model containing detailed aerodynamic coeffi-

cients obtained from experiments conducted at the Wey-

bridge wind tunnel in Cranfield University [20], [21]. Down-

wind anemometer time-series data recorded from the field

tests was used as the wind disturbance signal sent into

the quadrotor model while the LiDAR measurements were

corrected using the scan procedure and used in conjunction

with the wind propagation model to provide the wind pre-

view signal for the feedforward controller. A snippet of the

simulation result is shown in Fig. 16(d). The yellow curve is
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Fig. 15. (a) forward position response compared against wind acceleration obtained from downwind anemometer and LiDAR preview resolved to
corresponding axis; (b) uses a low pass filter for the LiDAR’s wind acceleration data

the wind predictor output which reconstructs the horizontal

wind from the LOS measurements of the LiDAR (red curve)

and passes it through the wind propagation model to predict

the downstream wind speed. The blue curve denotes the

actual measurement in the downstream location that is used

as the disturbance input into the quadrotor model. Notice

how the correction of the LOS measurements allows the wind

preview to better capture the magnitude of the wind speed at

the downstream location while the wind propagation model

corrects for the time lead.

To assess the benefits of the proposed control law, two

simulation scenarios were run. The first included the dis-

turbance feedforward controller and the second had just the

feedback controller. In both scenarios, the set-point for the

quadrotor’s position was a constant location and altitude.

The high-frequency component of the upwind measurements

was removed through a suitable Butterworth filter. Figures

16(a) and 16(b) compare the longitudinal and lateral tracking

errors respectively. The altitude errors were similar for both

scenarios since the feedforward controller only compensates

for the horizontal wind disturbances. The improvement in

position holding performance of the quadrotor with feed-

forward control is more clearly shown in Fig. 16(c), where

histograms of the longitudinal position tracking errors are

shown. The lateral errors are omitted here for brevity due

to their similarity with the longitudinal. These show that

both the mean and the standard deviation are significantly

improved, which implies that the accuracy and the precision

of the position holding are improved with the wind preview

from the LiDAR. Detailed values of the RMS and the

standard deviation of the position tracking errors are listed

in Table I.

The robustness of the feedforward controller was tested

through Monte Carlo simulations involving various amounts

of parameter uncertainties and transport delays acting inside

the feedforward channel. The root-mean-square (RMS) of

the horizontal position error is chosen as the performance

metric. Multiplicative parameter uncertainty was introduced
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Fig. 16. (a) Errors in forward and (b) lateral position of the UAV (c) Histograms of the forward position tracking error with and without disturbance
feedforward control (d) Wind signals used in simulation, downwind measurement (blue), the LiDAR’s measurement (red) and its preview (yellow) for the
feedforward controller.

TABLE I

POSITION HOLDING PERFORMANCE WITH AND WITHOUT DISTURBANCE

FEEDFORWARD CONTROL

RMS error reduction error σ reduction

Baseline No FF 0.6980m - 0.71 -

Anemometer FF 0.3964m 43.20% 0.4 43.70%

LiDAR FF 0.3742m 46.40% 0.38 46.50%

in the trim state attitudes used by the feedforward controller

(detailed in Sec. III-C), the results of which are shown in

Table II. Table III shows the results for the simulations with

time delay introduced into the wind preview signal. The

performance comparison in both these tables is against the

baseline scenario without the feedforward control. It is clear

that the gust rejection control law still improves the position

tracking performance despite having parameter uncertainty

in the trim state attitudes up to ≈ 90% or a time delay of up

to ≈ 2s in the wind prediction.

V. CONCLUSION

Experiments were conducted to assess the feasibility of

a ground-based LiDAR gust rejection control system for

TABLE II

PERFORMANCE COMPARISON WITH MULTIPLICATIVE UNCERTAINTY IN

FEEDFORWARD CHANNEL

Uncertainty (%) RMS error (m) Performance. diff. (%)

10 0.14 +86.6

20 0.25 +76.97

30 0.29 +73.26

40 0.46 +57.90

50 0.51 +53.07

60 0.70 +35.41

70 0.75 +30.20

80 0.98 +9.34

90 0.93 +13.94

100 1.30 -20.15

110 1.36 -25.54

120 1.38 -27.42

quadrotor UAVs. The accuracy of the LiDAR wind speed

measurements and the wind propagation model were verified

using conventional wind-cup anemometers. Experimental re-

sults show that the LiDAR can measure transient and gusting

of the wind more precisely than conventional anemometers.

A horizontal wind scanning procedure is proposed to reduce



TABLE III

PERFORMANCE COMPARISON WITH TIME DELAY INTRODUCED IN

FEEDFORWARD CHANNEL

Time delay (s) RMS error (m) Performance. diff. (%)

0 0.12 +89.34

0.2 0.20 +81.42

0.4 0.27 +75.34

0.7 0.38 +64.46

0.9 0.48 +55.90

1 0.54 +50.10

1.2 0.74 +31.41

1.4 0.89 +17.67

1.8 0.95 +12.23

1.9 0.95 +12.07

2.2 1.25 -15.78

the effect of the axis-misalignment in the LiDAR’s LOS

measurements. Flight tests with the LiDAR system show

a good correlation of the position response of the UAV

with the LiDAR measurements. Finally, gust simulations

of the UAV with experimental windspeed data demonstrate

the potential efficacy of the proposed system. Comparisons

against existing gust rejection methods and the flight-test of

the feedforward controller remain to be performed; following

which, investigations on utilizing this method for other UAV

applications such as landings on fast-moving ground vehicles

and sea vessels should be conducted.
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[24] N. Vasiljević, M. Harris, A.T. Pedersen, G.R. Thorsen, M. Pitter, J.
Harris, K. Bajpai and M. Courtney, “Wind sensing with drone-mounted
wind lidars: proof of concept,” Atmospheric Measurement Techniques,
vol. 13, pp. 521–536, 2020.

[25] J. Han, “From PID to active disturbance rejection control,” IEEE

Transactions on Industrial Electronics, vol. 56, pp. 900–906, 2009.
[26] X. Lyu, J. Zhou, H. Gu, Z. Li, S. Shen and F. Zhang, “Disturbance

observer based hovering control of quadrotor tail-sitter VTOL UAVs
Using H∞ synthesis,” IEEE Robotics and Automation Letters, vol. 3,
pp. 2910–2917, 2018.

[27] P. Towers, P and B. Jones, “Real-time wind field reconstruction
from LiDAR measurements using a dynamic wind model and state
estimation,” Wind Energy, vol. 19, pp. 133–150, 2016.

[28] Qi, P and Zhao, X and Palacios, R, “Autonomous landing control of
highly flexible aircraft based on lidar preview in the presence of wind
turbulence,” IEEE Transactions on Aerospace and Electronic Systems,
vol. 55, pp. 2543–2555, 2019.

[29] H. Fournier, P. Massioni, M. Tu Pham, L. Bako, R. Vernay, and M.
Colombo, “Robust gust load alleviation of flexible aircraft equipped
with Lidar,” Journal of Guidance, Control, and Dynamics, vol. 45, pp.
58-72, 2022.


