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Abstract

Accounting for linkage disequilibrium between neighbouring genetic markers has been shown to
enhance power to detect fine-scale genetic population structure, particularly when considering
recent shared ancestry. In particular, ChromoPainter has been shown to be a successful
method at identifying shared haplotypes between samples. It has also been used widely on
ancient DNA samples. However, sequencing coverage is a potentially confounding factor,
and it is possible that analysing low-coverage samples may provide biased results. Whilst
a small number of studies have tested the utility of using ChromoPainter on ancient DNA,
none have tested a range of samples across different coverages, at all steps of the analysis
pipeline. In this work, I assess the impact of coverage on each step of the ChromoPainter
analysis pipeline. I show that bias can exist when exploring population structure using
low-coverage samples, and investigate a series of modifications and strategies to reduce the
extent of this bias. I also address a related challenge of analysing haplotype information
in sparsely genotyped data in present-day individuals; for example, when analysing only
variants that overlap multiple genotyping arrays. Using these findings, I infer fine-scale
African ancestry in U.K. Biobank participants using a new reference panel of data from 349
African ethno-linguistic groups, demonstrating how imputation of sparsely genotyped samples
can substantially harm the estimation of sub-continental ancestry. Furthermore, I analyse
a novel ancient DNA dataset from Bavaria in order to determine the extent of continuity
between the Late Neolithic and Iron Ages, as well as the age of east-west structure in Europe.
I also analyse novel ancient DNA samples from Slavic-speaking regions, exploring the genetic
relationship between samples from the Migration Era to the Early Middle Ages, and the
signatures of these ancient populations in present-day Slavic speaking populations. Finally,
I summarise my findings and recommend approaches for future work on haplotype-based

studies using low-coverage or sparsely genotyped data.
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0.1 Impact statement

I intend that the work presented in this thesis will provide a foundation for other researchers
who apply haplotype-based methods for the analysis of low coverage ancient DNA and
sparsely genotyped. Specifically, the benchmarks I provide in Chapter 2 can be followed by
scientists in order to perform reliable ancient DNA analyses. This is important, as many
studies are now using the aforementioned techniques. I also hope that others will take over
up work into adapting ChromoPainter for ancient DNA and make further improvements to
the algorithm.Similarly, other researchers can use my results to make decisions on whether
to retain a smaller number of SNPs, or impute missing ones, when merging datasets across

multiple genotyping arrays. Given previous research has outlined the utility of accounting
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for haplotypes when accounting for population stratification in GWAS, my findings may be

useful looking forward when such approaches become more common.

My empirical work on ancient DNA in chapters 4 and 5 should a grounding for future
work, much like the work I referenced in those sections aided me in understanding the
historical and genetic context of the current research. For example, future studies may use

these results to inform how they sample new ancient DNA samples.

Outside of academia, I believe there is a fundamental benefit to learning about our history
as a species, something which the study of ancient DNA has provided tools for in the past
decade. Ancient DNA analysis remains a field with popular reach, so I hope my work will go

a small way towards providing the public with interesting and scientifically valid findings.

I believe that exploring the ancestry of ethnic minorities within the U.K. Biobank can be
of value to those individuals communities, particularly when they have been excluded from
many similar kinds of analyses. Lastly, my work should also play a part in the inclusion of a

more diverse array of ethnicities in association studies.
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Chapter 1

Introduction

1.1 Chromopainter and ancient DNA

In this introduction I will discuss the following points: i) What are ‘haplotype-based’ methods
and what advantages and disadvantages do they offer over ‘unlinked’ methods, ii) a summary
of different methods used to analyse ancient DNA and iii) the need to merge datasets

genotyped on different arrays.

1.1.1 Gains to be made with haplotype information

1.1.1.1 History

Haplotype-based methods are statistical approaches in genetic analysis which explicitly model
linkage disequilibrium (LD), or the correlation in frequency, between neighbouring genetic
markers along a haplotype '. This is in contrast to ‘unlinked’ methods, which assume a model
of linkage equilibrium between SNPs. A ‘haplotype’ is a contiguous sequence of alleles which
are located on the same chromosome. In this thesis, I will concentrate on haplotype-based
methods in the context of identifying shared haplotypes between individuals in order to

understand the genetic structure and history of a population(s).

Linkage disequilibrium (LD) is the key concept underpinning haplotype-based approaches.
It has been studied since the earliest days of genetics [2,3] and has since been a fundamental
aspect of virtually all areas of genetics [4]. The primary advantage of accounting for LD in
a model is that information about the frequency of an allele in a population also provides

information about the frequency of neighbouring alleles within the same population.

INote that other methods, for example octopus [1] are referred to as ‘haplotype-based’ genotype callers,
but they represent a distinct group of methods to e.g. ChromoPainter.
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Some of the earliest uses of LD information for the study of genetic structure came
from microsatellite markers, whose linked tandem repeats can be thought of as analogous
to linked alleles on a haplotype. Microsatellites were, and still are, commonly applied to
study the population structure of wild animal systems; for instance, Amos et al (1993)
used microsatellites markers to examine the population structure of whales [5]. Later,
microsatellites at the CD4 locus were leveraged to show the preferred model of Human
population history was a recent African origin [6]. This was deduced as Sub-Saharan Africans
had substantially more variability in haplotype frequency and a higher diversity of STRP
alleles associated with the Alu deletion than non-Africans, strongly suggesting Africa was
the common origin of these haplotypes. This study outlined the insights into population

history that can be obtained from the analysis of a very small number of linked markers.

The next major advance was the development of methods to use LD information between
SNP markers rather than within microsatellites, as SNPs are substantially more numerous
across the human genome. Studies in the early 2000s utilised the then-new Hap-Map results [7]
to show LD varies across the human genome [8] and between worldwide populations [9,10],
and that such variation can be used to make inferences about human populations history [11].
Using 3,024 autosomal SNPs, Conrad et al (2006) calculated the proportion of unique
haplotypes that were shared between two geographic regions, and by showing that the
number of distinct haplotypes per region declines from Africa, provided additional evidence
to support the previously proposed recent African origin of humanity [12]. It was also shown
that isolated Native American populations had approximately 3 times fewer haplotypes per
genomic region, indicating that recent endogamy plays a large role in shaping patterns of

haplotype variation.

The 2000s also saw a rapid increase in the number of SNP markers and individuals which
had been sequenced. Accounting for LD and recombination within a model is necessarily
computationally complex and the number of combinations of alleles and their possible
evolutionary histories balloons as the number of loci increases. Therefore, the new era
of sequencing demanded new and more efficient methods to cope with such data. The
development of the Li and Stephens copying model (LSM) [13] was instrumental in the
development of such methods [14] and provided an elegant solution to the increased complexity
when modelling recombination between linked loci. As such, it has since played a part in
virtually all areas of genomic methodology; for example, the LSM was, and still is, the
foundation for methods of the haplotype phasing methods needed for haplotype-based
methods [15,16]. LSM provides a way to generate a ‘target’ haploid ? conditional upon a set

of other observed haploids, specifically by modelling it as a ‘mosaic’ of the other sampled

2A ‘haploid’ can be defined as a single phased haplotype per chromosome
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haploids using a Hidden Markov Model. The conditional probability that the target haploid
‘copies’ from a particular reference haplotype is obtained by observing whether the alleles at
the same position match between the target and reference haplotypes. The mosaic nature
of the target haplotype reflects how historical recombination alters the genealogy relating
sampled haplotypes along a genetic sequence, which in this model causes so-called ‘switches’
in which reference haplotype it copies from. In general, if a target haploid matches a DNA
segment to a particular reference haploid for a genomic region, the target is inferred to share
a most recent ancestor with that reference haploid, relative to all other reference haploids,

for that genomic region.

The first paper to use the LSM model explicitly to study human population history was
that of Hellenthal et al 2008 [17]. The original LSM was developed to infer recombination
rates. It did so by randomly ordering a set of phased haploids, presumed to be sampled from
a genetically homogeneous population, and then taking each haploid in turn and forming
it as a mosaic of the haploids earlier in the random ordering. They then multiplied the
resulting probabilities of generating each haploid, using this so-called “product of approximate-
conditional” (PAC) likelihoods as a basis to infer the recombination rate. Hellenthal et al
2008 instead used the mosaic approach to calculate the probability of forming a set of haploids
from one population as a mosaic of those from another population(s), using these probabilities
to infer the relative order in which populations were formed. While their approach had some
flaws, such as not explicitly accounting for admixture, it provided some insights into the power
of LSM-based approaches to infer features of human history, using only a modest number
of SNPs (n=2,560). For example, similar to the results of Conrad et al (2006), Hellenthal
et al’s analysis of the structure of global haplotype sharing provided strong evidence of a
recent African origin of modern humans. In the same year, Jakobsson et al (2008) analysed
a much larger number of SNPs (n=525,910) and 29 worldwide populations [18] to show that
haplotype clusters show an elevated ability to determine local structure compared to unlinked
SNPs alone; 51% of haplotype clusters were found in at most two regions, in contrast with

4% of SNP alleles.

Building on the copying model proposed by Hellenthal et al (2008), Lawson et al (2015) [19]
created ChromoPainter, again based the LSM. ChromoPainter is a more general model than
that of Hellenthal 2008; whereas the Hellenthal 2008 model was explicitly formulated to
determine the ordering of human colonisation, ChromoPainter efficiently forms a set of
target haplotypes as a mosaic of a set of reference haplotypes. In particular, it generates a
‘coancestry matrix’, which gives information on the level of recent shared ancestry between
each donor and recipient individual. ChromoPainter also allowed for the user to input

recombination rate maps containing estimated recombination rates between neighbouring
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SNPs. Analysis of simulated data showed it to have an enhanced ability to separate closely
related populations when plotted on a PCA compared to unlinked methods. It was developed
in tandem with its own clustering method fineSSTRUCTURE, and has since been extended

into methods to detect and date admixture [20], and infer ancestry proportions [20,21].

The ‘next-generation’ of chromosome painting methods had to confront the same issue
that Li and Stephens did, which was how to adapt methodology to larger and larger sample
sizes. ChromoPainter was designed with datasets of <10,000 people in mind, whereas
biobank-scale datasets typically contain 500,000+ individuals. As such, ChromoPainter does

not scale well to large datasets, especially when there are a large number of donor haplotypes.

One approach is to use the Burrows-Wheeler transform (PBWT) [22,23] to efficiently find
matching haplotypes in large datasets. The insight to apply the PBWT to genetic data has
been one of the most crucial insights into computation biology, as it allows for substantial
increases in efficiency across a wide range of applications such as sequence alignment [24],
phasing [25] and data compression [26]. PBWT has been applied to Chromosome Painting on
Biobank-scale datasets in several recent papers [27,28]. Similarly, methods to detect IBD in
Biobank-scale cohorts have leveraged the PBWT [29,30]. However, PBWT-based approaches
are still relatively immature; for example, they do not allow for the use of a reference panel
and all haplotypes must be compared to all other haplotypes in an ‘all-v-all’ manner (further
explanation given in Appendix section B.1). Despite their current limitations, it seems that
the future of Chromosome Painting will at least in part be based on the PBWT or similar
approaches that increase computational efficiency, even if at slight losses in accuracy. Byrne
et al used ChromoPainter and PBWT-paint to a subset of Dutch individuals and found
eigenvectors of the coancestry matrix to be almost identical (72 = 0.99) and the correlation

between raw coancestry matrices to be lower at (r? = 0.82).

1.1.1.2 Advantages of accounting for haplotypes

ChromoPainter can be run in either ‘linked’ or ‘unlinked’ mode. In the linked mode, described
in detail in sections 2.2.1, LD between neighbouring SNPs is accounted for. Unlinked mode
assumes a model of linkage equilibrium between markers and has been shown to be statistically

identical to the likelihood model underlying the commonly used ADMIXTURE algorithm [19)].

A typical case study, and one which I will return to in later chapters, was a study
investigating population structure among individuals from the British Isles [31]. This study,
hereafter referred to as POBI, genotyped 2039 people from England, Wales and Scotland [31].
One finding was that it was possible to detect structure between individuals from Devon

and Cornwall (two neighbouring counties) using ChromoPainter. On the other hand, this
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structure was not discernible when using unlinked methods (PCA). This outlines the benefits
of incorporating linkage information when attempting to identify fine-scale structure between

closely related groups of individuals.

Gattepaille and Jakobson (2012) [32] provided the mathematical foundations for the
advantage of using linked markers over unlinked ones. They describe a metric, GI A (gain
of informativeness for assignment), a term borrowed from information theory, to describe
the additional amount of information gained when using haplotype data instead of unlinked
alleles. They showed that whilst combining two markers in linkage equilibrium is not
necessarily advantageous for ancestry inference, GI A is often positive for markers in LD
with one another, demonstrating the advantage of haplotypes. Under a variety of simulated
scenarios, incorrect assignment of individuals into populations was reduced between 26%
and 97% when using haplotype data. For example, they showed that using empirical data of
individuals from France and Germany, accounting for haplotypes could reduce the rate of

mis-assignment by 73%.

Another advantage of using haplotype information is that it may mitigate ascertainment
bias. Ascertainment bias occurs when a subset of SNPs are chosen for analysis, most often
when selecting markers for a genotpying array. SNPs are typically chosen because they
show variation within a population of interest. However, if this variation is identified in one
population, e.g. British, then there is no guarantee that the variation will also be seen in
another population, e.g. Han Chinese. In this case, including these SNPs can often provide
misleading estimates of genetic diversity and commonly estimated parameters such as fs; [33].
Conrad et al (2006) showed that, owing to the lack of African individuals used in the SNP
discovery process, populations from the Middle East, Europe and South Asia showed the
highest levels of SNP-based heterozygosity. These findings were in stark disagreement with
the currently accepted model of human history and studies which demonstrated Africans have
the highest levels of genetic diversity [12,17,34-36]. However, when haplotype heterozygosity
rather than SNP heterozygosity was used as a metric for diversity, African populations
consistently had the highest values. Therefore, although the ascertainment for a particular
SNP may depend strongly upon the ascertainment scheme, the same underlying haplotypes

are likely to be observed, regardless of which SNPs are used to tag them.

Haplotype-based methods also rely less on the inclusion of rare alleles. Rare alleles are
highly informative about recent, fine-scale population structure. Methods which leverage
this information have been used to model the population history of large datasets [37-39].
However, rare alleles are harder to genotype, as they are more difficult to distinguish from

sequencing errors and they are often not included on standard genotyping arrays. Because of
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this, allele-frequency filters are often applied in population genetic studies to reduce the risk
of incorporating incorrectly genotyped SNPs. Further, more SNPs need to be sequenced in
order to find rare variants in a wide range of populations. Using haplotype information may
negate the needs for using rare variants; if individuals share long haplotypes in common,

then it is likely that they also share rare variants that occur on those haplotypes.

However haplotype-based methods are not without their drawbacks. They are typically
slower by an order of magnitude, as they are more computationally complex than unlinked
methods. Secondly, the nature of haplotype-based methods means they require the data
to be phased. Phasing is a statistical procedure ® that requires substantial computation
resources. The inconvenience of introducing an additional time and resource intensive step

to the analysis means that many studies opt not to use such methods.

Finally, ‘switch-errors’ may often occur during phasing, when the incorrect ordering of
alleles on a haplotype is inferred. Whilst Lawson and Falush (2012) showed that sporadic, ran-
domly distributed switch-errors are unlikely to significantly affect the overall ChromoPainter
analysis, systemic errors, where haplotypes from particular individuals are made to look more
like each other than they do those of other members of the sample, may be more problematic

and provide misleading results [40].

1.2 Methods used to analyse ancient DNA

In this section, I will outline some of the most widely used methods to analyse ancient DNA.

1.2.1 Unlinked methods

The first studies into ancient DNA mostly used statistical methods which compare allele-
sharing or allele-frequencies between populations or individuals. These methods, in particular
F-statistics and their extensions [41-44] and Principle Component Analysis [45], can address

a wide-range of questions pertaining to population structure, admixture and shared drift.

A key reason why methods based on allele-sharing and allele-frequency differences were,
and still are, widely used in ancient DNA is that they can easily be modified to use data
in pseudo-haploid format. Pseudo-haploid genotypes are generated by sampling a read at
random to represent a single allele at a given SNP. This is often necessary, because ancient
samples routinely do not have enough reads covering a SNP to confidently call diploid

genotypes. Pseudo-haploid calls are therefore used widely, including currently (e.g. [46]), in

3Phasing can also be performed using other methods, such as sequencing family trios. However, this is
rarely used in population genetic studies (although see [33] for an example of it being used) and so I will not
discuss it here
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most studies of ancient humans.

Whilst pseudo-haploid genotype calls circumvent the problem of calling heterozygous
genotypes at low coverage positions, they necessarily hold less information relative to true
diploid genotypes and are thus less powerful at e.g. identifying population structure or
genetic similarity. Further, the use of pseudo-haploid calls may result in an elevated level of
reference bias [47-49]. Reference bias occurs because the reference fasta file which is used
to align reads only contains a single allele at each position. Therefore, reads which contain
a non-reference allele (i.e. an allele not represented in the reference fasta) contain more
mismatches with the reference than reads which contain the reference allele, and accordingly
are given a lower mapping quality score. Then, when selecting a read at random, reads with
the reference allele are more likely to be selected as the pseudo-haploid call, generating a
bias towards the reference allele. Attempts are being made to represent non-linear reference

genomes as graphs in order to mitigate the effect of reference bias [49, 50].

For many of the early ancient DNA studies, such as that of Green et al 2010 [41]
and Lazaridis et al 2014 [51], powerful methods for detecting population substructure and
admixture were not required, as the questions asked primarily considered broad questions
about human history, such as the nature of human-archaic interactions and whether there was
significant genetic differences between the first farmers and the preceding hunter-gatherers.
These populations, particularly humans and Neanderthals, are highly diverged and hence do
not require powerful methods to be distinguished. For example, in the case of Lazaridis et
al (2014), simply plotting Loschbour and Stuttgart on a PCA of modern individual showed

they had substantially different ancestries.

Perhaps the most widely used method amenable to pseudo-haploid data is the family
of F-statistics 4, which were first outlined in a 2009 study into the population history of
India [53]. These methods use the principle of shared drift in order to estimate genetic
similarity (f3), branch-length and admixture (f3) and tests of tree-like phylogeny (f4). Since
2009, F-statistics have been extended into multiple, more advanced, frameworks which are
able to answer more complex questions about population history through the generation of
population admixture graphs. In particular, qpAdm has been shown to be a flexible and
coverage-robust method of estimating individual and population level admixture fractions [44].
An attractive feature of F-statistics is that they explicitly test models of population history
and can provide readily interpretable results with associated jackknifed confidence intervals.
A related method is the so-called ABBA-BABA test, developed by Green et al (2010) [41] in

order to determine whether, and to what extent, admixture between humans and the newly

4Although related, they should not to be confused with Sewall Wright’s F-statistics [52].



1.2. Methods used to analyse ancient DNA 19

sequenced Neanderthal genome had occurred. This simple test counts the number of times
across the genome a 4 population phylogenetic tree shows a particular configuration at a

given locus in order to determine whether an admixture event has taken place.

In contrast to the F-statistics, which explicitly tests models of population relationships,
Principle Component Analysis (PCA) is a ‘model-free’ method typically used to obtain a
visual summary of the genetic ancestry of the sample being analysed. PCA is commonly used
as it is typically fast and easily interpretable. Several methods have been developed which
adapt the standard PCA approach (e.g. eigenstrat [45]) to low coverage ancient DNA [54-56].
I note that PCA may also be performed on matrices obtained from linked analysis, such as a

matrix of pairwise IBD sharing or ChromoPainter coancestry matrix.

Throughout my thesis, I will make extensive usage of both PCA and F-statistics on both

present-day and ancient human populations.

1.2.2 The use of ChromoPainter in ancient DN A studies

1.2.2.1 History

In recent years, many of the ‘low hanging fruits’ of broad-scale questions regarding the
ancient history of humans in Eurasia have mostly been answered and studies into more fine-
scale populations structures have become more prevalent. Accordingly, methods which can
detect more subtle population structure have been required. However, the incorporation of
ChromoPainter analysis into studies of ancient DNA was slow, in part because of the difficulty
of phasing low-coverage genomes and concerns over introducing bias towards present-day

populations during imputation.

ChromoPainter can be used to answer a variety of questions relating to the genetic
variation and population history of groups of samples. It can provide an overview of genetic
ancestry through Principle Component Analysis of the coancestry matrix. For instance,
differential haplotype donation to different worldwide populations, as shown in Fig 1.1, can

reveal geographic correlates of genetic variation.

The first use of ChromoPainter on ancient DNA was in the seminal paper of Lazaridis et al
(2014) [51]. Through the generation of two high-coverage ancient genomes, they were the first
to propose that most present-day Europeans can be modelled as a mixture of three ancestral
populations. For the ChromoPainter analysis, they did not impute missing genotypes in
the ancient samples, as the possible bias effects had yet to be studied; only positions with

non-missing genotypes were retained. As the samples were of high coverage, this was not
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Figure 1.1: Map of differential haplotype sharing with present-day populations between WC1
(Iranian Farmer) and Bar8 (Anatolian Farmer) from Broushaki et al (2016) [57]. Bar8
copies relatively more from red populations and WC1 from blue populations.

an issue, as 495,357 SNPs were kept. The ability of ineSTRUCTURE to meaningfully
cluster ancient individuals was confirmed by recapitulating previous results that identified
different present-day European populations as being more closely related to Early Farmers

and hunter-gatherers than others.

In-between 2014 and the present-day, there have been over 30 studies which have used
ChromoPainter on ancient samples (based on Web of Science search results). As of writ-
ing (September 2021), the study of Margaryan et al (2020) is the biggest so far to use
ChromoPainter, with over 400 samples used [58]. This study concluded that detecting
structure within the dataset using ‘traditional’ methods was not possible and so opted to
use haplotype-based analyses on all samples above 0.5x mean depth. Another recent large
study into the genomic history of the Roman Empire and surrounding regions leveraged

ChromoPainter [59].

More recently, ChromoPainter has been used to study aspects of archaic hominin ancestry
in present-day humans [60,61]. Whilst ChromoPainter is not specifically designed to accurately
estimate local ancestry, it is possible to identify potentially introgressed Denisovan regions of
DNA by determining whether a haplotype which is more similar to the Denisovan genome

than to a panel of sub-Saharan Africans. ChromoPainter has also been extended to studying
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the ancient DNA of non-human organisms such as bacteria [62].

1.2.2.2 Benchmarking ChromoPainter and imputation

Many studies which have used ChromoPainter on ancient samples have performed tests and

benchmarks to various degrees of detail.

The first study to investigate the reliability of ChromoPainter on ancient DNA was
Martiniano et al (2017) [48]. Testing whether including imputed genotypes introduced bias
towards particular present-day populations was key, as if it were the case, it may invalidate
any results obtained. The authors estimated potential bias by plotting normal quantile-
quantile plots of the copyvectors obtained from imputed (after downsampling to 2x coverage)
and non-imputed markers. Whilst the differences in amount of copying differed by up to 14%,
most percentage differences were substantially lower and there was no evidence of structured
bias towards or against particular geographic regions, with the authors concluding “There is

no strong evidence for systematic changes being caused by genotype imputation”.

The same study also investigated the impact of filtering genotypes based on genotype
probabilities by creating two datasets, one containing filtered genotypes and without, and
performing fineSSTRUCTURE clustering on both. fineSSTRUCTURE inferred 7 more clusters
when using filtered genotypes; whilst this could be an indication of improved clustering
resolution, it is hard to draw solid conclusions from these data. The overall number of
fineSTRUCTURE clusters can not be seen as a direct measurement of performance; for
example, the additional clusters inferred may simply be a result of the stochastic nature
of MCMC sampling, and given only a single replicate of each test was performed, it is
not possible to rule this out. Performing the same analysis on simulated data, where the

population labels of individuals are known in advance, would be a more controlled test.

Since the study of Martiniano et al, many papers which incorporated ChromoPainter
analysis into studies of ancient DNA have included their own set of benchmarks. Antonio
et al (2019) [59] tested imputation accuracy on an ancient sample (NE1) downsampled to
different levels of coverage. However, this analysis was only performed on a single sample
and the effect of imputation on the ChromoPainter process was not evaluated. Margaryan et
al (2020) performed a downsampling test on two high coverage genomes down to 1x mean
coverage and concluded that, whilst there was some suggestion that the 1x downsample
tended to a more mixed ancestry profile, there was no evidence that incorrect ancestries have

been inferred or that major changes in ancestries have occurred.

Imputation is a necessary pre-processing step for ChromoPainter analysis on low-medium
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coverage ancient DNA samples for two primary reasons. Firstly, ChromoPainter does not
allow for missing genotypes and so imputation is required to estimate missing genotypes.
Secondly, whilst they are covered by reads, non-missing positions may still be low in coverage
and thus require to be re-estimated, particularly when the true genotype is heterozygous.
Therefore, it is important to determine to what extent it is possible to accurately impute

genotypes at different levels of mean coverage.

The accuracy of imputation on ancient samples has been tested in various studies [48,63,64].
There is difficulty in comparing the estimated accuracies between studies, however, due to
differences in factors such as samples analyses, software used to call genotypes and impute

samples, the regions analysed and filters applied.

The most systematic and thorough evaluation of imputation in ancient genomes was
performed by Hui et al (2020) [63]. This study noted that it is possible to impute using
a one or two step approach and, through the use of downsampled genomes, showed that
the two-step approach provides more accurate imputed genotypes. This study also showed
that whilst most genotype likelihood callers (e.g. GATK, atlas) performed similarly well,
atlas was preferred because of it’s ability to model post-mortem damage (PMD) in ancient

samples. Accordingly, I will use atlas to call genotype likelihoods in the rest of my thesis.

It should be noted that the study only considered a single ancient genome (NE1) and
it is therefore unclear how generalisable these results are to ancient samples of different
ancestries. However, this study provided important benchmarks for many critical steps in
the analysis of low coverage samples which had previously been missing from the literature,
such as selection of a reference panel, the feasibility of local imputation and the effects of
applying of pre and post imputation filters. One takeaway message was that it is possible to

recover nine out of ten common (MAF > 0.3) genotypes in a sample of 0.05x coverage.

In Chapter 2 of my thesis, I will explore the effect of coverage on imputation and

ChromoPainter performed on ancient DNA samples.

1.3 Issues and solution to low coverage data

Low sequencing coverage is an issue which has plagued the field of ancient DNA since its
inception. Compared to DNA obtained from present-day samples, ancient DNA samples
typically have a much lower proportion of endogenous DNA, as DNA degrades over time
from environmental factors. Therefore, when the DNA fragments are sequenced, relatively

few of them will align to the human reference.
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The primary issue with low-coverage data is the increased uncertainty when calling diploid
genotypes, particularly when the true genotype is heterozygous. Several methodological
adaptations have been applied to existing methods in order to adapt them to low coverage
ancient DNA. These approaches primarily attempt to circumvent making diploid genotype

calls; for example, the previously mentioned strategy of pseudo-haploid genotype calling.

Alternatively, methods may avoid making diploid calls by working on genotype likelihoods.
Genotype likelihoods represent a posterior estimate of the confidence of the three different
genotypes at a bi-allelic locus, and thus allow the method to appropriately propogate that
certainty throughout the analysis. A wide array of complex statistical approaches have
been developed in order to accurately estimate the posterior genotype likelihoods. These
approaches integrate factors such as sequencing-machine reported base-quality scores and
estimates of read-mapping / sequencing errors [65]. Common methods to estimate likelihoods
include the GATK model [66], SAMtools [67], SOAPsnp [68] and SYK model [69]. Genotype
likelihoods can either be estimated prior to the analysis from aligned reads (BAM files),
using software such as ANGSD [70], ATLAS [71] or GATK [66]. Other softwares will take
BAM files directly as input and estimate genotype likelihoods during the analysis process
(e.g. STITCH [72] and more recently QUILT [73]).

Once genotype likelihoods have been estimated, population level parameters such as
inbreeding coefficients and fs; can be estimated directly [70] with greater accuracy than
direct genotype calls. Similarly, modifications of the ADMIXTURE ([74] algorithm and PCA
have been developed in order to analyse low coverage samples more effectively [75,76]. Recent
advances have allowed the identification of 1st and 2nd-degree relatives from as low as 0.02x

coverage samples [77,78].

Several methods account for low-coverage data by jointly estimating ancient DNA spe-
cific confounding factors, such as contamination and post-mortem damage, alongside the
demographic parameter of interest [79]. For instance, Schraiber (2018) [80] developed a
novel maximum-likelihood approach which leverages information from different low-coverage
samples from within the same population to infer population-level parameters, such as genetic

continuity between ancient and modern populations.

Viera et al (2016) developed a method (ngsF-HMM) to infer matching identical-by-
descent (IBD) segments from low-coverage data [81]. To account for the uncertainty, all
three genotype likelihoods are integrated over in order to estimate whether or not a genomic
region is IBD given the likelihoods. This method showed that there is a substantial gain in

power when likelihoods are used compared to genotype calls.
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As mentioned in the previous paragraph, there are several other characteristics of ancient

DNA which should be accounted for when performing genetic analysis.

Present-day humans contaminating ancient genetic samples is of primary concern as it
non-trivial to distinguish between sequencing reads originating from the ancient sample and
e.g. present-day individuals performing laboratory analysis [82]. A failure to account for
such contamination may lead to underestimating the level of divergence between present-day
and ancient samples, as well as the introduction of spurious signals of admixture [41,83,84].
In addition to the many precautions taken in the laboratory to reduce the risk of human
contamination, such as performing analysis in positive-pressure rooms and intensive irradiation
of equipment, several bioinformatics approaches have also been developed to estimate the
level of contamination in an ancient sample. For example, a recent method leveraged the
fact that contaminating sequences are found on different haplotypes to the genuine ancient
sequence and so can be detected through a reduction in local levels of linkage disequilibrium
relative to those found in a reference panel [85]. As contaminant sequences are more likely to
carry a derived allele [82], searching the genome for significant deviations from the expected
equilibrium percentage of dervied allele (0% at homozygous ancestral and 50% at heterozygous

sites) allows for the estimation of local contamination rates [41,86].

Another aspect of ancient DNA that must be considered is that of post-morterm degra-
dation (PMD). For example, DNA fragmentation (hydrolytic depurination resulting in
single-strand breaks) means nearly all ancient DNA fragments are between 40-500bp in
length [87,88]. The presence of substantially shorter DNA fragments increases the risk of

mis-aligning reads to the incorrect part of the genome [89].

Further, intermolecular cross-links can form between DNA strands [87] and miscoding
lesions, caused by hydrolytic deamination of nucleotides, may result in modifications that
cause nucleotides to be misread by DNA polymerases [90]. One consequence of this is that it
leads to an excess of spurious C->T substitutions after sequencing [87]. Failing to account
for such substitutions (usually termed cytosine deamination) may lead to downstream errors
in bioinformatic analyses. Therefore, methods have been developed in order to account for
cytosine deamination; for example, the atlas suite of tools which are specifically designed to
call variants in low-coverage ancient DNA samples [71]. atlas takes advantage of the fact
that cytosine deamination is more likely to occur at the beginning of a sequencing read to
model the extent of PMD using an exponential decay function (decaying exponentially with
respect to the position on the sequencing read). This provides a likelihood that a given
C->T substitution is a true mutation or the result of PMD. Integrating this model into

the variant-calling process resulted in a subsantially higher proportion of correctly called
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genotypes relative to an ancient DNA-naive method (GATK) [71].

In this thesis, I will attempt to mitigate any effects of low-coverage data on ChromoPainter
analysis by implementing an approach similar to that of Viera et al (2016), which modifies

the ChromoPainter algorithm to account for genotype likelihoods.

1.4 Combining data from multiple chips

An issue similar to that of low-coverage ancient DNA data stems from the development of a
large number of different genotyping arrays. Different cohorts are genotyped on different
arrays and sets of SNPs,; as different SNPs have different characteristics, such as different
frequencies in different populations and associations with different phenotypes. Whilst
this has meant a wider variety of questions and populations can be studied, it also makes
combining data from across different arrays potentially troublesome, as they often have a

small overlap in the SNPs upon which they have been genotyped.

For example, in my thesis, I have worked with at least three genotyping arrays, referred
to here as ‘Human Origins’, ‘Hell Bus’ and the UK Biobank. Often I have wanted to compare
populations on different arrays, such as the African populations on the Human Origins array
and UK Biobank individuals on the UK Biobank array. After merging the datasets, the
overlap was small, only 70,000 SNPs. This is around an order of magnitude fewer SNPs than
are used in a typical ChromoPainter analysis. Having fewer SNPs may reduce power, as

there are fewer pieces of information, and less linkage between each neighbouring SNP.

One solution to the issue of a small number of SNPs would be to impute the remaining
SNPs using a reference panel and imputation algorithm such as Beagle [91]. However, it is
possible that imputation may cause a bias in the data. If missing genotypes are imputed
incorrectly more often from one population than another, this will result in an increased,
but spurious genetic similarity between the target and reference population. This may be a
particular issue when analysing populations which are not well represented in imputation
reference panels, such as non-Europeans. The nature and magnitude of this bias, however, is

yet to be fully understood, particularly in the context of ChromoPainter.

One consideration when combining data across multiple genotyping arrays is that of
ascertainment bias. Typically, SNPs are selected for genotyping arrays when are they are
common in one or more populations that are being analysed. Therefore, the positions that
overlap between arrays are more likely to be common in certain populations. In particular,

genotyping arrays often have positions which have been ascertained in European populations.
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For instance, when designing the ‘Human Origins’ genotyping array, Patterson et al [42]
performed a complex set of ascertainment steps to eliminate sources of bias. Therefore,
analysing non-European populations on combined arrays may result in a higher loss of power
for non-European populations. Accordingly, in Chapter 3, I will assess the potential loss of

power when analysing African population on a data combined from multiple arrays.

Therefore, this thesis will explore whether is it more desirable to impute the missing
positions or to use use a smaller number of overlapping SNPs. Accordingly, in chapter 3 of
this thesis, I will explore this question with a case study investigating African ancestry in

the UK Biobank dataset.

1.5 Summary of thesis aims

In this thesis I will explore the applicability of ChromoPainter to low-coverage ancient DNA
samples and sparsely genotyped data resulting from merged genotype arrays. To do this, I
will perform a series of tests on both real and simulated data from present-day and ancient
samples and apply my findings to two novel (unpublished) datasets of ancient samples from

Bavaria and Czechia.

Specifically, in Chapter 2, I will perform downsampling simulations on five high-coverage
ancient genomes to assess the impact of coverage on imputation, phasing and ChromoPainter
analysis, and determine the feasibility of extracting haplotype information from sparsely
genotyped data in practice. In Chapter 3, I will infer African ancestry across samples in
the U.K. Biobank dataset, using sparsely genotyped data resulting from the merge of two
different genotyping arrays. I will investigate the potential of using imputation to boost
power to infer fine-scale ancestry signatures in U.K. Biobank participants, in terms of how
closely related they are to individuals in reference data containing a large number of African
ethnolinguistic groups. In Chapter 4, I will analyse unpublished ancient genome data from
Bavaria, obtained by collaborators at Mainz University, exploring how genetic patterns varied
from the Neolithic to the Medieval Era in a small geographic region. In Chapter 5, I will
analyse unpublished ancient Slavic samples from Czechia, obtained by collaborators at Max
Planck Institute for Evolutionary Anthropology, to assess the genetic relationships between
Migration Era, Middle age and present-day Slavic-speaking peoples. Lastly, my concluding
chapter will summarise my work and key findings, including my recommendations for future
haplotype-based studies using low-coverage data and/or combining data from multiple SNP

arrays.



Chapter 2

ChromoPainter and ancient DN A

2.1 Introduction

This chapter is related to the use of ChromoPainter on low coverage ancient DNA samples.

First, I will describe the existing methodology, ChromoPainterV2, and then a new version
I have developed, ChromoPainterUncertainty, which is designed to mitigate bias related to

sequencing coverage.

Next I will perform benchmarking tests on all the steps necessary to analyse low-coverage
ancient DNA with ChromoPainter. This includes genotype calling and genotype likelihood
estimation with atlas [71], phasing and genotype imputation with GLIMPSE [92], Chro-
moPainter [19] analysis (copy-vector estimation and PCA) and SOURCEFIND ancestry
component estimation [21]. T will also describe some of the existing issues pertaining to low
coverage ancient DNA and several considered mitigation strategies. Finally, I will simulate,
using present-day samples, ancient samples with variable degrees of missing SNPs in order
to determine whether ancient samples of a particular coverage have enough typed SNPs to

retain haplotype information.

2.2 Methods

2.2.1 Description of the ChromoPainter algorithm

As discussed in the introduction, ChromoPainter is a method designed to estimate the amount
haplotype sharing between individuals [19]. In diploid organisms such as humans and dogs,
ignoring copy-number-variation, each autosomal region of an individual is represented by

two haplotypes. As input, ChromoPainter requires each individual’s data to be ‘phased’ into
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these two haplotypes. Phasing refers to the process of determining which alleles along a

chromosome were inherited together from the same parent.

In ChromoPainter, sampled individuals are split into ‘donor’ and ‘recipient’ haplotypes. It
employs the widely-used Li and Stephens copying model [13] to model each recipient haplotype
as a mosaic of all haplotypes observed in the donor panel. Typically (and throughout this
thesis) an individual does not act as a donor to themself, e.g. one of the individual’s two
haplotypes can not act as a donor for the other haplotype. Unlike the original Li and Stephens
model, which uses the product of approximate conditionals (PAC) likelihoods, ChromoPainter
reconstructs each recipient haplotype as a mosaic of all other donor haplotypes. Here, the
term ‘copying’ can be though of as a genealogical process where haplotypes are reconstructed

using the genealogically closest haplotype in the donor set.

Suppose we have a particular recipient haplotype, h*, which consists of a sequence of L
alleles denoted by {hx, ..., hxp}, where h#; is the observed allele at site I. We wish to paint
h# using j donor haplotypes, denoted by {hi,...,h;}.

The copying model is implemented in the form of a Hidden Markov Model (HMM), with
the observed states being the alleles carried by the donor and recipient individuals, and the
hidden states being the ‘nearest-neighbour’ haplotype the recipient haplotype h#* copies from.
Thus we can define a hidden-state sequence vector {Y7, ..., Yy}, which corresponds to which
of the j donors hx copies from at a given site [. The emission probabilities are given as the
probability of hx carrying allele a at site [, given it copies from donor haplotype y and h,;
is the allele carried by donor haplotype y at site [. This probability is conditional upon

whether, hx and y both carry allele a at site [ or not:

1.0-6 hyl =
Pr(hxy=a|Y=y) = (2.1)
0 hyl 75 a.

where 6 is the probability of a mutation occurring. The mutation probability 6 can be

estimated using Watterson’s estimator [93], or estimated using an iterative EM algorithm.

The transition probabilities of the HMM, which are the probabilities of a change in
the donor being copied from when transitioning from one SNP to another, is guided by a
recombination rate map, with higher recombination rates leading to a higher probability of
transitioning. Switches between donors are interpreted as changes in ancestral relationships

due to historical recombination and modelled as a Poisson process.
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In ChromoPainterV2, the input genetic data comes in the form of phased genotype calls
(i.e. 110). ChromoPainterV2 produces several different output files. The two which most
used in this work are those appended with .chunklengths and .chunkcounts. These matrices
are also referred to as ‘coancestry matrices’. In the chunklengths matrix, cl, the entry clg,,
gives the total expected proportion of haplotype segments (defined as a contiguous set of
SNPs copied from a single donor) that recipient r copies from donor d. Thus, higher values
of cly, indicate that recipient r and donor d share more recent ancestry. The .chunkcounts
matrix instead gives the total number of haplotype segments that recipient r copies from

donor d.

In this work, ‘copyvector’ is used to refer to the vector of chunklengths that a single recip-
ient individual copies from all donors, or a single row of the coancestry matrix. Throughout,
I often define donors as populations, so that each element of the copy vector is the total

amount of DNA that the recipient matches to all individuals from a given donor population.

2.2.1.1 Description of ChromoPainterV2Uncertainty

ChromoPainterUncertainty works in a very similar way to ChromoPainterV2, bar two
differences. Firstly, the input data is in the form of an allele probability 0 < z < 1, which is
given as the probability of observing the alternate allele at that SNP. This value is calculated
from the posterior likelihood that an allele has been imputed correctly. This is different to

ChromoPainterV2, which uses ‘hard’ allele calls that only take a value of 0 or 1.

Here, I will show how it is possible to incorporate the uncertainty in imputed genotype
calls into the ChromoPainter input. Consider the following example: we have a phased
genotype in the form 011, corresponding to the reference allele on the first haplotype and
the alternative allele at the second haplotype. I define G as the sum of the genotypes at a
SNP; in this case G =0+ 1 = 1. As GLIMPSE, the imputation and phasing algorithm I will

use for this work, provides hard genotype calls, G can be calculated directly.

We also have a posterior genotype likelihood, in the form GL(pg, p1,p2), where p; is the
posterior probabilities that the true genotype is i. Genotype probability dosage, D, is the
expected total number of copies of the alternate allele given GL. D can be calculated as
p1 + [2 % p2]. We can calculate U, the uncertainty as U = |G — D|. Then, we can assign a
probability to each allele; if the allele is 1 then the allele likelihood is simply 1 — U and if
the allele is 0 then the allele likelihood is 0 + U. Therefore, when there is no uncertainty
in the genotype call, the allele probability will be either 0 or 1. When there is uncertainty,
the allele probability will take a value 0 < x < 1, with more uncertain genotypes tending

towards allele probabilities of 0.5.
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The second difference is the incorporation of the allele probability into the emission
probability of the HMM. As before, consider a recipient h* whom we want to paint using
the set of donors {h1,...,h;} . At a given SNP [, let h*; be the probability that hx carries
the alternative allele, with h,,; similarly being the probability that donor haplotype y carries
the alternate allele at position I. The probability of hx carrying allele a at site [, given it

copies from haplotype y is given as:

Pr(hxy=a|Yi=y)=(1-0)-[a-hyu+(1—a) (1—hy)+

0-la-(1=hy)+(1-a)- hyl

Note that equation 2.2 reduces to equation 2.1 if h,; = {0,1} and if a = {0, 1}, i.e there

is no uncertainty in the calls.

A consideration of a different uncertainty metric, maz(GP), can be found in Appendix

section E.0.3.

2.2.2 Generation of downsampled genomes

I created a set of ‘downsampled’ ancient genomes in order to explicitly quantify the effect of
coverage on each stage of the ChromoPainter analysis. I took five high coverage genomes
and for each, removed a random subset of reads from the .bam file in order to reduce the
coverage to a target level. I then performed each stage of a typical ChromoPainter analysis,
e.g. mimicking the analyses of new ancient DNA samples I describe in chapters 4 and 5, on
the full coverage and downsampled genomes. I also processed a set of 918 ancient samples
from the literature, downloaded from the European Nucleotide Archive, in an identical way

to act as comparison samples (Section A.5).

Five high coverage ancient genomes were downloaded in the form of aligned .bam files

from the European Nucleotide Archive:

—_

. Yamnaya (25.2x) — Yamnaya Bronze Age steppe-pastoralist [94]
2. UstlIshim (42x) — Siberian Upper Palaeolithic hunter-gatherer [95]
3. sfl12 (72x) — Scandinavian Hunter-Gatherer [96]

4. LBK (19x)- early European farmer from the Linearbandkeramik culture from Stuttgart,

Germany [51]
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5. Loschbour (22x) — 8,000 year-old hunter-gatherer from Luxembourg) [51]

These samples were chosen due to their high original coverage (> 18x), and because they

represent some of the ancestries present in Western Eurasia over the past 40,000 years.

For each full coverage, downsampled and literature ancient .bam file was processed using
the atlas (version 1.0, commit f612f28) pipeline [71]
(https://bitbucket.org/wegmannlab/atlas/wiki/Home). First, the validity of each file
was assessed (i.e. ensuring that each .bam file was not malformed in any way) using
ValidateSamFile command from PicardTools [97]. atlas is a suite of software designed for
processing low-coverage ancient DNA and was chosen following the recommendation of Hui
et al (2020) [63], as it explicitly accounts for post-mortem damage (PMD) patterns in ancient
DNA. The most common form of PMD is C-deamination, which leads to a C->T transition

on the affected strand and a G—>A transition on the complimentary strand.

I then downsampled each full-coverage genome using the atlas downsample task, re-
sulting in a .bam file with coverages 0.1x, 0.5x, 0.8x, 1x, 2x, 3.5x, 5x, 10x and 20x per

individual.

Again, for each full coverage, downsampled and literature ancient .bam file, I estimated
post-mortem damage (PMD) patterns using the atlas estimatePMD task. Recalibration
parameters were then estimated using the atlas atlas recal task. Finally, both the recalibra-
tion and PMD parameters were given to the atlas callNEW task which produces genotype
calls and genotype likelihood estimates for each downsampled and full coverage .bam. For
this stage, I made calls at the 77,818,264 genome-wide positions present in the phase 3
thousand genomes project [98]. This was done to reduce the risk of calling false-positive (i.e.
falsely polymorphic) genotypes in the aDNA samples. No minimum read-depth filter was
applied when calling genotypes. This step resulted in a .vcf file for each of the samples. For

each of the 22 autosomes, I merged all samples together into a single .vcf file.

atlas does not make calls at positions in the genome where no reads have been aligned. If
multiple .vcf files are merged together, and at a given position in the genome, some samples
contain genotype calls and others do not, this position will be present but the genotype will
be set as missing ./. in the merged .vcf. Therefore, the merged .vcf contained positions
at all 77,818,264 positions, as across all X samples, at least one individual have a genotype

call at each position.
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Figure 2.1: Schematic showing the workflow used to generate downsampled ancient genomes.
Blue boxes represent the genetic data in different formats and red boxes represent
methods used to process data or convert between formats. Schematic shows a reduced
example of LBK being downmsapled to 3 different coverages. A high coverage .bam
file is downsampled used to generated genotype likelihoods in .vcf format using atlas
[71]. GLIMPSE is used to impute and phase the .vcf, producing posterior genotype
probabilities and phased genotypes. These are combined using a custom script to
generate ChromoPainter uncertainty output.

2.2.3 Generation of ancient literature samples

I also generated a set of ancient samples from the literature to use as donors in the Chro-

moPainter analysis.

This dataset consists of 918 other ancient samples from the literature given in Appendix
section A.1. These samples were of variable coverage, ranging from 0.002-72x coverage, and
chosen because of their previously reported relevance to understanding past ancestry patterns
in European populations like those analysed in chapters 4 and 5. These 918 consist of all
samples given in Table A.1 were processed in an identical way to the downsampled target

individuals described in the previous section, other than they were not downsampled.

2.2.4 Imputation and phasing - GLIMPSE

Genotype imputation and phasing are two important steps for processing low-coverage ancient
DNA. Low coverage (<1x) samples typically lack enough read information to make accurate
genotype calls at most positions in the genome, and often do not contain any reads at many
positions [99]. Therefore, it can be helpful to use external information from a high-coverage

reference panel in order to improve the accuracy of genotype calls and phasing, reducing the
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impact of errors on downstream analyses [92].

Three different characteristics are desirable for an imputation algorithm in this context.
Firstly, it should take genotype likelihoods as input. This is because genotype likelihoods
allow for flexible representation of the possible genotypes at a particular position, particularly
when there may not be enough coverage to make a hard genotype call. Secondly, it should
emit posterior genotype-probabilities which, when accurately calibrated, give the probability
that a particular genotype call is correct. This is necessary for estimating the uncertainty
values, described in section 2.2.1.1, needed for ChromoPainter Uncertainty analysis. Thirdly,
the algorithm must be able to complete in a reasonable running time when using a large
number of samples and high number of SNPs. Using a large number of densely positioned
SNPs (e.g. such as the approximately 77 million identified in the 1000 Genomes Project)
increases the useful linkage-disequilibrium information between each SNP, and it is well-
established that increasing the number of individuals used in imputation/phasing reference

panels improves accuracy [25,92,100,101].

Two programs, Beagle 4.0 [102] and GLIMPSE [92] fulfil the first and second criteria
above, but GLIMPSE offers up to 1000x reduction in running time compared to Beagle
4.0 [92], and hence chose it for the imputation and phasing steps.

Phasing and imputation ideally requires a reference panel of high-coverage present-day
individuals. I used the 1000 Genomes Project dataset re-sequenced to 30x average coverage,
which contains 3202 individuals from 26 worldwide populations [103]. A description of the
processing of this reference dataset can be found in Appendix A.2. This reference dataset

contained 50,509,915 unique bi-allelic SNPs.

I merged together i) the full coverage individuals, ii) downsampled individuals and iii)
918 ancient samples from the literature into a single bcf file using beftools (version 1.11-60-
g09dca3e) [104] to act as the samples for GLIMPSE to phase. Here, ‘target’ refers to the

individuals being imputed/phased and ‘reference’ refers to the reference panel.

Following the GLIMPSE tutorial (https://odelaneau.github.io/GLIMPSE/tutorial _
b38.html), I first used GLIMPSE_chunk to split up each chromosome into chunks, keeping both
-window-size and -buffer-size to 2,000,000 base pairs, which is their default settings.
I used the b37 genetic map supplied by GLIMPSE for the -map argument. Across all

chromosomes, this produced 936 chunks that are on average 2.99Mb long.

GLIMPSE then imputed each chunk separately, using GLIMPSE_phase using the same

1000 genomes dataset as a reference and default settings. This stage both imputes missing
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genotypes and generates a set of haplotype pairs which can be sampled from in a later step
to produce phased haplotypes. GLIMPSE_ligate then merges the imputed chunks back to
form single chromosomes using the default settings. I then used GLIMPSE_sample to produce
a .vcf with phased haplotypes sampled for each individual, again using default settings.
Consequently, the output of GLIMPSE is i) unphased genotype calls with posterior genotype
likelihoods and ii) phased haplotypes.

It is important to note that GLIMPSE leverages information from individuals that have
been imputed, ‘absorbing’ them into the reference panel. For example, if there were 100
target samples and 1000 reference samples, each target is phased in turn and then absorbed
into the reference panel, so that there would be 1001 reference samples when the second
target individual is imputed. This makes it necessary to avoid including the same sample,
downsampled to different coverages, in the same set of targets for one imputation run, in
order to avoid the confounding effect of allowing an individual to act as the reference to
itself. For example, including Loschbour at 0.1x and 10x coverage could mean it imputed

itself, a situation which would never occur in reality.

2.2.5 Estimating imputation sensitivity and specificity

I used rtg-tools-3.11 [105] and the vcfeval task to estimate the sensitivity and specificity of
imputation in the downsampled individuals. Here, ‘baseline’ (i.e. the truthset) is defined as
the genotype calls in the full coverage individual and the ‘calls’ as the genotype calls in the

downsampled individual. Sensitivity and precision are defined as:

Veas — FP
sensitivity = 111/7 (2.3)
call

‘/baseline - FN

2.4
%aseline ( )

precision =

A ‘variant’ is considered to be a SNP with a genotype that is either 0/1 or 1/1, with
Viasetine and Vg the number of variants called in the full coverage and downsampled
genomes, respectively. False negatives (FN) are where a variant is called in the full coverage
genome but not in the downsampled genome. False positives (FP) are cases where a variant

is called in the downsampled genome but not in the full-coverage genome.

V', or true-positive, is the number of events where a variant position (i.e. a SNP with

a genotype that is either 0/1 or 1/1) is detected in either the full coverage (Vpasetine) Or
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downsampled (Vipgsetine) sample. FN is the number of times that a variant position is called
in the full coverage sample and not the downsampled sample. Conversely, F'P is the number
of times a variant position is called in the downsampled sample and where the same SNP in
the full coverage sample is invariant (i.e. 0/0). Only genotypes called in the full coverage
and downsampled individuals were considered. No allele frequency filters were applied before

conducting this analysis.

2.2.6 ChromoPainter analysis

It is important to understand the effect of sequencing coverage on the accuracy of Chro-
moPainter copyvector estimation. A ‘copyvector’; ¢, is a vector of length D, where each
entry gives the total length of genome that recipient individual r most closely matches to
each of the D donor individual/populations. I sometimes refer to ‘normalised’ copyvectors;
this simply refers to where each entry of ¢, is divided by the sum of all entries, scaling the

copyvector to sum to 1.

I painted each downsampled and full coverage ancient individual using a set of 124 ancient
individuals, hereafter referred to as the ‘standard set’, selected because they had a sequencing
depth greater than 2x. I compared the copyvectors for the same individual at each level
of downsampling, to the same individual at full coverage. For example, I compared the
copyvector of Yamnaya at 0.1x to the copyvector of the same Yamnaya sample at full coverage.
A high correspondence, measured by r-squared for example, between the copyvectors of the

full coverage and downsampled individual suggests less effect of coverage.

To prepare the data for ChromoPainter, I merged the .vcf containing the posterior
genotype likelihoods of i) downsampled, ii) full coverage and iii) 124 ancient samples from
the literature together, and did the same for the .vcfs containing the phased haplotypes.
I combined the posterior genotype likelihoods with the phased alleles to generate allele
likelihoods (described in section 2.2.1.1) in ChromoPainter-uncertainty format, in addition
to per-position recombination rate files. This was performed for each chromosome in turn

using my own script (https://github.com/sahwa/vcf_to_ChromoPainter).

I next used ChromoPainterUncertainty to perform the painting. I assigned the standard
set individuals as donors and all downsampled, full coverage and standard set as recipients.
The ‘standard set’ samples from the literature were included in order so that they can be

used a surrogates in later SOURCEFIND analysis.

I also performed an identical analysis, but using ChromoPainterV2 and hard genotype

calls.


https://github.com/sahwa/vcf_to_ChromoPainter

2.2. Methods 36

This painting produced a chunklengths matrix for each chromosome which
were merged using chromocombine-0.0.4 (https://people.maths.bris.ac.uk/~madjl/
finestructure-old/chromocombine.html). The resulting chunklengths matrix thus gives
the total length of genome in centimorgans that a recipient most closely matches to each

donor individual.

2.2.7 ChromoPainter Principle Component Analysis

Principle Component Analysis (PCA) can be used to reduce the underlying structure
in the chunklengths coancestry matrix to two dimensions, thus allowing it to be more
easily visualised. As individuals cannot paint themselves, the diagonals of each coancestry
matrix contain zeros. Therefore, I performed PCA using the fineSSTRUCTURE library

https://people.maths.bris.ac.uk/~madjl/finestructure/finestructureR.html.

All downsampled and full coverage individuals were projected onto the principle compo-

nents of the reference ancient samples.

2.2.8 SOURCEFIND

The chunklengths coancestry matrix produced by ChromoPainter contains information about
the estimated length of genome a recipient most closely matches a given donor individual
or population. However, incomplete lineage sorting, where alleles segregate in a way that
is discordant to the true phylogeny reflecting the orders in which populations split from
one another, means that there are regions in the genome where a recipient individual most
closely matches a reference individual that is not from their own population. For example,
an individual from France copies non-zero amounts from African donors, despite not having
any African ancestry through recent admixture. Furthermore, unequal donor population

sizes may bias the aggregated amount copied to a given population.

Therefore, to account for these issues when estimating ancestry proportions, it is necessary
to run an additional step, SOURCEFIND [21]. Simulations have shown that SOURCEFIND
ancestry proportions correspond well to simulated truth-set values [21]. The ancestry
proportions produced by SOURCEFIND should be interpreted as the proportion of ancestry
that each individual/population shares most recently with each surrogate. This need not
necessarily imply an admixture event; for instance, you might expect France to have
ancestry recently related to both Germany and Spain due to isolation-by-distance rather

than admixture.

SOURCEFIND models each target copyvector as a linear mixture of copyvectors from a
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set of surrogate groups, inferring the proportion of ancestry for which the target individual
is most recently related to each surrogate group. The parameter space of surrogate ancestry
proportions is explored using a Markov chain Monte Carlo algorithm, where the ancestry
proportions are updated using a Metropolis-Hastings step. The output of SOURCEFIND for
each target individual is therefore an n * p matrix, where n is the number of MCMC samples

and p is the total number of surrogate groups.

To test for the effect of coverage on the proportions estimated by SOURCEFIND, I
performed two separate analyses, both using the downsampled and full coverage individuals as
targets. The first uses three surrogate populations (Yamnaya, Western Hunter-Gatherer and
Anatolia Neolithic Farmer), and the second uses an expanded list of 37 surrogate populations.
I chose the first set of three surrogates, as these are typically used in ancient DNA analysis
to obtain a ’broad’ overview of the ancestry of a European individual, as it has been shown
that central Europeans within the last 10,000 years can be well modelled as a mixture of
those three groups [51,106]. Note, this does not mean that there was not admixture from
other sources, but that a majority of ancestry of ancient central Europeans can be derived
from these sources. This stands to act as a relatively straightforward test case, since the

three populations are highly genetically differentiated from one another.

For all runs of SOURCEFIND, I used 1,000,000 iterations, of which 50,000 were designated
as burn-ins, and then samples were taken every 50 iterations. 2,000,000 iterations were
chosen because my previous tests show that is the minimum necessary to provide reasonably
confidence of convergence within reasonable running time (Appendix section E.0.1). The rest
of the parameters were left as default. Ancestry proportions and credible intervals group

were estimated using the CODA R library [107].

2.3 Pre-post GLIMPSE and linked/unlinked PCA test

I wanted to determine at what stage of the analysis pipeline low coverage samples (0.1x)
significantly diverge from the other downsamples when plotted on a PCA. I will hereafter
refer to this phenomenom as ‘coverage-related bias’ For instance, it may be that the
coverage-related bias is introduced in the imputation stage. Coverage-related bias can be

measured by calculating d = /(PC1y — PC14)? + (PC2; — PC24)?, where (PC1y is the

PC1 value for the full coverage individual and (PC1, is the equivalent for the downsampled
individual. In other words, d measures the Cartesian distance between the full coverage and
downsampled individual on principle component space, with higher distances corresponding

to more coverage-related bias.
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To test this, I performed a set four PCAs on all downsampled and equivalent full coverage

samples and a set of present-day individuals shown in Table 2.1.

For both the ChromoPainter PCAs, in order to account for the zeros on the diagonals
of each coancestry matrix, I used the fineSSTRUCTURE R library https://people.maths.

bris.ac.uk/~madjl/finestructure/finestructureR.html.

The four PCAs were as follows:

1. Pre-GLIMPSE Using the genotypes generated by atlas, but before imputation with
GLIMPSE, I projected all downsampled ancients of all coverages onto the present-day

populations using the eigenstrat library. [108].

2. Post-GLIMPSE Using the GLIMPSE generated imputed genotypes generated by
atlas, I projected all downsampled ancients of all coverages onto the present-day

populations using the eigenstrat library.

3. ChromoPainter - unlinked I performed an ‘all-v-all’ unlinked ChromoPainter

painting, using all populations in Table 2.1.

4. ChromoPainter - linked I performed an ‘all-v-all’ unlinked ChromoPainter painting,

using all populations in Table 2.1.

Coverage-related bias present in PCA (2) but not (1) indicates it has been introduced in
the imputation stage. Similarly, coverage-related bias present in (4) but not (3) suggests

that including linkage information introduces bias in low coverage samples.

2.4 Reducing SNP count

One way to mitigate coverage-related bias would be to exclude imputed SNPs which have
a low probability of being imputed correctly or restricting analysis to non-imputed SNPs

above a certain coverage.

However, reducing the total number and or density of SNPs used in a painting may
reduce the accuracy of the estimated copyvectors. All other things being equal, there is
less linkage information between two SNPs which are separated by a larger genetic distance.
Therefore, it is necessary to precisely determine what effect reducing the number of SNPs
has. In particular, we would like to know the minimum number and density of SNPs required

to retain the advantages of haplotype-based methods over unlinked methods.
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Population Number of

samples
HB:croatian 19
HB:cypriot 12
HB:french 28
HB:german 30
HB:germanyaustria 4
HB:greek 20
HB:hungarian 19
HB:irish 7
HB:lithuanian 10
HB:mordovian 15
HB:northitalian 12
HB:norwegian 18
HB:polish 17
HB:romanian 16
HB:scottish 6
HB:siciliane 10
HB:southitalian 18
HB:spanish 34
HB:tsi 98
HB:tuscan 8
HB:welsh 4
HB:westsicilian 10

Table 2.1: Population labels and sample sizes of populations included in the pre-post GLIMPSE
and linked /unlinked PCA test. All samples are from the Hellenthal and Busby dataset,
described in A.4.

Using data from the People of the British Isles (POBI) project, previous work showed
it is possible to distinguish between British individuals from neighbouring counties Devon
and Cornwall using the fineSSTRUCTURE algorithm, but not using unlinked methods
(ADMIXTURE [109]) [31]. Therefore, determining whether it is possible to distinguish
between individuals from Devon and Cornwall acts as a good test case for reducing SNPs. In
particular I tested how many SNPs can we remove before we lose the ability to distinguish

between these two populations.

The original POBI dataset contains 2039 individuals from 33 populations from across
England, Northern Ireland, Wales and Scotland, genotyped at 452 592 SNPs. Details of the

data preparation for this dataset can be found in Appendix section A.4.

Using the shuf unix command, I randomly reduced the total number of SNPs down to
only the following percentages: 0.2%, 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, 20%, 30%,
40%, 50%, 60%, 70%, 80%, 90%. SNPs were removed from the .vcf files using bcftools

-view.

For each target level of reduced SNPs, I painted all individuals from Devon and Cornwall



2.5. Direct imputation test 40

using a ‘leave-one-out’ approach. I then combined the resulting chunklengths matrices across
all chromosomes and combined copyvectors columns by donor group, so that each individual
was represented by a K-vector of values, with element k denoting the proportion of DNA

that person matched to any haploid in donor group k.

2.5 Direct imputation test

To explicitly test the effect of imputation on the copyvectors estimated by ChromoPainter,
I created a dataset which simulated a typical imputation scenario; imputing SNPs after
merging two datasets with a low SNP overlap. In particular I did this in a way to mimic a
real analysis on ancient samples of approximately 0.15 coverage (determined from empirical
data), which have approximately 70,000 SNPs out of 500,000 covered by at least a single

read.

I took the Human Origins dataset (described in Appendix section A.3), containing 560,240
bi-allelic SNPs and submitted the reduced dataset to the Sanger Imputation Service (https://
www.sanger.ac.uk/tool/sanger-imputation-service/). The Sanger Imputation Service
uses Eagle2 [110] and the Haplotype Reference Consortium as a reference to impute missing
variants. Once the data had been imputed, I subsetted the data back to the original set
of 560,240 SNPs. I therefore had a dataset which contained 70,000 non-imputed SNPs
and 490,240 imputed SNPs. This is hereafter referred to as the ‘imputed dataset’. 70,000
non-imputed SNPs was chosen because that is the number of SNPs which overlap between

two datasets in Chapter 3 and thus represents a realistic case-study.

For both the imputed dataset and original Human Origins dataset, I performed an
all-v-all painting and combined data across chromosomes. An ‘all-v-all’ painting is where
each individual is painted in turn by all other individuals, resulting in an n-by-n coancestry

matrix, where n is the number of individuals analysed.

2.6 Results

2.6.1 Imputation accuracy

To estimate how accurately GLIMPSE imputes genotypes in ancient samples of differing
coverages, I estimated the sensitivity (Fig. 2.2) and precision (Fig. 2.3) of genotype
imputation using rtg-tools [105]. This approach compares genotype calls at each position
in each downsampled individual after imputation to the same individual at full coverage

without imputation.
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Figure 2.2: Sensitivity of genotype calling at different coverages for different ancient individuals,
assuming calls in the full coverage genome are correct, calculated using rtg-tools.

stage total transitions transversions t/v ratio
atlas 77,876,460 52,693,235 25,183,225 2.09
Post-imputation 77,815,634 52,655,160 25,160,474 2.09
ChromoPainter 430,088 351,087 79,000 4.44

Table 2.2: Number of SNPs retained at different steps of the analysis pipeline. t/v ratio is the

ratio of transitions to transversions.
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Figure 2.3: Precision of genotype calling at different coverages for different ancient individuals,
assuming calls in the full coverage genome are correct, calculated using rtg-tools.

Ind Coverage Type total hom_ ref hom_ alt het missing
LBK 0.1 atlas 7,863,659 7,588,206 261,066 14,387 70,012,596
LBK 0.1 chromopainter 174,772 82,535 35,669 56,568 255,315
LBK 0.1 glimpse 31,789,601 30,462,480 518,406 808,715 46,026,033
LBK 0.5 atlas 31,594,229 30,407,259 969,621 217,349 46,281,316
LBK 0.5 chromopainter 396,582 183,341 82,675 130,566 33,505
LBK 0.5 glimpse 71,596,325 68,472,726 1,223,743 1,899,856 6,219,309
LBK 0.7 atlas 41,843,708 40,197,199 1,231,550 414,959 36,031,516
LBK 0.7  chromopainter 420,309 193,890 88,078 138,341 9,778
LBK 0.7  glimpse 75,872,626 72,532,663 1,306,213 2,033,750 1,943,008
LBK 1.0 atlas 49,687,572 47,648,221 1,401,883 637,468 28,187,240
LBK 1.0 chromopainter 427,072 196,857 89,918 140,297 3,015
LBK 1.0 glimpse 77,152,471 73,739,162 1,334,040 2,079,269 663,163
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31,789,601
30,688,125
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2,082,193
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130,162
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2,628,066
129,635
2,157,999
2,995,233
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2,128,373
2,549,632
127,764
2,089,291
23,905
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362,864
142,965
2,229,063
548,715
144,635
2,251,632
1,327,276
144,476
2,275,310
2,266,029
143,887
2,282,407
2,864,608
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46,026,033
47,186,835
33,505
6,219,309
37,065,944
9,778
1,943,008
29,285,496
3,015
663,163
12,009,874
37
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3,642,111
0

9,594
1,330,339
0
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0
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0
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28,081,614
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10,773,728
37

36,809
2,905,623
0

9,594
931,764
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UstIshim 5.0 chromopainter 430,087 194,165 92,403 143,519 0
UstIshim 5.0 glimpse 77,810,787 74,211,695 1,308,177 2,290,915 4,847
UstIshim 10.0 atlas 77,723,502 73,311,539 1,260,452 3,151,511 93,822
UstIshim 10.0 chromopainter 430,087 194,059 92,805 143,223 0
UstIshim 10.0 glimpse 77,814,052 74,198,170 1,291,089 2,324,793 1,582
UstIshim 20.0 atlas 77,782,585 73,919,501 1,244,171 2,618,913 34,154
UstIshim 20.0 chromopainter 430,087 194,223 93,081 142,783 0
UstIshim 20.0 glimpse 77,815,338 74,244,692 1,275,230 2,295,416 296
Yamnaya 0.1 atlas 8,165,424 7,837,096 310,333 17,995 69,707,971
Yamnaya 0.1 chromopainter 174,772 82,050 36,011 56,711 255,315
Yamnaya 0.1 glimpse 31,789,601 30,437,553 540,479 811,569 46,026,033
Yamnaya 0.5 atlas 32,588,629 31,348,275 1,007,256 233,098 45,273,342
Yamnaya 0.5 chromopainter 396,582 183,027 83,207 130,348 33,505
Yamnaya 0.5 glimpse 71,596,325 68,452,137 1,270,312 1,873,876 6,219,309
Yamnaya 0.8 atlas 42,932,013 41,218,304 1,265,634 448,075 34,924,034
Yamnaya 0.8 chromopainter 420,309 193,465 88,637 138,207 9,778
Yamnaya 0.8 glimpse 75,872,626 72,514,711 1,359,849 1,998,066 1,943,008
Yamnaya 1.0 atlas 50,685,590 48,564,638 1,428,476 692,476 27,165,519
Yamnaya 1.0 chromopainter 427,072 196,530 90,041 140,501 3,015
Yamnaya 1.0 glimpse 77,152,471 73,722,704 1,389,219 2,040,548 663,163
Yamnaya 2.0 atlas 66,872,411 63,571,601 1,622,362 1,678,448 10,964,758
Yamnaya 2.0 chromopainter 430,050 197,631 90,666 141,753 37
Yamnaya 2.0 glimpse 77,778,825 74,301,224 1,409,000 2,068,601 36,809
Yamnaya 3.5 atlas 73,859,932 69,713,521 1,532,552 2,613,859 3,966,618
Yamnaya 3.5  chromopainter 430,087 197,605 90,706 141,776 0
Yamnaya 3.5 glimpse 77,806,040 74,324,453 1,410,929 2,070,658 9,594
Yamnaya 5.0 atlas 75,688,825 71,333,069 1,446,906 2,908,850 2,133,156
Yamnaya 5.0 chromopainter 430,087 197,508 90,698 141,881 0
Yamnaya 5.0 glimpse 77,810,787 74,327,884 1,410,512 2,072,391 4,847
Yamnaya 10.0 atlas 76,836,943 72,953,272 1,372,488 2,511,183 981,054
Yamnaya 10.0  chromopainter 430,087 197,539 90,708 141,840 0
Yamnaya 10.0 glimpse 77,814,052 74,334,567 1,409,677 2,069,808 1,582
Yamnaya 20.0 atlas 77,210,145 73,701,551 1,373,349 2,135,245 606,580
Yamnaya 20.0 chromopainter 430,087 197,565 90,739 141,783 0
Yamnaya 20.0 glimpse 77,815,338 74,343,330 1,409,070 2,062,938 296

Table 2.3: Number and type of variants passing different steps of the analysis pipeline for different
downsamples at different coverages. ‘atlas’ refers to after variant calling with atlas,
‘glimpse‘ to after imputation with GLIMPSE and ‘chromopainter’ to ChromoPainter
analysis.

As expected, both the overall sensitivity and precision of imputation fell with coverage,
with a particularly sharp drop-off in both metrics between 0.5x and 0.1x coverage. Whilst I

did not investigate this, other studies have shown the probability of any one SNP in an sample
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being correctly imputed depends strongly on the frequency in the reference panel [63,92]. In

particular, alleles which are rare in the reference panel are less likely to be imputed correctly.

Different downsampled individuals varied in the precision and sensitivity of genotype
imputation. At all coverages, Yamnaya had the both the highest sensitivity and precision.
This may be because the imputation reference panel contains a high proportion of present-day
Europeans, who have a relatively higher proportion of recent Yamnaya-like ancestry relative
to e.g. Hunter Gatherer-like ancestry [111]. Many studies in present-day individuals have
shown that imputation accuracy increases when more haplotypes which are close to the target
individual are found in the reference panel [25,100]. On the other hand, the sample Ust’Ishim
is known to have contributed very little genetic ancestry to present-day populations [112]
and may therefore have fewer closely matching haplotypes in the reference panel, and a

correspondingly lower imputation accuracy.

Imputation accuracy may also be related to demographic history. Populations which
are known to have smaller effective population size, such as Western-Hunter Gathers, also
contain longer tracts between individuals which are identical by descent (IBD) [113] and fewer
heterozygous positions. As imputation relies on matching IBD tracts between individuals,
imputation accuracy increases where individuals share more IBD [114]. However, this would
not be the case in this analysis as there are not hunter-gatherers in the reference panel for
target hunter-gatherers to share IBD with. Additionally, switch-errors during the pre-phasing
step of imputation may harm imputation accuracy, so a reduced density of heterozygous

positions may result in increased accuracy.

Ind Coverage Type Precision  Sensitivity
LBK 0.1 heterozygous 0.9687 0.4315
LBK 0.1 homozygous 0.9957 0.9074
LBK 0.5 heterozygous 0.9759 0.4688
LBK 0.5 homozygous 0.9974 0.9659
LBK 0.7 heterozygous 0.9764 0.4736
LBK 0.7 homozygous 0.9981 0.9721
LBK 1 heterozygous 0.9763 0.4760
LBK 1 homozygous 0.9985 0.9754
LBK 10 heterozygous 0.9866 0.4919
LBK 10 homozygous 1.0000 0.9924
LBK 2 heterozygous 0.9789 0.4813
LBK 2 homozygous 0.9995 0.9819
LBK 3.5 heterozygous 0.9813 0.4852
LBK 3.5 homozygous 0.9999 0.9863

LBK 5 heterozygous 0.9838 0.4875
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(continued)
Ind Coverage Type Precision  Sensitivity
LBK 5 homozygous 1.0000 0.9887
Loschbour 0.1 heterozygous 0.9541 0.4420
Loschbour 0.1 homozygous 0.9962 0.9142
Loschbour 0.5 heterozygous 0.9759 0.4730
Loschbour 0.5 homozygous 0.9979 0.9627
Loschbour 0.7 heterozygous 0.9773 0.4769
Loschbour 0.7 homozygous 0.9984 0.9688
Loschbour 1 heterozygous 0.9791 0.4794
Loschbour 1 homozygous 0.9988 0.9721
Loschbour 10 heterozygous 0.9885 0.4946
Loschbour 10 homozygous 1.0000 0.9915
Loschbour 2 heterozygous 0.9826 0.4842
Loschbour 2 homozygous 0.9996 0.9795
Loschbour 20 heterozygous 0.9995 0.4988
Loschbour 20 homozygous 1.0000 0.9947
Loschbour 3.5 heterozygous 0.9850 0.4883
Loschbour 3.5 homozygous 0.9999 0.9843
Loschbour 5 heterozygous 0.9884 0.4906
Loschbour 5 homozygous 1.0000 0.9873
sf12 0.1 heterozygous 0.9606 0.4356
sf12 0.1 homozygous 0.9973 0.9011
sf12 0.5 heterozygous 0.9795 0.4713
sf12 0.5 homozygous 0.9989 0.9444
sf12 0.8 heterozygous 0.9788 0.4752
sf12 0.8 homozygous 0.9992 0.9521
sf12 1 heterozygous 0.9775 0.4772
sf12 1 homozygous 0.9993 0.9570
sf12 10 heterozygous 0.9693 0.4915
sf12 10 homozygous 1.0000 0.9877
sf12 2 heterozygous 0.9688 0.4823
sf12 2 homozygous 0.9997 0.9695
sf12 20 heterozygous 0.9798 0.4932
sf12 20 homozygous 1.0000 0.9936
sf12 3.5 heterozygous 0.9577 0.4861
sf12 3.5 homozygous 0.9998 0.9785
sf12 5 heterozygous 0.9547 0.4880
sf12 5 homozygous 0.9999 0.9831
UstIshim 0.1 heterozygous 0.9267 0.4308
UstIshim 0.1 homozygous 0.9935 0.8879
UstIshim 0.5 heterozygous 0.9650 0.4750
UstIshim 0.5 homozygous 0.9964 0.9505

47
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(continued)
Ind Coverage Type Precision  Sensitivity
UstIshim 0.8 heterozygous 0.9655 0.4794
UstIshim 0.8 homozygous 0.9970 0.9589
UstIshim 1 heterozygous 0.9686 0.4817
UstIshim 1 homozygous 0.9977 0.9634
UstIshim 10 heterozygous 0.9733 0.4933
UstIshim 10 homozygous 1.0000 0.9891
UstIshim 2 heterozygous 0.9719 0.4861
UstIshim 2 homozygous 0.9990 0.9731
UstIshim 20 heterozygous 0.9859 0.4960
UstIshim 20 homozygous 1.0000 0.9935
UstIshim 3.5 heterozygous 0.9774 0.4888
UstIshim 3.5 homozygous 0.9996 0.9792
UstIshim 5 heterozygous 0.9802 0.4906
UstIshim 5 homozygous 0.9999 0.9831
Yamnaya 0.1 heterozygous 0.9662 0.4471
Yamnaya 0.1 homozygous 0.9990 0.9358
Yamnaya 0.5 heterozygous 0.9785 0.4830
Yamnaya 0.5 homozygous 0.9994 0.9857
Yamnaya 0.8 heterozygous 0.9803 0.4868
Yamnaya 0.8 homozygous 0.9995 0.9896
Yamnaya 1 heterozygous 0.9792 0.4886
Yamnaya 1 homozygous 0.9996 0.9912
Yamnaya 10 heterozygous 0.9935 0.5097
Yamnaya 10 homozygous 1.0000 0.9974
Yamnaya 2 heterozygous 0.9781 0.4923
Yamnaya 2 homozygous 0.9998 0.9939
Yamnaya 20 heterozygous 0.9976 0.5356
Yamnaya 20 homozygous 1.0000 0.9981
Yamnaya 3.5 heterozygous 0.9829 0.4969
Yamnaya 3.5 homozygous 0.9999 0.9956
Yamnaya 5 heterozygous 0.9851 0.5027
Yamnaya 5 homozygous 0.9999 0.9963

48

Table 2.4: Sensitivity and precision of imputed genotypes stratified by sample, coverage and variant

type.

2.6.2 Phasing accuracy

I also used rtg-tools to calculate the number of phased heterozygous genotypes where the

downsampled individual has the same phase as the full coverage individual (Fig 2.4). I

note that this should not be considered to be the same as estimating the switch error rate,
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since we do not know that the phasing in the full-coverage individual is the true phase.
However, this can be used as a rough proxy for switch- errors, since it is known that phasing
in lower coverage individuals is likely to be less accurate than those in the high coverage

individuals [92].

Switch-errors may break up haplotypes and thus will spuriously increase the number of
donor individuals for stretches of DNA that would otherwise have a single nearest neighbor.
Phase agreement with the full-coverage sample increased with increasing coverage. Such
results are difficult to interpret because each sample has a different level of heterozygosity.
However, Lawson and Falush showed that sporadic, randomly distributed switch-errors do
not seriously harm the performance of ChromoPainter. However, non-randomly distributed
switch-errors may lead to certain samples appearing more similar to one another than they

truly are [40].

2.6.3 Validating posterior probability calibration

GLIMPSE estimates genotype probabilities at each SNP within each individual, giving the
posterior probability that a given genotype within a single individual is correctly called.
I assessed how well-calibrated these probabilities are in the Yamnaya 0.1x downsampled
individual, using the maximum genotype likelihood at each of the approximately 77 million
positions which were processed by GLIMPSE. A high maxz(GL) for a particular genotype
(i.e. 0.99) corresponds to a high confidence in the genotype. Alternatively a flat max(GL)

(i.e. 0.33) corresponds to no information about the genotype.

I split the genome into 10,000 equally-sized bins according to maxz(GL). For each bin,
I calculated both the proportion of SNPs which were correctly imputed (i.e. that matched
the same high coverage individual) and the mean max(GL) (Fig. 2.5). If the genotype
probabilities are well calibrated, we would expect to see a clear positive linear relationship
between max(GL) probability and the probability that genotype matches the full-coverage

sample.

The probabilities are well calibrated (r-squared = 0.981) and could therefore be useful
for downstream analysis. It should be noted that they are slightly conservative, in that a
majority of the points in Fig. 2.5 are above the line of equality. For example, the mean
proportion of correct genotypes within all bins where 0.73 < max(GL) < 0.76 was 82%. 1
performed the same analysis using different samples at different levels of coverage and the

results were qualitatively similar (Supplementary Figure. D.1).
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Figure 2.4: Percentage of phased genotypes which agree with the same full-coverage sample for each

individual and each level of downsampling. Genotypes with phase deemed unresolvable
by rtg-tools were excluded from the calculations. Note that these numbers are given
as incorrect / (incorrect + correct - unresolved) and so values are in part driven by
the relative heterozygosity of each sample.
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Figure 2.5: Relationship between genotype likelihood and probability of genotype call being correct
for Yamnaya downsampled to 0.1x coverage. Genome binned by maximum posterior
genotype likelihood and mean maximum posterior genotype likelihood (x-axis) and
proportion of correct calls calculated per bin (y-axis). Rugs on each margin show the
distribution of x and y values. Black line is y = z.
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2.6.4 ChromoPainter analysis

To assess the impact of coverage on ChromoPainter analysis, I merged the dataset of
downsampled individuals with the ‘standard set’ of ancient reference individuals (124 ancient
samples > 2X coverage) and performed an ‘all-v-all’ painting of the merged dataset, which
separately paints each individual as a recipient using all other individuals in the dataset as
donors. The ‘all-v-all’ painting was necessary to paint the 124 ‘standard set’ of individuals

against one another so that they can act as surrogates in later SOURCEFIND analysis.

I was interested to see whether a downsampled individual and full coverage had similar
copyvectors, or in other words, whether they matched similar amounts to the same donor
individuals. To do this, I estimated TV D between the copyvectors of the full coverage and
downsampled individuals. TV D is a distance metric which gives a measure of dissimilarity

between two copyvectors.

Fig. 2.6 displays the relationship between copyvectors for each downsampled individual
and the corresponding full coverage individual for both 0.1x and 0.5x coverage. Each

individuals’ copyvectors were estimated using the same set of ancient samples as donors.

As expected, the TVD between the full-coverage and downsampled copyvectors decreased
with coverage. The 0.1x genome had a substantially increased TVD, similar to the much
reduced imputation accuracy. For each of the genomes downsampled to 0.1x, a particular
difference to the 0.5x downsampled genomes is that the lowest contributing donors contribute
more to the 0.1x downsampled genome than to the full coverage genome and that the highest
contributing donors contribute less to the 0.1x genome than they do the full coverage genome.
Put in other words, the copyvectors at 0.1x are tending towards becoming more ‘flat’, or

copying the same amount from each donor individual.

This can also be seen as ‘regressing to the prior’ In this case, the prior is copying an
equal amount to each donor individual. This can be visualised explicitly by calculating TVD
between each downsampled genome and a flat prior, a vector of length D, where D is the
total number of donor individuals and each element of D is equal to 1 / D (Fig. 2.7). This
clearly shows the reduced TVD to the flat copyvector for the 0.1x individual relative to
other coverages. In later sections, I will discuss whether this is ‘noise’ or ‘bias’ induced by

imputation, i.e. whether copying is regressing to the prior in a similar manner for all samples.

I also considered the effect of coverage on the copyvectors estimated when using present-
day individuals from the 1000 genomes project as donors (Fig. 2.8). Painting ancient samples

using present-day donors is often useful, particularly with more recent ancient samples, as
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Figure 2.6: For five different samples (columns), the proportion of DNA that each downsampled

(y-axis) or full coverage (x-axis) genome matches to each of 125 ancient individuals
(dots). Results are shown for 0.1x (top row) and 0.5x (bottom row) downsampled
genomes. Points coloured by manual assignment to broad-scale populations. Red line
is line of equality (y = x). x and y units are normalised copying values and thus
removed for clarity.
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Figure 2.7: TVD (metric of copyvector dissimilarity between two individuals) between each down-
sampled ancient individual and a flat copyvector. Flat copyvector equivalent to a
vector of length N where each element = 1/N.

there may not be enough relevant ancient samples to paint the ancients with. I merged
the downsampled and full coverage ancient individuals with the thousand genomes dataset
(described in detail in Appendix section A.2). As was the case with the all-v-all ancients
painting, the TVD between copyvectors was highest for the 0.1x individuals. However, the

copyvectors show a strong correlation / low TVD for 0.5x individuals.

It should be noted that utility of painting different ancient individuals with a modern
reference panel depends on the ancestry and age of the ancient sample. The spread of
points along the y = x line in Fig. 2.8 shows how much a particular ancient recipient
preferentially copies more from particular modern population over others. LBK, for example,

has points which are spread evenly across y = x, showing that they copy much more from
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some populations than others, suggesting modern populations are good for distinguishing
this particular ancient sample. On the other hand, the points for Ust’Ishim are shrunk
towards lower values of y = x, showing that the copyvector is relatively flat and that it does
not preferentially copy from some populations to the same degree that LBK does. This
is consistent with findings that UstIshim did not contribute ancestry towards present-day
populations [95]. Accordingly, relatively less useful information is obtained from painting

Ust’Ishim with a modern reference panel than LBK.
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Figure 2.8: For five different samples (columns), the proportion of DNA that each downsampled
(y-axis) or full coverage (x-axis) genome matches to individuals from each of 26 present-
day populations (dots). Red line is y = 2. x and y units are normalised copying values
and thus removed for clarity. Points coloured by meta-population.

Principle component analysis (PCA) is a widely used technique to visualise the relative
genetic diversity of different individuals. PCA can be performed on the chunklengths matrix

in a similar way to how PCA on the genotype dosage matrix is often employed in ancient
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Coverage Loschbour  sfl2 UstIshim Yamnaya

0.1 Iberia. HG PWC_SwedenNHG.SG BHeimburg LN  CordedWare

0.5 Loschbour  sf12 UstIshim Poltavka

0.8 Loschbour  sf12 UstIshim Poltavka

1 Loschbour  sfl2 UstIshim Poltavka

2 Loschbour  sfl12 UstIshim YamnayaSamara
3.5 Loschbour  sfl12 UstIshim YamnayaSamara
5 Loschbour  sfl2 UstIshim YamnayaSamara
10 Loschbour  sf12 UstIshim Yamnaya

20 Loschbour  sfl2 UstIshim Yamnaya

Table 2.5: For each downsampled individual at each level of coverage, each entry gives the closest
Cartesian neighbour based upon the PCA in Fig 2.9, not including other downsamples.

DNA studies. Visualising whether downsampled individuals cluster close to the same sample
at full-coverage is a useful way of determining whether the copyvectors of the downsampled

individual reflect those of the full-coverage individual.

The position of the full coverage individuals are consistent with prior knowledge about
their ancestry (Fig. 2.9). For example, Loschbour is positioned alongside other Hunter
Gatherers, who are highly differentiated from the later Neolithic farmers and Bronze Age
Europeans. sfl2 clusters with the other Scandinavian Hunter Gatherers in the dataset.
Yamnaya is differentiated from the group of Bronze Age individuals and situated close to
individuals from the Poltavka and Srubnaya culture. LBK is located with other individuals
from the early to middle Neolithic in central Europe. Consistent with sharing little ancestry
with any group over another, UstIshim is positioned close to the central Bronze Age mass,

where most of the individuals in the PCA are located.

For all levels of downsampling other than the 0.1x, the downsampled and full coverage
genomes were positioned very closely to one another on the PCA. When considering all
downsampled individuals, a pattern emerges whereby the genome downsampled to 0.1x for

each individual is ‘pulled’ towards the origin of the PCA. This may reflect a ‘homogenisation

of low coverage genomes when many genotypes are imputed.

To formally examine the positioning of the samples on the PCA, T calculated the closest
Cartesian neighbour to each of the downsampled individuals, not including other downsampled
individuals (Table 2.5). Other than at 0.1x coverage, the samples UstIshim, sf12 and
Loschbour always were closest to the same sample at full coverage. Up to 5x coverage,

Yamnaya was closest to closely related YamnayaSamara and Poltavka samples.

Taken together, this data suggests a minimal effect of coverage down to and including

0.5x mean depth. To my knowledge, no other study has evaluated the effect of coverage on
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Figure 2.9: Principle component analysis (PCA) of downsampled, full coverage and downloaded
ancient individuals generated from the linked chunklengths matrix. Full coverage
and downsampled genomes of the same individual are coloured the same. Reference
individuals are grouped into populations plotted as the mean principle components for
all individuals within the population. Numbers in labels correspond to the number of
individuals within the reference population. 0.1x samples have red border for clarity.
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ChromoPainter analysis down to a coverage of 0.5x. Using Beagle v4/v4.1, Margaryan et
al (2020) showed a minimal effect of coverage at 1x and that fineSSTRUCTURE groupings,

containing individuals as low as 0.5x coverage, were not driven by coverage [58].

2.6.5 SOURCEFIND

I next determined the effect of sequencing coverage on the ancestry proportions estimated
by SOURCEFIND, which accounts for variable donor group sizes and incomplete lineage

sorting to improve interpretability relative to the raw chunklengths matrix.

I began by considering three ancestral sources, or ‘surrogates’, fixed as Anatolia Neolithic,
Western Hunter-Gatherer and Yamnaya steppe pastoralist. I compared inferred proportions

for the same individual across different levels of coverage (Fig. 2.10).

Consistent with previous results, SOURCEFIND estimates are robust down to 0.5-0.8x
coverage. At 0.1x coverage, there is an increase in ancestry components that are not present
in higher coverage samples, suggesting they are artefacts caused by low coverage. For example,
small components of Anatolia Neolithic and Yamnaya ancestry appear in Loschbour at 0.1x
coverage, which are not present at any higher coverages. Above 0.5x coverage, the effect of
coverage on estimated ancestry proportions appears to be marginal. For example, in sf12,
the difference in the minor ancestry component of Anatolia Neolithic is, at most, 2.4%. LBK
was excluded because downsamples had anomalously poor results; I inferred roughly equal
proportions of all surrogates in spite of the fact that they should have been almost 100%

farmer.

However, more than three surrogates are often used, as SOURCEFIND is meant to
infer the most important contributors without a priori knowledge of the samples’ ancestry.
Therefore, I re-ran SOURCEFIND using 39 surrogate populations (Fig. 2.11). For all
downsamples above 0.1x in coverage, the ordering of proportions for each surrogate was the

same.

Again, Loschbour seems to be the least affected by coverage, with only slight differences
between the 0.5x and full coverage samples. It is known that Upper Palaeolithic / Early
Neolithic Hunter-Gatherer populations were small and lacked genetic diversity [51,115,116]. It
is therefore expected that Hunter-Gatherers would share longer IBD segments than individuals
from outbred populations. Accordingly, this may make estimating SOURCEFIND proportions

easier.
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Figure 2.10: Each panel gives SOURCEFIND inferred recent ancestry sharing proportions for a
different downsampled genome. Bars represent proportion of ancestry, coloured by
different surrogates. Different coverages for the same individual are given within each
panel. Three surrogates were used.

2.7 Issues and possible solutions for low coverage ancient

DNA

The previous section outlined a drawback of performing ChromoPainter analysis on low
coverage (<0.5x) ancient DNA samples; low coverage samples appear to be shifted towards
the origin of a principle component analysis (PCA) relative to the same sample at higher
coverage (Fig. 2.9) and can contain ancestry estimates that are not present in the same full
coverage sample (Fig. 2.10). This is evident for the lowest coverage samples at 0.1x and

suggests that samples of this coverage cannot be reliably analysed using current methodology.

In order to solve the issue of coverage-related bias, it is first necessary to determine at
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Figure 2.11: Each panel gives information for a different downsampled genome. Bars represent
proportion of ancestry inferred by SOURCEFIND, coloured by different surrogates.
Different coverages for the same individual are given within each panel. All 39 ancient
surrogates were used. Only surrogates with more than 5% are shown. Ancient
surrogates grouped into hand-assigned ‘meta-populations’ for visual clarity. LBK
excluded because of anomalously poor results.
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which stage of the analysis pipeline the bias is introduced. By ‘analysis pipeline’, I refer to
the three stages of (1) variant calling, (2) imputation and phasing, and (3) ChromoPainter

described in the methods section.

2.7.1 PCA imputation test

To explicitly test at what stage the bias is introduced, I performed a set of principle component
analyses on the downsampled data. First, I performed PCA projections of all downsampled
ancient individuals onto a set of present-day European individuals (shown in Table 2.1) using
i) pre-GLIMPSE genotypes and ii) post-GLIMPSE (imputed) genotypes (Fig. 2.12). PCA
projections are used when the target dataset, in this case downsampled ancients, contain

variable levels of missing data.

The results show that there is no apparent coverage-related bias in the pre-GLIMPSE PCA;
the 0.1x samples do not substantially differ in their position from the other downsamples of
the same individual. However, there is a degree of noise; for example, the LBK downsamples
are spread over a small region on the PCA. Here, noise is variability in the position of

technical replicates (full coverage samples and their downsamples) on the PCA.

On the other hand, downsamples of UstIshim, sf12 and Loschbour are shifted to the
centre of the post-GLIMPSE PCA and away from the full coverage individual and other
downsamples. This suggests that coverage-related bias is being introduced in the imputation
stage. At the same time, GLIMPSE appears to have removed some of the noise in the
downsampled individuals of coverage >0.5x. For instance, the noise observed in the LBK
samples in the pre-imputation PCA is substantially reduced and the samples cluster more

tightly.

I also performed PCAs based upon an all-v-all ChromoPainter painting using the same
set of present-day European samples (Table 2.1) and downsampled ancient individuals as
previously, in both linked and unlinked modes. There is an increased amount of noise
and evidence of coverage-related bias relative to the post-GLIMPSE genotype PCA. Fig.
2.13) displays the PCA for the same painting, but using the unlinked chunkcounts matrix.
Comparing the linked and unlinked PCAs shows the effect of including linkage (i.e. haplotype
information) on the amount of bias and noise across each sample. Per-sample, there appears

to be reduced noise in the unlinked painting.

These results suggest that imputation using GLIMPSE introduces a degree of bias into
0.1x samples that is not apparent on non-imputed genotypes. They also suggest that

ChromoPainter introduces an additional degree of bias when analysing haplotypes, or that it
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amplifies bias already present introduced at the imputation stage. Accordingly, removing
SNPs which have been poorly imputed may be a way to mitigate such biases. An alternative

explanation may be that an increase in switch-errors may be driving the signal, as it has

been previously shown that phasing accuracy declines with coverage [25].
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Figure 2.12: Principle Component Analysis. Left - pre-GLIMPSE genotypes. Right - post-

GLIMPSE (imputed) genotypes. White labels correspond to the midpoint of all
samples from that population, grey points correspond to modern individuals. 0.1x
samples highlighted in red for clarity. Black lines are y = 0;x = 0.

2.7.2 Direct imputation test

The previous section suggested that imputation plays a role in the introduction of coverage-
related bias. However, it is not clear whether it is ‘bias’; i.e. towards the reference population
used to assist imputation, or ‘noise’ due to random incorrect imputation. To directly test

whether the effect of imputation is noise or bias, I used the Human Origins dataset (described
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in Appendix section A.3), containing the genotypes of 5998 present-day individuals from
across the world at 560,442 SNPs. I chose to use present-day samples because there is a larger
total number of individuals and larger number of individuals per population, giving more
power to detect any potential bias. Additionally, the populations in present-day samples are
more homogenous and well-defined compared to ancient groups. I set all but 70,000 random
SNPs as missing and imputed missing positions using the HRC as a reference, in order to
simulate a dataset where the majority of SNPs are imputed. I then performed an all-v-all
painting of i) the original Human Origins dataset where none of the 560,442 SNPs had been
imputed and ii) the simulated dataset where 430,000 SNPs had been imputed.

Bias occurs when missing genotypes are incorrectly imputed with variants from certain
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type prop correct 0.1x prop correct 0.5x Number of SNPs

1/1 0.880 0.967 476,046
0/1 0.850 0.971 662,819
0/0 0.954 0.989 1,003,260

Table 2.6: Aggregated proportion of genotypes in 0.1x and 0.5x across downsamples which match
the genotype in the equivalent full coverage individual, stratified by whether genotype in
full coverage sample is heterozygous, homozygous reference or homozygous alternative.
Number of SNPs is the total number of SNPs aggregated across all downsamples.

populations more frequently than others. We might expect these populations to be those
which are more prevalent in the reference panel. We would correspondingly expect bias to
mean that, when painted, some donor populations would donate more than others, relative to
if no imputation had taken place. On the other hand, if ‘noise’ is dominating results, we would
expect the incorrectly imputed genotypes to be randomly distributed across populations,
and similarly we would not expect to see any populations donating more than others relative

to if no imputation had taken place.

Therefore, we can compare the amount different donor groups donate under the dataset
where none of the 560,442 SNPs had been imputed versus the dataset where 430,000 (86%)
of these SNPs have been imputed by plotting the mean amount donated by each population
using imputed SNPs and non-imputed SNPs (Fig. 2.14). The 20 populations that contribute
most are a set containing European / Ashkenazi Jewish / Levite Jewish populations. Notably,
the Haplotype Reference Consortium panel that was used to impute the data consists
primarily of individuals of European descent. The two populations which are over-copied the
most after imputation are two English populations from Kent and Cornwall. This suggests
that there is a most likely a bias towards copying more from European populations when the

data has been imputed using the HRC.

Another consideration is the concept of reference sequence bias, where genotypes are
imputed with a higher accuracy when they contain more reference alleles. To display
this effect, I calculated the proportion of correctly imputed genotypes in 0.1x and 0.5x
downsamples and stratified by genotype class (Table 2.6). In the case of 0.5x downsamples,
adding reference alleles to the genotype increased the accuracy of imputation. For 0.1x
downsamples, reference homozgyous genotypes were imputed more accurately than non-
reference homozygous genotypes. In 0.1x downsamples, non-reference homozygous genotypes
were imputed approximately as accurately as heterozygous genotypes, potentially in part

because of the difficult of calling heterozygous genotypes in very low coverage samples.
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Figure 2.14: Comparison of the mean normalised cM donated by each donor population using the
imputed and non-imputed SNP sets. The 20 populations with the largest difference
between imputed and non-imputed donation are highlighted. Red line is line of y = «.

2.8 Solutions

In this section I will explore potential solutions to the issue of coverage-related bias. Based
on the findings in previous sections, imputation causes bias towards particular reference

populations in modern samples.

2.8.1 Accounting for allele likelihoods

Section 2.2.1.1 describes an improvement to the ChromoPainter algorithm. Instead of
assuming that each allele on a haplotype is correct with a probability 1 — 6, where 6 represents
an error probability, the posterior genotype probability from GLIMPSE is accounted for

in the emission probabilities of the copying model. The motivation behind this update is
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that the uncertainty associated with genotype calls at low coverage is suitably propagated
throughout the painting process, resulting in uncertain alleles contributing less towards the
expected copying values than more certain ones. This is similar in spirit to that of Viera
et al (2016), who account for genotype likelihoods to infer inbreeding IBD tracts from low

coverage sequencing data [117].

To determine whether accounting for allele likelihoods improved the painting accuracy
of a low-coverage genome, I painted the individuals downsampled to 0.1x and 0.5x and
corresponding full coverage samples using the ‘standard set’ of ancient reference individuals,
using both ChromoPainterV2 and ChromoPainterV2Uncertainty. I then calculated Pearson’s
correlation between the copyvectors of full coverage and downsampled individuals using the
two different methods (Fig. 2.15). This shows that at 0.1x, the ChromoPainterV2 method
clearly outperforms ChromoPainterV2Uncertainty across all samples, whereas at 0.5x, the
new method marginally outperforms the standard method. Therefore, while accounting for
allele likelihoods may improve performance in cases of coverage >0.5x, which has been shown
to still capture some haplotype information, it does not help in cases of coverage of 0.1x

where bias problems persist.

2.8.2 Filtering SNPs

In this section, I will test whether filtering the set of input SNPs on different criteria reduces

the effect of coverage related bias.

The frequency of a particular variant in the reference panel (RAF - minor reference
allele frequency) used for imputation is known to affect how accurately that variant can be
imputed [25,63,91,92]. Specifically, we expect variants which are less frequent in the reference
panel to be imputed at a lower accuracy than those which are more frequent. Therefore,
removing variants with a low frequency in the reference panel may mitigate the coverage
related bias by removing variants which have been incorrectly imputed. In other words, we

want to retain the SNPs where both alleles are relatively common within the population.

For each individual, I took the 428,425 SNPs in the HellBus set and removed SNPs with
0.1 > RAF or RAF > 0.9, removing an average of 50,187 SNPs per individual. RAF refers
to the frequency of the allele in the 1000 genomes reference panel used to phase and impute
the HellBus dataset. I then painted individuals downsampled to 0.1x and 0.5x using the

standard set of 125 ancient donor individuals.

Comparing the TV D values between the copvyectors showed that, whilst there was a

marginal improvement at 0.1x, this did not improve the 0.5x copyvectors (Table 2.7).
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Figure 2.15: Comparison of performance of ChromoPainterV2 and ChromoPainterV2Uncertainty.

Panels correspond to samples downsampled to 0.1x (left) and 0.5x (right). Points
correspond to the r-squared between the downsampled individual and the same
individual at full coverage. Red points are values obtained from ChromoPainterV2
and blue points are those obtained from ChromoPainterV2Uncertainty.
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sample u 0lx s O0lx r Olx gp Olx wu 05x s 05x r 05x gp 05x
LBK 0.926 0.927  0.933 0.746 0.981 0.981 0.982 0.959
Loschbour 0.898 0.898 0.907 0.654 0.980 0.980 0.976 0.925
sf12 0.923 0.923 0.942 0.774 0.981 0.981 0.980 0.950

UstIshim 0.944 0.944 0.945 0.827  0.980 0.980 0.976 0.960
Yamnaya 0.915 0.915  0.920 0.726 098 0.986  0.985 0.964

Table 2.7: Table of 1 — TV D values between the copyvectors of full coverage and downsampled
individuals. ‘u’ refers to ChromoPainterUncertainty, ‘s’ refers to ChromoPainterV2, ‘r’
refers to filtering SNPs with reference allele frequency (RAF) 0.1 > RAF or RAF > 0.9
and ‘gp’ refers to filtering by maxz(GP) >= 0.990.

I then chose to filter SNPs based on max(GP) at each position. max(GP) correspond
to the accuracy with which a SNP has been imputed, with higher values reflecting a higher
chance of that genotype being imputed correctly. For each individual downsampled to 0.5x
and 0.1x, I only retained positions where the maxz(GP) >= 0.990. For the 0.5x individuals,
this resulted in a total of 348,852 SNPs for LBK, 339,949 for Loschbour, 315,075 for sf12,
308,961 for UstIshim and 386,484 for Yamnaya. Because different SNPs were removed from
different individuals, each individual was painted separately. The same standard set of 124

ancient donors was used. Again, this did not improve the accuracy of the copyvectors.

2.8.3 Restricting analysis to non-imputed SNPs

Section 2.7.1 showed that imputation was the likely cause of coverage related bias. Thus,
restricting ChromoPainter analysis to non-imputed SNPs above a certain coverage may

mitigate such bias.

However, removing SNPs may have negative side-effects; increasing the genetic distance
between SNPs reduces linkage information and therefore may reduce the overall power to
distinguish between closely related haplotypes. At the most extreme case, retaining only a
small number of SNPs may effectively reduce the method to unlinked and lose the advantage
given by accounting for haplotypes. This may be important if we decide to restrict analysis
to non-imputed SNPs, as low coverage samples may only have a small number of high enough
coverage, non-imputed SNPs. Therefore, it is important to determine whether samples of a
particular coverage have enough regions containing enough high-coverage SNPs to retain the

advantages of haplotype-based methods over unlinked ones.

One case study to test whether a set of SNPs has enough linkage information is to
determine whether it is possible to distinguish individuals born in Devon from those born in
Cornwall. This has shown to be possible using the fineSTRUCTURE clustering algorithm
using linkage information, but not using unlinked methods (ADMIXTURE [109]) [31].



2.8. Solutions 69

Therefore, determining whether it is possible to distinguish between individuals from Devon
and Cornwall acts as a test case for determining how many high-coverage SNPs would give

sufficient SNP density to distinguish between these two populations.

To assess this, I painted individuals from Devon (n=73) and Cornwall (n=89) with all
other POBI individuals as donors (n=2,039), using the full set of SNPs (n=452,592). It
is necessary to develop a classification score which quantifies to what degree it is possible
to distinguish between individuals from Devon and Cornwall. For a classification score, I
calculated the proportion of Cornwall individuals whose copy vector had a lower TV D with
the mean copyvector of all other Cornwall individuals than with the mean copy vector of all
Devon individuals. In other words, this asks whether the individual is genetically closer to

the Devon or Cornwall population.

I repeated the analogous procedure to find a classification score for Devon individuals,
given in table 2.8. I then painted the same individuals using a reduced set of SNPs, in
particular reducing the set of SNPs to 12 different percentages ranging from 0.2% - 90%
of the total original number of SNPs (a full list of the reduction levels and details of the
painting procedure can be found in the methods section 2.4). Painting using a reduced set of
SNPs is intended to simulate an ancient genome where only a subset of the total number of
SNPs have been covered by a sufficient number of reads. Defining ‘sufficient’ isn’t precisely
defined, but it is possible to calculate the probability of observing both reads given x reads
at a given heterozygous positions and assuming equal probability of observing reference and
non-reference alleles; for example, 9 reads are needed to obtain at least a 0.995 probability of

observing both alleles (Fig. 2.16).

In my painting of 5998 world-wide samples on the Human Origins array (described in
Appendix section A.3), the average number of segments that forms a recipient genome is
9764 (range: 1437-18,963). Given a genome-wide size of ~ 3000Mb, this implies that an
average ‘chunk’ size (in Mb) is 3000/9764 = 307.2 = 500kb, where a ‘chunk’ is a set of
contiguous SNPs matched to a single donor. Therefore, for each of the 12 different levels of
SNP reduction used in my Devon/Cornwall analysis, I can calculate the average number of
SNPs per 500kb chunks, and determine how many of these 500kb chunks are necessary to
accurately distinguish individuals from Devon and Cornwall. To do so, for each reduced SNP
percentage, I found the Cornwall/Devon classification score using only data from chromosome
22 (which has only W 500kb chunks), and using only chromosomes 21 and 22 (which has V
500Kb chunks), etc, continuing until the classification scores were equivalent to that when
analysing all 22 autosomes at all 452,592 SNPs. In this way, for each reduced SNP percentage,

I found the number of 500Kb chunks necessary to as accurately distinguish between Devon
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Figure 2.16: Probability of observing both reads at a heterozygous positions, given = reads
assuming equal probability of observing reference and non-reference alleles.

Percentage

of SNPs retained Cornwall ~ Devon

1% 0.801  0.945
2% 0.820  0.986
3% 0.876  0.973
4% 0.910  0.973
5% 0.888  0.973
6 % 0.899  0.973
7% 0.888  0.973
8 % 0.910  0.973
9% 0.910  0.973
10 % 0.910  0.973
20 % 0.921  0.973
30 % 0.910  0.973
40 % 0.899  0.973
50 % 0.910 0.973
70 % 0.910  0.973
80 % 0.910  0.973
90 % 0.921  0.973

Table 2.8: Proportion of individuals correctly assigned to their population at different percentages
of SNPs retained.
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and Cornwall as in the case where we had analysed a full data set of 452,592 SNPs (Table
2.9). I found results to be very similar to if chunk-size were instead defined as 250kb or 1Mb
(Table 2.9).

I repeated an identical analysis, including reducing the total number of SNPS, using

individuals from the Mandenka and Yoruba ethnic groups rather than Devon and Cornwall.

Number of

Number of SNPs o505, 500Kb  1Mb  SNPs per 500Kb

retained Window
20,000 9356 4715 2388 3.3
25,000 6954 3509 1781 4.1
30,000 6272 3166 1607 5.0
35,000 4083 2064 1049 5.8
40,000 3099 1565 796 6.6
45,000 3602 1820 925 7.5
50,000 2612 1321 673 8.3
100,000 1304 661 338 16.6
150,000 1005 508 260 25.0
200,000 705 357 183 33.3
250,000 705 357 183 41.6
300,000 506 255 130 50.0
350,000 267 135 69 58.3
400,000 705 357 183 66.6
450,000 136 69 35 75.0

Table 2.9: Number of 250Kb, 500Kb or 1Mb windows required at different levels of SNP reduction
to match the TVD assignment power of 500K fully genotyped SNPs for individuals in
Devon and Cornwall. Note that the number of necessary 250kb and 500kb windows is
roughly four and two times, respectively, the number of 1Mb windows, indicating the
definition of window size makes little difference.

Guided by these results, for each ancient individual (n=587, median coverage=1.1x), I
found the number of non-overlapping windows of sizes 250Kb, 500Kb or 1Mb that had Y
SNPs above Z coverage, varying both Y and Z.

Fig 2.17 shows the mean number of 500Kb windows per individual with at least Y SNPs
above Z coverage, with individuals grouped into bins based on their mean coverage. Points

are coloured yellow if, within the bin of coverage, samples have at least 2000 windows.

Samples less than 0.5x do not have enough windows, even if the threshold for a ‘good’
SNPs is being covered by a single read. As is it not possible to call a heterozygous position
with only a single read, this suggests that there are not enough non-imputed SNPs with
enough coverage to match the power seen in full coverage individuals. For example, samples
between 0.3-0.4x have approximately 1000 segments with > 10 SNPs above 2x in coverage;
Table 2.9 shows that 1565 windows of > 8.3 SNPs is enough to match full power. However,

as Figure 2.16 shows, 50% of these genotypes may not observe both reads if the position
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Number of

Number of SNPs 250Kb  500Kb 1Mb  SNPs per 500Kb

retained

Window
30,000 6272 3166 1607 5.0
35,000 3099 1565 796 5.8
40,000 3099 1565 796 6.6
45,000 2612 1321 673 7.5
50,000 3099 1565 796 8.3
100,000 1886 956 489 16.6
150,000 1304 661 338 25.0
200,000 506 255 130 33.3
250,000 267 135 69 41.6
300,000 506 255 130 50.0
350,000 506 255 130 58.3
400,000 506 255 130 66.6
450,000 267 135 69 75.0

Table 2.10: Number of 250Kb, 500Kb or 1Mb windows required at different levels of SNP reduction
to match the TVD assignment power of 500K fully genotyped SNPs for individuals in
from Mandenka and Yoruba ethnic groups.

is heterozygous. Indeed, even when there are 3 reads covering a site, there is still a 25%
chance of not observing both alleles. Only the samples in the 2-5x coverage bin had enough

windows when using a coverage threshold of 4 and 5 reads.

This analysis therefore suggests that there are not enough regions with enough high

quality SNPs at mean coverages less than 2x to reliably analyse using ChromoPainter.

2.9 Summary of Results and Discussion

In this section I used a downsampling approach on five high-coverage ancient DNA samples
to show that ChromoPainter analysis can be performed on samples down to 0.5x coverage
without showing a significant deviation from the same sample at full coverage. In particular,
ChromoPainter copyvectors, SOURCEFIND ancestry proportion estimates and Principle
Component Analysis position all of 0.5x coverage and higher showed a good correspondence
with the same metrics at full coverage. The 0.1x downsampled showed deviations from the
full coverage samples which meant that they cannot currently be analysed reliably with
ChromoPainter and its associated methods. I showed that imputation introduces bias into
low-coverage samples that is manifested by those samples being shifted towards the centre of

a PCA.

I performed a range of analyses to try and recover useful haplotype information from
low coverage samples and improve the performance of the analysis. Counter-intuitively,

approaches such as removing SNPs with a low imputation quality and reference allele
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frequency did not improve the performance of ChromoPainter on low coverage samples.
However, this is broadly consistent with a single previous study, which also showed that
filtering the dataset for SNPs with a low imputation quality score did not substantially affect
fineSTRUCTURE clustering [48]. However, it also runs counter to studies which have shown
filtering SNPs based on imputation quality score can significantly reduce the number of

incorrectly imputed genotypes [63].

I also developed a modification to the ChromoPainter model which accounted for un-
certainty in genotype calls; however it only marginally improved the performance of Chro-
moPainter on samples of 0.5x or higher. Again, this was surprising, as previously published
methodology which accounts for genotype likelihoods when estimating IBD tracts has been

shown to be effective [81].

Finally, I used simulated data from present-day individuals to show that samples around
0.5x coverage can in theory be analysed with useful haplotype information, but that imputa-

tion is necessary for lower coverage samples.

Many of the analyses performed in this section only used a single target sample, as I did
not identify a way to generate multiple downsampled individuals from the same population.
For example, the SOURCEFIND analysis I performed used a single target downsample
when estimating ancestry proportions. This differs from a typical ancient DNA analysis,
such as those of Margaryan et al [58], where there may be up to 20 low coverage samples
per population. This number may increase in the future as the technology to generate
ancient DNA improves. Leveraging information across multiple samples from the same
population would improve the accuracy of population-wide ancestry or admixture estimates,
for example. Thus, the results presented in this section which used a single target individual
may underestimate the ability to analyse low-coverage samples. It may be possible to

accurately analyse 0.1x samples if there are multiple samples per population.

In this section I used present-day individuals to estimate the number and size of chunks
needed to retain haplotype information. This was because present-day individuals are simpler
to analyse; the populations are better defined than in ancient samples (i.e. it is possible to
only include individuals whose grandparents were born within 100kM of a target location),
are of uniform coverage and contain many more individuals per population. Thus, using
present-day individuals removes potentially confounding factors that may be present when
analysing ancient samples. However, using present-day samples to draw conclusions about
ancient samples may lead to underestimating the number of SNPs per window required. As

the present-day samples had been genotyped high-quality DNA samples and a genotpying
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array, each genotype can be called with a high confidence. This is not the case with ancient

samples, where each SNP may be covered by a small number (<3) of reads.

For the imputation and phasing reference panel, I used the 1000 genomes dataset which
contains around 6000 haplotypes. The Haplotype Reference Consortium contains roughly
10 times as many haplotypes and thus offers substantial gains in the potential accuracy of
genotype imputation [92]. I did not use the HRC owing to difficulties in obtaining access to
the data; however, I expect that future studies which use this resource will be able to analyse

ancient DNA samples of low coverage to a higher degree of accuracy.

Whilst I did not interrogate the range of coverages between 0.1-0.5%, this could be an

avenue for future research.



Chapter 3

Investigating the sub-continental
ancestry of ethnic minorities within the
U.K. Biobank from sparse genotype
data

3.1 Introduction

From a genetic standpoint, the British population is one of the most studied in the world, with
many studies sequencing or genotyping individuals from across the U.K (e.g. [31,118-120]).
These projects have been primarily aimed at researching the genetic basis of disease, but
have also been used to investigate population history, substructure and the relationship of

different sub-populations in the U.K. to other European countries [31,37,121].

The U.K. is also an ethnically diverse country, with 13.8% of individuals belonging to
ethnic minority groups (source: ONS survey). Groups of people from across the world have
migrated to the U.K. at different periods within the past thousand years, driven by the legacy
of colonialism [122], the transatlantic Slave Trade and a variety of other reasons. Despite
this, the roughly 9 million ethnic minorities within the U.K. remain relatively understudied
in the context of genetics. For example, every one of the 27 papers in the GWAS catalogue
with “U.K. Biobank” in the title, and two others presently in the catalog curation queue,
limited their analyses to subgroups described in various terms as “White British”, “British”,
“European”, “White European”, “Caucasian” or “White” [123]. The primary reason for
this is reasonable concerns over the confounding effect of population substructure within a

cohort [124]; retaining a more genetically homogeneous cohort is one strategy to mitigate


https://www.ons.gov.U.K./peoplepopulationandcommunity/populationandmigration/populationestimates/articles/researchreportonpopulationestimatesbyethnicgroupandreligion/2019-12-04
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this.

However, removing ethnic minorities from GWAS analyses is problematic, as evidence
is mounting that the results from GWAS, including Polygenic Risk Scores (PRS), may not
be transferable to other populations if they have been conducted in cohorts of exclusively
European individuals [125-127]. The reasons for this are not yet fully understood, but it is
thought that differences in LD structure may be at least partially responsible [128]. Ethnic
minorities may therefore miss out on the advances in healthcare driven by large-scale genomic

projects.

Understanding, and correcting for, population structure is an important step towards
including a diversity of ancestries in GWAS. Several recent studies have shown the power of
methods which explicitly model linkage between neighbouring markers when controlling for
population structure, relative to traditional approaches such as PCA. Zaidi and Mathieson
(2020) [129] showed that whilst it is not possible to correct for recent population stratification
using principal components of common variants, correcting using a matrix of pairwise
IBD sharing is effective. Similarly, it has been shown (S.Hu, personal communication of
unpublished data) that incorporating principle components did not eliminate significant
associations between genetic variants and birth location in UK Biobank participants. However
the significant hits disappeared when corrected for using a ChromoPainter coancestry matrix,
generated by painting target samples against a set of reference individuals and using the
resulting painting profile as covariates in the association test. Byrne et al also eliminated
significant associations with birth place in a cohort of Dutch individuals, by painting samples

using PBWT-paint, a method closely related to ChromoPainter [27].

Other recent studies have leveraged advances in algorithm development, such as the
positional Burrows-Wheeler transform, to perform haplotype-based analyses on Biobank-scale
datasets. Saada et al (2020) detected around 214 billion IBD segments across 487,409 individ-
uals in the U.K. Biobank, obtaining enough information to estimate birth location to within
45 km, demonstrating the power of haplotype-based approaches on large datasets. However,
their method only estimated pairwise IBD between individuals rather than comparing each
individual to all other individuals in the dataset; the latter approach is more powerful at
detecting recent shared ancestry [40]. Additionally, Saada et al only considered self-identified
White British individuals. Zhou et al (2020) recovered a similar number of IBD segments

within the U.K. Biobank (231.5bn), also using a PBWT-based method [130].

Recent studies have outlined the power of haplotype-based approaches in inferring the

population histories of different African ethnic groups [131-133]. Therefore, it seems natural
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to extend the approaches of Saada et al and Byrne et al to exploring the ancestry and
structure of individuals of recent African ancestry in the U.K. Biobank as a first step to

including a wider diversity of ethnicities in association studies.

Additionally, but no less importantly, there is intrinsic value in exploring the ancestry of
individuals (ethnic minorities in the U.K.) who have typically been excluded from analyses.
Excluding individuals based upon their ethnicity presents other issues; individuals who
registered for the U.K. Biobank undertook a series of extensive tests and not including their

data in studies seems to be ethically dubious at best [134].

Therefore, to investigate the African ancestry of U.K. Biobank individuals, I will leverage
a recently compiled dataset, hereafter referred to as ‘Human Origins’ At the time of writing,
it is the most detailed dataset of genotype data from African individuals in terms of the
number of ethnolinguist groups represented. Whilst the dataset contains individuals from
across Africa, it contains particularly large numbers of individuals from South Africa (n=104),
Cameroon (n=567) and Ghana (n=211), which are countries known to have contributed
immigrants to the U.K. Of the 5998 samples in the Human Origins dataset, 1,518 are
previously unpublished, including all samples and 188 populations from Sudan, Nigeria,
Ghana and The Democratic Republic of Congo. Therefore, this dataset is ideal for use as a
reference panel to investigate the ancestry of ethnic minorities within the U.K. Biobank. In
particular, given our newly acquired data comes from parts of west Africa that may well
represent sources of African ancestry among UK minority groups, I chose to investigate
individuals with recent African ancestry. However, these results should in theory be equally

applicable to other non-European populations, such as those from east and south Asia.

One potential issue is that only 70,776 SNPs overlap between the U.K. Biobank and
Human Origins genotyping arrays. This is much lower than the number used in a typical
ChromoPainter analysis, which is usually between 500,000 and 700,000. Using a low number
of SNPs in the analysis may reduce the power to infer accurate ancestry proportions, in
particular for haplotype-based methods since haplotype information depends on SNP density.
Therefore, one option is to impute the non-overlapping SNPs using a reference panel. However,
the effect of imputation on ChromoPainter-style analyses has yet to be fully investigated. It is
possible that imputing a large number of positions may introduce biases, particularly towards
populations which are present in the reference panel. Studies have shown repeatedly that
genotypes in non-European individuals are imputed less accurately compared to European
individuals when using a primarily European reference panel [25,135]. Accordingly, we can
ask whether it is preferable to retain a smaller number of non-imputed SNPs or a larger

number SNPs, some of which have been imputed. My work in Chapter 2 showed that
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imputation introduced bias towards European populations prevalent in the reference panel; in
this chapter, I will extend that analysis to determine the effect of imputation on population

assignment in African ethnic groups.

This chapter will focus on two questions. Firstly, I will evaluate the effect of using
imputed genotypes on the validity of ChromoPainter analysis in African individuals, similar
to analyses I performed in Chapter 2 but tailored to my U.K. Biobank analysis. Secondly, I
will compare genetic variation patterns of U.K. Biobank participants with recent African
ancestry to the Human Origins dataset populations, in order to shed light on their ancestral

origins.

3.2 Methods

3.2.1 U.K. Biobank data access and initial processing

The U.K. Biobank dataset contains genotype data for 488,378 individuals at the time of
writing (https://www.U.K.biobank.ac.U.K./). Access was obtained to study the U.K.
Biobank dataset via UCL Genetics Institute (ref number 51119, principal investigator =
D.Curtis).

I obtained the U.K. Biobank genotype data, consisting of 488,377 individuals genotyped
at 784,256 genome-wide SNPs on the U.K. Biobank Axiom Array. I will hereafter refer to this
dataset as the ‘non-imputed’ data, as all SNPs were directly genotyped without imputation.

I used plink2 [136] to convert the binary plink files to .bcf format.

I also obtained U.K. Biobank data, which had already been imputed to approximately
96m SNPs from the original 784,256, using the Haplotype Reference Consortium (HRC)
resource. I will hereafter refer to this data as the ‘imputed’ data. Full details of imputation
can be found in the paper of McCarthy et al (2016) [101]. The imputed data was downloaded
and converted from .bgen to .bcf format using qctool2 (https://www.well.ox.ac.U.K.

/~gav/qctool_v2/).

I therefore had two separate datasets; ‘imputed’ and ‘non-imputed’, containing the same
individuals and differing only in whether or not imputation had been used to increase the

total number of SNPs.


https://www.U.K.biobank.ac.U.K./
https://www.well.ox.ac.U.K./~gav/qctool_v2/
https://www.well.ox.ac.U.K./~gav/qctool_v2/

3.2. Methods 81

3.2.2 ADMIXTURE analysis

I am primarily interested in using ChromoPainter [19] to explore the ancestry of ethnic
minorities in the U.K. Biobank. However performing ChromoPainter analysis on the en-
tire U.K. Biobank dataset (n=488,377 individuals) is computationally infeasible. Thus, I
chose to analyse only those individuals with more than 50% non-European ancestry. The
ADMIXTURE algorithm is a fast and accurate way to estimate continental-scale ancestry
proportions [109] and is therefore ideal for the task identifying individuals with more than

50% non-European ancestry in a large cohort.

I LD-pruned the non-imputed U.K. Biobank dataset using using plink -indep-pairwise
50 10 0.02 [136], leaving a total of 70,776 bi-allelic SNPs. I then subsetted the 1000 Genomes
dataset down to the 70,776 SNPs retained in the U.K. Biobank dataset and merged the two
datasets using bcftools -merge. Thus, I had a dataset containing all U.K. Biobank and
1000 Genomes individuals, genotyped at 70,776 SNPs.

I ran ADMIXTURE in supervised mode using the argument -supervised and fixed
the four reference populations as GBR. British, Nigeria Yoruba, Han Chinese and Gujarati
Indian from the 1000 Genomes dataset. These populations were chosen as they represent
a broad division of worldwide populations into African, European, East Asian and South
Asian; for the purposes of this particular analysis, it was not necessary to include finer-scale

populations. The rest of the arguments were left to default.

Individuals with at least 50% ancestry from Nigeria Yoruba were carried into later analysis;

I refer to these as ‘selected’ Biobank individuals.

3.2.3 Data preparation - Human Origins

To determine the ancestry of U.K. Biobank individuals, I compared their SNP patterns
to populations/ethnic groups from different parts of the world to infer which populations
they share recent ancestry with. As I am particularly interested in studying individuals
with recent African ancestry, I used the so-called ‘Human Origins’ reference dataset for this
purpose, as it contains individuals from 349 different ethnic groups from across Africa and
535 world-wide groups in total (Fig. 3.1). Full details of processing can be found in Appendix

section A.3 .
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3.2.4 Data merge - non-imputed data and Human Origins

I used bcftools -merge to merge 5,998 reference Human Origins dataset individuals with
8,476 UK Biobank participants that had >50% African ancestry, using the gt-conform utility
from Beagle (https://faculty.washington.edu/browning/conform-gt.html) to remove
any inconsistent positions. This dataset contained 65,749 non-imputed SNPs that overlap
between the Human Origins and UK Biobank arrays. I phased this dataset with shapeit4 [25]

using -pbwt-depth 8, the b37 genetic map and all other parameters set as default.

3.2.5 Data preparation - imputed data

I similarly merged the imputed UK Biobank data with the Human Origins reference dataset
at 525,566 SNPs that were genotyped in Human Origins, and phased this dataset with

shapeit4, using the same settings as for the non-imputed data.

3.2.6 ChromoPainter

For both of the imputed and non-imputed datasets, I used ChromoPainter to infer the
proportion of genome-wide DNA that each UK Biobank and Human Origins reference

individual matches to individuals from each Human Origins reference population.

An alternative option to using ChromoPainter would be to use PBWT (positional
Burrows-Wheeler transform) paint (https://github.com/richarddurbin/pbwt/blob/
master/pbwtPaint.c), a fast approximation to ChromoPainter which provides approxi-
mately the same output and is scalable to large sample sizes [27]. However, it is not possible
to provide a reference panel and each haplotype must be compared to all others in turn. This
would be much less efficient and would not allow me to take full advantage of the Human

Origins dataset.

3.2.7 SOURCEFIND

I estimated ancestry proportions for each of the selected U.K. Biobank individuals using
SOURCEFINDv2 [21]. T used the combined painting from the section above. I analysed each
U.K. Biobank individual with more than 50% African ancestry separately, using all Human

Origins populations as surrogates. I left all parameters as default.


https://faculty.washington.edu/browning/conform-gt.html
https://github.com/richarddurbin/pbwt/blob/master/pbwtPaint.c
https://github.com/richarddurbin/pbwt/blob/master/pbwtPaint.c
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3.2.8 Imputation bias test

The imputed U.K. Biobank dataset was imputed using a reference panel containing the
Haplotype Reference Consortium. Whilst this reference panel contains many European
populations, it contains relatively few from Africa. Imputing variants in non-European
individuals using a reference panel that is primarily composed of European individuals may
leadf to biased or inaccurate imputation [137]. Given I am particularly interested in analysing
individuals with recent African ancestry in the U.K. Biobank, it is important to determine

whether this is the case.

An obvious way to test this would be to compare a painting on the U.K. Biobank
individuals using datasets comprised of a majority imputed and non-imputed SNPs. However,
this is not possible; whilst the dataset contains country of birth (non-UK), the samples in the
U.K. Biobank dataset do not have any associated population or ethnic group labels beyond
broad self-identified categories. Accordingly, it would not be possible to mask their ethnic
group and attempt to guess it using only the genetic data, an approach which I use for the

Human Origins data in this chapter.

Therefore, I used the Human Origins dataset, where I could control whether or not SNPs
are imputed and mask population labels. T submitted the full Human Origins reference
dataset (5998 individuals and 560,420 SNPs) to the Sanger Imputation Server (https:
//imputation.sanger.ac.U.K./), which uses the full Haplotype Reference Consortium
(HRC) as a reference panel for imputation. I subsetted the imputed Human Origins dataset
down to SNPs present in the U.K. Biobank array, leaving 727,325 positions present in the
imputed Human Origins dataset and then randomly removed SNPs until 500,000 remained.
Although the number of SNPs still differ, my previous research in Chapter 2 shows that
increasing the number of SNPs beyond 400,000 does not affect the ability to correctly assign
individuals to populations (Appendix section E.0.2). I phased the imputed and non-imputed
datasets separately using shapeit4 at default settings.

To therefore determine whether using the imputed or the 70,000 SNP Human Origins
dataset is better in this scenario, I performed a painting using (i) the full 560,442 genotyped
SNPs, (ii) 64,762 genotyped SNPs overlapping UK Biobank, and (iii) 500,000 SNPs that
include the 70,000 genotyped SNPs and 430,000 SNPs imputed using the HRC reference.
I performed painting (ii) in both linked and unlinked mode to determine whether there is

haplotype information using 70,000 SNPs.

For each of the three datasets described above, I selected all ethnic groups from Nigeria,

Cameroon and Ghana which had five or more individuals (n=>51 populations, n=1203


https://imputation.sanger.ac.U.K./
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individuals) and split each population randomly in half, into ‘donors’ and ‘recipients’. I
painted all recipient populations (n=>51) using all donor populations (n=51) using a leave-
one-out approach (motivation for this approach given in Appendix section ). I tested the
information content of each painting by counting how often individuals copy more from
individuals in their own populations than individuals from other populations. I also counted
the number of times a population had the lowest TVD (motivation and description of TVD
given in appendix section B.3) with its own population (Table 3.1).

3.3 Results

3.3.1 4% of U.K. Biobank individuals have at least 50% non-

European ancestry

Performing ChromoPainter analysis on the 488,378 individuals in the U.K. Biobank would be
computationally unfeasible; therefore I first performed supervised ADMIXTURE on all U.K.
Biobank individuals. In order to identify individuals with at least 50% African ancestry, I set
K = 4 supervision clusters that were defined using European (CEU), Gujarati, Han Chinese
and Yoruban reference individuals from the 1000 genomes dataset. I then carried forward

individuals with more than 50% ancestry from Yoruba to later ChromoPainter analyses.

In total, there were 8476, 2653, 9171 individuals with at least 50% ancestry most
closely related to either Yoruba, Han Chinese and Gujarati reference populations respectively,
corresponding to 4.16% of the total U.K. Biobank individuals. Although I use these population
labels for convenience, I note that an individual with e.g. 50% ‘Han Chinese’ ancestry does
not necessarily derive 50% of their ancestry from the Han Chinese population, but that 50%
of their ancestry most closely matches Han China relative to the other reference populations.
Thus, a Japanese individual may be modelled as 100% Han Chinese whilst not being Han
Chinese in an ethnic sense. Similarly, for brevity, I will refer to individuals who have more
than 50% of their ancestry from Yoruba as being ‘African’ Biobank individuals, whilst
acknowledging that ‘African’ as a broad label encompasses a large diversity of ancestries and

ethnicities.

I validated the ADMIXTURE results to ensure that there was not any mixing of sample
labels and that enough ADMIXTURE EM iterations had been performed. To do this, I
selected all individuals who self-identified as being either “Caribbean”, “African” or “Black or
Black British” (n=7,527) and plotted the distribution of ADMIXTURE ancestry proportions,
under the assumption that these individuals should contain more African than other kinds of

ancestry. On average this was the case, with the mean proportion of African ancestry among
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these individuals being 0.88 (Fig. 3.2), compared to 11 % British, 0.22% Han Chinese and
0.19% Gujarati.

However, there was substantial variation in the ancestry proportions for those who self-
identified as being either “Caribbean”, “African” or “Black or Black British”. Proportions of
Yoruban and British ancestry ranged from 0 to 1, Han Chinese from 0 to 0.53 and Gujarati
from 0 to 0.759, reflecting the diverse array of genetic ancestries that can fall under a given
ethnic label. This follows from previous research which has shown self-reported ethnicity
can be an unreliable proxy for genetic ancestry [138,139]. This suggests that relying on
self-reported ethnicity may yield variable results when e.g. used as a covariate in a GWAS.
For example, there were 48 people who self identified as being either “Caribbean”, “African”

or “Black or Black British”, but had less than 1% African ancestry.

100

75

50

Proportion of ancestry

25

Yoruba British Han Chinese Gujarati
Surrogate population

Figure 3.2: Ancestry proportions inferred from supervised ADMIXTURE run (k=4) for all indi-
viduals who self identified as being either “Caribbean”, “African” or “Black or Black
British”. Points within each column are given random jitter to improve visual clarity.
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3.3.2 To impute or not?

In order to use the Human Origins dataset as a reference in ChromoPainter analysis to
ancestry in U.K. Biobank individuals, the datasets must be merged. The overlap of SNPs
genotyped in each dataset is only 70,776 SNPS, or an average of ~1 SNP per 40Kb. Given
linkage disequilibrium (e.g. as measured by Pearson’s correlation) between pairs of SNPs
decays to background levels by 100Kb within most populations [140], analysing 70,000 SNPs
may substantially decrease any potential power gains from modeling haplotypes to detect
fine-scale differences between populations. In contrast, the imputed U.K. Biobank dataset
has 535,544 SNPs in total, all of which are genotyped in the Human Origins reference dataset
and 87.7% of which are imputed in UK Biobank individuals. While this may boost power
over using only 70,000 SNPs, including a high percentage of imputed SNPs may bias ancestry
inference. Therefore, I needed to determine a) whether there is a loss of power when 70,000
SNPs relative to the a full 500,000 SNP dataset and b) whether there is bias when using a

dataset which contains a majority of imputed SNPs.

To answer these questions, I returned to the imputed and unimputed Human Origins
datasets I describe in Section 3.2.8. Recall here I reduced the Human Origins dataset to
70K SNPs and then imputed to approximately 500,000 SNPs using HRC and therefore
determine whether using the imputed or the 70,000 SNP Human Origins dataset is better in
this scenario, I performed a painting using (i) the full 560,442 genotyped SNPs, (ii) only the
64,762 genotyped SNPs overlapping UK Biobank, and (iii) 500,000 SNPs that include the
64.47K genotyped SNPs and 430,000 SNPs imputed using the HRC reference. I performed
painting (ii) in both linked and unlinked mode to determine whether there is any haplotype
information using 70,000 SNPs.

It is worth noting that, because of the specific SNP ascertainment strategies used, a
sizeable fraction of Human Origins SNPs have a very low frequency; 7 SNPs were invariant,
104,442 had a minor-allele frequency of less than 0.05, 35,061 of less than 0.01 and 2,891 less
than 0.001 (Fig. D.3).

For each of the three datasets described above, I selected all ethnic groups from Nigeria,
Cameroon and Ghana which had five or more individuals (n=>51 populations, n=1203
individuals) and split each population randomly in half, into ‘donors’ and ‘recipients’. I
painted all recipient populations (n=>51) using all donor populations (n=51) using a leave-
one-out approach (description and motivation of this approach given in Appendix section
B.2). I only considered populations of five individuals or more because any fewer individuals

would likely result in very weak power to assign individuals to that population. I tested
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painting ‘ TVD ‘ copying

70K (linked) 44% 24%
70K (unlinked) 20% | 1%
imputed (linked) | 14% | 14%
full (linked) 38% | 23%

Table 3.1: Percentage of populations which had lowest TVD (TVD) or copied the most (copying)
from their own population under different paintings. 70K linked used 70,000 SNPs in
linked mode, 70K used 70,000 SNPs in unlinked mode, imputed used 430,000 imputed
and 70,000 non-imputed SNPs in linked mode and full used 500,000 non-imputed SNPs
in linked mode.

the information content of each painting by counting how often individuals copy more from
individuals in their own populations than individuals from other populations. I also counted
the number of times a population had the lowest TVD (motivation and description of TVD
given in Appendix section B.3) with the mean copyvector of all other individuals in its own

population (Table 3.1).

Populations in the 70,000 non-imputed painting matched more to and had a lower TV D
with their own mean population copyvector than the 500,000 non-imputed painting. These
results suggest that, in the context of performing ChromoPainter analysis to assign African
individuals to sub-continental ethnic groups, there is no clear benefit to using more than
70,000 SNPs. Whilst it may seem counter-intuitive that there is more power using a smaller
number of SNPS; this is broadly consistent with my previous findings in Chapter 2, which
showed that metrics of painting information plateau (Fig. E.2) (i.e. there is no clear benefit
to using more than 50,000 SNPs in terms of assigning individuals to a population). This is
reassuring and suggests there is no loss of power when using the 70,000 SNP set. It is worth
noting that there may be advantages to using a higher number of SNPs in other contexts;
for instance, when attempting to identify which population genomic segments may have

originated from in GLOBETROTTER admixture analysis.

This data also shows that there is a fairly dramatic loss of power when using imputed
data relative to non-imputed data, as over 3x the number of populations had a lower TVD

with their own population when using imputed compared to non-imputed data.

Given the above results suggested that imputing data results in a loss of information, I
was interested in whether this constituted a ‘bias’ towards certain populations. Reference-
based imputation methods rely on identifying reference haplotypes which are closest to the
target haplotypes. However, if the ethnic groups that the target individuals derive ancestry
from are not present in the imputation reference panel, missing variants are imputed from
populations in the reference panel which are most closely related to the target samples. In

this case, two target populations may be imputed to appear more genetically similar to
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that reference population, reducing the differentiation between them (Fig 2.14). In theory,
this artificial similarity would be propagated through to the ChromoPainter analysis. In
particular, we would expect populations present in the reference panel to donate more to all

other individuals than they would if no imputation had taken place.

For example, in the case of the Haplotype Reference Consortium, the closest reference
population to two African target samples from e.g. Cameroon may be the Yoruba from
Nigeria, which is one of the few west African groups in the reference. These samples would
appear more similar to the Yoruba ethnic group than if they had not been imputed. In a
ChromoPainter analysis, the Yoruba donor population would donate more than than when

using non-imputed SNPs.

Comparing the imputed and non-imputed coancestry matrices revealed biases consistent
with the above expectation. If the coancestry matrix columns are combined into populations,
then the sum of each column gives the total length of genome that population contributes
to all recipient individuals in the dataset. Therefore, comparing the column sums between
the imputed and non-imputed matrices informs us about which populations contribute more
when using imputed compared to non-imputed SNPs. Fig 3.3 shows the amount of differential
haplotype donation on a per-population basis, with populations highlighted based on their
presence or absence in the 1000 genomes dataset. It is clear that populations present in the
1000 genomes are primarily clustered towards the right hand side, rather than randomly
distributed across figure. This strongly suggests that imputation causes a bias towards those

populations present in a reference panel.

To formally test whether the ordering of populations was likely significantly different
to the ordering expected under the null model of no impact of being present in the 1000
genomes dataset, I performed a non-parametric permutation test. If we order the populations
based on their differential haplotype donation and assign a rank value to each population, we
can calculate the sum, S of the ranks values of all populations present in the 1000 genomes.
If the 1000 genomes populations are clustered at the higher end of the ordering, we would
expect the value of S to be smaller than if the populations are randomly distributed across
the ordering. I performed 100,000 replications of randomly ordering the population labels
and calculating the value of S. Of the 100,000, 26 had S greater than the true empirical
value calculated from the data, showing the ordering of the populations is unlikely to be due
to chance (p = 0.00026). This permutation test was motivated by the Wilcoxon Rank Sum
Test.

Put together, these results suggest that using imputed data would introduce a level of bias
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and loss of information when trying to accurately infer sub-continental ancestry of African
individuals that may obscure the true pattern of African ancestry in U.K. Biobank participants.
In particular, we would expect an additional 10% of individuals to be misclassified to the

correct ethnic group when using imputed compared to non-imputed data.

Therefore, with the exception of exercises comparing the imputed and non-imputed data,
in all later analysis, I chose to use the approximately 70,000 non-imputed SNPs which overlap

between the Human Origins and U.K. Biobank datasets.

3.3.3 African ancestry in the U.K. Biobank samples is concentrated

in Ghana and Nigeria

Using approximately 70,000 directly genotyped SNPS, I painted all U.K. Biobank individuals
with at least 50% African ancestry (n=8475) using all Human Origins individuals as donors

(n=5,577).

Principal component analysis on the resulting chunkcounts coancestry matrix reveals
the general structure of the selected individuals, alongside the reference populations (Fig.
3.4). Three clines are present; one of similarity to Southern African populations typified
by the Zulu ethnic group from South Africa, one of similarity to West African populations
such as Yoruba and Cameroon_ Dii, and the last to East African populations such as those
from Ethiopia. The majority of U.K. Biobank individuals are positioned near West African
populations; in particular between Yoruba and Cameroon_ Arabe. The presence of a broad
cluster of West African individuals is consistent with prior expectations that West African
ancestry should be prevalent in a sample of British individuals, due to the history of migration
from this region [141]. A second cluster of UK Biobank individuals is located along the

Southern African cline, close to the Bantu_ SA label.

Aggregating the columns of the coancestry matrix by reference population and taking the
sum of each column gives the total length of genome for which a U.K. Biobank individual
shares recent ancestry with individuals from that donor population. This can be visualised
on a map, where each point represents a reference population and the colour corresponds to
the total amount that reference population contributes towards the ancestry of all retained
U.K. Biobank individuals (Fig. 3.5). Higher values correspond to more ancestry from that
population in the U.K. Biobank sample. However, it should be noted that raw ChromoPainter
output can be influenced strongly by sample size and so the values shown in Fig. 3.5 should

not be taken literally as an exact reflection of the ancestry distribution.

The map supports the findings from the PCA in Fig. 3.4; the populations with the largest
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Figure 3.4: Principle component analysis of chunklengths matrix for U.K. Biobank individuals
with >50% inferred recent African ancestry and human origins array. Individuals are
coloured dependent on whether they are U.K. Biobank (green) or Human Origins
(purple) samples. Labels indicate mean principle component coordinates for individuals
in that population. A random sample of populations were chosen to have labels to
prevent the figure from being too cluttered.
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Figure 3.5: Map of haplotype donation to U.K. Biobank individuals. Each point represents
a different African population. Colour corresponds to the mean length (cM) that
populatation donated to all African U.K. Biobank individuals.

contribution are those from West Africa (Fig. 3.5). In particular, populations from Ghana
and Nigeria contribute the most to the ancestry of Biobank individuals. On the other hand,
populations in east and north Africa contribute relatively little, with southern / south-east
Africa being approximately intermediate. This is consistent with two different historical

events.

Firstly, it is known from historical and genetic studies that a majority of the individuals
who were forcibly transported from Africa to the Americas during the transatlantic slave
trade were from the west coast of Africa [142]. Given the U.K. Biobank sample contains
many individuals who were either born in, or trace their ancestry from the Caribbean, a

region that had a large influx of slaves [143], we would expect there to be a large contribution
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of ancestry from west Africa. Secondly and more recently, there has been a relatively large
amount of historical immigration from countries in west Africa, such as Ghana and Nigeria,
to the U.K [141]. Although there are a number of immigrants from other parts of Africa,
reflected in the non-zero contributions from other ethnic groups, these contributions are

small compared to those from West Africa.

I performed the same visualisation using the painting using imputed SNPs and the

ancestry distribution was qualitatively the same.

T used SOURCEFIND to infer the proportion of ancestry that each UK Biobank individual
shares most recently with each of the 535 surrogate groups, as this accounts for uneven donor
population sizes. A map of proportions is given in Fig. 3.6, with each point corresponding
to the mean percentage of ancestry of that particular group across all African U.K. Biobank
individuals. Similar to the copyvector map, the ancestry is focused around Nigeria and
Ghana, with Yoruba (39.8%) and Ghana Fante (7.31%) having the highest mean proportions.
The distribution of colour on this figure is focused around a smaller number of populations
compared to Fig. 3.5. This is because SOURCEFIND attempts to narrow down the set of
populations which most likely contribute towards the ancestry of a given individual and so

appear ‘cleaner’ than raw ChromoPainter results.

Fig. 3.7 displays the 30 ethnic groups with the highest mean proportions of ancestry
within the U.K. Biobank individuals, and the distribution of values within each group.
Yoruba was a clear standout for the most represented population; 3604/8309 individuals
had at least 50% Yoruba ancestry. This is compared to the next most common ancestry,
Ghana_ Fante, which had an average of 7.3% per person and 373/8309 individuals with at
least 50% ancestry. It is not clear what the reason for the large amount of Yoruban ancestry
relative to all other populations is. One possible answer may come from considering the birth
country of the U.K. participants. Of all the individuals for which we have country of birth
data for (n=6190), more of them were born in the Caribbean (n=2263) relative to any other
country. This should not be surprising given the history of migration from the Caribbean to
the U.K. Of the individuals born in the Caribbean, over half were assigned to the Yoruban
ethnicity, a much higher proportion than any other country of birth. Therefore, one could
tentatively explain the abundance of Yoruba ancestry as resulting from the transatlantic
Slave Trade, where individuals from the Yoruba ethnic group were taken to the Caribbean
at a higher frequency than other nearby ethnic groups in the Human Origins reference. This
may be in part because Yoruba is the second largest ethnic group in Nigeria and individuals
belonging to it live primarily in coastal areas where the Slave Trade operated. The relatively

large number of individuals from the Caribbean in the U.K. could thus have brought Yoruban
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Figure 3.6: Map displaying the mean proportion of SOURCEFIND estimated ancestry of each
African reference population within U.K. Biobank individuals. Each point is an African
reference population with the colour corresponding to the mean ancestry proportion
for that population across selected U.K. Biobank individuals. The colour-bar has
been rescaled as two populations, Yoruba and Ghana_ Fante have substantially higher
proportions than all other populations.
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Figure 3.7: The 30 Human Origins populations which have the highest contribution to all U.K.
Biobank individuals with at least 50% African Ancestry, based on SOURCEFIND
analysis. Each row of points contains 8476 individuals and their position corresponds
to the percentage of ancestry from that population.

There are other instances of an over and under-representation of one ethnic group from a
particular country (Fig. 3.8). For example, Nigeria is dominated by a single ethnic group,
despite having data for 31 different ethnic groups. On the other hand, the individuals from

Sudan are more evenly distributed across ethnicities. This may be caused because there are
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more reference ethnic groups in Sudan to assign individuals to. Further, it is known (personal
communication N.Bird, 2021) that using the Human Origins dataset, there is inability to

distinguish between individuals in closely related Sudanese populations.

Botswana Cameroon Congo Elhiua Gambia
[
Ghana Kenya Malawi Mozambique Namibia
Nigeria Senegal Sierraleone Somalia SouthAfrica
Sudan Tanzania Uganda Zimbabwe

000

Figure 3.8: Variation of individuals assigned to different ethnic groups by country of assigned
group. Each panel represents all individuals assigned to an ethnic group from that
country, with proportions of each pie corresponding to proportion of individuals of that
ethnic group in that country. Numbers within each slice correspond to total number
of individuals within a given ethnic group.

Some other patterns can be noted. Whilst many individuals have intermediate levels of
ancestry from West African populations (e.g. Ghana_Fante or Yoruba_ Yoruba), much fewer
individuals have intermediate levels of Ethiopia_ Somali ancestry (Fig. 3.7). This may be
because Somalis are more recent immigrants to the UK and therefore tend to be less admixed
with Europeans relative to other immigrant populations which have been in the U.K. longer

and hence can be modelled as a mixture of almost entirely Ethiopia_ Somali ancestry.



3.3. Results 98

To test whether this was the case, I selected individuals assigned to either Ethiopia_ Somali,
Yoruba or Ghana_ Fante and estimated their proportions of total African, European and Asian
ancestry using SOURCEFIND. Individuals from Yoruba and Ghana_ Fante had, on average,
6.2% and 5.2% European ancestry respectively, whereas individuals from Ethiopia_ Somali
had 0.21% on average, suggesting they are indeed less mixed than other populations, which

is consistent with them being more recent migrants.

3.3.4 Verifying painting accuracy

Not all individuals within the U.K. Biobank were born in the U.K.; visualising the ancestry
distribution of these individuals allows ensures us that the painting is accurate and may
reveal insights into population history. For instance, the ancestry distribution of individuals
born in the Caribbean may provide evidence for where in Africa slaves forcibly transported
to the Caribbean during the transatlantic slave trade originated from. This is important, as
disembarkation records from the Slave Trade are often sparse, meaning many people with
African ancestry who currently live in the Americas may not have knowledge of where their

ancestors originated from.

I subsetted the coancestry matrix to contain only U.K. Biobank individuals who provided
data on birth location (n=6153/8472). We would expect that individuals who were born in
a particular country would copy the most from reference populations from that country. For
example, we would expect individuals who were born in South Africa to copy the most from
sampled Bantu and Zulu ethnic groups from South Africa. This may not always be the case,
as some ethnic groups have crossed borders in their history, or we may not have sampled
representative groups from some countries, but it may broadly be expected to be true. We
also have birth place data for individuals who were not born in Africa (e.g. the Caribbean

and Brazil).

Fig. 3.9 shows the map of haplotype donation from reference groups to U.K. Biobank
individuals born in South Africa. It is clear that reference populations from South Africa, in
particular the Zulu ethnic group, contribute the most to these individuals. The pattern is
qualitatively the same for all countries which had a reasonable number of donor populations,
suggesting that the painting had good resolution down to at least the level of individual

countries (Fig 3.10).

There are several interesting results. For example, there are 2,263 individuals who were
born in the Caribbean; visualising the haplotype donation map for these individuals shows

that they are primarily of West African ancestry (supplementary figure D.5), consistent with



3.3. Results 99

40°N-
30°N:
Mean length of
20°N- genome
800
The
Guin g
10°N-
600
[}
el
2
g 0
- 400
10°S
Angola 200
adagascar
20°S
30°S
20°W 10°W 0° 10°E 20°E 30°E 40°E 50°E

Longitude

Figure 3.9: Map of haplotype donation to U.K. Biobank individuals born in South Africa. Each
point represents one Human Origins population, coloured according to the summed
amount of chunklengths that population donates to all U.K. Biobank individuals born
in South Africa.

historical evidence [142]. Individuals born in Brazil have ancestry from further South, again
consistent with historical evidence (supplementary figure D.4). Of the nine individuals born
in Brazil, six of them had a majority SOURCEFIND component from an ethnic group in
The Republic of the Congo. However, it should be noted that there is a relatively small
sample size from individuals born in Brazil (n=9), and that these individuals may not be

representative of the Brazilian population as a whole.

As a formal test of the painting accuracy, I estimated SOURCEFIND ancestry proportions
in each retained U.K. Biobank individual. An individual was ‘assigned’ to a particular ethnic
group if they had 75% or more of their total ancestry from that group. If the country the

assigned reference population is from matches the birth location of the individual, then I
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considered that a ‘success’ and a ‘fail’ otherwise. Individuals who were born in the U.K. or
who had no birth country were excluded from this analysis. 75% was chosen as an arbitrary

threshold.
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Figure 3.10: Correspondence of true birth country with estimated birth country. Each bar corre-
sponds to a true birth country, with the length of the bar corresponding to the total
number of people in our dataset born in that country. The green section corresponds
to the total number of individuals where the birth country was correctly guessed
and the red section to those who were incorrectly guessed. Percentage labels give
percentage correct for that country.

The overall accuracy at predicting birth location across all individuals was 81.63%,
suggesting there was substantial information within the coancestry matrix. For certain
countries where there was large number of surrogate populations, such as Ghana and Nigeria,
the prediction accuracy was high. For other countries, the prediction accuracy was much
lower. For example, Tanzania, which is only represented by a single reference population,

had a prediction accuracy of 23%. Zimbabwe had by far the lowest prediction accuracy
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(14%) out of countries with more than 100 U.K. Biobank individuals. Of the 266 individuals
born in Zimbabwe, 194 were assigned to an ethnic group from outside Zimbabwe; 74 to
Malawi_ Chewa, 71 to Mozambique_Mozambique and 49 to Malawi_ Yao. Individuals from
the ethnic groups from Malawi are found across Malawi, Zimbabwe and other countries,
showing the possible weakness of this approach which aims to categorise individuals into a
single country, as ethnic groups often transcend countries. Indeed we only have data from
one (partially) Zimbabwean group, the Zulu, who may not well-reflect the ancestors of U.K.

Biobank participants born in Zimbabwe.

I performed the same analysis but using the data which had been imputed. This stands
as a practical test of whether it is preferable to impute or retain a smaller number of non-
imputed SNPs when estimating country-level haplotype variation. This yielded an accuracy of
81.89%, a value almost identical to that obtained with the dataset containing approximately
70,000 non-imputed SNPs, despite my earlier results indicating that sub-country population
assignment results are less accurate if using imputed data due to reference bias (Table 3.1).
This may be because this broad-scale assignment of individuals to countries is not as affected
by imputation as a more subtle dissection of sub-country ancestry. To test whether this is
the case, I took all ethnic groups from Nigeria, Cameroon and Ghana in the Human Origins
dataset which had five or more individuals (n=51 populations, n=1203 individuals), and for
each individual, estimated ancestry proportions of each of the 51 populations. I performed
this analysis for both datasets containing no imputed SNPs and 70% imputed SNPs. For
each dataset, I took the average proportion of ancestry for each ethnic group across all

individuals.

Fig 3.11 shows that there are substantial differences between the proportions obtained
from imputed and non-imputed datasets, showing sub-country assignment is affected by
imputation. In particular, there is less variance across the proportions for the imputed
dataset (var=0.67) relative to the non-imputed dataset (var=0.87). This is clear on the
figure, as there are many population bunched around the 2% point for the imputed dataset;

the same populations are spread across a wider range of values for the non-imputed dataset.

3.3.5 Patterns of African ancestry across the U.K.

The U.K. Biobank dataset contains data on the testing centre that each individual registered
at. I used this information to determine whether there was structure in how individuals with
recent African ancestry are distributed across the U.K. There were no apparent outliers in
terms of any centres with substantially larger proportion of individuals who had at least 50%

African ancestry than others (Supplementary Fig. D.6). However, as expected, centres in
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Figure 3.11: Mean ancestry proportions averaged across 1203 individuals from Ghana, Nigeria
and Cameroon of 51 populations from the same countries. Proportions obtained from
data containing 70% imputed SNPs (x-axis) and no imputed SNPs (y-axis).

large cities such as Barts, Croydon and Hounslow (London), Birmingham and Manchester

had the highest proportion of individuals with at least 50% African ancestry.

I then plotted the distribution of people with recent ancestry related to African ethnic
groups at different centres on a map of the U.K (Fig. 3.12). No clear pattern was apparent,
other than Yoruban ancestry dominating most centres, with some smaller testing centres

only containing individuals inferred as having Yoruba-related ancestry.

I estimated the information entropy, E, of each assessment centre based on the
SOURCEFIND proportions, similar to previous work performed by van Dorp et al (2018),
who used the principle of entropy to determine the extent to which individuals from different

ethnic groups were scattered across different clusters [144].
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To evaluate the extent to which individuals assigned to each ethnic group registered at
different testing centers, I calculated entropy given by Schutze et al (2008) as Zle[pi,j .

%, m;; is the number of individuals from testing center j
J

log(pi,;)] [145], where p; ; =
assigned to ethnic group ¢ and m; is the number of ethnic groups to which individuals from
center j are assigned. Testing centres in large cities such as London and Birmingham had
the highest information entropy, consistent with prior expectations that large cities would

contain a higher diversity of ancestries (Fig. 3.12).

3.3.6 Patterns of African ancestry across the U.K.

I also had access to the birth-date of each U.K. Biobank participant. Therefore, it is possible
to calculate the increase of the ancestry of a particular ethnic group over time based on
birth-year (Fig. 3.13). I took all U.K. Biobank individuals with more than 50% African
ancestry and split them into 50 bins according to their birth date. Using a rolling window
in the rollyapply function from the zoo R library, I calculated the mean proportion of all
ancestries across ancestry for each bin. Fig 3.13 shows the increase of Buganda ancestry over

time.

We can observe roughly a doubling of the mean proportion of Buganda_ Baganda ancestry
between 1950 and 1964. In 1972, then president Idi Amin expelled roughly 60,000 Ugandans
to the U.K. Therefore, this increase may tentatively correspond to an increase in the number

of individuals between the ages of 7-22 arriving in the U.K. during these dates.

3.4 Summary of Results and Discussion

The aim of this chapter was twofold; firstly, to determine whether using less dense non-
imputed or more dense imputed SNPs is preferable when combining genotype data from
multiple chips. Secondly, I wanted to explore the diversity of African ancestry in the U.K.

Biobank and its relation to population history.

I also showed that, in individuals with recent African ancestry, there is enough linkage
information across 70,000 genome-wide SNPs to recover a substantial amount of useful
haplotype information and accurately predict the birth country of a sample. Further, I
found that using the particular imputation strategy I employed, namely imputing missing
genotypes in genotype arrays after merging datasets, significantly reduces the power to assign
African individuals to the correct population. This imputation strategy also introduces a
degree of bias, in that donor groups donate more to populations present in the reference

panel when using imputed data relative to non-imputed data. Future work should explore
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Figure 3.13: Increase in the mean proportion of Buganda ancestry between 1948 and 1965. An
overlapping sliding window was applied to SOURCEFIND ancestry proportions and
mean proportion of Buganda ancestry for each window plotted against the mean
birth-date of individuals in that bin.

the downstream effects of such bias when e.g. estimating ancestry proportions of inferring

genetic clusters.

West African ancestry was the most common across samples with recent African ancestry,
with ancestry from ethnic groups from Nigeria and Ghana being especially prevalent. In
particular, individuals had substantially more ancestry from Yoruba than any other ethnicity.
I did not find evidence for structure in how African ancestry was distributed across the U.K.,

based on the testing centre that participants registered at.

Future work on using Biobanks to explore population structure and history could focus on

two points. Ideally, I would liked to have painted the entire U.K. Biobank dataset using the
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Human Origins dataset as a reference panel, rather than restricting analysis to individuals
with 50% recent African ancestry. This would have allowed me to analyse a substantially
higher amount of African haplotypes across the entire dataset and this give a more complete
extent of African ancestry in the U.K. Thus, the development of efficient methods, likely
based on the PBWT, which allow for Biobank-scale datasets to be painted by large reference

panels would accelerate research into ethnic minority ancestries.

Secondly, larger reference panels of worldwide populations and more ethnic groups will
allow for a more detailed characterisation of genetic variation. Similarly, including details on
ethnic identity in Biobank projects would improve the resolution at which analysis could be

carried out.



Chapter 4

Bavaria ancient DN A

4.1 Introduction

Throughout the Pleistocene and Holocene, Germany has been the setting for many population
movements and admixture events of modern humans. The Swabian Alps is home to some
of the earliest pieces of symbolic art, dated to at least 32kya [146] and musical instruments

dated to 40kya [147], both assigned to the Aurignacian tradition.

Later, the region was also home to one of the first Neolithic traditions in the Linearband-
keramik (LBK), a key culture in the Neolithisation of Europe. Early LBK populations across
Germany mixed with the preceding Mesolithic hunter gatherer populations [106,148-151].
At the end of the Neolithic, a new ancestry was detected [106,152] in concert with the arrival
of the Corded Ware Complex [153], most closely related to the Yamnaya Pastoralists from
the Pontic-Capsian Steppe. Recent studies using ancient DNA have shown that the arrival of
Steppe-related ancestry in Europe occurred no earlier than 2700BC [154] and spread widely
shortly after.

During the Bronze Age, cultures closely related to Yamnaya, such as Bell Beakers, Corded
Ware and Unetice [106] appeared across Germany at sites such as Kromsdorf [155] and
Tollense [156,157]. It was later dominated by Iron Age cultures such as Hallstatt and La
Teéne, which have been shown to be partially continuous with the preceding Bell Beaker

culture [158].

In the present-day, Germany represents a boundary point between East and West Europe,
with a relatively sharp genetic boundary occurring between Germany and Poland to the
east, given their close geographic proximity [159-161]. However, within Germany, SNP-based

studies have shown that there is only very weak substructure [162]. Questions remain as to
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the origin of the East-West structure across Europe; is it recent, or did it exist during the

Middle Ages and earlier?

Cherry-Tree cave, or Kirschbaumhdhle, represents a unique opportunity to study a transect
of southern German samples from the Neolithic to the present-day. The cave represents a
relatively untouched layer of stratigraphy, with a large series of radiocarbon dates revealing
that human and animal inhabitation of the cave stretches back until at least the Michelsberg

Culture in the Early Neolithic [163].

Here, I analyse novel data from 11 medium-to-high coverage samples from two sites from
Southern Germany and one site from from Southern Austria. In particular, the samples from
Kirschbaumhohle span from the Late Neolithic to the Iron Age, providing an opportunity to

study a time transect in a narrow geographic region (Table. 4.1).

A collaborator, Prof. Joachim Burger, Johannes Gutenberg University Mainz, posed the

following three questions.

1. Second Neolithic immigration wave. One of the samples (Ergl) is thought to have
belonged to the first wave of farmers carrying farming technology from the near-east
to Europe, and another (DIN2) to the second wave. Do we observe genetic differences
between the two waves of samples and do they show evidence of previously reported

hunter-gatherer admixture?

2. Cherry Tree Cave. Do we see evidence of genetic continuity from from the Late

Neolithic through to the Iron Age in Cherry Tree Cave?

3. Germanic / Slavic divide. Is there a distinction between the Germanic and Slavic
samples from the Middle Age samples? How do these populations compare to the

preceding samples from the Bronze and Iron ages?

4.2 Methods

4.2.1 Data generation

Eleven whole-genomes of ancient individuals were generated by collaborators at the Johannes
Gutenberg, University of Mainz, Germany. The estimated radiocarbon dates range from
5200B to 1060AD (Fig. 4.2). Six of the samples were found in Cherry-Tree Cave in the
Bavarian district of Forchheim, four from futher South in the region of Dingolfing/Essenbach

and one sample from Molzbichl in southern Austria (Fig. 4.1). The samples had a median
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coverage of 4.84x and ranged from 0.7x to 17.52x. Full details of coverage, location and dates

are given in Table 4.1.

I was given the data of each newly sequenced sample in vcf format.

5

s QR

Germany
Archaeological Culture

Early Neolithic (LBK)
Early Copper Age
Final Neolithic

Early Bronze Age

Iron Age
Early Middle Age
DIN2

Austria

Figure 4.1: Map of newly sequenced ancient individuals, positioned according to where they were
excavated. Colour on label corresponds to archaeological culture which they were
found.

4.2.2 Genotype imputation and phasing using GLIMPSE

In order to compare the genetic variation in the newly sequenced samples to a reference
dataset, I merged them with the 942 ancient samples from the literature detailed in Appendix
section A.1, resulting in a total of 955 samples in .bcf format with genotype likelihood data

at 77,213,942 genome-wide SNPs.

I followed the recommended GLIMPSE [92] imputation and phasing pipeline
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Figure 4.2: Estimated radiocarbon dates for each newly sequenced ancient individual, grouped by
archaeological period. Error bars correspond to upper and lower 95% quantiles of the

mean date.
Sample.ID Location Date UQ LQ Period Se%glt‘ﬂng
Ergl Ergoldsbach 5200 (BC) 5400 5000 Early Neo (LBK) 4.52
Erg2 Ergoldsbach 5200 (BC) 5400 5000 Early Neo (LBK) 0.71
DIN2 Dingolfing 4200 (BC) 4500 3900 Early Copper Age 1.71
Kir24 Cherry Tree Cave 2762 (BC) 2821 2632 Final Neo 3.98
Kir23 Cherry Tree Cave 2741 (BC) 2817 2666 Final Neo 17.52
Kir28 Cherry Tree Cave 1863 (BC) 1977 1749 EBA 17.30
Kir26 Cherry Tree Cave 595 (BC) 762 428 TIron Age 4.84
Kir27 Cherry Tree Cave 593 (BC) 672 514 Iron Age 16.60
BRU1 Bruckberg 535 (BC) 620 450 Iron Age 11.54
Kir25 Cherry Tree Cave 481 (BC) 552 410 Iron Age 4.55
Molzl Molzbichl 1069 (AD) 1138 1000 Early Middle Age 13.22

Table 4.1: Details of newly sequenced ancient DNA samples. UQ and LQ give upper and lower
95% quantile estimates for radiocarbon dates. EBA is Early Bronze Age.
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(https://odelaneau.github.io/GLIMPSE/tutorial_b38.html), using the 30x-coverage
1000 genomes dataset [103] as a reference panel. This resulted in phased haplotypes and
posterior genotype likelihoods for each of the 955 individuals.

4.2.3 Uniparental haplogroups

To determine the mtDNA haplogroups for each newly sequenced ancient sample, I used

Haplogrep (https://haplogrep.i-med.ac.at/) [164] on the raw .fastq file for each sample.

4.2.4 1IBD sharing

I used hap-IBD [30] to estimate IBD segments greater than 2cM in length between all pairs of
ancient individuals above 1.5x coverage (n=466), using the phased output from GLIMPSE as
input haplotypes, the genetic maps from (http://bochet.gcc.biostat.washington.edu/

beagle/genetic_maps/plink.GRCh37.map.zip) and leaving all parameters as default.

4.2.5 plink PCA

To obtain a broad overview of the ancestry of the newly sequenced individuals in the context
of the 942 literature samples detailed in Appendix section A.1, I performed PCA on the
pre-imputation genotypes using plink2 [165]. Genotypes were set to missing in an individual

if, at that position, they were covered by fewer than two reads.

I retained the 500,000 markers with the lowest amount of missingness across all samples
and LD-pruned the resulting SNPs using the settings -maf 0.01 and -indep-pairwise 50
5 0.2. PCA was performed using default settings from plink2.

4.2.6 ChromoPainter and fineSTRUCTURE analysis

To characterise the ancestry of the newly sequenced ancient samples in the context of other
ancient individuals, I first selected all newly sequenced samples and literature samples above
1.5x coverage (n=466) and performed an ‘all-v-all’ painting where each sample was painted
using all other samples. 1.5x was somewhat arbitrarily chosen as my previous work has
shown this is a suitable threshold for the inclusion of samples for ChromoPainter analysis
(section 2.6.4); whilst T show 0.5x as the cut-off for coverage-related effects, I chose to be
conservative and opt for a higher threshold, given all but one of the 11 newly sequenced
samples have average coverage > 1.5x. I used this painting, hereafter referred to as ‘ancient’

painting, to perform fineSTRUCTURE clustering and tree building on the ancient samples.

I performed Principle Component Analysis on the coancestry matrix of the ‘ancients’


https://odelaneau.github.io/GLIMPSE/tutorial_b38.html
https://haplogrep.i-med.ac.at/
http://bochet.gcc.biostat.washington.edu/beagle/genetic_maps/plink.GRCh37.map.zip
http://bochet.gcc.biostat.washington.edu/beagle/genetic_maps/plink.GRCh37.map.zip
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Number of

Population samples
HB:belorussian 9
HB:bulgarian 31
HB:croatian 19
HB:cypriot 12
HB:french 28
HB:german 30
HB:germanyaustria 4
HB:greek 20
HB:hungarian 19
HB:irish 7
HB:lithuanian 10
HB:mordovian 15
HB:northitalian 12
HB:norwegian 18
HB:polish 17
HB:romanian 16
HB:russian 25
HB:scottish 6
HB:siciliane 10
HB:southitalian 18
HB:spanish 34
HB:tsi 98
HB:tuscan 8
HB:ukrainian 20
HB:welsh 4
HB:westsicilian 10

Table 4.2: Name of population and number of samples used in the present-day ChromoPainter,
MOSAIC and qpAdm analyses. All populations from the HellBus dataset.

painting using the prcomp_irlba function from the irlba R library. To account for the fact
that the diagonals of the coancestry matrix are always zeros (as an individual cannot be
painted by themselves), I set the diagonal of each row to be the mean of that row, following
Lawson et al 2012 [19]. Although there were 466 individuals in the ‘ancients’ painting, not
all of these were included in the chunklengths PCA. This was because many individuals in
that set were not relevant to exploring the ancestry of the Bavarian individuals. For instance,
when plotted, samples such as those from the Xiong Nu, a 3rd century BC culture from inner
Mongolia, dominate the variation in a PCA to the point where identifying structure between
the samples of interest becomes challenging. Therefore I removed 327 individuals based on

visual inspection of the first two principal components.

To determine the genetic similarity between the newly sequenced ancient samples and
present-day populations, I performed an ‘all-v-all’ painting using a selected group of 26 present-
day European populations (Table 4.2) from the HellBus dataset (described in Appendix

section A.4) and the 11 newly sequenced ancient individuals, hereafter referred to as ‘present-



4.2. Methods 113
day painting’.

I applied fineSSTRUCTURE (v0.0.5) [19] to cluster the chunkcounts ChromoPainter output
for the ‘ancients’ painting. fineSTRUCTURE assigns individuals to clusters, estimates the
number of clusters and builds a dendrogram of genetic similarity based on a tree-building
algorithm. This is particularly useful when combining many samples from different studies,
as is the case with the ‘ancients’ painting; the population label identifiers used by different
studies may not be consistent with one another. Therefore, we can use fineSTRUCTURE
groupings as population labels rather than group labels. fineSTRUCTURE was first run
in MCMC mode using 1,000,000 burn-in MCMC iterations and 2,000,000 main MCMC
iterations. It was then run in tree-building mode (-m T) using 100,000 burn-in and 100,000

main iterations.

Tree figures, coancestry matrix figures and principle component plots were gener-
ated using the fineSSTRUCTURE R library (https://people.maths.bris.ac.uk/~madjl/

finestructure/FinestructureRcode.zip).

The full workflow is shown in schematic form in Figure 4.3.

atlas variant call
GLIMPSE- GLIMPSE-
phase solve

.bam | ———
multisample .vcf
(02)

vef_to_chromopainter

.bam | ——

multisample .vcf

_— 1)

multisample .vcf
(0/1)

Q Q
= =

.bam | —— | vcf

chromopainter
uncertainty

ancestry
SOURCEFIND
chunklengths
matrix

population
structure

Figure 4.3: Workflow for analysing novel and reference ancient DNA samples. Each individual .bam
fie is downloaded and processed using atlas, generating vcf files containing genotype
calls and genotype likelihoods at each SNP identified in the 1000 genomes project.
vcf files were then merged using beftools and phased/imputed using GLIMPSE. The
phased genotypes and posterior genotype probabilities from GLIMPSE were then
combined to create a ChromoPainter input file. ChromoPainter was then used to
generated a .chunklengths matrix for use in SOURCEFIND.


(https://people.maths.bris.ac.uk/~madjl/finestructure/FinestructureRcode.zip)
(https://people.maths.bris.ac.uk/~madjl/finestructure/FinestructureRcode.zip)
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4.2.7 SOURCEFIND

I used SOURCEFIND [21] to infer the proportions of ancestry by which each newly sequenced
ancient individual is most related to a set of surrogate populations. While this method
does not explicitly attempt to identify admixture, in contrast to e.g. ALDER [166] or
GLOBETROTTER [20], it can reflect admixture proportions [21] but more generally reflects

recent ancestry sharing patterns.

The first analysis used the ancients painting and only three surrogates: Western Hunter-
Gatherers, Neolithic farmers from Anatolia and Yamnaya, to mimic previous research
suggesting many ancient Europeans descend from the mixture of three sources well-represented
by these groups [51]. The second analysis attempted to characterise more fine-scale ancestry
patterns, by modelling each target ancient individual (using the same ancients painting) as a
mixture of all sampled ancient populations above 1.5x coverage (n=466) that had an average
sample age no more than 100 years younger than that of the target individual. The third
analysis used the “modern” painting and formed each ancient individual as a mixture of all
present-day populations shown in Table 4.2. For each of these analyses, I found the mean and
95% credible interval of ancestry estimates across 2,000,000 posterior samples combined from
three independent SOURCEFIND runs that each sampled every 10,000 MCMC iterations
after discarding the first 10,000 MCMC iterations as “burn-in”.

4.2.8 MOSAIC admixture analysis

I inferred admixture events, dates and proportions in newly sequenced ancient samples using
MOSAIC, a haplotype-based method [167]. While MOSAIC cannot infer multiple pulses
of admixture from the same admixing sources as GLOBETROTTER [20] can, in theory it
is unlikely we would have adequate power to identify such multiple pulses when analysing
only a single ancient sample, as is the case in this study. Furthermore, the ‘painting’ step
and admixture inference step in MOSAIC are combined, providing a simpler pipeline and
more flexible assignment of different surrogates relative to GLOBETROTTER (i.e. the set of
surrogates can be changed without repainting the samples). p. 128, PLINK PCA, unclear how
the pre-imputation genotypes were obtained — were these called in form of haploid/diploid
genotypes or genotype likelihoods and as PLINK does not take likelihoods or haploid calls
how was the uncertainty dealt with? If directly called genotypes I performed two MOSAIC
analyses that correspond to two of the SOURCEFIND analyses described in Section 4.2.7.
First, I performed an ‘ancient surrogates’ analysis where the all ancient samples above 1.5x
coverage (n=466) were used as surrogates to admixing sources. I used the fineSSTRUCTURE

groupings to categorise ancient samples into surrogate populations. Second, I also performed
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a ‘present-day surrogates’ analysis where a selected set of present-day populations (Table 4.2)
were used as surrogates. While using present-day populations to reflect ancestry patterns in
ancient individuals may be counter-intuitive, the larger sample sizes and larger variety of

present-day populations can provide more clean results relative to using ancients

I ran MOSAIC using default settings, assuming two or three admixing sources per target
individual/population. For populations with more than one sampled individual, MOSAIC
provided bootstrap-based 95% confidence quantiles around date estimates. MOSAIC also
estimates fg; between the set of surrogates and the estimated ‘true’ mixing source, which is

useful when a close proxy for the ‘true’ mixing source is not available

4.2.9 F-statistics

Many of the relevant samples in the literature were of very low coverage (< 0.1). As my work
in section 2.6.4 indicated that samples with less than 0.5x coverage cannot reliably be analysed
using ChromoPainter, I also used F-statistics [42] that are mostly robust to coverage related
effects [44]. In particular T used Admixtools (https://ugrmaiel.github.io/admixtools)
to analyse 942 individuals from 143 populations (Appendix section A.1, including many
low-coverage samples from relevant LBK cultures presented in Rivollat et al (2020) that would
not have been suitable for use with ChromoPainter [168]. This analysis also incorporated
2280 present-day individuals from 144 populations from the HellBus dataset as putative

ancestry surrogates for tested ancient individuals. Populations shown in Table 4.2.

For the input to ADMIXTOOLS, I used the genotyped imputed from GLIMPSE, as
it has been shown that using imputed markers reduced reference bias relative to using
pseudo-haploid markers [48]. I then used the f; branch test to test whether two popu-
lations form a clade relative to two other populations. For example, the expected value
of fa(french,german;yoruba, mbuti), which tests whether {french,german} form a clade
relative to {yoruba,mbuti}, should not give a score significantly different to zero. In contrast,
exchanging french with yoruba would yield a significantly positive f; scores, with strength

of evidence to reject the null (fy = 0) measured using standardised Z-statistics.

I also used the f3 test, denoted f5(A, B;C), to (i) estimate the branch length between
A and B after their divergence from C, or (ii) test whether C' descends from an admixture
event between sources represented by A and B. The latter can occur if C' has a substantial

number of SNPs with allele-frequencies which are intermediate between A and B.

Finally, I used qpAdm to infer ancestry proportions, following the protocol described
in Olalde et al (2018) by choosing the following populations/samples as outgroups: Mota,


(https://uqrmaie1.github.io/admixtools)
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Kostenkil4, papuan, han, hannchina, mbutipygmy, sannamibia, yakut. These outgroups were
suitable for use in investigating ancient Eurasians, since they are asymmetrically related to

many ancient populations, but do not show evidence of recent gene flow with them.

4.3 Results

4.3.1 Broad-scale ancestry changes in Bavaria reflect those found

elsewhere in Europe

The newly sequenced samples from the Early Neolithic (Ergl and Erg2, approx 5200BC) and
Copper Age (DIN2, approx 4200BC) cluster with other published sampled from European
Neolithic on the plink2 PCA (Fig. 4.4). As in previously reported PCA results [148],
the earliest Neolithic samples, from Anatolia and Greece, and who are thought to be the
source population from which all subsequent Neolithic farmers derive [51,151,169-171],
are positioned at the end of the cluster farthest away from the hunter-gatherer samples
(for example, WHG on Fig. 4.4). This likely reflects the fact that they are unadmixed
with respect to the later Neolithic samples. As the Neolithic progressed, farmers from the
near-east mixed with local hunter-gatherer groups in central Europe [148] and acquired
local hunter-gatherer ancestry. Accordingly, these samples are shifted away from the earlier
Neolithic samples towards the hunter-gatherers. With this in mind, the position of the new
Early Neolithic sample Ergl, shifted north away from the contemporaneous sample Erg2, is

suggestive of hunter-gatherer admixture.

There are four key observations from the Figure 4.4 PCA regarding the new samples:

1. The two Late Neolithic individuals are genetically separate, with Kir24 positioned close

to Yamnaya and Kir23 clustering with Neolithic Europeans.
2. The Bronze Age sample Kir28 clusters with other European Bronze Age samples

3. The four Iron Age samples (Kir25, Kir26, Kir27 and BRU1) cluster towards the

Neolithic individuals and other European Iron Age samples

4. The three Medieval period samples (Alhl, Alh10, Molz1) cluster with the Bronze Age
sample Kir28 instead of the Iron Age samples.

4.3.2 Early Neolithic

The three Early /Middle Neolithic samples, Ergl, Erg2 and DIN2, all display a strong affinity

to Anatolian farmers, consistent with the prevailing theory that near-eastern farmers were
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Figure 4.4: Principle component analysis of pre-imputation genotypes using plink2. Grey points
indicate principle component coordinates for each sample. Black text indicated mean
principle component coordinates for all individuals within that group. Coloured labels
represent newly sequenced ancient samples.

responsible for the spread of early agricultural technology across Europe, and that all Neolithic
farmers share recent common ancestry [51,169-171]. fineSTRUCTURE grouped Ergl with
two samples from Upper Palaeolithic/Neolithic Ttaly and DIN2 with Early/Middle Neolithic
samples from Germany, Greece, Anatolia and Hungary (Table A.5.1). Despite their age, the
genetic variation of the Early Neolithic samples falls well within the variation of present-day
individuals; when painted using present-day samples, the three Early Neolithic individuals
cluster with present-day Italians, consistent with findings from previous research [51, 106]
(Fig. 4.5). Ergl was assigned to mtDNA haplogroup K which has been found in Neolithic
and pre-pottery sites across Europe [151,172] and Western Asia [173,174].

Ergl is from the Linearbandkeramik (LBK) culture and is speculated to have belonged
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Figure 4.5: Principle component plot of newly sequenced ancient samples and reference modern
individuals performed using the finestructure library. Green labels correspond to
Migration Era samples, red labels correspond to Early Middle Age samples and white
labels correspond to reference populations. The position of each reference label is the
mean PC coordinates of all individuals within that population. Transparent coloured
points correspond to present-day individuals.
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to the first wave of immigrants carrying farming technology from south-eastern Europe or
Anatolia into central Europe. DIN2 is from a nearby site, around 500 years more recent, and
is thought to potentially belong to a second wave of farmers who migrated along the Danube.
It is unclear to what extent these different waves corresponded to populations with different

ancestries.

When painted using 465 ancient samples from the literature and the newly sequenced
samples, Ergl had the lowest TV D (T'V D is a distance metric based on ChromoPainter
copyvectors; calculation and justification outlined in Appendix section B.3) with DIN2,
supporting the hypothesis that they were from similar source population. DIN2 has the
lowest TV D with NE5, NE4 and NE7, samples assigned to Middle and Late Neolithic cultures
on the Hungarian plane, and was assigned to mitochondrial haplogroup (J1C) alongside
NE4 and NE5. Both the autosomal and mtDNA link to Neolithic Hungary supports the

hypothesis that DIN2 migrated along the Danubian route.

To explicitly test whether Ergl and DIN2 group together to the exclusion of other ancient
samples and therefore, whether they likely originated from a similar source population, I
performed fy tests in the form of f4(W = Ergl, X = DIN2;Y = test, Z = Mbuti), where
test is 143 ancient populations used in the F-statistics analysis. This tests whether Ergl and
DIN2 form a clade to the exclusion of test or not. A deeply divergent outgroup such as Mbuti
is chosen as it is i) less related to either Ergl or DIN2 than they are to one another and ii)
does not share recent admixture with them. Of the 143 comparisons, only the population
labelled as WHG had a |Z| > 3, (Z = 3.057), suggesting that Ergl and DIN2 originate from
the same local population. Whilst qpAdm and SOURCEFIND results show that both Ergl
and DIN2 contain a small but significant proportion of hunter-gatherer ancestry, it is not
clear whether the result of the f; test is due to admixture or statistical chance; one test with

|Z| > 3 may be expected when doing 143 tests, even if the null is true.

To determine whether Ergl showed increased genetic similarity to local farming popula-
tions, I also performed combinations of f5 in the form of f3(A = Ergl, B = test,C = Mbuti),
where test iterates across 143 ancient populations. This tests the branch length, or the
amount of genetic drift that has occurred on the branch shared by Ergl and test since their
divergence from an outgroup (Mbuti). The sample/population with the highest f3 statistic
was NE7, a sample from 4,360 — 4,490 BC and the Lengyel culture (a Neolithic culture
centered on the Danube River, known to be an offshoot of the LBK culture Ergl belonged
to). On the other hand, DIN2 shows a clear affinity to samples from Neolithic France.

My dataset included data from several other LBK populations local to Ergl and DIN2;



4.3. Results 120

samples from Schwetzingen, Stuttgart-Mullhausen and Halberstadt. These samples appear
to form a distinct cluster on the plink PCA and are shifted away from the primary cluster of
Neolithic individuals and towards samples from the Anatolian Bronze Age and Baden Culture
(a central European Chalcolithic culture) (Fig. 4.4). T wanted to know which LBK population
Ergl and DIN2 were closest to. I found strong evidence (|Z| = 7.97) that Ergl shared more
alleles with LBK populations from Schwetzingen than with Stuttgart-Miihlhausen, suggesting
the early LBK populations showed relatively fine-scale geographic structure. Given the lack
of Hunter Gatherer ancestry in the Rivollat LBK samples, this structure seems unlikely to

be driven by variable amounts of Hunter-Gatherer admixture (Fig. 4.8).

4.3.3 Variable amounts of local hunter-gather ancestry in Neolithic

farmers indicates a structured population

Prior research has shown that admixture occurred between newly arrived farming immigrants
from Anatolia and local hunter-gatherers [106,148,175-177]. The position of Ergl on the
PCA, shifted slightly north towards the majority of the Bronze Age samples, suggests that
it may have a component of Hunter-Gatherer ancestry. Indeed an f3 admixture test, using
f3(A = CastelnovianMesolithic, B = LBK;C = Ergl) to test for admixture in C from
two sources related to surrogates A and B, yielded a significantly negative result (|Z| = 4.25),
as expected in the case of admixture [42]. Furthermore, gpAdm also concluded that Ergl
can be modelled as a mixture of Anatolia Neolithic (66%, se=8.1) and WHG (33%, se=8.1)
(Fig. 4.8). In contrast, gqpAdm modelled Erg2 as descending solely from sources related
to Anatolian Neolithic farmers. MOSAIC also inferred admixture in Ergl, dated to 5.3
generations prior to it sample date (i.e. approximately 5288 years ago), between WHG and
Anatolia Neolithic sources. I caution that the admixture date may be unreliable due to only
targeting a single individual, and given MOSAIC bootstraps over individuals, it was not

possible to obtain confidence intervals around admixture date.

Estimated Hunter-gatherer related ancestry in Ergl ranged from 18-38% among MOSAIC
(Fig. 4.7) and qpAdm (Fig. 4.8), with SOURCEFIND inferring 27.2% (se=1.41) when
using six surrogates { Anatolian Neolithic, Loschbour, LaBrana, Bichon, and the two ‘Iron
Gates’ samples}. MOSAIC indicated the cluster of Italian hunter-gatherers as the closest
population to the true mixing source (Fig. 4.7). However, SOURECFIND indicated Iron

Gates individuals from Serbia as the largest contributors of hunter-gatherer related ancestry.
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Figure 4.6: SOURCEFIND ancestry proportion estimates for all newly sequenced target samples
(vertical columns). Target samples are grouped by archaeological age. Surrogate
populations are represented as horizontal rows and also grouped into archaeological
culture. Each target was modeled as a mixture of only populations which are dated to
being older or contemporaneous as the the target. Numbers within each cell correspond
to the ancestry proportion estimate.
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Figure 4.7: Copying matrix plot for sources in 2-way admixture event for Ergl. Each panel

represents one of the 2 mixing sources. Labels above each panel gives the proportion
that mixing source contributed to the Early Middle Age samples. Length of the bars
within each panel represent the amount that mixing source copied from a particular

population.
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Figure 4.8: gqpAdm ancestry proportion estimates for a selection of European Neolithic individuals.
All individuals were modeled as a 2-way mixture between Anatolian Neolithic farmers
and Western-Hunter Gatherers (WHG). Outgroups used are Mota, Kostenkil4, papuan,
han, hannchina, mbutipygmy, sannamibia, yakut

4.3.4 Spatially and temporally close samples in Late Neolithic dis-

play highly distinct ancestries

This dataset included two individuals found in the same stratigraphical layer of Cherry-Tree

cave; Kir23 and Kir24 were both dated to the Late Neolithic (approx 4700 BP). Despite

their temporal and spatial closeness,

they show highly different ancestry profiles (Fig. 4.9).

On both the plink PCA and fineSTRUCTURE clustering, Kir24 clusters with individuals

from populations present around the Eurasian Steppe during the Bronze-Age, such as those

from the Yamnaya and Afanasievo cultures. These are the populations thought to be in

part responsible for the spread of Indo-European languages across Europe [106]. That the
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Figure 4.9: SOURCEFIND ancestry proportion estimates for all newly sequenced target samples
(vertical columns). Target samples are grouped by archaeological age. Surrogate
populations are represented as horizontal rows and also grouped into archaeological
culture. Each target was modeled as a mixture of only populations which are dated to
being older or contemporaneous as the the target. Numbers within each cell correspond
to the ancestry proportion estimate.



4.3. Results 125

Yamnaya and Afanasievo samples were sampled in Russia suggests that Kir24 may have
been a recent migrant from the Eurasian Steppe. This is supported by IBD analysis; of all
the ancient samples in the dataset Kir24 shares the most IBD (31.12¢cM) with the Yamnaya
type-specimen and the lowest TV D with 2 other members of the Yamnaya population.
This timing (Kir24 is dated to approximately 4700 BP) corresponds to some of the earliest
appearance of Yamnaya-like ancestry in central Europe [178]. Using qpAdm, Kir24 could
be modelled as a mixture of Yamnaya (93%, se=12) and WHG (6%, se=8) without any

Neolithic ancestry.

Kir24 was assigned to mtDNA haplogroup T1lal, which has been found in Yamnaya
samples from the Middle Volga region and Bulgaria [179]; the same study found the frequency

of T1al to be higher in the Yamnaya peoples than in any other ancient or modern population.

On the other hand, Kir23 is found in a fineSTRUCTURE cluster with Ballynahatty,
from Neolithic Ireland (3343-3020 BC), and is positioned on both plink and ChromoPainter
PCAs with other late Neolithic samples. It is found in adjacent fineSSTRUCTURE groups to
samples from Neolithic Spain and Ireland. As is the case with other Neolithic samples of this
era, Kir23 has a component of Hunter-Gatherer ancestry; it is known that Middle Neolithic
individuals are characterised by admixture with the existing Hunter-Gatherer populations.
qpAdm modelling showed that Kir23 could be formed from a mixture of Neolithic Anatolia
(96%, se=14) and Hunter Gatherer (6.25, se=0.91) without the need for additional Steppe

ancestry.

To test whether the source of Neolithic ancestry in Kir23 was most similar to local
populations, I performed f; tests in the form fy(W = Kir23, X = mbutipygy;Y = test, Z =
Erg2), which tests whether Kir23 forms a clade with Erg2, a local farmer individual, or test,
where test was one of several different farmer populations. Erg2 was chosen as the local
group because it did not infer any potentially confounding Hunter Gather ancestry !. Kir23
always formed a clade with Erg2, suggesting that the source of ancestry into Kir23 was local

and that there was a degree of continuity within the region.

4.3.5 ‘Southern’ ancestry to Cherry-Tree Cave during the Iron Age

is Italian in origin

The plink PCA shows that the four Iron Age samples are shifted towards the cluster of

Neolithic individuals and away from the samples typical of the European Bronze Age. The

INote that Fig. 4.9 shows that Erg2 has a component of hunter-gatherer admixture; this is almost certainly
related to coverage. Firstly, it mirrors results from previous chapters which show samples of low coverage
may display abberant ancesrty in SOURCEFIND analysis and qpAdm, which is robust to coverage effects,
did not find this ancestry.
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Target Left Weight SE Z
Bavaria Iron  Bavaria Bronze 1.458 0.732 1.992
Bavaria Iron  HallstattBylany -0.458 0.732  -0.625
Bavaria Iron Bavaria Bronze 0.956 0.426 2.245
Bavaria Iron  Renaissance 0.044 0.426 0.103
Bavaria Iron  Bavaria Bronze 0.986 0.202 4.871
Bavaria Iron  Imperial Rome Late Antiquity 0.014 0.202 0.070
Bavaria Iron Bavaria Bronze 0.990 0.173 5.738
Bavaria Iron  Imperial Rome 0.010 0.173  0.056
Bavaria Iron  Bavaria Bronze 0.981 0.280 3.505
Bavaria Iron Roman Solider 0.019 0.280 0.069

Table 4.3: Selected qpAdm results for estimating proportions of ancestry in the four Bavarian Iron
Age samples. Each two rows is one test, with left populations as Bavaria Bronze and
other. ‘Weight’ gives proportion of ancestry, ‘SE’ jackknifed standard error of Weight.
Note negative Weight for model involving HallstattBylany, showing that the model does
not fit well

same pattern is also seen in the present-day PCA, where the Iron Age samples are shifted
substantially towards Spain / Northern Italy relative to the preceding Bronze Age sample
which is situated among Northern / Western European populations (Germany, Wales) (Fig.

45).

In fineSTRUCTURE, all four Iron Age individuals were grouped alongside several Lombard
samples and a Roman soldier from 300AD. qpAdm modelling showed that the Iron Age
samples can be well formed from a mixture of the preceding Bavarian Bronze age sample
and those from either Renaissance Italy, Imperial Rome, Imperial Rome Late Antiquity or
‘Roman Solider’ from Veeramah et al (2018), with all other possible sources included with
Bronze Age giving a poorly fitting models (Table 4.3). This suggests a model of admixture
from populations best represented by those from post Iron-Age Italy. SOURCEFIND using
all ancients as surrogates, inferred 26% of the TA samples’ ancestry was most closely related
to the “Rennaisance” Italy population from 1500CE, with no such inferred ancestry in the

temporally flanking Bronze and Middle Age samples.

MOSAIC inferred the Iron Age samples could be formed of a mixture of &~ 18% ancestry
from a source closest to an Alamannic-Frankish sample (STR_355¢, 510 — 530 AD) and
~82% ancestry from a source closest to Anatolian Neolithic / LBK samples, with admixture
dated to 9.2 generations ago (bootstrapped 95% CI: 7.86-11.31). F;, estimated by MOSAIC,
between the two mixing sources was 0.016, approximately equivalent between present-day

Germans and Palestinians [180].

Based on SOURCEFIND and qpAdm modelling with selected ancient and present-day
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East Asian samples, unlike Gamba et al (2014) [175], I found no evidence of East-Asian or
East-Asian-like admixture (Fig. 4.6).

4.3.6 Present-day genomes unpick genetic differences between early

Germanic and Slavic populations

Lastly, my dataset included three samples (1 newly sequenced) from the Middle Age period.
The two genomes from Altheim, Germany, date to around 500AD and were found in a Roman
context. The single individual from Molzbichl, Austria, dates to around 300 years later, and
has been assigned to a ‘Slavic’ cultural context. It is currently unknown whether, in addition
to cultural and linguistic differences, genetic differentiation exists between the ‘Germanic’
peoples represented by the two Altheim samples, and the ‘Slavic’ peoples represented by the
Molzbichl sample.

The three Middle Age samples appear to share common ancestry based on the plink PCA
and are located next to other spatially and temporally close samples from the Middle Ages.

Similarly, they have almost indistinguishable SOURCEFIND ancestry proportions (Fig 4.9).

fa in the form fy(mbutipygymy, Bavaria__Iron; Bavaria_Slav, Bavaria_Germanic)
returned a non-significant result, consistent with ‘Germanic’ and ‘Slavic’ populations splitting
post Iron Age. However this non-significant result could be caused by low sample sizes in

the Middle Age populations or a lack of power in allele-frequency based methods.

However, the two Germanic samples fall into a fineSSTRUCTURE cluster with a set of
contemporaneous samples from Northern Europe, including 10-11*" century Vikings from
Estonia, Sweden and Iceland 2 , whereas Molzl clusters with other individuals known to
be from Early Slavic populations. Interestingly, the Slavic cluster also containing a sample
DAZ29, also know as ‘GoldenHordeEuro’. This sample is from Karasuyr, Kazakhstan, and
has been dated to 1200-1400 CE. The Golden Horde was a Mongol khanate established in
the 13th Century CE. Given this sample shows clear evidence of European ancestry and
clusters alongside individuals from Early Middle Age Europe, it has been proposed that this
individual was captured in Europe during the Mongol raids of the 13th Century, when they
assaulted the Kievan Rus’ federation [181]. That ‘GoldenHordeEuro’ clusters with Molz1l
suggests the location of capture in Europe may have been from Austria where Molzl was

found.

On a haplotype-based PCA with modern samples, Molzl clusters with present-day Slavic

speaking populations such as Poland, Ukraine and Belarus, while the two Germanic samples

2Viking samples not shown on Fig. 4.4 to increase visual clarity
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cluster with present-day individuals from Germanic-speaking countries in Western Europe,
such as Scotland, Germany and Wales (Fig. 4.5). Plotting differential haplotype sharing
between the Slavic and Germanic sample makes this pattern clear (Fig 4.10). There is a clear
division down the centre of Europe, dividing it into East and West that shows the structure

in present-day Europeans has existed since at least the Early Middle Ages.

In SOURCEFIND, the two samples from Altheim derived a large proportion of their
ancestry to modern day Germans (81.8%, se=12.8), whereas the Molzbichl sample derived a
large proportion of its ancestry from modern day Polish (77.85%, se=20.3) and Croatians
(11.7%, se=9.1).

Difference in
haplotype donation

0.001

0.000

—-0.001

Figure 4.10: Differential haplotype-donation between Germanic and Slavic samples. Each coloured
point is one present-day population. Points are coloured based on whether they
donate relatively more to Germanic (blue) or Slavic (red) ancient samples.
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4.3.7 Summary of Results and Discussion

Drawing back to the questions asked at the beginning.

Whilst the two samples from the Early and Middle Neolithic, Ergl and DIN2, showed
some signs of being from at least closely related source populations, they also displayed
variation suggestive of different population histories. Consistent with the hypothesis that
DIN2 may have migrated along the Danubian route, it shares the lowest TV D and is found
in a fineSTRUCTURE cluster with other samples from the Hungarian Plane. Additionally,
Ergl and DIN2 both show evidence of Hunter-Gatherer admixture (Fig. 4.8/4.9).

I found evidence of population discontinuity in Cherry-Tree Cave from the Late Neolithic
through to Iron Age. I identified a incoming signal of ‘southern’ ancestry during the Iron
Age, which was not present in the single sample from the preceding Bronze Age. The closest
source of this ancestry in my dataset is from Italy, with the best source in the dataset being
the cluster of Renaissance samples from Antonio et al (2019) [59], date to between 282 -
354 AD. However, given the Cherry-Tree Cave samples are almost 800 years older than the
date of the Renaissance, it seems likely these are not the ‘true’ mixing sources and better
sampling is needed to identify such a source. Whilst collaborators proposed that the source
may be related to the local Hallstatt culture, qpAdm modelling rejected this scenario (Table
4.3). Wherever the source originated from, this admixture event provides strong evidence

against continuity in Cherry-Tree Cave.

Lastly, I used present-day genomes of individuals from across Europe to show that there
are clear genetic differences between the Middle Age Germanic and Slavic samples, with the
Germanic samples showing a strong affinity to western European countries and the Slavic
samples showing a strong affinity to eastern European samples (Fig. 4.10). However, in the
context of ancient samples, all three Middle Age samples clustered with local samples from

the Bronze Age rather than the Iron Age (Fig. 4.4).

This dataset revealed that temporally and spatially close samples may have very distinct
genetic ancestry profiles, with Early Bronze Age samples Kir24 and Kir23 showing high
levels of Steppe-related and Neolithic ancestry respectively. In particular, Kir24 seemed to
be very recently related to the Yamnaya type-specimen sample, sharing 31cM of IBD with it.
The arrival of Yamnaya-like ancestry from this early period (2762BC) represents one of the

earliest known appearances in the literature.

Future studies in this region should focus on obtaining a higher density of samples, in

particular from the Bronze and Iron Ages; the low number of samples from these time periods
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mean any results should be interpreted with caution. More samples would show whether the
introduction of ‘southern’ like ancestry in the Iron Age was a widespread phenomena, or
restricted to a smaller geographic region in Southern Germany. Similarly, a wider sampling
of Iron Age groups from Germany, Italy and Switzerland may allow for a more accurate

identification of this source.

Whilst the utility of using present-day genomes was outlined through the comparison
of the Slavic and Germanic samples, the analysis would have been significantly improved
with higher resolution data from Germany. The data I have, described in Appendix section
A .4, only had country-level details. Data which had labels from different sub-regions in
Germany, similar to the POBI dataset, would have allowed for a finer-scale investigation into

the current east-west genetic divide in present-day Germany.



Chapter 5

The genomics of the Slavic migration
period, Early Middle Ages and their
links to the present day

5.1 Introduction

The Slavic peoples originated as a diverse network of tribal societies who lived in Central
and Eastern Europe from the first Millennia AD [182] and whose origin, although disputed,
is thought to be Polesia (a marshy forested area straddling Poland, Belarus, Russia and
Ukraine) [183]. Although various Roman and Greek sources refer to Slavs as Veneti and
Spori as early as the 1st and 2nd centuries AD, the term ‘Slavs’ was first used in writing by
Roman bureaucrat Jordanes at the beginning of the 6th century after their attack on the
Byzantine empire [184]. This era, known by historians as The Migration Period, was a period
of European history, roughly between 375-568 AD after the fall of the Roman Empire [185],
characterised by the large-scale movement of various peoples. The Migration Period began
with the Huns moving into Eastern Europe at the end of the 4th Century, occupying an area
including present-day Hungary and Romania. During the 5th century, various Germanic
groups invaded and established a homeland across parts of the Western Roman Empire. This
was followed by the expansion of Slavic populations into regions of low population density in

the sixth century.

Across the next two centuries, these peoples had settled across large parts of Europe
(Fig. 5.1). In particular, the Early Slavs had expanded southwards into the Balkans and
Alps [182,186-188]. It has been proposed that these migrations were key to forming the

foundations of present-day Slavic (speaking) nations [182].
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By the beginning of the 12th century, Slavs constituted a large part of a number of many
medieval Christian states across Europe. As from this time period, Slavs could be broadly
split up in three groups: the eastern Slavs as part of the Kievan Rus’, southern Slavs in the
Bulgarian Empire, the Principality of Serbia, Kingdom of Croatia and the Banate of Bosnia,
and western Slavs in the Principality of Nitra, Great Moravia, the duchy of Bohemia and

the Kingdom and Poland. In addition, Slavic settlement also occurred in the Eastern Alps;

Slovenia, large parts of present-day Austria and Friul.
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Figure 5.1: Slavic tribes from the 7th to 9th centuries AD in Europe. Source: (https://commons.
wikimedia.org/wiki/File:Slavic_tribes_in_the_7th_to_9th_century. jpg)

Today 315 million people speak Slavic languages and linguistic evidence suggests that
they can be broadly split into these three broad groups; western Slavs (Poles, Czechs and
Slovaks), eastern Slavs (Ukrainians, Belarusians and Russians) and southern Slavs (Croatians,

Bulgarians, Slovenians, Bosnians, Macedonians, Montenegrins and Serbians) [189].

The history of the Slavic peoples can be artificially be split into three periods: Migration


https://commons.wikimedia.org/wiki/File:Slavic_tribes_in_the_7th_to_9th_century.jpg
https://commons.wikimedia.org/wiki/File:Slavic_tribes_in_the_7th_to_9th_century.jpg
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Period (~375AD - ~568AD), Early Middle Ages/High Middle Ages (~600AD - ~1250AD)
and present-day. Several previous studies have investigated the genetics of the transitions
between these periods. Juras et al (2014) used uni-parental mtDNA markers from ancient
DNA samples from Poland to show continuity between both Roman Iron Age period (200 BC
— 500 AD) and Medieval Age (1000-1400AD) with present-day Poles, Czechs and Slovaks [190].
However, whilst informative about sex-biased migrations, uniparental markers carry only a
fraction of the information that autosomal markers do, and therefore may provide misleading
or incomplete information about the relationship between samples [191,192], especially when
admixture is prevalent (although see [193]). For example, it is know that mtDNA and nuclear
DNA may have different evolutionary histories and thus display discordant phylogenetic
trees [194].

Kushniarevich et al (2015) [195] combined results from mtDNA, non-recombining Y
and autosomal DNA to investigate the population structure of a wide range of present-day
Balto-Slavic populations. They proposed that incoming Slavic speakers admixed with peoples

in the regions they occupied during the Migration Period.

More recently, Machacek et al (2021) [196] analysed a cattle rib from Lany, Czechia,
dated to approximately 600AD, that is inscribed with Germanic runes. The bone was found
in a location where Slavs were thought to have arrived at the end of the Migration Period,
after the Germanic tribes had disappeared and the use of a Slavic language is historically
confirmed as of the 9th century. However, whether there was early genetic contact as well is

yet to be determined.

Several studies into present-day Slavic populations have detected signatures of admixture
from East-Asia [20,167,197-199]. Whether or not these signals can be observed in ancient
individuals is yet to be seen and could further refine the admixture date. For example, different
admixture dates in different Slavic populations may reveal structure among present-day

Slavs.

Finally, several studies have used haplotype-based methods to explore the structure of
present-day Slavic populations. Ralph and Coop [200] compared regions of IBD matching
across different European populations. They found a relatively high degree of IBD sharing
among pairs of individuals from Eastern Europe, suggestive of expansion from a smaller,
common source population. This expansion was tentatively estimated to between 0-1000AD.
Consistent with estimates of a small population size, Hellenthal et al (2014) [20] inferred
an excess of among Eastern European individuals and an admixture event, albeit with a

more constrained admixture date of 440 - 1080 CE. However, this could also be interpreted
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in terms of a small effective population size [201,202]. Salter-Townshend and Myers (2019)
also identified admixture in the Chuvash people between east Europeans and east Asians

approximately 1224 CE [167].

In this chapter, I will analyse 17 new medium to high coverage whole ancient genomes
from Czech Republic, spanning from the Migration Period to Early Middle Ages (384-950
AD). These are, to my knowledge, the first high-coverage whole ancient-genomes from this
period. T will merge the newly sequenced samples with reference data from other ancient
individuals and a large reference set of relevant present-day European individuals in order
to understand their ancestry in the context of both present-day and ancient samples. In

particular, I am interested in considering the following questions:

1. Do the labels “Migration Period” and “Early Middle Ages” make sense from a genetic
standpoint? Is there evidence of genetic change between Migration period and Early

Middle Ages in the area of present-day Czech Republic?

2. To what degree to we observe evidence of continuity /discontinuity between the Migration

Era and Early Middle Age samples?

3. How are present-day Slavic speakers structured, and do the different ancient Slavic

samples have different affinities to different present-day Slavic language groups?

5.2 Methods

5.2.1 Description of samples

Whole-genome sequence data were generated from 17 ancient individuals by collaborators
at Max Plank institute for E(Table 5.1). Five samples from Libivad date to the Migration
Period (348 AD - 504 AD), while the other 12 samples from Pohansko date to the later Early
Middle Ages (724 AD - 995 AD).

The Migration Period and Early Middle Age samples were categorised based upon the

style of pottery found in the burial grounds (Z. Hofmanové, personal communication).

5.2.2 Processing of samples performed by collaborators

Collaborators screened 22 samples and selected those with the highest endogenous DNA

content, whilst still having high complexity as measured by low duplication rate.

Sequencing quality of reads was checked with fastQC (https://www.bioinformatics.


https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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Code Site Date (AD) Period Coverage
LIB11  Brfeclav — Libiva 741.5 Early Middle Ages 5.3
LIB12 Breclav — Libiva 475.5 Migration period 6.8
LIB2 Breclav — Libiva 495.0 Migration period 6.4
LIB3 Breclav — Libiva 509.0 Migration period 5.3
LIB4 Breclav — Libiva 472.5 Migration period 6.5
LIB5 Breclav — Libiva 348.0 Migration period 7.3
LIB7 Breclav — Libiva 830.5 Early Middle Ages 5.6
POH11 Pohansko — Lesni skolka 783.0 Early Middle Ages 5.0
POH13 Pohansko — Lesni skolka 879.5 Early Middle Ages 6.0
POH27 Pohansko — Jizni Predhradi 783.0 Early Middle Ages 5.9
POH28 Pohansko — Jizni Predhradi 822.5 Early Middle Ages 5.6
POH36 Pohansko — Jizni Predhradi 880.5 Early Middle Ages 5.5
POH39 Pohansko — Jizni Predhradi 866.4 Early Middle Ages 5.3
POH3  Pohansko — Lesni hrad 956.5 Early Middle Ages 5.4
POH40 Pohansko — Lesni skolka 950.5 Early Middle Ages 5.5
POH41 Pohansko — Lesni skolka 875.5 Early Middle Ages 5.2
POH44 Pohansko — Pohrebiste U Kostela NA Early Middle Ages 5.3

Table 5.1: Information on newly sequenced ancient samples. Date (AD) estimated from radiocarbon
dating. ‘Migration’ corresponds to Migration Period and ‘EMA’ corresponds to Early
Middle Ages. Coverage calculated as the mean depth across all 77,213,942 genome-wide
SNPs where genotypes were called at.

babraham.ac.uk/projects/fastqc/). Duplicate reads were marked with picard-tools
MarkDuplicates [97]. Libraries from the same samples were merged using samtools
merge [67], and duplicates were marked again as described above to tag duplicate reads of
the same libraries among sequencing lanes. Genotypes and genotype likelihoods were called
using the atlas pipeline [71]. First, aligned reads from paired-end sequenced read groups were
merged to avoid double-use of bases in the overlapping part. PMD patterns were estimated
for each read group with atlas task=PMD, providing the reference with ref= and enabling

the option filterSoftClips to remove reads with soft-clipping.

Again using atlas [71], base-quality recalibration parameters were obtained (short recal-
parameters) from highly conserved regions. A .bam file with corrected recalibration and
pmd parameters was created with atlas BAMUpdateQualities, providing PMD and recal-

parameters and applying soft-clip filter (pmdFile, withPMD, recal, filterSoftClips).

5.2.3 Ancient DNA processing

I merged the 17 newly sequenced individuals with the ancient literature samples given in
section A.1, resulting in a total of 959 ancient individuals with genotype likelihoods at

77,213,942 genome-wide autosomal SNPs.


https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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I followed the GLIMPSE [92] imputation and phasing pipeline (https://odelaneau.
github.io/GLIMPSE/tutorial_b38.html) to generate genotype probabilities and phased
genotypes for each individual. For the reference panel, I used the 30x 1000 genomes

dataset [103], described in Appendix section A.2.

5.2.4 Present-day DNA processing

I merged the newly sequenced and published ancient samples with the MS-POBI-HellBus
dataset, described in detail in Appendix section A.4, chosen because it contains a high number

of relevant samples from central and eastern Europe. I removed samples from Australia, New

Zealand and USA.

The present-day and ancient samples were phased separately, as GLIMPSE is designed for
sequence-level density of data, and the present-day samples were genotyped on a low-density
genotyping array. Therefore, I phased the present-day samples using shapeit4 [25] using
default parameters and the supplied genetic map. I note that phasing the datasets separately

may reduce power to compare ancient and present-day samples.

The present-day and ancient samples described in section 5.2.3 were merged and converted

to ChromoPainter format.

5.2.5 plink PCA

I performed a PCA on the pre-imputation genotypes for only the ancient samples using
plink2 [165]. I chose to use plink2 because recent studies have shown it is substantially better
at dealing with samples containing variable amounts of missing data than other methods

such as smartPCA [56].

I ranked all SNPs by the percentage of missing genotypes and retained only the 500,000
markers with the lowest amount of missingness. I then LD-pruned the resulting SNPs using
the settings -maf 0.01 and -indep-pairwise 50 5 0.2 and performed PCA using plink2

under default settings.

5.2.6 Allele-frequency based tests

I used Admixtools [42], implemented in Admixr R library [203] to perform different F-

statistics.


https://odelaneau.github.io/GLIMPSE/tutorial_b38.html
https://odelaneau.github.io/GLIMPSE/tutorial_b38.html
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5.2.7 ChromoPainter and fineSTRUCTURE analysis

The merged data described in sections 5.2.3 and 5.2.4 contained a total of 959 ancient and

14,795 present-day samples genotyped at 477,417 autosomal bi-allelic SNPs.

I first selected all ancient samples above 2x coverage and performed an ‘all-v-all’ painting
where each haplotype was compared to all other haplotypes in turn, hereafter referred to as
‘ancient’ painting. I chose to remove samples with <2x coverage because all new samples
analysed here had at least 5x coverage, and my previous work indicated little difference in

ChromoPainter results among samples >2x coverage (Chapter 2 section 2.6.4).

I also performed an ‘all-v-all’ painting of the 17 newly sequenced samples and the

present-day populations given in table 5.2, hereafter referred to as ‘present-day painting’.

The fineSTRUCTURE [19] clustering and tree building algorithm was applied to the
ChromoPainter output for both the ‘present-day’ and ‘ancient’ paintings, in each case using
2,000,000 MCMC iterations after 1,000,000 iterations of “burn-in”. I then ran the tree-building
mode (-m T) with 100,000 additional hill-climbing steps before tree building,

Tree figures, coancestry matrix figures and principle component plots were gener-
ated using the fineSSTRUCTURE R library (https://people.maths.bris.ac.uk/~madjl/

finestructure/FinestructureRcode.zip).

The full workflow is shown in schematic form in Figure 5.2.

5.2.8 SOURCEFIND ancestry proportion analysis

I used SOURCEFIND |[21] to infer the proportions of ancestry by which each target (e.g.
ancient) individual is most related to a set of surrogate ancient populations. Each of the 47
clusters of ancient samples inferred by fineSTRUCTURE was analysed in turn, using the

other 46 clusters to act as surrogates.

Each cluster was run across three independent MCMC runs, using 50,000 burn-in iterations,
500,000 main iterations, and thinning every 5 iterations All three MCMC runs were then
combined to form an MCMC list using the coda R libary [107] and meme function to jointly

estimate ancestry proportions and empirical credible intervals for each target population.

5.2.9 MOSAIC admixture analysis

I inferred admixture events, dates and proportions using MOSAIC [167], performing two dif-

ferent analyses that mimicked the two ChromoPainter “ancient” and “present-day” paintings


(https://people.maths.bris.ac.uk/~madjl/finestructure/FinestructureRcode.zip)
(https://people.maths.bris.ac.uk/~madjl/finestructure/FinestructureRcode.zip)
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Figure 5.2: Workflow for analysing novel and reference ancient DNA samples. Each individual .bam
fie is downloaded and processed using atlas, generating vcf files containing genotype
calls and genotype likelihoods at each SNP identified in the 1000 genomes project.
vcf files were then merged using beftools and phased/imputed using GLIMPSE. The
phased genotypes and posterior genotype probabilities from GLIMPSE were then
combined to create a ChromoPainter input file. ChromoPainter was then used to
generated a .chunklengths matrix for use in SOURCEFIND.

. Number of
Population Individuals
HB:tsi 98
HB:spanish 34
HB:german 30
HB:french 28
HB:greek 20
HB:croatian 19
HB:hungarian 19
HB:norwegian 18
HB:southitalian 18
HB:polish 17
HB:romanian 16
HB:mordovian 15
HB:cypriot 12
HB:northitalian 12
HB:lithuanian 10
HB:siciliane 10
HB:westsicilian 10
HB:tuscan 8
HB:irish 7
HB:scottish 6
HB:germanyaustria 4
HB:welsh 4

Table 5.2: Name of population and number of samples used in the present-day ChromoPainter
analysis
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described above. In particular I tested each of the 5 fineSSTRUCTURE clusters containing the
17 newly sequenced individuals using as surrogates: (i) 46 other fineSSTRUCTURE clusters
containing ancient individuals (i.e. from the “ancient” painting results) or (ii) only the 5
other Slavic ancient populations plus 49 present-day populations in Table 5.3. I assumed
each target population could be formed as a mixture of both two and three admixing sources,

with all other parameters left as default.

I then performed a ‘present-day surrogates’ analysis using a select group of present-day
populations 5.3 and all ancient Slavic samples. I analysed each population in turn using all

other populations as surrogates.

MOSAIC was run using default settings and the following sets of populations as targets
and the following sets as surrogates. I formed each target as a mixture of both 2 and 3
mixing sources, with all other parameters left as default. Upper and lower quantiles for
admixture dates were estimated using a bootstrap procedure. Other than changing the

number of mixing sources, all other parameters were left as default.

5.3 Results

5.3.1 Mixed ancestry of Migration Period Slavs

The Migration Period samples consisted of five individuals with radiocarbon dates corre-
sponding to the Migration Period (348 - 509AD). Both the unlinked (Fig. 5.3) and linked
PCAs (Fig. 5.4) show that the Migration Period samples are heterogeneous and do not likely
originate from the same source population. One sample, LIB2 (495AD) is located in the
centre of a large cluster of contemporaneous individuals from Iron Age central and northern
Europe. fineSSTRUCTURE grouped LIB2 with Viking era individuals from Sweden, Denmark,
Iceland, Estonia and Norway from 300-1100AD. When painted using a set of present-day
reference samples, LIB2 matches the most haplotypes and clusters with Norwegians (Fig.

5.8). Put together, this data suggests LIB2 may be a recent migrant from Viking regions.

On the other hand, LIB4 and LIB5 are found in a fineSTRUCTURE group together with
Early Iron Age and Renaissance samples from Italy, and generally show an increased affinity
Neolithic / Southern European populations relative to the other Migration Period samples
based on PCA results (Fig 5.3-5.4). All samples and their associated fineSTRUCTURE

groups are found in Appendix section A.5.2.

LIB3 clusters with Lombard samples from Northern Italy (Fig 5.3) in the ‘ancient’ painting,
and with Tuscans in the ‘present-day’ painting. Finally, LIB12 displays ancestry which is
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. Number of
Population Individuals
HB:han 34
HB:bulgarian 31
HB:japanese 28
HB:sardinian 28
HB:russian 25
HB:yakut 25
HB:greek 20
HB:ukrainian 20
HB:croatian 19
HB:hungarian 19
HB:mongolian 19
HB:southitalian 18
HB:chuvash 17
HB:polish 17
HB:romanian 16
HB:buryat 15
HB:mordovian 15
HB:altai 13
HB:tuva 13
HB:evenk 12
HB:northitalian 12
HB:cambodian 10
HB:dai 10
HB:hannchina 10
HB:lithuanian 10
HB:miao 10
HB:nganassan 10
HB:selkup 10
HB:siciliane 10
HB:tu 10
HB:tujia 10
HB:uygur 10
HB:westsicilian 10
HB:yi 10
HB:belorussian 9
HB:daur 9
HB:orogen 9
HB:xibo 9
HB:hezhen 8
HB:naxi 8
HB:tuscan 8
HB:dolgan 7
HB:chukchi 5
HB:koryake 5
HB:yukagir 4
HB:myanmar 3
HB:burya 2
HB:ket 2
HB:malayan 1

Table 5.3: Name of populations and number of samples used in the present-day MOSAIC analysis
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Figure 5.3: Principle component plot of newly sequenced ancient samples and reference ancient
individuals performed using the plink2. Green labels correspond to Migration Era
samples, red labels to Early Middle Age samples and black as reference populations.
The position of each reference label is the mean PC coordinates of all individuals
within that population
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Figure 5.4: Principle component plot of newly sequenced ancient samples and reference ancient
individuals performed using fineSTRUCTURE. Green labels correspond to Migration
Era samples, red labels to Early Middle Age samples and black as reference populations.

more typical of the preceding Central European Bronze Age, suggesting it may represent a

‘leftover’ from a local Bronze Age population which was unaffected by the Antiquity / Iron

Age migrations to the region. It should be noted that the unlinked plink2 PCA and linked

ChromoPainter PCA position LIB12 against slightly different other populations, with the

unlinked PCA showing a similarity to Bronze and Iron Age French samples, and the linked

PCA to Longobards and Bavarian samples. This may be caused by either the linked PCA

giving higher resolution results, or giving details of a more ancient ancestral relationship.
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5.3.2 Early Middle Age Slavs represent a relatively homogeneous
group typical of European Middle Ages

In comparison to the five Migration Period ancient Slavs, the 12 Early Middle Age Slavs
(741-956 AD) are more homogeneous. All 12 samples cluster in the same fineSSTRUCTURE
group (named Slavic Early Middle Age II) (Table A.5.2), alongside Viking/Medieval samples
from Ukraine, Poland and Sweden. SOURCEFIND showed that the Slavic Early Middle
Age II cluster derives roughly equal parts of ancestry from the clusters Viking 10C Scan
I, BronzeAge I and Lombard mixed cluster (Fig. D.8). Interestingly, these three ancestry
sources are similar to those identified by SOURCEFIND analyses in the Migration Period
samples (Fig D.8). I tentatively therefore suggest that the Early Middle Age Slavs were
formed from the mixture of ‘northern’ (best represented by Viking) and ‘southern’ ancestries

(best represented by Lombards) onto a substrate of local Bronze Age populations.

MOSAIC admixture analysis on the Early Middle Age samples using ancient surrogates
proved inconclusive. However, using present-day individuals as surrogates inferred a three-
way admixture event involving sources closest to present-day day north-central Slavs (76.6%),
southern-eastern Slavs (21.9%) and East Asians best represented by Mongolians (1.5%)
(Fig. 5.5). This admixture event was estimated to have occurred 9.4 (2.5% 5.7gens - 97.5%
17.9gens) generations before the samples (Fig. 5.6), i.e. 476 - 732 AD.

This admixture event is consistent with a signal inferred in both present-day day Eastern
European individuals [20,167]. In previous studies, this admixture event was dated to

approximately 1200CE (MOSAIC) and 440-1080 (GLOBETROTTER).

5.3.3 Assessing continuity between Early Middle Age and Migration

Period samples

To formally establish whether the Early Middle Age and Migration Period samples cluster
within their respective populations to the exclusion of the other, following Leslie et al 2015 [31],
I performed a TVD permutation test. Full details of TV D justification and calculation are

outlined in Appendix section B.3.

Using the ancients chunklengths matrix, I grouped the samples into Migration Period
and Early Middle Age and calculated the average copyvectors Cp,, and Cey,, across sam-
ples within each groups. Here Cy,, = {Chip(1), ..., Crup D}, where Cyypy(d) is the average
amount a Migration Period individual copies from (i.e. is painted by) individuals from

donor population d. Then, I calculated the empirical TVD between the two groups as
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Figure 5.5: Copying matrix plot for sources in 3-way admixture event for Early Middle Age ancient
Slavic samples. Each panel represents one of the 3 putative mixing sources. Labels
above each panel gives the proportion that mixing source contributed to the Early
Middle Age samples. Length of the bars within each panel represent the reflect how to
best represent the relative haplotype composition of that source using the surrogate
populations.
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Figure 5.6: Inferred Coancestry Curves obtained from modelling Early Middle Age samples as a
3-way mixture of present-day individuals. Black lines are empirical coancestry curves
across all target individuals, light grey are per individual, green is the fitted single-event
coancestry curve. x-axis gives genetic distance and y-axis the probability of switching
segments from source a to source b. Sources are those given in Fig. 5.5.

TV Dppema = 2_g |Cmp(d) — Cema(d)|. For 10,000 iterations, I then randomly permuted the
population labels among the samples and then calculated the analogous TVD, TVDI,?;gma,
between these two randomised “populations”. I then calculated, as a p-value for the null
model assuming individuals are exchangeable between the two populations, the number
of randomly permuted iterations where TV D774 > TV Dpyp,ema- This test supported

mp,ema

clustering the samples into their respective groups (p = 0.0013).

To determine the extent of continuity between the Migration Period and Early Middle
Ages, I modelled each Early Middle Ages sample as a mixture of other ancients, including
individuals from the preceding Migration Period, using SOURCEFIND. The proportion of
ancestry derived from the Migration Period was low (mean 3.4% , range 0.4% - 12.5%),
suggesting that there was a relatively large scale population replacement between the two

different time periods.

5.3.4 Legacy of Slavic migrations in present-day individuals

Principle component analysis (PCA) of the present-day painting indicates genetic similarity

between ancient Slavic samples from the Early Middle Ages and present-day day Slavic
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speaking populations (Fig. 5.7). The Early Middle Age samples primarily cluster with
present-day Polish and Belorussian individuals, but appear to fall on a cline of genetic

similarity between Russians and southern Europeans.

As with the ancients PCA, Migration Era Slavs are spread across the present-day PCA.
LIB3, LIB4, and LIB5 cluster with present-day Italians, consistent with deriving a substantial
ancestry component from southern European sources. LIB4 and LIB5 appear to be positioned
closer to southern Italians and Greeks, whereas LIB3 is closer to northern Italian and Tuscan
populations. LIB2 shows a strong affinity to present-day Norwegians, suggesting it may be a

recent migrant from Viking regions.
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Figure 5.7: Principle component plot of newly sequenced ancient samples and reference modern
individuals performed using the finestructure library. Green labels correspond to
Migration Era samples, red labels correspond to Early Middle Age samples and white
labels correspond to reference populations. The position of each reference label is the
mean PC coordinates of all individuals within that population. Transparent coloured
points correspond to present-day individuals.
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The same pattern can be observed on the raw copyvector output matrix from the present-
day painting (Fig. 5.8). In particular, Migration Era samples show little excess affinity to

present-day day Slavic populations.
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Figure 5.8: Raw chunklengths matrix from the ‘present-day’ painting. Rows correspond to different
ancient recipient individuals, grouped into Migration Period and Early Middle Age
period, and columns to different donor populations. Colour of cells corresponds to the
total length of genome that a given donor individuals donates to that recipient, with
dark/blue indicating less sharing and light/yellow colours indicating more sharing.

In contrast, the Early Middle Age samples showed a strong affinity to present-day day

Slavic populations, especially Polish, Lithuanians and Mordovians.

To confirm that the observed results were not a result of phasing or imputing ancient
individuals using present-day samples, I calculated f3 statistics on pre-imputation genotypes.
Specifically, I calculated f3, or the branch length / amount of shared drift, between a set of
present-day test populations and the grouped Early Middle Age samples. The results are
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qualitatively similar to those obtained using ChromoPainter, with Early Middle Age ancient
Slavic individuals being closest to samples from Eastern Europe (Fig. 5.9). However, the
f3 results do not appear to show the same degree of geographical structure; for example,
Early Middle Age have a more positive f3 with present-day Irish individuals than with some
present-day Slavic-speaking groups such as Croatians, perhaps reflecting relatively higher

genetic drift in the Irish population.
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Figure 5.9: f3 statistics in the form of f3(EM A, present — day; mbutipygmy), where present-day
is different present-day European population. Error bars rerpesent + % 2 standard
error.

5.3.5 Genetic structure and admixture events of present-day Slavic

people

fineSTRUCTURE clustering on the 17 ancient samples with 21 present-day European
populations gave results similar to those obtained from visually inspecting the chunklengths
matrix in Fig 5.8. Among Migration Period samples, LIB2 and LIB12 cluster with north-west
European groups, LIB3 clusters with Tuscany, and LIB4/LIB5 cluster with Spain. The
present-day Slavic populations I had data for fall into two fineSSTRUCTURE clades consistent
with geography: (1) Croatians and Bulgarians (“south-east”), (2) Belarusians, Lithuanians,
Polish, Russians and Ukrainians (“east”). Of the Early Middle Age samples, three (POH3,
POH39, POH27) cluster into ‘south-east’ Slavic clade, with the remaining seven clustering
into the ‘east’ clade. These results are consistent with the a hypothesis that the structure in

present-day Slavic populations has been present since the Early Middle Ages.

Previous studies have identified admixture events in present-day Slavic populations
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Figure 5.10: Population dendrogram generated by the fineSTRUCTURE tree building algorithm.
Labeled tips refer to the primary population(s) represented in that clade. present-day
non-Slavic populations shown in black. ‘south-east’ Slavs highlighted in cyan and
‘north-west’ Slavs highlighted in yellow. Migration period individuals superimposed
in green and Early Middle Age samples superimposed in red. Read fineSSTRUCTURE
paper for description of edge values. Note: some tips contained more than one
population but were not included as labels to save space.

involving an east-Asian source approximately 440 - 1080 CE [167,204]. In previous sections, I
showed that this signal exists in the Early Middle Age ancient samples and is best characterised
by populations from present-day Mongolia (Fig. 5.5). T employed MOSAIC [167] to replicate
the results of Hellenthal et al (2014) and Myers and Salter-Townshend (2019) and determine
whether a similar admixing source is present in the ancient populations. I analysed all
present-day populations (Table 5.3) and ancient Slavic populations in turn. For the ancient
Slavic samples, I grouped all Early Middle Age samples together and grouped LIB3, LIB4
AND LIB5 together as the Migration Period samples.

When considering 2-way admixture event, all of the tested populations (both ancient and
present-day), bar the Migration Period, showed evidence of an admixture event involving a
minor source that has the lowest f5; with present-day Uygurs. The dates and bootstrapped
confidence intervals are given in Fig. 5.11. Other than Norwegians and Croatians, whose dates
are later and earlier respectively, the dates for other populations appear to be constrained
around 1250 CE. This date is similar, but slightly later than that obtained from Hellenthal
et al (2014), who estimate it to be 440 to 1080 CE.

Of the present-day Slavic speaking populations, Belorussian, Polish and Ukrainian, show

evidence of a 3-way admixture event, in which the middle component has the lowest fs; with
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Figure 5.11: MOSAIC inferred 2-way admixture dates with bootstrapped 97.5% and 2.5% CI).
Vertical green lines correspond to radiocarbon estimated dates of Migration Period
samples and red lines equivalent for Early Middle Age samples. Estimated dates
obtained by assuming an average generation time of 26 and date of birth of 1950 for
present-day samples. Populations are coloured based on whether they show signals

of east Asian admixture (blue) or not (green). Source populations are those given in
table 5.3.
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Migration Era ancient samples (Fig. 5.12). The major component has a low f; with Early
Middle Age Slavs. This suggests that the formation of present-day Slavic populations could
have occurred via admixture events involving Migration Era individuals with high levels
of Southern European ancestry, Middle Age Era samples which show a strong affinity to
present day eastern Europeans, and a small but significant east Asian source best represented
by present-day Uygurs. It seems possible this ancestry may have been transmitted via
Finno-Ugric speaking populations which contain Siberian ancestry, with admixture dates

beginning approximately 3500 years ago [205].

These results are similar to those in the Middle Age samples (Fig. 5.5), though dates are
more recent in the present-day samples (Fig 5.11), suggesting recent admixture in present-day

populations may be masking the older signals we see in the Early Middle Ages group.

5.4 Summary of Results and Discussion

Referring back to the questions posed in the introduction.

I found that the Migration Period samples, relative to the Early Middle Age samples,
show a high degree of diversity in terms of ancestry, with affinities to present-day samples
varying from Norway to southern Italy. On the other hand, fineSSTRUCTURE analysis on
the ‘ancients’ painting grouped all Early Middle Age samples together, showing that they
represent a group of samples which likely share common ancestry. Consistent with this, the
Early Middle Age samples showed evidence of east Asian admixture, a signal that was not
present in the Migration Period samples. These results suggest a population turnover may
have occurred between approximately 500-700 AD, the time period between the Migration
Period and Early Middle Age. However, based on MOSAIC results of present day populations,
a model of mixture between sources close to Migration Era, Early Middle Age and east-Asians

seems plausible (Fig. 5.12).

All of the Early Middle Age samples showed a high genetic similarity to present-day Slavic
and non-Slavic speaking populations from eastern Europe, such as Poland and Lithuania
(Fig. 5.8). This is in stark contrast to the Migration Period, who all fell on a cline of
genetic similarity between present-day Scandinavian and Mediterranean populations (Fig.
5.7). Whilst I did not explicitly test a model of genetic continuity, these results provide
strong evidence a higher degree of continuity existed between the Early Middle Ages and the
present-day, relative to between the Migration Period and Early Middle Ages.

Finally, a joint fineSTRUCTURE analysis which included both ancient and present-day
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Figure 5.12: 1 — F; between 3 inferred mixing sources for present-day Belorussians. Each panel
represent a different mixing source. Each bar gives the value 1 — Fs; between that
samples population and the mixing source. Higher values of 1 — F; suggest that
source is well represented by a particular population.

samples showed that present-day Slavic speakers can be split into ‘north-west’ and ‘south-east’
groups, and that different Early Middle Ages samples had differing affinities to these groups
(Fig 5.10).

I found strong evidence that LIB2 was a recent migrant from Viking regions. There are
many sources which detail the links between the Viking and Slavic peoples towards the end
of the first millennium [206,207]. However, most evidence suggests these links occurred later
than the estimated radiocarbon date of LIB2. For example, it is known that the Scandinavian
colonists settled in present-day Russia as early as 750 AD, whilst LIB2 was samples at
approximately 495 AD. Therefore, we could suggest that this is evidence of an earlier link

than previously known. In their large-scale study of ancient DNA of Viking samples from
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across Europe, Margaryan et al (2020) present Viking samples and ancestry in Estonia, but

not until the beginning of the 8th Century, some 200 years after the estimated date of LIB2.

I also found evidence of southern European-like ancestry in three (LIB3, LIB4 and LIB5)
Migration Period samples. The appearance of southern European-like ancestry in Central
Europe in the first millennium is similar to a signal found in a study exploring the ancestry
of individuals with elongated skulls in medieval Bavaria (approximately 500AD) [208]. It
was shown that particular individuals harbour substantial Southern-European ancestry from
outside of Bavaria, closest to individuals from present-day Greece and Turkey. There are at
least two possible explanations for the presence of this ancestry in the Migration Era samples.
Firstly, LIB3, LIB4 and LIB5 may be similar migrants to the region. This is consistent
with the fact they are all female; Veeramah et al (2018) showed that there was a tendency
for females to migrate from southern regions, perhaps related to the formation of strategic

alliances.

The results from the analysis of combined ancient and present-day genomes are consistent
with those from Kushniarevich et al (2015) [195] who determined that Eastern (Russia,
Belarus, Ukraine) and Western (Polish) central European Slavs form a cluster to the exclusion
of Southern Slavs (Croatia, Bulgaria), whilst also remaining distinct from geographically
proximate Germanic (German/Austrian) and Baltic (Lithuanian) populations. This is also
consistent with results from Veeramah et al 2011, who showed that Sorbs, a west-Slavic
population found between Poland and Germany, have a much stronger affinity to more

distant Slavic populations from Czechia than to more proximate Germans [161].



Chapter 6

General Conclusions

6.1 General summary

In this thesis, I have explored the use of ChromoPainter on ancient DNA samples and present-
day samples which contain sparsely genotyped markers. I evaluated the impact of coverage
on all steps of the analysis pipeline, from imputation and phasing with GLIMPSE [92] to
ChromoPainter and SOURCEFIND analysis, focussing on the trade-off between potential
gains from leveraging haplotype information and potential reference panel bias. I then applied

my findings to two novel and one publicly available dataset(s).

In Chapter 2, I showed that the copyvectors of GLIMPSE imputed >0.5x downsamples
show a high correspondence with the same sample at full coverage (Fig. 2.6), when painted

using both ancient and present-day donors.

Disappointingly, my several attempts to improve the performance of ChromoPainter on
0.1x and 0.5x samples were not successful, including filtering the SNPs used using different
criteria (Section 2.8). This was surprising, as my work and that of others [63] showed that
filtering SNPs on e.g. genotype probabilities could substantially reduce the overall fraction of
incorrectly imputed genotypes. I also found evidence of bias towards the reference panel (Fig.
2.14), shown as excess donation from populations in the reference panel, and bias towards the
reference sequence, as genotypes containing more reference alleles were imputed with greater
accuracy (Table. 2.6). In part, these biases may be driven by various factors; for instance,
although the sample size was small (n=5), my results also showed that ancient samples which
are temporally/genetically closer to a reference panel of present-day individuals are imputed

with a higher accuracy.

Using present-day samples, I also showed that you can gain haplotype information using
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sparsely genotyped data with (presumably) perfect information at each SNP. Specifically,
individuals from Cornwall and Devon can be distinguished genetically with >90% accuracy
using only 1565 500-kb regions that contain ~ 6.6 SNPs on average (i.e. =~ 40,000 SNPs in
total) (Table. 2.9). A similar classification rate was found for distinguishing Mandenka from
Senegal and Yoruba from Nigeria, with >90% accuracy when using 1565 500-kb regions of
~ 8 SNPs (Table 2.10). However, it appears current imputation approaches do not make
reliable enough genotype calls on aDNA samples with <0.5x average coverage to provide
many 500-kb windows with correctly called (and no incorrectly called) genotypes. Perhaps
this is not surprising, as my exploration of 587 available ancient DNA samples revealed that
genomes with 0.5x coverage have <1500 500-kb regions with 12 SNPs covered by even two
reads (Figure 2.17), making calling heterozygotes challenging (or impossible) throughout the

genome.

In Chapter 3, I explored African ancestry in U.K. Biobank samples. Following from my
Chapter 2 findings, I showed that it is possible to recover substantial haplotype information
with only a fraction of the total number of SNPs usually used. Being able to use fewer SNPs
in an analysis will allow different datasets to be merged and jointly analysed, opening up
a larger array of questions to be answered, whilst also significantly reducing the computa-
tional footprint of an analysis. I found that in terms of fine-scale population assignment,
performing imputation on non-European samples using a predominantly European reference
panel (Haplotype Reference Consortium) biases ChromoPainter analyses towards reference
populations (Fig 3.3), as does performing analysis in unlinked mode (Table 3.1). Indeed,
performing analysis on a majority imputed SNPs is more harmful for accuracy than using
70,000 SNPs in unlinked mode. This suggests that imputing to combine data from different
SNP arrays, using the strategy I outlined in Chapter 3, may actually be more harmful than
using a relatively small number (<100,000) of overlapping non-imputed SNPs when inferring

fine-scale ancestry patterns.

My analyses showed that approximately 4% of U.K. Biobank participants have at least
50% African ancestry. Within this set of individuals, genetic ancestry from West Africa was
very prevalent, consistent with historical events (Fig 3.5). In particular, I found that there
was over ten times the number of individuals with at least 50% ancestry from Yoruba than

there was the next most common ancestry.

In Chapter 4, I analysed novel ancient DNA datasets from Bavaria with the samples
spanning almost 7000 years of history. The analysis of ancient Bavarian samples recapitulated
previous research which identified admixture events between early farmers and local hunter-

gatherers, and the presence of steppe-related ancestry in the Late Neolithic. However, it also
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provided some less expected results, showing that samples with extremely different ancestries
cohabited the same cave and the same time period. I also identified ancestry most closely
related to Iron Age Italian source which arrived in Bavaria during the Iron Age, but was not
present in the preceding Bronze Age. Future studies could increase the number of ancient
sample sequenced from Bronze and Iron Age Bavaria in order to constrain the date the
ancestry appears and source of origin. Finally, I showed that early Germanic and Slavic
samples from the Middle Ages, which could not be distinguished using other ancient samples,
showed strong genetic differences when analysed using present-day data (Fig. 4.10). Whilst
I was able to identify structure down to the level of individuals countries, the lack of data
from different regions in Germany meant that I was not able to determine whether there was

fine-scale differential relatedness to the ancient samples for different German states.

My final Chapter analysed the differences between Migration Era and Early Middle
Age samples from Czechia. The data revealed that whilst different Migration Era samples
displayed genetic affinities to a wide spectrum of other ancient and present-day populations,
the Early Middle Age individuals were relatively more homogenous and broadly showed strong
similarity to present-day Slavic speaking populations (Fig. 5.8). However, fineSSTRUCTURE
analysis using present-day Slavic and non-Slavic speaking populations clearly showed that
present-day Slavic speaking populations can be split into south-east and north-west clusters,
with different ancient samples showing different affinities to each cluster. Lastly, I provided
evidence that previously reported [20,167] signals of east-Asian admixture in eastern-European
populations was also present in the Early Middle Age ancient Slavic samples (Fig. 5.6).
Although the five Migration Era samples represented an array of ancestries present in Czechia
during that period, the sample size (n=3 at most) per sub-population was too low to reliably

infer admixture events.

6.2 Recommendations

My recommendations for analysing low coverage data are as follows:

1. If imputing samples using GLIMPSE and the 30x 1000 genomes reference, include
samples with at least 0.5x mean coverage. Samples below this coverage (0.1x) show
effects of coverage-related bias in copyvector estimation, SOURCEFIND analysis and
positions on a PCA.

2. When merging data from different genotyping arrays, it is preferable only to retain
directly genotyped SNPs rather than imputing missing ones using a reference panel

(e.g. using Eagle2 and HRC) This applies when the total number of directly genotyped
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SNPs is at least 45,000 (Fig. E.2).

6.3 Limitations of work and future avenues of research

Firstly, I did not consider ancient samples from Africa. This is in part because of a lack
of high coverage samples from Africa (Mota being the highest coverage at 10x) and the
vast majority of ancient DNA samples from western Eurasia. I expect results to differ
when considering African samples. Africans harbour more diversity and have lower levels
of background LD [140] and thus would be expected to match shorter segments to other
individuals. Imputation accuracy would likely be lower, in part because of less LD and
higher genetic diversity, but also because less of the total proportion of genetic diversity is
present in reference panels. Finally, the large population turnovers in Africa (e.g. the Bantu
expansions) mean that many pre-Bantu ancient samples may harbour diversity that does
not exist in present-day individuals. Therefore, it is possible that coverage greater than 0.5x

may be necessary to accurately analyse African samples with ChromoPainter.

I did not evaluate the effect of coverage on either fineSTRUCTURE or GLOBETROTTER
analysis. This is because GLOBETROTTER struggles to identify admixture events in single
samples and I only had a single downsample for each individual and level of coverage. To
accurately estimate admixture events, segments of DNA within an individual copied from
different populations need to be identified. Such segments may be particularly hard to

identify in low coverage samples, as the segment boundaries may contain low-coverage SNPs.

I didn’t use the largest reference panel (HRC) to impute ancient samples, due to technical
challenges in obtaining access to the data and so likely underestimate the potential accuracy
of imputation on low coverage samples. Thus, future work should examine the scale of
improvements in imputation accuracy when using extremely large reference panels. For
example, plans to sequence the whole-genomes of 200,000 U.K. Biobank participants would
provide an unparalleled resource to impute variants in ancient samples of western European

ancestry.

Whilst my attempt at incorporating genotype likelihoods into the ChromoPainter process
only provided very modest improvements, the fact that this approach has been successful
in other methods [117,209-211] suggests that in theory it should also be applicable to
Chromosome painting. Future work on ChromoPainter could explore the reason why this
did not work and suggest alternate ways in which to account for the uncertainty associated
with low coverage data. Studies could also interrogate the performance of ChromoPainter

on the range of coverages between 0.1-0.5x. Recent research has argued it is possible to
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infer ancestral relationships between samples as low as 0.1x in coverage, although only for

particular applications such as demographic change [212].

On the other hand, methodological advances in laboratory DNA extraction techniques,
DNA enrichment and sequencing technologies and library preparation for ancient samples
may mean that all samples can be sequenced to a high enough coverage that coverage-related

effects are inconsequential.



Appendix A

Datasets used

This appendix described the different datasets used in analyses performed in this thesis. It

includes datasets of both modern and ancient genomes.

A.1 Ancient reference dataset

This section describes the generation of the dataset of reference ancient individuals used in

Chapters 2, 4 and 5.

For each of the samples in Table A.1, the following steps were taken to produce Chro-

moPainter input.

1. Each .bam was processed with PicardTools ValidateBam [97] task to ensure no files

were corrupted or contained incorrect read group information.

2. Each .banm file was processed with atlas (version 1.0, commit f612f28) pipeline [71]
(https://bitbucket.org/wegmannlab/atlas/wiki/Home). For .bam file, I estimated
post-mortem damage (PMD) patterns using atlas estimatePMD task. Recalibration
parameters were then estimated using atlas recal task. Finally, both the recalibration
and PMD parameters were given to the callNEW task which produces genotype calls
and genotype likelihood estimates for each downsampled and full coverage .bam. For
this stage, I made calls at the 77,818,345 genome-wide positions present in the phase 3
thousand genomes project [98]. This was done to reduce the risk of calling false-positive

non-polymorphic sites. This resulted in a .bcf file for each ancient sample.

3. All .Dbcf files were split into chromosomes and all samples from the same chromosome
were merged. Imputation and phasing was performed with GLIMPSE (version 1.1.1). I
followed the steps laid out in the GLIMPSE tutorial (https://odelaneau.github.io/


https://bitbucket.org/wegmannlab/atlas/wiki/Home
https://odelaneau.github.io/GLIMPSE/tutorial_b38.html
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Number of

Paper Samples Reference
Allentoft 2015 20 [152]
Antonio 2019 134 [59]
Broushaki 2016 1 [213]
Brunel 2020 58 [158]
Cassidy 2015 4 [214]
deBarrosDamgaard 2018a 34 [94]
deBarrosDamgaard 2018b 58 [181]
Gamba 2014 10 [175]
Gunther 2015 2 [150]
Hofmanova 2016 5 [151]
Jones 2015 2 [215]
Lazaridis 2014 1 [51]
Marchi 2020 4 216]
Margaryan 20 442 [58]
Berger unpublished 14 NA
Olade 2014 1 [217]
Rivollat 20 101 [168]
Sanchez-Quinto 2019 7 [218]
Seguin-Orlando 2014 1 [219]
Veeramah 2018 1 [208]
Hofmanova unpublished 37 NA

Table A.1: Name of paper, number of samples and reference for all literature ancient samples used
in analyses

GLIMPSE/tutorial_b38.html). First, I used GLIMPSE_chunk to split up each reference
chromosome into chunks, keeping both -window-size and -buffer-size to 2,000,000,
their default settings. Across all chromosomes, this produced 936 chunks of an average

2.99Mb long. I used the b37 genetic map supplied by GLIMPSE for the -map argument.

Each chunk was then imputed separately using GLIMPSE_phase using the same 1000
genomes dataset as a reference. Default settings and the supplied b37 genetic map
were used. This stage both imputes missing genotypes and generates a set of haplotype

pairs which can be sampled from in a later step to produced phased haplotypes.

GLIMPSE_ligate was then used to merge the imputed chunks back to form single

chromosomes using the default settings and the supplied b37 genetic map.

Haplotypes were then sampled using GLIMPSE_sample to produce a .vcf with phased
haplotypes for each individual, again using default settings and the supplied b37 genetic

map.

Consequently, the output of GLIMPSE is i) unphased genotype calls with posterior
genotype likelihoods and ii) phased haplotypes.

4. Finally, the posterior genotype likelihoods and phased haplotypes were combined to


https://odelaneau.github.io/GLIMPSE/tutorial_b38.html
https://odelaneau.github.io/GLIMPSE/tutorial_b38.html
https://odelaneau.github.io/GLIMPSE/tutorial_b38.html
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generate ChromoPainterUncertainty output using a custom script (https://github.

com/sahwa/vcf_to_chromopainter).

A.2 30x 1000 genomes dataset

Samples from [103].

This dataset consists of 3,202 modern individuals from 26 worldwide populations, se-
quenced to a targeted depth of 30x coverage. The downloaded dataset was aligned to the
gr38 reference genome. Samples were downloaded to the UCL Computer Science cluster by
myself from the ftp mirror. The following steps were taken to process the data before being

used as an imputation reference.

1. Filtered such that SNPs with only 2 alleles were retained

2. Performed a liftover to hgl9 using LiftoverVef from picard tools [97]

3. Filter again for SNPs with only 2 alleles

4. Phase using shapeit4, using the ‘sequencing’ parameter and setting —pbwt-depth 4.
5. Remove duplicated SNPs using beftools norm [220]

6. Use Beagle’s conform-gt utility to ensure reference alleles were consistent with the
previous 1000 genomes build. This was done because all previous datasets I have

compiled were also conformed to the previous 1000 genomes build.

Population codes and populations can be found at https://www.coriell.org/0/

Sections/Collections/NHGRI/1000genome . aspx?Pgld=664&coll=HG.

A.3 Human Origins dataset

This dataset consists of 560,420 SNPS and 5998 individuals from 509 worldwide populations.
It has a particularly large number of samples from West and East Africa; in particular,

Cameroon, Ethiopia, Nigeria and Ghana.

Region Country Populations Ref sum
Africa Algeria Algerian Lazaridis et al 2014 4
Africa Algeria Mozabite Lazaridis et al 2014 21

Africa Botswana Gana Lazaridis et al 2014 7


https://github.com/sahwa/vcf_to_chromopainter
https://github.com/sahwa/vcf_to_chromopainter
https://www.coriell.org/0/Sections/Collections/NHGRI/1000genome.aspx?PgId=664&coll=HG
https://www.coriell.org/0/Sections/Collections/NHGRI/1000genome.aspx?PgId=664&coll=HG
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Table A.3: Continent, Country, ethnicity, published study and number of individuals in each

Human Origins population.

A.3.1 Processing

Only bi-allelic SNPs were retained. To ensure that all datasets, ancient and modern, can

be merged together without the confounding effects of strand flips, I then used conform-

gt (https://faculty.washington.edu/browning/conform-gt.html) to align all alleles to

the same strand as the 1000 genomes reference, keeping all parameters as default. Any

genotypes which had a genotype likelihood of below 0.990 were set as missing.

Data was phased use shapeit4 [25], setting -pbwt 8 and keeping all other parameters

as default. The 1000 Genomes was used as as reference (section A.2). Sporadic low quality

missing genotypes were imputed.


https://faculty.washington.edu/browning/conform-gt.html
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Population Code Number of individuals

ACB 116
ASW 74
BEB 131
CDX 93
CEU 179
CHB 103
CHS 163
CLM 132
ESN 149
FIN 99
GBR 91
GIH 103
GWD 178
IBS 157
ITU 107
JPT 104
KHV 122
LWK 99
MSL 99
MXL 97
PEL 122
PJL 146
PUR 139
STU 114
TSI 107
YRI 178

Table A.2: Population codes and number of individuals for each 1000 genomes populations.

A.4 MS POBI HellBus dataset

Multiple Sclerosis (MS), People of the British Isles (POBI), Hellenthal and Busby (HB) /
MS POBI HellBus contains a total of 14,795 individuals from 211 worldwide populations
and genotyped at 477,417 autosomal bi-allelic SNPs.

Samples from Sawcer et al (2011) [221] (10299 individuals from 15 pops), Leslie et al
2015 [31] (2039 individuals from 35 pops) and Busby et al (2457 individuals from 161 pops).

Individuals from MS populations USA, Canada and New Zealand were all removed as

the individuals were not native to that country.

The following steps were taken to process the data

1. Filtered such that SNPs with only 2 alleles were retained
2. Phase using shapeit4 [25] setting -pbwt-depth 8.
3. Remove duplicated SNPs using beftools norm [220]

4. Use Beagle’s conform-gt utility to ensure reference alleles were consistent with the
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previous 1000 genomes build. This was done because all previous datasets I have

compiled were also conformed to the previous 1000 genomes build.

Table A.4: Populations and corresponding number of individuals for all populations in the ‘MS
POBI HellBus’ dataset

Dataset  Population Number of Individuals
HB abhkasian 20
HB adygei 17
HB altai 13
HB armenian 35
HB balkar 19
HB balochi 24
HB bantukenya 11
HB bantusouthafrica 8
HB basque 24
HB bedouin 45
HB belorussian 9
HB bengali 1
HB bhunjia 1
HB biakapygmy 21
HB brahmin 11
HB brahui 25
HB bulgarian 31
HB burusho 25
HB burya 2
HB buryat 15
HB cambodian 10
HB ceu 59
HB chamar 10
HB chechen 20
HB chenchu 4
HB chukchi

HB chuvash 17
HB colombian 7
HB croatian 19
HB cypriot 12
HB dai 10
HB daur 9
HB dharkar 8
HB dhurwa 1
HB dolgan 7
HB druze 42

HB dusadh 7



A.4. MS POBI HellBus dataset

171

Table A.4: Populations and corresponding number of individuals for all populations in the ‘MS
POBI HellBus’ dataset (continued)

Dataset  Population Number of Individuals
HB egyptian 12
HB english

HB ethiopiana 7
HB ethiopianjew 11
HB ethiopiano 7
HB ethiopiant

HB evenk 12
HB finnish 2
HB french 28
HB georgian 20
HB german 30
HB germanyaustria

HB gond

HB greek 20
HB hadza 3
HB hakkipikki 3
HB han 34
HB hannchina 10
HB hazara 22
HB hezhen 8
HB hungarian 19
HB indian 1
HB indianjew 8
HB iranian 20
HB irish 7
HB japanese 28
HB jordanian 20
HB kalash 23
HB kanjar 5
HB karitiana 11
HB karnataka 8
HB ket 2
HB kol 16
HB koryake

HB kshatriya 7
HB kumyk 14
HB kurd 6
HB kurmi

HB kurumba 4
HB kyrgyz 16



A.4. MS POBI HellBus dataset

172

Table A.4: Populations and corresponding number of individuals for all populations in the ‘MS
POBI HellBus’ dataset (continued)

Dataset  Population Number of Individuals
HB lahu 8
HB lambadi 1
HB lebanese 5
HB lezgin 18
HB lithuanian 10
HB luhya 94
HB maasal 97
HB makrani 25
HB malayan 1
HB mandenka 22
HB mawasi 1
HB maya 21
HB mbutipygmy 13
HB meena 1
HB meghawal 1
HB melanesian 10
HB miao 10
HB mongolian 19
HB mordovian 15
HB moroccan 25
HB mozabite 29
HB muslim

HB myanmar

HB naga 4
HB naxi

HB nganassan 10
HB nihali 2
HB nogay 16
HB northitalian 12
HB northossetian 15
HB norwegian 18
HB orcadian 15
HB orogen 9
HB palestinian 46
HB papuan 17
HB pathan 22
HB pima 14
HB piramalaikallar 8
HB polish 17
HB romanian 16
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Table A.4: Populations and corresponding number of individuals for all populations in the ‘MS

POBI HellBus’ dataset (continued)

Dataset  Population Number of Individuals
HB russian 25
HB sakd 4
HB sandawe 28
HB sankhomani 30
HB sannamibia 5
HB sardinian 28
HB saudi 19
HB scottish 6
HB selkup 10
HB she 10
HB siciliane 10
HB sindhi 24
HB southitalian 18
HB spanish 34
HB surui 5
HB syrian 16
HB tajik 15
HB tamilnadu 2
HB tharus 2
HB tsi 98
HB tu 10
HB tujia 10
HB tunisian 12
HB turkish 19
HB turkishe 23
HB turkishn 20
HB turkishs 20
HB turkmen 10
HB tuscan 8
HB tuva 13
HB uae 14
HB ukrainian 20
HB upcaste 5
HB uygur 10
HB uzbekistani 15
HB velamas

HB welsh 4
HB westsicilian 10
HB xibo 9
HB yakut 25
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Table A.4: Populations and corresponding number of individuals for all populations in the ‘MS
POBI HellBus’ dataset (continued)

Dataset  Population Number of Individuals
HB yemeni 9
HB yi 10
HB yoruba 21
HB yukagir 4
MS Belgium 544
MS Denmark 332
MS Finland 581
MS France 479
MS Germany 1100
MS Italy 745
MS Nlreland 61
MS Norway 953
MS Poland 58
MS Spain 205
MS Sweden 1212
MS UK 1854
POBI UK 2039

A breakdown of the POBI populations:

Table A.5: Counties and corresponding number of individuals for all counties in the POBI dataset

County Number of Individuals
Cheshire 33
Cornwall and Isles of Scilly 90
Cumbria 195
Devon 73
Dorset 37
Dumfries and Galloway 42
Durham 54
Dyfed 55
East Riding of Yorkshire Unitary Authority 32
East Sussex 34
Fife 59
Gloucestershire 70
Gwent 31

Gwynedd 76
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Table A.5: Counties and corresponding number of individuals for all counties in the POBI dataset

(continued)
County Number of Individuals
Hampshire 26
Kent 50
Leicestershire 66
Lincolnshire 104
Merseyside 47
Norfolk 98
North Yorkshire 64
Northamptonshire 37
Northern Ireland 44
Northumberland 50
Nottinghamshire 57
Orkney Islands 96
Oxfordshire 7
Somerset 17
South Yorkshire 7
Staffordshire 28
Suffolk 82
Surrey 24
Tyne and Wear 54
West Sussex 26
Worcestershire 34
A.5 Reference ancient samples
sample_ ID country paper coverage
NE4 Bukk Gamba_ 2014 0.10
LIB11 Czechia zZuzana_ new 5.34
LIB12 Czechia zZuzana_new 6.75
LIB2 Czechia zZuzana_ new 6.39
LIB3 Czechia zuzana,_ new 5.30
LIB4 Czechia zZuzana_ new 6.46
LIB5 Czechia zZuzana,_ new 7.33
LIB7 Czechia zZuzana_ new 5.64
POH11 Czechia zuzana,_ new 4.99
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(continued)
sample_ ID country paper coverage
POH13 Czechia zZuzana_ new 5.95
POH27 Czechia zZuzana_ new 5.87
POH28 Czechia zuzana_ new 5.59
POH3 Czechia zZuzana_ new 5.48
POH36 Czechia zZuzana_new 5.31
POH39 Czechia zZuzana_new 5.39
POH40 Czechia zuzana,_ new 5.47
POH41 Czechia zZuzana_ new 5.22
POH44 Czechia zuzana,_ new 5.34
VK133 Denmark Margaryan_ 20 0.04
VK134 Denmark Margaryan_ 20 0.64
VK135 Denmark Margaryan_ 20 0.01
VK138 Denmark Margaryan_ 20 0.39
VK139 Denmark Margaryan_ 20 0.56
VK140 Denmark Margaryan_ 20 0.02
VK141 Denmark Margaryan_ 20 1.91
VK213 Denmark Margaryan_ 20 0.12
VK214 Denmark Margaryan_ 20 0.13
VK215 Denmark Margaryan_ 20 0.07
VK216 Denmark Margaryan_ 20 0.03
VK247 Denmark Margaryan_ 20 0.05
VK274 Denmark Margaryan_ 20 1.72
VK275 Denmark Margaryan_ 20 0.45
VK276 Denmark Margaryan_ 20 0.12
VK278 Denmark Margaryan_ 20 0.66
VK279 Denmark Margaryan_ 20 2.39
VK280 Denmark Margaryan_ 20 0.34
VK281 Denmark Margaryan_ 20 2.05
VK282 Denmark Margaryan_ 20 0.44
VK284 Denmark Margaryan_ 20 1.11
VK285 Denmark Margaryan_ 20 0.66
VK286 Denmark Margaryan_ 20 0.81
VK287 Denmark Margaryan_ 20 0.50
VK288 Denmark Margaryan_ 20 0.83
VK289 Denmark Margaryan_ 20 0.81
VK290 Denmark Margaryan_ 20 1.42
VK291 Denmark Margaryan_ 20 1.11
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VK292 Denmark Margaryan_ 20 0.10
VK294 Denmark Margaryan_ 20 1.13
VK295 Denmark Margaryan_ 20 0.57
VK296 Denmark Margaryan_ 20 0.46
VK297 Denmark Margaryan_ 20 0.67
VK298 Denmark Margaryan_ 20 0.40
VK300 Denmark Margaryan_ 20 0.51
VK301 Denmark Margaryan_ 20 0.73
VK312 Denmark Margaryan_ 20 0.36
VK313 Denmark Margaryan_ 20 0.32
VK314 Denmark Margaryan_ 20 0.30
VK315 Denmark Margaryan_ 20 0.58
VK316 Denmark Margaryan_ 20 1.46
VK317 Denmark Margaryan_ 20 1.23
VK318 Denmark Margaryan_ 20 0.00
VK319 Denmark Margaryan_ 20 0.56
VK320 Denmark Margaryan_ 20 1.37
VK322 Denmark Margaryan_ 20 1.26
VK323 Denmark Margaryan_ 20 1.35
VK324 Denmark Margaryan_ 20 1.35
VK325 Denmark Margaryan_ 20 0.59
VK326 Denmark Margaryan_ 20 1.26
VK327 Denmark Margaryan_ 20 1.16
VK328 Denmark Margaryan_ 20 1.14
VK329 Denmark Margaryan_ 20 1.20
VK330 Denmark Margaryan_ 20 1.06
VK338 Denmark Margaryan_ 20 0.57
VK339 Denmark Margaryan_ 20 0.01
VK340 Denmark Margaryan_ 20 0.63
VK361 Denmark Margaryan_ 20 1.26
VK362 Denmark Margaryan_ 20 0.64
VK363 Denmark Margaryan_ 20 1.34
VK364 Denmark Margaryan_ 20 1.58
VK365 Denmark Margaryan_ 20 0.76
VK366 Denmark Margaryan_ 20 0.67
VK367 Denmark Margaryan_ 20 1.05
VK368 Denmark Margaryan_ 20 1.26
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VK369 Denmark Margaryan_ 20 1.14
VK370 Denmark Margaryan_ 20 1.31
VK371 Denmark Margaryan_ 20 0.66
VK372 Denmark Margaryan_ 20 1.35
VK373 Denmark Margaryan_ 20 1.09
VK383 Denmark Margaryan_ 20 0.04
VK384 Denmark Margaryan_ 20 1.21
VK385 Denmark Margaryan_ 20 1.53
VK411 Denmark Margaryan_ 20 0.02
VK445 Denmark Margaryan_ 20 1.36
VK446 Denmark Margaryan_ 20 1.53
VK521 Denmark Margaryan_ 20 4.54
VK532 Denmark Margaryan_ 20 4.01
VK582 Denmark Margaryan_ 20 0.10
VK65 Denmark Margaryan_ 20 0.51
VK69 Denmark Margaryan_ 20 0.78
VK70 Denmark Margaryan_ 20 6.68
VK71 Denmark Margaryan_ 20 0.17
VK84 Denmark Margaryan_ 20 1.17
VK86 Denmark Margaryan_ 20 0.01
VK87 Denmark Margaryan_ 20 3.02
VK90 Denmark Margaryan_ 20 0.32
VK92 Denmark Margaryan_ 20 0.34
VK94 Denmark Margaryan_ 20 0.14
VK480 Estonia Margaryan_ 20 0.87
VK481 Estonia Margaryan_ 20 1.42
VK482 Estonia Margaryan_ 20 1.09
VK483 Estonia Margaryan_ 20 1.78
VK484 Estonia Margaryan_ 20 1.21
VK485 Estonia Margaryan_ 20 0.71
VK486 Estonia Margaryan_ 20 1.78
VK487 Estonia Margaryan_ 20 1.93
VK488 Estonia Margaryan_ 20 0.90
VK489 Estonia Margaryan_ 20 1.60
VK490 Estonia Margaryan_ 20 0.95
VK491 Estonia Margaryan_ 20 1.43
VK492 Estonia Margaryan_ 20 1.02
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VK493 Estonia Margaryan_ 20 1.83
VK495 Estonia Margaryan_ 20 1.14
VK496 Estonia Margaryan_ 20 1.98
VK497 Estonia Margaryan_ 20 1.45
VK498 Estonia Margaryan_ 20 1.22
VK504 Estonia Margaryan_ 20 0.86
VK505 Estonia Margaryan_ 20 1.14
VK506 Estonia Margaryan_ 20 1.23
VK507 Estonia Margaryan_ 20 0.82
VK508 Estonia Margaryan_ 20 1.72
VK509 Estonia Margaryan_ 20 1.33
VK510 Estonia Margaryan_ 20 1.53
VK511 Estonia Margaryan_ 20 1.70
VK512 Estonia Margaryan_ 20 1.80
VK549 Estonia Margaryan_ 20 1.68
VK550 Estonia Margaryan_ 20 1.78
VK551 Estonia Margaryan_ 20 2.31
VK552 Estonia Margaryan_ 20 1.38
VK553 Estonia Margaryan_ 20 1.26
VK554 Estonia Margaryan_ 20 0.93
VK555 Estonia Margaryan_ 20 1.10
VK234 Faroes Margaryan_ 20 0.71
VK236 Faroes Margaryan_ 20 1.45
VK237 Faroes Margaryan_ 20 1.64
VK238 Faroes Margaryan_ 20 1.36
VK239 Faroes Margaryan_ 20 0.03
VK24 Faroes Margaryan_ 20 0.19
VK240 Faroes Margaryan_ 20 0.73
VK241 Faroes Margaryan_ 20 0.77
VK242 Faroes Margaryan_ 20 0.60
VK244 Faroes Margaryan_ 20 0.54
VK245 Faroes Margaryan_ 20 1.08
VK248 Faroes Margaryan_ 20 0.08
VK25 Faroes Margaryan_ 20 1.89
VK27 Faroes Margaryan_ 20 0.25
VK44 Faroes Margaryan_ 20 0.45
VK45 Faroes Margaryan_ 20 0.11
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VK46 Faroes Margaryan_ 20 4.33
FLROO1 France Rivollat_ 20 0.00
FLR002 France Rivollat_ 20 0.00
FLRO03 France Rivollat_ 20 0.00
FLR004 France Rivollat_ 20 0.00
FLRO05 France Rivollat_ 20 0.00
FLROO7 France Rivollat_ 20 0.00
FLRO10 France Rivollat 20 0.00
FLRO13 France Rivollat_ 20 0.00
FLRO014 France Rivollat 20 0.00
GRGO003 France Rivollat_ 20 0.00
GRG008 France Rivollat_ 20 0.00
GRGO015 France Rivollat_ 20 0.00
GRGO016 France Rivollat_ 20 0.00
GRGO018 France Rivollat_ 20 0.00
GRGO019 France Rivollat_ 20 0.00
GRGO021 France Rivollat_ 20 0.00
GRGO022 France Rivollat_ 20 0.00
GRG023 France Rivollat_ 20 0.00
GRGO025 France Rivollat_ 20 0.00
GRGO027 France Rivollat_ 20 0.00
GRG028 France Rivollat_ 20 0.00
GRGO032 France Rivollat_ 20 0.00
GRGO035 France Rivollat_ 20 0.00
GRG041 France Rivollat_ 20 0.00
GRG043 France Rivollat_ 20 0.00
GRG047 France Rivollat_ 20 0.00
GRG049 France Rivollat 20 0.00
GRGO050 France Rivollat_ 20 0.00
GRGO052 France Rivollat_ 20 0.00
GRG056 France Rivollat_ 20 0.00
GRGO057 France Rivollat_ 20 0.00
LBRO001 France Rivollat_ 20 0.00
LBRO002 France Rivollat_ 20 0.00
LBRO003 France Rivollat_ 20 0.00
LBR004 France Rivollat_ 20 0.00
LBRO005 France Rivollat_ 20 0.00
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OBNO001 France Rivollat_ 20 0.00
OBNO002 France Rivollat_ 20 0.00
OBNO003 France Rivollat_ 20 0.00
OBNO004 France Rivollat_ 20 0.00
OBNO005 France Rivollat_ 20 0.00
OBNO006 France Rivollat_ 20 0.00
OBNO007 France Rivollat_ 20 0.00
OBNO008 France Rivollat_ 20 0.00
OBNO009 France Rivollat_ 20 0.00
OBNO010 France Rivollat_ 20 0.00
OBNO11 France Rivollat_ 20 0.00
PENO001 reall France Rivollat 20 0.00
PENO001 real2 France Rivollat 20 0.00
PENO003 France Rivollat 20 0.00
PRIOO1 France Rivollat 20 0.00
PRI0O05 France Rivollat 20 0.00
PRIO0O6 France Rivollat_ 20 0.00
BDBO001 Germany Rivollat_ 20 0.00
BOT004 Germany Rivollat_ 20 0.00
BOT005 Germany Rivollat_ 20 0.00
Dill16 Germany Marchi_ 2020 10.60
Ess7 Germany Marchi_ 2020 12.34
FN2 Germany Veeramah_ 2018 11.08
HBS002 Germany Rivollat_ 20 0.00
HBS004 Germany Rivollat_ 20 0.00
HBS005 Germany Rivollat_ 20 0.00
HBS006 Germany Rivollat_ 20 0.00
HBS007 Germany Rivollat_ 20 0.00
HBS008 Germany Rivollat_ 20 0.00
HBS009 Germany Rivollat_ 20 0.00
SCHO001 Germany Rivollat_ 20 0.00
SCHO004 Germany Rivollat_ 20 0.00
SCHO007 Germany Rivollat_ 20 0.00
SCHO009 Germany Rivollat_ 20 0.00
SCHO010 Germany Rivollat_ 20 0.00
SCHO11 Germany Rivollat_ 20 0.00
SCHO014 Germany Rivollat_ 20 0.00
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SCHO015 Germany Rivollat_ 20 0.00
SCHO016 Germany Rivollat_ 20 0.00
SCHO018 Germany Rivollat_ 20 0.00
SMHO004 Germany Rivollat_ 20 0.00
TGMO00S8 Germany Rivollat_ 20 0.00
TGMO009 Germany Rivollat_ 20 0.00
XN164 Germany Rivollat_ 20 0.00
XN165 Germany Rivollat_ 20 0.00
XN166 Germany Rivollat_ 20 0.00
XN167 Germany Rivollat_ 20 0.00
XN168 Germany Rivollat_ 20 0.00
XN169 Germany Rivollat_ 20 0.00
XN170 Germany Rivollat_ 20 0.00
XN171 Germany Rivollat_ 20 0.00
XN172 Germany Rivollat_ 20 0.00
XN173 Germany Rivollat_ 20 0.00
XN174 Germany Rivollat_ 20 0.00
XN175 Germany Rivollat_ 20 0.00
XN178 Germany Rivollat_ 20 0.00
XN180 Germany Rivollat_ 20 0.00
XN182 Germany Rivollat_ 20 0.00
XN183 Germany Rivollat_ 20 0.00
XN188 Germany Rivollat_ 20 0.00
XN191 Germany Rivollat_ 20 0.00
XN205 Germany Rivollat_ 20 0.00
XN206 Germany Rivollat_ 20 0.00
XN207 Germany Rivollat_ 20 0.00
XN211 Germany Rivollat_ 20 0.00
XN215 Germany Rivollat_ 20 0.00
XN224 Germany Rivollat_ 20 0.00
XN225 Germany Rivollat_ 20 0.00
VK1 Greenland Margaryan_ 20 11.77
VK11 Greenland Margaryan_ 20 0.08
VK179 Greenland Margaryan_ 20 1.84
VK180 Greenland Margaryan_ 20 0.01
VK182 Greenland Margaryan_ 20 0.01
VK183 Greenland Margaryan_ 20 0.54
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VK184 Greenland Margaryan_ 20 1.31
VK185 Greenland Margaryan_ 20 0.00
VK186 Greenland Margaryan_ 20 0.81
VK187 Greenland Margaryan_ 20 0.91
VK189 Greenland Margaryan_ 20 0.06
VK190 Greenland Margaryan_ 20 6.50
VK191 Greenland Margaryan_ 20 0.03
VK193 Greenland Margaryan_ 20 0.05
VK196 Greenland Margaryan_ 20 0.05
VK513 Greenland Margaryan_ 20 2.26
VK6 Greenland Margaryan_ 20 2.97
VK74 Greenland Margaryan_ 20 0.00
VK75 Greenland Margaryan_ 20 0.27
VK76 Greenland Margaryan_ 20 0.00
VK77 Greenland Margaryan_ 20 0.01
VK78 Greenland Margaryan_ 20 0.03
VK9 Greenland Margaryan_ 20 0.10
VK101 Iceland Margaryan_ 20 1.93
VK102 Iceland Margaryan_ 20 4.16
VK110 Iceland Margaryan_ 20 1.79
VK111 Iceland Margaryan_ 20 1.08
VK122 Iceland Margaryan_ 20 1.31
VK123 Iceland Margaryan_ 20 1.15
VK127 Iceland Margaryan_ 20 1.06
VK128 Iceland Margaryan_ 20 1.49
VK129 Iceland Margaryan_ 20 3.62
VK225 Iceland Margaryan_ 20 0.59
VK226 Iceland Margaryan_ 20 0.04
VK227 Iceland Margaryan_ 20 0.54
VK228 Iceland Margaryan_ 20 0.05
VK230 Iceland Margaryan_ 20 2.51
VK95 Iceland Margaryan_ 20 1.32
VK98 Iceland Margaryan_ 20 2.49
VK99 Iceland Margaryan_ 20 0.74
Rathlin1 Ireland Cassidy_ 2015 10.50
Rathlin2 Ireland Cassidy_ 2015 1.49
Rathlin3 Ireland Cassidy_ 2015 0.75
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VK543 Ireland Margaryan_ 20 1.00
VK544 Ireland Margaryan_ 20 1.61
VK545 Ireland Margaryan_ 20 1.85
VK546 Ireland Margaryan_ 20 0.09
VK170 IsleOfMan Margaryan_ 20 1.22
VK534 Italy Margaryan_ 20 1.16
VK535 Ttaly Margaryan_ 20 1.24
VK536 Italy Margaryan_ 20 1.04
VK537 Italy Margaryan_ 20 1.39
VK538 Ttaly Margaryan_ 20 1.20
BOT14 Kazakhstan  deBarrosDamgaard_2018a_ FirstHorse 3.70
BOT15 Kazakhstan deBarrosDamgaard_ 2018a_ FirstHorse 3.00
BOT2016 Kazakhstan  deBarrosDamgaard_2018a_ FirstHorse 13.60
Loschbour Luxembourg Lazaridis_ 2014 22.00
VK113 Norway Margaryan_ 20 0.12
VK114 Norway Margaryan_ 20 0.16
VK116 Norway Margaryan_ 20 0.01
VK117 Norway Margaryan_ 20 0.23
VK118 Norway Margaryan_ 20 6.08
VK124 Norway Margaryan_ 20 0.20
VK125 Norway Margaryan_ 20 0.00
VK386 Norway Margaryan_ 20 1.22
VK387 Norway Margaryan_ 20 1.09
VK388 Norway Margaryan_ 20 0.98
VK389 Norway Margaryan_ 20 1.11
VK390 Norway Margaryan_ 20 1.45
VK391 Norway Margaryan_ 20 0.42
VK392 Norway Margaryan_ 20 1.05
VK393 Norway Margaryan_ 20 1.20
VK394 Norway Margaryan_ 20 0.74
VK414 Norway Margaryan_ 20 1.23
VK415 Norway Margaryan_ 20 1.22
VK417 Norway Margaryan_ 20 1.15
VK418 Norway Margaryan_ 20 0.93
VK419 Norway Margaryan_ 20 1.23
VK420 Norway Margaryan_ 20 1.53
VK421 Norway Margaryan_ 20 0.01
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VK422 Norway Margaryan_ 20 1.07
VK448 Norway Margaryan_ 20 2.23
VK514 Norway Margaryan_ 20 1.03
VK515 Norway Margaryan_ 20 0.64
VK516 Norway Margaryan_ 20 1.43
VK518 Norway Margaryan_ 20 0.44
VK519 Norway Margaryan_ 20 0.22
VK520 Norway Margaryan_ 20 1.77
VK523 Norway Margaryan_ 20 1.01
VK524 Norway Margaryan_ 20 1.61
VK525 Norway Margaryan_ 20 1.11
VK526 Norway Margaryan_ 20 2.03
VK528 Norway Margaryan_ 20 1.60
VK529 Norway Margaryan_ 20 1.81
VK530 Norway Margaryan_ 20 0.97
VK531 Norway Margaryan_ 20 1.40
VK547 Norway Margaryan_ 20 4.73
VK548 Norway Margaryan_ 20 3.41
RISE150 Poland Allentoft 2015 2.63
VK153 Poland Margaryan_ 20 0.07
VK154 Poland Margaryan_ 20 2.94
VK155 Poland Margaryan_ 20 0.27
VK156 Poland Margaryan_ 20 0.96
VK157 Poland Margaryan_ 20 0.98
VK200 Poland Margaryan_ 20 0.02
VK210 Poland Margaryan_ 20 0.05
VK211 Poland Margaryan_ 20 0.10
VK212 Poland Margaryan_ 20 0.34
VK494 Poland Margaryan_ 20 0.16
DA245 Russia deBarrosDamgaard_ 2018a_ FirstHorse 2.20
DA246 Russia deBarrosDamgaard_ 2018a_ FirstHorse 2.90
DA247 Russia deBarrosDamgaard_ 2018a_ FirstHorse 2.40
DA248 Russia deBarrosDamgaard_ 2018a_ FirstHorse 2.30
DA249 Russia deBarrosDamgaard_ 2018a_ FirstHorse 4.50
DA250 Russia deBarrosDamgaard_ 2018a_ FirstHorse 0.90
DA252 Russia deBarrosDamgaard_ 2018a_ FirstHorse 2.40
DA253 Russia deBarrosDamgaard_ 2018a_ FirstHorse 2.70
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DA337 Russia deBarrosDamgaard_ 2018a_ FirstHorse 1.10
DA341 Russia deBarrosDamgaard_ 2018a_ FirstHorse 1.20
DA342 Russia deBarrosDamgaard_ 2018a_ FirstHorse 1.70
DA345 Russia deBarrosDamgaard_ 2018a_ FirstHorse 1.00
VK14 Russia Margaryan_ 20 0.16
VK15 Russia Margaryan_ 20 1.22
VK158 Russia Margaryan_ 20 0.04
VK159 Russia Margaryan_ 20 0.36
VK16 Russia Margaryan_ 20 0.23
VK160 Russia Margaryan_ 20 1.78
VK161 Russia Margaryan_ 20 0.02
VK17 Russia Margaryan_ 20 0.52
VK18 Russia Margaryan_ 20 0.77
VK19 Russia Margaryan_ 20 0.63
VK20 Russia Margaryan_ 20 0.50
VK21 Russia Margaryan_ 20 0.18
VK218 Russia Margaryan_ 20 0.58
VK219 Russia Margaryan_ 20 1.58
VK22 Russia Margaryan_ 20 0.12
VK220 Russia Margaryan_ 20 1.82
VK221 Russia Margaryan_ 20 1.95
VK222 Russia Margaryan_ 20 0.00
VK223 Russia Margaryan_ 20 0.35
VK224 Russia Margaryan_ 20 0.22
VK23 Russia Margaryan_ 20 0.33
VK252 Russia Margaryan_ 20 0.00
VK253 Russia Margaryan_ 20 0.01
VK254 Russia Margaryan_ 20 0.52
VK255 Russia Margaryan_ 20 0.07
VK272 Russia Margaryan_ 20 0.20
VK273 Russia Margaryan_ 20 1.09
VK408 Russia Margaryan_ 20 0.17
VK409 Russia Margaryan_ 20 0.17
VK410 Russia Margaryan_ 20 0.13
VK413 Russia Margaryan_ 20 0.03
VK466 Russia Margaryan_ 20 0.12
VK470 Russia Margaryan_ 20 0.03
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VLASAC32 Serbia Marchi_ 2020 12.65
VLASAC7 Serbia Marchi_ 2020 15.21
ans008 Sweden Sannchez-Quinto_ 2019 1.94
ans014 Sweden Sannchez-Quinto_ 2019 2.58
ans017 Sweden Sannchez-Quinto_ 2019 2.58
VK108 Sweden Margaryan_ 20 0.87
VK217 Sweden Margaryan_ 20 0.14
VK232 Sweden Margaryan_ 20 0.32
VK251 Sweden Margaryan_ 20 0.04
VK265 Sweden Margaryan_ 20 1.15
VK266 Sweden Margaryan_ 20 0.75
VK267 Sweden Margaryan_ 20 0.06
VK268 Sweden Margaryan_ 20 0.16
VK269 Sweden Margaryan_ 20 0.07
VK270 Sweden Margaryan_ 20 0.04
VK29 Sweden Margaryan_ 20 3.21
VK30 Sweden Margaryan_ 20 0.57
VK303 Sweden Margaryan_ 20 2.50
VK304 Sweden Margaryan_ 20 0.01
VK306 Sweden Margaryan_ 20 1.05
VK308 Sweden Margaryan_ 20 1.46
VK309 Sweden Margaryan_ 20 0.31
VK31 Sweden Margaryan_ 20 0.38
VK33 Sweden Margaryan_ 20 0.94
VK332 Sweden Margaryan_ 20 1.46
VK333 Sweden Margaryan_ 20 1.17
VK334 Sweden Margaryan_ 20 0.55
VK335 Sweden Margaryan_ 20 1.06
VK336 Sweden Margaryan_ 20 1.21
VK337 Sweden Margaryan_ 20 2.04
VK34 Sweden Margaryan_ 20 1.19
VK342 Sweden Margaryan_ 20 1.40
VK343 Sweden Margaryan_ 20 1.26
VK344 Sweden Margaryan_ 20 0.98
VK345 Sweden Margaryan_ 20 1.09
VK346 Sweden Margaryan_ 20 1.26
VK347 Sweden Margaryan_ 20 0.02
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VK348 Sweden Margaryan_ 20 1.03
VK349 Sweden Margaryan_ 20 1.25
VK35 Sweden Margaryan_ 20 1.11
VK350 Sweden Margaryan_ 20 1.56
VK352 Sweden Margaryan_ 20 1.15
VK353 Sweden Margaryan_ 20 1.30
VK354 Sweden Margaryan_ 20 0.67
VK355 Sweden Margaryan_ 20 1.13
VK357 Sweden Margaryan_ 20 1.39
VK358 Sweden Margaryan_ 20 1.03
VK359 Sweden Margaryan_ 20 0.01
VK379 Sweden Margaryan_ 20 0.07
VK380 Sweden Margaryan_ 20 0.11
VK382 Sweden Margaryan_ 20 0.06
VK39 Sweden Margaryan_ 20 0.16
VK395 Sweden Margaryan_ 20 1.44
VK396 Sweden Margaryan_ 20 1.19
VK397 Sweden Margaryan_ 20 1.37
VK398 Sweden Margaryan_ 20 1.29
VK399 Sweden Margaryan_ 20 1.71
VK40 Sweden Margaryan_ 20 1.87
VK400 Sweden Margaryan_ 20 1.07
VK401 Sweden Margaryan_ 20 1.26
VK402 Sweden Margaryan_ 20 1.53
VK403 Sweden Margaryan_ 20 1.49
VK404 Sweden Margaryan_ 20 1.43
VK405 Sweden Margaryan_ 20 1.03
VK406 Sweden Margaryan_ 20 1.30
VK407 Sweden Margaryan_ 20 0.23
VK42 Sweden Margaryan_ 20 9.25
VK424 Sweden Margaryan_ 20 0.14
VK425 Sweden Margaryan_ 20 0.12
VK426 Sweden Margaryan_ 20 0.12
VK427 Sweden Margaryan_ 20 0.11
VK428 Sweden Margaryan_ 20 0.18
VK429 Sweden Margaryan_ 20 2.73
VK430 Sweden Margaryan_ 20 0.18
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VK431 Sweden Margaryan_ 20 0.25
VK432 Sweden Margaryan_ 20 0.30
VK433 Sweden Margaryan_ 20 2.21
VK434 Sweden Margaryan_ 20 0.26
VK435 Sweden Margaryan_ 20 0.06
VK437 Sweden Margaryan_ 20 0.02
VK438 Sweden Margaryan_ 20 0.22
VK439 Sweden Margaryan_ 20 0.16
VK440 Sweden Margaryan_ 20 0.07
VK441 Sweden Margaryan_ 20 0.03
VK442 Sweden Margaryan_ 20 1.24
VK443 Sweden Margaryan_ 20 2.11
VK444 Sweden Margaryan_ 20 0.79
VK450 Sweden Margaryan_ 20 0.12
VK452 Sweden Margaryan_ 20 0.23
VK453 Sweden Margaryan_ 20 0.17
VK454 Sweden Margaryan_ 20 0.25
VK455 Sweden Margaryan_ 20 1.60
VK456 Sweden Margaryan_ 20 1.39
VK457 Sweden Margaryan_ 20 0.19
VK458 Sweden Margaryan_ 20 0.18
VK459 Sweden Margaryan_ 20 0.19
VK460 Sweden Margaryan_ 20 0.29
VK461 Sweden Margaryan_ 20 0.27
VK462 Sweden Margaryan_ 20 0.09
VK463 Sweden Margaryan_ 20 0.27
VK464 Sweden Margaryan_ 20 0.08
VK467 Sweden Margaryan_ 20 0.01
VK468 Sweden Margaryan_ 20 2.83
VK469 Sweden Margaryan_ 20 0.23
VK471 Sweden Margaryan_ 20 0.22
VK472 Sweden Margaryan_ 20 0.06
VK473 Sweden Margaryan_ 20 1.40
VK474 Sweden Margaryan_ 20 1.59
VK475 Sweden Margaryan_ 20 4.49
VK476 Sweden Margaryan_ 20 0.12
VK477 Sweden Margaryan_ 20 1.17
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VK478 Sweden Margaryan_ 20 1.58
VK479 Sweden Margaryan_ 20 1.82
VK48 Sweden Margaryan_ 20 0.49
VK50 Sweden Margaryan_ 20 6.23
VK51 Sweden Margaryan_ 20 0.62
VK517 Sweden Margaryan_ 20 1.04
VK522 Sweden Margaryan_ 20 7.14
VK527 Sweden Margaryan_ 20 1.12
VK53 Sweden Margaryan_ 20 0.80
VK533 Sweden Margaryan_ 20 4.83
VK56 Sweden Margaryan_ 20 1.06
VK57 Sweden Margaryan_ 20 0.21
VK579 Sweden Margaryan_ 20 0.13
VK58 Sweden Margaryan_ 20 4.51
VK60 Sweden Margaryan_ 20 0.79
VK63 Sweden Margaryan_ 20 0.19
VK64 Sweden Margaryan_ 20 0.87
VK143 UK Margaryan_ 20 1.04
VK144 UK Margaryan_ 20 0.16
VK145 UK Margaryan_ 20 1.11
VK146 UK Margaryan_ 20 1.18
VK147 UK Margaryan_ 20 0.82
VK148 UK Margaryan_ 20 0.04
VK149 UK Margaryan_ 20 0.01
VK150 UK Margaryan_ 20 1.03
VK151 UK Margaryan_ 20 1.14
VK163 UK Margaryan_ 20 0.02
VK164 UK Margaryan_ 20 0.00
VK165 UK Margaryan_ 20 1.11
VK166 UK Margaryan_ 20 4.50
VK167 UK Margaryan_ 20 0.90
VK168 UK Margaryan_ 20 1.19
VK171 UK Margaryan_ 20 0.11
VK172 UK Margaryan_ 20 1.19
VK173 UK Margaryan_ 20 1.23
VK174 UK Margaryan_ 20 0.94
VK175 UK Margaryan_ 20 0.91
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VK176 UK Margaryan_ 20 2.42
VK177 UK Margaryan_ 20 1.06
VK178 UK Margaryan_ 20 0.89
VK201 UK Margaryan_ 20 1.40
VK202 UK Margaryan_ 20 1.13
VK203 UK Margaryan_ 20 1.31
VK204 UK Margaryan_ 20 1.03
VK205 UK Margaryan_ 20 1.19
VK206 UK Margaryan_ 20 0.01
VK207 UK Margaryan_ 20 0.70
VK208 UK Margaryan_ 20 0.07
VK256 UK Margaryan_ 20 .1.36
VK257 UK Margaryan_ 20 1.02
VK258 UK Margaryan_ 20 1.02
VK259 UK Margaryan_ 20 1.18
VK260 UK Margaryan_ 20 0.90
VK261 UK Margaryan_ 20 1.05
VK262 UK Margaryan_ 20 1.22
VK263 UK Margaryan_ 20 1.37
VK264 UK Margaryan_ 20 0.99
VK449 UK Margaryan_ 20 1.43
VK539 Ukraine Margaryan_ 20 1.57
VK540 Ukraine Margaryan_ 20 0.88
VK541 Ukraine Margaryan_ 20 2.56
VK542 Ukraine Margaryan_ 20 1.20
Alhl new_bavaria 11.34
Alh10 new__bavaria 10.43
atp002 Gunther_ 2015 4.08
atp016 Gunther_ 2015 1.11
ATT26 Brunel 2020 0.00
Ballynahatty Cassidy_ 2015 10.27
Barl 2.00
Bar31 Hofmanova_ 2016 3.66
Barg Hofmanova_ 2016 7.13
BERGO02-2 Brunel 2020 0.00
BERG157-2 Brunel 2020 0.00
BERG157-7 Brunel 2020 0.00
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sample_ ID country paper coverage
BES1248 Brunel 2020 0.00
BFM265 Brunel 2020 0.00
Bichon Jones_ 2015 9.50
BIS130 Brunel 2020 0.00
BIS385 Brunel 2020 0.00
BLP10 Brunel 2020 0.00
BRU1 new_ bavaria 11.54
BUCH2 Brunel 2020 0.00
CBV95 Brunel 2020 0.00
CO1 Gamba_ 2014 1.13
COL11 Brunel 2020 0.00
COL153A Brunel 2020 0.00
COL153i Brunel 2020 0.00
CRE20D Brunel 2020 0..00
DA100 deBarrosDamgaard_ 2018b_ 137 3.42
DA104 deBarrosDamgaard_ 2018b_ 137 1.11
DA111 deBarrosDamgaard_ 2018b_ 137 0.86
DA116 deBarrosDamgaard_ 2018b_ 137 1.00
DA117 deBarrosDamgaard_ 2018b_ 137 1.17
DA118 deBarrosDamgaard_ 2018b__137 1.49
DA129 deBarrosDamgaard_ 2018b_ 137 1.10
DA13 deBarrosDamgaard_ 2018b__137 1.54
DA142 deBarrosDamgaard_ 2018b_ 137 1.18
DA16 deBarrosDamgaard_ 2018b__137 1.05
DA162 deBarrosDamgaard_ 2018b_ 137 2.09
DA164 deBarrosDamgaard_ 2018b_ 137 1.08
DA177 deBarrosDamgaard_ 2018b_ 137 2.60
DA179 deBarrosDamgaard_ 2018b_ 137 1.52
DA191 deBarrosDamgaard_ 2018b_ 137 0.89
DA195 deBarrosDamgaard_ 2018b_ 137 0.87
DA2 deBarrosDamgaard_ 2018b_ 137 1.06
DA204 deBarrosDamgaard_ 2018b_ 137 1.03
DA206 deBarrosDamgaard_ 2018b_ 137 2.00
DA221 deBarrosDamgaard_ 2018b_ 137 2.98
DA222 deBarrosDamgaard_ 2018b_ 137 3.40
DA223 deBarrosDamgaard_ 2018b_ 137 2.76
DA224 deBarrosDamgaard_ 2018b_ 137 0.96
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sample_ ID country paper coverage
DA227 deBarrosDamgaard_ 2018b_ 137 1.18
DA228 deBarrosDamgaard_ 2018b__ 137 2.64
DA23 deBarrosDamgaard_ 2018b_ 137 2.05
DA230 deBarrosDamgaard._ 2018b_ 137 1.28
DA243 deBarrosDamgaard_ 2018b_ 137 3.11
DA26 deBarrosDamgaard_ 2018b__137 0.96
DA27 deBarrosDamgaard_ 2018b_ 137 2.00
DA28 deBarrosDamgaard_ 2018b__137 3.96
DA29 deBarrosDamgaard_ 2018b_ 137 1.12
DA30 deBarrosDamgaard_ 20.18b__137 1.18
DA35 deBarrosDamgaard_ 2018b_ 137 1.58
DA358 deBarrosDamgaard_ 2018a_ FirstHorse 0.90
DA362 deBarrosDamgaard_ 2018a_ FirstHorse 1.10
DA38 deBarrosDamgaard_ 2018b_ 137 2.80
DA382 deBarrosDamgaard_ 2018a_ FirstHorse 2.50
DA385 deBarrosDamgaard_ 2018b_ 137 2.23
DA39 deBarrosDamgaard_ 2018b_ 137 2.00
DA43 deBarrosDamgaard_ 2018b_ 137 1.61
DA45 deBarrosDamgaard_ 2018b_ 137 8.67
DA47 deBarrosDamgaard_ 2018b__137 1.50
DA50 deBarrosDamgaard_ 2018b_ 137 0.92
DA55 deBarrosDamgaard_ 2018b__137 0.87
DA56 deBarrosDamgaard_ 2018b_ 137 1.49
DA57 deBarrosDamgaard_ 2018b__137 1.01
DA5S8 deBarrosDamgaard_ 2018b_ 137 0.86
DAG6 deBarrosDamgaard_ 2018b_ 137 1.04
DA69 deBarrosDamgaard_ 2018b_ 137 0.89
DAT72 deBarrosDamgaard_ 2018b_ 137 1.27
DAT74 deBarrosDamgaard_ 2018b_ 137 0.92
DAS deBarrosDamgaard_ 2018b_ 137 1.83
DARO deBarrosDamgaard_ 2018b_ 137 1.04
DAS81 deBarrosDamgaard_ 2018b_ 137 2.10
DAS5 deBarrosDamgaard_ 2018b_ 137 1.85
DA9 deBarrosDamgaard_ 2018b_ 137 1.00
DA93 deBarrosDamgaard_ 2018b_ 137 1.46
DA95 deBarrosDamgaard_ 2018b_ 137 2.00
DA96 deBarrosDamgaard_ 2018b_ 137 0.94
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(continued)
sample_ ID country paper coverage
DA99 deBarrosDamgaard_ 2018b_ 137 1.39
DIN2 1.71
EBA1 deBarrosDamgaard_ 2018a_ FirstHorse 4.50
EBA2 deBarrosDamgaard_ 2018a_ FirstHorse 9.10
Ergl new__bavaria 4.52
Erg2 new__bavaria 0.71
ERS1164 Brunel 2020 0.00
ERS&6 Brunel 2020 0.00
ERS88 Brunel 2020 0.00
Es97-1 Brunel 2020 0.00
EUGI11 Brunel 2020 0.00
F38 2.00
Jeb8 Brunel 2020 0.00
KER 1 zuzana_ new 10.00
Kir23 Bavaria_ Earl 17.52
Kir24 new_bavaria 3.98
Kir25 new_bavaria 4.55
Kir26 new_bavaria 4.84
Kir27 new__bavaria 16.60
Kir28 new_ bavaria 17.30
KK1 10.00
KleilO Hofmanova_ 2016 2.01
KO1 Gamba_ 2014 1.24
KO2 Gamba_ 2014 0.13
Kostenkil4 Seguin-Orlando_ 2014 1.00
LaBrana Olade 2014 4.00
MA2195 deBarrosDamgaard_ 2018a_ FirstHorse 0.90
MA2200 deBarrosDamgaard_ 2018a_ FirstHorse 2.20
MA2203 deBarrosDamgaard_ 2018a_ FirstHorse 0.90
MA2210 deBarrosDamgaard_ 2018a_ FirstHorse 0.90
MA2212 deBarrosDamgaard_ 2018a_ FirstHorse 0.90
MA2213 deBarrosDamgaard_ 2018a_ FirstHorse 1.20
MDV248 Brunel 2020 0.00
Molzl new__bavaria 13.00
Mor6 Brunel 2020 0.00
Mota 10.00
NE1 Gamba,_ 2014 22.12
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sample_ ID country paper coverage
NE2 Gamba_ 2014 0.19
NE3 Gamba_ 2014 0.13
NE5 Gamba_ 2014 1.04
NE6 Gamba_ 2014 1.18
NE7 Gamba_ 2014 1.14
NIED Brunel 2020 0.00
NOR2B6 Brunel 2020 0.00
NORS3-15 Brunel 2020 0.00
NOR3-6 Brunel 2020 0.00
NOR4 Brunel 2020 0.00
NW_ 54 zZuzana_new 10.00
OBE3626-1 Brunel 2020 0.00
OBE3722 Brunel 2020 0.00
Pal7 Hofmanova_ 2016 1.28
PECH5 Brunel 2020 0.00
PECHS Brunel 2020 0.00
PEI10 Brunel 2020 0.00
PEI2 Brunel 2020 0.00
PER1150503 Brunel 2020 0.00
PER3023 Brunel 2020 0.00
PER3123 Brunel 2020 0.00
PEY163 Brunel 2020 0.00
PEY53 Brunel 2020 0.00
PIR3037AB Brunel 2020 0.00
PIR3116B Brunel 2020 0.00
Pir4 Brunel 2020 0.00
Pir6 Brunel 2020 0.00
prs002 Sannchez-Quinto_ 2019 5.76
prs009 Sannchez-Quinto_ 2019 7.10
prs013 Sannchez-Quinto_ 2019 4.73
prs016 Sannchez-Quinto_ 2019 6.40
PSS4170 Brunel 2020 0.00
PSS4693 Brunel 2020 0.00
PT2 Brunel 2020 0.00
QUIN234 Brunel 2020 0.00
QUINSS8 Brunel 2020 0.00
R-11 antonio_ 19 0.92
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sample_ ID country paper coverage
R1 antonio_ 19 3.94
R10 antonio_ 19 1.30
R1014 antonio_ 19 0.59
R1015 antonio_ 19 0.87
R1016 antonio_ 19 0.39
R1021 antonio_ 19 0.56
R104 antonio_ 19 0.85
R105 antonio 19 1.13
R106 antonio_ 19 1.06
R107 antonio 19 1.47
R108 antonio_ 19 1.06
R109 antonio 19 0.49
R110 antonio_ 19 0.68
R111 antonio 19 0.59
R113 antonio_ 19 0.61
R114 antonio 19 1.17
R115 antonio_ 19 1.10
R116 antonio 19 1.05
R117 antonio_ 19 0.95
R118 antonio 19 0.63
R120 antonio_ 19 0.51
R121 antonio 19 0.61
R1219 antonio_ 19 1.61
R122 antonio 19 1.38
R1220 antonio_ 19 1.02
R1221 antonio 19 1.32
R1224 antonio_ 19 1.10
R123 antonio 19 0.66
R125 antonio_ 19 0.67
R126 antonio 19 1.04
R128 antonio_ 19 0.92
R1283 antonio 19 1.04
R1285 antonio_ 19 0.99
R1286 antonio 19 1.05
R1287 antonio_ 19 1.14
R1288 antonio_ 19 1.14
R1289 antonio_ 19 0.76
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sample_ ID country paper coverage
R1290 antonio_ 19 1.08
R130 antonio_ 19 1.37
R131 antonio_ 19 0.59
R132 antonio_ 19 1.50
R133 antonio_ 19 1.62
R134 antonio_ 19 1.17
R136 antonio_ 19 1.82
R137 antonio 19 1.32
R15 antonio_ 19 2.95
R1543 antonio 19 0.99
R1544 antonio_ 19 0.93
R1545 antonio 19 1.52
R1547 antonio_ 19 0.77
R1548 antonio 19 0.86
R1549 antonio_ 19 1.03
R1550 antonio 19 0.87
R1551 antonio_ 19 0.81
R16 antonio 19 0.56
R17 antonio_ 19 0.54
R18 antonio 19 0.62
R19 antonio_ 19 0.50
R2 antonio 19 3.64
R22 antonio_ 19 0.77
R24 antonio 19 0.54
R25 antonio_ 19 0.53
R26 antonio 19 0.51
R27 antonio_ 19 0.68
R28 antonio 19 0.72
R29 antonio_ 19 0.54
R3 antonio 19 3.99
R30 antonio_ 19 1.39
R31 antonio 19 1.96
R32 antonio_ 19 0.65
R33 antonio 19 1.52
R34 antonio_ 19 1.06
R35 antonio 19 0.64
R36 antonio_ 19 1.25
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sample_ ID country paper coverage
R37 antonio_ 19 0.92
R38 antonio_ 19 1.15
R39 antonio_ 19 1.64
R4 antonio_ 19 3.53
R40 antonio_ 19 1.01
R41 antonio_ 19 1.11
R42 antonio_ 19 2.35
R43 antonio 19 1.50
R435 antonio_ 19 1.00
R436 antonio 19 0.63
R437 antonio_ 19 1.41
R44 antonio 19 1.03
R45 antonio_ 19 1.07
R47 antonio 19 1.12
R473 antonio_ 19 1.55
R474 antonio 19 1.27
RA475 antonio_ 19 1.25
R49 antonio 19 1.22
R5 antonio_ 19 1.48
R50 antonio 19 1.30
R51 antonio_ 19 0.99
R52 antonio 19 0.67
R53 antonio_ 19 1.22
R54 antonio 19 0.81
R55 antonio_ 19 1.43
R56 antonio 19 0.92
R57 antonio_ 19 1.23
R58 antonio 19 1.49
R59 antonio_ 19 1.44
R6 antonio 19 0.58
R60 antonio_ 19 1.91
R61 antonio_ 19 1.45
R62 antonio_ 19 1.69
R63 antonio 19 1.97
R64 antonio_ 19 1.93
R65 antonio 19 2.04
R66 antonio_ 19 0.54
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sample_ ID country paper coverage
R67 antonio_ 19 1.64
R68 antonio_ 19 1.30
R69 antonio_ 19 1.59
R7 antonio_ 19 3.03
R70 antonio_ 19 1.06
R71 antonio_ 19 0.83
R72 antonio_ 19 0.78
R73 antonio 19 0.95
R75 antonio_ 19 0.56
R76 antonio 19 0.64
R78 antonio_ 19 1.14
R8 antonio 19 0.52
R8O antonio_ 19 1.90
R&1 antonio 19 0.51
R835 antonio_ 19 0.63
R&36 antonio 19 0.54
R850 antonio_ 19 0.64
R8&51 antonio 19 0.69
R9 antonio_ 19 3.88
R969 antonio 19 2.38
R970 antonio_ 19 0.61
R973 antonio 19 1.15
Revb Hofmanova_ 2016 1.16
RISE174 allentoft 2015 2.49
RISE395 allentoft_ 2015 2.32
RISE479 allentoft 2015 1.15
RISE493 allentoft_ 2015 6.41
RISE495 allentoft 2015 3.54
RISE496 allentoft_ 2015 2.42
RISE497 allentoft 2015 7.41
RISE499 allentoft_ 2015 1.27
RISES500 allentoft 2015 1.40
RISE502 allentoft_ 2015 1.14
RISE504 allentoft_ 2015 1.26
RISE505 allentoft_ 2015 4.42
RISE511 allentoft_ 2015 2.94
RISE516 deBarrosDamgaard_ 2018a_ FirstHorse 0.90
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sample_ ID country paper coverage
RISE523 allentoft_ 2015 2.19
RISE548 allentoft_ 2015 0.87
RISE552 allentoft_ 2015 2.34
RISE568 zZuzana_ new 10.00
RISE569 zZuzana, new 10.00
RISE601 allentoft_ 2015 1.06
RISE602 allentoft_ 2015 1.15
RISE664 deBarrosDamgaard_ 2018a_ FirstHorse 4.60
RISE672 deBarrosDamgaard_ 2018a_ FirstHorse 1.20
RISE674 deBarrosDamgaard_ 2018a_ FirstHorse 2.60
RISE680 deBarrosDamgaard_ 2018a_ FirstHorse 1.50
RISE683 deBarrosDamgaard_ 2018a_ FirstHorse 2.00
RISE685 deBarrosDamgaard_ 2018a_ FirstHorse 1.30
RISE98 allentoft 2015 4.97
RIX15 Brunel 2020 0.00
RIX2 Brunel 2020 0.00
RIX4 Brunel 2020 0.00
ROS102 Brunel 2020 0.00
ROS45 Brunel 2020 0.00
ROS78 Brunel 2020 0.00
ROS82 Brunel 2020 0.00
Satsurblia Jones 2015 1.40
Sch72-15 Brunel 2020 0.00
Schw432 Brunel 2020 0.00
sidelkino 2.00
STR_ 220 zZuzana new 10.00
STR_ 300 zuzana,_ new 10.00
STR_ 310 zZuzana new 10.00
STR_355¢ zuzana,_ new 10.00
STR_ 486 zZuzana_ new 10.00
S7Z1 zuzana,_ new 10.00
S7Z11 zZuzana_ new 10.00
SZ15 zuzana,_ new 10.00
S72 zuzana_ new 10.00
S73 zuzana,_ new 10.00
S7.36 zZuzana_ new 10.00
S74 zuzana_ new 10.00
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(continued)
sample_ ID country paper coverage
SZ43 zZuzana_new 10.00
S745 zZuzana_ new 10.00
SZ5 zZuzana_ new 10.00
VIM_ 2b zZuzana_new NA
WC1 Broushaki 201Broushaki 10.00
WET370 Brunel 2020 0.00
WEZ53-2 new_ bavaria 8.20
WEZ56-1 new_bavaria 7.40
Yamnaya deBarrosDamgaard_ 2018a_ FirstHorse 25.20

A.5.1 Table of individuals and their fineSTRUCTURE labels - chap-
ter 4

fineSSTRUCTURE groupings for all samples included from Chapter 4.

Sample ID fineSTRUCTURE Group

CO1

S74
VK70
RISE568
NW_ 54
S7Z1
SZ43
Mota
Rathlin2
VK1
VK50
VK531
sidelkino
RISE395
RISE500
RISES505
RISE523
Kir24
RISE511
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(continued)

Sample ID fineSSTRUCTURE Group

RISE552 6
VK395 7
VK56 7
VK475 8
VK397 8
VK443 8
VK154 8
VK478 8
WEZ56-1 8
POH41 8
POH40 8
POH44 8
Molz1 8
VK160 8
DA29 8
POH36 8
POH13 8
VK273 8
POH28 8
LIB7 8
VK473 8
VK474 8
VK541 8
VK245 9
VK46 9
VK127 9
VK190 9
STR. 355c¢ 9
R1286 9
VK173 9
VK128 9
VK145 9
VK204 9
VK258 9
VK263 9
VK256 9
VK257 9
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(continued)

Sample ID fineSSTRUCTURE Group

VK262 9
VK335 9
VK327 9
VK328 9
VK259 9
VK400 9
VK422 9
VK324 9
VK402 9
VK420 9
VK449 9
VK237 9
VK238 10
VK236 10
VK25 10
VK110 11
VK111 11
VK230 11
VK123 12
VK201 12
VK349 12
VK368 12
VK95 12
VK545 12
VK203 12
VK202 12
VK386 12
VK205 12
VK525 12
VK456 12
VK528 12
VK405 12
Kir28 13
Rathlinl 13
RISE9S8 13
RISE150 13

SZ11 13
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(continued)

Sample ID fineSSTRUCTURE Group

VK118 13
Alhl 13
R31 13
VK34 13
Alh10 13
VK166 13
SZ15 13
VK337 13
SZ2 13
VK323 13
VK102 13
VK361 13
VK6 13
VK42 13
VK433 13
VK455 13
VK479 13
VK429 13
VK58 13
VK40 13
VK446 13
VK373 13
VK364 13
VK468 13
VK526 13
VK384 13
Kir25 14
Kir26 14
BRU1 14
Kir27 14
RISE479 14
WEZ53-2 14
POH39 14
POH27 14
POH3 14
LIB11 14

POH11 14
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(continued)

Sample ID fineSSTRUCTURE Group

RISE569 14
VK274 14
VK542 14
SZ45 15
R1219 15
VK326 15
VK146 15
VK265 15
VK329 15
R1224 15
VK261 15
VK332 15
VK333 15
VK330 15
VK317 15
R1220 15
SZ5 15
VK150 15
R106 15
SZ3 15
VK322 15
R62 15
VK336 15
R1288 15
VK177 15
LIB12 15
VK346 15
VK369 15
VK353 15
VK357 15
VK403 15
VK84 15
VK398 15
VK448 15
VK477 15
VK385 15

VK350 15
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(continued)

Sample ID fineSSTRUCTURE Group

VK355 15
VK396 15
VK87 15
VK363 15
Loschbour 16
Bichon 17
R15 17
R7 17
LaBrana 18
KO1 18

VLASAC7 18
VLASAC32 18

VK482 19
VK555 19
VK483 19
VK497 19
VK367 20
VK508 20
VK493 20
VK489 20
VK495 20
VK492 20
VK281 20
VK484 20
VK481 20
VK496 20
LIB2 20
VK491 20
VK498 20
VK343 20
VK358 20
VK510 20
VK279 20
VK487 20
VK486 20
VK505 20

VK506 20



A.5. Reference ancient samples 207

(continued)

Sample ID fineSSTRUCTURE Group

VK511 20
VK521 20
VK553 20
VK552 20
VK512 20
VK532 20
VK549 20
VK522 20
VK550 20
VK551 20
VK524 21
VK392 21
VK514 21
VK414 21
VK520 21
VK419 21
VK170 21
VK393 21
VK529 21
VK516 21
VK417 21
VK544 21
VK390 21
VK513 21
VK415 21
VK129 21
VK523 21
VK547 21
VK548 21
VK517 22
VK527 22
VK342 22
RISE174 23
VK122 23
VK151 23
VK15 23

VK143 23
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(continued)

Sample ID fineSSTRUCTURE Group

VK165 23
VK141 23
VK168 23
VK352 23
VK399 23
VK172 23
VK370 23
VK401 23
VK35 23
VK184 23
VK316 23
VK290 23
VK291 23
VK29 23
VK539 23
VK219 23
VK348 23
VK509 23
VK221 23
VK320 23
VK176 23
VK404 23
VK179 23
VK284 23
VK372 23
VK306 23
VK445 23
VK294 23
VK98 23
VK387 23
VK406 23
VK389 23
VK533 23
VK303 23
VK220 23
STR._ 486 24

KER_1 24
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(continued)

Sample ID fineSSTRUCTURE Group

STR._ 300 24
Barl 25
STR_ 220 25
ans008 26
NE5 26
NE7 26
NE6 26
LIB3 27
R1 27
LIB4 27
LIB5 27
SZ36 27
R1221 27
RAT73 27
R105 27
R33 27
R63 27
R116 27
R474 27
R108 27
FN2 27
R61 27
R55 27
VK345 27
VK442 27
VK538 27
R53 28
R64 28
R1287 28
R60 28
R49 28
R47 28
R36 28
R1549 28
R57 28
R107 28

R58 28
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(continued)

Sample ID fineSSTRUCTURE Group

R122 28
R437 28
R59 28
R1283 28
R1290 28
R969 28
VK534 28
VK535 28
VK537 28
R973 28
STR_ 310 28
VK536 28
R126 29
R38 29
R70 29
R67 29
R41 29
R45 29
R68 29
R42 29
MA2200 29
MA2213 29
R39 29
R30 29
R114 29
R137 29
R69 29
R133 29
R43 29
R115 29
R50 29
R44 29
R1545 29
R34 29
R134 29
R40 29

R65 29
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(continued)

Sample ID fineSSTRUCTURE Group

R136 29
R130 29
R78 29
R132 30
R8O 30
RA475 30
DA206 31
DA382 31
DA164 31
DA35 31
DA243 31
DA162 31
F38 31
WCl1 32
KK1 32
Satsurblia 32
Ergl 33
R4 33
R5 33
Dill16 33
Bar8 33
DIN2 33
NE1 33
Pal7 33
Ess7 33
Bar31 34
Kleil0 34
R10 34
R3 34
R2 34
Revb 34
R9 34

Ballynahatty 35

Kir23 35
atp016 36
prs002 36

atp002 36
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(continued)

Sample ID fineSSTRUCTURE Group

prs009 36
prs016 36
prs013 36
ans014 36
ans017 36
RISE664 37
RISE685 37
RISE672 37
RISE674 37
RISE680 37
RISE683 37
EBA1 38
EBA2 38
BOT14 39
BOT15 39
BOT2016 39
DA142 40
DA228 40
DA56 41
DA221 41
DA100 41
DA104 41
DAT2 41
DASO 41
DA16 41
DA13 41
DA38 41
DA385 41
RISE601 42
RISE602 42
RISE502 43
RISE493 43
RISE495 43
DA23 44
DA93 44
RISE504 44

DA204 44
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(continued)

Sample ID fineSSTRUCTURE Group

DA222 44
DA230 44
DA117 45
DA179 45
DA223 46
DA30 46
DA227 46
DA57 46
DAS81 46
DA129 46
DA47 46
DAS5 46
DA6 47
DAS 47
DA2 47
RISE496 47
RISE499 47
DA342 48
DA337 48
RISE497 48
DA341 48
DA2438 48
DA245 48
DA249 48
DA246 48
DA253 48
DA252 48
DA247 48
DA362 48
DA43 49
DA45 49
DA39 49
DA28 49
DA95 49
DA177 49
DA27 49

DA118 49



A.5. Reference ancient samples

(continued)

Sample ID

fineSSTRUCTURE Group

DA99

49

A.5.2 Table of individuals and their fineSTRUCTURE labels

fineSTRUCTURE groupings for all samples included from Chapter 5.

Sample ID

fineSSTRUCTURE Group

STR_ 220
STR_310
RISE569
STR_ 355¢
MA2200
R42

R65

LIB3

R1

SZ36

R969

LIB4

LIB5
Loschbour
R15

R7

Bichon
VLASAC32
VLASAC7
LaBrana
RISE98
Kir28
Rathlin1
RISE150
WEZ56-1
SZ11
VK337
VK190
VK118

STR_ 220

STR_ 310

STR_ 355¢
STR__355¢

Anatolia. MLBA
Anatolia. MLBA
Anatolia. MLBA
Slavic_ Migration_ I
Slavic_ Migration_ I
Slavic_ Migration_ T
Slavic_ Migration_ I
Slavic_ Migration_ I
Slavic_ Migration_ I
Loschbour

Italian HG

Italian HG

Bichon

VLASAC

VLASAC

LaBrana

BronzeAge 1
BronzeAge_ 1
BronzeAge 1
BronzeAge_ 1
BronzeAge 1

S7Z11

Viking 10C__Scan_ I
Viking 10C__Scan_ I
Viking 10C__Scan_ I
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(continued)

Sample ID

fineSSTRUCTURE Group

SZ15
VK429
VK166
VK42
VK230
VK102
Alh10
Alhl
VK29
VK433
VK443
VK58
VK448
VK46
VK526
VK468
VK6
VK533
VK532
VK129
VK176
LIB2
VK281
VK303
VK522
VK521
SZ2
VK513
RISE174
VK279
VK547
VK98
VK551
VK548
POHA41
LIB11
LIB7

Viking 10C_Scan_ I
Viking 10C__Scan_ I
Viking 10C_Scan_ I
Viking  10C__Scan_ I
Viking 10C__Scan_ I
Viking  10C__Scan_ I
Viking 10C_Scan_ I
Viking  10C__Scan_ I
Viking 10C_Scan_ I
Viking 10C__Scan_ I
Viking 10C_Scan_ I
Viking 10C__Scan_ I
Viking 10C_Scan_ I
Viking  10C__Scan_ I
Viking 10C_Scan_ I
Viking  10C__Scan_ I
EarlyNorse

Viking  10C__Scan_ II
Viking  10C__Scan_ II
Viking_ 10C__Scan_ II
Viking  10C__Scan_ II
Viking_ 10C__Scan_ II
Viking 10C__Scan_ II
Viking  10C__Scan_ II
Viking 10C__Scan_ II
Viking 10C__Scan_ II
Viking 10C__Scan_ II
Viking 10C__Scan_ II
Viking 10C__Scan_ II
Viking 10C__Scan_ II
Viking 10C__Scan_ II
Viking 10C__Scan_ II
Viking 10C__Scan_ II
Viking 10C__Scan_ II

Slavic_ Early  Middle_ Age II
Slavic_ Early_ Middle_ Age_II
Slavic_ Early_ Middle_ Age_II
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A.5. Reference ancient samples

(continued)
Sample ID fineSSTRUCTURE Group
POH13 Slavic_ Early_ Middle_ Age_IT
Molzl Slavic_ Early_ Middle_ Age_II
POH11 Slavic_ Early_ Middle_ Age_ IT
POH36 Slavic_ Early_ Middle_ Age_II
POH28 Slavic_ Early_ Middle_ Age_ IT
POH40 Slavic_ Early_ Middle_ Age_II
POH44 Slavic_ Early_ Middle_ Age_IT
VK154 Slavic_ Early_ Middle_ Age_II
VK541 Slavic_ Early  Middle_ Age_IT
VK475 Slavic_ Early_ Middle_ Age_II
Kir25 Lombard_mixed
FN2 Lombard mixed
SZ3 Lombard_mixed
S745 Lombard mixed
BRU1 Lombard_mixed
Kir26 Lombard mixed
VK87 Lombard mixed
Kir27 Lombard mixed
LIB12 Lombard mixed
WEZ53-2 Lombard mixed
POH27 Slavic_ Early_ Middle_ Age_IT
POH3 Slavic_ Early_ Middle_ Age_II
POH39 Slavic_ Early_ Middle_ Age_ I
S75 Slavic_ Early_ Middle_ Age_ II
RISE496 Karasuk
RISE523 Mezhovskaya
DA223 Wusun
DAS1 Wusun
KK1 CHG
DA162 Alan
DA243 Alan
DA382 Alan
WC1 Iranian Farmer
RISE511 Yamnaya
RISE552 Yamnaya
Yamnaya Yamnaya
RISE395 Sintashta
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A.5. Reference ancient samples

(continued)
Sample ID fineSSTRUCTURE Group
Kir24 Androvono
RISE505 Androvono
Ballynahatty =~ Mixed_ Middle_ Neolithic
ans017 Mixed_Middle Neolithic
Kir23 Mixed_ Middle_ Neolithic
Ergl Early_ Neolithic
R4 Early Neolithic
atp002 Irish_ Neolithic
prs002 Irish_ Neolithic
prs009 Irish_ Neolithic
prs013 Irish_ Neolithic
prs016 Irish_ Neolithic
Bar31 Anatolia_ Neolithic
R2 Anatolia_ Neolithic
Kleil0O Anatolia_ Neolithic
R3 Anatolia_ Neolithic
R9 Anatolia_ Neolithic
Bar8 LBK
Dill16 LBK
Ess7 LBK
NE1 LBK
RISE568 RISE568
STR_ 486 STR_ 486
VK70 EarlyViking
NW_54 NW_54
KER 1 KER 1
STR_300 KER_1
RISE497 Karasuk II
DA245 Shamanka EN
DA249 Shamanka_EN
DA246 Shamanka EN
DA248 Shamanka_EN
DA252 Shamanka EN
DA247 Shamanka_EN
DA253 Shamanka EN
DA177 GoldenHordeAsian
DA28 GoldenHordeAsian
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A.5. Reference ancient samples

(continued)
Sample ID fineSSTRUCTURE Group
DA45 XiongNu
DA221 Nomad_ TA
DA228 Turk
DA100 TianShanHun
DA38 TianShanHun
DA385 TianShanHun
RISE493 Karasuk III
RISE495 Karasuk III
DA222 Kipchak
DA23 Kipchak
BOT14 Botai
BOT15 Botai
BOT2016 Botai
EBA1 CentralSteppe_ EMBA
EBA2 CentralSteppe. EMBA
RISE664 Okunevo EMBA
RISE674 Okunevo_ EMBA
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Appendix B

Some commonly used terms and their

motivation for use

Here are some terms I commonly use.

B.1 ‘all-v-all’

I use this term when painting each individual in turn is painted using all other individuals as

donors. If there are N individuals, the result is an NxN coancestry matrix.

B.2 ‘Leave-one-out’

Consider a situation where an all-v-all painting is performed on a set of individuals grouped
into populations, where 2 of the populations are Devon and Cornwall. We would like to
estimate the proportion of genome each recipient individual matches to both Devon and
Cornwall, so we take the sums across columns, aggregating them by population. However,
this means that each individual from, for example, Cornwall, can match to one less individual
from Cornwall than other populations, as they cannot paint themselves. To avoid this, we
may perform a ‘leave-one-out’ painting, where each population is painted separately, and a

single individual from each other population is removed from the set of donors.

B.3 Total Variation Distance

Often we would like to estimate how similar the copyvectors, C, and C,, of two individuals
or populations (average) are to one another. Given copvectors are the same length, one way

would be to simply estimate Pearsons’ correlation. However, this can lead to misleading
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results because Pearson’s r-squared is often over-sensitive to outlying values.

An alternative is to estimate TVD, where TV D, , between two copyvectors C, and C,

is given as TVD = " |Cy — Cy].



Appendix C

Colophon

This document was produced using the UCL thesis WTEX template (https://github.com/
UCL/ucl-latex-thesis-templates). This document was set in the lmodern typeface using
ETEX and BibTEX, composed with a text TexMaker on Linux. microtype was also used.
All figures were generated using ggplot?2 using theme_light (). All tables were generated
using the kbl function from the kableExtra R library The final version of the thesis can be

found at https://github.com/sahwa/thesis.
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Figure D.1: Relationship between genotype likelihood and probability of genotype call being correct
for UstIshim downsampled to 0.1x coverage. Genome binned by maximum posterior
genotype likelihood and mean maximum posterior genotype likelihood (x-axis) and
proportion of correct calls per bin (y-axis). Rugs on each margin show the distribution
of x and y values. Black line is y = .
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newly sequenced ancient samples.
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Figure D.3: Histogram of minor allele frequencies amongst all Human Origins samples at 535,544
imputed SNPs.
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point represents one Human Origins population, coloured according to the summed
amount of chunklengths that population donates to all U.K. Biobank individuals born

in the Caribbean.
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Figure D.6: Number of individuals who have (purple) and have not (yellow) at least 50% African
ancestry (purple) by different testing centers. Centers ordered by proportion of
individuals who have at least 50% African ancestry.
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Appendix E

Supplementary results

Auxiliary results.

E.0.1 Determining the number of MCMUC iterations required in
SOURCEFIND analysis

SOURCEFIND is a haplotype-based method for inferring ancestry. At its heart,
SOURCEFIND uses Markov chain Monte Carlo sampling to explore the parameter space
of ancestry proportions. As is the case with any method that uses MCMC sampling, it is
important to ensure that enough iterations have been performed; if this is not the case, the

algorithm may not converge.

To determine what is the minimum number of iterations, I ran SOURCEFIND for 7
different numbers of iterations and 10 runs for each number. Results are presented in Figure
E.1. Visually inspecting the results shows that using 50,000 iterations or less leads to variable

results. 500,000 iterations appears to be the best balance between running time and accuracy.

E.0.2 Determining the number of SNPs required to separate indi-

viduals from Devon and Cornwall

This figure shows the how TVD assignment accuracy varies with the total number of SNPs

included.

E.0.3 Comparison of imputation uncertainty metrics

In Chapter 2, I presented a way of adding the uncertainty from genotype imputation back

into the phased genotypes in chromopainter input. This method, called ‘uncertainty’ here
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Figure E.1: Proportion of inferred Cameroon Arabic ancestry averaged across individuals from
Cameroon Kanuri ethnic group. Each panel contains proportions for a different number
of MCMC iterations. Within each panel, each bar is the proportion inferred from each
of the 10 independent SOURCEFIND runs.

for brevity, was calculated as U = |G — D|, where G is the genotype dosage and D is dosage
obtained from the genotype likelihoods. Low values of U (and correspondingly high values of
1—"U) correspond to high confidence that the allele at that position has been called correctly.

However, U as a metric may be floored; for example, low confidence heterozygous calls,

e.g. gp="0.313,0.374,0.313" would yield U = 1 and a max(GP) of 0.374. Having high

—~

confidence in such positions may harm the painting accuracy.

To investigate this further, I randomly selected 500,000 positions from a randomly selected
ancient sample and plotted 1 — U against max(GP) (Fig. E.3). My work in chapter 2 showed

that, whilst slightly conservative, maz(GP) is an accurate proxy for whether or not a
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Figure E.2: Proportion of individuals correctly assigned (via T'VD) to their correct population
(y-axis) using different number of SNPs (x-axis).

genotype has been imputed correctly and thus stands as a good metric to compare U against
(Fig. 2.5). I plotted 1 — U so that it is directly comparable to maxz(GP), i.e. the genotype
call has a certainty of being imputed correctly when 1 — U = maz(GP) =1

Whilst the Pearson’s correlation between the two metrics (0.93), Fig. E.3 shows that there
is a clear difference; 1 — U substantially over-estimates the probability that heterozygous
positions have been imputed correctly. When counting only positions where 1 — U # 1 or
maz(GP) # 1, heterozygous positions had a mean max(GP) of 0.82, compared to a 1 — U
of 0.89. There was also a less pronounced effect of 1 — U underestimating equivalent score

for homozygous positions relative to maxz(GP).

To test whether the choice of uncertainty metric had an affect on painting accuracy, I
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Figure E.3: Comparison of metrics to describe the uncertainty in an imputed genotype calls.
Each point corresponds to a SNP (n=500,000) from a randomly selected ancient
sample, coloured by whether the genotype was homozygous reference, heterozygous or
homozygous alternate.

reproduced Fig 2.6 but using setting uncertainty such that, at each SNP, I set the entry in

ChromoPainter input as:

1.0 —maz(GP) a=1
Pr(a = alt) = (E.1)

max(GP) a=0

, where a is the value of the allele at a given position. Whilst using max(GP) (Fig. E.4)
rather than U did reduce the TV D between the full coverage and downsampled individuals,

it did not perform better than not accounting for uncertainty at all (Fig. E.5).
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Figure E.4: For five different samples (columns), the proportion of DNA that each downsampled
(y-axis) or full coverage (x-axis) genome matches to each of 125 ancient individuals
(dots). Results are shown for 0.1x (top row) and 0.5x (bottom row) downsampled
genomes. Points coloured by manual assignment to broad-scale populations. Red
line is line of equality (y = ). x and y units are normalised copying values and thus
removed for clarity. Results obtained from using maz(GP) as the uncertainty metric,
shown in equation 2.1.
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