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Abstract

Accounting for linkage disequilibrium between neighbouring genetic markers has been shown to

enhance power to detect fine-scale genetic population structure, particularly when considering

recent shared ancestry. In particular, ChromoPainter has been shown to be a successful

method at identifying shared haplotypes between samples. It has also been used widely on

ancient DNA samples. However, sequencing coverage is a potentially confounding factor,

and it is possible that analysing low-coverage samples may provide biased results. Whilst

a small number of studies have tested the utility of using ChromoPainter on ancient DNA,

none have tested a range of samples across different coverages, at all steps of the analysis

pipeline. In this work, I assess the impact of coverage on each step of the ChromoPainter

analysis pipeline. I show that bias can exist when exploring population structure using

low-coverage samples, and investigate a series of modifications and strategies to reduce the

extent of this bias. I also address a related challenge of analysing haplotype information

in sparsely genotyped data in present-day individuals; for example, when analysing only

variants that overlap multiple genotyping arrays. Using these findings, I infer fine-scale

African ancestry in U.K. Biobank participants using a new reference panel of data from 349

African ethno-linguistic groups, demonstrating how imputation of sparsely genotyped samples

can substantially harm the estimation of sub-continental ancestry. Furthermore, I analyse

a novel ancient DNA dataset from Bavaria in order to determine the extent of continuity

between the Late Neolithic and Iron Ages, as well as the age of east-west structure in Europe.

I also analyse novel ancient DNA samples from Slavic-speaking regions, exploring the genetic

relationship between samples from the Migration Era to the Early Middle Ages, and the

signatures of these ancient populations in present-day Slavic speaking populations. Finally,

I summarise my findings and recommend approaches for future work on haplotype-based

studies using low-coverage or sparsely genotyped data.
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0.1 Impact statement

I intend that the work presented in this thesis will provide a foundation for other researchers

who apply haplotype-based methods for the analysis of low coverage ancient DNA and

sparsely genotyped. Specifically, the benchmarks I provide in Chapter 2 can be followed by

scientists in order to perform reliable ancient DNA analyses. This is important, as many

studies are now using the aforementioned techniques. I also hope that others will take over

up work into adapting ChromoPainter for ancient DNA and make further improvements to

the algorithm.Similarly, other researchers can use my results to make decisions on whether

to retain a smaller number of SNPs, or impute missing ones, when merging datasets across

multiple genotyping arrays. Given previous research has outlined the utility of accounting
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for haplotypes when accounting for population stratification in GWAS, my findings may be

useful looking forward when such approaches become more common.

My empirical work on ancient DNA in chapters 4 and 5 should a grounding for future

work, much like the work I referenced in those sections aided me in understanding the

historical and genetic context of the current research. For example, future studies may use

these results to inform how they sample new ancient DNA samples.

Outside of academia, I believe there is a fundamental benefit to learning about our history

as a species, something which the study of ancient DNA has provided tools for in the past

decade. Ancient DNA analysis remains a field with popular reach, so I hope my work will go

a small way towards providing the public with interesting and scientifically valid findings.

I believe that exploring the ancestry of ethnic minorities within the U.K. Biobank can be

of value to those individuals communities, particularly when they have been excluded from

many similar kinds of analyses. Lastly, my work should also play a part in the inclusion of a

more diverse array of ethnicities in association studies.
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Chapter 1

Introduction

1.1 Chromopainter and ancient DNA

In this introduction I will discuss the following points: i) What are ‘haplotype-based’ methods

and what advantages and disadvantages do they offer over ‘unlinked’ methods, ii) a summary

of different methods used to analyse ancient DNA and iii) the need to merge datasets

genotyped on different arrays.

1.1.1 Gains to be made with haplotype information

1.1.1.1 History

Haplotype-based methods are statistical approaches in genetic analysis which explicitly model

linkage disequilibrium (LD), or the correlation in frequency, between neighbouring genetic

markers along a haplotype 1. This is in contrast to ‘unlinked’ methods, which assume a model

of linkage equilibrium between SNPs. A ‘haplotype’ is a contiguous sequence of alleles which

are located on the same chromosome. In this thesis, I will concentrate on haplotype-based

methods in the context of identifying shared haplotypes between individuals in order to

understand the genetic structure and history of a population(s).

Linkage disequilibrium (LD) is the key concept underpinning haplotype-based approaches.

It has been studied since the earliest days of genetics [2,3] and has since been a fundamental

aspect of virtually all areas of genetics [4]. The primary advantage of accounting for LD in

a model is that information about the frequency of an allele in a population also provides

information about the frequency of neighbouring alleles within the same population.

1Note that other methods, for example octopus [1] are referred to as ‘haplotype-based’ genotype callers,
but they represent a distinct group of methods to e.g. ChromoPainter.
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Some of the earliest uses of LD information for the study of genetic structure came

from microsatellite markers, whose linked tandem repeats can be thought of as analogous

to linked alleles on a haplotype. Microsatellites were, and still are, commonly applied to

study the population structure of wild animal systems; for instance, Amos et al (1993)

used microsatellites markers to examine the population structure of whales [5]. Later,

microsatellites at the CD4 locus were leveraged to show the preferred model of Human

population history was a recent African origin [6]. This was deduced as Sub-Saharan Africans

had substantially more variability in haplotype frequency and a higher diversity of STRP

alleles associated with the Alu deletion than non-Africans, strongly suggesting Africa was

the common origin of these haplotypes. This study outlined the insights into population

history that can be obtained from the analysis of a very small number of linked markers.

The next major advance was the development of methods to use LD information between

SNP markers rather than within microsatellites, as SNPs are substantially more numerous

across the human genome. Studies in the early 2000s utilised the then-new Hap-Map results [7]

to show LD varies across the human genome [8] and between worldwide populations [9, 10],

and that such variation can be used to make inferences about human populations history [11].

Using 3,024 autosomal SNPs, Conrad et al (2006) calculated the proportion of unique

haplotypes that were shared between two geographic regions, and by showing that the

number of distinct haplotypes per region declines from Africa, provided additional evidence

to support the previously proposed recent African origin of humanity [12]. It was also shown

that isolated Native American populations had approximately 3 times fewer haplotypes per

genomic region, indicating that recent endogamy plays a large role in shaping patterns of

haplotype variation.

The 2000s also saw a rapid increase in the number of SNP markers and individuals which

had been sequenced. Accounting for LD and recombination within a model is necessarily

computationally complex and the number of combinations of alleles and their possible

evolutionary histories balloons as the number of loci increases. Therefore, the new era

of sequencing demanded new and more efficient methods to cope with such data. The

development of the Li and Stephens copying model (LSM) [13] was instrumental in the

development of such methods [14] and provided an elegant solution to the increased complexity

when modelling recombination between linked loci. As such, it has since played a part in

virtually all areas of genomic methodology; for example, the LSM was, and still is, the

foundation for methods of the haplotype phasing methods needed for haplotype-based

methods [15,16]. LSM provides a way to generate a ‘target’ haploid 2 conditional upon a set

of other observed haploids, specifically by modelling it as a ‘mosaic’ of the other sampled
2A ‘haploid’ can be defined as a single phased haplotype per chromosome
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haploids using a Hidden Markov Model. The conditional probability that the target haploid

‘copies’ from a particular reference haplotype is obtained by observing whether the alleles at

the same position match between the target and reference haplotypes. The mosaic nature

of the target haplotype reflects how historical recombination alters the genealogy relating

sampled haplotypes along a genetic sequence, which in this model causes so-called ‘switches’

in which reference haplotype it copies from. In general, if a target haploid matches a DNA

segment to a particular reference haploid for a genomic region, the target is inferred to share

a most recent ancestor with that reference haploid, relative to all other reference haploids,

for that genomic region.

The first paper to use the LSM model explicitly to study human population history was

that of Hellenthal et al 2008 [17]. The original LSM was developed to infer recombination

rates. It did so by randomly ordering a set of phased haploids, presumed to be sampled from

a genetically homogeneous population, and then taking each haploid in turn and forming

it as a mosaic of the haploids earlier in the random ordering. They then multiplied the

resulting probabilities of generating each haploid, using this so-called “product of approximate-

conditional” (PAC) likelihoods as a basis to infer the recombination rate. Hellenthal et al

2008 instead used the mosaic approach to calculate the probability of forming a set of haploids

from one population as a mosaic of those from another population(s), using these probabilities

to infer the relative order in which populations were formed. While their approach had some

flaws, such as not explicitly accounting for admixture, it provided some insights into the power

of LSM-based approaches to infer features of human history, using only a modest number

of SNPs (n=2,560). For example, similar to the results of Conrad et al (2006), Hellenthal

et al’s analysis of the structure of global haplotype sharing provided strong evidence of a

recent African origin of modern humans. In the same year, Jakobsson et al (2008) analysed

a much larger number of SNPs (n=525,910) and 29 worldwide populations [18] to show that

haplotype clusters show an elevated ability to determine local structure compared to unlinked

SNPs alone; 51% of haplotype clusters were found in at most two regions, in contrast with

4% of SNP alleles.

Building on the copying model proposed by Hellenthal et al (2008), Lawson et al (2015) [19]

created ChromoPainter, again based the LSM. ChromoPainter is a more general model than

that of Hellenthal 2008; whereas the Hellenthal 2008 model was explicitly formulated to

determine the ordering of human colonisation, ChromoPainter efficiently forms a set of

target haplotypes as a mosaic of a set of reference haplotypes. In particular, it generates a

‘coancestry matrix’, which gives information on the level of recent shared ancestry between

each donor and recipient individual. ChromoPainter also allowed for the user to input

recombination rate maps containing estimated recombination rates between neighbouring
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SNPs. Analysis of simulated data showed it to have an enhanced ability to separate closely

related populations when plotted on a PCA compared to unlinked methods. It was developed

in tandem with its own clustering method fineSTRUCTURE, and has since been extended

into methods to detect and date admixture [20], and infer ancestry proportions [20,21].

The ‘next-generation’ of chromosome painting methods had to confront the same issue

that Li and Stephens did, which was how to adapt methodology to larger and larger sample

sizes. ChromoPainter was designed with datasets of <10,000 people in mind, whereas

biobank-scale datasets typically contain 500,000+ individuals. As such, ChromoPainter does

not scale well to large datasets, especially when there are a large number of donor haplotypes.

One approach is to use the Burrows-Wheeler transform (PBWT) [22,23] to efficiently find

matching haplotypes in large datasets. The insight to apply the PBWT to genetic data has

been one of the most crucial insights into computation biology, as it allows for substantial

increases in efficiency across a wide range of applications such as sequence alignment [24],

phasing [25] and data compression [26]. PBWT has been applied to Chromosome Painting on

Biobank-scale datasets in several recent papers [27, 28]. Similarly, methods to detect IBD in

Biobank-scale cohorts have leveraged the PBWT [29,30]. However, PBWT-based approaches

are still relatively immature; for example, they do not allow for the use of a reference panel

and all haplotypes must be compared to all other haplotypes in an ‘all-v-all’ manner (further

explanation given in Appendix section B.1). Despite their current limitations, it seems that

the future of Chromosome Painting will at least in part be based on the PBWT or similar

approaches that increase computational efficiency, even if at slight losses in accuracy. Byrne

et al used ChromoPainter and PBWT-paint to a subset of Dutch individuals and found

eigenvectors of the coancestry matrix to be almost identical (r2 = 0.99) and the correlation

between raw coancestry matrices to be lower at (r2 = 0.82).

1.1.1.2 Advantages of accounting for haplotypes

ChromoPainter can be run in either ‘linked’ or ‘unlinked’ mode. In the linked mode, described

in detail in sections 2.2.1, LD between neighbouring SNPs is accounted for. Unlinked mode

assumes a model of linkage equilibrium between markers and has been shown to be statistically

identical to the likelihood model underlying the commonly used ADMIXTURE algorithm [19].

A typical case study, and one which I will return to in later chapters, was a study

investigating population structure among individuals from the British Isles [31]. This study,

hereafter referred to as POBI, genotyped 2039 people from England, Wales and Scotland [31].

One finding was that it was possible to detect structure between individuals from Devon

and Cornwall (two neighbouring counties) using ChromoPainter. On the other hand, this



1.1. Chromopainter and ancient DNA 16

structure was not discernible when using unlinked methods (PCA). This outlines the benefits

of incorporating linkage information when attempting to identify fine-scale structure between

closely related groups of individuals.

Gattepaille and Jakobson (2012) [32] provided the mathematical foundations for the

advantage of using linked markers over unlinked ones. They describe a metric, GIA (gain

of informativeness for assignment), a term borrowed from information theory, to describe

the additional amount of information gained when using haplotype data instead of unlinked

alleles. They showed that whilst combining two markers in linkage equilibrium is not

necessarily advantageous for ancestry inference, GIA is often positive for markers in LD

with one another, demonstrating the advantage of haplotypes. Under a variety of simulated

scenarios, incorrect assignment of individuals into populations was reduced between 26%

and 97% when using haplotype data. For example, they showed that using empirical data of

individuals from France and Germany, accounting for haplotypes could reduce the rate of

mis-assignment by 73%.

Another advantage of using haplotype information is that it may mitigate ascertainment

bias. Ascertainment bias occurs when a subset of SNPs are chosen for analysis, most often

when selecting markers for a genotpying array. SNPs are typically chosen because they

show variation within a population of interest. However, if this variation is identified in one

population, e.g. British, then there is no guarantee that the variation will also be seen in

another population, e.g. Han Chinese. In this case, including these SNPs can often provide

misleading estimates of genetic diversity and commonly estimated parameters such as fst [33].

Conrad et al (2006) showed that, owing to the lack of African individuals used in the SNP

discovery process, populations from the Middle East, Europe and South Asia showed the

highest levels of SNP-based heterozygosity. These findings were in stark disagreement with

the currently accepted model of human history and studies which demonstrated Africans have

the highest levels of genetic diversity [12,17,34–36]. However, when haplotype heterozygosity

rather than SNP heterozygosity was used as a metric for diversity, African populations

consistently had the highest values. Therefore, although the ascertainment for a particular

SNP may depend strongly upon the ascertainment scheme, the same underlying haplotypes

are likely to be observed, regardless of which SNPs are used to tag them.

Haplotype-based methods also rely less on the inclusion of rare alleles. Rare alleles are

highly informative about recent, fine-scale population structure. Methods which leverage

this information have been used to model the population history of large datasets [37–39].

However, rare alleles are harder to genotype, as they are more difficult to distinguish from

sequencing errors and they are often not included on standard genotyping arrays. Because of
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this, allele-frequency filters are often applied in population genetic studies to reduce the risk

of incorporating incorrectly genotyped SNPs. Further, more SNPs need to be sequenced in

order to find rare variants in a wide range of populations. Using haplotype information may

negate the needs for using rare variants; if individuals share long haplotypes in common,

then it is likely that they also share rare variants that occur on those haplotypes.

However haplotype-based methods are not without their drawbacks. They are typically

slower by an order of magnitude, as they are more computationally complex than unlinked

methods. Secondly, the nature of haplotype-based methods means they require the data

to be phased. Phasing is a statistical procedure 3 that requires substantial computation

resources. The inconvenience of introducing an additional time and resource intensive step

to the analysis means that many studies opt not to use such methods.

Finally, ‘switch-errors’ may often occur during phasing, when the incorrect ordering of

alleles on a haplotype is inferred. Whilst Lawson and Falush (2012) showed that sporadic, ran-

domly distributed switch-errors are unlikely to significantly affect the overall ChromoPainter

analysis, systemic errors, where haplotypes from particular individuals are made to look more

like each other than they do those of other members of the sample, may be more problematic

and provide misleading results [40].

1.2 Methods used to analyse ancient DNA

In this section, I will outline some of the most widely used methods to analyse ancient DNA.

1.2.1 Unlinked methods

The first studies into ancient DNA mostly used statistical methods which compare allele-

sharing or allele-frequencies between populations or individuals. These methods, in particular

F-statistics and their extensions [41–44] and Principle Component Analysis [45], can address

a wide-range of questions pertaining to population structure, admixture and shared drift.

A key reason why methods based on allele-sharing and allele-frequency differences were,

and still are, widely used in ancient DNA is that they can easily be modified to use data

in pseudo-haploid format. Pseudo-haploid genotypes are generated by sampling a read at

random to represent a single allele at a given SNP. This is often necessary, because ancient

samples routinely do not have enough reads covering a SNP to confidently call diploid

genotypes. Pseudo-haploid calls are therefore used widely, including currently (e.g. [46]), in
3Phasing can also be performed using other methods, such as sequencing family trios. However, this is

rarely used in population genetic studies (although see [33] for an example of it being used) and so I will not
discuss it here
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most studies of ancient humans.

Whilst pseudo-haploid genotype calls circumvent the problem of calling heterozygous

genotypes at low coverage positions, they necessarily hold less information relative to true

diploid genotypes and are thus less powerful at e.g. identifying population structure or

genetic similarity. Further, the use of pseudo-haploid calls may result in an elevated level of

reference bias [47–49]. Reference bias occurs because the reference fasta file which is used

to align reads only contains a single allele at each position. Therefore, reads which contain

a non-reference allele (i.e. an allele not represented in the reference fasta) contain more

mismatches with the reference than reads which contain the reference allele, and accordingly

are given a lower mapping quality score. Then, when selecting a read at random, reads with

the reference allele are more likely to be selected as the pseudo-haploid call, generating a

bias towards the reference allele. Attempts are being made to represent non-linear reference

genomes as graphs in order to mitigate the effect of reference bias [49,50].

For many of the early ancient DNA studies, such as that of Green et al 2010 [41]

and Lazaridis et al 2014 [51], powerful methods for detecting population substructure and

admixture were not required, as the questions asked primarily considered broad questions

about human history, such as the nature of human-archaic interactions and whether there was

significant genetic differences between the first farmers and the preceding hunter-gatherers.

These populations, particularly humans and Neanderthals, are highly diverged and hence do

not require powerful methods to be distinguished. For example, in the case of Lazaridis et

al (2014), simply plotting Loschbour and Stuttgart on a PCA of modern individual showed

they had substantially different ancestries.

Perhaps the most widely used method amenable to pseudo-haploid data is the family

of F-statistics 4, which were first outlined in a 2009 study into the population history of

India [53]. These methods use the principle of shared drift in order to estimate genetic

similarity (f2), branch-length and admixture (f3) and tests of tree-like phylogeny (f4). Since

2009, F-statistics have been extended into multiple, more advanced, frameworks which are

able to answer more complex questions about population history through the generation of

population admixture graphs. In particular, qpAdm has been shown to be a flexible and

coverage-robust method of estimating individual and population level admixture fractions [44].

An attractive feature of F-statistics is that they explicitly test models of population history

and can provide readily interpretable results with associated jackknifed confidence intervals.

A related method is the so-called ABBA-BABA test, developed by Green et al (2010) [41] in

order to determine whether, and to what extent, admixture between humans and the newly

4Although related, they should not to be confused with Sewall Wright’s F-statistics [52].
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sequenced Neanderthal genome had occurred. This simple test counts the number of times

across the genome a 4 population phylogenetic tree shows a particular configuration at a

given locus in order to determine whether an admixture event has taken place.

In contrast to the F-statistics, which explicitly tests models of population relationships,

Principle Component Analysis (PCA) is a ‘model-free’ method typically used to obtain a

visual summary of the genetic ancestry of the sample being analysed. PCA is commonly used

as it is typically fast and easily interpretable. Several methods have been developed which

adapt the standard PCA approach (e.g. eigenstrat [45]) to low coverage ancient DNA [54–56].

I note that PCA may also be performed on matrices obtained from linked analysis, such as a

matrix of pairwise IBD sharing or ChromoPainter coancestry matrix.

Throughout my thesis, I will make extensive usage of both PCA and F-statistics on both

present-day and ancient human populations.

1.2.2 The use of ChromoPainter in ancient DNA studies

1.2.2.1 History

In recent years, many of the ‘low hanging fruits’ of broad-scale questions regarding the

ancient history of humans in Eurasia have mostly been answered and studies into more fine-

scale populations structures have become more prevalent. Accordingly, methods which can

detect more subtle population structure have been required. However, the incorporation of

ChromoPainter analysis into studies of ancient DNA was slow, in part because of the difficulty

of phasing low-coverage genomes and concerns over introducing bias towards present-day

populations during imputation.

ChromoPainter can be used to answer a variety of questions relating to the genetic

variation and population history of groups of samples. It can provide an overview of genetic

ancestry through Principle Component Analysis of the coancestry matrix. For instance,

differential haplotype donation to different worldwide populations, as shown in Fig 1.1, can

reveal geographic correlates of genetic variation.

The first use of ChromoPainter on ancient DNA was in the seminal paper of Lazaridis et al

(2014) [51]. Through the generation of two high-coverage ancient genomes, they were the first

to propose that most present-day Europeans can be modelled as a mixture of three ancestral

populations. For the ChromoPainter analysis, they did not impute missing genotypes in

the ancient samples, as the possible bias effects had yet to be studied; only positions with

non-missing genotypes were retained. As the samples were of high coverage, this was not
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Figure 1.1: Map of differential haplotype sharing with present-day populations between WC1
(Iranian Farmer) and Bar8 (Anatolian Farmer) from Broushaki et al (2016) [57]. Bar8
copies relatively more from red populations and WC1 from blue populations.

an issue, as 495,357 SNPs were kept. The ability of fineSTRUCTURE to meaningfully

cluster ancient individuals was confirmed by recapitulating previous results that identified

different present-day European populations as being more closely related to Early Farmers

and hunter-gatherers than others.

In-between 2014 and the present-day, there have been over 30 studies which have used

ChromoPainter on ancient samples (based on Web of Science search results). As of writ-

ing (September 2021), the study of Margaryan et al (2020) is the biggest so far to use

ChromoPainter, with over 400 samples used [58]. This study concluded that detecting

structure within the dataset using ‘traditional’ methods was not possible and so opted to

use haplotype-based analyses on all samples above 0.5x mean depth. Another recent large

study into the genomic history of the Roman Empire and surrounding regions leveraged

ChromoPainter [59].

More recently, ChromoPainter has been used to study aspects of archaic hominin ancestry

in present-day humans [60,61]. Whilst ChromoPainter is not specifically designed to accurately

estimate local ancestry, it is possible to identify potentially introgressed Denisovan regions of

DNA by determining whether a haplotype which is more similar to the Denisovan genome

than to a panel of sub-Saharan Africans. ChromoPainter has also been extended to studying
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the ancient DNA of non-human organisms such as bacteria [62].

1.2.2.2 Benchmarking ChromoPainter and imputation

Many studies which have used ChromoPainter on ancient samples have performed tests and

benchmarks to various degrees of detail.

The first study to investigate the reliability of ChromoPainter on ancient DNA was

Martiniano et al (2017) [48]. Testing whether including imputed genotypes introduced bias

towards particular present-day populations was key, as if it were the case, it may invalidate

any results obtained. The authors estimated potential bias by plotting normal quantile-

quantile plots of the copyvectors obtained from imputed (after downsampling to 2x coverage)

and non-imputed markers. Whilst the differences in amount of copying differed by up to 14%,

most percentage differences were substantially lower and there was no evidence of structured

bias towards or against particular geographic regions, with the authors concluding “There is

no strong evidence for systematic changes being caused by genotype imputation”.

The same study also investigated the impact of filtering genotypes based on genotype

probabilities by creating two datasets, one containing filtered genotypes and without, and

performing fineSTRUCTURE clustering on both. fineSTRUCTURE inferred 7 more clusters

when using filtered genotypes; whilst this could be an indication of improved clustering

resolution, it is hard to draw solid conclusions from these data. The overall number of

fineSTRUCTURE clusters can not be seen as a direct measurement of performance; for

example, the additional clusters inferred may simply be a result of the stochastic nature

of MCMC sampling, and given only a single replicate of each test was performed, it is

not possible to rule this out. Performing the same analysis on simulated data, where the

population labels of individuals are known in advance, would be a more controlled test.

Since the study of Martiniano et al, many papers which incorporated ChromoPainter

analysis into studies of ancient DNA have included their own set of benchmarks. Antonio

et al (2019) [59] tested imputation accuracy on an ancient sample (NE1) downsampled to

different levels of coverage. However, this analysis was only performed on a single sample

and the effect of imputation on the ChromoPainter process was not evaluated. Margaryan et

al (2020) performed a downsampling test on two high coverage genomes down to 1x mean

coverage and concluded that, whilst there was some suggestion that the 1x downsample

tended to a more mixed ancestry profile, there was no evidence that incorrect ancestries have

been inferred or that major changes in ancestries have occurred.

Imputation is a necessary pre-processing step for ChromoPainter analysis on low-medium
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coverage ancient DNA samples for two primary reasons. Firstly, ChromoPainter does not

allow for missing genotypes and so imputation is required to estimate missing genotypes.

Secondly, whilst they are covered by reads, non-missing positions may still be low in coverage

and thus require to be re-estimated, particularly when the true genotype is heterozygous.

Therefore, it is important to determine to what extent it is possible to accurately impute

genotypes at different levels of mean coverage.

The accuracy of imputation on ancient samples has been tested in various studies [48,63,64].

There is difficulty in comparing the estimated accuracies between studies, however, due to

differences in factors such as samples analyses, software used to call genotypes and impute

samples, the regions analysed and filters applied.

The most systematic and thorough evaluation of imputation in ancient genomes was

performed by Hui et al (2020) [63]. This study noted that it is possible to impute using

a one or two step approach and, through the use of downsampled genomes, showed that

the two-step approach provides more accurate imputed genotypes. This study also showed

that whilst most genotype likelihood callers (e.g. GATK, atlas) performed similarly well,

atlas was preferred because of it’s ability to model post-mortem damage (PMD) in ancient

samples. Accordingly, I will use atlas to call genotype likelihoods in the rest of my thesis.

It should be noted that the study only considered a single ancient genome (NE1) and

it is therefore unclear how generalisable these results are to ancient samples of different

ancestries. However, this study provided important benchmarks for many critical steps in

the analysis of low coverage samples which had previously been missing from the literature,

such as selection of a reference panel, the feasibility of local imputation and the effects of

applying of pre and post imputation filters. One takeaway message was that it is possible to

recover nine out of ten common (MAF ≥ 0.3) genotypes in a sample of 0.05x coverage.

In Chapter 2 of my thesis, I will explore the effect of coverage on imputation and

ChromoPainter performed on ancient DNA samples.

1.3 Issues and solution to low coverage data

Low sequencing coverage is an issue which has plagued the field of ancient DNA since its

inception. Compared to DNA obtained from present-day samples, ancient DNA samples

typically have a much lower proportion of endogenous DNA, as DNA degrades over time

from environmental factors. Therefore, when the DNA fragments are sequenced, relatively

few of them will align to the human reference.
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The primary issue with low-coverage data is the increased uncertainty when calling diploid

genotypes, particularly when the true genotype is heterozygous. Several methodological

adaptations have been applied to existing methods in order to adapt them to low coverage

ancient DNA. These approaches primarily attempt to circumvent making diploid genotype

calls; for example, the previously mentioned strategy of pseudo-haploid genotype calling.

Alternatively, methods may avoid making diploid calls by working on genotype likelihoods.

Genotype likelihoods represent a posterior estimate of the confidence of the three different

genotypes at a bi-allelic locus, and thus allow the method to appropriately propogate that

certainty throughout the analysis. A wide array of complex statistical approaches have

been developed in order to accurately estimate the posterior genotype likelihoods. These

approaches integrate factors such as sequencing-machine reported base-quality scores and

estimates of read-mapping / sequencing errors [65]. Common methods to estimate likelihoods

include the GATK model [66], SAMtools [67], SOAPsnp [68] and SYK model [69]. Genotype

likelihoods can either be estimated prior to the analysis from aligned reads (BAM files),

using software such as ANGSD [70], ATLAS [71] or GATK [66]. Other softwares will take

BAM files directly as input and estimate genotype likelihoods during the analysis process

(e.g. STITCH [72] and more recently QUILT [73]).

Once genotype likelihoods have been estimated, population level parameters such as

inbreeding coefficients and fst can be estimated directly [70] with greater accuracy than

direct genotype calls. Similarly, modifications of the ADMIXTURE [74] algorithm and PCA

have been developed in order to analyse low coverage samples more effectively [75,76]. Recent

advances have allowed the identification of 1st and 2nd-degree relatives from as low as 0.02x

coverage samples [77,78].

Several methods account for low-coverage data by jointly estimating ancient DNA spe-

cific confounding factors, such as contamination and post-mortem damage, alongside the

demographic parameter of interest [79]. For instance, Schraiber (2018) [80] developed a

novel maximum-likelihood approach which leverages information from different low-coverage

samples from within the same population to infer population-level parameters, such as genetic

continuity between ancient and modern populations.

Viera et al (2016) developed a method (ngsF-HMM) to infer matching identical-by-

descent (IBD) segments from low-coverage data [81]. To account for the uncertainty, all

three genotype likelihoods are integrated over in order to estimate whether or not a genomic

region is IBD given the likelihoods. This method showed that there is a substantial gain in

power when likelihoods are used compared to genotype calls.
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As mentioned in the previous paragraph, there are several other characteristics of ancient

DNA which should be accounted for when performing genetic analysis.

Present-day humans contaminating ancient genetic samples is of primary concern as it

non-trivial to distinguish between sequencing reads originating from the ancient sample and

e.g. present-day individuals performing laboratory analysis [82]. A failure to account for

such contamination may lead to underestimating the level of divergence between present-day

and ancient samples, as well as the introduction of spurious signals of admixture [41,83, 84].

In addition to the many precautions taken in the laboratory to reduce the risk of human

contamination, such as performing analysis in positive-pressure rooms and intensive irradiation

of equipment, several bioinformatics approaches have also been developed to estimate the

level of contamination in an ancient sample. For example, a recent method leveraged the

fact that contaminating sequences are found on different haplotypes to the genuine ancient

sequence and so can be detected through a reduction in local levels of linkage disequilibrium

relative to those found in a reference panel [85]. As contaminant sequences are more likely to

carry a derived allele [82], searching the genome for significant deviations from the expected

equilibrium percentage of dervied allele (0% at homozygous ancestral and 50% at heterozygous

sites) allows for the estimation of local contamination rates [41,86].

Another aspect of ancient DNA that must be considered is that of post-morterm degra-

dation (PMD). For example, DNA fragmentation (hydrolytic depurination resulting in

single-strand breaks) means nearly all ancient DNA fragments are between 40-500bp in

length [87,88]. The presence of substantially shorter DNA fragments increases the risk of

mis-aligning reads to the incorrect part of the genome [89].

Further, intermolecular cross-links can form between DNA strands [87] and miscoding

lesions, caused by hydrolytic deamination of nucleotides, may result in modifications that

cause nucleotides to be misread by DNA polymerases [90]. One consequence of this is that it

leads to an excess of spurious C->T substitutions after sequencing [87]. Failing to account

for such substitutions (usually termed cytosine deamination) may lead to downstream errors

in bioinformatic analyses. Therefore, methods have been developed in order to account for

cytosine deamination; for example, the atlas suite of tools which are specifically designed to

call variants in low-coverage ancient DNA samples [71]. atlas takes advantage of the fact

that cytosine deamination is more likely to occur at the beginning of a sequencing read to

model the extent of PMD using an exponential decay function (decaying exponentially with

respect to the position on the sequencing read). This provides a likelihood that a given

C->T substitution is a true mutation or the result of PMD. Integrating this model into

the variant-calling process resulted in a subsantially higher proportion of correctly called
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genotypes relative to an ancient DNA-naive method (GATK) [71].

In this thesis, I will attempt to mitigate any effects of low-coverage data on ChromoPainter

analysis by implementing an approach similar to that of Viera et al (2016), which modifies

the ChromoPainter algorithm to account for genotype likelihoods.

1.4 Combining data from multiple chips

An issue similar to that of low-coverage ancient DNA data stems from the development of a

large number of different genotyping arrays. Different cohorts are genotyped on different

arrays and sets of SNPs, as different SNPs have different characteristics, such as different

frequencies in different populations and associations with different phenotypes. Whilst

this has meant a wider variety of questions and populations can be studied, it also makes

combining data from across different arrays potentially troublesome, as they often have a

small overlap in the SNPs upon which they have been genotyped.

For example, in my thesis, I have worked with at least three genotyping arrays, referred

to here as ‘Human Origins’, ‘Hell Bus’ and the UK Biobank. Often I have wanted to compare

populations on different arrays, such as the African populations on the Human Origins array

and UK Biobank individuals on the UK Biobank array. After merging the datasets, the

overlap was small, only 70,000 SNPs. This is around an order of magnitude fewer SNPs than

are used in a typical ChromoPainter analysis. Having fewer SNPs may reduce power, as

there are fewer pieces of information, and less linkage between each neighbouring SNP.

One solution to the issue of a small number of SNPs would be to impute the remaining

SNPs using a reference panel and imputation algorithm such as Beagle [91]. However, it is

possible that imputation may cause a bias in the data. If missing genotypes are imputed

incorrectly more often from one population than another, this will result in an increased,

but spurious genetic similarity between the target and reference population. This may be a

particular issue when analysing populations which are not well represented in imputation

reference panels, such as non-Europeans. The nature and magnitude of this bias, however, is

yet to be fully understood, particularly in the context of ChromoPainter.

One consideration when combining data across multiple genotyping arrays is that of

ascertainment bias. Typically, SNPs are selected for genotyping arrays when are they are

common in one or more populations that are being analysed. Therefore, the positions that

overlap between arrays are more likely to be common in certain populations. In particular,

genotyping arrays often have positions which have been ascertained in European populations.
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For instance, when designing the ‘Human Origins’ genotyping array, Patterson et al [42]

performed a complex set of ascertainment steps to eliminate sources of bias. Therefore,

analysing non-European populations on combined arrays may result in a higher loss of power

for non-European populations. Accordingly, in Chapter 3, I will assess the potential loss of

power when analysing African population on a data combined from multiple arrays.

Therefore, this thesis will explore whether is it more desirable to impute the missing

positions or to use use a smaller number of overlapping SNPs. Accordingly, in chapter 3 of

this thesis, I will explore this question with a case study investigating African ancestry in

the UK Biobank dataset.

1.5 Summary of thesis aims

In this thesis I will explore the applicability of ChromoPainter to low-coverage ancient DNA

samples and sparsely genotyped data resulting from merged genotype arrays. To do this, I

will perform a series of tests on both real and simulated data from present-day and ancient

samples and apply my findings to two novel (unpublished) datasets of ancient samples from

Bavaria and Czechia.

Specifically, in Chapter 2, I will perform downsampling simulations on five high-coverage

ancient genomes to assess the impact of coverage on imputation, phasing and ChromoPainter

analysis, and determine the feasibility of extracting haplotype information from sparsely

genotyped data in practice. In Chapter 3, I will infer African ancestry across samples in

the U.K. Biobank dataset, using sparsely genotyped data resulting from the merge of two

different genotyping arrays. I will investigate the potential of using imputation to boost

power to infer fine-scale ancestry signatures in U.K. Biobank participants, in terms of how

closely related they are to individuals in reference data containing a large number of African

ethnolinguistic groups. In Chapter 4, I will analyse unpublished ancient genome data from

Bavaria, obtained by collaborators at Mainz University, exploring how genetic patterns varied

from the Neolithic to the Medieval Era in a small geographic region. In Chapter 5, I will

analyse unpublished ancient Slavic samples from Czechia, obtained by collaborators at Max

Planck Institute for Evolutionary Anthropology, to assess the genetic relationships between

Migration Era, Middle age and present-day Slavic-speaking peoples. Lastly, my concluding

chapter will summarise my work and key findings, including my recommendations for future

haplotype-based studies using low-coverage data and/or combining data from multiple SNP

arrays.



Chapter 2

ChromoPainter and ancient DNA

2.1 Introduction

This chapter is related to the use of ChromoPainter on low coverage ancient DNA samples.

First, I will describe the existing methodology, ChromoPainterV2, and then a new version

I have developed, ChromoPainterUncertainty, which is designed to mitigate bias related to

sequencing coverage.

Next I will perform benchmarking tests on all the steps necessary to analyse low-coverage

ancient DNA with ChromoPainter. This includes genotype calling and genotype likelihood

estimation with atlas [71], phasing and genotype imputation with GLIMPSE [92], Chro-

moPainter [19] analysis (copy-vector estimation and PCA) and SOURCEFIND ancestry

component estimation [21]. I will also describe some of the existing issues pertaining to low

coverage ancient DNA and several considered mitigation strategies. Finally, I will simulate,

using present-day samples, ancient samples with variable degrees of missing SNPs in order

to determine whether ancient samples of a particular coverage have enough typed SNPs to

retain haplotype information.

2.2 Methods

2.2.1 Description of the ChromoPainter algorithm

As discussed in the introduction, ChromoPainter is a method designed to estimate the amount

haplotype sharing between individuals [19]. In diploid organisms such as humans and dogs,

ignoring copy-number-variation, each autosomal region of an individual is represented by

two haplotypes. As input, ChromoPainter requires each individual’s data to be ‘phased’ into



2.2. Methods 28

these two haplotypes. Phasing refers to the process of determining which alleles along a

chromosome were inherited together from the same parent.

In ChromoPainter, sampled individuals are split into ‘donor’ and ‘recipient’ haplotypes. It

employs the widely-used Li and Stephens copying model [13] to model each recipient haplotype

as a mosaic of all haplotypes observed in the donor panel. Typically (and throughout this

thesis) an individual does not act as a donor to themself, e.g. one of the individual’s two

haplotypes can not act as a donor for the other haplotype. Unlike the original Li and Stephens

model, which uses the product of approximate conditionals (PAC) likelihoods, ChromoPainter

reconstructs each recipient haplotype as a mosaic of all other donor haplotypes. Here, the

term ‘copying’ can be though of as a genealogical process where haplotypes are reconstructed

using the genealogically closest haplotype in the donor set.

Suppose we have a particular recipient haplotype, h∗, which consists of a sequence of L

alleles denoted by {h∗1, ..., h∗L}, where h∗l is the observed allele at site l. We wish to paint

h∗ using j donor haplotypes, denoted by {h1, ..., hj}.

The copying model is implemented in the form of a Hidden Markov Model (HMM), with

the observed states being the alleles carried by the donor and recipient individuals, and the

hidden states being the ‘nearest-neighbour’ haplotype the recipient haplotype h∗ copies from.

Thus we can define a hidden-state sequence vector {Y1, ..., YL}, which corresponds to which

of the j donors h∗ copies from at a given site l. The emission probabilities are given as the

probability of h∗ carrying allele a at site l, given it copies from donor haplotype y and hyl

is the allele carried by donor haplotype y at site l. This probability is conditional upon

whether, h∗ and y both carry allele a at site l or not:

Pr(h∗l = a | Yl = y) =

1.0 − θ hyl = a;

θ hyl ̸= a.

(2.1)

where θ is the probability of a mutation occurring. The mutation probability θ can be

estimated using Watterson’s estimator [93], or estimated using an iterative EM algorithm.

The transition probabilities of the HMM, which are the probabilities of a change in

the donor being copied from when transitioning from one SNP to another, is guided by a

recombination rate map, with higher recombination rates leading to a higher probability of

transitioning. Switches between donors are interpreted as changes in ancestral relationships

due to historical recombination and modelled as a Poisson process.
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In ChromoPainterV2, the input genetic data comes in the form of phased genotype calls

(i.e. 1|0). ChromoPainterV2 produces several different output files. The two which most

used in this work are those appended with .chunklengths and .chunkcounts. These matrices

are also referred to as ‘coancestry matrices’. In the chunklengths matrix, cl, the entry cld,r

gives the total expected proportion of haplotype segments (defined as a contiguous set of

SNPs copied from a single donor) that recipient r copies from donor d. Thus, higher values

of cld,r indicate that recipient r and donor d share more recent ancestry. The .chunkcounts

matrix instead gives the total number of haplotype segments that recipient r copies from

donor d.

In this work, ‘copyvector’ is used to refer to the vector of chunklengths that a single recip-

ient individual copies from all donors, or a single row of the coancestry matrix. Throughout,

I often define donors as populations, so that each element of the copy vector is the total

amount of DNA that the recipient matches to all individuals from a given donor population.

2.2.1.1 Description of ChromoPainterV2Uncertainty

ChromoPainterUncertainty works in a very similar way to ChromoPainterV2, bar two

differences. Firstly, the input data is in the form of an allele probability 0 ≤ x ≤ 1, which is

given as the probability of observing the alternate allele at that SNP. This value is calculated

from the posterior likelihood that an allele has been imputed correctly. This is different to

ChromoPainterV2, which uses ‘hard’ allele calls that only take a value of 0 or 1.

Here, I will show how it is possible to incorporate the uncertainty in imputed genotype

calls into the ChromoPainter input. Consider the following example: we have a phased

genotype in the form 0|1, corresponding to the reference allele on the first haplotype and

the alternative allele at the second haplotype. I define G as the sum of the genotypes at a

SNP; in this case G = 0 + 1 = 1. As GLIMPSE, the imputation and phasing algorithm I will

use for this work, provides hard genotype calls, G can be calculated directly.

We also have a posterior genotype likelihood, in the form GL(p0, p1, p2), where pi is the

posterior probabilities that the true genotype is i. Genotype probability dosage, D, is the

expected total number of copies of the alternate allele given GL. D can be calculated as

p1 + [2 ∗ p2]. We can calculate U , the uncertainty as U = |G − D|. Then, we can assign a

probability to each allele; if the allele is 1 then the allele likelihood is simply 1 − U and if

the allele is 0 then the allele likelihood is 0 + U . Therefore, when there is no uncertainty

in the genotype call, the allele probability will be either 0 or 1. When there is uncertainty,

the allele probability will take a value 0 ≤ x ≤ 1, with more uncertain genotypes tending

towards allele probabilities of 0.5.
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The second difference is the incorporation of the allele probability into the emission

probability of the HMM. As before, consider a recipient h∗ whom we want to paint using

the set of donors {h1, ..., hj} . At a given SNP l, let h∗l be the probability that h∗ carries

the alternative allele, with hyl similarly being the probability that donor haplotype y carries

the alternate allele at position l. The probability of h∗ carrying allele a at site l, given it

copies from haplotype y is given as:

Pr(h∗l = a | Yl = y) = (1 − θ) · [a · hyl + (1 − a) · (1 − hyl)] +

θ · [a · (1 − hyl) + (1 − a) · hyl]
(2.2)

Note that equation 2.2 reduces to equation 2.1 if hyl = {0, 1} and if a = {0, 1}, i.e there

is no uncertainty in the calls.

A consideration of a different uncertainty metric, max(GP ), can be found in Appendix

section E.0.3.

2.2.2 Generation of downsampled genomes

I created a set of ‘downsampled’ ancient genomes in order to explicitly quantify the effect of

coverage on each stage of the ChromoPainter analysis. I took five high coverage genomes

and for each, removed a random subset of reads from the .bam file in order to reduce the

coverage to a target level. I then performed each stage of a typical ChromoPainter analysis,

e.g. mimicking the analyses of new ancient DNA samples I describe in chapters 4 and 5, on

the full coverage and downsampled genomes. I also processed a set of 918 ancient samples

from the literature, downloaded from the European Nucleotide Archive, in an identical way

to act as comparison samples (Section A.5).

Five high coverage ancient genomes were downloaded in the form of aligned .bam files

from the European Nucleotide Archive:

1. Yamnaya (25.2x) – Yamnaya Bronze Age steppe-pastoralist [94]

2. UstIshim (42x) – Siberian Upper Palaeolithic hunter-gatherer [95]

3. sf12 (72x) – Scandinavian Hunter-Gatherer [96]

4. LBK (19x)– early European farmer from the Linearbandkeramik culture from Stuttgart,

Germany [51]
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5. Loschbour (22x) – 8,000 year-old hunter-gatherer from Luxembourg) [51]

These samples were chosen due to their high original coverage (> 18x), and because they

represent some of the ancestries present in Western Eurasia over the past 40,000 years.

For each full coverage, downsampled and literature ancient .bam file was processed using

the atlas (version 1.0, commit f612f28) pipeline [71]

(https://bitbucket.org/wegmannlab/atlas/wiki/Home). First, the validity of each file

was assessed (i.e. ensuring that each .bam file was not malformed in any way) using

ValidateSamFile command from PicardTools [97]. atlas is a suite of software designed for

processing low-coverage ancient DNA and was chosen following the recommendation of Hui

et al (2020) [63], as it explicitly accounts for post-mortem damage (PMD) patterns in ancient

DNA. The most common form of PMD is C-deamination, which leads to a C->T transition

on the affected strand and a G–>A transition on the complimentary strand.

I then downsampled each full-coverage genome using the atlas downsample task, re-

sulting in a .bam file with coverages 0.1x, 0.5x, 0.8x, 1x, 2x, 3.5x, 5x, 10x and 20x per

individual.

Again, for each full coverage, downsampled and literature ancient .bam file, I estimated

post-mortem damage (PMD) patterns using the atlas estimatePMD task. Recalibration

parameters were then estimated using the atlas atlas recal task. Finally, both the recalibra-

tion and PMD parameters were given to the atlas callNEW task which produces genotype

calls and genotype likelihood estimates for each downsampled and full coverage .bam. For

this stage, I made calls at the 77,818,264 genome-wide positions present in the phase 3

thousand genomes project [98]. This was done to reduce the risk of calling false-positive (i.e.

falsely polymorphic) genotypes in the aDNA samples. No minimum read-depth filter was

applied when calling genotypes. This step resulted in a .vcf file for each of the samples. For

each of the 22 autosomes, I merged all samples together into a single .vcf file.

atlas does not make calls at positions in the genome where no reads have been aligned. If

multiple .vcf files are merged together, and at a given position in the genome, some samples

contain genotype calls and others do not, this position will be present but the genotype will

be set as missing ./. in the merged .vcf. Therefore, the merged .vcf contained positions

at all 77,818,264 positions, as across all X samples, at least one individual have a genotype

call at each position.

https://bitbucket.org/wegmannlab/atlas/wiki/Home
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Figure 2.1: Schematic showing the workflow used to generate downsampled ancient genomes.
Blue boxes represent the genetic data in different formats and red boxes represent
methods used to process data or convert between formats. Schematic shows a reduced
example of LBK being downmsapled to 3 different coverages. A high coverage .bam
file is downsampled used to generated genotype likelihoods in .vcf format using atlas
[71]. GLIMPSE is used to impute and phase the .vcf, producing posterior genotype
probabilities and phased genotypes. These are combined using a custom script to
generate ChromoPainter uncertainty output.

2.2.3 Generation of ancient literature samples

I also generated a set of ancient samples from the literature to use as donors in the Chro-

moPainter analysis.

This dataset consists of 918 other ancient samples from the literature given in Appendix

section A.1. These samples were of variable coverage, ranging from 0.002-72x coverage, and

chosen because of their previously reported relevance to understanding past ancestry patterns

in European populations like those analysed in chapters 4 and 5. These 918 consist of all

samples given in Table A.1 were processed in an identical way to the downsampled target

individuals described in the previous section, other than they were not downsampled.

2.2.4 Imputation and phasing - GLIMPSE

Genotype imputation and phasing are two important steps for processing low-coverage ancient

DNA. Low coverage (<1x) samples typically lack enough read information to make accurate

genotype calls at most positions in the genome, and often do not contain any reads at many

positions [99]. Therefore, it can be helpful to use external information from a high-coverage

reference panel in order to improve the accuracy of genotype calls and phasing, reducing the
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impact of errors on downstream analyses [92].

Three different characteristics are desirable for an imputation algorithm in this context.

Firstly, it should take genotype likelihoods as input. This is because genotype likelihoods

allow for flexible representation of the possible genotypes at a particular position, particularly

when there may not be enough coverage to make a hard genotype call. Secondly, it should

emit posterior genotype-probabilities which, when accurately calibrated, give the probability

that a particular genotype call is correct. This is necessary for estimating the uncertainty

values, described in section 2.2.1.1, needed for ChromoPainterUncertainty analysis. Thirdly,

the algorithm must be able to complete in a reasonable running time when using a large

number of samples and high number of SNPs. Using a large number of densely positioned

SNPs (e.g. such as the approximately 77 million identified in the 1000 Genomes Project)

increases the useful linkage-disequilibrium information between each SNP, and it is well-

established that increasing the number of individuals used in imputation/phasing reference

panels improves accuracy [25,92,100,101].

Two programs, Beagle 4.0 [102] and GLIMPSE [92] fulfil the first and second criteria

above, but GLIMPSE offers up to 1000x reduction in running time compared to Beagle

4.0 [92], and hence chose it for the imputation and phasing steps.

Phasing and imputation ideally requires a reference panel of high-coverage present-day

individuals. I used the 1000 Genomes Project dataset re-sequenced to 30x average coverage,

which contains 3202 individuals from 26 worldwide populations [103]. A description of the

processing of this reference dataset can be found in Appendix A.2. This reference dataset

contained 50,509,915 unique bi-allelic SNPs.

I merged together i) the full coverage individuals, ii) downsampled individuals and iii)

918 ancient samples from the literature into a single bcf file using bcftools (version 1.11-60-

g09dca3e) [104] to act as the samples for GLIMPSE to phase. Here, ‘target’ refers to the

individuals being imputed/phased and ‘reference’ refers to the reference panel.

Following the GLIMPSE tutorial (https://odelaneau.github.io/GLIMPSE/tutorial_

b38.html), I first used GLIMPSE_chunk to split up each chromosome into chunks, keeping both

–window-size and –buffer-size to 2,000,000 base pairs, which is their default settings.

I used the b37 genetic map supplied by GLIMPSE for the –map argument. Across all

chromosomes, this produced 936 chunks that are on average 2.99Mb long.

GLIMPSE then imputed each chunk separately, using GLIMPSE_phase using the same

1000 genomes dataset as a reference and default settings. This stage both imputes missing

https://odelaneau.github.io/GLIMPSE/tutorial_b38.html
https://odelaneau.github.io/GLIMPSE/tutorial_b38.html
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genotypes and generates a set of haplotype pairs which can be sampled from in a later step

to produce phased haplotypes. GLIMPSE_ligate then merges the imputed chunks back to

form single chromosomes using the default settings. I then used GLIMPSE_sample to produce

a .vcf with phased haplotypes sampled for each individual, again using default settings.

Consequently, the output of GLIMPSE is i) unphased genotype calls with posterior genotype

likelihoods and ii) phased haplotypes.

It is important to note that GLIMPSE leverages information from individuals that have

been imputed, ‘absorbing’ them into the reference panel. For example, if there were 100

target samples and 1000 reference samples, each target is phased in turn and then absorbed

into the reference panel, so that there would be 1001 reference samples when the second

target individual is imputed. This makes it necessary to avoid including the same sample,

downsampled to different coverages, in the same set of targets for one imputation run, in

order to avoid the confounding effect of allowing an individual to act as the reference to

itself. For example, including Loschbour at 0.1x and 10x coverage could mean it imputed

itself, a situation which would never occur in reality.

2.2.5 Estimating imputation sensitivity and specificity

I used rtg-tools-3.11 [105] and the vcfeval task to estimate the sensitivity and specificity of

imputation in the downsampled individuals. Here, ‘baseline’ (i.e. the truthset) is defined as

the genotype calls in the full coverage individual and the ‘calls’ as the genotype calls in the

downsampled individual. Sensitivity and precision are defined as:

sensitivity = Vcall − FP

Vcall
(2.3)

precision = Vbaseline − FN

Vbaseline
(2.4)

A ‘variant’ is considered to be a SNP with a genotype that is either 0/1 or 1/1, with

Vbaseline and Vcall the number of variants called in the full coverage and downsampled

genomes, respectively. False negatives (FN) are where a variant is called in the full coverage

genome but not in the downsampled genome. False positives (FP) are cases where a variant

is called in the downsampled genome but not in the full-coverage genome.

V , or true-positive, is the number of events where a variant position (i.e. a SNP with

a genotype that is either 0/1 or 1/1) is detected in either the full coverage (Vbaseline) or
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downsampled (Vbaseline) sample. FN is the number of times that a variant position is called

in the full coverage sample and not the downsampled sample. Conversely, FP is the number

of times a variant position is called in the downsampled sample and where the same SNP in

the full coverage sample is invariant (i.e. 0/0). Only genotypes called in the full coverage

and downsampled individuals were considered. No allele frequency filters were applied before

conducting this analysis.

2.2.6 ChromoPainter analysis

It is important to understand the effect of sequencing coverage on the accuracy of Chro-

moPainter copyvector estimation. A ‘copyvector’, cr, is a vector of length D, where each

entry gives the total length of genome that recipient individual r most closely matches to

each of the D donor individual/populations. I sometimes refer to ‘normalised’ copyvectors;

this simply refers to where each entry of cr is divided by the sum of all entries, scaling the

copyvector to sum to 1.

I painted each downsampled and full coverage ancient individual using a set of 124 ancient

individuals, hereafter referred to as the ‘standard set’, selected because they had a sequencing

depth greater than 2x. I compared the copyvectors for the same individual at each level

of downsampling, to the same individual at full coverage. For example, I compared the

copyvector of Yamnaya at 0.1x to the copyvector of the same Yamnaya sample at full coverage.

A high correspondence, measured by r-squared for example, between the copyvectors of the

full coverage and downsampled individual suggests less effect of coverage.

To prepare the data for ChromoPainter, I merged the .vcf containing the posterior

genotype likelihoods of i) downsampled, ii) full coverage and iii) 124 ancient samples from

the literature together, and did the same for the .vcfs containing the phased haplotypes.

I combined the posterior genotype likelihoods with the phased alleles to generate allele

likelihoods (described in section 2.2.1.1) in ChromoPainter-uncertainty format, in addition

to per-position recombination rate files. This was performed for each chromosome in turn

using my own script (https://github.com/sahwa/vcf_to_ChromoPainter).

I next used ChromoPainterUncertainty to perform the painting. I assigned the standard

set individuals as donors and all downsampled, full coverage and standard set as recipients.

The ‘standard set’ samples from the literature were included in order so that they can be

used a surrogates in later SOURCEFIND analysis.

I also performed an identical analysis, but using ChromoPainterV2 and hard genotype

calls.

https://github.com/sahwa/vcf_to_ChromoPainter
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This painting produced a chunklengths matrix for each chromosome which

were merged using chromocombine-0.0.4 (https://people.maths.bris.ac.uk/~madjl/

finestructure-old/chromocombine.html). The resulting chunklengths matrix thus gives

the total length of genome in centimorgans that a recipient most closely matches to each

donor individual.

2.2.7 ChromoPainter Principle Component Analysis

Principle Component Analysis (PCA) can be used to reduce the underlying structure

in the chunklengths coancestry matrix to two dimensions, thus allowing it to be more

easily visualised. As individuals cannot paint themselves, the diagonals of each coancestry

matrix contain zeros. Therefore, I performed PCA using the fineSTRUCTURE library

https://people.maths.bris.ac.uk/~madjl/finestructure/finestructureR.html.

All downsampled and full coverage individuals were projected onto the principle compo-

nents of the reference ancient samples.

2.2.8 SOURCEFIND

The chunklengths coancestry matrix produced by ChromoPainter contains information about

the estimated length of genome a recipient most closely matches a given donor individual

or population. However, incomplete lineage sorting, where alleles segregate in a way that

is discordant to the true phylogeny reflecting the orders in which populations split from

one another, means that there are regions in the genome where a recipient individual most

closely matches a reference individual that is not from their own population. For example,

an individual from France copies non-zero amounts from African donors, despite not having

any African ancestry through recent admixture. Furthermore, unequal donor population

sizes may bias the aggregated amount copied to a given population.

Therefore, to account for these issues when estimating ancestry proportions, it is necessary

to run an additional step, SOURCEFIND [21]. Simulations have shown that SOURCEFIND

ancestry proportions correspond well to simulated truth-set values [21]. The ancestry

proportions produced by SOURCEFIND should be interpreted as the proportion of ancestry

that each individual/population shares most recently with each surrogate. This need not

necessarily imply an admixture event; for instance, you might expect France to have

ancestry recently related to both Germany and Spain due to isolation-by-distance rather

than admixture.

SOURCEFIND models each target copyvector as a linear mixture of copyvectors from a

https://people.maths.bris.ac.uk/~madjl/finestructure-old/chromocombine.html
https://people.maths.bris.ac.uk/~madjl/finestructure-old/chromocombine.html
https://people.maths.bris.ac.uk/~madjl/finestructure/finestructureR.html
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set of surrogate groups, inferring the proportion of ancestry for which the target individual

is most recently related to each surrogate group. The parameter space of surrogate ancestry

proportions is explored using a Markov chain Monte Carlo algorithm, where the ancestry

proportions are updated using a Metropolis-Hastings step. The output of SOURCEFIND for

each target individual is therefore an n ∗ p matrix, where n is the number of MCMC samples

and p is the total number of surrogate groups.

To test for the effect of coverage on the proportions estimated by SOURCEFIND, I

performed two separate analyses, both using the downsampled and full coverage individuals as

targets. The first uses three surrogate populations (Yamnaya, Western Hunter-Gatherer and

Anatolia Neolithic Farmer), and the second uses an expanded list of 37 surrogate populations.

I chose the first set of three surrogates, as these are typically used in ancient DNA analysis

to obtain a ’broad’ overview of the ancestry of a European individual, as it has been shown

that central Europeans within the last 10,000 years can be well modelled as a mixture of

those three groups [51,106]. Note, this does not mean that there was not admixture from

other sources, but that a majority of ancestry of ancient central Europeans can be derived

from these sources. This stands to act as a relatively straightforward test case, since the

three populations are highly genetically differentiated from one another.

For all runs of SOURCEFIND, I used 1,000,000 iterations, of which 50,000 were designated

as burn-ins, and then samples were taken every 50 iterations. 2,000,000 iterations were

chosen because my previous tests show that is the minimum necessary to provide reasonably

confidence of convergence within reasonable running time (Appendix section E.0.1). The rest

of the parameters were left as default. Ancestry proportions and credible intervals group

were estimated using the CODA R library [107].

2.3 Pre-post GLIMPSE and linked/unlinked PCA test

I wanted to determine at what stage of the analysis pipeline low coverage samples (0.1x)

significantly diverge from the other downsamples when plotted on a PCA. I will hereafter

refer to this phenomenom as ‘coverage-related bias’. For instance, it may be that the

coverage-related bias is introduced in the imputation stage. Coverage-related bias can be

measured by calculating d =
√

(PC1f − PC1d)2 + (PC2f − PC2d)2, where (PC1f is the

PC1 value for the full coverage individual and (PC1d is the equivalent for the downsampled

individual. In other words, d measures the Cartesian distance between the full coverage and

downsampled individual on principle component space, with higher distances corresponding

to more coverage-related bias.
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To test this, I performed a set four PCAs on all downsampled and equivalent full coverage

samples and a set of present-day individuals shown in Table 2.1.

For both the ChromoPainter PCAs, in order to account for the zeros on the diagonals

of each coancestry matrix, I used the fineSTRUCTURE R library https://people.maths.

bris.ac.uk/~madjl/finestructure/finestructureR.html.

The four PCAs were as follows:

1. Pre-GLIMPSE Using the genotypes generated by atlas, but before imputation with

GLIMPSE, I projected all downsampled ancients of all coverages onto the present-day

populations using the eigenstrat library. [108].

2. Post-GLIMPSE Using the GLIMPSE generated imputed genotypes generated by

atlas, I projected all downsampled ancients of all coverages onto the present-day

populations using the eigenstrat library.

3. ChromoPainter - unlinked I performed an ‘all-v-all’ unlinked ChromoPainter

painting, using all populations in Table 2.1.

4. ChromoPainter - linked I performed an ‘all-v-all’ unlinked ChromoPainter painting,

using all populations in Table 2.1.

Coverage-related bias present in PCA (2) but not (1) indicates it has been introduced in

the imputation stage. Similarly, coverage-related bias present in (4) but not (3) suggests

that including linkage information introduces bias in low coverage samples.

2.4 Reducing SNP count

One way to mitigate coverage-related bias would be to exclude imputed SNPs which have

a low probability of being imputed correctly or restricting analysis to non-imputed SNPs

above a certain coverage.

However, reducing the total number and or density of SNPs used in a painting may

reduce the accuracy of the estimated copyvectors. All other things being equal, there is

less linkage information between two SNPs which are separated by a larger genetic distance.

Therefore, it is necessary to precisely determine what effect reducing the number of SNPs

has. In particular, we would like to know the minimum number and density of SNPs required

to retain the advantages of haplotype-based methods over unlinked methods.

https://people.maths.bris.ac.uk/~madjl/finestructure/finestructureR.html
https://people.maths.bris.ac.uk/~madjl/finestructure/finestructureR.html
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Population Number of
samples

HB:croatian 19
HB:cypriot 12
HB:french 28
HB:german 30
HB:germanyaustria 4
HB:greek 20
HB:hungarian 19
HB:irish 7
HB:lithuanian 10
HB:mordovian 15
HB:northitalian 12
HB:norwegian 18
HB:polish 17
HB:romanian 16
HB:scottish 6
HB:siciliane 10
HB:southitalian 18
HB:spanish 34
HB:tsi 98
HB:tuscan 8
HB:welsh 4
HB:westsicilian 10

Table 2.1: Population labels and sample sizes of populations included in the pre-post GLIMPSE
and linked/unlinked PCA test. All samples are from the Hellenthal and Busby dataset,
described in A.4.

Using data from the People of the British Isles (POBI) project, previous work showed

it is possible to distinguish between British individuals from neighbouring counties Devon

and Cornwall using the fineSTRUCTURE algorithm, but not using unlinked methods

(ADMIXTURE [109]) [31]. Therefore, determining whether it is possible to distinguish

between individuals from Devon and Cornwall acts as a good test case for reducing SNPs. In

particular I tested how many SNPs can we remove before we lose the ability to distinguish

between these two populations.

The original POBI dataset contains 2039 individuals from 33 populations from across

England, Northern Ireland, Wales and Scotland, genotyped at 452 592 SNPs. Details of the

data preparation for this dataset can be found in Appendix section A.4.

Using the shuf unix command, I randomly reduced the total number of SNPs down to

only the following percentages: 0.2%, 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, 20%, 30%,

40%, 50%, 60%, 70%, 80%, 90%. SNPs were removed from the .vcf files using bcftools

–view.

For each target level of reduced SNPs, I painted all individuals from Devon and Cornwall
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using a ‘leave-one-out’ approach. I then combined the resulting chunklengths matrices across

all chromosomes and combined copyvectors columns by donor group, so that each individual

was represented by a K-vector of values, with element k denoting the proportion of DNA

that person matched to any haploid in donor group k.

2.5 Direct imputation test

To explicitly test the effect of imputation on the copyvectors estimated by ChromoPainter,

I created a dataset which simulated a typical imputation scenario; imputing SNPs after

merging two datasets with a low SNP overlap. In particular I did this in a way to mimic a

real analysis on ancient samples of approximately 0.15 coverage (determined from empirical

data), which have approximately 70,000 SNPs out of 500,000 covered by at least a single

read.

I took the Human Origins dataset (described in Appendix section A.3), containing 560,240

bi-allelic SNPs and submitted the reduced dataset to the Sanger Imputation Service (https://

www.sanger.ac.uk/tool/sanger-imputation-service/). The Sanger Imputation Service

uses Eagle2 [110] and the Haplotype Reference Consortium as a reference to impute missing

variants. Once the data had been imputed, I subsetted the data back to the original set

of 560,240 SNPs. I therefore had a dataset which contained 70,000 non-imputed SNPs

and 490,240 imputed SNPs. This is hereafter referred to as the ‘imputed dataset’. 70,000

non-imputed SNPs was chosen because that is the number of SNPs which overlap between

two datasets in Chapter 3 and thus represents a realistic case-study.

For both the imputed dataset and original Human Origins dataset, I performed an

all-v-all painting and combined data across chromosomes. An ‘all-v-all’ painting is where

each individual is painted in turn by all other individuals, resulting in an n-by-n coancestry

matrix, where n is the number of individuals analysed.

2.6 Results

2.6.1 Imputation accuracy

To estimate how accurately GLIMPSE imputes genotypes in ancient samples of differing

coverages, I estimated the sensitivity (Fig. 2.2) and precision (Fig. 2.3) of genotype

imputation using rtg-tools [105]. This approach compares genotype calls at each position

in each downsampled individual after imputation to the same individual at full coverage

without imputation.

https://www.sanger.ac.uk/tool/sanger-imputation-service/
https://www.sanger.ac.uk/tool/sanger-imputation-service/
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Figure 2.2: Sensitivity of genotype calling at different coverages for different ancient individuals,
assuming calls in the full coverage genome are correct, calculated using rtg-tools.

stage total transitions transversions t/v ratio
atlas 77,876,460 52,693,235 25,183,225 2.09
Post-imputation 77,815,634 52,655,160 25,160,474 2.09
ChromoPainter 430,088 351,087 79,000 4.44

Table 2.2: Number of SNPs retained at different steps of the analysis pipeline. t/v ratio is the
ratio of transitions to transversions.
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Figure 2.3: Precision of genotype calling at different coverages for different ancient individuals,
assuming calls in the full coverage genome are correct, calculated using rtg-tools.

Ind Coverage Type total hom_ref hom_alt het missing

LBK 0.1 atlas 7,863,659 7,588,206 261,066 14,387 70,012,596

LBK 0.1 chromopainter 174,772 82,535 35,669 56,568 255,315

LBK 0.1 glimpse 31,789,601 30,462,480 518,406 808,715 46,026,033

LBK 0.5 atlas 31,594,229 30,407,259 969,621 217,349 46,281,316

LBK 0.5 chromopainter 396,582 183,341 82,675 130,566 33,505

LBK 0.5 glimpse 71,596,325 68,472,726 1,223,743 1,899,856 6,219,309

LBK 0.7 atlas 41,843,708 40,197,199 1,231,550 414,959 36,031,516

LBK 0.7 chromopainter 420,309 193,890 88,078 138,341 9,778

LBK 0.7 glimpse 75,872,626 72,532,663 1,306,213 2,033,750 1,943,008

LBK 1.0 atlas 49,687,572 47,648,221 1,401,883 637,468 28,187,240

LBK 1.0 chromopainter 427,072 196,857 89,918 140,297 3,015

LBK 1.0 glimpse 77,152,471 73,739,162 1,334,040 2,079,269 663,163
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LBK 2.0 atlas 66,701,209 63,534,792 1,619,653 1,546,764 11,172,575

LBK 2.0 chromopainter 430,050 197,939 91,166 140,945 37

LBK 2.0 glimpse 77,778,825 74,307,718 1,346,120 2,124,987 36,809

LBK 3.5 atlas 74,554,206 70,453,001 1,534,742 2,566,463 3,318,536

LBK 3.5 chromopainter 430,087 197,854 91,454 140,779 0

LBK 3.5 glimpse 77,806,040 74,318,824 1,339,785 2,147,431 9,594

LBK 5.0 atlas 76,607,872 72,092,675 1,425,203 3,089,994 1,264,050

LBK 5.0 chromopainter 430,087 197,758 91,555 140,774 0

LBK 5.0 glimpse 77,810,787 74,319,369 1,334,420 2,156,998 4,847

LBK 10.0 atlas 77,581,890 73,218,587 1,303,557 3,059,746 288,413

LBK 10.0 chromopainter 430,087 197,767 91,671 140,649 0

LBK 10.0 glimpse 77,814,052 74,329,568 1,323,705 2,160,779 1,582

LBK 20.0 atlas 77,694,833 73,820,576 1,290,921 2,583,336 174,119

LBK 20.0 chromopainter 430,087 197,818 91,731 140,538 0

LBK 20.0 glimpse 77,815,338 74,343,714 1,316,235 2,155,389 296

Loschbour 0.1 atlas 7,628,084 7,370,184 245,862 12,038 70,245,058

Loschbour 0.1 chromopainter 174,772 86,532 38,706 49,534 255,315

Loschbour 0.1 glimpse 31,789,601 30,519,105 565,276 705,220 46,026,033

Loschbour 0.5 atlas 30,780,528 29,712,532 916,081 151,915 47,081,605

Loschbour 0.5 chromopainter 396,582 195,412 93,591 107,579 33,505

Loschbour 0.5 glimpse 71,596,325 68,667,343 1,373,792 1,555,190 6,219,309

Loschbour 0.7 atlas 40,883,211 39,425,706 1,175,631 281,874 36,973,485

Loschbour 0.7 chromopainter 420,309 207,169 99,953 113,187 9,778

Loschbour 0.7 glimpse 75,872,626 72,748,733 1,472,121 1,651,772 1,943,008

Loschbour 1.0 atlas 48,650,549 46,860,231 1,358,909 431,409 29,201,103

Loschbour 1.0 chromopainter 427,072 210,281 102,198 114,593 3,015

Loschbour 1.0 glimpse 77,152,471 73,963,816 1,507,099 1,681,556 663,163

Loschbour 2.0 atlas 65,853,923 63,144,388 1,658,474 1,051,061 11,983,909

Loschbour 2.0 chromopainter 430,050 211,678 104,100 114,272 37

Loschbour 2.0 glimpse 77,778,825 74,544,266 1,527,789 1,706,770 36,809

Loschbour 3.5 atlas 74,181,557 70,747,172 1,658,730 1,775,655 3,645,307

Loschbour 3.5 chromopainter 430,087 211,655 104,673 113,759 0

Loschbour 3.5 glimpse 77,806,040 74,562,077 1,524,547 1,719,416 9,594

Loschbour 5.0 atlas 76,517,579 72,731,738 1,588,393 2,197,448 1,304,225

Loschbour 5.0 chromopainter 430,087 211,636 104,949 113,502 0

Loschbour 5.0 glimpse 77,810,787 74,564,499 1,518,703 1,727,585 4,847

Loschbour 10.0 atlas 77,674,711 73,807,087 1,481,465 2,386,159 142,717

Loschbour 10.0 chromopainter 430,087 211,630 105,182 113,275 0

Loschbour 10.0 glimpse 77,814,052 74,563,530 1,508,188 1,742,334 1,582

Loschbour 20.0 atlas 77,768,448 74,340,455 1,469,135 1,958,858 48,221

Loschbour 20.0 chromopainter 430,087 211,706 105,332 113,049 0

Loschbour 20.0 glimpse 77,815,338 74,581,352 1,497,789 1,736,197 296

sf12 0.1 atlas 7,587,373 7,336,322 236,147 14,904 70,288,793

sf12 0.1 chromopainter 174,772 84,128 34,002 56,642 255,315
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sf12 0.1 glimpse 31,789,601 30,484,260 487,734 817,607 46,026,033

sf12 0.5 atlas 30,688,125 29,606,869 898,622 182,634 47,186,835

sf12 0.5 chromopainter 396,582 189,406 81,260 125,916 33,505

sf12 0.5 glimpse 71,596,325 68,564,219 1,166,608 1,865,498 6,219,309

sf12 0.8 atlas 40,808,399 39,317,115 1,151,362 339,922 37,065,944

sf12 0.8 chromopainter 420,309 200,429 87,984 131,896 9,778

sf12 0.8 glimpse 75,872,626 72,625,472 1,257,618 1,989,536 1,943,008

sf12 1.0 atlas 48,588,367 46,748,059 1,324,815 515,493 29,285,496

sf12 1.0 chromopainter 427,072 203,684 90,629 132,759 3,015

sf12 1.0 glimpse 77,152,471 73,829,354 1,293,711 2,029,406 663,163

sf12 2.0 atlas 65,862,294 63,043,247 1,581,552 1,237,495 12,009,874

sf12 2.0 chromopainter 430,050 204,670 93,985 131,395 37

sf12 2.0 glimpse 77,778,825 74,373,518 1,323,114 2,082,193 36,809

sf12 3.5 atlas 74,228,518 70,594,011 1,544,188 2,090,319 3,642,111

sf12 3.5 chromopainter 430,087 204,353 95,572 130,162 0

sf12 3.5 glimpse 77,806,040 74,350,373 1,325,545 2,130,122 9,594

sf12 5.0 atlas 76,539,118 72,461,162 1,449,890 2,628,066 1,330,339

sf12 5.0 chromopainter 430,087 204,286 96,166 129,635 0

sf12 5.0 glimpse 77,810,787 74,331,202 1,321,586 2,157,999 4,847

sf12 10.0 atlas 77,660,653 73,356,950 1,308,470 2,995,233 206,644

sf12 10.0 chromopainter 430,087 204,392 97,098 128,597 0

sf12 10.0 glimpse 77,814,052 74,368,059 1,317,620 2,128,373 1,582

sf12 20.0 atlas 77,758,773 73,930,624 1,278,517 2,549,632 106,192

sf12 20.0 chromopainter 430,087 204,693 97,630 127,764 0

sf12 20.0 glimpse 77,815,338 74,415,488 1,310,559 2,089,291 296

UstIshim 0.1 atlas 7,786,181 7,432,667 329,609 23,905 70,086,937

UstIshim 0.1 chromopainter 174,772 80,029 33,344 61,399 255,315

UstIshim 0.1 glimpse 31,789,601 30,347,768 482,910 958,923 46,026,033

UstIshim 0.5 atlas 31,488,887 30,337,316 958,513 193,058 46,372,621

UstIshim 0.5 chromopainter 396,582 180,030 81,103 135,449 33,505

UstIshim 0.5 glimpse 71,596,325 68,324,000 1,182,070 2,090,255 6,219,309

UstIshim 0.8 atlas 41,850,784 40,269,671 1,218,249 362,864 36,004,942

UstIshim 0.8 chromopainter 420,309 190,363 86,981 142,965 9,778

UstIshim 0.8 glimpse 75,872,626 72,373,517 1,270,046 2,229,063 1,943,008

UstIshim 1.0 atlas 49,768,765 47,831,665 1,388,385 548,715 28,081,614

UstIshim 1.0 chromopainter 427,072 193,316 89,121 144,635 3,015

UstIshim 1.0 glimpse 77,152,471 73,597,414 1,303,425 2,251,632 663,163

UstIshim 2.0 atlas 67,062,432 64,120,181 1,614,975 1,327,276 10,773,728

UstIshim 2.0 chromopainter 430,050 194,399 91,175 144,476 37

UstIshim 2.0 glimpse 77,778,825 74,181,418 1,322,097 2,275,310 36,809

UstIshim 3.5 atlas 74,919,994 71,129,843 1,524,122 2,266,029 2,905,623

UstIshim 3.5 chromopainter 430,087 194,227 91,973 143,887 0

UstIshim 3.5 glimpse 77,806,040 74,206,978 1,316,655 2,282,407 9,594

UstIshim 5.0 atlas 76,888,994 72,621,237 1,403,149 2,864,608 931,764
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UstIshim 5.0 chromopainter 430,087 194,165 92,403 143,519 0

UstIshim 5.0 glimpse 77,810,787 74,211,695 1,308,177 2,290,915 4,847

UstIshim 10.0 atlas 77,723,502 73,311,539 1,260,452 3,151,511 93,822

UstIshim 10.0 chromopainter 430,087 194,059 92,805 143,223 0

UstIshim 10.0 glimpse 77,814,052 74,198,170 1,291,089 2,324,793 1,582

UstIshim 20.0 atlas 77,782,585 73,919,501 1,244,171 2,618,913 34,154

UstIshim 20.0 chromopainter 430,087 194,223 93,081 142,783 0

UstIshim 20.0 glimpse 77,815,338 74,244,692 1,275,230 2,295,416 296

Yamnaya 0.1 atlas 8,165,424 7,837,096 310,333 17,995 69,707,971

Yamnaya 0.1 chromopainter 174,772 82,050 36,011 56,711 255,315

Yamnaya 0.1 glimpse 31,789,601 30,437,553 540,479 811,569 46,026,033

Yamnaya 0.5 atlas 32,588,629 31,348,275 1,007,256 233,098 45,273,342

Yamnaya 0.5 chromopainter 396,582 183,027 83,207 130,348 33,505

Yamnaya 0.5 glimpse 71,596,325 68,452,137 1,270,312 1,873,876 6,219,309

Yamnaya 0.8 atlas 42,932,013 41,218,304 1,265,634 448,075 34,924,034

Yamnaya 0.8 chromopainter 420,309 193,465 88,637 138,207 9,778

Yamnaya 0.8 glimpse 75,872,626 72,514,711 1,359,849 1,998,066 1,943,008

Yamnaya 1.0 atlas 50,685,590 48,564,638 1,428,476 692,476 27,165,519

Yamnaya 1.0 chromopainter 427,072 196,530 90,041 140,501 3,015

Yamnaya 1.0 glimpse 77,152,471 73,722,704 1,389,219 2,040,548 663,163

Yamnaya 2.0 atlas 66,872,411 63,571,601 1,622,362 1,678,448 10,964,758

Yamnaya 2.0 chromopainter 430,050 197,631 90,666 141,753 37

Yamnaya 2.0 glimpse 77,778,825 74,301,224 1,409,000 2,068,601 36,809

Yamnaya 3.5 atlas 73,859,932 69,713,521 1,532,552 2,613,859 3,966,618

Yamnaya 3.5 chromopainter 430,087 197,605 90,706 141,776 0

Yamnaya 3.5 glimpse 77,806,040 74,324,453 1,410,929 2,070,658 9,594

Yamnaya 5.0 atlas 75,688,825 71,333,069 1,446,906 2,908,850 2,133,156

Yamnaya 5.0 chromopainter 430,087 197,508 90,698 141,881 0

Yamnaya 5.0 glimpse 77,810,787 74,327,884 1,410,512 2,072,391 4,847

Yamnaya 10.0 atlas 76,836,943 72,953,272 1,372,488 2,511,183 981,054

Yamnaya 10.0 chromopainter 430,087 197,539 90,708 141,840 0

Yamnaya 10.0 glimpse 77,814,052 74,334,567 1,409,677 2,069,808 1,582

Yamnaya 20.0 atlas 77,210,145 73,701,551 1,373,349 2,135,245 606,580

Yamnaya 20.0 chromopainter 430,087 197,565 90,739 141,783 0

Yamnaya 20.0 glimpse 77,815,338 74,343,330 1,409,070 2,062,938 296

Table 2.3: Number and type of variants passing different steps of the analysis pipeline for different
downsamples at different coverages. ‘atlas’ refers to after variant calling with atlas,
‘glimpse‘ to after imputation with GLIMPSE and ‘chromopainter’ to ChromoPainter
analysis.

As expected, both the overall sensitivity and precision of imputation fell with coverage,

with a particularly sharp drop-off in both metrics between 0.5x and 0.1x coverage. Whilst I

did not investigate this, other studies have shown the probability of any one SNP in an sample
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being correctly imputed depends strongly on the frequency in the reference panel [63, 92]. In

particular, alleles which are rare in the reference panel are less likely to be imputed correctly.

Different downsampled individuals varied in the precision and sensitivity of genotype

imputation. At all coverages, Yamnaya had the both the highest sensitivity and precision.

This may be because the imputation reference panel contains a high proportion of present-day

Europeans, who have a relatively higher proportion of recent Yamnaya-like ancestry relative

to e.g. Hunter Gatherer-like ancestry [111]. Many studies in present-day individuals have

shown that imputation accuracy increases when more haplotypes which are close to the target

individual are found in the reference panel [25,100]. On the other hand, the sample Ust’Ishim

is known to have contributed very little genetic ancestry to present-day populations [112]

and may therefore have fewer closely matching haplotypes in the reference panel, and a

correspondingly lower imputation accuracy.

Imputation accuracy may also be related to demographic history. Populations which

are known to have smaller effective population size, such as Western-Hunter Gathers, also

contain longer tracts between individuals which are identical by descent (IBD) [113] and fewer

heterozygous positions. As imputation relies on matching IBD tracts between individuals,

imputation accuracy increases where individuals share more IBD [114]. However, this would

not be the case in this analysis as there are not hunter-gatherers in the reference panel for

target hunter-gatherers to share IBD with. Additionally, switch-errors during the pre-phasing

step of imputation may harm imputation accuracy, so a reduced density of heterozygous

positions may result in increased accuracy.

Ind Coverage Type Precision Sensitivity

LBK 0.1 heterozygous 0.9687 0.4315

LBK 0.1 homozygous 0.9957 0.9074

LBK 0.5 heterozygous 0.9759 0.4688

LBK 0.5 homozygous 0.9974 0.9659

LBK 0.7 heterozygous 0.9764 0.4736

LBK 0.7 homozygous 0.9981 0.9721

LBK 1 heterozygous 0.9763 0.4760

LBK 1 homozygous 0.9985 0.9754

LBK 10 heterozygous 0.9866 0.4919

LBK 10 homozygous 1.0000 0.9924

LBK 2 heterozygous 0.9789 0.4813

LBK 2 homozygous 0.9995 0.9819

LBK 3.5 heterozygous 0.9813 0.4852

LBK 3.5 homozygous 0.9999 0.9863

LBK 5 heterozygous 0.9838 0.4875
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(continued)

Ind Coverage Type Precision Sensitivity

LBK 5 homozygous 1.0000 0.9887

Loschbour 0.1 heterozygous 0.9541 0.4420

Loschbour 0.1 homozygous 0.9962 0.9142

Loschbour 0.5 heterozygous 0.9759 0.4730

Loschbour 0.5 homozygous 0.9979 0.9627

Loschbour 0.7 heterozygous 0.9773 0.4769

Loschbour 0.7 homozygous 0.9984 0.9688

Loschbour 1 heterozygous 0.9791 0.4794

Loschbour 1 homozygous 0.9988 0.9721

Loschbour 10 heterozygous 0.9885 0.4946

Loschbour 10 homozygous 1.0000 0.9915

Loschbour 2 heterozygous 0.9826 0.4842

Loschbour 2 homozygous 0.9996 0.9795

Loschbour 20 heterozygous 0.9995 0.4988

Loschbour 20 homozygous 1.0000 0.9947

Loschbour 3.5 heterozygous 0.9850 0.4883

Loschbour 3.5 homozygous 0.9999 0.9843

Loschbour 5 heterozygous 0.9884 0.4906

Loschbour 5 homozygous 1.0000 0.9873

sf12 0.1 heterozygous 0.9606 0.4356

sf12 0.1 homozygous 0.9973 0.9011

sf12 0.5 heterozygous 0.9795 0.4713

sf12 0.5 homozygous 0.9989 0.9444

sf12 0.8 heterozygous 0.9788 0.4752

sf12 0.8 homozygous 0.9992 0.9521

sf12 1 heterozygous 0.9775 0.4772

sf12 1 homozygous 0.9993 0.9570

sf12 10 heterozygous 0.9693 0.4915

sf12 10 homozygous 1.0000 0.9877

sf12 2 heterozygous 0.9688 0.4823

sf12 2 homozygous 0.9997 0.9695

sf12 20 heterozygous 0.9798 0.4932

sf12 20 homozygous 1.0000 0.9936

sf12 3.5 heterozygous 0.9577 0.4861

sf12 3.5 homozygous 0.9998 0.9785

sf12 5 heterozygous 0.9547 0.4880

sf12 5 homozygous 0.9999 0.9831

UstIshim 0.1 heterozygous 0.9267 0.4308

UstIshim 0.1 homozygous 0.9935 0.8879

UstIshim 0.5 heterozygous 0.9650 0.4750

UstIshim 0.5 homozygous 0.9964 0.9505
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(continued)

Ind Coverage Type Precision Sensitivity

UstIshim 0.8 heterozygous 0.9655 0.4794

UstIshim 0.8 homozygous 0.9970 0.9589

UstIshim 1 heterozygous 0.9686 0.4817

UstIshim 1 homozygous 0.9977 0.9634

UstIshim 10 heterozygous 0.9733 0.4933

UstIshim 10 homozygous 1.0000 0.9891

UstIshim 2 heterozygous 0.9719 0.4861

UstIshim 2 homozygous 0.9990 0.9731

UstIshim 20 heterozygous 0.9859 0.4960

UstIshim 20 homozygous 1.0000 0.9935

UstIshim 3.5 heterozygous 0.9774 0.4888

UstIshim 3.5 homozygous 0.9996 0.9792

UstIshim 5 heterozygous 0.9802 0.4906

UstIshim 5 homozygous 0.9999 0.9831

Yamnaya 0.1 heterozygous 0.9662 0.4471

Yamnaya 0.1 homozygous 0.9990 0.9358

Yamnaya 0.5 heterozygous 0.9785 0.4830

Yamnaya 0.5 homozygous 0.9994 0.9857

Yamnaya 0.8 heterozygous 0.9803 0.4868

Yamnaya 0.8 homozygous 0.9995 0.9896

Yamnaya 1 heterozygous 0.9792 0.4886

Yamnaya 1 homozygous 0.9996 0.9912

Yamnaya 10 heterozygous 0.9935 0.5097

Yamnaya 10 homozygous 1.0000 0.9974

Yamnaya 2 heterozygous 0.9781 0.4923

Yamnaya 2 homozygous 0.9998 0.9939

Yamnaya 20 heterozygous 0.9976 0.5356

Yamnaya 20 homozygous 1.0000 0.9981

Yamnaya 3.5 heterozygous 0.9829 0.4969

Yamnaya 3.5 homozygous 0.9999 0.9956

Yamnaya 5 heterozygous 0.9851 0.5027

Yamnaya 5 homozygous 0.9999 0.9963

Table 2.4: Sensitivity and precision of imputed genotypes stratified by sample, coverage and variant
type.

2.6.2 Phasing accuracy

I also used rtg-tools to calculate the number of phased heterozygous genotypes where the

downsampled individual has the same phase as the full coverage individual (Fig 2.4). I

note that this should not be considered to be the same as estimating the switch error rate,
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since we do not know that the phasing in the full-coverage individual is the true phase.

However, this can be used as a rough proxy for switch- errors, since it is known that phasing

in lower coverage individuals is likely to be less accurate than those in the high coverage

individuals [92].

Switch-errors may break up haplotypes and thus will spuriously increase the number of

donor individuals for stretches of DNA that would otherwise have a single nearest neighbor.

Phase agreement with the full-coverage sample increased with increasing coverage. Such

results are difficult to interpret because each sample has a different level of heterozygosity.

However, Lawson and Falush showed that sporadic, randomly distributed switch-errors do

not seriously harm the performance of ChromoPainter. However, non-randomly distributed

switch-errors may lead to certain samples appearing more similar to one another than they

truly are [40].

2.6.3 Validating posterior probability calibration

GLIMPSE estimates genotype probabilities at each SNP within each individual, giving the

posterior probability that a given genotype within a single individual is correctly called.

I assessed how well-calibrated these probabilities are in the Yamnaya 0.1x downsampled

individual, using the maximum genotype likelihood at each of the approximately 77 million

positions which were processed by GLIMPSE. A high max(GL) for a particular genotype

(i.e. 0.99) corresponds to a high confidence in the genotype. Alternatively a flat max(GL)

(i.e. 0.33) corresponds to no information about the genotype.

I split the genome into 10,000 equally-sized bins according to max(GL). For each bin,

I calculated both the proportion of SNPs which were correctly imputed (i.e. that matched

the same high coverage individual) and the mean max(GL) (Fig. 2.5). If the genotype

probabilities are well calibrated, we would expect to see a clear positive linear relationship

between max(GL) probability and the probability that genotype matches the full-coverage

sample.

The probabilities are well calibrated (r-squared = 0.981) and could therefore be useful

for downstream analysis. It should be noted that they are slightly conservative, in that a

majority of the points in Fig. 2.5 are above the line of equality. For example, the mean

proportion of correct genotypes within all bins where 0.73 < max(GL) < 0.76 was 82%. I

performed the same analysis using different samples at different levels of coverage and the

results were qualitatively similar (Supplementary Figure. D.1).
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Figure 2.4: Percentage of phased genotypes which agree with the same full-coverage sample for each
individual and each level of downsampling. Genotypes with phase deemed unresolvable
by rtg-tools were excluded from the calculations. Note that these numbers are given
as incorrect / (incorrect + correct - unresolved) and so values are in part driven by
the relative heterozygosity of each sample.
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Figure 2.5: Relationship between genotype likelihood and probability of genotype call being correct
for Yamnaya downsampled to 0.1x coverage. Genome binned by maximum posterior
genotype likelihood and mean maximum posterior genotype likelihood (x-axis) and
proportion of correct calls calculated per bin (y-axis). Rugs on each margin show the
distribution of x and y values. Black line is y = x.
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2.6.4 ChromoPainter analysis

To assess the impact of coverage on ChromoPainter analysis, I merged the dataset of

downsampled individuals with the ‘standard set’ of ancient reference individuals (124 ancient

samples > 2X coverage) and performed an ‘all-v-all’ painting of the merged dataset, which

separately paints each individual as a recipient using all other individuals in the dataset as

donors. The ‘all-v-all’ painting was necessary to paint the 124 ‘standard set’ of individuals

against one another so that they can act as surrogates in later SOURCEFIND analysis.

I was interested to see whether a downsampled individual and full coverage had similar

copyvectors, or in other words, whether they matched similar amounts to the same donor

individuals. To do this, I estimated TV D between the copyvectors of the full coverage and

downsampled individuals. TV D is a distance metric which gives a measure of dissimilarity

between two copyvectors.

Fig. 2.6 displays the relationship between copyvectors for each downsampled individual

and the corresponding full coverage individual for both 0.1x and 0.5x coverage. Each

individuals’ copyvectors were estimated using the same set of ancient samples as donors.

As expected, the TVD between the full-coverage and downsampled copyvectors decreased

with coverage. The 0.1x genome had a substantially increased TVD, similar to the much

reduced imputation accuracy. For each of the genomes downsampled to 0.1x, a particular

difference to the 0.5x downsampled genomes is that the lowest contributing donors contribute

more to the 0.1x downsampled genome than to the full coverage genome and that the highest

contributing donors contribute less to the 0.1x genome than they do the full coverage genome.

Put in other words, the copyvectors at 0.1x are tending towards becoming more ‘flat’, or

copying the same amount from each donor individual.

This can also be seen as ‘regressing to the prior’. In this case, the prior is copying an

equal amount to each donor individual. This can be visualised explicitly by calculating TVD

between each downsampled genome and a flat prior, a vector of length D, where D is the

total number of donor individuals and each element of D is equal to 1 / D (Fig. 2.7). This

clearly shows the reduced TVD to the flat copyvector for the 0.1x individual relative to

other coverages. In later sections, I will discuss whether this is ‘noise’ or ‘bias’ induced by

imputation, i.e. whether copying is regressing to the prior in a similar manner for all samples.

I also considered the effect of coverage on the copyvectors estimated when using present-

day individuals from the 1000 genomes project as donors (Fig. 2.8). Painting ancient samples

using present-day donors is often useful, particularly with more recent ancient samples, as
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Figure 2.6: For five different samples (columns), the proportion of DNA that each downsampled
(y-axis) or full coverage (x-axis) genome matches to each of 125 ancient individuals
(dots). Results are shown for 0.1x (top row) and 0.5x (bottom row) downsampled
genomes. Points coloured by manual assignment to broad-scale populations. Red line
is line of equality (y = x). x and y units are normalised copying values and thus
removed for clarity.
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Figure 2.7: TVD (metric of copyvector dissimilarity between two individuals) between each down-
sampled ancient individual and a flat copyvector. Flat copyvector equivalent to a
vector of length N where each element = 1/N .

there may not be enough relevant ancient samples to paint the ancients with. I merged

the downsampled and full coverage ancient individuals with the thousand genomes dataset

(described in detail in Appendix section A.2). As was the case with the all-v-all ancients

painting, the TVD between copyvectors was highest for the 0.1x individuals. However, the

copyvectors show a strong correlation / low TVD for 0.5x individuals.

It should be noted that utility of painting different ancient individuals with a modern

reference panel depends on the ancestry and age of the ancient sample. The spread of

points along the y = x line in Fig. 2.8 shows how much a particular ancient recipient

preferentially copies more from particular modern population over others. LBK, for example,

has points which are spread evenly across y = x, showing that they copy much more from
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some populations than others, suggesting modern populations are good for distinguishing

this particular ancient sample. On the other hand, the points for Ust’Ishim are shrunk

towards lower values of y = x, showing that the copyvector is relatively flat and that it does

not preferentially copy from some populations to the same degree that LBK does. This

is consistent with findings that UstIshim did not contribute ancestry towards present-day

populations [95]. Accordingly, relatively less useful information is obtained from painting

Ust’Ishim with a modern reference panel than LBK.
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Figure 2.8: For five different samples (columns), the proportion of DNA that each downsampled
(y-axis) or full coverage (x-axis) genome matches to individuals from each of 26 present-
day populations (dots). Red line is y = x. x and y units are normalised copying values
and thus removed for clarity. Points coloured by meta-population.

Principle component analysis (PCA) is a widely used technique to visualise the relative

genetic diversity of different individuals. PCA can be performed on the chunklengths matrix

in a similar way to how PCA on the genotype dosage matrix is often employed in ancient
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Coverage Loschbour sf12 UstIshim Yamnaya
0.1 Iberia_HG PWC_SwedenNHG.SG BHeimburg_LN CordedWare
0.5 Loschbour sf12 UstIshim Poltavka
0.8 Loschbour sf12 UstIshim Poltavka
1 Loschbour sf12 UstIshim Poltavka
2 Loschbour sf12 UstIshim YamnayaSamara
3.5 Loschbour sf12 UstIshim YamnayaSamara
5 Loschbour sf12 UstIshim YamnayaSamara
10 Loschbour sf12 UstIshim Yamnaya
20 Loschbour sf12 UstIshim Yamnaya

Table 2.5: For each downsampled individual at each level of coverage, each entry gives the closest
Cartesian neighbour based upon the PCA in Fig 2.9, not including other downsamples.

DNA studies. Visualising whether downsampled individuals cluster close to the same sample

at full-coverage is a useful way of determining whether the copyvectors of the downsampled

individual reflect those of the full-coverage individual.

The position of the full coverage individuals are consistent with prior knowledge about

their ancestry (Fig. 2.9). For example, Loschbour is positioned alongside other Hunter

Gatherers, who are highly differentiated from the later Neolithic farmers and Bronze Age

Europeans. sf12 clusters with the other Scandinavian Hunter Gatherers in the dataset.

Yamnaya is differentiated from the group of Bronze Age individuals and situated close to

individuals from the Poltavka and Srubnaya culture. LBK is located with other individuals

from the early to middle Neolithic in central Europe. Consistent with sharing little ancestry

with any group over another, UstIshim is positioned close to the central Bronze Age mass,

where most of the individuals in the PCA are located.

For all levels of downsampling other than the 0.1x, the downsampled and full coverage

genomes were positioned very closely to one another on the PCA. When considering all

downsampled individuals, a pattern emerges whereby the genome downsampled to 0.1x for

each individual is ‘pulled’ towards the origin of the PCA. This may reflect a ‘homogenisation’

of low coverage genomes when many genotypes are imputed.

To formally examine the positioning of the samples on the PCA, I calculated the closest

Cartesian neighbour to each of the downsampled individuals, not including other downsampled

individuals (Table 2.5). Other than at 0.1x coverage, the samples UstIshim, sf12 and

Loschbour always were closest to the same sample at full coverage. Up to 5x coverage,

Yamnaya was closest to closely related YamnayaSamara and Poltavka samples.

Taken together, this data suggests a minimal effect of coverage down to and including

0.5x mean depth. To my knowledge, no other study has evaluated the effect of coverage on
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Figure 2.9: Principle component analysis (PCA) of downsampled, full coverage and downloaded
ancient individuals generated from the linked chunklengths matrix. Full coverage
and downsampled genomes of the same individual are coloured the same. Reference
individuals are grouped into populations plotted as the mean principle components for
all individuals within the population. Numbers in labels correspond to the number of
individuals within the reference population. 0.1x samples have red border for clarity.
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ChromoPainter analysis down to a coverage of 0.5x. Using Beagle v4/v4.1, Margaryan et

al (2020) showed a minimal effect of coverage at 1x and that fineSTRUCTURE groupings,

containing individuals as low as 0.5x coverage, were not driven by coverage [58].

2.6.5 SOURCEFIND

I next determined the effect of sequencing coverage on the ancestry proportions estimated

by SOURCEFIND, which accounts for variable donor group sizes and incomplete lineage

sorting to improve interpretability relative to the raw chunklengths matrix.

I began by considering three ancestral sources, or ‘surrogates’, fixed as Anatolia Neolithic,

Western Hunter-Gatherer and Yamnaya steppe pastoralist. I compared inferred proportions

for the same individual across different levels of coverage (Fig. 2.10).

Consistent with previous results, SOURCEFIND estimates are robust down to 0.5-0.8x

coverage. At 0.1x coverage, there is an increase in ancestry components that are not present

in higher coverage samples, suggesting they are artefacts caused by low coverage. For example,

small components of Anatolia Neolithic and Yamnaya ancestry appear in Loschbour at 0.1x

coverage, which are not present at any higher coverages. Above 0.5x coverage, the effect of

coverage on estimated ancestry proportions appears to be marginal. For example, in sf12,

the difference in the minor ancestry component of Anatolia Neolithic is, at most, 2.4%. LBK

was excluded because downsamples had anomalously poor results; I inferred roughly equal

proportions of all surrogates in spite of the fact that they should have been almost 100%

farmer.

However, more than three surrogates are often used, as SOURCEFIND is meant to

infer the most important contributors without a priori knowledge of the samples’ ancestry.

Therefore, I re-ran SOURCEFIND using 39 surrogate populations (Fig. 2.11). For all

downsamples above 0.1x in coverage, the ordering of proportions for each surrogate was the

same.

Again, Loschbour seems to be the least affected by coverage, with only slight differences

between the 0.5x and full coverage samples. It is known that Upper Palaeolithic / Early

Neolithic Hunter-Gatherer populations were small and lacked genetic diversity [51,115,116]. It

is therefore expected that Hunter-Gatherers would share longer IBD segments than individuals

from outbred populations. Accordingly, this may make estimating SOURCEFIND proportions

easier.
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Figure 2.10: Each panel gives SOURCEFIND inferred recent ancestry sharing proportions for a
different downsampled genome. Bars represent proportion of ancestry, coloured by
different surrogates. Different coverages for the same individual are given within each
panel. Three surrogates were used.

2.7 Issues and possible solutions for low coverage ancient

DNA

The previous section outlined a drawback of performing ChromoPainter analysis on low

coverage (<0.5x) ancient DNA samples; low coverage samples appear to be shifted towards

the origin of a principle component analysis (PCA) relative to the same sample at higher

coverage (Fig. 2.9) and can contain ancestry estimates that are not present in the same full

coverage sample (Fig. 2.10). This is evident for the lowest coverage samples at 0.1x and

suggests that samples of this coverage cannot be reliably analysed using current methodology.

In order to solve the issue of coverage-related bias, it is first necessary to determine at
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Figure 2.11: Each panel gives information for a different downsampled genome. Bars represent
proportion of ancestry inferred by SOURCEFIND, coloured by different surrogates.
Different coverages for the same individual are given within each panel. All 39 ancient
surrogates were used. Only surrogates with more than 5% are shown. Ancient
surrogates grouped into hand-assigned ‘meta-populations’ for visual clarity. LBK
excluded because of anomalously poor results.
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which stage of the analysis pipeline the bias is introduced. By ‘analysis pipeline’, I refer to

the three stages of (1) variant calling, (2) imputation and phasing, and (3) ChromoPainter

described in the methods section.

2.7.1 PCA imputation test

To explicitly test at what stage the bias is introduced, I performed a set of principle component

analyses on the downsampled data. First, I performed PCA projections of all downsampled

ancient individuals onto a set of present-day European individuals (shown in Table 2.1) using

i) pre-GLIMPSE genotypes and ii) post-GLIMPSE (imputed) genotypes (Fig. 2.12). PCA

projections are used when the target dataset, in this case downsampled ancients, contain

variable levels of missing data.

The results show that there is no apparent coverage-related bias in the pre-GLIMPSE PCA;

the 0.1x samples do not substantially differ in their position from the other downsamples of

the same individual. However, there is a degree of noise; for example, the LBK downsamples

are spread over a small region on the PCA. Here, noise is variability in the position of

technical replicates (full coverage samples and their downsamples) on the PCA.

On the other hand, downsamples of UstIshim, sf12 and Loschbour are shifted to the

centre of the post-GLIMPSE PCA and away from the full coverage individual and other

downsamples. This suggests that coverage-related bias is being introduced in the imputation

stage. At the same time, GLIMPSE appears to have removed some of the noise in the

downsampled individuals of coverage ≥0.5x. For instance, the noise observed in the LBK

samples in the pre-imputation PCA is substantially reduced and the samples cluster more

tightly.

I also performed PCAs based upon an all-v-all ChromoPainter painting using the same

set of present-day European samples (Table 2.1) and downsampled ancient individuals as

previously, in both linked and unlinked modes. There is an increased amount of noise

and evidence of coverage-related bias relative to the post-GLIMPSE genotype PCA. Fig.

2.13) displays the PCA for the same painting, but using the unlinked chunkcounts matrix.

Comparing the linked and unlinked PCAs shows the effect of including linkage (i.e. haplotype

information) on the amount of bias and noise across each sample. Per-sample, there appears

to be reduced noise in the unlinked painting.

These results suggest that imputation using GLIMPSE introduces a degree of bias into

0.1x samples that is not apparent on non-imputed genotypes. They also suggest that

ChromoPainter introduces an additional degree of bias when analysing haplotypes, or that it
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amplifies bias already present introduced at the imputation stage. Accordingly, removing

SNPs which have been poorly imputed may be a way to mitigate such biases. An alternative

explanation may be that an increase in switch-errors may be driving the signal, as it has

been previously shown that phasing accuracy declines with coverage [25].
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Figure 2.12: Principle Component Analysis. Left - pre-GLIMPSE genotypes. Right - post-
GLIMPSE (imputed) genotypes. White labels correspond to the midpoint of all
samples from that population, grey points correspond to modern individuals. 0.1x
samples highlighted in red for clarity. Black lines are y = 0; x = 0.

2.7.2 Direct imputation test

The previous section suggested that imputation plays a role in the introduction of coverage-

related bias. However, it is not clear whether it is ‘bias’, i.e. towards the reference population

used to assist imputation, or ‘noise’ due to random incorrect imputation. To directly test

whether the effect of imputation is noise or bias, I used the Human Origins dataset (described
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Figure 2.13: Left - ChromoPainter Linked. Right - ChromoPainter Unlinked. White labels
correspond to the midpoint of all samples from that population, grey points correspond
to modern individuals. 0.1x samples highlighted in red for clarity. Black lines are
y = 0; x = 0.

in Appendix section A.3), containing the genotypes of 5998 present-day individuals from

across the world at 560,442 SNPs. I chose to use present-day samples because there is a larger

total number of individuals and larger number of individuals per population, giving more

power to detect any potential bias. Additionally, the populations in present-day samples are

more homogenous and well-defined compared to ancient groups. I set all but 70,000 random

SNPs as missing and imputed missing positions using the HRC as a reference, in order to

simulate a dataset where the majority of SNPs are imputed. I then performed an all-v-all

painting of i) the original Human Origins dataset where none of the 560,442 SNPs had been

imputed and ii) the simulated dataset where 430,000 SNPs had been imputed.

Bias occurs when missing genotypes are incorrectly imputed with variants from certain
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type prop correct 0.1x prop correct 0.5x Number of SNPs
1/1 0.880 0.967 476,046
0/1 0.850 0.971 662,819
0/0 0.954 0.989 1,003,260

Table 2.6: Aggregated proportion of genotypes in 0.1x and 0.5x across downsamples which match
the genotype in the equivalent full coverage individual, stratified by whether genotype in
full coverage sample is heterozygous, homozygous reference or homozygous alternative.
Number of SNPs is the total number of SNPs aggregated across all downsamples.

populations more frequently than others. We might expect these populations to be those

which are more prevalent in the reference panel. We would correspondingly expect bias to

mean that, when painted, some donor populations would donate more than others, relative to

if no imputation had taken place. On the other hand, if ‘noise’ is dominating results, we would

expect the incorrectly imputed genotypes to be randomly distributed across populations,

and similarly we would not expect to see any populations donating more than others relative

to if no imputation had taken place.

Therefore, we can compare the amount different donor groups donate under the dataset

where none of the 560,442 SNPs had been imputed versus the dataset where 430,000 (86%)

of these SNPs have been imputed by plotting the mean amount donated by each population

using imputed SNPs and non-imputed SNPs (Fig. 2.14). The 20 populations that contribute

most are a set containing European / Ashkenazi Jewish / Levite Jewish populations. Notably,

the Haplotype Reference Consortium panel that was used to impute the data consists

primarily of individuals of European descent. The two populations which are over-copied the

most after imputation are two English populations from Kent and Cornwall. This suggests

that there is a most likely a bias towards copying more from European populations when the

data has been imputed using the HRC.

Another consideration is the concept of reference sequence bias, where genotypes are

imputed with a higher accuracy when they contain more reference alleles. To display

this effect, I calculated the proportion of correctly imputed genotypes in 0.1x and 0.5x

downsamples and stratified by genotype class (Table 2.6). In the case of 0.5x downsamples,

adding reference alleles to the genotype increased the accuracy of imputation. For 0.1x

downsamples, reference homozgyous genotypes were imputed more accurately than non-

reference homozygous genotypes. In 0.1x downsamples, non-reference homozygous genotypes

were imputed approximately as accurately as heterozygous genotypes, potentially in part

because of the difficult of calling heterozygous genotypes in very low coverage samples.
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Figure 2.14: Comparison of the mean normalised cM donated by each donor population using the
imputed and non-imputed SNP sets. The 20 populations with the largest difference
between imputed and non-imputed donation are highlighted. Red line is line of y = x.

2.8 Solutions

In this section I will explore potential solutions to the issue of coverage-related bias. Based

on the findings in previous sections, imputation causes bias towards particular reference

populations in modern samples.

2.8.1 Accounting for allele likelihoods

Section 2.2.1.1 describes an improvement to the ChromoPainter algorithm. Instead of

assuming that each allele on a haplotype is correct with a probability 1−θ, where θ represents

an error probability, the posterior genotype probability from GLIMPSE is accounted for

in the emission probabilities of the copying model. The motivation behind this update is
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that the uncertainty associated with genotype calls at low coverage is suitably propagated

throughout the painting process, resulting in uncertain alleles contributing less towards the

expected copying values than more certain ones. This is similar in spirit to that of Viera

et al (2016), who account for genotype likelihoods to infer inbreeding IBD tracts from low

coverage sequencing data [117].

To determine whether accounting for allele likelihoods improved the painting accuracy

of a low-coverage genome, I painted the individuals downsampled to 0.1x and 0.5x and

corresponding full coverage samples using the ‘standard set’ of ancient reference individuals,

using both ChromoPainterV2 and ChromoPainterV2Uncertainty. I then calculated Pearson’s

correlation between the copyvectors of full coverage and downsampled individuals using the

two different methods (Fig. 2.15). This shows that at 0.1x, the ChromoPainterV2 method

clearly outperforms ChromoPainterV2Uncertainty across all samples, whereas at 0.5x, the

new method marginally outperforms the standard method. Therefore, while accounting for

allele likelihoods may improve performance in cases of coverage ≥0.5x, which has been shown

to still capture some haplotype information, it does not help in cases of coverage of 0.1x

where bias problems persist.

2.8.2 Filtering SNPs

In this section, I will test whether filtering the set of input SNPs on different criteria reduces

the effect of coverage related bias.

The frequency of a particular variant in the reference panel (RAF - minor reference

allele frequency) used for imputation is known to affect how accurately that variant can be

imputed [25,63,91,92]. Specifically, we expect variants which are less frequent in the reference

panel to be imputed at a lower accuracy than those which are more frequent. Therefore,

removing variants with a low frequency in the reference panel may mitigate the coverage

related bias by removing variants which have been incorrectly imputed. In other words, we

want to retain the SNPs where both alleles are relatively common within the population.

For each individual, I took the 428,425 SNPs in the HellBus set and removed SNPs with

0.1 > RAF or RAF > 0.9, removing an average of 50,187 SNPs per individual. RAF refers

to the frequency of the allele in the 1000 genomes reference panel used to phase and impute

the HellBus dataset. I then painted individuals downsampled to 0.1x and 0.5x using the

standard set of 125 ancient donor individuals.

Comparing the TV D values between the copvyectors showed that, whilst there was a

marginal improvement at 0.1x, this did not improve the 0.5x copyvectors (Table 2.7).
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Figure 2.15: Comparison of performance of ChromoPainterV2 and ChromoPainterV2Uncertainty.
Panels correspond to samples downsampled to 0.1x (left) and 0.5x (right). Points
correspond to the r-squared between the downsampled individual and the same
individual at full coverage. Red points are values obtained from ChromoPainterV2
and blue points are those obtained from ChromoPainterV2Uncertainty.



2.8. Solutions 68

sample u_01x s_01x r_01x gp_01x u_05x s_05x r_05x gp_05x
LBK 0.926 0.927 0.933 0.746 0.981 0.981 0.982 0.959
Loschbour 0.898 0.898 0.907 0.654 0.980 0.980 0.976 0.925
sf12 0.923 0.923 0.942 0.774 0.981 0.981 0.980 0.950
UstIshim 0.944 0.944 0.945 0.827 0.980 0.980 0.976 0.960
Yamnaya 0.915 0.915 0.920 0.726 0.986 0.986 0.985 0.964

Table 2.7: Table of 1 − T V D values between the copyvectors of full coverage and downsampled
individuals. ‘u’ refers to ChromoPainterUncertainty, ‘s’ refers to ChromoPainterV2, ‘r’
refers to filtering SNPs with reference allele frequency (RAF) 0.1 > RAF or RAF > 0.9
and ‘gp’ refers to filtering by max(GP ) >= 0.990.

I then chose to filter SNPs based on max(GP ) at each position. max(GP ) correspond

to the accuracy with which a SNP has been imputed, with higher values reflecting a higher

chance of that genotype being imputed correctly. For each individual downsampled to 0.5x

and 0.1x, I only retained positions where the max(GP ) >= 0.990. For the 0.5x individuals,

this resulted in a total of 348,852 SNPs for LBK, 339,949 for Loschbour, 315,075 for sf12,

308,961 for UstIshim and 386,484 for Yamnaya. Because different SNPs were removed from

different individuals, each individual was painted separately. The same standard set of 124

ancient donors was used. Again, this did not improve the accuracy of the copyvectors.

2.8.3 Restricting analysis to non-imputed SNPs

Section 2.7.1 showed that imputation was the likely cause of coverage related bias. Thus,

restricting ChromoPainter analysis to non-imputed SNPs above a certain coverage may

mitigate such bias.

However, removing SNPs may have negative side-effects; increasing the genetic distance

between SNPs reduces linkage information and therefore may reduce the overall power to

distinguish between closely related haplotypes. At the most extreme case, retaining only a

small number of SNPs may effectively reduce the method to unlinked and lose the advantage

given by accounting for haplotypes. This may be important if we decide to restrict analysis

to non-imputed SNPs, as low coverage samples may only have a small number of high enough

coverage, non-imputed SNPs. Therefore, it is important to determine whether samples of a

particular coverage have enough regions containing enough high-coverage SNPs to retain the

advantages of haplotype-based methods over unlinked ones.

One case study to test whether a set of SNPs has enough linkage information is to

determine whether it is possible to distinguish individuals born in Devon from those born in

Cornwall. This has shown to be possible using the fineSTRUCTURE clustering algorithm

using linkage information, but not using unlinked methods (ADMIXTURE [109]) [31].
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Therefore, determining whether it is possible to distinguish between individuals from Devon

and Cornwall acts as a test case for determining how many high-coverage SNPs would give

sufficient SNP density to distinguish between these two populations.

To assess this, I painted individuals from Devon (n=73) and Cornwall (n=89) with all

other POBI individuals as donors (n=2,039), using the full set of SNPs (n=452,592). It

is necessary to develop a classification score which quantifies to what degree it is possible

to distinguish between individuals from Devon and Cornwall. For a classification score, I

calculated the proportion of Cornwall individuals whose copy vector had a lower TV D with

the mean copyvector of all other Cornwall individuals than with the mean copy vector of all

Devon individuals. In other words, this asks whether the individual is genetically closer to

the Devon or Cornwall population.

I repeated the analogous procedure to find a classification score for Devon individuals,

given in table 2.8. I then painted the same individuals using a reduced set of SNPs, in

particular reducing the set of SNPs to 12 different percentages ranging from 0.2% - 90%

of the total original number of SNPs (a full list of the reduction levels and details of the

painting procedure can be found in the methods section 2.4). Painting using a reduced set of

SNPs is intended to simulate an ancient genome where only a subset of the total number of

SNPs have been covered by a sufficient number of reads. Defining ‘sufficient’ isn’t precisely

defined, but it is possible to calculate the probability of observing both reads given x reads

at a given heterozygous positions and assuming equal probability of observing reference and

non-reference alleles; for example, 9 reads are needed to obtain at least a 0.995 probability of

observing both alleles (Fig. 2.16).

In my painting of 5998 world-wide samples on the Human Origins array (described in

Appendix section A.3), the average number of segments that forms a recipient genome is

9764 (range: 1437-18,963). Given a genome-wide size of ≈ 3000Mb, this implies that an

average ‘chunk’ size (in Mb) is 3000/9764 = 307.2 ≈ 500kb, where a ‘chunk’ is a set of

contiguous SNPs matched to a single donor. Therefore, for each of the 12 different levels of

SNP reduction used in my Devon/Cornwall analysis, I can calculate the average number of

SNPs per 500kb chunks, and determine how many of these 500kb chunks are necessary to

accurately distinguish individuals from Devon and Cornwall. To do so, for each reduced SNP

percentage, I found the Cornwall/Devon classification score using only data from chromosome

22 (which has only W 500kb chunks), and using only chromosomes 21 and 22 (which has V

500Kb chunks), etc, continuing until the classification scores were equivalent to that when

analysing all 22 autosomes at all 452,592 SNPs. In this way, for each reduced SNP percentage,

I found the number of 500Kb chunks necessary to as accurately distinguish between Devon
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Figure 2.16: Probability of observing both reads at a heterozygous positions, given x reads
assuming equal probability of observing reference and non-reference alleles.

Percentage
of SNPs retained Cornwall Devon

1 % 0.801 0.945
2 % 0.820 0.986
3 % 0.876 0.973
4 % 0.910 0.973
5 % 0.888 0.973
6 % 0.899 0.973
7 % 0.888 0.973
8 % 0.910 0.973
9 % 0.910 0.973
10 % 0.910 0.973
20 % 0.921 0.973
30 % 0.910 0.973
40 % 0.899 0.973
50 % 0.910 0.973
70 % 0.910 0.973
80 % 0.910 0.973
90 % 0.921 0.973

Table 2.8: Proportion of individuals correctly assigned to their population at different percentages
of SNPs retained.
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and Cornwall as in the case where we had analysed a full data set of 452,592 SNPs (Table

2.9). I found results to be very similar to if chunk-size were instead defined as 250kb or 1Mb

(Table 2.9).

I repeated an identical analysis, including reducing the total number of SNPS, using

individuals from the Mandenka and Yoruba ethnic groups rather than Devon and Cornwall.

Number of SNPs
retained 250Kb 500Kb 1Mb

Number of
SNPs per 500Kb

Window

20,000 9356 4715 2388 3.3
25,000 6954 3509 1781 4.1
30,000 6272 3166 1607 5.0
35,000 4083 2064 1049 5.8
40,000 3099 1565 796 6.6
45,000 3602 1820 925 7.5
50,000 2612 1321 673 8.3
100,000 1304 661 338 16.6
150,000 1005 508 260 25.0
200,000 705 357 183 33.3
250,000 705 357 183 41.6
300,000 506 255 130 50.0
350,000 267 135 69 58.3
400,000 705 357 183 66.6
450,000 136 69 35 75.0

Table 2.9: Number of 250Kb, 500Kb or 1Mb windows required at different levels of SNP reduction
to match the TVD assignment power of 500K fully genotyped SNPs for individuals in
Devon and Cornwall. Note that the number of necessary 250kb and 500kb windows is
roughly four and two times, respectively, the number of 1Mb windows, indicating the
definition of window size makes little difference.

Guided by these results, for each ancient individual (n=587, median coverage=1.1x), I

found the number of non-overlapping windows of sizes 250Kb, 500Kb or 1Mb that had Y

SNPs above Z coverage, varying both Y and Z.

Fig 2.17 shows the mean number of 500Kb windows per individual with at least Y SNPs

above Z coverage, with individuals grouped into bins based on their mean coverage. Points

are coloured yellow if, within the bin of coverage, samples have at least 2000 windows.

Samples less than 0.5x do not have enough windows, even if the threshold for a ‘good’

SNPs is being covered by a single read. As is it not possible to call a heterozygous position

with only a single read, this suggests that there are not enough non-imputed SNPs with

enough coverage to match the power seen in full coverage individuals. For example, samples

between 0.3-0.4x have approximately 1000 segments with ≥ 10 SNPs above 2x in coverage;

Table 2.9 shows that 1565 windows of ≥ 8.3 SNPs is enough to match full power. However,

as Figure 2.16 shows, 50% of these genotypes may not observe both reads if the position
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Number of SNPs
retained 250Kb 500Kb 1Mb

Number of
SNPs per 500Kb

Window

30,000 6272 3166 1607 5.0
35,000 3099 1565 796 5.8
40,000 3099 1565 796 6.6
45,000 2612 1321 673 7.5
50,000 3099 1565 796 8.3
100,000 1886 956 489 16.6
150,000 1304 661 338 25.0
200,000 506 255 130 33.3
250,000 267 135 69 41.6
300,000 506 255 130 50.0
350,000 506 255 130 58.3
400,000 506 255 130 66.6
450,000 267 135 69 75.0

Table 2.10: Number of 250Kb, 500Kb or 1Mb windows required at different levels of SNP reduction
to match the TVD assignment power of 500K fully genotyped SNPs for individuals in
from Mandenka and Yoruba ethnic groups.

is heterozygous. Indeed, even when there are 3 reads covering a site, there is still a 25%

chance of not observing both alleles. Only the samples in the 2-5x coverage bin had enough

windows when using a coverage threshold of 4 and 5 reads.

This analysis therefore suggests that there are not enough regions with enough high

quality SNPs at mean coverages less than 2x to reliably analyse using ChromoPainter.

2.9 Summary of Results and Discussion

In this section I used a downsampling approach on five high-coverage ancient DNA samples

to show that ChromoPainter analysis can be performed on samples down to 0.5x coverage

without showing a significant deviation from the same sample at full coverage. In particular,

ChromoPainter copyvectors, SOURCEFIND ancestry proportion estimates and Principle

Component Analysis position all of 0.5x coverage and higher showed a good correspondence

with the same metrics at full coverage. The 0.1x downsampled showed deviations from the

full coverage samples which meant that they cannot currently be analysed reliably with

ChromoPainter and its associated methods. I showed that imputation introduces bias into

low-coverage samples that is manifested by those samples being shifted towards the centre of

a PCA.

I performed a range of analyses to try and recover useful haplotype information from

low coverage samples and improve the performance of the analysis. Counter-intuitively,

approaches such as removing SNPs with a low imputation quality and reference allele
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Figure 2.17: Mean number of 500Kb windows (y-axis) within the genome of each ancient individuals
within a given range of coverages (rows) with at least Y SNPs (x-axis) above a
particular coverage Z (columns)
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Figure 2.18: The effect of adding 500kB windows on the ability to assign individuals from Devon
and Cornwall to their respective populations. Each panel represents a different total
number of SNPs used. X-axis gives the cumulative number of 500kB windows used
in analysis. Y-axis gives the combined proportion of individuals assigned.
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frequency did not improve the performance of ChromoPainter on low coverage samples.

However, this is broadly consistent with a single previous study, which also showed that

filtering the dataset for SNPs with a low imputation quality score did not substantially affect

fineSTRUCTURE clustering [48]. However, it also runs counter to studies which have shown

filtering SNPs based on imputation quality score can significantly reduce the number of

incorrectly imputed genotypes [63].

I also developed a modification to the ChromoPainter model which accounted for un-

certainty in genotype calls; however it only marginally improved the performance of Chro-

moPainter on samples of 0.5x or higher. Again, this was surprising, as previously published

methodology which accounts for genotype likelihoods when estimating IBD tracts has been

shown to be effective [81].

Finally, I used simulated data from present-day individuals to show that samples around

0.5x coverage can in theory be analysed with useful haplotype information, but that imputa-

tion is necessary for lower coverage samples.

Many of the analyses performed in this section only used a single target sample, as I did

not identify a way to generate multiple downsampled individuals from the same population.

For example, the SOURCEFIND analysis I performed used a single target downsample

when estimating ancestry proportions. This differs from a typical ancient DNA analysis,

such as those of Margaryan et al [58], where there may be up to 20 low coverage samples

per population. This number may increase in the future as the technology to generate

ancient DNA improves. Leveraging information across multiple samples from the same

population would improve the accuracy of population-wide ancestry or admixture estimates,

for example. Thus, the results presented in this section which used a single target individual

may underestimate the ability to analyse low-coverage samples. It may be possible to

accurately analyse 0.1x samples if there are multiple samples per population.

In this section I used present-day individuals to estimate the number and size of chunks

needed to retain haplotype information. This was because present-day individuals are simpler

to analyse; the populations are better defined than in ancient samples (i.e. it is possible to

only include individuals whose grandparents were born within 100kM of a target location),

are of uniform coverage and contain many more individuals per population. Thus, using

present-day individuals removes potentially confounding factors that may be present when

analysing ancient samples. However, using present-day samples to draw conclusions about

ancient samples may lead to underestimating the number of SNPs per window required. As

the present-day samples had been genotyped high-quality DNA samples and a genotpying
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array, each genotype can be called with a high confidence. This is not the case with ancient

samples, where each SNP may be covered by a small number (<3) of reads.

For the imputation and phasing reference panel, I used the 1000 genomes dataset which

contains around 6000 haplotypes. The Haplotype Reference Consortium contains roughly

10 times as many haplotypes and thus offers substantial gains in the potential accuracy of

genotype imputation [92]. I did not use the HRC owing to difficulties in obtaining access to

the data; however, I expect that future studies which use this resource will be able to analyse

ancient DNA samples of low coverage to a higher degree of accuracy.

Whilst I did not interrogate the range of coverages between 0.1-0.5x, this could be an

avenue for future research.



Chapter 3

Investigating the sub-continental

ancestry of ethnic minorities within the

U.K. Biobank from sparse genotype

data

3.1 Introduction

From a genetic standpoint, the British population is one of the most studied in the world, with

many studies sequencing or genotyping individuals from across the U.K (e.g. [31, 118–120]).

These projects have been primarily aimed at researching the genetic basis of disease, but

have also been used to investigate population history, substructure and the relationship of

different sub-populations in the U.K. to other European countries [31,37,121].

The U.K. is also an ethnically diverse country, with 13.8% of individuals belonging to

ethnic minority groups (source: ONS survey). Groups of people from across the world have

migrated to the U.K. at different periods within the past thousand years, driven by the legacy

of colonialism [122], the transatlantic Slave Trade and a variety of other reasons. Despite

this, the roughly 9 million ethnic minorities within the U.K. remain relatively understudied

in the context of genetics. For example, every one of the 27 papers in the GWAS catalogue

with “U.K. Biobank” in the title, and two others presently in the catalog curation queue,

limited their analyses to subgroups described in various terms as “White British”, “British”,

“European”, “White European”, “Caucasian” or “White” [123]. The primary reason for

this is reasonable concerns over the confounding effect of population substructure within a

cohort [124]; retaining a more genetically homogeneous cohort is one strategy to mitigate

https://www.ons.gov.U.K./peoplepopulationandcommunity/populationandmigration/populationestimates/articles/researchreportonpopulationestimatesbyethnicgroupandreligion/2019-12-04
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this.

However, removing ethnic minorities from GWAS analyses is problematic, as evidence

is mounting that the results from GWAS, including Polygenic Risk Scores (PRS), may not

be transferable to other populations if they have been conducted in cohorts of exclusively

European individuals [125–127]. The reasons for this are not yet fully understood, but it is

thought that differences in LD structure may be at least partially responsible [128]. Ethnic

minorities may therefore miss out on the advances in healthcare driven by large-scale genomic

projects.

Understanding, and correcting for, population structure is an important step towards

including a diversity of ancestries in GWAS. Several recent studies have shown the power of

methods which explicitly model linkage between neighbouring markers when controlling for

population structure, relative to traditional approaches such as PCA. Zaidi and Mathieson

(2020) [129] showed that whilst it is not possible to correct for recent population stratification

using principal components of common variants, correcting using a matrix of pairwise

IBD sharing is effective. Similarly, it has been shown (S.Hu, personal communication of

unpublished data) that incorporating principle components did not eliminate significant

associations between genetic variants and birth location in UK Biobank participants. However

the significant hits disappeared when corrected for using a ChromoPainter coancestry matrix,

generated by painting target samples against a set of reference individuals and using the

resulting painting profile as covariates in the association test. Byrne et al also eliminated

significant associations with birth place in a cohort of Dutch individuals, by painting samples

using PBWT-paint, a method closely related to ChromoPainter [27].

Other recent studies have leveraged advances in algorithm development, such as the

positional Burrows-Wheeler transform, to perform haplotype-based analyses on Biobank-scale

datasets. Saada et al (2020) detected around 214 billion IBD segments across 487,409 individ-

uals in the U.K. Biobank, obtaining enough information to estimate birth location to within

45 km, demonstrating the power of haplotype-based approaches on large datasets. However,

their method only estimated pairwise IBD between individuals rather than comparing each

individual to all other individuals in the dataset; the latter approach is more powerful at

detecting recent shared ancestry [40]. Additionally, Saada et al only considered self-identified

White British individuals. Zhou et al (2020) recovered a similar number of IBD segments

within the U.K. Biobank (231.5bn), also using a PBWT-based method [130].

Recent studies have outlined the power of haplotype-based approaches in inferring the

population histories of different African ethnic groups [131–133]. Therefore, it seems natural
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to extend the approaches of Saada et al and Byrne et al to exploring the ancestry and

structure of individuals of recent African ancestry in the U.K. Biobank as a first step to

including a wider diversity of ethnicities in association studies.

Additionally, but no less importantly, there is intrinsic value in exploring the ancestry of

individuals (ethnic minorities in the U.K.) who have typically been excluded from analyses.

Excluding individuals based upon their ethnicity presents other issues; individuals who

registered for the U.K. Biobank undertook a series of extensive tests and not including their

data in studies seems to be ethically dubious at best [134].

Therefore, to investigate the African ancestry of U.K. Biobank individuals, I will leverage

a recently compiled dataset, hereafter referred to as ‘Human Origins’. At the time of writing,

it is the most detailed dataset of genotype data from African individuals in terms of the

number of ethnolinguist groups represented. Whilst the dataset contains individuals from

across Africa, it contains particularly large numbers of individuals from South Africa (n=104),

Cameroon (n=567) and Ghana (n=211), which are countries known to have contributed

immigrants to the U.K. Of the 5998 samples in the Human Origins dataset, 1,518 are

previously unpublished, including all samples and 188 populations from Sudan, Nigeria,

Ghana and The Democratic Republic of Congo. Therefore, this dataset is ideal for use as a

reference panel to investigate the ancestry of ethnic minorities within the U.K. Biobank. In

particular, given our newly acquired data comes from parts of west Africa that may well

represent sources of African ancestry among UK minority groups, I chose to investigate

individuals with recent African ancestry. However, these results should in theory be equally

applicable to other non-European populations, such as those from east and south Asia.

One potential issue is that only 70,776 SNPs overlap between the U.K. Biobank and

Human Origins genotyping arrays. This is much lower than the number used in a typical

ChromoPainter analysis, which is usually between 500,000 and 700,000. Using a low number

of SNPs in the analysis may reduce the power to infer accurate ancestry proportions, in

particular for haplotype-based methods since haplotype information depends on SNP density.

Therefore, one option is to impute the non-overlapping SNPs using a reference panel. However,

the effect of imputation on ChromoPainter-style analyses has yet to be fully investigated. It is

possible that imputing a large number of positions may introduce biases, particularly towards

populations which are present in the reference panel. Studies have shown repeatedly that

genotypes in non-European individuals are imputed less accurately compared to European

individuals when using a primarily European reference panel [25,135]. Accordingly, we can

ask whether it is preferable to retain a smaller number of non-imputed SNPs or a larger

number SNPs, some of which have been imputed. My work in Chapter 2 showed that
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imputation introduced bias towards European populations prevalent in the reference panel; in

this chapter, I will extend that analysis to determine the effect of imputation on population

assignment in African ethnic groups.

This chapter will focus on two questions. Firstly, I will evaluate the effect of using

imputed genotypes on the validity of ChromoPainter analysis in African individuals, similar

to analyses I performed in Chapter 2 but tailored to my U.K. Biobank analysis. Secondly, I

will compare genetic variation patterns of U.K. Biobank participants with recent African

ancestry to the Human Origins dataset populations, in order to shed light on their ancestral

origins.

3.2 Methods

3.2.1 U.K. Biobank data access and initial processing

The U.K. Biobank dataset contains genotype data for 488,378 individuals at the time of

writing (https://www.U.K.biobank.ac.U.K./). Access was obtained to study the U.K.

Biobank dataset via UCL Genetics Institute (ref number 51119, principal investigator =

D.Curtis).

I obtained the U.K. Biobank genotype data, consisting of 488,377 individuals genotyped

at 784,256 genome-wide SNPs on the U.K. Biobank Axiom Array. I will hereafter refer to this

dataset as the ‘non-imputed’ data, as all SNPs were directly genotyped without imputation.

I used plink2 [136] to convert the binary plink files to .bcf format.

I also obtained U.K. Biobank data, which had already been imputed to approximately

96m SNPs from the original 784,256, using the Haplotype Reference Consortium (HRC)

resource. I will hereafter refer to this data as the ‘imputed’ data. Full details of imputation

can be found in the paper of McCarthy et al (2016) [101]. The imputed data was downloaded

and converted from .bgen to .bcf format using qctool2 (https://www.well.ox.ac.U.K.

/~gav/qctool_v2/).

I therefore had two separate datasets; ‘imputed’ and ‘non-imputed’, containing the same

individuals and differing only in whether or not imputation had been used to increase the

total number of SNPs.

https://www.U.K.biobank.ac.U.K./
https://www.well.ox.ac.U.K./~gav/qctool_v2/
https://www.well.ox.ac.U.K./~gav/qctool_v2/
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3.2.2 ADMIXTURE analysis

I am primarily interested in using ChromoPainter [19] to explore the ancestry of ethnic

minorities in the U.K. Biobank. However performing ChromoPainter analysis on the en-

tire U.K. Biobank dataset (n=488,377 individuals) is computationally infeasible. Thus, I

chose to analyse only those individuals with more than 50% non-European ancestry. The

ADMIXTURE algorithm is a fast and accurate way to estimate continental-scale ancestry

proportions [109] and is therefore ideal for the task identifying individuals with more than

50% non-European ancestry in a large cohort.

I LD-pruned the non-imputed U.K. Biobank dataset using using plink –indep-pairwise

50 10 0.02 [136], leaving a total of 70,776 bi-allelic SNPs. I then subsetted the 1000 Genomes

dataset down to the 70,776 SNPs retained in the U.K. Biobank dataset and merged the two

datasets using bcftools –merge. Thus, I had a dataset containing all U.K. Biobank and

1000 Genomes individuals, genotyped at 70,776 SNPs.

I ran ADMIXTURE in supervised mode using the argument –supervised and fixed

the four reference populations as GBR British, Nigeria Yoruba, Han Chinese and Gujarati

Indian from the 1000 Genomes dataset. These populations were chosen as they represent

a broad division of worldwide populations into African, European, East Asian and South

Asian; for the purposes of this particular analysis, it was not necessary to include finer-scale

populations. The rest of the arguments were left to default.

Individuals with at least 50% ancestry from Nigeria Yoruba were carried into later analysis;

I refer to these as ‘selected’ Biobank individuals.

3.2.3 Data preparation - Human Origins

To determine the ancestry of U.K. Biobank individuals, I compared their SNP patterns

to populations/ethnic groups from different parts of the world to infer which populations

they share recent ancestry with. As I am particularly interested in studying individuals

with recent African ancestry, I used the so-called ‘Human Origins’ reference dataset for this

purpose, as it contains individuals from 349 different ethnic groups from across Africa and

535 world-wide groups in total (Fig. 3.1). Full details of processing can be found in Appendix

section A.3 .
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3.2.4 Data merge - non-imputed data and Human Origins

I used bcftools –merge to merge 5,998 reference Human Origins dataset individuals with

8,476 UK Biobank participants that had ≥50% African ancestry, using the gt-conform utility

from Beagle (https://faculty.washington.edu/browning/conform-gt.html) to remove

any inconsistent positions. This dataset contained 65,749 non-imputed SNPs that overlap

between the Human Origins and UK Biobank arrays. I phased this dataset with shapeit4 [25]

using –pbwt-depth 8, the b37 genetic map and all other parameters set as default.

3.2.5 Data preparation - imputed data

I similarly merged the imputed UK Biobank data with the Human Origins reference dataset

at 525,566 SNPs that were genotyped in Human Origins, and phased this dataset with

shapeit4, using the same settings as for the non-imputed data.

3.2.6 ChromoPainter

For both of the imputed and non-imputed datasets, I used ChromoPainter to infer the

proportion of genome-wide DNA that each UK Biobank and Human Origins reference

individual matches to individuals from each Human Origins reference population.

An alternative option to using ChromoPainter would be to use PBWT (positional

Burrows-Wheeler transform) paint (https://github.com/richarddurbin/pbwt/blob/

master/pbwtPaint.c), a fast approximation to ChromoPainter which provides approxi-

mately the same output and is scalable to large sample sizes [27]. However, it is not possible

to provide a reference panel and each haplotype must be compared to all others in turn. This

would be much less efficient and would not allow me to take full advantage of the Human

Origins dataset.

3.2.7 SOURCEFIND

I estimated ancestry proportions for each of the selected U.K. Biobank individuals using

SOURCEFINDv2 [21]. I used the combined painting from the section above. I analysed each

U.K. Biobank individual with more than 50% African ancestry separately, using all Human

Origins populations as surrogates. I left all parameters as default.

https://faculty.washington.edu/browning/conform-gt.html
https://github.com/richarddurbin/pbwt/blob/master/pbwtPaint.c
https://github.com/richarddurbin/pbwt/blob/master/pbwtPaint.c
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3.2.8 Imputation bias test

The imputed U.K. Biobank dataset was imputed using a reference panel containing the

Haplotype Reference Consortium. Whilst this reference panel contains many European

populations, it contains relatively few from Africa. Imputing variants in non-European

individuals using a reference panel that is primarily composed of European individuals may

leadf to biased or inaccurate imputation [137]. Given I am particularly interested in analysing

individuals with recent African ancestry in the U.K. Biobank, it is important to determine

whether this is the case.

An obvious way to test this would be to compare a painting on the U.K. Biobank

individuals using datasets comprised of a majority imputed and non-imputed SNPs. However,

this is not possible; whilst the dataset contains country of birth (non-UK), the samples in the

U.K. Biobank dataset do not have any associated population or ethnic group labels beyond

broad self-identified categories. Accordingly, it would not be possible to mask their ethnic

group and attempt to guess it using only the genetic data, an approach which I use for the

Human Origins data in this chapter.

Therefore, I used the Human Origins dataset, where I could control whether or not SNPs

are imputed and mask population labels. I submitted the full Human Origins reference

dataset (5998 individuals and 560,420 SNPs) to the Sanger Imputation Server (https:

//imputation.sanger.ac.U.K./), which uses the full Haplotype Reference Consortium

(HRC) as a reference panel for imputation. I subsetted the imputed Human Origins dataset

down to SNPs present in the U.K. Biobank array, leaving 727,325 positions present in the

imputed Human Origins dataset and then randomly removed SNPs until 500,000 remained.

Although the number of SNPs still differ, my previous research in Chapter 2 shows that

increasing the number of SNPs beyond 400,000 does not affect the ability to correctly assign

individuals to populations (Appendix section E.0.2). I phased the imputed and non-imputed

datasets separately using shapeit4 at default settings.

To therefore determine whether using the imputed or the 70,000 SNP Human Origins

dataset is better in this scenario, I performed a painting using (i) the full 560,442 genotyped

SNPs, (ii) 64,762 genotyped SNPs overlapping UK Biobank, and (iii) 500,000 SNPs that

include the 70,000 genotyped SNPs and 430,000 SNPs imputed using the HRC reference.

I performed painting (ii) in both linked and unlinked mode to determine whether there is

haplotype information using 70,000 SNPs.

For each of the three datasets described above, I selected all ethnic groups from Nigeria,

Cameroon and Ghana which had five or more individuals (n=51 populations, n=1203

https://imputation.sanger.ac.U.K./
https://imputation.sanger.ac.U.K./
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individuals) and split each population randomly in half, into ‘donors’ and ‘recipients’. I

painted all recipient populations (n=51) using all donor populations (n=51) using a leave-

one-out approach (motivation for this approach given in Appendix section ). I tested the

information content of each painting by counting how often individuals copy more from

individuals in their own populations than individuals from other populations. I also counted

the number of times a population had the lowest TVD (motivation and description of TVD

given in appendix section B.3) with its own population (Table 3.1).

3.3 Results

3.3.1 4% of U.K. Biobank individuals have at least 50% non-

European ancestry

Performing ChromoPainter analysis on the 488,378 individuals in the U.K. Biobank would be

computationally unfeasible; therefore I first performed supervised ADMIXTURE on all U.K.

Biobank individuals. In order to identify individuals with at least 50% African ancestry, I set

K = 4 supervision clusters that were defined using European (CEU), Gujarati, Han Chinese

and Yoruban reference individuals from the 1000 genomes dataset. I then carried forward

individuals with more than 50% ancestry from Yoruba to later ChromoPainter analyses.

In total, there were 8476, 2653, 9171 individuals with at least 50% ancestry most

closely related to either Yoruba, Han Chinese and Gujarati reference populations respectively,

corresponding to 4.16% of the total U.K. Biobank individuals. Although I use these population

labels for convenience, I note that an individual with e.g. 50% ‘Han Chinese’ ancestry does

not necessarily derive 50% of their ancestry from the Han Chinese population, but that 50%

of their ancestry most closely matches Han China relative to the other reference populations.

Thus, a Japanese individual may be modelled as 100% Han Chinese whilst not being Han

Chinese in an ethnic sense. Similarly, for brevity, I will refer to individuals who have more

than 50% of their ancestry from Yoruba as being ‘African’ Biobank individuals, whilst

acknowledging that ‘African’ as a broad label encompasses a large diversity of ancestries and

ethnicities.

I validated the ADMIXTURE results to ensure that there was not any mixing of sample

labels and that enough ADMIXTURE EM iterations had been performed. To do this, I

selected all individuals who self-identified as being either “Caribbean”, “African” or “Black or

Black British” (n=7,527) and plotted the distribution of ADMIXTURE ancestry proportions,

under the assumption that these individuals should contain more African than other kinds of

ancestry. On average this was the case, with the mean proportion of African ancestry among
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these individuals being 0.88 (Fig. 3.2), compared to 11 % British, 0.22% Han Chinese and

0.19% Gujarati.

However, there was substantial variation in the ancestry proportions for those who self-

identified as being either “Caribbean”, “African” or “Black or Black British”. Proportions of

Yoruban and British ancestry ranged from 0 to 1, Han Chinese from 0 to 0.53 and Gujarati

from 0 to 0.759, reflecting the diverse array of genetic ancestries that can fall under a given

ethnic label. This follows from previous research which has shown self-reported ethnicity

can be an unreliable proxy for genetic ancestry [138, 139]. This suggests that relying on

self-reported ethnicity may yield variable results when e.g. used as a covariate in a GWAS.

For example, there were 48 people who self identified as being either “Caribbean”, “African”

or “Black or Black British”, but had less than 1% African ancestry.
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Figure 3.2: Ancestry proportions inferred from supervised ADMIXTURE run (k=4) for all indi-
viduals who self identified as being either “Caribbean”, “African” or “Black or Black
British”. Points within each column are given random jitter to improve visual clarity.
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3.3.2 To impute or not?

In order to use the Human Origins dataset as a reference in ChromoPainter analysis to

ancestry in U.K. Biobank individuals, the datasets must be merged. The overlap of SNPs

genotyped in each dataset is only 70,776 SNPS, or an average of ≈1 SNP per 40Kb. Given

linkage disequilibrium (e.g. as measured by Pearson’s correlation) between pairs of SNPs

decays to background levels by 100Kb within most populations [140], analysing 70,000 SNPs

may substantially decrease any potential power gains from modeling haplotypes to detect

fine-scale differences between populations. In contrast, the imputed U.K. Biobank dataset

has 535,544 SNPs in total, all of which are genotyped in the Human Origins reference dataset

and 87.7% of which are imputed in UK Biobank individuals. While this may boost power

over using only 70,000 SNPs, including a high percentage of imputed SNPs may bias ancestry

inference. Therefore, I needed to determine a) whether there is a loss of power when 70,000

SNPs relative to the a full 500,000 SNP dataset and b) whether there is bias when using a

dataset which contains a majority of imputed SNPs.

To answer these questions, I returned to the imputed and unimputed Human Origins

datasets I describe in Section 3.2.8. Recall here I reduced the Human Origins dataset to

70K SNPs and then imputed to approximately 500,000 SNPs using HRC and therefore

determine whether using the imputed or the 70,000 SNP Human Origins dataset is better in

this scenario, I performed a painting using (i) the full 560,442 genotyped SNPs, (ii) only the

64,762 genotyped SNPs overlapping UK Biobank, and (iii) 500,000 SNPs that include the

64.47K genotyped SNPs and 430,000 SNPs imputed using the HRC reference. I performed

painting (ii) in both linked and unlinked mode to determine whether there is any haplotype

information using 70,000 SNPs.

It is worth noting that, because of the specific SNP ascertainment strategies used, a

sizeable fraction of Human Origins SNPs have a very low frequency; 7 SNPs were invariant,

104,442 had a minor-allele frequency of less than 0.05, 35,061 of less than 0.01 and 2,891 less

than 0.001 (Fig. D.3).

For each of the three datasets described above, I selected all ethnic groups from Nigeria,

Cameroon and Ghana which had five or more individuals (n=51 populations, n=1203

individuals) and split each population randomly in half, into ‘donors’ and ‘recipients’. I

painted all recipient populations (n=51) using all donor populations (n=51) using a leave-

one-out approach (description and motivation of this approach given in Appendix section

B.2). I only considered populations of five individuals or more because any fewer individuals

would likely result in very weak power to assign individuals to that population. I tested
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painting TVD copying

70K (linked) 44% 24%
70K (unlinked) 20% 17%
imputed (linked) 14% 14%
full (linked) 38% 23%

Table 3.1: Percentage of populations which had lowest TVD (TVD) or copied the most (copying)
from their own population under different paintings. 70K linked used 70,000 SNPs in
linked mode, 70K used 70,000 SNPs in unlinked mode, imputed used 430,000 imputed
and 70,000 non-imputed SNPs in linked mode and full used 500,000 non-imputed SNPs
in linked mode.

the information content of each painting by counting how often individuals copy more from

individuals in their own populations than individuals from other populations. I also counted

the number of times a population had the lowest TVD (motivation and description of TVD

given in Appendix section B.3) with the mean copyvector of all other individuals in its own

population (Table 3.1).

Populations in the 70,000 non-imputed painting matched more to and had a lower TV D

with their own mean population copyvector than the 500,000 non-imputed painting. These

results suggest that, in the context of performing ChromoPainter analysis to assign African

individuals to sub-continental ethnic groups, there is no clear benefit to using more than

70,000 SNPs. Whilst it may seem counter-intuitive that there is more power using a smaller

number of SNPS, this is broadly consistent with my previous findings in Chapter 2, which

showed that metrics of painting information plateau (Fig. E.2) (i.e. there is no clear benefit

to using more than 50,000 SNPs in terms of assigning individuals to a population). This is

reassuring and suggests there is no loss of power when using the 70,000 SNP set. It is worth

noting that there may be advantages to using a higher number of SNPs in other contexts;

for instance, when attempting to identify which population genomic segments may have

originated from in GLOBETROTTER admixture analysis.

This data also shows that there is a fairly dramatic loss of power when using imputed

data relative to non-imputed data, as over 3x the number of populations had a lower TVD

with their own population when using imputed compared to non-imputed data.

Given the above results suggested that imputing data results in a loss of information, I

was interested in whether this constituted a ‘bias’ towards certain populations. Reference-

based imputation methods rely on identifying reference haplotypes which are closest to the

target haplotypes. However, if the ethnic groups that the target individuals derive ancestry

from are not present in the imputation reference panel, missing variants are imputed from

populations in the reference panel which are most closely related to the target samples. In

this case, two target populations may be imputed to appear more genetically similar to
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that reference population, reducing the differentiation between them (Fig 2.14). In theory,

this artificial similarity would be propagated through to the ChromoPainter analysis. In

particular, we would expect populations present in the reference panel to donate more to all

other individuals than they would if no imputation had taken place.

For example, in the case of the Haplotype Reference Consortium, the closest reference

population to two African target samples from e.g. Cameroon may be the Yoruba from

Nigeria, which is one of the few west African groups in the reference. These samples would

appear more similar to the Yoruba ethnic group than if they had not been imputed. In a

ChromoPainter analysis, the Yoruba donor population would donate more than than when

using non-imputed SNPs.

Comparing the imputed and non-imputed coancestry matrices revealed biases consistent

with the above expectation. If the coancestry matrix columns are combined into populations,

then the sum of each column gives the total length of genome that population contributes

to all recipient individuals in the dataset. Therefore, comparing the column sums between

the imputed and non-imputed matrices informs us about which populations contribute more

when using imputed compared to non-imputed SNPs. Fig 3.3 shows the amount of differential

haplotype donation on a per-population basis, with populations highlighted based on their

presence or absence in the 1000 genomes dataset. It is clear that populations present in the

1000 genomes are primarily clustered towards the right hand side, rather than randomly

distributed across figure. This strongly suggests that imputation causes a bias towards those

populations present in a reference panel.

To formally test whether the ordering of populations was likely significantly different

to the ordering expected under the null model of no impact of being present in the 1000

genomes dataset, I performed a non-parametric permutation test. If we order the populations

based on their differential haplotype donation and assign a rank value to each population, we

can calculate the sum, S of the ranks values of all populations present in the 1000 genomes.

If the 1000 genomes populations are clustered at the higher end of the ordering, we would

expect the value of S to be smaller than if the populations are randomly distributed across

the ordering. I performed 100,000 replications of randomly ordering the population labels

and calculating the value of S. Of the 100,000, 26 had S greater than the true empirical

value calculated from the data, showing the ordering of the populations is unlikely to be due

to chance (p = 0.00026). This permutation test was motivated by the Wilcoxon Rank Sum

Test.

Put together, these results suggest that using imputed data would introduce a level of bias
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and loss of information when trying to accurately infer sub-continental ancestry of African

individuals that may obscure the true pattern of African ancestry in U.K. Biobank participants.

In particular, we would expect an additional 10% of individuals to be misclassified to the

correct ethnic group when using imputed compared to non-imputed data.

Therefore, with the exception of exercises comparing the imputed and non-imputed data,

in all later analysis, I chose to use the approximately 70,000 non-imputed SNPs which overlap

between the Human Origins and U.K. Biobank datasets.

3.3.3 African ancestry in the U.K. Biobank samples is concentrated

in Ghana and Nigeria

Using approximately 70,000 directly genotyped SNPS, I painted all U.K. Biobank individuals

with at least 50% African ancestry (n=8475) using all Human Origins individuals as donors

(n=5,577).

Principal component analysis on the resulting chunkcounts coancestry matrix reveals

the general structure of the selected individuals, alongside the reference populations (Fig.

3.4). Three clines are present; one of similarity to Southern African populations typified

by the Zulu ethnic group from South Africa, one of similarity to West African populations

such as Yoruba and Cameroon_Dii, and the last to East African populations such as those

from Ethiopia. The majority of U.K. Biobank individuals are positioned near West African

populations; in particular between Yoruba and Cameroon_Arabe. The presence of a broad

cluster of West African individuals is consistent with prior expectations that West African

ancestry should be prevalent in a sample of British individuals, due to the history of migration

from this region [141]. A second cluster of UK Biobank individuals is located along the

Southern African cline, close to the Bantu_SA label.

Aggregating the columns of the coancestry matrix by reference population and taking the

sum of each column gives the total length of genome for which a U.K. Biobank individual

shares recent ancestry with individuals from that donor population. This can be visualised

on a map, where each point represents a reference population and the colour corresponds to

the total amount that reference population contributes towards the ancestry of all retained

U.K. Biobank individuals (Fig. 3.5). Higher values correspond to more ancestry from that

population in the U.K. Biobank sample. However, it should be noted that raw ChromoPainter

output can be influenced strongly by sample size and so the values shown in Fig. 3.5 should

not be taken literally as an exact reflection of the ancestry distribution.

The map supports the findings from the PCA in Fig. 3.4; the populations with the largest
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Figure 3.5: Map of haplotype donation to U.K. Biobank individuals. Each point represents
a different African population. Colour corresponds to the mean length (cM) that
populatation donated to all African U.K. Biobank individuals.

contribution are those from West Africa (Fig. 3.5). In particular, populations from Ghana

and Nigeria contribute the most to the ancestry of Biobank individuals. On the other hand,

populations in east and north Africa contribute relatively little, with southern / south-east

Africa being approximately intermediate. This is consistent with two different historical

events.

Firstly, it is known from historical and genetic studies that a majority of the individuals

who were forcibly transported from Africa to the Americas during the transatlantic slave

trade were from the west coast of Africa [142]. Given the U.K. Biobank sample contains

many individuals who were either born in, or trace their ancestry from the Caribbean, a

region that had a large influx of slaves [143], we would expect there to be a large contribution
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of ancestry from west Africa. Secondly and more recently, there has been a relatively large

amount of historical immigration from countries in west Africa, such as Ghana and Nigeria,

to the U.K [141]. Although there are a number of immigrants from other parts of Africa,

reflected in the non-zero contributions from other ethnic groups, these contributions are

small compared to those from West Africa.

I performed the same visualisation using the painting using imputed SNPs and the

ancestry distribution was qualitatively the same.

I used SOURCEFIND to infer the proportion of ancestry that each UK Biobank individual

shares most recently with each of the 535 surrogate groups, as this accounts for uneven donor

population sizes. A map of proportions is given in Fig. 3.6, with each point corresponding

to the mean percentage of ancestry of that particular group across all African U.K. Biobank

individuals. Similar to the copyvector map, the ancestry is focused around Nigeria and

Ghana, with Yoruba (39.8%) and Ghana Fante (7.31%) having the highest mean proportions.

The distribution of colour on this figure is focused around a smaller number of populations

compared to Fig. 3.5. This is because SOURCEFIND attempts to narrow down the set of

populations which most likely contribute towards the ancestry of a given individual and so

appear ‘cleaner’ than raw ChromoPainter results.

Fig. 3.7 displays the 30 ethnic groups with the highest mean proportions of ancestry

within the U.K. Biobank individuals, and the distribution of values within each group.

Yoruba was a clear standout for the most represented population; 3604/8309 individuals

had at least 50% Yoruba ancestry. This is compared to the next most common ancestry,

Ghana_Fante, which had an average of 7.3% per person and 373/8309 individuals with at

least 50% ancestry. It is not clear what the reason for the large amount of Yoruban ancestry

relative to all other populations is. One possible answer may come from considering the birth

country of the U.K. participants. Of all the individuals for which we have country of birth

data for (n=6190), more of them were born in the Caribbean (n=2263) relative to any other

country. This should not be surprising given the history of migration from the Caribbean to

the U.K. Of the individuals born in the Caribbean, over half were assigned to the Yoruban

ethnicity, a much higher proportion than any other country of birth. Therefore, one could

tentatively explain the abundance of Yoruba ancestry as resulting from the transatlantic

Slave Trade, where individuals from the Yoruba ethnic group were taken to the Caribbean

at a higher frequency than other nearby ethnic groups in the Human Origins reference. This

may be in part because Yoruba is the second largest ethnic group in Nigeria and individuals

belonging to it live primarily in coastal areas where the Slave Trade operated. The relatively

large number of individuals from the Caribbean in the U.K. could thus have brought Yoruban
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There are other instances of an over and under-representation of one ethnic group from a

particular country (Fig. 3.8). For example, Nigeria is dominated by a single ethnic group,

despite having data for 31 different ethnic groups. On the other hand, the individuals from

Sudan are more evenly distributed across ethnicities. This may be caused because there are
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more reference ethnic groups in Sudan to assign individuals to. Further, it is known (personal

communication N.Bird, 2021) that using the Human Origins dataset, there is inability to

distinguish between individuals in closely related Sudanese populations.
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Some other patterns can be noted. Whilst many individuals have intermediate levels of

ancestry from West African populations (e.g. Ghana_Fante or Yoruba_Yoruba), much fewer

individuals have intermediate levels of Ethiopia_Somali ancestry (Fig. 3.7). This may be

because Somalis are more recent immigrants to the UK and therefore tend to be less admixed

with Europeans relative to other immigrant populations which have been in the U.K. longer

and hence can be modelled as a mixture of almost entirely Ethiopia_Somali ancestry.
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To test whether this was the case, I selected individuals assigned to either Ethiopia_Somali,

Yoruba or Ghana_Fante and estimated their proportions of total African, European and Asian

ancestry using SOURCEFIND. Individuals from Yoruba and Ghana_Fante had, on average,

6.2% and 5.2% European ancestry respectively, whereas individuals from Ethiopia_Somali

had 0.21% on average, suggesting they are indeed less mixed than other populations, which

is consistent with them being more recent migrants.

3.3.4 Verifying painting accuracy

Not all individuals within the U.K. Biobank were born in the U.K.; visualising the ancestry

distribution of these individuals allows ensures us that the painting is accurate and may

reveal insights into population history. For instance, the ancestry distribution of individuals

born in the Caribbean may provide evidence for where in Africa slaves forcibly transported

to the Caribbean during the transatlantic slave trade originated from. This is important, as

disembarkation records from the Slave Trade are often sparse, meaning many people with

African ancestry who currently live in the Americas may not have knowledge of where their

ancestors originated from.

I subsetted the coancestry matrix to contain only U.K. Biobank individuals who provided

data on birth location (n=6153/8472). We would expect that individuals who were born in

a particular country would copy the most from reference populations from that country. For

example, we would expect individuals who were born in South Africa to copy the most from

sampled Bantu and Zulu ethnic groups from South Africa. This may not always be the case,

as some ethnic groups have crossed borders in their history, or we may not have sampled

representative groups from some countries, but it may broadly be expected to be true. We

also have birth place data for individuals who were not born in Africa (e.g. the Caribbean

and Brazil).

Fig. 3.9 shows the map of haplotype donation from reference groups to U.K. Biobank

individuals born in South Africa. It is clear that reference populations from South Africa, in

particular the Zulu ethnic group, contribute the most to these individuals. The pattern is

qualitatively the same for all countries which had a reasonable number of donor populations,

suggesting that the painting had good resolution down to at least the level of individual

countries (Fig 3.10).

There are several interesting results. For example, there are 2,263 individuals who were

born in the Caribbean; visualising the haplotype donation map for these individuals shows

that they are primarily of West African ancestry (supplementary figure D.5), consistent with
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Figure 3.9: Map of haplotype donation to U.K. Biobank individuals born in South Africa. Each
point represents one Human Origins population, coloured according to the summed
amount of chunklengths that population donates to all U.K. Biobank individuals born
in South Africa.

historical evidence [142]. Individuals born in Brazil have ancestry from further South, again

consistent with historical evidence (supplementary figure D.4). Of the nine individuals born

in Brazil, six of them had a majority SOURCEFIND component from an ethnic group in

The Republic of the Congo. However, it should be noted that there is a relatively small

sample size from individuals born in Brazil (n=9), and that these individuals may not be

representative of the Brazilian population as a whole.

As a formal test of the painting accuracy, I estimated SOURCEFIND ancestry proportions

in each retained U.K. Biobank individual. An individual was ‘assigned’ to a particular ethnic

group if they had 75% or more of their total ancestry from that group. If the country the

assigned reference population is from matches the birth location of the individual, then I
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considered that a ‘success’ and a ‘fail’ otherwise. Individuals who were born in the U.K. or

who had no birth country were excluded from this analysis. 75% was chosen as an arbitrary

threshold.
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Figure 3.10: Correspondence of true birth country with estimated birth country. Each bar corre-
sponds to a true birth country, with the length of the bar corresponding to the total
number of people in our dataset born in that country. The green section corresponds
to the total number of individuals where the birth country was correctly guessed
and the red section to those who were incorrectly guessed. Percentage labels give
percentage correct for that country.

The overall accuracy at predicting birth location across all individuals was 81.63%,

suggesting there was substantial information within the coancestry matrix. For certain

countries where there was large number of surrogate populations, such as Ghana and Nigeria,

the prediction accuracy was high. For other countries, the prediction accuracy was much

lower. For example, Tanzania, which is only represented by a single reference population,

had a prediction accuracy of 23%. Zimbabwe had by far the lowest prediction accuracy
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(14%) out of countries with more than 100 U.K. Biobank individuals. Of the 266 individuals

born in Zimbabwe, 194 were assigned to an ethnic group from outside Zimbabwe; 74 to

Malawi_Chewa, 71 to Mozambique_Mozambique and 49 to Malawi_Yao. Individuals from

the ethnic groups from Malawi are found across Malawi, Zimbabwe and other countries,

showing the possible weakness of this approach which aims to categorise individuals into a

single country, as ethnic groups often transcend countries. Indeed we only have data from

one (partially) Zimbabwean group, the Zulu, who may not well-reflect the ancestors of U.K.

Biobank participants born in Zimbabwe.

I performed the same analysis but using the data which had been imputed. This stands

as a practical test of whether it is preferable to impute or retain a smaller number of non-

imputed SNPs when estimating country-level haplotype variation. This yielded an accuracy of

81.89%, a value almost identical to that obtained with the dataset containing approximately

70,000 non-imputed SNPs, despite my earlier results indicating that sub-country population

assignment results are less accurate if using imputed data due to reference bias (Table 3.1).

This may be because this broad-scale assignment of individuals to countries is not as affected

by imputation as a more subtle dissection of sub-country ancestry. To test whether this is

the case, I took all ethnic groups from Nigeria, Cameroon and Ghana in the Human Origins

dataset which had five or more individuals (n=51 populations, n=1203 individuals), and for

each individual, estimated ancestry proportions of each of the 51 populations. I performed

this analysis for both datasets containing no imputed SNPs and 70% imputed SNPs. For

each dataset, I took the average proportion of ancestry for each ethnic group across all

individuals.

Fig 3.11 shows that there are substantial differences between the proportions obtained

from imputed and non-imputed datasets, showing sub-country assignment is affected by

imputation. In particular, there is less variance across the proportions for the imputed

dataset (var=0.67) relative to the non-imputed dataset (var=0.87). This is clear on the

figure, as there are many population bunched around the 2% point for the imputed dataset;

the same populations are spread across a wider range of values for the non-imputed dataset.

3.3.5 Patterns of African ancestry across the U.K.

The U.K. Biobank dataset contains data on the testing centre that each individual registered

at. I used this information to determine whether there was structure in how individuals with

recent African ancestry are distributed across the U.K. There were no apparent outliers in

terms of any centres with substantially larger proportion of individuals who had at least 50%

African ancestry than others (Supplementary Fig. D.6). However, as expected, centres in
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Figure 3.11: Mean ancestry proportions averaged across 1203 individuals from Ghana, Nigeria
and Cameroon of 51 populations from the same countries. Proportions obtained from
data containing 70% imputed SNPs (x-axis) and no imputed SNPs (y-axis).

large cities such as Barts, Croydon and Hounslow (London), Birmingham and Manchester

had the highest proportion of individuals with at least 50% African ancestry.

I then plotted the distribution of people with recent ancestry related to African ethnic

groups at different centres on a map of the U.K (Fig. 3.12). No clear pattern was apparent,

other than Yoruban ancestry dominating most centres, with some smaller testing centres

only containing individuals inferred as having Yoruba-related ancestry.

I estimated the information entropy, E, of each assessment centre based on the

SOURCEFIND proportions, similar to previous work performed by van Dorp et al (2018),

who used the principle of entropy to determine the extent to which individuals from different

ethnic groups were scattered across different clusters [144].
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To evaluate the extent to which individuals assigned to each ethnic group registered at

different testing centers, I calculated entropy given by Schutze et al (2008) as
∑L

i=1[pi,j ·

log(pi,j)] [145], where pi,j = mi,j

mj
, mij is the number of individuals from testing center j

assigned to ethnic group i and mj is the number of ethnic groups to which individuals from

center j are assigned. Testing centres in large cities such as London and Birmingham had

the highest information entropy, consistent with prior expectations that large cities would

contain a higher diversity of ancestries (Fig. 3.12).

3.3.6 Patterns of African ancestry across the U.K.

I also had access to the birth-date of each U.K. Biobank participant. Therefore, it is possible

to calculate the increase of the ancestry of a particular ethnic group over time based on

birth-year (Fig. 3.13). I took all U.K. Biobank individuals with more than 50% African

ancestry and split them into 50 bins according to their birth date. Using a rolling window

in the rollyapply function from the zoo R library, I calculated the mean proportion of all

ancestries across ancestry for each bin. Fig 3.13 shows the increase of Buganda ancestry over

time.

We can observe roughly a doubling of the mean proportion of Buganda_Baganda ancestry

between 1950 and 1964. In 1972, then president Idi Amin expelled roughly 60,000 Ugandans

to the U.K. Therefore, this increase may tentatively correspond to an increase in the number

of individuals between the ages of 7-22 arriving in the U.K. during these dates.

3.4 Summary of Results and Discussion

The aim of this chapter was twofold; firstly, to determine whether using less dense non-

imputed or more dense imputed SNPs is preferable when combining genotype data from

multiple chips. Secondly, I wanted to explore the diversity of African ancestry in the U.K.

Biobank and its relation to population history.

I also showed that, in individuals with recent African ancestry, there is enough linkage

information across 70,000 genome-wide SNPs to recover a substantial amount of useful

haplotype information and accurately predict the birth country of a sample. Further, I

found that using the particular imputation strategy I employed, namely imputing missing

genotypes in genotype arrays after merging datasets, significantly reduces the power to assign

African individuals to the correct population. This imputation strategy also introduces a

degree of bias, in that donor groups donate more to populations present in the reference

panel when using imputed data relative to non-imputed data. Future work should explore
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Figure 3.13: Increase in the mean proportion of Buganda ancestry between 1948 and 1965. An
overlapping sliding window was applied to SOURCEFIND ancestry proportions and
mean proportion of Buganda ancestry for each window plotted against the mean
birth-date of individuals in that bin.

the downstream effects of such bias when e.g. estimating ancestry proportions of inferring

genetic clusters.

West African ancestry was the most common across samples with recent African ancestry,

with ancestry from ethnic groups from Nigeria and Ghana being especially prevalent. In

particular, individuals had substantially more ancestry from Yoruba than any other ethnicity.

I did not find evidence for structure in how African ancestry was distributed across the U.K.,

based on the testing centre that participants registered at.

Future work on using Biobanks to explore population structure and history could focus on

two points. Ideally, I would liked to have painted the entire U.K. Biobank dataset using the
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Human Origins dataset as a reference panel, rather than restricting analysis to individuals

with 50% recent African ancestry. This would have allowed me to analyse a substantially

higher amount of African haplotypes across the entire dataset and this give a more complete

extent of African ancestry in the U.K. Thus, the development of efficient methods, likely

based on the PBWT, which allow for Biobank-scale datasets to be painted by large reference

panels would accelerate research into ethnic minority ancestries.

Secondly, larger reference panels of worldwide populations and more ethnic groups will

allow for a more detailed characterisation of genetic variation. Similarly, including details on

ethnic identity in Biobank projects would improve the resolution at which analysis could be

carried out.



Chapter 4

Bavaria ancient DNA

4.1 Introduction

Throughout the Pleistocene and Holocene, Germany has been the setting for many population

movements and admixture events of modern humans. The Swabian Alps is home to some

of the earliest pieces of symbolic art, dated to at least 32kya [146] and musical instruments

dated to 40kya [147], both assigned to the Aurignacian tradition.

Later, the region was also home to one of the first Neolithic traditions in the Linearband-

keramik (LBK), a key culture in the Neolithisation of Europe. Early LBK populations across

Germany mixed with the preceding Mesolithic hunter gatherer populations [106,148–151].

At the end of the Neolithic, a new ancestry was detected [106,152] in concert with the arrival

of the Corded Ware Complex [153], most closely related to the Yamnaya Pastoralists from

the Pontic-Capsian Steppe. Recent studies using ancient DNA have shown that the arrival of

Steppe-related ancestry in Europe occurred no earlier than 2700BC [154] and spread widely

shortly after.

During the Bronze Age, cultures closely related to Yamnaya, such as Bell Beakers, Corded

Ware and Unetice [106] appeared across Germany at sites such as Kromsdorf [155] and

Tollense [156, 157]. It was later dominated by Iron Age cultures such as Hallstatt and La

Tène, which have been shown to be partially continuous with the preceding Bell Beaker

culture [158].

In the present-day, Germany represents a boundary point between East and West Europe,

with a relatively sharp genetic boundary occurring between Germany and Poland to the

east, given their close geographic proximity [159–161]. However, within Germany, SNP-based

studies have shown that there is only very weak substructure [162]. Questions remain as to
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the origin of the East-West structure across Europe; is it recent, or did it exist during the

Middle Ages and earlier?

Cherry-Tree cave, or Kirschbaumhöhle, represents a unique opportunity to study a transect

of southern German samples from the Neolithic to the present-day. The cave represents a

relatively untouched layer of stratigraphy, with a large series of radiocarbon dates revealing

that human and animal inhabitation of the cave stretches back until at least the Michelsberg

Culture in the Early Neolithic [163].

Here, I analyse novel data from 11 medium-to-high coverage samples from two sites from

Southern Germany and one site from from Southern Austria. In particular, the samples from

Kirschbaumhöhle span from the Late Neolithic to the Iron Age, providing an opportunity to

study a time transect in a narrow geographic region (Table. 4.1).

A collaborator, Prof. Joachim Burger, Johannes Gutenberg University Mainz, posed the

following three questions.

1. Second Neolithic immigration wave. One of the samples (Erg1) is thought to have

belonged to the first wave of farmers carrying farming technology from the near-east

to Europe, and another (DIN2) to the second wave. Do we observe genetic differences

between the two waves of samples and do they show evidence of previously reported

hunter-gatherer admixture?

2. Cherry Tree Cave. Do we see evidence of genetic continuity from from the Late

Neolithic through to the Iron Age in Cherry Tree Cave?

3. Germanic / Slavic divide. Is there a distinction between the Germanic and Slavic

samples from the Middle Age samples? How do these populations compare to the

preceding samples from the Bronze and Iron ages?

4.2 Methods

4.2.1 Data generation

Eleven whole-genomes of ancient individuals were generated by collaborators at the Johannes

Gutenberg, University of Mainz, Germany. The estimated radiocarbon dates range from

5200B to 1060AD (Fig. 4.2). Six of the samples were found in Cherry-Tree Cave in the

Bavarian district of Forchheim, four from futher South in the region of Dingolfing/Essenbach

and one sample from Molzbichl in southern Austria (Fig. 4.1). The samples had a median
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coverage of 4.84x and ranged from 0.7x to 17.52x. Full details of coverage, location and dates

are given in Table 4.1.

I was given the data of each newly sequenced sample in vcf format.

Erg1
Erg2

DIN2

Kir24
Kir23

Kir28
Kir26

Kir27

BRU1

Kir25

Molz1

Germany

Austria

Archaeological Culture
Early Neolithic (LBK)
Early Copper Age
Final Neolithic
Early Bronze Age
Iron Age
Early Middle Age

Figure 4.1: Map of newly sequenced ancient individuals, positioned according to where they were
excavated. Colour on label corresponds to archaeological culture which they were
found.

4.2.2 Genotype imputation and phasing using GLIMPSE

In order to compare the genetic variation in the newly sequenced samples to a reference

dataset, I merged them with the 942 ancient samples from the literature detailed in Appendix

section A.1, resulting in a total of 955 samples in .bcf format with genotype likelihood data

at 77,213,942 genome-wide SNPs.

I followed the recommended GLIMPSE [92] imputation and phasing pipeline
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Figure 4.2: Estimated radiocarbon dates for each newly sequenced ancient individual, grouped by
archaeological period. Error bars correspond to upper and lower 95% quantiles of the
mean date.

Sample.ID Location Date UQ LQ Period Sequencing
Depth

Erg1 Ergoldsbach 5200 (BC) 5400 5000 Early Neo (LBK) 4.52
Erg2 Ergoldsbach 5200 (BC) 5400 5000 Early Neo (LBK) 0.71
DIN2 Dingolfing 4200 (BC) 4500 3900 Early Copper Age 1.71
Kir24 Cherry Tree Cave 2762 (BC) 2821 2632 Final Neo 3.98
Kir23 Cherry Tree Cave 2741 (BC) 2817 2666 Final Neo 17.52
Kir28 Cherry Tree Cave 1863 (BC) 1977 1749 EBA 17.30
Kir26 Cherry Tree Cave 595 (BC) 762 428 Iron Age 4.84
Kir27 Cherry Tree Cave 593 (BC) 672 514 Iron Age 16.60
BRU1 Bruckberg 535 (BC) 620 450 Iron Age 11.54
Kir25 Cherry Tree Cave 481 (BC) 552 410 Iron Age 4.55
Molz1 Molzbichl 1069 (AD) 1138 1000 Early Middle Age 13.22

Table 4.1: Details of newly sequenced ancient DNA samples. UQ and LQ give upper and lower
95% quantile estimates for radiocarbon dates. EBA is Early Bronze Age.



4.2. Methods 111

(https://odelaneau.github.io/GLIMPSE/tutorial_b38.html), using the 30x-coverage

1000 genomes dataset [103] as a reference panel. This resulted in phased haplotypes and

posterior genotype likelihoods for each of the 955 individuals.

4.2.3 Uniparental haplogroups

To determine the mtDNA haplogroups for each newly sequenced ancient sample, I used

Haplogrep (https://haplogrep.i-med.ac.at/) [164] on the raw .fastq file for each sample.

4.2.4 IBD sharing

I used hap-IBD [30] to estimate IBD segments greater than 2cM in length between all pairs of

ancient individuals above 1.5x coverage (n=466), using the phased output from GLIMPSE as

input haplotypes, the genetic maps from (http://bochet.gcc.biostat.washington.edu/

beagle/genetic_maps/plink.GRCh37.map.zip) and leaving all parameters as default.

4.2.5 plink PCA

To obtain a broad overview of the ancestry of the newly sequenced individuals in the context

of the 942 literature samples detailed in Appendix section A.1, I performed PCA on the

pre-imputation genotypes using plink2 [165]. Genotypes were set to missing in an individual

if, at that position, they were covered by fewer than two reads.

I retained the 500,000 markers with the lowest amount of missingness across all samples

and LD-pruned the resulting SNPs using the settings –maf 0.01 and –indep-pairwise 50

5 0.2. PCA was performed using default settings from plink2.

4.2.6 ChromoPainter and fineSTRUCTURE analysis

To characterise the ancestry of the newly sequenced ancient samples in the context of other

ancient individuals, I first selected all newly sequenced samples and literature samples above

1.5x coverage (n=466) and performed an ‘all-v-all’ painting where each sample was painted

using all other samples. 1.5x was somewhat arbitrarily chosen as my previous work has

shown this is a suitable threshold for the inclusion of samples for ChromoPainter analysis

(section 2.6.4); whilst I show 0.5x as the cut-off for coverage-related effects, I chose to be

conservative and opt for a higher threshold, given all but one of the 11 newly sequenced

samples have average coverage > 1.5x. I used this painting, hereafter referred to as ‘ancient’

painting, to perform fineSTRUCTURE clustering and tree building on the ancient samples.

I performed Principle Component Analysis on the coancestry matrix of the ‘ancients’

https://odelaneau.github.io/GLIMPSE/tutorial_b38.html
https://haplogrep.i-med.ac.at/
http://bochet.gcc.biostat.washington.edu/beagle/genetic_maps/plink.GRCh37.map.zip
http://bochet.gcc.biostat.washington.edu/beagle/genetic_maps/plink.GRCh37.map.zip
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Population Number of
samples

HB:belorussian 9
HB:bulgarian 31
HB:croatian 19
HB:cypriot 12
HB:french 28
HB:german 30
HB:germanyaustria 4
HB:greek 20
HB:hungarian 19
HB:irish 7
HB:lithuanian 10
HB:mordovian 15
HB:northitalian 12
HB:norwegian 18
HB:polish 17
HB:romanian 16
HB:russian 25
HB:scottish 6
HB:siciliane 10
HB:southitalian 18
HB:spanish 34
HB:tsi 98
HB:tuscan 8
HB:ukrainian 20
HB:welsh 4
HB:westsicilian 10

Table 4.2: Name of population and number of samples used in the present-day ChromoPainter,
MOSAIC and qpAdm analyses. All populations from the HellBus dataset.

painting using the prcomp_irlba function from the irlba R library. To account for the fact

that the diagonals of the coancestry matrix are always zeros (as an individual cannot be

painted by themselves), I set the diagonal of each row to be the mean of that row, following

Lawson et al 2012 [19]. Although there were 466 individuals in the ‘ancients’ painting, not

all of these were included in the chunklengths PCA. This was because many individuals in

that set were not relevant to exploring the ancestry of the Bavarian individuals. For instance,

when plotted, samples such as those from the Xiong Nu, a 3rd century BC culture from inner

Mongolia, dominate the variation in a PCA to the point where identifying structure between

the samples of interest becomes challenging. Therefore I removed 327 individuals based on

visual inspection of the first two principal components.

To determine the genetic similarity between the newly sequenced ancient samples and

present-day populations, I performed an ‘all-v-all’ painting using a selected group of 26 present-

day European populations (Table 4.2) from the HellBus dataset (described in Appendix

section A.4) and the 11 newly sequenced ancient individuals, hereafter referred to as ‘present-
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day painting’.

I applied fineSTRUCTURE (v0.0.5) [19] to cluster the chunkcounts ChromoPainter output

for the ‘ancients’ painting. fineSTRUCTURE assigns individuals to clusters, estimates the

number of clusters and builds a dendrogram of genetic similarity based on a tree-building

algorithm. This is particularly useful when combining many samples from different studies,

as is the case with the ‘ancients’ painting; the population label identifiers used by different

studies may not be consistent with one another. Therefore, we can use fineSTRUCTURE

groupings as population labels rather than group labels. fineSTRUCTURE was first run

in MCMC mode using 1,000,000 burn-in MCMC iterations and 2,000,000 main MCMC

iterations. It was then run in tree-building mode (-m T) using 100,000 burn-in and 100,000

main iterations.

Tree figures, coancestry matrix figures and principle component plots were gener-

ated using the fineSTRUCTURE R library (https://people.maths.bris.ac.uk/~madjl/

finestructure/FinestructureRcode.zip).

The full workflow is shown in schematic form in Figure 4.3.

.bam

.bam

.bam

atlas variant call

.vcf

.vcf

.vcf

multisample .vcf

(./.)

bcftools

multisample .vcf

(0/1)

GLIMPSE-

phase

multisample .vcf

(0|1)

GLIMPSE-

solve

vcf_to_chromopainter

chromopainter

uncertainty

chunklengths

matrix

chromopainter

SOURCEFIND

ancestry 

proportions

population 

structure

fineSTRUCTURE

Figure 4.3: Workflow for analysing novel and reference ancient DNA samples. Each individual .bam
fie is downloaded and processed using atlas, generating vcf files containing genotype
calls and genotype likelihoods at each SNP identified in the 1000 genomes project.
vcf files were then merged using bcftools and phased/imputed using GLIMPSE. The
phased genotypes and posterior genotype probabilities from GLIMPSE were then
combined to create a ChromoPainter input file. ChromoPainter was then used to
generated a .chunklengths matrix for use in SOURCEFIND.

(https://people.maths.bris.ac.uk/~madjl/finestructure/FinestructureRcode.zip)
(https://people.maths.bris.ac.uk/~madjl/finestructure/FinestructureRcode.zip)
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4.2.7 SOURCEFIND

I used SOURCEFIND [21] to infer the proportions of ancestry by which each newly sequenced

ancient individual is most related to a set of surrogate populations. While this method

does not explicitly attempt to identify admixture, in contrast to e.g. ALDER [166] or

GLOBETROTTER [20], it can reflect admixture proportions [21] but more generally reflects

recent ancestry sharing patterns.

The first analysis used the ancients painting and only three surrogates: Western Hunter-

Gatherers, Neolithic farmers from Anatolia and Yamnaya, to mimic previous research

suggesting many ancient Europeans descend from the mixture of three sources well-represented

by these groups [51]. The second analysis attempted to characterise more fine-scale ancestry

patterns, by modelling each target ancient individual (using the same ancients painting) as a

mixture of all sampled ancient populations above 1.5x coverage (n=466) that had an average

sample age no more than 100 years younger than that of the target individual. The third

analysis used the “modern” painting and formed each ancient individual as a mixture of all

present-day populations shown in Table 4.2. For each of these analyses, I found the mean and

95% credible interval of ancestry estimates across 2,000,000 posterior samples combined from

three independent SOURCEFIND runs that each sampled every 10,000 MCMC iterations

after discarding the first 10,000 MCMC iterations as “burn-in”.

4.2.8 MOSAIC admixture analysis

I inferred admixture events, dates and proportions in newly sequenced ancient samples using

MOSAIC, a haplotype-based method [167]. While MOSAIC cannot infer multiple pulses

of admixture from the same admixing sources as GLOBETROTTER [20] can, in theory it

is unlikely we would have adequate power to identify such multiple pulses when analysing

only a single ancient sample, as is the case in this study. Furthermore, the ‘painting’ step

and admixture inference step in MOSAIC are combined, providing a simpler pipeline and

more flexible assignment of different surrogates relative to GLOBETROTTER (i.e. the set of

surrogates can be changed without repainting the samples). p. 128, PLINK PCA, unclear how

the pre-imputation genotypes were obtained – were these called in form of haploid/diploid

genotypes or genotype likelihoods and as PLINK does not take likelihoods or haploid calls

how was the uncertainty dealt with? If directly called genotypes I performed two MOSAIC

analyses that correspond to two of the SOURCEFIND analyses described in Section 4.2.7.

First, I performed an ‘ancient surrogates’ analysis where the all ancient samples above 1.5x

coverage (n=466) were used as surrogates to admixing sources. I used the fineSTRUCTURE

groupings to categorise ancient samples into surrogate populations. Second, I also performed
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a ‘present-day surrogates’ analysis where a selected set of present-day populations (Table 4.2)

were used as surrogates. While using present-day populations to reflect ancestry patterns in

ancient individuals may be counter-intuitive, the larger sample sizes and larger variety of

present-day populations can provide more clean results relative to using ancients

I ran MOSAIC using default settings, assuming two or three admixing sources per target

individual/population. For populations with more than one sampled individual, MOSAIC

provided bootstrap-based 95% confidence quantiles around date estimates. MOSAIC also

estimates fst between the set of surrogates and the estimated ‘true’ mixing source, which is

useful when a close proxy for the ‘true’ mixing source is not available

4.2.9 F-statistics

Many of the relevant samples in the literature were of very low coverage (< 0.1). As my work

in section 2.6.4 indicated that samples with less than 0.5x coverage cannot reliably be analysed

using ChromoPainter, I also used F-statistics [42] that are mostly robust to coverage related

effects [44]. In particular I used Admixtools (https://uqrmaie1.github.io/admixtools)

to analyse 942 individuals from 143 populations (Appendix section A.1, including many

low-coverage samples from relevant LBK cultures presented in Rivollat et al (2020) that would

not have been suitable for use with ChromoPainter [168]. This analysis also incorporated

2280 present-day individuals from 144 populations from the HellBus dataset as putative

ancestry surrogates for tested ancient individuals. Populations shown in Table 4.2.

For the input to ADMIXTOOLS, I used the genotyped imputed from GLIMPSE, as

it has been shown that using imputed markers reduced reference bias relative to using

pseudo-haploid markers [48]. I then used the f4 branch test to test whether two popu-

lations form a clade relative to two other populations. For example, the expected value

of f4(french, german; yoruba, mbuti), which tests whether {french,german} form a clade

relative to {yoruba,mbuti}, should not give a score significantly different to zero. In contrast,

exchanging french with yoruba would yield a significantly positive f4 scores, with strength

of evidence to reject the null (f4 = 0) measured using standardised Z-statistics.

I also used the f3 test, denoted f3(A, B; C), to (i) estimate the branch length between

A and B after their divergence from C, or (ii) test whether C descends from an admixture

event between sources represented by A and B. The latter can occur if C has a substantial

number of SNPs with allele-frequencies which are intermediate between A and B.

Finally, I used qpAdm to infer ancestry proportions, following the protocol described

in Olalde et al (2018) by choosing the following populations/samples as outgroups: Mota,

(https://uqrmaie1.github.io/admixtools)
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Kostenki14, papuan, han, hannchina, mbutipygmy, sannamibia, yakut. These outgroups were

suitable for use in investigating ancient Eurasians, since they are asymmetrically related to

many ancient populations, but do not show evidence of recent gene flow with them.

4.3 Results

4.3.1 Broad-scale ancestry changes in Bavaria reflect those found

elsewhere in Europe

The newly sequenced samples from the Early Neolithic (Erg1 and Erg2, approx 5200BC) and

Copper Age (DIN2, approx 4200BC) cluster with other published sampled from European

Neolithic on the plink2 PCA (Fig. 4.4). As in previously reported PCA results [148],

the earliest Neolithic samples, from Anatolia and Greece, and who are thought to be the

source population from which all subsequent Neolithic farmers derive [51, 151, 169–171],

are positioned at the end of the cluster farthest away from the hunter-gatherer samples

(for example, WHG on Fig. 4.4). This likely reflects the fact that they are unadmixed

with respect to the later Neolithic samples. As the Neolithic progressed, farmers from the

near-east mixed with local hunter-gatherer groups in central Europe [148] and acquired

local hunter-gatherer ancestry. Accordingly, these samples are shifted away from the earlier

Neolithic samples towards the hunter-gatherers. With this in mind, the position of the new

Early Neolithic sample Erg1, shifted north away from the contemporaneous sample Erg2, is

suggestive of hunter-gatherer admixture.

There are four key observations from the Figure 4.4 PCA regarding the new samples:

1. The two Late Neolithic individuals are genetically separate, with Kir24 positioned close

to Yamnaya and Kir23 clustering with Neolithic Europeans.

2. The Bronze Age sample Kir28 clusters with other European Bronze Age samples

3. The four Iron Age samples (Kir25, Kir26, Kir27 and BRU1) cluster towards the

Neolithic individuals and other European Iron Age samples

4. The three Medieval period samples (Alh1, Alh10, Molz1) cluster with the Bronze Age

sample Kir28 instead of the Iron Age samples.

4.3.2 Early Neolithic

The three Early/Middle Neolithic samples, Erg1, Erg2 and DIN2, all display a strong affinity

to Anatolian farmers, consistent with the prevailing theory that near-eastern farmers were
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Figure 4.4: Principle component analysis of pre-imputation genotypes using plink2. Grey points
indicate principle component coordinates for each sample. Black text indicated mean
principle component coordinates for all individuals within that group. Coloured labels
represent newly sequenced ancient samples.

responsible for the spread of early agricultural technology across Europe, and that all Neolithic

farmers share recent common ancestry [51,169–171]. fineSTRUCTURE grouped Erg1 with

two samples from Upper Palaeolithic/Neolithic Italy and DIN2 with Early/Middle Neolithic

samples from Germany, Greece, Anatolia and Hungary (Table A.5.1). Despite their age, the

genetic variation of the Early Neolithic samples falls well within the variation of present-day

individuals; when painted using present-day samples, the three Early Neolithic individuals

cluster with present-day Italians, consistent with findings from previous research [51,106]

(Fig. 4.5). Erg1 was assigned to mtDNA haplogroup K which has been found in Neolithic

and pre-pottery sites across Europe [151,172] and Western Asia [173,174].

Erg1 is from the Linearbandkeramik (LBK) culture and is speculated to have belonged
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to the first wave of immigrants carrying farming technology from south-eastern Europe or

Anatolia into central Europe. DIN2 is from a nearby site, around 500 years more recent, and

is thought to potentially belong to a second wave of farmers who migrated along the Danube.

It is unclear to what extent these different waves corresponded to populations with different

ancestries.

When painted using 465 ancient samples from the literature and the newly sequenced

samples, Erg1 had the lowest TV D (TV D is a distance metric based on ChromoPainter

copyvectors; calculation and justification outlined in Appendix section B.3) with DIN2,

supporting the hypothesis that they were from similar source population. DIN2 has the

lowest TV D with NE5, NE4 and NE7, samples assigned to Middle and Late Neolithic cultures

on the Hungarian plane, and was assigned to mitochondrial haplogroup (J1C) alongside

NE4 and NE5. Both the autosomal and mtDNA link to Neolithic Hungary supports the

hypothesis that DIN2 migrated along the Danubian route.

To explicitly test whether Erg1 and DIN2 group together to the exclusion of other ancient

samples and therefore, whether they likely originated from a similar source population, I

performed f4 tests in the form of f4(W = Erg1, X = DIN2; Y = test, Z = Mbuti), where

test is 143 ancient populations used in the F-statistics analysis. This tests whether Erg1 and

DIN2 form a clade to the exclusion of test or not. A deeply divergent outgroup such as Mbuti

is chosen as it is i) less related to either Erg1 or DIN2 than they are to one another and ii)

does not share recent admixture with them. Of the 143 comparisons, only the population

labelled as WHG had a |Z| > 3, (Z = 3.057), suggesting that Erg1 and DIN2 originate from

the same local population. Whilst qpAdm and SOURCEFIND results show that both Erg1

and DIN2 contain a small but significant proportion of hunter-gatherer ancestry, it is not

clear whether the result of the f4 test is due to admixture or statistical chance; one test with

|Z| > 3 may be expected when doing 143 tests, even if the null is true.

To determine whether Erg1 showed increased genetic similarity to local farming popula-

tions, I also performed combinations of f3 in the form of f3(A = Erg1, B = test, C = Mbuti),

where test iterates across 143 ancient populations. This tests the branch length, or the

amount of genetic drift that has occurred on the branch shared by Erg1 and test since their

divergence from an outgroup (Mbuti). The sample/population with the highest f3 statistic

was NE7, a sample from 4,360 – 4,490 BC and the Lengyel culture (a Neolithic culture

centered on the Danube River, known to be an offshoot of the LBK culture Erg1 belonged

to). On the other hand, DIN2 shows a clear affinity to samples from Neolithic France.

My dataset included data from several other LBK populations local to Erg1 and DIN2;
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samples from Schwetzingen, Stuttgart-Mullhausen and Halberstadt. These samples appear

to form a distinct cluster on the plink PCA and are shifted away from the primary cluster of

Neolithic individuals and towards samples from the Anatolian Bronze Age and Baden Culture

(a central European Chalcolithic culture) (Fig. 4.4). I wanted to know which LBK population

Erg1 and DIN2 were closest to. I found strong evidence (|Z| = 7.97) that Erg1 shared more

alleles with LBK populations from Schwetzingen than with Stuttgart-Mühlhausen, suggesting

the early LBK populations showed relatively fine-scale geographic structure. Given the lack

of Hunter Gatherer ancestry in the Rivollat LBK samples, this structure seems unlikely to

be driven by variable amounts of Hunter-Gatherer admixture (Fig. 4.8).

4.3.3 Variable amounts of local hunter-gather ancestry in Neolithic

farmers indicates a structured population

Prior research has shown that admixture occurred between newly arrived farming immigrants

from Anatolia and local hunter-gatherers [106,148,175–177]. The position of Erg1 on the

PCA, shifted slightly north towards the majority of the Bronze Age samples, suggests that

it may have a component of Hunter-Gatherer ancestry. Indeed an f3 admixture test, using

f3(A = CastelnovianMesolithic, B = LBK; C = Erg1) to test for admixture in C from

two sources related to surrogates A and B, yielded a significantly negative result (|Z| = 4.25),

as expected in the case of admixture [42]. Furthermore, qpAdm also concluded that Erg1

can be modelled as a mixture of Anatolia Neolithic (66%, se=8.1) and WHG (33%, se=8.1)

(Fig. 4.8). In contrast, qpAdm modelled Erg2 as descending solely from sources related

to Anatolian Neolithic farmers. MOSAIC also inferred admixture in Erg1, dated to 5.3

generations prior to it sample date (i.e. approximately 5288 years ago), between WHG and

Anatolia Neolithic sources. I caution that the admixture date may be unreliable due to only

targeting a single individual, and given MOSAIC bootstraps over individuals, it was not

possible to obtain confidence intervals around admixture date.

Estimated Hunter-gatherer related ancestry in Erg1 ranged from 18-38% among MOSAIC

(Fig. 4.7) and qpAdm (Fig. 4.8), with SOURCEFIND inferring 27.2% (se=1.41) when

using six surrogates {Anatolian Neolithic, Loschbour, LaBrana, Bichon, and the two ‘Iron

Gates’ samples}. MOSAIC indicated the cluster of Italian hunter-gatherers as the closest

population to the true mixing source (Fig. 4.7). However, SOURECFIND indicated Iron

Gates individuals from Serbia as the largest contributors of hunter-gatherer related ancestry.
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Figure 4.6: SOURCEFIND ancestry proportion estimates for all newly sequenced target samples
(vertical columns). Target samples are grouped by archaeological age. Surrogate
populations are represented as horizontal rows and also grouped into archaeological
culture. Each target was modeled as a mixture of only populations which are dated to
being older or contemporaneous as the the target. Numbers within each cell correspond
to the ancestry proportion estimate.
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Figure 4.7: Copying matrix plot for sources in 2-way admixture event for Erg1. Each panel
represents one of the 2 mixing sources. Labels above each panel gives the proportion
that mixing source contributed to the Early Middle Age samples. Length of the bars
within each panel represent the amount that mixing source copied from a particular
population.
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4.3.4 Spatially and temporally close samples in Late Neolithic dis-

play highly distinct ancestries

This dataset included two individuals found in the same stratigraphical layer of Cherry-Tree

cave; Kir23 and Kir24 were both dated to the Late Neolithic (approx 4700 BP). Despite

their temporal and spatial closeness, they show highly different ancestry profiles (Fig. 4.9).

On both the plink PCA and fineSTRUCTURE clustering, Kir24 clusters with individuals

from populations present around the Eurasian Steppe during the Bronze-Age, such as those

from the Yamnaya and Afanasievo cultures. These are the populations thought to be in

part responsible for the spread of Indo-European languages across Europe [106]. That the
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Yamnaya and Afanasievo samples were sampled in Russia suggests that Kir24 may have

been a recent migrant from the Eurasian Steppe. This is supported by IBD analysis; of all

the ancient samples in the dataset Kir24 shares the most IBD (31.12cM) with the Yamnaya

type-specimen and the lowest TV D with 2 other members of the Yamnaya population.

This timing (Kir24 is dated to approximately 4700 BP) corresponds to some of the earliest

appearance of Yamnaya-like ancestry in central Europe [178]. Using qpAdm, Kir24 could

be modelled as a mixture of Yamnaya (93%, se=12) and WHG (6%, se=8) without any

Neolithic ancestry.

Kir24 was assigned to mtDNA haplogroup T1a1, which has been found in Yamnaya

samples from the Middle Volga region and Bulgaria [179]; the same study found the frequency

of T1a1 to be higher in the Yamnaya peoples than in any other ancient or modern population.

On the other hand, Kir23 is found in a fineSTRUCTURE cluster with Ballynahatty,

from Neolithic Ireland (3343-3020 BC), and is positioned on both plink and ChromoPainter

PCAs with other late Neolithic samples. It is found in adjacent fineSTRUCTURE groups to

samples from Neolithic Spain and Ireland. As is the case with other Neolithic samples of this

era, Kir23 has a component of Hunter-Gatherer ancestry; it is known that Middle Neolithic

individuals are characterised by admixture with the existing Hunter-Gatherer populations.

qpAdm modelling showed that Kir23 could be formed from a mixture of Neolithic Anatolia

(96%, se=14) and Hunter Gatherer (6.25, se=0.91) without the need for additional Steppe

ancestry.

To test whether the source of Neolithic ancestry in Kir23 was most similar to local

populations, I performed f4 tests in the form f4(W = Kir23, X = mbutipygy; Y = test, Z =

Erg2), which tests whether Kir23 forms a clade with Erg2, a local farmer individual, or test,

where test was one of several different farmer populations. Erg2 was chosen as the local

group because it did not infer any potentially confounding Hunter Gather ancestry 1. Kir23

always formed a clade with Erg2, suggesting that the source of ancestry into Kir23 was local

and that there was a degree of continuity within the region.

4.3.5 ‘Southern’ ancestry to Cherry-Tree Cave during the Iron Age

is Italian in origin

The plink PCA shows that the four Iron Age samples are shifted towards the cluster of

Neolithic individuals and away from the samples typical of the European Bronze Age. The
1Note that Fig. 4.9 shows that Erg2 has a component of hunter-gatherer admixture; this is almost certainly

related to coverage. Firstly, it mirrors results from previous chapters which show samples of low coverage
may display abberant ancesrty in SOURCEFIND analysis and qpAdm, which is robust to coverage effects,
did not find this ancestry.
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Target Left Weight SE Z
Bavaria Iron Bavaria Bronze 1.458 0.732 1.992
Bavaria Iron HallstattBylany -0.458 0.732 -0.625
Bavaria Iron Bavaria Bronze 0.956 0.426 2.245
Bavaria Iron Renaissance 0.044 0.426 0.103
Bavaria Iron Bavaria Bronze 0.986 0.202 4.871
Bavaria Iron Imperial Rome Late Antiquity 0.014 0.202 0.070
Bavaria Iron Bavaria Bronze 0.990 0.173 5.738
Bavaria Iron Imperial Rome 0.010 0.173 0.056
Bavaria Iron Bavaria Bronze 0.981 0.280 3.505
Bavaria Iron Roman Solider 0.019 0.280 0.069

Table 4.3: Selected qpAdm results for estimating proportions of ancestry in the four Bavarian Iron
Age samples. Each two rows is one test, with left populations as Bavaria Bronze and
other. ‘Weight’ gives proportion of ancestry, ‘SE’ jackknifed standard error of Weight.
Note negative Weight for model involving HallstattBylany, showing that the model does
not fit well

same pattern is also seen in the present-day PCA, where the Iron Age samples are shifted

substantially towards Spain / Northern Italy relative to the preceding Bronze Age sample

which is situated among Northern / Western European populations (Germany, Wales) (Fig.

4.5).

In fineSTRUCTURE, all four Iron Age individuals were grouped alongside several Lombard

samples and a Roman soldier from 300AD. qpAdm modelling showed that the Iron Age

samples can be well formed from a mixture of the preceding Bavarian Bronze age sample

and those from either Renaissance Italy, Imperial Rome, Imperial Rome Late Antiquity or

‘Roman Solider’ from Veeramah et al (2018), with all other possible sources included with

Bronze Age giving a poorly fitting models (Table 4.3). This suggests a model of admixture

from populations best represented by those from post Iron-Age Italy. SOURCEFIND using

all ancients as surrogates, inferred 26% of the IA samples’ ancestry was most closely related

to the “Rennaisance” Italy population from 1500CE, with no such inferred ancestry in the

temporally flanking Bronze and Middle Age samples.

MOSAIC inferred the Iron Age samples could be formed of a mixture of ≈ 18% ancestry

from a source closest to an Alamannic-Frankish sample (STR_355c, 510 – 530 AD) and

≈82% ancestry from a source closest to Anatolian Neolithic / LBK samples, with admixture

dated to 9.2 generations ago (bootstrapped 95% CI: 7.86-11.31). Fst, estimated by MOSAIC,

between the two mixing sources was 0.016, approximately equivalent between present-day

Germans and Palestinians [180].

Based on SOURCEFIND and qpAdm modelling with selected ancient and present-day
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East Asian samples, unlike Gamba et al (2014) [175], I found no evidence of East-Asian or

East-Asian-like admixture (Fig. 4.6).

4.3.6 Present-day genomes unpick genetic differences between early

Germanic and Slavic populations

Lastly, my dataset included three samples (1 newly sequenced) from the Middle Age period.

The two genomes from Altheim, Germany, date to around 500AD and were found in a Roman

context. The single individual from Molzbichl, Austria, dates to around 300 years later, and

has been assigned to a ‘Slavic’ cultural context. It is currently unknown whether, in addition

to cultural and linguistic differences, genetic differentiation exists between the ‘Germanic’

peoples represented by the two Altheim samples, and the ‘Slavic’ peoples represented by the

Molzbichl sample.

The three Middle Age samples appear to share common ancestry based on the plink PCA

and are located next to other spatially and temporally close samples from the Middle Ages.

Similarly, they have almost indistinguishable SOURCEFIND ancestry proportions (Fig 4.9).

f4 in the form f4(mbutipygymy, Bavaria_Iron; Bavaria_Slav, Bavaria_Germanic)

returned a non-significant result, consistent with ‘Germanic’ and ‘Slavic’ populations splitting

post Iron Age. However this non-significant result could be caused by low sample sizes in

the Middle Age populations or a lack of power in allele-frequency based methods.

However, the two Germanic samples fall into a fineSTRUCTURE cluster with a set of

contemporaneous samples from Northern Europe, including 10-11th century Vikings from

Estonia, Sweden and Iceland 2 , whereas Molz1 clusters with other individuals known to

be from Early Slavic populations. Interestingly, the Slavic cluster also containing a sample

DA29, also know as ‘GoldenHordeEuro’. This sample is from Karasuyr, Kazakhstan, and

has been dated to 1200-1400 CE. The Golden Horde was a Mongol khanate established in

the 13th Century CE. Given this sample shows clear evidence of European ancestry and

clusters alongside individuals from Early Middle Age Europe, it has been proposed that this

individual was captured in Europe during the Mongol raids of the 13th Century, when they

assaulted the Kievan Rus’ federation [181]. That ‘GoldenHordeEuro’ clusters with Molz1

suggests the location of capture in Europe may have been from Austria where Molz1 was

found.

On a haplotype-based PCA with modern samples, Molz1 clusters with present-day Slavic

speaking populations such as Poland, Ukraine and Belarus, while the two Germanic samples

2Viking samples not shown on Fig. 4.4 to increase visual clarity
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cluster with present-day individuals from Germanic-speaking countries in Western Europe,

such as Scotland, Germany and Wales (Fig. 4.5). Plotting differential haplotype sharing

between the Slavic and Germanic sample makes this pattern clear (Fig 4.10). There is a clear

division down the centre of Europe, dividing it into East and West that shows the structure

in present-day Europeans has existed since at least the Early Middle Ages.

In SOURCEFIND, the two samples from Altheim derived a large proportion of their

ancestry to modern day Germans (81.8%, se=12.8), whereas the Molzbichl sample derived a

large proportion of its ancestry from modern day Polish (77.85%, se=20.3) and Croatians

(11.7%, se=9.1).

−0.001

0.000

0.001

Difference in 
 haplotype donation

Figure 4.10: Differential haplotype-donation between Germanic and Slavic samples. Each coloured
point is one present-day population. Points are coloured based on whether they
donate relatively more to Germanic (blue) or Slavic (red) ancient samples.



4.3. Results 129

4.3.7 Summary of Results and Discussion

Drawing back to the questions asked at the beginning.

Whilst the two samples from the Early and Middle Neolithic, Erg1 and DIN2, showed

some signs of being from at least closely related source populations, they also displayed

variation suggestive of different population histories. Consistent with the hypothesis that

DIN2 may have migrated along the Danubian route, it shares the lowest TV D and is found

in a fineSTRUCTURE cluster with other samples from the Hungarian Plane. Additionally,

Erg1 and DIN2 both show evidence of Hunter-Gatherer admixture (Fig. 4.8/4.9).

I found evidence of population discontinuity in Cherry-Tree Cave from the Late Neolithic

through to Iron Age. I identified a incoming signal of ‘southern’ ancestry during the Iron

Age, which was not present in the single sample from the preceding Bronze Age. The closest

source of this ancestry in my dataset is from Italy, with the best source in the dataset being

the cluster of Renaissance samples from Antonio et al (2019) [59], date to between 282 -

354 AD. However, given the Cherry-Tree Cave samples are almost 800 years older than the

date of the Renaissance, it seems likely these are not the ‘true’ mixing sources and better

sampling is needed to identify such a source. Whilst collaborators proposed that the source

may be related to the local Hallstatt culture, qpAdm modelling rejected this scenario (Table

4.3). Wherever the source originated from, this admixture event provides strong evidence

against continuity in Cherry-Tree Cave.

Lastly, I used present-day genomes of individuals from across Europe to show that there

are clear genetic differences between the Middle Age Germanic and Slavic samples, with the

Germanic samples showing a strong affinity to western European countries and the Slavic

samples showing a strong affinity to eastern European samples (Fig. 4.10). However, in the

context of ancient samples, all three Middle Age samples clustered with local samples from

the Bronze Age rather than the Iron Age (Fig. 4.4).

This dataset revealed that temporally and spatially close samples may have very distinct

genetic ancestry profiles, with Early Bronze Age samples Kir24 and Kir23 showing high

levels of Steppe-related and Neolithic ancestry respectively. In particular, Kir24 seemed to

be very recently related to the Yamnaya type-specimen sample, sharing 31cM of IBD with it.

The arrival of Yamnaya-like ancestry from this early period (2762BC) represents one of the

earliest known appearances in the literature.

Future studies in this region should focus on obtaining a higher density of samples, in

particular from the Bronze and Iron Ages; the low number of samples from these time periods
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mean any results should be interpreted with caution. More samples would show whether the

introduction of ‘southern’ like ancestry in the Iron Age was a widespread phenomena, or

restricted to a smaller geographic region in Southern Germany. Similarly, a wider sampling

of Iron Age groups from Germany, Italy and Switzerland may allow for a more accurate

identification of this source.

Whilst the utility of using present-day genomes was outlined through the comparison

of the Slavic and Germanic samples, the analysis would have been significantly improved

with higher resolution data from Germany. The data I have, described in Appendix section

A.4, only had country-level details. Data which had labels from different sub-regions in

Germany, similar to the POBI dataset, would have allowed for a finer-scale investigation into

the current east-west genetic divide in present-day Germany.



Chapter 5

The genomics of the Slavic migration

period, Early Middle Ages and their

links to the present day

5.1 Introduction

The Slavic peoples originated as a diverse network of tribal societies who lived in Central

and Eastern Europe from the first Millennia AD [182] and whose origin, although disputed,

is thought to be Polesia (a marshy forested area straddling Poland, Belarus, Russia and

Ukraine) [183]. Although various Roman and Greek sources refer to Slavs as Veneti and

Spori as early as the 1st and 2nd centuries AD, the term ‘Slavs’ was first used in writing by

Roman bureaucrat Jordanes at the beginning of the 6th century after their attack on the

Byzantine empire [184]. This era, known by historians as The Migration Period, was a period

of European history, roughly between 375-568 AD after the fall of the Roman Empire [185],

characterised by the large-scale movement of various peoples. The Migration Period began

with the Huns moving into Eastern Europe at the end of the 4th Century, occupying an area

including present-day Hungary and Romania. During the 5th century, various Germanic

groups invaded and established a homeland across parts of the Western Roman Empire. This

was followed by the expansion of Slavic populations into regions of low population density in

the sixth century.

Across the next two centuries, these peoples had settled across large parts of Europe

(Fig. 5.1). In particular, the Early Slavs had expanded southwards into the Balkans and

Alps [182, 186–188]. It has been proposed that these migrations were key to forming the

foundations of present-day Slavic (speaking) nations [182].
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By the beginning of the 12th century, Slavs constituted a large part of a number of many

medieval Christian states across Europe. As from this time period, Slavs could be broadly

split up in three groups: the eastern Slavs as part of the Kievan Rus’, southern Slavs in the

Bulgarian Empire, the Principality of Serbia, Kingdom of Croatia and the Banate of Bosnia,

and western Slavs in the Principality of Nitra, Great Moravia, the duchy of Bohemia and

the Kingdom and Poland. In addition, Slavic settlement also occurred in the Eastern Alps;

Slovenia, large parts of present-day Austria and Friul.

Figure 5.1: Slavic tribes from the 7th to 9th centuries AD in Europe. Source: (https://commons.
wikimedia.org/wiki/File:Slavic_tribes_in_the_7th_to_9th_century.jpg)

Today 315 million people speak Slavic languages and linguistic evidence suggests that

they can be broadly split into these three broad groups; western Slavs (Poles, Czechs and

Slovaks), eastern Slavs (Ukrainians, Belarusians and Russians) and southern Slavs (Croatians,

Bulgarians, Slovenians, Bosnians, Macedonians, Montenegrins and Serbians) [189].

The history of the Slavic peoples can be artificially be split into three periods: Migration

https://commons.wikimedia.org/wiki/File:Slavic_tribes_in_the_7th_to_9th_century.jpg
https://commons.wikimedia.org/wiki/File:Slavic_tribes_in_the_7th_to_9th_century.jpg
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Period (∼375AD - ∼568AD), Early Middle Ages/High Middle Ages (∼600AD - ∼1250AD)

and present-day. Several previous studies have investigated the genetics of the transitions

between these periods. Juras et al (2014) used uni-parental mtDNA markers from ancient

DNA samples from Poland to show continuity between both Roman Iron Age period (200 BC

– 500 AD) and Medieval Age (1000–1400AD) with present-day Poles, Czechs and Slovaks [190].

However, whilst informative about sex-biased migrations, uniparental markers carry only a

fraction of the information that autosomal markers do, and therefore may provide misleading

or incomplete information about the relationship between samples [191,192], especially when

admixture is prevalent (although see [193]). For example, it is know that mtDNA and nuclear

DNA may have different evolutionary histories and thus display discordant phylogenetic

trees [194].

Kushniarevich et al (2015) [195] combined results from mtDNA, non-recombining Y

and autosomal DNA to investigate the population structure of a wide range of present-day

Balto-Slavic populations. They proposed that incoming Slavic speakers admixed with peoples

in the regions they occupied during the Migration Period.

More recently, Macháček et al (2021) [196] analysed a cattle rib from Lány, Czechia,

dated to approximately 600AD, that is inscribed with Germanic runes. The bone was found

in a location where Slavs were thought to have arrived at the end of the Migration Period,

after the Germanic tribes had disappeared and the use of a Slavic language is historically

confirmed as of the 9th century. However, whether there was early genetic contact as well is

yet to be determined.

Several studies into present-day Slavic populations have detected signatures of admixture

from East-Asia [20,167,197–199]. Whether or not these signals can be observed in ancient

individuals is yet to be seen and could further refine the admixture date. For example, different

admixture dates in different Slavic populations may reveal structure among present-day

Slavs.

Finally, several studies have used haplotype-based methods to explore the structure of

present-day Slavic populations. Ralph and Coop [200] compared regions of IBD matching

across different European populations. They found a relatively high degree of IBD sharing

among pairs of individuals from Eastern Europe, suggestive of expansion from a smaller,

common source population. This expansion was tentatively estimated to between 0-1000AD.

Consistent with estimates of a small population size, Hellenthal et al (2014) [20] inferred

an excess of among Eastern European individuals and an admixture event, albeit with a

more constrained admixture date of 440 - 1080 CE. However, this could also be interpreted
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in terms of a small effective population size [201,202]. Salter-Townshend and Myers (2019)

also identified admixture in the Chuvash people between east Europeans and east Asians

approximately 1224 CE [167].

In this chapter, I will analyse 17 new medium to high coverage whole ancient genomes

from Czech Republic, spanning from the Migration Period to Early Middle Ages (384-950

AD). These are, to my knowledge, the first high-coverage whole ancient-genomes from this

period. I will merge the newly sequenced samples with reference data from other ancient

individuals and a large reference set of relevant present-day European individuals in order

to understand their ancestry in the context of both present-day and ancient samples. In

particular, I am interested in considering the following questions:

1. Do the labels “Migration Period” and “Early Middle Ages” make sense from a genetic

standpoint? Is there evidence of genetic change between Migration period and Early

Middle Ages in the area of present-day Czech Republic?

2. To what degree to we observe evidence of continuity/discontinuity between the Migration

Era and Early Middle Age samples?

3. How are present-day Slavic speakers structured, and do the different ancient Slavic

samples have different affinities to different present-day Slavic language groups?

5.2 Methods

5.2.1 Description of samples

Whole-genome sequence data were generated from 17 ancient individuals by collaborators

at Max Plank institute for E(Table 5.1). Five samples from Líbivá date to the Migration

Period (348 AD - 504 AD), while the other 12 samples from Pohansko date to the later Early

Middle Ages (724 AD - 995 AD).

The Migration Period and Early Middle Age samples were categorised based upon the

style of pottery found in the burial grounds (Z. Hofmanová, personal communication).

5.2.2 Processing of samples performed by collaborators

Collaborators screened 22 samples and selected those with the highest endogenous DNA

content, whilst still having high complexity as measured by low duplication rate.

Sequencing quality of reads was checked with fastQC (https://www.bioinformatics.

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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Code Site Date (AD) Period Coverage
LIB11 Břeclav – Líbivá 741.5 Early Middle Ages 5.3
LIB12 Břeclav – Líbivá 475.5 Migration period 6.8
LIB2 Břeclav – Líbivá 495.0 Migration period 6.4
LIB3 Břeclav – Líbivá 509.0 Migration period 5.3
LIB4 Břeclav – Líbivá 472.5 Migration period 6.5
LIB5 Břeclav – Líbivá 348.0 Migration period 7.3
LIB7 Břeclav – Líbivá 830.5 Early Middle Ages 5.6
POH11 Pohansko – Lesní školka 783.0 Early Middle Ages 5.0
POH13 Pohansko – Lesní školka 879.5 Early Middle Ages 6.0
POH27 Pohansko – Jizní Předhradí 783.0 Early Middle Ages 5.9
POH28 Pohansko – Jizní Předhradí 822.5 Early Middle Ages 5.6
POH36 Pohansko – Jizní Předhradí 880.5 Early Middle Ages 5.5
POH39 Pohansko – Jizní Předhradí 866.4 Early Middle Ages 5.3
POH3 Pohansko – Lesní hrúd 956.5 Early Middle Ages 5.4
POH40 Pohansko – Lesní školka 950.5 Early Middle Ages 5.5
POH41 Pohansko – Lesní školka 875.5 Early Middle Ages 5.2
POH44 Pohansko – Pohřebištĕ U Kostela NA Early Middle Ages 5.3

Table 5.1: Information on newly sequenced ancient samples. Date (AD) estimated from radiocarbon
dating. ‘Migration’ corresponds to Migration Period and ‘EMA’ corresponds to Early
Middle Ages. Coverage calculated as the mean depth across all 77,213,942 genome-wide
SNPs where genotypes were called at.

babraham.ac.uk/projects/fastqc/). Duplicate reads were marked with picard-tools

MarkDuplicates [97]. Libraries from the same samples were merged using samtools

merge [67], and duplicates were marked again as described above to tag duplicate reads of

the same libraries among sequencing lanes. Genotypes and genotype likelihoods were called

using the atlas pipeline [71]. First, aligned reads from paired-end sequenced read groups were

merged to avoid double-use of bases in the overlapping part. PMD patterns were estimated

for each read group with atlas task=PMD, providing the reference with ref= and enabling

the option filterSoftClips to remove reads with soft-clipping.

Again using atlas [71], base-quality recalibration parameters were obtained (short recal-

parameters) from highly conserved regions. A .bam file with corrected recalibration and

pmd parameters was created with atlas BAMUpdateQualities, providing PMD and recal-

parameters and applying soft-clip filter (pmdFile, withPMD, recal, filterSoftClips).

5.2.3 Ancient DNA processing

I merged the 17 newly sequenced individuals with the ancient literature samples given in

section A.1, resulting in a total of 959 ancient individuals with genotype likelihoods at

77,213,942 genome-wide autosomal SNPs.

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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I followed the GLIMPSE [92] imputation and phasing pipeline (https://odelaneau.

github.io/GLIMPSE/tutorial_b38.html) to generate genotype probabilities and phased

genotypes for each individual. For the reference panel, I used the 30x 1000 genomes

dataset [103], described in Appendix section A.2.

5.2.4 Present-day DNA processing

I merged the newly sequenced and published ancient samples with the MS-POBI-HellBus

dataset, described in detail in Appendix section A.4, chosen because it contains a high number

of relevant samples from central and eastern Europe. I removed samples from Australia, New

Zealand and USA.

The present-day and ancient samples were phased separately, as GLIMPSE is designed for

sequence-level density of data, and the present-day samples were genotyped on a low-density

genotyping array. Therefore, I phased the present-day samples using shapeit4 [25] using

default parameters and the supplied genetic map. I note that phasing the datasets separately

may reduce power to compare ancient and present-day samples.

The present-day and ancient samples described in section 5.2.3 were merged and converted

to ChromoPainter format.

5.2.5 plink PCA

I performed a PCA on the pre-imputation genotypes for only the ancient samples using

plink2 [165]. I chose to use plink2 because recent studies have shown it is substantially better

at dealing with samples containing variable amounts of missing data than other methods

such as smartPCA [56].

I ranked all SNPs by the percentage of missing genotypes and retained only the 500,000

markers with the lowest amount of missingness. I then LD-pruned the resulting SNPs using

the settings –maf 0.01 and –indep-pairwise 50 5 0.2 and performed PCA using plink2

under default settings.

5.2.6 Allele-frequency based tests

I used Admixtools [42], implemented in Admixr R library [203] to perform different F-

statistics.

https://odelaneau.github.io/GLIMPSE/tutorial_b38.html
https://odelaneau.github.io/GLIMPSE/tutorial_b38.html
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5.2.7 ChromoPainter and fineSTRUCTURE analysis

The merged data described in sections 5.2.3 and 5.2.4 contained a total of 959 ancient and

14,795 present-day samples genotyped at 477,417 autosomal bi-allelic SNPs.

I first selected all ancient samples above 2x coverage and performed an ‘all-v-all’ painting

where each haplotype was compared to all other haplotypes in turn, hereafter referred to as

‘ancient’ painting. I chose to remove samples with <2x coverage because all new samples

analysed here had at least 5x coverage, and my previous work indicated little difference in

ChromoPainter results among samples >2x coverage (Chapter 2 section 2.6.4).

I also performed an ‘all-v-all’ painting of the 17 newly sequenced samples and the

present-day populations given in table 5.2, hereafter referred to as ‘present-day painting’.

The fineSTRUCTURE [19] clustering and tree building algorithm was applied to the

ChromoPainter output for both the ‘present-day’ and ‘ancient’ paintings, in each case using

2,000,000 MCMC iterations after 1,000,000 iterations of “burn-in”. I then ran the tree-building

mode (-m T) with 100,000 additional hill-climbing steps before tree building,

Tree figures, coancestry matrix figures and principle component plots were gener-

ated using the fineSTRUCTURE R library (https://people.maths.bris.ac.uk/~madjl/

finestructure/FinestructureRcode.zip).

The full workflow is shown in schematic form in Figure 5.2.

5.2.8 SOURCEFIND ancestry proportion analysis

I used SOURCEFIND [21] to infer the proportions of ancestry by which each target (e.g.

ancient) individual is most related to a set of surrogate ancient populations. Each of the 47

clusters of ancient samples inferred by fineSTRUCTURE was analysed in turn, using the

other 46 clusters to act as surrogates.

Each cluster was run across three independent MCMC runs, using 50,000 burn-in iterations,

500,000 main iterations, and thinning every 5 iterations All three MCMC runs were then

combined to form an MCMC list using the coda R libary [107] and mcmc function to jointly

estimate ancestry proportions and empirical credible intervals for each target population.

5.2.9 MOSAIC admixture analysis

I inferred admixture events, dates and proportions using MOSAIC [167], performing two dif-

ferent analyses that mimicked the two ChromoPainter “ancient” and “present-day” paintings

(https://people.maths.bris.ac.uk/~madjl/finestructure/FinestructureRcode.zip)
(https://people.maths.bris.ac.uk/~madjl/finestructure/FinestructureRcode.zip)
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Figure 5.2: Workflow for analysing novel and reference ancient DNA samples. Each individual .bam
fie is downloaded and processed using atlas, generating vcf files containing genotype
calls and genotype likelihoods at each SNP identified in the 1000 genomes project.
vcf files were then merged using bcftools and phased/imputed using GLIMPSE. The
phased genotypes and posterior genotype probabilities from GLIMPSE were then
combined to create a ChromoPainter input file. ChromoPainter was then used to
generated a .chunklengths matrix for use in SOURCEFIND.

Population Number of
Individuals

HB:tsi 98
HB:spanish 34
HB:german 30
HB:french 28
HB:greek 20
HB:croatian 19
HB:hungarian 19
HB:norwegian 18
HB:southitalian 18
HB:polish 17
HB:romanian 16
HB:mordovian 15
HB:cypriot 12
HB:northitalian 12
HB:lithuanian 10
HB:siciliane 10
HB:westsicilian 10
HB:tuscan 8
HB:irish 7
HB:scottish 6
HB:germanyaustria 4
HB:welsh 4

Table 5.2: Name of population and number of samples used in the present-day ChromoPainter
analysis
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described above. In particular I tested each of the 5 fineSTRUCTURE clusters containing the

17 newly sequenced individuals using as surrogates: (i) 46 other fineSTRUCTURE clusters

containing ancient individuals (i.e. from the “ancient” painting results) or (ii) only the 5

other Slavic ancient populations plus 49 present-day populations in Table 5.3. I assumed

each target population could be formed as a mixture of both two and three admixing sources,

with all other parameters left as default.

I then performed a ‘present-day surrogates’ analysis using a select group of present-day

populations 5.3 and all ancient Slavic samples. I analysed each population in turn using all

other populations as surrogates.

MOSAIC was run using default settings and the following sets of populations as targets

and the following sets as surrogates. I formed each target as a mixture of both 2 and 3

mixing sources, with all other parameters left as default. Upper and lower quantiles for

admixture dates were estimated using a bootstrap procedure. Other than changing the

number of mixing sources, all other parameters were left as default.

5.3 Results

5.3.1 Mixed ancestry of Migration Period Slavs

The Migration Period samples consisted of five individuals with radiocarbon dates corre-

sponding to the Migration Period (348 - 509AD). Both the unlinked (Fig. 5.3) and linked

PCAs (Fig. 5.4) show that the Migration Period samples are heterogeneous and do not likely

originate from the same source population. One sample, LIB2 (495AD) is located in the

centre of a large cluster of contemporaneous individuals from Iron Age central and northern

Europe. fineSTRUCTURE grouped LIB2 with Viking era individuals from Sweden, Denmark,

Iceland, Estonia and Norway from 300-1100AD. When painted using a set of present-day

reference samples, LIB2 matches the most haplotypes and clusters with Norwegians (Fig.

5.8). Put together, this data suggests LIB2 may be a recent migrant from Viking regions.

On the other hand, LIB4 and LIB5 are found in a fineSTRUCTURE group together with

Early Iron Age and Renaissance samples from Italy, and generally show an increased affinity

Neolithic / Southern European populations relative to the other Migration Period samples

based on PCA results (Fig 5.3-5.4). All samples and their associated fineSTRUCTURE

groups are found in Appendix section A.5.2.

LIB3 clusters with Lombard samples from Northern Italy (Fig 5.3) in the ‘ancient’ painting,

and with Tuscans in the ‘present-day’ painting. Finally, LIB12 displays ancestry which is
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Population Number of
Individuals

HB:han 34
HB:bulgarian 31
HB:japanese 28
HB:sardinian 28
HB:russian 25
HB:yakut 25
HB:greek 20
HB:ukrainian 20
HB:croatian 19
HB:hungarian 19
HB:mongolian 19
HB:southitalian 18
HB:chuvash 17
HB:polish 17
HB:romanian 16
HB:buryat 15
HB:mordovian 15
HB:altai 13
HB:tuva 13
HB:evenk 12
HB:northitalian 12
HB:cambodian 10
HB:dai 10
HB:hannchina 10
HB:lithuanian 10
HB:miao 10
HB:nganassan 10
HB:selkup 10
HB:siciliane 10
HB:tu 10
HB:tujia 10
HB:uygur 10
HB:westsicilian 10
HB:yi 10
HB:belorussian 9
HB:daur 9
HB:oroqen 9
HB:xibo 9
HB:hezhen 8
HB:naxi 8
HB:tuscan 8
HB:dolgan 7
HB:chukchi 5
HB:koryake 5
HB:yukagir 4
HB:myanmar 3
HB:burya 2
HB:ket 2
HB:malayan 1

Table 5.3: Name of populations and number of samples used in the present-day MOSAIC analysis
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Figure 5.3: Principle component plot of newly sequenced ancient samples and reference ancient
individuals performed using the plink2. Green labels correspond to Migration Era
samples, red labels to Early Middle Age samples and black as reference populations.
The position of each reference label is the mean PC coordinates of all individuals
within that population
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Figure 5.4: Principle component plot of newly sequenced ancient samples and reference ancient
individuals performed using fineSTRUCTURE. Green labels correspond to Migration
Era samples, red labels to Early Middle Age samples and black as reference populations.

more typical of the preceding Central European Bronze Age, suggesting it may represent a

‘leftover’ from a local Bronze Age population which was unaffected by the Antiquity / Iron

Age migrations to the region. It should be noted that the unlinked plink2 PCA and linked

ChromoPainter PCA position LIB12 against slightly different other populations, with the

unlinked PCA showing a similarity to Bronze and Iron Age French samples, and the linked

PCA to Longobards and Bavarian samples. This may be caused by either the linked PCA

giving higher resolution results, or giving details of a more ancient ancestral relationship.
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5.3.2 Early Middle Age Slavs represent a relatively homogeneous

group typical of European Middle Ages

In comparison to the five Migration Period ancient Slavs, the 12 Early Middle Age Slavs

(741-956 AD) are more homogeneous. All 12 samples cluster in the same fineSTRUCTURE

group (named Slavic Early Middle Age II) (Table A.5.2), alongside Viking/Medieval samples

from Ukraine, Poland and Sweden. SOURCEFIND showed that the Slavic Early Middle

Age II cluster derives roughly equal parts of ancestry from the clusters Viking 10C Scan

I, BronzeAge I and Lombard mixed cluster (Fig. D.8). Interestingly, these three ancestry

sources are similar to those identified by SOURCEFIND analyses in the Migration Period

samples (Fig D.8). I tentatively therefore suggest that the Early Middle Age Slavs were

formed from the mixture of ‘northern’ (best represented by Viking) and ‘southern’ ancestries

(best represented by Lombards) onto a substrate of local Bronze Age populations.

MOSAIC admixture analysis on the Early Middle Age samples using ancient surrogates

proved inconclusive. However, using present-day individuals as surrogates inferred a three-

way admixture event involving sources closest to present-day day north-central Slavs (76.6%),

southern-eastern Slavs (21.9%) and East Asians best represented by Mongolians (1.5%)

(Fig. 5.5). This admixture event was estimated to have occurred 9.4 (2.5% 5.7gens - 97.5%

17.9gens) generations before the samples (Fig. 5.6), i.e. 476 - 732 AD.

This admixture event is consistent with a signal inferred in both present-day day Eastern

European individuals [20, 167]. In previous studies, this admixture event was dated to

approximately 1200CE (MOSAIC) and 440-1080 (GLOBETROTTER).

5.3.3 Assessing continuity between Early Middle Age and Migration

Period samples

To formally establish whether the Early Middle Age and Migration Period samples cluster

within their respective populations to the exclusion of the other, following Leslie et al 2015 [31],

I performed a TVD permutation test. Full details of TV D justification and calculation are

outlined in Appendix section B.3.

Using the ancients chunklengths matrix, I grouped the samples into Migration Period

and Early Middle Age and calculated the average copyvectors Cmp and Cema across sam-

ples within each groups. Here Cmp = {Cmp(1), ..., CmpD}, where Cmp(d) is the average

amount a Migration Period individual copies from (i.e. is painted by) individuals from

donor population d. Then, I calculated the empirical TVD between the two groups as
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Figure 5.5: Copying matrix plot for sources in 3-way admixture event for Early Middle Age ancient
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Figure 5.6: Inferred Coancestry Curves obtained from modelling Early Middle Age samples as a

3-way mixture of present-day individuals. Black lines are empirical coancestry curves
across all target individuals, light grey are per individual, green is the fitted single-event
coancestry curve. x-axis gives genetic distance and y-axis the probability of switching
segments from source a to source b. Sources are those given in Fig. 5.5.

TV Dmp,ema =
∑

d |Cmp(d) − Cema(d)|. For 10,000 iterations, I then randomly permuted the

population labels among the samples and then calculated the analogous TVD, TV Drand
mp,ema,

between these two randomised “populations”. I then calculated, as a p-value for the null

model assuming individuals are exchangeable between the two populations, the number

of randomly permuted iterations where TV Drand
mp,ema ≥ TV Dmp,ema. This test supported

clustering the samples into their respective groups (p = 0.0013).

To determine the extent of continuity between the Migration Period and Early Middle

Ages, I modelled each Early Middle Ages sample as a mixture of other ancients, including

individuals from the preceding Migration Period, using SOURCEFIND. The proportion of

ancestry derived from the Migration Period was low (mean 3.4% , range 0.4% - 12.5%),

suggesting that there was a relatively large scale population replacement between the two

different time periods.

5.3.4 Legacy of Slavic migrations in present-day individuals

Principle component analysis (PCA) of the present-day painting indicates genetic similarity

between ancient Slavic samples from the Early Middle Ages and present-day day Slavic
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speaking populations (Fig. 5.7). The Early Middle Age samples primarily cluster with

present-day Polish and Belorussian individuals, but appear to fall on a cline of genetic

similarity between Russians and southern Europeans.

As with the ancients PCA, Migration Era Slavs are spread across the present-day PCA.

LIB3, LIB4, and LIB5 cluster with present-day Italians, consistent with deriving a substantial

ancestry component from southern European sources. LIB4 and LIB5 appear to be positioned

closer to southern Italians and Greeks, whereas LIB3 is closer to northern Italian and Tuscan

populations. LIB2 shows a strong affinity to present-day Norwegians, suggesting it may be a

recent migrant from Viking regions.
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Figure 5.7: Principle component plot of newly sequenced ancient samples and reference modern
individuals performed using the finestructure library. Green labels correspond to
Migration Era samples, red labels correspond to Early Middle Age samples and white
labels correspond to reference populations. The position of each reference label is the
mean PC coordinates of all individuals within that population. Transparent coloured
points correspond to present-day individuals.
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The same pattern can be observed on the raw copyvector output matrix from the present-

day painting (Fig. 5.8). In particular, Migration Era samples show little excess affinity to

present-day day Slavic populations.
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Figure 5.8: Raw chunklengths matrix from the ‘present-day’ painting. Rows correspond to different
ancient recipient individuals, grouped into Migration Period and Early Middle Age
period, and columns to different donor populations. Colour of cells corresponds to the
total length of genome that a given donor individuals donates to that recipient, with
dark/blue indicating less sharing and light/yellow colours indicating more sharing.

In contrast, the Early Middle Age samples showed a strong affinity to present-day day

Slavic populations, especially Polish, Lithuanians and Mordovians.

To confirm that the observed results were not a result of phasing or imputing ancient

individuals using present-day samples, I calculated f3 statistics on pre-imputation genotypes.

Specifically, I calculated f3, or the branch length / amount of shared drift, between a set of

present-day test populations and the grouped Early Middle Age samples. The results are
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qualitatively similar to those obtained using ChromoPainter, with Early Middle Age ancient

Slavic individuals being closest to samples from Eastern Europe (Fig. 5.9). However, the

f3 results do not appear to show the same degree of geographical structure; for example,

Early Middle Age have a more positive f3 with present-day Irish individuals than with some

present-day Slavic-speaking groups such as Croatians, perhaps reflecting relatively higher

genetic drift in the Irish population.
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Figure 5.9: f3 statistics in the form of f3(EMA, present − day; mbutipygmy), where present-day
is different present-day European population. Error bars rerpesent ± ∗ 2 standard
error.

5.3.5 Genetic structure and admixture events of present-day Slavic

people

fineSTRUCTURE clustering on the 17 ancient samples with 21 present-day European

populations gave results similar to those obtained from visually inspecting the chunklengths

matrix in Fig 5.8. Among Migration Period samples, LIB2 and LIB12 cluster with north-west

European groups, LIB3 clusters with Tuscany, and LIB4/LIB5 cluster with Spain. The

present-day Slavic populations I had data for fall into two fineSTRUCTURE clades consistent

with geography: (1) Croatians and Bulgarians (“south-east”), (2) Belarusians, Lithuanians,

Polish, Russians and Ukrainians (“east”). Of the Early Middle Age samples, three (POH3,

POH39, POH27) cluster into ‘south-east’ Slavic clade, with the remaining seven clustering

into the ‘east’ clade. These results are consistent with the a hypothesis that the structure in

present-day Slavic populations has been present since the Early Middle Ages.

Previous studies have identified admixture events in present-day Slavic populations
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Figure 5.10: Population dendrogram generated by the fineSTRUCTURE tree building algorithm.
Labeled tips refer to the primary population(s) represented in that clade. present-day
non-Slavic populations shown in black. ‘south-east’ Slavs highlighted in cyan and
‘north-west’ Slavs highlighted in yellow. Migration period individuals superimposed
in green and Early Middle Age samples superimposed in red. Read fineSTRUCTURE
paper for description of edge values. Note: some tips contained more than one
population but were not included as labels to save space.

involving an east-Asian source approximately 440 - 1080 CE [167,204]. In previous sections, I

showed that this signal exists in the Early Middle Age ancient samples and is best characterised

by populations from present-day Mongolia (Fig. 5.5). I employed MOSAIC [167] to replicate

the results of Hellenthal et al (2014) and Myers and Salter-Townshend (2019) and determine

whether a similar admixing source is present in the ancient populations. I analysed all

present-day populations (Table 5.3) and ancient Slavic populations in turn. For the ancient

Slavic samples, I grouped all Early Middle Age samples together and grouped LIB3, LIB4

AND LIB5 together as the Migration Period samples.

When considering 2-way admixture event, all of the tested populations (both ancient and

present-day), bar the Migration Period, showed evidence of an admixture event involving a

minor source that has the lowest fst with present-day Uygurs. The dates and bootstrapped

confidence intervals are given in Fig. 5.11. Other than Norwegians and Croatians, whose dates

are later and earlier respectively, the dates for other populations appear to be constrained

around 1250 CE. This date is similar, but slightly later than that obtained from Hellenthal

et al (2014), who estimate it to be 440 to 1080 CE.

Of the present-day Slavic speaking populations, Belorussian, Polish and Ukrainian, show

evidence of a 3-way admixture event, in which the middle component has the lowest fst with
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Figure 5.11: MOSAIC inferred 2-way admixture dates with bootstrapped 97.5% and 2.5% CI).
Vertical green lines correspond to radiocarbon estimated dates of Migration Period
samples and red lines equivalent for Early Middle Age samples. Estimated dates
obtained by assuming an average generation time of 26 and date of birth of 1950 for
present-day samples. Populations are coloured based on whether they show signals
of east Asian admixture (blue) or not (green). Source populations are those given in
table 5.3.
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Migration Era ancient samples (Fig. 5.12). The major component has a low fst with Early

Middle Age Slavs. This suggests that the formation of present-day Slavic populations could

have occurred via admixture events involving Migration Era individuals with high levels

of Southern European ancestry, Middle Age Era samples which show a strong affinity to

present day eastern Europeans, and a small but significant east Asian source best represented

by present-day Uygurs. It seems possible this ancestry may have been transmitted via

Finno-Ugric speaking populations which contain Siberian ancestry, with admixture dates

beginning approximately 3500 years ago [205].

These results are similar to those in the Middle Age samples (Fig. 5.5), though dates are

more recent in the present-day samples (Fig 5.11), suggesting recent admixture in present-day

populations may be masking the older signals we see in the Early Middle Ages group.

5.4 Summary of Results and Discussion

Referring back to the questions posed in the introduction.

I found that the Migration Period samples, relative to the Early Middle Age samples,

show a high degree of diversity in terms of ancestry, with affinities to present-day samples

varying from Norway to southern Italy. On the other hand, fineSTRUCTURE analysis on

the ‘ancients’ painting grouped all Early Middle Age samples together, showing that they

represent a group of samples which likely share common ancestry. Consistent with this, the

Early Middle Age samples showed evidence of east Asian admixture, a signal that was not

present in the Migration Period samples. These results suggest a population turnover may

have occurred between approximately 500-700 AD, the time period between the Migration

Period and Early Middle Age. However, based on MOSAIC results of present day populations,

a model of mixture between sources close to Migration Era, Early Middle Age and east-Asians

seems plausible (Fig. 5.12).

All of the Early Middle Age samples showed a high genetic similarity to present-day Slavic

and non-Slavic speaking populations from eastern Europe, such as Poland and Lithuania

(Fig. 5.8). This is in stark contrast to the Migration Period, who all fell on a cline of

genetic similarity between present-day Scandinavian and Mediterranean populations (Fig.

5.7). Whilst I did not explicitly test a model of genetic continuity, these results provide

strong evidence a higher degree of continuity existed between the Early Middle Ages and the

present-day, relative to between the Migration Period and Early Middle Ages.

Finally, a joint fineSTRUCTURE analysis which included both ancient and present-day
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Figure 5.12: 1 − Fst between 3 inferred mixing sources for present-day Belorussians. Each panel
represent a different mixing source. Each bar gives the value 1 − Fst between that
samples population and the mixing source. Higher values of 1 − Fst suggest that
source is well represented by a particular population.

samples showed that present-day Slavic speakers can be split into ‘north-west’ and ‘south-east’

groups, and that different Early Middle Ages samples had differing affinities to these groups

(Fig 5.10).

I found strong evidence that LIB2 was a recent migrant from Viking regions. There are

many sources which detail the links between the Viking and Slavic peoples towards the end

of the first millennium [206,207]. However, most evidence suggests these links occurred later

than the estimated radiocarbon date of LIB2. For example, it is known that the Scandinavian

colonists settled in present-day Russia as early as 750 AD, whilst LIB2 was samples at

approximately 495 AD. Therefore, we could suggest that this is evidence of an earlier link

than previously known. In their large-scale study of ancient DNA of Viking samples from
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across Europe, Margaryan et al (2020) present Viking samples and ancestry in Estonia, but

not until the beginning of the 8th Century, some 200 years after the estimated date of LIB2.

I also found evidence of southern European-like ancestry in three (LIB3, LIB4 and LIB5)

Migration Period samples. The appearance of southern European-like ancestry in Central

Europe in the first millennium is similar to a signal found in a study exploring the ancestry

of individuals with elongated skulls in medieval Bavaria (approximately 500AD) [208]. It

was shown that particular individuals harbour substantial Southern-European ancestry from

outside of Bavaria, closest to individuals from present-day Greece and Turkey. There are at

least two possible explanations for the presence of this ancestry in the Migration Era samples.

Firstly, LIB3, LIB4 and LIB5 may be similar migrants to the region. This is consistent

with the fact they are all female; Veeramah et al (2018) showed that there was a tendency

for females to migrate from southern regions, perhaps related to the formation of strategic

alliances.

The results from the analysis of combined ancient and present-day genomes are consistent

with those from Kushniarevich et al (2015) [195] who determined that Eastern (Russia,

Belarus, Ukraine) and Western (Polish) central European Slavs form a cluster to the exclusion

of Southern Slavs (Croatia, Bulgaria), whilst also remaining distinct from geographically

proximate Germanic (German/Austrian) and Baltic (Lithuanian) populations. This is also

consistent with results from Veeramah et al 2011, who showed that Sorbs, a west-Slavic

population found between Poland and Germany, have a much stronger affinity to more

distant Slavic populations from Czechia than to more proximate Germans [161].



Chapter 6

General Conclusions

6.1 General summary

In this thesis, I have explored the use of ChromoPainter on ancient DNA samples and present-

day samples which contain sparsely genotyped markers. I evaluated the impact of coverage

on all steps of the analysis pipeline, from imputation and phasing with GLIMPSE [92] to

ChromoPainter and SOURCEFIND analysis, focussing on the trade-off between potential

gains from leveraging haplotype information and potential reference panel bias. I then applied

my findings to two novel and one publicly available dataset(s).

In Chapter 2, I showed that the copyvectors of GLIMPSE imputed ≥0.5x downsamples

show a high correspondence with the same sample at full coverage (Fig. 2.6), when painted

using both ancient and present-day donors.

Disappointingly, my several attempts to improve the performance of ChromoPainter on

0.1x and 0.5x samples were not successful, including filtering the SNPs used using different

criteria (Section 2.8). This was surprising, as my work and that of others [63] showed that

filtering SNPs on e.g. genotype probabilities could substantially reduce the overall fraction of

incorrectly imputed genotypes. I also found evidence of bias towards the reference panel (Fig.

2.14), shown as excess donation from populations in the reference panel, and bias towards the

reference sequence, as genotypes containing more reference alleles were imputed with greater

accuracy (Table. 2.6). In part, these biases may be driven by various factors; for instance,

although the sample size was small (n=5), my results also showed that ancient samples which

are temporally/genetically closer to a reference panel of present-day individuals are imputed

with a higher accuracy.

Using present-day samples, I also showed that you can gain haplotype information using
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sparsely genotyped data with (presumably) perfect information at each SNP. Specifically,

individuals from Cornwall and Devon can be distinguished genetically with >90% accuracy

using only 1565 500-kb regions that contain ≈ 6.6 SNPs on average (i.e. ≈ 40,000 SNPs in

total) (Table. 2.9). A similar classification rate was found for distinguishing Mandenka from

Senegal and Yoruba from Nigeria, with >90% accuracy when using 1565 500-kb regions of

≈ 8 SNPs (Table 2.10). However, it appears current imputation approaches do not make

reliable enough genotype calls on aDNA samples with <0.5x average coverage to provide

many 500-kb windows with correctly called (and no incorrectly called) genotypes. Perhaps

this is not surprising, as my exploration of 587 available ancient DNA samples revealed that

genomes with 0.5x coverage have <1500 500-kb regions with 12 SNPs covered by even two

reads (Figure 2.17), making calling heterozygotes challenging (or impossible) throughout the

genome.

In Chapter 3, I explored African ancestry in U.K. Biobank samples. Following from my

Chapter 2 findings, I showed that it is possible to recover substantial haplotype information

with only a fraction of the total number of SNPs usually used. Being able to use fewer SNPs

in an analysis will allow different datasets to be merged and jointly analysed, opening up

a larger array of questions to be answered, whilst also significantly reducing the computa-

tional footprint of an analysis. I found that in terms of fine-scale population assignment,

performing imputation on non-European samples using a predominantly European reference

panel (Haplotype Reference Consortium) biases ChromoPainter analyses towards reference

populations (Fig 3.3), as does performing analysis in unlinked mode (Table 3.1). Indeed,

performing analysis on a majority imputed SNPs is more harmful for accuracy than using

70,000 SNPs in unlinked mode. This suggests that imputing to combine data from different

SNP arrays, using the strategy I outlined in Chapter 3, may actually be more harmful than

using a relatively small number (<100,000) of overlapping non-imputed SNPs when inferring

fine-scale ancestry patterns.

My analyses showed that approximately 4% of U.K. Biobank participants have at least

50% African ancestry. Within this set of individuals, genetic ancestry from West Africa was

very prevalent, consistent with historical events (Fig 3.5). In particular, I found that there

was over ten times the number of individuals with at least 50% ancestry from Yoruba than

there was the next most common ancestry.

In Chapter 4, I analysed novel ancient DNA datasets from Bavaria with the samples

spanning almost 7000 years of history. The analysis of ancient Bavarian samples recapitulated

previous research which identified admixture events between early farmers and local hunter-

gatherers, and the presence of steppe-related ancestry in the Late Neolithic. However, it also
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provided some less expected results, showing that samples with extremely different ancestries

cohabited the same cave and the same time period. I also identified ancestry most closely

related to Iron Age Italian source which arrived in Bavaria during the Iron Age, but was not

present in the preceding Bronze Age. Future studies could increase the number of ancient

sample sequenced from Bronze and Iron Age Bavaria in order to constrain the date the

ancestry appears and source of origin. Finally, I showed that early Germanic and Slavic

samples from the Middle Ages, which could not be distinguished using other ancient samples,

showed strong genetic differences when analysed using present-day data (Fig. 4.10). Whilst

I was able to identify structure down to the level of individuals countries, the lack of data

from different regions in Germany meant that I was not able to determine whether there was

fine-scale differential relatedness to the ancient samples for different German states.

My final Chapter analysed the differences between Migration Era and Early Middle

Age samples from Czechia. The data revealed that whilst different Migration Era samples

displayed genetic affinities to a wide spectrum of other ancient and present-day populations,

the Early Middle Age individuals were relatively more homogenous and broadly showed strong

similarity to present-day Slavic speaking populations (Fig. 5.8). However, fineSTRUCTURE

analysis using present-day Slavic and non-Slavic speaking populations clearly showed that

present-day Slavic speaking populations can be split into south-east and north-west clusters,

with different ancient samples showing different affinities to each cluster. Lastly, I provided

evidence that previously reported [20,167] signals of east-Asian admixture in eastern-European

populations was also present in the Early Middle Age ancient Slavic samples (Fig. 5.6).

Although the five Migration Era samples represented an array of ancestries present in Czechia

during that period, the sample size (n=3 at most) per sub-population was too low to reliably

infer admixture events.

6.2 Recommendations

My recommendations for analysing low coverage data are as follows:

1. If imputing samples using GLIMPSE and the 30x 1000 genomes reference, include

samples with at least 0.5x mean coverage. Samples below this coverage (0.1x) show

effects of coverage-related bias in copyvector estimation, SOURCEFIND analysis and

positions on a PCA.

2. When merging data from different genotyping arrays, it is preferable only to retain

directly genotyped SNPs rather than imputing missing ones using a reference panel

(e.g. using Eagle2 and HRC) This applies when the total number of directly genotyped
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SNPs is at least 45,000 (Fig. E.2).

6.3 Limitations of work and future avenues of research

Firstly, I did not consider ancient samples from Africa. This is in part because of a lack

of high coverage samples from Africa (Mota being the highest coverage at 10x) and the

vast majority of ancient DNA samples from western Eurasia. I expect results to differ

when considering African samples. Africans harbour more diversity and have lower levels

of background LD [140] and thus would be expected to match shorter segments to other

individuals. Imputation accuracy would likely be lower, in part because of less LD and

higher genetic diversity, but also because less of the total proportion of genetic diversity is

present in reference panels. Finally, the large population turnovers in Africa (e.g. the Bantu

expansions) mean that many pre-Bantu ancient samples may harbour diversity that does

not exist in present-day individuals. Therefore, it is possible that coverage greater than 0.5x

may be necessary to accurately analyse African samples with ChromoPainter.

I did not evaluate the effect of coverage on either fineSTRUCTURE or GLOBETROTTER

analysis. This is because GLOBETROTTER struggles to identify admixture events in single

samples and I only had a single downsample for each individual and level of coverage. To

accurately estimate admixture events, segments of DNA within an individual copied from

different populations need to be identified. Such segments may be particularly hard to

identify in low coverage samples, as the segment boundaries may contain low-coverage SNPs.

I didn’t use the largest reference panel (HRC) to impute ancient samples, due to technical

challenges in obtaining access to the data and so likely underestimate the potential accuracy

of imputation on low coverage samples. Thus, future work should examine the scale of

improvements in imputation accuracy when using extremely large reference panels. For

example, plans to sequence the whole-genomes of 200,000 U.K. Biobank participants would

provide an unparalleled resource to impute variants in ancient samples of western European

ancestry.

Whilst my attempt at incorporating genotype likelihoods into the ChromoPainter process

only provided very modest improvements, the fact that this approach has been successful

in other methods [117, 209–211] suggests that in theory it should also be applicable to

Chromosome painting. Future work on ChromoPainter could explore the reason why this

did not work and suggest alternate ways in which to account for the uncertainty associated

with low coverage data. Studies could also interrogate the performance of ChromoPainter

on the range of coverages between 0.1-0.5x. Recent research has argued it is possible to
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infer ancestral relationships between samples as low as 0.1x in coverage, although only for

particular applications such as demographic change [212].

On the other hand, methodological advances in laboratory DNA extraction techniques,

DNA enrichment and sequencing technologies and library preparation for ancient samples

may mean that all samples can be sequenced to a high enough coverage that coverage-related

effects are inconsequential.



Appendix A

Datasets used

This appendix described the different datasets used in analyses performed in this thesis. It

includes datasets of both modern and ancient genomes.

A.1 Ancient reference dataset

This section describes the generation of the dataset of reference ancient individuals used in

Chapters 2, 4 and 5.

For each of the samples in Table A.1, the following steps were taken to produce Chro-

moPainter input.

1. Each .bam was processed with PicardTools ValidateBam [97] task to ensure no files

were corrupted or contained incorrect read group information.

2. Each .bam file was processed with atlas (version 1.0, commit f612f28) pipeline [71]

(https://bitbucket.org/wegmannlab/atlas/wiki/Home). For .bam file, I estimated

post-mortem damage (PMD) patterns using atlas estimatePMD task. Recalibration

parameters were then estimated using atlas recal task. Finally, both the recalibration

and PMD parameters were given to the callNEW task which produces genotype calls

and genotype likelihood estimates for each downsampled and full coverage .bam. For

this stage, I made calls at the 77,818,345 genome-wide positions present in the phase 3

thousand genomes project [98]. This was done to reduce the risk of calling false-positive

non-polymorphic sites. This resulted in a .bcf file for each ancient sample.

3. All .bcf files were split into chromosomes and all samples from the same chromosome

were merged. Imputation and phasing was performed with GLIMPSE (version 1.1.1). I

followed the steps laid out in the GLIMPSE tutorial (https://odelaneau.github.io/

https://bitbucket.org/wegmannlab/atlas/wiki/Home
https://odelaneau.github.io/GLIMPSE/tutorial_b38.html
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Paper Number of
Samples Reference

Allentoft 2015 20 [152]
Antonio 2019 134 [59]
Broushaki 2016 1 [213]
Brunel 2020 58 [158]
Cassidy 2015 4 [214]
deBarrosDamgaard 2018a 34 [94]
deBarrosDamgaard 2018b 58 [181]
Gamba 2014 10 [175]
Gunther 2015 2 [150]
Hofmanova 2016 5 [151]
Jones 2015 2 [215]
Lazaridis 2014 1 [51]
Marchi 2020 4 [216]
Margaryan 20 442 [58]
Berger unpublished 14 NA
Olade 2014 1 [217]
Rivollat 20 101 [168]
Sanchez-Quinto 2019 7 [218]
Seguin-Orlando 2014 1 [219]
Veeramah 2018 1 [208]
Hofmanova unpublished 37 NA

Table A.1: Name of paper, number of samples and reference for all literature ancient samples used
in analyses

.

GLIMPSE/tutorial_b38.html). First, I used GLIMPSE_chunk to split up each reference

chromosome into chunks, keeping both –window-size and –buffer-size to 2,000,000,

their default settings. Across all chromosomes, this produced 936 chunks of an average

2.99Mb long. I used the b37 genetic map supplied by GLIMPSE for the –map argument.

Each chunk was then imputed separately using GLIMPSE_phase using the same 1000

genomes dataset as a reference. Default settings and the supplied b37 genetic map

were used. This stage both imputes missing genotypes and generates a set of haplotype

pairs which can be sampled from in a later step to produced phased haplotypes.

GLIMPSE_ligate was then used to merge the imputed chunks back to form single

chromosomes using the default settings and the supplied b37 genetic map.

Haplotypes were then sampled using GLIMPSE_sample to produce a .vcf with phased

haplotypes for each individual, again using default settings and the supplied b37 genetic

map.

Consequently, the output of GLIMPSE is i) unphased genotype calls with posterior

genotype likelihoods and ii) phased haplotypes.

4. Finally, the posterior genotype likelihoods and phased haplotypes were combined to

https://odelaneau.github.io/GLIMPSE/tutorial_b38.html
https://odelaneau.github.io/GLIMPSE/tutorial_b38.html
https://odelaneau.github.io/GLIMPSE/tutorial_b38.html
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generate ChromoPainterUncertainty output using a custom script (https://github.

com/sahwa/vcf_to_chromopainter).

A.2 30x 1000 genomes dataset

Samples from [103].

This dataset consists of 3,202 modern individuals from 26 worldwide populations, se-

quenced to a targeted depth of 30x coverage. The downloaded dataset was aligned to the

gr38 reference genome. Samples were downloaded to the UCL Computer Science cluster by

myself from the ftp mirror. The following steps were taken to process the data before being

used as an imputation reference.

1. Filtered such that SNPs with only 2 alleles were retained

2. Performed a liftover to hg19 using LiftoverVcf from picard tools [97]

3. Filter again for SNPs with only 2 alleles

4. Phase using shapeit4, using the ‘sequencing’ parameter and setting –pbwt-depth 4.

5. Remove duplicated SNPs using bcftools norm [220]

6. Use Beagle’s conform-gt utility to ensure reference alleles were consistent with the

previous 1000 genomes build. This was done because all previous datasets I have

compiled were also conformed to the previous 1000 genomes build.

Population codes and populations can be found at https://www.coriell.org/0/

Sections/Collections/NHGRI/1000genome.aspx?PgId=664&coll=HG.

A.3 Human Origins dataset

This dataset consists of 560,420 SNPS and 5998 individuals from 509 worldwide populations.

It has a particularly large number of samples from West and East Africa; in particular,

Cameroon, Ethiopia, Nigeria and Ghana.

Region Country Populations Ref sum

Africa Algeria Algerian Lazaridis et al 2014 4

Africa Algeria Mozabite Lazaridis et al 2014 21

Africa Botswana Gana Lazaridis et al 2014 7

https://github.com/sahwa/vcf_to_chromopainter
https://github.com/sahwa/vcf_to_chromopainter
https://www.coriell.org/0/Sections/Collections/NHGRI/1000genome.aspx?PgId=664&coll=HG
https://www.coriell.org/0/Sections/Collections/NHGRI/1000genome.aspx?PgId=664&coll=HG
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Africa Botswana Gui Lazaridis et al 2014 7

Africa Botswana Hoan Lazaridis et al 2014 6

Africa Botswana Ju hoan South Lazaridis et al 2014 5

Africa Botswana Kgalagadi Lazaridis et al 2014 5

Africa Botswana Khwe Lazaridis et al 2014 8

Africa Botswana Naro Lazaridis et al 2014 8

Africa Botswana Shua Lazaridis et al 2014 9

Africa Botswana Taa East Lazaridis et al 2014 6

Africa Botswana Taa North Lazaridis et al 2014 9

Africa Botswana Taa West Lazaridis et al 2014 15

Africa Botswana Tshwa Lazaridis et al 2014 4

Africa Botswana Tswana Lazaridis et al 2014 5

Africa BotswanaorNamibia Bantu SA Lazaridis et al 2014 8

Africa Cameroon Cameroon Baka Fan 2019 2

Africa Cameroon Cameroon Bakola Fan 2019 2

Africa Cameroon Cameroon Bedzan Fan 2019 2

Africa Cameroon Cameroon Foulbe Fan 2019 2

Africa Cameroon Cameroon Mada Fan 2019 2

Africa Cameroon Cameroon Ngoumba Fan 2019 2

Africa Cameroon Cameroon Tikar Fan 2019 2

Africa Cameroon Cameroon Aghem Lipson 2020 28

Africa Cameroon Cameroon Bafut Lipson 2020 11

Africa Cameroon Cameroon Bakoko Lipson 2020 1

Africa Cameroon Cameroon Bangwa Lipson 2020 2

Africa Cameroon Cameroon Mbo Lipson 2020 21

Africa Cameroon Cameroon Kotoko Lopez 2021 7

Africa CentralAfricanRepublic BiakaPygmy Lazaridis et al 2014 20

Africa CentralAfricanRepublic Kaba Fan 2019 2

Africa Chad Bulala Fan 2019 2

Africa Chad Laka Fan 2019 2

Africa Congo MbutiPygmy Lazaridis et al 2014 10

Africa Egypt Egyptian Comas Lazaridis et al 2014 11

Africa Egypt Egyptian Metspalu Lazaridis et al 2014 7

Africa Ethiopia Aari Fan 2019 2

Africa Ethiopia Agaw Fan 2019 2

Africa Ethiopia Amhara Fan 2019 2

Africa Ethiopia Ethiopia Afar Lopez 2021 10

Africa Ethiopia Ethiopia Agew Lopez 2021 30

Africa Ethiopia Ethiopia Alaba Lopez 2021 14

Africa Ethiopia Ethiopia Alae Lopez 2021 46

Africa Ethiopia Ethiopia Amhara Gurdasani et al 2015 24

Africa Ethiopia Ethiopia Amhara Lopez 2021 28

Africa Ethiopia Ethiopia Anuak Lopez 2021 9

Africa Ethiopia Ethiopia Arbore Lopez 2021 14
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Africa Ethiopia Ethiopia Ari Cultivator Lopez 2021 14

Africa Ethiopia Ethiopia Ari Potter Lopez 2021 24

Africa Ethiopia Ethiopia Ari Smith Lopez 2021 14

Africa Ethiopia Ethiopia Basket Lopez 2021 14

Africa Ethiopia Ethiopia Bena Lopez 2021 28

Africa Ethiopia Ethiopia Bench Lopez 2021 12

Africa Ethiopia Ethiopia Berta Lopez 2021 13

Africa Ethiopia Ethiopia BetaIsrael Lazaridis et al 2014 7

Africa Ethiopia Ethiopia BetaIsrael Lopez 2021 6

Africa Ethiopia Ethiopia Bodi Lopez 2021 14

Africa Ethiopia Ethiopia Burji Lopez 2021 24

Africa Ethiopia Ethiopia Chara Lopez 2021 17

Africa Ethiopia Ethiopia Dasanech Lopez 2021 15

Africa Ethiopia Ethiopia Dawro Lopez 2021 14

Africa Ethiopia Ethiopia DawroManja Lopez 2021 11

Africa Ethiopia Ethiopia Dhime Lopez 2021 21

Africa Ethiopia Ethiopia Dirasha Lopez 2021 17

Africa Ethiopia Ethiopia Dizi Lopez 2021 14

Africa Ethiopia Ethiopia Dorze Lopez 2021 15

Africa Ethiopia Ethiopia Gedeo Lopez 2021 21

Africa Ethiopia Ethiopia GentaGamo Lopez 2021 15

Africa Ethiopia Ethiopia Gidicho Lopez 2021 11

Africa Ethiopia Ethiopia Gofa Lopez 2021 15

Africa Ethiopia Ethiopia Gumuz Gurdasani et al 2015 20

Africa Ethiopia Ethiopia Gumuz Lopez 2021 2

Africa Ethiopia Ethiopia Gurage Lopez 2021 16

Africa Ethiopia Ethiopia Hadiya Lopez 2021 14

Africa Ethiopia Ethiopia Hamer Lopez 2021 14

Africa Ethiopia Ethiopia Honsita Lopez 2021 17

Africa Ethiopia Ethiopia Kafacho Lopez 2021 16

Africa Ethiopia Ethiopia Kambata Lopez 2021 13

Africa Ethiopia Ethiopia Karo Lopez 2021 14

Africa Ethiopia Ethiopia KefaShekaManjo Lopez 2021 14

Africa Ethiopia Ethiopia Komo Lopez 2021 8

Africa Ethiopia Ethiopia Konta Lopez 2021 16

Africa Ethiopia Ethiopia Kore Lopez 2021 16

Africa Ethiopia Ethiopia Kuwegu Lopez 2021 10

Africa Ethiopia Ethiopia Maale Lopez 2021 11

Africa Ethiopia Ethiopia Mao Lopez 2021 9

Africa Ethiopia Ethiopia Masholae Lopez 2021 19

Africa Ethiopia Ethiopia Menit Lopez 2021 15

Africa Ethiopia Ethiopia Mezhenger Lopez 2021 14

Africa Ethiopia Ethiopia Mossiye Lopez 2021 10

Africa Ethiopia Ethiopia Murle Lopez 2021 13
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Africa Ethiopia Ethiopia Mursi Lopez 2021 10

Africa Ethiopia Ethiopia Nao Lopez 2021 17

Africa Ethiopia Ethiopia NegedeWoyto Lopez 2021 9

Africa Ethiopia Ethiopia Nuer Lopez 2021 11

Africa Ethiopia Ethiopia Nyangatom Lopez 2021 12

Africa Ethiopia Ethiopia Oromo Gurdasani et al 2015 24

Africa Ethiopia Ethiopia Oromo Lazaridis et al 2014 4

Africa Ethiopia Ethiopia Oromo Lopez 2021 7

Africa Ethiopia Ethiopia OtherGamo Lopez 2021 16

Africa Ethiopia Ethiopia Qimant Lopez 2021 17

Africa Ethiopia Ethiopia Shabo Lopez 2021 11

Africa Ethiopia Ethiopia Shekacho Lopez 2021 16

Africa Ethiopia Ethiopia Sheko Lopez 2021 15

Africa Ethiopia Ethiopia Shinasha Lopez 2021 18

Africa Ethiopia Ethiopia Sidama Lopez 2021 21

Africa Ethiopia Ethiopia Somali Gurdasani et al 2015 24

Africa Ethiopia Ethiopia Somali Lopez 2021 2

Africa Ethiopia Ethiopia Suri Lopez 2021 14

Africa Ethiopia Ethiopia Tigray Lopez 2021 13

Africa Ethiopia Ethiopia Tsemay Lopez 2021 18

Africa Ethiopia Ethiopia Wolayta Gurdasani et al 2015 21

Africa Ethiopia Ethiopia Wolayta Lopez 2021 4

Africa Ethiopia Ethiopia Wolayta Cultivator Lopez 2021 6

Africa Ethiopia Ethiopia Wolayta Potter Lopez 2021 10

Africa Ethiopia Ethiopia Wolayta Smith Lopez 2021 12

Africa Ethiopia Ethiopia Wolayta Tanner Lopez 2021 8

Africa Ethiopia Ethiopia Wolayta Weaver Lopez 2021 12

Africa Ethiopia Ethiopia Yem Lopez 2021 13

Africa Ethiopia Ethiopia Zayse Lopez 2021 17

Africa Ethiopia Ethiopia Zilmamo Lopez 2021 12

Africa Ethiopia Mursi Fan 2019 2

Africa Gambia Gambian GWD Lazaridis et al 2014 6

Africa Kenya BantuKenya Lazaridis et al 2014 6

Africa Kenya Elmolo Fan 2019 2

Africa Kenya Kikuyu Fan 2019 2

Africa Kenya Kikuyu Lazaridis et al 2014 4

Africa Kenya Luhya Kenya LWK Lazaridis et al 2014 8

Africa Kenya Luo Lazaridis et al 2014 8

Africa Kenya Masai Ayodo Lazaridis et al 2014 2

Africa Kenya Masai Kinyawa MKK Lazaridis et al 2014 9

Africa Kenya Ogiek Fan 2019 2
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Africa Kenya Rendille Fan 2019 2

Africa Kenya Sengwer Fan 2019 2

Africa Khomani Khomani Lazaridis et al 2014 9

Africa Libya Libyan Jew Lazaridis et al 2014 9

Africa Malawi Malawi Chewa Skoglund et al 2015 11

Africa Malawi Malawi Ngoni Skoglund et al 2015 4

Africa Malawi Malawi Tumbuka Skoglund et al 2015 10

Africa Malawi Malawi Yao Skoglund et al 2015 9

Africa Morocco Moroccan Jew Lazaridis et al 2014 6

Africa Morocco MoroccoBerber Lopez 2021 19

Africa Morocco Saharawi Lazaridis et al 2014 6

Africa Namibia Damara Lazaridis et al 2014 12

Africa Namibia Haiom Lazaridis et al 2014 7

Africa Namibia Himba Lazaridis et al 2014 4

Africa Namibia Ju hoan North Lazaridis et al 2014 21

Africa Namibia Nama Lazaridis et al 2014 16

Africa Namibia Wambo Lazaridis et al 2014 5

Africa Namibia Xuun Lazaridis et al 2014 13

Africa Nigeria Nigeria Esan Lazaridis et al 2014 8

Africa Nigeria Nigeria Yoruba Lazaridis et al 2014 70

Africa Saudi-Beduins SaudiBeduins Lopez 2021 8

Africa Senegal Mandenka Lazaridis et al 2014 17

Africa Senegal Senegal Lopez 2021 13

Africa SierraLeone Mende Sierra Leone MSL Lazaridis et al 2014 8

Africa Somalia Somali Lazaridis et al 2014 13

Africa SouthAfrica Zulu Gurdasani et al 2015 100

Africa Sudan Sudan Dinka Lazaridis et al 2014 7

Africa Tanzania Datog Lazaridis et al 2014 3

Africa Tanzania Hadza Fan 2019 2

Africa Tanzania Hadza Lazaridis et al 2014 14

Africa Tanzania Hadza Henn Lazaridis et al 2014 3

Africa Tanzania Iraqw Fan 2019 2

Africa Tanzania Sandawe Fan 2019 1

Africa Tanzania Sandawe Lazaridis et al 2014 22

Africa Tunisia Tunisian Lazaridis et al 2014 8

Africa Tunisia Tunisian Jew Lazaridis et al 2014 7

Africa Uganda Buganda Gurdasani et al 2015 96

Africa Uganda Uganda Muganda Lopez 2021 6

Africa Uganda Uganda Mussese Lopez 2021 6

CentralAsiaSiberia Russia Russian Lazaridis et al 2014 22

EastAsia China Han Lazaridis et al 2014 33
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EastAsia China Han NChina Lazaridis et al 2014 10

EastAsia China Mongola Lazaridis et al 2014 6

EastAsia Japan Japanese Lazaridis et al 2014 29

SouthAsia Bangladesh Bengali Bangladesh BEB Lazaridis et al 2014 7

SouthAsia India Cochin Jew Lazaridis et al 2014 5

SouthAsia India GujaratiA GIH Lazaridis et al 2014 5

SouthAsia India GujaratiB GIH Lazaridis et al 2014 5

SouthAsia India GujaratiC GIH Lazaridis et al 2014 5

SouthAsia India GujaratiD GIH Lazaridis et al 2014 5

SouthAsia India India Hindu Lopez et al 2017 12

SouthAsia India India Zoroastrian Lopez et al 2017 13

SouthAsia India Kharia Lazaridis et al 2014 8

SouthAsia India Lodhi Lazaridis et al 2014 13

SouthAsia India Mala Lazaridis et al 2014 13

SouthAsia India Punjabi Lahore PJL Lazaridis et al 2014 8

SouthAsia India Tiwari Lazaridis et al 2014 14

SouthAsia India Vishwabrahmin Lazaridis et al 2014 13

SouthAsia Pakistan Balochi Lazaridis et al 2014 5

SouthAsia Pakistan Brahui Lazaridis et al 2014 20

SouthAsia Pakistan Burusho Lazaridis et al 2014 23

SouthAsia Pakistan Hazara Lazaridis et al 2014 13

SouthAsia Pakistan Kalash Lazaridis et al 2014 16

SouthAsia Pakistan Makrani Lazaridis et al 2014 8

SouthAsia Pakistan Pathan Lazaridis et al 2014 19

SouthAsia Pakistan Sindhi Lazaridis et al 2014 18

WestEurasia Albania Albanian Lazaridis et al 2014 6

WestEurasia Armenia Armenian Lazaridis et al 2014 10

WestEurasia Ashkenazi Ashkenazi Jew Lazaridis et al 2014 7

WestEurasia Belarus Belarusian Lazaridis et al 2014 10

WestEurasia Bulgaria Bulgarian Lazaridis et al 2014 9

WestEurasia Croatia Croatian Lazaridis et al 2014 10

WestEurasia Cyprus Cypriot Lazaridis et al 2014 8

WestEurasia Czechoslovia Czech Lazaridis et al 2014 10

WestEurasia England English Cornwall GBR Lazaridis et al 2014 5

WestEurasia England English Kent GBR Lazaridis et al 2014 5

WestEurasia Estonia Estonian Lazaridis et al 2014 10

WestEurasia Finland Finnish FIN Lazaridis et al 2014 7

WestEurasia France French Lazaridis et al 2014 25

WestEurasia France French South Lazaridis et al 2014 7

WestEurasia Georgia Abkhasian Lazaridis et al 2014 9

WestEurasia Georgia Georgian Jew Lazaridis et al 2014 7

WestEurasia Georgia Georgian Megrels Lazaridis et al 2014 10

WestEurasia Greece Greek Comas Lazaridis et al 2014 14
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WestEurasia Greece Greek Coriell Lazaridis et al 2014 6

WestEurasia Hungary Hungarian Coriell Lazaridis et al 2014 10

WestEurasia Hungary Hungarian Metspalu Lazaridis et al 2014 10

WestEurasia Iceland Icelandic Lazaridis et al 2014 12

WestEurasia Iran Iran Fars Broushaki et al 2016 17

WestEurasia Iran Iran Zoroastrian Broushaki et al 2016 27

WestEurasia Iran Iranian Lazaridis et al 2014 8

WestEurasia Iran Iranian Jew Lazaridis et al 2014 9

WestEurasia Iraq Iraqi Jew Lazaridis et al 2014 6

WestEurasia Israel BedouinA Lazaridis et al 2014 25

WestEurasia Israel BedouinB Lazaridis et al 2014 19

WestEurasia Israel Druze Lazaridis et al 2014 35

WestEurasia Israel Israeli Arabs Lopez 2021 23

WestEurasia Israel IsraeliBedouins Lopez 2021 6

WestEurasia Israel Palestinian Lazaridis et al 2014 33

WestEurasia Italy Italian Bergamo Lazaridis et al 2014 12

WestEurasia Italy Italian EastSicilian Lazaridis et al 2014 5

WestEurasia Italy Italian Tuscan Lazaridis et al 2014 8

WestEurasia Italy Italian WestSicilian Lazaridis et al 2014 6

WestEurasia Italy Sardinian Lazaridis et al 2014 27

WestEurasia Jordan Jordanian Lazaridis et al 2014 4

WestEurasia Lebanon Lebanese Lazaridis et al 2014 8

WestEurasia Lithuania Lithuanian Lazaridis et al 2014 10

WestEurasia Malta Maltese Lazaridis et al 2014 8

WestEurasia Norway Norway Lazaridis et al 2014 11

WestEurasia OrkneyIslands Orcadian Lazaridis et al 2014 12

WestEurasia Palestine PalestinianArabs Lopez 2021 13

WestEurasia Russia Adygei Lazaridis et al 2014 16

WestEurasia Russia Balkar Lazaridis et al 2014 10

WestEurasia Russia Chechen Lazaridis et al 2014 9

WestEurasia Russia Chuvash Lazaridis et al 2014 10

WestEurasia Russia Kumyk Lazaridis et al 2014 8

WestEurasia Russia Lezgin Lazaridis et al 2014 9

WestEurasia Russia Mordovian Lazaridis et al 2014 10

WestEurasia Russia Nogai Lazaridis et al 2014 9

WestEurasia Russia North Ossetian Lazaridis et al 2014 10

WestEurasia Saudi Arabia Saudi Lazaridis et al 2014 8

WestEurasia Scotland Scottish Argyll Bute GBR Lazaridis et al 2014 4

WestEurasia Spain Basque French Lazaridis et al 2014 20

WestEurasia Spain Basque Spanish Lazaridis et al 2014 9

WestEurasia Spain Spanish Andalucia IBS Lazaridis et al 2014 4

WestEurasia Spain Spanish Aragon IBS Lazaridis et al 2014 6

WestEurasia Spain Spanish Baleares IBS Lazaridis et al 2014 4

WestEurasia Spain Spanish Cantabria IBS Lazaridis et al 2014 5
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WestEurasia Spain Spanish Castilla la Mancha IBS Lazaridis et al 2014 5

WestEurasia Spain Spanish Castilla y Leon IBS Lazaridis et al 2014 5

WestEurasia Spain Spanish Cataluna IBS Lazaridis et al 2014 5

WestEurasia Spain Spanish Extremadura IBS Lazaridis et al 2014 5

WestEurasia Spain Spanish Galicia IBS Lazaridis et al 2014 5

WestEurasia Spain Spanish Murcia IBS Lazaridis et al 2014 4

WestEurasia Spain Spanish Pais Vasco IBS Lazaridis et al 2014 5

WestEurasia Spain Spanish Valencia IBS Lazaridis et al 2014 5

WestEurasia Syria Syria Lopez 2021 12

WestEurasia Syria Syrian Lazaridis et al 2014 2

WestEurasia Turkey Turkish Lazaridis et al 2014 4

WestEurasia Turkey Turkish Adana Lazaridis et al 2014 10

WestEurasia Turkey Turkish Aydin Lazaridis et al 2014 7

WestEurasia Turkey Turkish Balikesir Lazaridis et al 2014 6

WestEurasia Turkey Turkish Istanbul Lazaridis et al 2014 10

WestEurasia Turkey Turkish Jew Lazaridis et al 2014 8

WestEurasia Turkey Turkish Kayseri Lazaridis et al 2014 10

WestEurasia Turkey Turkish Trabzon Lazaridis et al 2014 9

WestEurasia Ukraine Ukrainian East Lazaridis et al 2014 6

WestEurasia Ukraine Ukrainian West Lazaridis et al 2014 3

WestEurasia Uzbekistan Uzbek Lazaridis et al 2014 10

WestEurasia Yemen Yemen Lazaridis et al 2014 6

WestEurasia Yemen Yemenite Jew Lazaridis et al 2014 8

Table A.3: Continent, Country, ethnicity, published study and number of individuals in each
Human Origins population.

A.3.1 Processing

Only bi-allelic SNPs were retained. To ensure that all datasets, ancient and modern, can

be merged together without the confounding effects of strand flips, I then used conform-

gt (https://faculty.washington.edu/browning/conform-gt.html) to align all alleles to

the same strand as the 1000 genomes reference, keeping all parameters as default. Any

genotypes which had a genotype likelihood of below 0.990 were set as missing.

Data was phased use shapeit4 [25], setting –pbwt 8 and keeping all other parameters

as default. The 1000 Genomes was used as as reference (section A.2). Sporadic low quality

missing genotypes were imputed.

https://faculty.washington.edu/browning/conform-gt.html
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Population Code Number of individuals

ACB 116
ASW 74
BEB 131
CDX 93
CEU 179
CHB 103
CHS 163
CLM 132
ESN 149
FIN 99
GBR 91
GIH 103

GWD 178
IBS 157
ITU 107
JPT 104
KHV 122
LWK 99
MSL 99
MXL 97
PEL 122
PJL 146
PUR 139
STU 114
TSI 107
YRI 178

Table A.2: Population codes and number of individuals for each 1000 genomes populations.

A.4 MS POBI HellBus dataset

Multiple Sclerosis (MS), People of the British Isles (POBI), Hellenthal and Busby (HB) /

MS POBI HellBus contains a total of 14,795 individuals from 211 worldwide populations

and genotyped at 477,417 autosomal bi-allelic SNPs.

Samples from Sawcer et al (2011) [221] (10299 individuals from 15 pops), Leslie et al

2015 [31] (2039 individuals from 35 pops) and Busby et al (2457 individuals from 161 pops).

Individuals from MS populations USA, Canada and New Zealand were all removed as

the individuals were not native to that country.

The following steps were taken to process the data

1. Filtered such that SNPs with only 2 alleles were retained

2. Phase using shapeit4 [25] setting –pbwt-depth 8.

3. Remove duplicated SNPs using bcftools norm [220]

4. Use Beagle’s conform-gt utility to ensure reference alleles were consistent with the
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previous 1000 genomes build. This was done because all previous datasets I have

compiled were also conformed to the previous 1000 genomes build.

Table A.4: Populations and corresponding number of individuals for all populations in the ‘MS
POBI HellBus’ dataset

Dataset Population Number of Individuals

HB abhkasian 20
HB adygei 17
HB altai 13
HB armenian 35
HB balkar 19
HB balochi 24
HB bantukenya 11
HB bantusouthafrica 8
HB basque 24
HB bedouin 45
HB belorussian 9
HB bengali 1
HB bhunjia 1
HB biakapygmy 21
HB brahmin 11
HB brahui 25
HB bulgarian 31
HB burusho 25
HB burya 2
HB buryat 15
HB cambodian 10
HB ceu 59
HB chamar 10
HB chechen 20
HB chenchu 4
HB chukchi 5
HB chuvash 17
HB colombian 7
HB croatian 19
HB cypriot 12
HB dai 10
HB daur 9
HB dharkar 8
HB dhurwa 1
HB dolgan 7
HB druze 42
HB dusadh 7
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Table A.4: Populations and corresponding number of individuals for all populations in the ‘MS
POBI HellBus’ dataset (continued)

Dataset Population Number of Individuals

HB egyptian 12
HB english 8
HB ethiopiana 7
HB ethiopianjew 11
HB ethiopiano 7
HB ethiopiant 5
HB evenk 12
HB finnish 2
HB french 28
HB georgian 20
HB german 30
HB germanyaustria 4
HB gond 4
HB greek 20
HB hadza 3
HB hakkipikki 3
HB han 34
HB hannchina 10
HB hazara 22
HB hezhen 8
HB hungarian 19
HB indian 1
HB indianjew 8
HB iranian 20
HB irish 7
HB japanese 28
HB jordanian 20
HB kalash 23
HB kanjar 5
HB karitiana 11
HB karnataka 8
HB ket 2
HB kol 16
HB koryake 5
HB kshatriya 7
HB kumyk 14
HB kurd 6
HB kurmi 1
HB kurumba 4
HB kyrgyz 16
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Table A.4: Populations and corresponding number of individuals for all populations in the ‘MS
POBI HellBus’ dataset (continued)

Dataset Population Number of Individuals

HB lahu 8
HB lambadi 1
HB lebanese 5
HB lezgin 18
HB lithuanian 10
HB luhya 94
HB maasai 97
HB makrani 25
HB malayan 1
HB mandenka 22
HB mawasi 1
HB maya 21
HB mbutipygmy 13
HB meena 1
HB meghawal 1
HB melanesian 10
HB miao 10
HB mongolian 19
HB mordovian 15
HB moroccan 25
HB mozabite 29
HB muslim 5
HB myanmar 3
HB naga 4
HB naxi 8
HB nganassan 10
HB nihali 2
HB nogay 16
HB northitalian 12
HB northossetian 15
HB norwegian 18
HB orcadian 15
HB oroqen 9
HB palestinian 46
HB papuan 17
HB pathan 22
HB pima 14
HB piramalaikallar 8
HB polish 17
HB romanian 16
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Table A.4: Populations and corresponding number of individuals for all populations in the ‘MS
POBI HellBus’ dataset (continued)

Dataset Population Number of Individuals

HB russian 25
HB sakd 4
HB sandawe 28
HB sankhomani 30
HB sannamibia 5
HB sardinian 28
HB saudi 19
HB scottish 6
HB selkup 10
HB she 10
HB siciliane 10
HB sindhi 24
HB southitalian 18
HB spanish 34
HB surui 5
HB syrian 16
HB tajik 15
HB tamilnadu 2
HB tharus 2
HB tsi 98
HB tu 10
HB tujia 10
HB tunisian 12
HB turkish 19
HB turkishe 23
HB turkishn 20
HB turkishs 20
HB turkmen 10
HB tuscan 8
HB tuva 13
HB uae 14
HB ukrainian 20
HB upcaste 5
HB uygur 10
HB uzbekistani 15
HB velamas 9
HB welsh 4
HB westsicilian 10
HB xibo 9
HB yakut 25
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Table A.4: Populations and corresponding number of individuals for all populations in the ‘MS
POBI HellBus’ dataset (continued)

Dataset Population Number of Individuals

HB yemeni 9
HB yi 10
HB yoruba 21
HB yukagir 4
MS Belgium 544
MS Denmark 332
MS Finland 581
MS France 479
MS Germany 1100
MS Italy 745
MS NIreland 61
MS Norway 953
MS Poland 58
MS Spain 205
MS Sweden 1212
MS UK 1854
POBI UK 2039

A breakdown of the POBI populations:

Table A.5: Counties and corresponding number of individuals for all counties in the POBI dataset

County Number of Individuals

Cheshire 33

Cornwall and Isles of Scilly 90

Cumbria 195

Devon 73

Dorset 37

Dumfries and Galloway 42

Durham 54

Dyfed 55

East Riding of Yorkshire Unitary Authority 32

East Sussex 34

Fife 59

Gloucestershire 70

Gwent 31

Gwynedd 76
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Table A.5: Counties and corresponding number of individuals for all counties in the POBI dataset
(continued)

County Number of Individuals

Hampshire 26

Kent 50

Leicestershire 66

Lincolnshire 104

Merseyside 47

Norfolk 98

North Yorkshire 64

Northamptonshire 37

Northern Ireland 44

Northumberland 50

Nottinghamshire 57

Orkney Islands 96

Oxfordshire 77

Somerset 17

South Yorkshire 77

Staffordshire 28

Suffolk 82

Surrey 24

Tyne and Wear 54

West Sussex 26

Worcestershire 34

A.5 Reference ancient samples

sample_ID country paper coverage

NE4 Bukk Gamba_2014 0.10

LIB11 Czechia zuzana_new 5.34

LIB12 Czechia zuzana_new 6.75

LIB2 Czechia zuzana_new 6.39

LIB3 Czechia zuzana_new 5.30

LIB4 Czechia zuzana_new 6.46

LIB5 Czechia zuzana_new 7.33

LIB7 Czechia zuzana_new 5.64

POH11 Czechia zuzana_new 4.99
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POH13 Czechia zuzana_new 5.95

POH27 Czechia zuzana_new 5.87

POH28 Czechia zuzana_new 5.59

POH3 Czechia zuzana_new 5.48

POH36 Czechia zuzana_new 5.31

POH39 Czechia zuzana_new 5.39

POH40 Czechia zuzana_new 5.47

POH41 Czechia zuzana_new 5.22

POH44 Czechia zuzana_new 5.34

VK133 Denmark Margaryan_20 0.04

VK134 Denmark Margaryan_20 0.64

VK135 Denmark Margaryan_20 0.01

VK138 Denmark Margaryan_20 0.39

VK139 Denmark Margaryan_20 0.56

VK140 Denmark Margaryan_20 0.02

VK141 Denmark Margaryan_20 1.91

VK213 Denmark Margaryan_20 0.12

VK214 Denmark Margaryan_20 0.13

VK215 Denmark Margaryan_20 0.07

VK216 Denmark Margaryan_20 0.03

VK247 Denmark Margaryan_20 0.05

VK274 Denmark Margaryan_20 1.72

VK275 Denmark Margaryan_20 0.45

VK276 Denmark Margaryan_20 0.12

VK278 Denmark Margaryan_20 0.66

VK279 Denmark Margaryan_20 2.39

VK280 Denmark Margaryan_20 0.34

VK281 Denmark Margaryan_20 2.05

VK282 Denmark Margaryan_20 0.44

VK284 Denmark Margaryan_20 1.11

VK285 Denmark Margaryan_20 0.66

VK286 Denmark Margaryan_20 0.81

VK287 Denmark Margaryan_20 0.50

VK288 Denmark Margaryan_20 0.83

VK289 Denmark Margaryan_20 0.81

VK290 Denmark Margaryan_20 1.42

VK291 Denmark Margaryan_20 1.11
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VK292 Denmark Margaryan_20 0.10

VK294 Denmark Margaryan_20 1.13

VK295 Denmark Margaryan_20 0.57

VK296 Denmark Margaryan_20 0.46

VK297 Denmark Margaryan_20 0.67

VK298 Denmark Margaryan_20 0.40

VK300 Denmark Margaryan_20 0.51

VK301 Denmark Margaryan_20 0.73

VK312 Denmark Margaryan_20 0.36

VK313 Denmark Margaryan_20 0.32

VK314 Denmark Margaryan_20 0.30

VK315 Denmark Margaryan_20 0.58

VK316 Denmark Margaryan_20 1.46

VK317 Denmark Margaryan_20 1.23

VK318 Denmark Margaryan_20 0.00

VK319 Denmark Margaryan_20 0.56

VK320 Denmark Margaryan_20 1.37

VK322 Denmark Margaryan_20 1.26

VK323 Denmark Margaryan_20 1.35

VK324 Denmark Margaryan_20 1.35

VK325 Denmark Margaryan_20 0.59

VK326 Denmark Margaryan_20 1.26

VK327 Denmark Margaryan_20 1.16

VK328 Denmark Margaryan_20 1.14

VK329 Denmark Margaryan_20 1.20

VK330 Denmark Margaryan_20 1.06

VK338 Denmark Margaryan_20 0.57

VK339 Denmark Margaryan_20 0.01

VK340 Denmark Margaryan_20 0.63

VK361 Denmark Margaryan_20 1.26

VK362 Denmark Margaryan_20 0.64

VK363 Denmark Margaryan_20 1.34

VK364 Denmark Margaryan_20 1.58

VK365 Denmark Margaryan_20 0.76

VK366 Denmark Margaryan_20 0.67

VK367 Denmark Margaryan_20 1.05

VK368 Denmark Margaryan_20 1.26
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VK369 Denmark Margaryan_20 1.14

VK370 Denmark Margaryan_20 1.31

VK371 Denmark Margaryan_20 0.66

VK372 Denmark Margaryan_20 1.35

VK373 Denmark Margaryan_20 1.09

VK383 Denmark Margaryan_20 0.04

VK384 Denmark Margaryan_20 1.21

VK385 Denmark Margaryan_20 1.53

VK411 Denmark Margaryan_20 0.02

VK445 Denmark Margaryan_20 1.36

VK446 Denmark Margaryan_20 1.53

VK521 Denmark Margaryan_20 4.54

VK532 Denmark Margaryan_20 4.01

VK582 Denmark Margaryan_20 0.10

VK65 Denmark Margaryan_20 0.51

VK69 Denmark Margaryan_20 0.78

VK70 Denmark Margaryan_20 6.68

VK71 Denmark Margaryan_20 0.17

VK84 Denmark Margaryan_20 1.17

VK86 Denmark Margaryan_20 0.01

VK87 Denmark Margaryan_20 3.02

VK90 Denmark Margaryan_20 0.32

VK92 Denmark Margaryan_20 0.34

VK94 Denmark Margaryan_20 0.14

VK480 Estonia Margaryan_20 0.87

VK481 Estonia Margaryan_20 1.42

VK482 Estonia Margaryan_20 1.09

VK483 Estonia Margaryan_20 1.78

VK484 Estonia Margaryan_20 1.21

VK485 Estonia Margaryan_20 0.71

VK486 Estonia Margaryan_20 1.78

VK487 Estonia Margaryan_20 1.93

VK488 Estonia Margaryan_20 0.90

VK489 Estonia Margaryan_20 1.60

VK490 Estonia Margaryan_20 0.95

VK491 Estonia Margaryan_20 1.43

VK492 Estonia Margaryan_20 1.02
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VK493 Estonia Margaryan_20 1.83

VK495 Estonia Margaryan_20 1.14

VK496 Estonia Margaryan_20 1.98

VK497 Estonia Margaryan_20 1.45

VK498 Estonia Margaryan_20 1.22

VK504 Estonia Margaryan_20 0.86

VK505 Estonia Margaryan_20 1.14

VK506 Estonia Margaryan_20 1.23

VK507 Estonia Margaryan_20 0.82

VK508 Estonia Margaryan_20 1.72

VK509 Estonia Margaryan_20 1.33

VK510 Estonia Margaryan_20 1.53

VK511 Estonia Margaryan_20 1.70

VK512 Estonia Margaryan_20 1.80

VK549 Estonia Margaryan_20 1.68

VK550 Estonia Margaryan_20 1.78

VK551 Estonia Margaryan_20 2.31

VK552 Estonia Margaryan_20 1.38

VK553 Estonia Margaryan_20 1.26

VK554 Estonia Margaryan_20 0.93

VK555 Estonia Margaryan_20 1.10

VK234 Faroes Margaryan_20 0.71

VK236 Faroes Margaryan_20 1.45

VK237 Faroes Margaryan_20 1.64

VK238 Faroes Margaryan_20 1.36

VK239 Faroes Margaryan_20 0.03

VK24 Faroes Margaryan_20 0.19

VK240 Faroes Margaryan_20 0.73

VK241 Faroes Margaryan_20 0.77

VK242 Faroes Margaryan_20 0.60

VK244 Faroes Margaryan_20 0.54

VK245 Faroes Margaryan_20 1.08

VK248 Faroes Margaryan_20 0.08

VK25 Faroes Margaryan_20 1.89

VK27 Faroes Margaryan_20 0.25

VK44 Faroes Margaryan_20 0.45

VK45 Faroes Margaryan_20 0.11
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VK46 Faroes Margaryan_20 4.33

FLR001 France Rivollat_20 0.00

FLR002 France Rivollat_20 0.00

FLR003 France Rivollat_20 0.00

FLR004 France Rivollat_20 0.00

FLR005 France Rivollat_20 0.00

FLR007 France Rivollat_20 0.00

FLR010 France Rivollat_20 0.00

FLR013 France Rivollat_20 0.00

FLR014 France Rivollat_20 0.00

GRG003 France Rivollat_20 0.00

GRG008 France Rivollat_20 0.00

GRG015 France Rivollat_20 0.00

GRG016 France Rivollat_20 0.00

GRG018 France Rivollat_20 0.00

GRG019 France Rivollat_20 0.00

GRG021 France Rivollat_20 0.00

GRG022 France Rivollat_20 0.00

GRG023 France Rivollat_20 0.00

GRG025 France Rivollat_20 0.00

GRG027 France Rivollat_20 0.00

GRG028 France Rivollat_20 0.00

GRG032 France Rivollat_20 0.00

GRG035 France Rivollat_20 0.00

GRG041 France Rivollat_20 0.00

GRG043 France Rivollat_20 0.00

GRG047 France Rivollat_20 0.00

GRG049 France Rivollat_20 0.00

GRG050 France Rivollat_20 0.00

GRG052 France Rivollat_20 0.00

GRG056 France Rivollat_20 0.00

GRG057 France Rivollat_20 0.00

LBR001 France Rivollat_20 0.00

LBR002 France Rivollat_20 0.00

LBR003 France Rivollat_20 0.00

LBR004 France Rivollat_20 0.00

LBR005 France Rivollat_20 0.00
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OBN001 France Rivollat_20 0.00

OBN002 France Rivollat_20 0.00

OBN003 France Rivollat_20 0.00

OBN004 France Rivollat_20 0.00

OBN005 France Rivollat_20 0.00

OBN006 France Rivollat_20 0.00

OBN007 France Rivollat_20 0.00

OBN008 France Rivollat_20 0.00

OBN009 France Rivollat_20 0.00

OBN010 France Rivollat_20 0.00

OBN011 France Rivollat_20 0.00

PEN001_real1 France Rivollat_20 0.00

PEN001_real2 France Rivollat_20 0.00

PEN003 France Rivollat_20 0.00

PRI001 France Rivollat_20 0.00

PRI005 France Rivollat_20 0.00

PRI006 France Rivollat_20 0.00

BDB001 Germany Rivollat_20 0.00

BOT004 Germany Rivollat_20 0.00

BOT005 Germany Rivollat_20 0.00

Dill16 Germany Marchi_2020 10.60

Ess7 Germany Marchi_2020 12.34

FN2 Germany Veeramah_2018 11.08

HBS002 Germany Rivollat_20 0.00

HBS004 Germany Rivollat_20 0.00

HBS005 Germany Rivollat_20 0.00

HBS006 Germany Rivollat_20 0.00

HBS007 Germany Rivollat_20 0.00

HBS008 Germany Rivollat_20 0.00

HBS009 Germany Rivollat_20 0.00

SCH001 Germany Rivollat_20 0.00

SCH004 Germany Rivollat_20 0.00

SCH007 Germany Rivollat_20 0.00

SCH009 Germany Rivollat_20 0.00

SCH010 Germany Rivollat_20 0.00

SCH011 Germany Rivollat_20 0.00

SCH014 Germany Rivollat_20 0.00
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SCH015 Germany Rivollat_20 0.00

SCH016 Germany Rivollat_20 0.00

SCH018 Germany Rivollat_20 0.00

SMH004 Germany Rivollat_20 0.00

TGM008 Germany Rivollat_20 0.00

TGM009 Germany Rivollat_20 0.00

XN164 Germany Rivollat_20 0.00

XN165 Germany Rivollat_20 0.00

XN166 Germany Rivollat_20 0.00

XN167 Germany Rivollat_20 0.00

XN168 Germany Rivollat_20 0.00

XN169 Germany Rivollat_20 0.00

XN170 Germany Rivollat_20 0.00

XN171 Germany Rivollat_20 0.00

XN172 Germany Rivollat_20 0.00

XN173 Germany Rivollat_20 0.00

XN174 Germany Rivollat_20 0.00

XN175 Germany Rivollat_20 0.00

XN178 Germany Rivollat_20 0.00

XN180 Germany Rivollat_20 0.00

XN182 Germany Rivollat_20 0.00

XN183 Germany Rivollat_20 0.00

XN188 Germany Rivollat_20 0.00

XN191 Germany Rivollat_20 0.00

XN205 Germany Rivollat_20 0.00

XN206 Germany Rivollat_20 0.00

XN207 Germany Rivollat_20 0.00

XN211 Germany Rivollat_20 0.00

XN215 Germany Rivollat_20 0.00

XN224 Germany Rivollat_20 0.00

XN225 Germany Rivollat_20 0.00

VK1 Greenland Margaryan_20 11.77

VK11 Greenland Margaryan_20 0.08

VK179 Greenland Margaryan_20 1.84

VK180 Greenland Margaryan_20 0.01

VK182 Greenland Margaryan_20 0.01

VK183 Greenland Margaryan_20 0.54
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VK184 Greenland Margaryan_20 1.31

VK185 Greenland Margaryan_20 0.00

VK186 Greenland Margaryan_20 0.81

VK187 Greenland Margaryan_20 0.91

VK189 Greenland Margaryan_20 0.06

VK190 Greenland Margaryan_20 6.50

VK191 Greenland Margaryan_20 0.03

VK193 Greenland Margaryan_20 0.05

VK196 Greenland Margaryan_20 0.05

VK513 Greenland Margaryan_20 2.26

VK6 Greenland Margaryan_20 2.97

VK74 Greenland Margaryan_20 0.00

VK75 Greenland Margaryan_20 0.27

VK76 Greenland Margaryan_20 0.00

VK77 Greenland Margaryan_20 0.01

VK78 Greenland Margaryan_20 0.03

VK9 Greenland Margaryan_20 0.10

VK101 Iceland Margaryan_20 1.93

VK102 Iceland Margaryan_20 4.16

VK110 Iceland Margaryan_20 1.79

VK111 Iceland Margaryan_20 1.08

VK122 Iceland Margaryan_20 1.31

VK123 Iceland Margaryan_20 1.15

VK127 Iceland Margaryan_20 1.06

VK128 Iceland Margaryan_20 1.49

VK129 Iceland Margaryan_20 3.62

VK225 Iceland Margaryan_20 0.59

VK226 Iceland Margaryan_20 0.04

VK227 Iceland Margaryan_20 0.54

VK228 Iceland Margaryan_20 0.05

VK230 Iceland Margaryan_20 2.51

VK95 Iceland Margaryan_20 1.32

VK98 Iceland Margaryan_20 2.49

VK99 Iceland Margaryan_20 0.74

Rathlin1 Ireland Cassidy_2015 10.50

Rathlin2 Ireland Cassidy_2015 1.49

Rathlin3 Ireland Cassidy_2015 0.75



A.5. Reference ancient samples 184

(continued)

sample_ID country paper coverage

VK543 Ireland Margaryan_20 1.00

VK544 Ireland Margaryan_20 1.61

VK545 Ireland Margaryan_20 1.85

VK546 Ireland Margaryan_20 0.09

VK170 IsleOfMan Margaryan_20 1.22

VK534 Italy Margaryan_20 1.16

VK535 Italy Margaryan_20 1.24

VK536 Italy Margaryan_20 1.04

VK537 Italy Margaryan_20 1.39

VK538 Italy Margaryan_20 1.20

BOT14 Kazakhstan deBarrosDamgaard_2018a_FirstHorse 3.70

BOT15 Kazakhstan deBarrosDamgaard_2018a_FirstHorse 3.00

BOT2016 Kazakhstan deBarrosDamgaard_2018a_FirstHorse 13.60

Loschbour Luxembourg Lazaridis_2014 22.00

VK113 Norway Margaryan_20 0.12

VK114 Norway Margaryan_20 0.16

VK116 Norway Margaryan_20 0.01

VK117 Norway Margaryan_20 0.23

VK118 Norway Margaryan_20 6.08

VK124 Norway Margaryan_20 0.20

VK125 Norway Margaryan_20 0.00

VK386 Norway Margaryan_20 1.22

VK387 Norway Margaryan_20 1.09

VK388 Norway Margaryan_20 0.98

VK389 Norway Margaryan_20 1.11

VK390 Norway Margaryan_20 1.45

VK391 Norway Margaryan_20 0.42

VK392 Norway Margaryan_20 1.05

VK393 Norway Margaryan_20 1.20

VK394 Norway Margaryan_20 0.74

VK414 Norway Margaryan_20 1.23

VK415 Norway Margaryan_20 1.22

VK417 Norway Margaryan_20 1.15

VK418 Norway Margaryan_20 0.93

VK419 Norway Margaryan_20 1.23

VK420 Norway Margaryan_20 1.53

VK421 Norway Margaryan_20 0.01
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VK422 Norway Margaryan_20 1.07

VK448 Norway Margaryan_20 2.23

VK514 Norway Margaryan_20 1.03

VK515 Norway Margaryan_20 0.64

VK516 Norway Margaryan_20 1.43

VK518 Norway Margaryan_20 0.44

VK519 Norway Margaryan_20 0.22

VK520 Norway Margaryan_20 1.77

VK523 Norway Margaryan_20 1.01

VK524 Norway Margaryan_20 1.61

VK525 Norway Margaryan_20 1.11

VK526 Norway Margaryan_20 2.03

VK528 Norway Margaryan_20 1.60

VK529 Norway Margaryan_20 1.81

VK530 Norway Margaryan_20 0.97

VK531 Norway Margaryan_20 1.40

VK547 Norway Margaryan_20 4.73

VK548 Norway Margaryan_20 3.41

RISE150 Poland Allentoft_2015 2.63

VK153 Poland Margaryan_20 0.07

VK154 Poland Margaryan_20 2.94

VK155 Poland Margaryan_20 0.27

VK156 Poland Margaryan_20 0.96

VK157 Poland Margaryan_20 0.98

VK200 Poland Margaryan_20 0.02

VK210 Poland Margaryan_20 0.05

VK211 Poland Margaryan_20 0.10

VK212 Poland Margaryan_20 0.34

VK494 Poland Margaryan_20 0.16

DA245 Russia deBarrosDamgaard_2018a_FirstHorse 2.20

DA246 Russia deBarrosDamgaard_2018a_FirstHorse 2.90

DA247 Russia deBarrosDamgaard_2018a_FirstHorse 2.40

DA248 Russia deBarrosDamgaard_2018a_FirstHorse 2.30

DA249 Russia deBarrosDamgaard_2018a_FirstHorse 4.50

DA250 Russia deBarrosDamgaard_2018a_FirstHorse 0.90

DA252 Russia deBarrosDamgaard_2018a_FirstHorse 2.40

DA253 Russia deBarrosDamgaard_2018a_FirstHorse 2.70
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DA337 Russia deBarrosDamgaard_2018a_FirstHorse 1.10

DA341 Russia deBarrosDamgaard_2018a_FirstHorse 1.20

DA342 Russia deBarrosDamgaard_2018a_FirstHorse 1.70

DA345 Russia deBarrosDamgaard_2018a_FirstHorse 1.00

VK14 Russia Margaryan_20 0.16

VK15 Russia Margaryan_20 1.22

VK158 Russia Margaryan_20 0.04

VK159 Russia Margaryan_20 0.36

VK16 Russia Margaryan_20 0.23

VK160 Russia Margaryan_20 1.78

VK161 Russia Margaryan_20 0.02

VK17 Russia Margaryan_20 0.52

VK18 Russia Margaryan_20 0.77

VK19 Russia Margaryan_20 0.63

VK20 Russia Margaryan_20 0.50

VK21 Russia Margaryan_20 0.18

VK218 Russia Margaryan_20 0.58

VK219 Russia Margaryan_20 1.58

VK22 Russia Margaryan_20 0.12

VK220 Russia Margaryan_20 1.82

VK221 Russia Margaryan_20 1.95

VK222 Russia Margaryan_20 0.00

VK223 Russia Margaryan_20 0.35

VK224 Russia Margaryan_20 0.22

VK23 Russia Margaryan_20 0.33

VK252 Russia Margaryan_20 0.00

VK253 Russia Margaryan_20 0.01

VK254 Russia Margaryan_20 0.52

VK255 Russia Margaryan_20 0.07

VK272 Russia Margaryan_20 0.20

VK273 Russia Margaryan_20 1.09

VK408 Russia Margaryan_20 0.17

VK409 Russia Margaryan_20 0.17

VK410 Russia Margaryan_20 0.13

VK413 Russia Margaryan_20 0.03

VK466 Russia Margaryan_20 0.12

VK470 Russia Margaryan_20 0.03
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VLASAC32 Serbia Marchi_2020 12.65

VLASAC7 Serbia Marchi_2020 15.21

ans008 Sweden Sannchez-Quinto_2019 1.94

ans014 Sweden Sannchez-Quinto_2019 2.58

ans017 Sweden Sannchez-Quinto_2019 2.58

VK108 Sweden Margaryan_20 0.87

VK217 Sweden Margaryan_20 0.14

VK232 Sweden Margaryan_20 0.32

VK251 Sweden Margaryan_20 0.04

VK265 Sweden Margaryan_20 1.15

VK266 Sweden Margaryan_20 0.75

VK267 Sweden Margaryan_20 0.06

VK268 Sweden Margaryan_20 0.16

VK269 Sweden Margaryan_20 0.07

VK270 Sweden Margaryan_20 0.04

VK29 Sweden Margaryan_20 3.21

VK30 Sweden Margaryan_20 0.57

VK303 Sweden Margaryan_20 2.50

VK304 Sweden Margaryan_20 0.01

VK306 Sweden Margaryan_20 1.05

VK308 Sweden Margaryan_20 1.46

VK309 Sweden Margaryan_20 0.31

VK31 Sweden Margaryan_20 0.38

VK33 Sweden Margaryan_20 0.94

VK332 Sweden Margaryan_20 1.46

VK333 Sweden Margaryan_20 1.17

VK334 Sweden Margaryan_20 0.55

VK335 Sweden Margaryan_20 1.06

VK336 Sweden Margaryan_20 1.21

VK337 Sweden Margaryan_20 2.04

VK34 Sweden Margaryan_20 1.19

VK342 Sweden Margaryan_20 1.40

VK343 Sweden Margaryan_20 1.26

VK344 Sweden Margaryan_20 0.98

VK345 Sweden Margaryan_20 1.09

VK346 Sweden Margaryan_20 1.26

VK347 Sweden Margaryan_20 0.02
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VK348 Sweden Margaryan_20 1.03

VK349 Sweden Margaryan_20 1.25

VK35 Sweden Margaryan_20 1.11

VK350 Sweden Margaryan_20 1.56

VK352 Sweden Margaryan_20 1.15

VK353 Sweden Margaryan_20 1.30

VK354 Sweden Margaryan_20 0.67

VK355 Sweden Margaryan_20 1.13

VK357 Sweden Margaryan_20 1.39

VK358 Sweden Margaryan_20 1.03

VK359 Sweden Margaryan_20 0.01

VK379 Sweden Margaryan_20 0.07

VK380 Sweden Margaryan_20 0.11

VK382 Sweden Margaryan_20 0.06

VK39 Sweden Margaryan_20 0.16

VK395 Sweden Margaryan_20 1.44

VK396 Sweden Margaryan_20 1.19

VK397 Sweden Margaryan_20 1.37

VK398 Sweden Margaryan_20 1.29

VK399 Sweden Margaryan_20 1.71

VK40 Sweden Margaryan_20 1.87

VK400 Sweden Margaryan_20 1.07

VK401 Sweden Margaryan_20 1.26

VK402 Sweden Margaryan_20 1.53

VK403 Sweden Margaryan_20 1.49

VK404 Sweden Margaryan_20 1.43

VK405 Sweden Margaryan_20 1.03

VK406 Sweden Margaryan_20 1.30

VK407 Sweden Margaryan_20 0.23

VK42 Sweden Margaryan_20 9.25

VK424 Sweden Margaryan_20 0.14

VK425 Sweden Margaryan_20 0.12

VK426 Sweden Margaryan_20 0.12

VK427 Sweden Margaryan_20 0.11

VK428 Sweden Margaryan_20 0.18

VK429 Sweden Margaryan_20 2.73

VK430 Sweden Margaryan_20 0.18
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VK431 Sweden Margaryan_20 0.25

VK432 Sweden Margaryan_20 0.30

VK433 Sweden Margaryan_20 2.21

VK434 Sweden Margaryan_20 0.26

VK435 Sweden Margaryan_20 0.06

VK437 Sweden Margaryan_20 0.02

VK438 Sweden Margaryan_20 0.22

VK439 Sweden Margaryan_20 0.16

VK440 Sweden Margaryan_20 0.07

VK441 Sweden Margaryan_20 0.03

VK442 Sweden Margaryan_20 1.24

VK443 Sweden Margaryan_20 2.11

VK444 Sweden Margaryan_20 0.79

VK450 Sweden Margaryan_20 0.12

VK452 Sweden Margaryan_20 0.23

VK453 Sweden Margaryan_20 0.17

VK454 Sweden Margaryan_20 0.25

VK455 Sweden Margaryan_20 1.60

VK456 Sweden Margaryan_20 1.39

VK457 Sweden Margaryan_20 0.19

VK458 Sweden Margaryan_20 0.18

VK459 Sweden Margaryan_20 0.19

VK460 Sweden Margaryan_20 0.29

VK461 Sweden Margaryan_20 0.27

VK462 Sweden Margaryan_20 0.09

VK463 Sweden Margaryan_20 0.27

VK464 Sweden Margaryan_20 0.08

VK467 Sweden Margaryan_20 0.01

VK468 Sweden Margaryan_20 2.83

VK469 Sweden Margaryan_20 0.23

VK471 Sweden Margaryan_20 0.22

VK472 Sweden Margaryan_20 0.06

VK473 Sweden Margaryan_20 1.40

VK474 Sweden Margaryan_20 1.59

VK475 Sweden Margaryan_20 4.49

VK476 Sweden Margaryan_20 0.12

VK477 Sweden Margaryan_20 1.17
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VK478 Sweden Margaryan_20 1.58

VK479 Sweden Margaryan_20 1.82

VK48 Sweden Margaryan_20 0.49

VK50 Sweden Margaryan_20 6.23

VK51 Sweden Margaryan_20 0.62

VK517 Sweden Margaryan_20 1.04

VK522 Sweden Margaryan_20 7.14

VK527 Sweden Margaryan_20 1.12

VK53 Sweden Margaryan_20 0.80

VK533 Sweden Margaryan_20 4.83

VK56 Sweden Margaryan_20 1.06

VK57 Sweden Margaryan_20 0.21

VK579 Sweden Margaryan_20 0.13

VK58 Sweden Margaryan_20 4.51

VK60 Sweden Margaryan_20 0.79

VK63 Sweden Margaryan_20 0.19

VK64 Sweden Margaryan_20 0.87

VK143 UK Margaryan_20 1.04

VK144 UK Margaryan_20 0.16

VK145 UK Margaryan_20 1.11

VK146 UK Margaryan_20 1.18

VK147 UK Margaryan_20 0.82

VK148 UK Margaryan_20 0.04

VK149 UK Margaryan_20 0.01

VK150 UK Margaryan_20 1.03

VK151 UK Margaryan_20 1.14

VK163 UK Margaryan_20 0.02

VK164 UK Margaryan_20 0.00

VK165 UK Margaryan_20 1.11

VK166 UK Margaryan_20 4.50

VK167 UK Margaryan_20 0.90

VK168 UK Margaryan_20 1.19

VK171 UK Margaryan_20 0.11

VK172 UK Margaryan_20 1.19

VK173 UK Margaryan_20 1.23

VK174 UK Margaryan_20 0.94

VK175 UK Margaryan_20 0.91
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sample_ID country paper coverage

VK176 UK Margaryan_20 2.42

VK177 UK Margaryan_20 1.06

VK178 UK Margaryan_20 0.89

VK201 UK Margaryan_20 1.40

VK202 UK Margaryan_20 1.13

VK203 UK Margaryan_20 1.31

VK204 UK Margaryan_20 1.03

VK205 UK Margaryan_20 1.19

VK206 UK Margaryan_20 0.01

VK207 UK Margaryan_20 0.70

VK208 UK Margaryan_20 0.07

VK256 UK Margaryan_20 .1.36

VK257 UK Margaryan_20 1.02

VK258 UK Margaryan_20 1.02

VK259 UK Margaryan_20 1.18

VK260 UK Margaryan_20 0.90

VK261 UK Margaryan_20 1.05

VK262 UK Margaryan_20 1.22

VK263 UK Margaryan_20 1.37

VK264 UK Margaryan_20 0.99

VK449 UK Margaryan_20 1.43

VK539 Ukraine Margaryan_20 1.57

VK540 Ukraine Margaryan_20 0.88

VK541 Ukraine Margaryan_20 2.56

VK542 Ukraine Margaryan_20 1.20

Alh1 new_bavaria 11.34

Alh10 new_bavaria 10.43

atp002 Gunther_2015 4.08

atp016 Gunther_2015 1.11

ATT26 Brunel_2020 0.00

Ballynahatty Cassidy_2015 10.27

Bar1 2.00

Bar31 Hofmanova_2016 3.66

Bar8 Hofmanova_2016 7.13

BERG02-2 Brunel_2020 0.00

BERG157-2 Brunel_2020 0.00

BERG157-7 Brunel_2020 0.00
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(continued)

sample_ID country paper coverage

BES1248 Brunel_2020 0.00

BFM265 Brunel_2020 0.00

Bichon Jones_2015 9.50

BIS130 Brunel_2020 0.00

BIS385 Brunel_2020 0.00

BLP10 Brunel_2020 0.00

BRU1 new_bavaria 11.54

BUCH2 Brunel_2020 0.00

CBV95 Brunel_2020 0.00

CO1 Gamba_2014 1.13

COL11 Brunel_2020 0.00

COL153A Brunel_2020 0.00

COL153i Brunel_2020 0.00

CRE20D Brunel_2020 0..00

DA100 deBarrosDamgaard_2018b_137 3.42

DA104 deBarrosDamgaard_2018b_137 1.11

DA111 deBarrosDamgaard_2018b_137 0.86

DA116 deBarrosDamgaard_2018b_137 1.00

DA117 deBarrosDamgaard_2018b_137 1.17

DA118 deBarrosDamgaard_2018b_137 1.49

DA129 deBarrosDamgaard_2018b_137 1.10

DA13 deBarrosDamgaard_2018b_137 1.54

DA142 deBarrosDamgaard_2018b_137 1.18

DA16 deBarrosDamgaard_2018b_137 1.05

DA162 deBarrosDamgaard_2018b_137 2.09

DA164 deBarrosDamgaard_2018b_137 1.08

DA177 deBarrosDamgaard_2018b_137 2.60

DA179 deBarrosDamgaard_2018b_137 1.52

DA191 deBarrosDamgaard_2018b_137 0.89

DA195 deBarrosDamgaard_2018b_137 0.87

DA2 deBarrosDamgaard_2018b_137 1.06

DA204 deBarrosDamgaard_2018b_137 1.03

DA206 deBarrosDamgaard_2018b_137 2.00

DA221 deBarrosDamgaard_2018b_137 2.98

DA222 deBarrosDamgaard_2018b_137 3.40

DA223 deBarrosDamgaard_2018b_137 2.76

DA224 deBarrosDamgaard_2018b_137 0.96
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sample_ID country paper coverage

DA227 deBarrosDamgaard_2018b_137 1.18

DA228 deBarrosDamgaard_2018b_137 2.64

DA23 deBarrosDamgaard_2018b_137 2.05

DA230 deBarrosDamgaard._2018b_137 1.28

DA243 deBarrosDamgaard_2018b_137 3.11

DA26 deBarrosDamgaard_2018b_137 0.96

DA27 deBarrosDamgaard_2018b_137 2.00

DA28 deBarrosDamgaard_2018b_137 3.96

DA29 deBarrosDamgaard_2018b_137 1.12

DA30 deBarrosDamgaard_20.18b_137 1.18

DA35 deBarrosDamgaard_2018b_137 1.58

DA358 deBarrosDamgaard_2018a_FirstHorse 0.90

DA362 deBarrosDamgaard_2018a_FirstHorse 1.10

DA38 deBarrosDamgaard_2018b_137 2.80

DA382 deBarrosDamgaard_2018a_FirstHorse 2.50

DA385 deBarrosDamgaard_2018b_137 2.23

DA39 deBarrosDamgaard_2018b_137 2.00

DA43 deBarrosDamgaard_2018b_137 1.61

DA45 deBarrosDamgaard_2018b_137 8.67

DA47 deBarrosDamgaard_2018b_137 1.50

DA50 deBarrosDamgaard_2018b_137 0.92

DA55 deBarrosDamgaard_2018b_137 0.87

DA56 deBarrosDamgaard_2018b_137 1.49

DA57 deBarrosDamgaard_2018b_137 1.01

DA58 deBarrosDamgaard_2018b_137 0.86

DA6 deBarrosDamgaard_2018b_137 1.04

DA69 deBarrosDamgaard_2018b_137 0.89

DA72 deBarrosDamgaard_2018b_137 1.27

DA74 deBarrosDamgaard_2018b_137 0.92

DA8 deBarrosDamgaard_2018b_137 1.83

DA80 deBarrosDamgaard_2018b_137 1.04

DA81 deBarrosDamgaard_2018b_137 2.10

DA85 deBarrosDamgaard_2018b_137 1.85

DA9 deBarrosDamgaard_2018b_137 1.00

DA93 deBarrosDamgaard_2018b_137 1.46

DA95 deBarrosDamgaard_2018b_137 2.00

DA96 deBarrosDamgaard_2018b_137 0.94
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sample_ID country paper coverage

DA99 deBarrosDamgaard_2018b_137 1.39

DIN2 1.71

EBA1 deBarrosDamgaard_2018a_FirstHorse 4.50

EBA2 deBarrosDamgaard_2018a_FirstHorse 9.10

Erg1 new_bavaria 4.52

Erg2 new_bavaria 0.71

ERS1164 Brunel_2020 0.00

ERS86 Brunel_2020 0.00

ERS88 Brunel_2020 0.00

Es97-1 Brunel_2020 0.00

EUG11 Brunel_2020 0.00

F38 2.00

Jeb8 Brunel_2020 0.00

KER_1 zuzana_new 10.00

Kir23 Bavaria_Earl 17.52

Kir24 new_bavaria 3.98

Kir25 new_bavaria 4.55

Kir26 new_bavaria 4.84

Kir27 new_bavaria 16.60

Kir28 new_bavaria 17.30

KK1 10.00

Klei10 Hofmanova_2016 2.01

KO1 Gamba_2014 1.24

KO2 Gamba_2014 0.13

Kostenki14 Seguin-Orlando_2014 1.00

LaBrana Olade_2014 4.00

MA2195 deBarrosDamgaard_2018a_FirstHorse 0.90

MA2200 deBarrosDamgaard_2018a_FirstHorse 2.20

MA2203 deBarrosDamgaard_2018a_FirstHorse 0.90

MA2210 deBarrosDamgaard_2018a_FirstHorse 0.90

MA2212 deBarrosDamgaard_2018a_FirstHorse 0.90

MA2213 deBarrosDamgaard_2018a_FirstHorse 1.20

MDV248 Brunel_2020 0.00

Molz1 new_bavaria 13.00

Mor6 Brunel_2020 0.00

Mota 10.00

NE1 Gamba_2014 22.12



A.5. Reference ancient samples 195

(continued)

sample_ID country paper coverage

NE2 Gamba_2014 0.19

NE3 Gamba_2014 0.13

NE5 Gamba_2014 1.04

NE6 Gamba_2014 1.18

NE7 Gamba_2014 1.14

NIED Brunel_2020 0.00

NOR2B6 Brunel_2020 0.00

NOR3-15 Brunel_2020 0.00

NOR3-6 Brunel_2020 0.00

NOR4 Brunel_2020 0.00

NW_54 zuzana_new 10.00

OBE3626-1 Brunel_2020 0.00

OBE3722 Brunel_2020 0.00

Pal7 Hofmanova_2016 1.28

PECH5 Brunel_2020 0.00

PECH8 Brunel_2020 0.00

PEI10 Brunel_2020 0.00

PEI2 Brunel_2020 0.00

PER1150503 Brunel_2020 0.00

PER3023 Brunel_2020 0.00

PER3123 Brunel_2020 0.00

PEY163 Brunel_2020 0.00

PEY53 Brunel_2020 0.00

PIR3037AB Brunel_2020 0.00

PIR3116B Brunel_2020 0.00

Pir4 Brunel_2020 0.00

Pir6 Brunel_2020 0.00

prs002 Sannchez-Quinto_2019 5.76

prs009 Sannchez-Quinto_2019 7.10

prs013 Sannchez-Quinto_2019 4.73

prs016 Sannchez-Quinto_2019 6.40

PSS4170 Brunel_2020 0.00

PSS4693 Brunel_2020 0.00

PT2 Brunel_2020 0.00

QUIN234 Brunel_2020 0.00

QUIN58 Brunel_2020 0.00

R-11 antonio_19 0.92
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(continued)

sample_ID country paper coverage

R1 antonio_19 3.94

R10 antonio_19 1.30

R1014 antonio_19 0.59

R1015 antonio_19 0.87

R1016 antonio_19 0.39

R1021 antonio_19 0.56

R104 antonio_19 0.85

R105 antonio_19 1.13

R106 antonio_19 1.06

R107 antonio_19 1.47

R108 antonio_19 1.06

R109 antonio_19 0.49

R110 antonio_19 0.68

R111 antonio_19 0.59

R113 antonio_19 0.61

R114 antonio_19 1.17

R115 antonio_19 1.10

R116 antonio_19 1.05

R117 antonio_19 0.95

R118 antonio_19 0.63

R120 antonio_19 0.51

R121 antonio_19 0.61

R1219 antonio_19 1.61

R122 antonio_19 1.38

R1220 antonio_19 1.02

R1221 antonio_19 1.32

R1224 antonio_19 1.10

R123 antonio_19 0.66

R125 antonio_19 0.67

R126 antonio_19 1.04

R128 antonio_19 0.92

R1283 antonio_19 1.04

R1285 antonio_19 0.99

R1286 antonio_19 1.05

R1287 antonio_19 1.14

R1288 antonio_19 1.14

R1289 antonio_19 0.76
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sample_ID country paper coverage

R1290 antonio_19 1.08

R130 antonio_19 1.37

R131 antonio_19 0.59

R132 antonio_19 1.50

R133 antonio_19 1.62

R134 antonio_19 1.17

R136 antonio_19 1.82

R137 antonio_19 1.32

R15 antonio_19 2.95

R1543 antonio_19 0.99

R1544 antonio_19 0.93

R1545 antonio_19 1.52

R1547 antonio_19 0.77

R1548 antonio_19 0.86

R1549 antonio_19 1.03

R1550 antonio_19 0.87

R1551 antonio_19 0.81

R16 antonio_19 0.56

R17 antonio_19 0.54

R18 antonio_19 0.62

R19 antonio_19 0.50

R2 antonio_19 3.64

R22 antonio_19 0.77

R24 antonio_19 0.54

R25 antonio_19 0.53

R26 antonio_19 0.51

R27 antonio_19 0.68

R28 antonio_19 0.72

R29 antonio_19 0.54

R3 antonio_19 3.99

R30 antonio_19 1.39

R31 antonio_19 1.96

R32 antonio_19 0.65

R33 antonio_19 1.52

R34 antonio_19 1.06

R35 antonio_19 0.64

R36 antonio_19 1.25
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sample_ID country paper coverage

R37 antonio_19 0.92

R38 antonio_19 1.15

R39 antonio_19 1.64

R4 antonio_19 3.53

R40 antonio_19 1.01

R41 antonio_19 1.11

R42 antonio_19 2.35

R43 antonio_19 1.50

R435 antonio_19 1.00

R436 antonio_19 0.63

R437 antonio_19 1.41

R44 antonio_19 1.03

R45 antonio_19 1.07

R47 antonio_19 1.12

R473 antonio_19 1.55

R474 antonio_19 1.27

R475 antonio_19 1.25

R49 antonio_19 1.22

R5 antonio_19 1.48

R50 antonio_19 1.30

R51 antonio_19 0.99

R52 antonio_19 0.67

R53 antonio_19 1.22

R54 antonio_19 0.81

R55 antonio_19 1.43

R56 antonio_19 0.92

R57 antonio_19 1.23

R58 antonio_19 1.49

R59 antonio_19 1.44

R6 antonio_19 0.58

R60 antonio_19 1.91

R61 antonio_19 1.45

R62 antonio_19 1.69

R63 antonio_19 1.97

R64 antonio_19 1.93

R65 antonio_19 2.04

R66 antonio_19 0.54
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sample_ID country paper coverage

R67 antonio_19 1.64

R68 antonio_19 1.30

R69 antonio_19 1.59

R7 antonio_19 3.03

R70 antonio_19 1.06

R71 antonio_19 0.83

R72 antonio_19 0.78

R73 antonio_19 0.95

R75 antonio_19 0.56

R76 antonio_19 0.64

R78 antonio_19 1.14

R8 antonio_19 0.52

R80 antonio_19 1.90

R81 antonio_19 0.51

R835 antonio_19 0.63

R836 antonio_19 0.54

R850 antonio_19 0.64

R851 antonio_19 0.69

R9 antonio_19 3.88

R969 antonio_19 2.38

R970 antonio_19 0.61

R973 antonio_19 1.15

Rev5 Hofmanova_2016 1.16

RISE174 allentoft_2015 2.49

RISE395 allentoft_2015 2.32

RISE479 allentoft_2015 1.15

RISE493 allentoft_2015 6.41

RISE495 allentoft_2015 3.54

RISE496 allentoft_2015 2.42

RISE497 allentoft_2015 7.41

RISE499 allentoft_2015 1.27

RISE500 allentoft_2015 1.40

RISE502 allentoft_2015 1.14

RISE504 allentoft_2015 1.26

RISE505 allentoft_2015 4.42

RISE511 allentoft_2015 2.94

RISE516 deBarrosDamgaard_2018a_FirstHorse 0.90
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sample_ID country paper coverage

RISE523 allentoft_2015 2.19

RISE548 allentoft_2015 0.87

RISE552 allentoft_2015 2.34

RISE568 zuzana_new 10.00

RISE569 zuzana_new 10.00

RISE601 allentoft_2015 1.06

RISE602 allentoft_2015 1.15

RISE664 deBarrosDamgaard_2018a_FirstHorse 4.60

RISE672 deBarrosDamgaard_2018a_FirstHorse 1.20

RISE674 deBarrosDamgaard_2018a_FirstHorse 2.60

RISE680 deBarrosDamgaard_2018a_FirstHorse 1.50

RISE683 deBarrosDamgaard_2018a_FirstHorse 2.00

RISE685 deBarrosDamgaard_2018a_FirstHorse 1.30

RISE98 allentoft_2015 4.97

RIX15 Brunel_2020 0.00

RIX2 Brunel_2020 0.00

RIX4 Brunel_2020 0.00

ROS102 Brunel_2020 0.00

ROS45 Brunel_2020 0.00

ROS78 Brunel_2020 0.00

ROS82 Brunel_2020 0.00

Satsurblia Jones_2015 1.40

Sch72-15 Brunel_2020 0.00

Schw432 Brunel_2020 0.00

sidelkino 2.00

STR_220 zuzana_new 10.00

STR_300 zuzana_new 10.00

STR_310 zuzana_new 10.00

STR_355c zuzana_new 10.00

STR_486 zuzana_new 10.00

SZ1 zuzana_new 10.00

SZ11 zuzana_new 10.00

SZ15 zuzana_new 10.00

SZ2 zuzana_new 10.00

SZ3 zuzana_new 10.00

SZ36 zuzana_new 10.00

SZ4 zuzana_new 10.00
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sample_ID country paper coverage

SZ43 zuzana_new 10.00

SZ45 zuzana_new 10.00

SZ5 zuzana_new 10.00

VIM_2b zuzana_new NA

WC1 Broushaki_201Broushaki 10.00

WET370 Brunel_2020 0.00

WEZ53-2 new_bavaria 8.20

WEZ56-1 new_bavaria 7.40

Yamnaya deBarrosDamgaard_2018a_FirstHorse 25.20

A.5.1 Table of individuals and their fineSTRUCTURE labels - chap-

ter 4

fineSTRUCTURE groupings for all samples included from Chapter 4.

Sample ID fineSTRUCTURE Group

CO1 1

SZ4 1

VK70 1

RISE568 2

NW_54 2

SZ1 2

SZ43 2

Mota 3

Rathlin2 3

VK1 3

VK50 3

VK531 4

sidelkino 4

RISE395 5

RISE500 5

RISE505 5

RISE523 5

Kir24 6

RISE511 6

Yamnaya 6
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Sample ID fineSTRUCTURE Group

RISE552 6

VK395 7

VK56 7

VK475 8

VK397 8

VK443 8

VK154 8

VK478 8

WEZ56-1 8

POH41 8

POH40 8

POH44 8

Molz1 8

VK160 8

DA29 8

POH36 8

POH13 8

VK273 8

POH28 8

LIB7 8

VK473 8

VK474 8

VK541 8

VK245 9

VK46 9

VK127 9

VK190 9

STR_355c 9

R1286 9

VK173 9

VK128 9

VK145 9

VK204 9

VK258 9

VK263 9

VK256 9

VK257 9
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Sample ID fineSTRUCTURE Group

VK262 9

VK335 9

VK327 9

VK328 9

VK259 9

VK400 9

VK422 9

VK324 9

VK402 9

VK420 9

VK449 9

VK237 9

VK238 10

VK236 10

VK25 10

VK110 11

VK111 11

VK230 11

VK123 12

VK201 12

VK349 12

VK368 12

VK95 12

VK545 12

VK203 12

VK202 12

VK386 12

VK205 12

VK525 12

VK456 12

VK528 12

VK405 12

Kir28 13

Rathlin1 13

RISE98 13

RISE150 13

SZ11 13
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(continued)

Sample ID fineSTRUCTURE Group

VK118 13

Alh1 13

R31 13

VK34 13

Alh10 13

VK166 13

SZ15 13

VK337 13

SZ2 13

VK323 13

VK102 13

VK361 13

VK6 13

VK42 13

VK433 13

VK455 13

VK479 13

VK429 13

VK58 13

VK40 13

VK446 13

VK373 13

VK364 13

VK468 13

VK526 13

VK384 13

Kir25 14

Kir26 14

BRU1 14

Kir27 14

RISE479 14

WEZ53-2 14

POH39 14

POH27 14

POH3 14

LIB11 14

POH11 14
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Sample ID fineSTRUCTURE Group

RISE569 14

VK274 14

VK542 14

SZ45 15

R1219 15

VK326 15

VK146 15

VK265 15

VK329 15

R1224 15

VK261 15

VK332 15

VK333 15

VK330 15

VK317 15

R1220 15

SZ5 15

VK150 15

R106 15

SZ3 15

VK322 15

R62 15

VK336 15

R1288 15

VK177 15

LIB12 15

VK346 15

VK369 15

VK353 15

VK357 15

VK403 15

VK84 15

VK398 15

VK448 15

VK477 15

VK385 15

VK350 15



A.5. Reference ancient samples 206
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Sample ID fineSTRUCTURE Group

VK355 15

VK396 15

VK87 15

VK363 15

Loschbour 16

Bichon 17

R15 17

R7 17

LaBrana 18

KO1 18

VLASAC7 18

VLASAC32 18

VK482 19

VK555 19

VK483 19

VK497 19

VK367 20

VK508 20

VK493 20

VK489 20

VK495 20

VK492 20

VK281 20

VK484 20

VK481 20

VK496 20

LIB2 20

VK491 20

VK498 20

VK343 20

VK358 20

VK510 20

VK279 20

VK487 20

VK486 20

VK505 20

VK506 20
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(continued)

Sample ID fineSTRUCTURE Group

VK511 20

VK521 20

VK553 20

VK552 20

VK512 20

VK532 20

VK549 20

VK522 20

VK550 20

VK551 20

VK524 21

VK392 21

VK514 21

VK414 21

VK520 21

VK419 21

VK170 21

VK393 21

VK529 21

VK516 21

VK417 21

VK544 21

VK390 21

VK513 21

VK415 21

VK129 21

VK523 21

VK547 21

VK548 21

VK517 22

VK527 22

VK342 22

RISE174 23

VK122 23

VK151 23

VK15 23

VK143 23
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(continued)

Sample ID fineSTRUCTURE Group

VK165 23

VK141 23

VK168 23

VK352 23

VK399 23

VK172 23

VK370 23

VK401 23

VK35 23

VK184 23

VK316 23

VK290 23

VK291 23

VK29 23

VK539 23

VK219 23

VK348 23

VK509 23

VK221 23

VK320 23

VK176 23

VK404 23

VK179 23

VK284 23

VK372 23

VK306 23

VK445 23

VK294 23

VK98 23

VK387 23

VK406 23

VK389 23

VK533 23

VK303 23

VK220 23

STR_486 24

KER_1 24
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(continued)

Sample ID fineSTRUCTURE Group

STR_300 24

Bar1 25

STR_220 25

ans008 26

NE5 26

NE7 26

NE6 26

LIB3 27

R1 27

LIB4 27

LIB5 27

SZ36 27

R1221 27

R473 27

R105 27

R33 27

R63 27

R116 27

R474 27

R108 27

FN2 27

R61 27

R55 27

VK345 27

VK442 27

VK538 27

R53 28

R64 28

R1287 28

R60 28

R49 28

R47 28

R36 28

R1549 28

R57 28

R107 28

R58 28
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Sample ID fineSTRUCTURE Group

R122 28

R437 28

R59 28

R1283 28

R1290 28

R969 28

VK534 28

VK535 28

VK537 28

R973 28

STR_310 28

VK536 28

R126 29

R38 29

R70 29

R67 29

R41 29

R45 29

R68 29

R42 29

MA2200 29

MA2213 29

R39 29

R30 29

R114 29

R137 29

R69 29

R133 29

R43 29

R115 29

R50 29

R44 29

R1545 29

R34 29

R134 29

R40 29

R65 29
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(continued)

Sample ID fineSTRUCTURE Group

R136 29

R130 29

R78 29

R132 30

R80 30

R475 30

DA206 31

DA382 31

DA164 31

DA35 31

DA243 31

DA162 31

F38 31

WC1 32

KK1 32

Satsurblia 32

Erg1 33

R4 33

R5 33

Dill16 33

Bar8 33

DIN2 33

NE1 33

Pal7 33

Ess7 33

Bar31 34

Klei10 34

R10 34

R3 34

R2 34

Rev5 34

R9 34

Ballynahatty 35

Kir23 35

atp016 36

prs002 36

atp002 36
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(continued)

Sample ID fineSTRUCTURE Group

prs009 36

prs016 36

prs013 36

ans014 36

ans017 36

RISE664 37

RISE685 37

RISE672 37

RISE674 37

RISE680 37

RISE683 37

EBA1 38

EBA2 38

BOT14 39

BOT15 39

BOT2016 39

DA142 40

DA228 40

DA56 41

DA221 41

DA100 41

DA104 41

DA72 41

DA80 41

DA16 41

DA13 41

DA38 41

DA385 41

RISE601 42

RISE602 42

RISE502 43

RISE493 43

RISE495 43

DA23 44

DA93 44

RISE504 44

DA204 44
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(continued)

Sample ID fineSTRUCTURE Group

DA222 44

DA230 44

DA117 45

DA179 45

DA223 46

DA30 46

DA227 46

DA57 46

DA81 46

DA129 46

DA47 46

DA85 46

DA6 47

DA8 47

DA2 47

RISE496 47

RISE499 47

DA342 48

DA337 48

RISE497 48

DA341 48

DA248 48

DA245 48

DA249 48

DA246 48

DA253 48

DA252 48

DA247 48

DA362 48

DA43 49

DA45 49

DA39 49

DA28 49

DA95 49

DA177 49

DA27 49

DA118 49
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(continued)

Sample ID fineSTRUCTURE Group

DA99 49

A.5.2 Table of individuals and their fineSTRUCTURE labels

fineSTRUCTURE groupings for all samples included from Chapter 5.

Sample ID fineSTRUCTURE Group

STR_220 STR_220

STR_310 STR_310

RISE569 STR_355c

STR_355c STR_355c

MA2200 Anatolia_MLBA

R42 Anatolia_MLBA

R65 Anatolia_MLBA

LIB3 Slavic_Migration_I

R1 Slavic_Migration_I

SZ36 Slavic_Migration_I

R969 Slavic_Migration_I

LIB4 Slavic_Migration_I

LIB5 Slavic_Migration_I

Loschbour Loschbour

R15 Italian_HG

R7 Italian_HG

Bichon Bichon

VLASAC32 VLASAC

VLASAC7 VLASAC

LaBrana LaBrana

RISE98 BronzeAge_I

Kir28 BronzeAge_I

Rathlin1 BronzeAge_I

RISE150 BronzeAge_I

WEZ56-1 BronzeAge_I

SZ11 SZ11

VK337 Viking_10C_Scan_I

VK190 Viking_10C_Scan_I

VK118 Viking_10C_Scan_I
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(continued)

Sample ID fineSTRUCTURE Group

SZ15 Viking_10C_Scan_I

VK429 Viking_10C_Scan_I

VK166 Viking_10C_Scan_I

VK42 Viking_10C_Scan_I

VK230 Viking_10C_Scan_I

VK102 Viking_10C_Scan_I

Alh10 Viking_10C_Scan_I

Alh1 Viking_10C_Scan_I

VK29 Viking_10C_Scan_I

VK433 Viking_10C_Scan_I

VK443 Viking_10C_Scan_I

VK58 Viking_10C_Scan_I

VK448 Viking_10C_Scan_I

VK46 Viking_10C_Scan_I

VK526 Viking_10C_Scan_I

VK468 Viking_10C_Scan_I

VK6 EarlyNorse

VK533 Viking_10C_Scan_II

VK532 Viking_10C_Scan_II

VK129 Viking_10C_Scan_II

VK176 Viking_10C_Scan_II

LIB2 Viking_10C_Scan_II

VK281 Viking_10C_Scan_II

VK303 Viking_10C_Scan_II

VK522 Viking_10C_Scan_II

VK521 Viking_10C_Scan_II

SZ2 Viking_10C_Scan_II

VK513 Viking_10C_Scan_II

RISE174 Viking_10C_Scan_II

VK279 Viking_10C_Scan_II

VK547 Viking_10C_Scan_II

VK98 Viking_10C_Scan_II

VK551 Viking_10C_Scan_II

VK548 Viking_10C_Scan_II

POH41 Slavic_Early_Middle_Age_II

LIB11 Slavic_Early_Middle_Age_II

LIB7 Slavic_Early_Middle_Age_II
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(continued)

Sample ID fineSTRUCTURE Group

POH13 Slavic_Early_Middle_Age_II

Molz1 Slavic_Early_Middle_Age_II

POH11 Slavic_Early_Middle_Age_II

POH36 Slavic_Early_Middle_Age_II

POH28 Slavic_Early_Middle_Age_II

POH40 Slavic_Early_Middle_Age_II

POH44 Slavic_Early_Middle_Age_II

VK154 Slavic_Early_Middle_Age_II

VK541 Slavic_Early_Middle_Age_II

VK475 Slavic_Early_Middle_Age_II

Kir25 Lombard_mixed

FN2 Lombard_mixed

SZ3 Lombard_mixed

SZ45 Lombard_mixed

BRU1 Lombard_mixed

Kir26 Lombard_mixed

VK87 Lombard_mixed

Kir27 Lombard_mixed

LIB12 Lombard_mixed

WEZ53-2 Lombard_mixed

POH27 Slavic_Early_Middle_Age_II

POH3 Slavic_Early_Middle_Age_II

POH39 Slavic_Early_Middle_Age_II

SZ5 Slavic_Early_Middle_Age_II

RISE496 Karasuk

RISE523 Mezhovskaya

DA223 Wusun

DA81 Wusun

KK1 CHG

DA162 Alan

DA243 Alan

DA382 Alan

WC1 Iranian_Farmer

RISE511 Yamnaya

RISE552 Yamnaya

Yamnaya Yamnaya

RISE395 Sintashta
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(continued)

Sample ID fineSTRUCTURE Group

Kir24 Androvono

RISE505 Androvono

Ballynahatty Mixed_Middle_Neolithic

ans017 Mixed_Middle_Neolithic

Kir23 Mixed_Middle_Neolithic

Erg1 Early_Neolithic

R4 Early_Neolithic

atp002 Irish_Neolithic

prs002 Irish_Neolithic

prs009 Irish_Neolithic

prs013 Irish_Neolithic

prs016 Irish_Neolithic

Bar31 Anatolia_Neolithic

R2 Anatolia_Neolithic

Klei10 Anatolia_Neolithic

R3 Anatolia_Neolithic

R9 Anatolia_Neolithic

Bar8 LBK

Dill16 LBK

Ess7 LBK

NE1 LBK

RISE568 RISE568

STR_486 STR_486

VK70 EarlyViking

NW_54 NW_54

KER_1 KER_1

STR_300 KER_1

RISE497 Karasuk_II

DA245 Shamanka_EN

DA249 Shamanka_EN

DA246 Shamanka_EN

DA248 Shamanka_EN

DA252 Shamanka_EN

DA247 Shamanka_EN

DA253 Shamanka_EN

DA177 GoldenHordeAsian

DA28 GoldenHordeAsian
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(continued)

Sample ID fineSTRUCTURE Group

DA45 XiongNu

DA221 Nomad_IA

DA228 Turk

DA100 TianShanHun

DA38 TianShanHun

DA385 TianShanHun

RISE493 Karasuk_III

RISE495 Karasuk_III

DA222 Kipchak

DA23 Kipchak

BOT14 Botai

BOT15 Botai

BOT2016 Botai

EBA1 CentralSteppe_EMBA

EBA2 CentralSteppe_EMBA

RISE664 Okunevo_EMBA

RISE674 Okunevo_EMBA



Appendix B

Some commonly used terms and their

motivation for use

Here are some terms I commonly use.

B.1 ‘all-v-all’

I use this term when painting each individual in turn is painted using all other individuals as

donors. If there are N individuals, the result is an NxN coancestry matrix.

B.2 ‘Leave-one-out’

Consider a situation where an all-v-all painting is performed on a set of individuals grouped

into populations, where 2 of the populations are Devon and Cornwall. We would like to

estimate the proportion of genome each recipient individual matches to both Devon and

Cornwall, so we take the sums across columns, aggregating them by population. However,

this means that each individual from, for example, Cornwall, can match to one less individual

from Cornwall than other populations, as they cannot paint themselves. To avoid this, we

may perform a ‘leave-one-out’ painting, where each population is painted separately, and a

single individual from each other population is removed from the set of donors.

B.3 Total Variation Distance

Often we would like to estimate how similar the copyvectors, Cx and Cy of two individuals

or populations (average) are to one another. Given copvectors are the same length, one way

would be to simply estimate Pearsons’ correlation. However, this can lead to misleading
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results because Pearson’s r-squared is often over-sensitive to outlying values.

An alternative is to estimate TVD, where TV Dx,y between two copyvectors Cx and Cy

is given as TV D =
∑

|Cx − Cy|.



Appendix C

Colophon

This document was produced using the UCL thesis LATEX template (https://github.com/

UCL/ucl-latex-thesis-templates). This document was set in the lmodern typeface using

LATEX and BibTEX, composed with a text TexMaker on Linux. microtype was also used.

All figures were generated using ggplot2 using theme_light(). All tables were generated

using the kbl function from the kableExtra R library The final version of the thesis can be

found at https://github.com/sahwa/thesis.

https://github.com/UCL/ucl-latex-thesis-templates
https://github.com/UCL/ucl-latex-thesis-templates
https://github.com/sahwa/thesis
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Figure D.1: Relationship between genotype likelihood and probability of genotype call being correct
for UstIshim downsampled to 0.1x coverage. Genome binned by maximum posterior
genotype likelihood and mean maximum posterior genotype likelihood (x-axis) and
proportion of correct calls per bin (y-axis). Rugs on each margin show the distribution
of x and y values. Black line is y = x.
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Figure D.2: Principle component analysis of genotype matrix using plink2. Grey points indicate
principle component coordiantes for each sample. Black text indicated mean principle
component coordinates for all individuals within that group. Coloured labels represent
newly sequenced ancient samples.
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imputed SNPs.
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Figure D.8: Heatmap of SOURCEFIND proportions for all fineSTRUCTURE clusters in the
ancient Slav analysis.



Appendix E

Supplementary results

Auxiliary results.

E.0.1 Determining the number of MCMC iterations required in

SOURCEFIND analysis

SOURCEFIND is a haplotype-based method for inferring ancestry. At its heart,

SOURCEFIND uses Markov chain Monte Carlo sampling to explore the parameter space

of ancestry proportions. As is the case with any method that uses MCMC sampling, it is

important to ensure that enough iterations have been performed; if this is not the case, the

algorithm may not converge.

To determine what is the minimum number of iterations, I ran SOURCEFIND for 7

different numbers of iterations and 10 runs for each number. Results are presented in Figure

E.1. Visually inspecting the results shows that using 50,000 iterations or less leads to variable

results. 500,000 iterations appears to be the best balance between running time and accuracy.

E.0.2 Determining the number of SNPs required to separate indi-

viduals from Devon and Cornwall

This figure shows the how TVD assignment accuracy varies with the total number of SNPs

included.

E.0.3 Comparison of imputation uncertainty metrics

In Chapter 2, I presented a way of adding the uncertainty from genotype imputation back

into the phased genotypes in chromopainter input. This method, called ‘uncertainty’ here
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Figure E.1: Proportion of inferred Cameroon Arabic ancestry averaged across individuals from
Cameroon Kanuri ethnic group. Each panel contains proportions for a different number
of MCMC iterations. Within each panel, each bar is the proportion inferred from each
of the 10 independent SOURCEFIND runs.

for brevity, was calculated as U = |G − D|, where G is the genotype dosage and D is dosage

obtained from the genotype likelihoods. Low values of U (and correspondingly high values of

1 − U) correspond to high confidence that the allele at that position has been called correctly.

However, U as a metric may be floored; for example, low confidence heterozygous calls,

e.g. gp=“0.313,0.374,0.313” would yield U = 1 and a max(GP ) of 0.374. Having high

confidence in such positions may harm the painting accuracy.

To investigate this further, I randomly selected 500,000 positions from a randomly selected

ancient sample and plotted 1−U against max(GP ) (Fig. E.3). My work in chapter 2 showed

that, whilst slightly conservative, max(GP ) is an accurate proxy for whether or not a
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Figure E.2: Proportion of individuals correctly assigned (via TVD) to their correct population
(y-axis) using different number of SNPs (x-axis).

genotype has been imputed correctly and thus stands as a good metric to compare U against

(Fig. 2.5). I plotted 1 − U so that it is directly comparable to max(GP ), i.e. the genotype

call has a certainty of being imputed correctly when 1 − U = max(GP ) = 1

Whilst the Pearson’s correlation between the two metrics (0.93), Fig. E.3 shows that there

is a clear difference; 1 − U substantially over-estimates the probability that heterozygous

positions have been imputed correctly. When counting only positions where 1 − U ̸= 1 or

max(GP ) ̸= 1, heterozygous positions had a mean max(GP ) of 0.82, compared to a 1 − U

of 0.89. There was also a less pronounced effect of 1 − U underestimating equivalent score

for homozygous positions relative to max(GP ).

To test whether the choice of uncertainty metric had an affect on painting accuracy, I
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Figure E.3: Comparison of metrics to describe the uncertainty in an imputed genotype calls.
Each point corresponds to a SNP (n=500,000) from a randomly selected ancient
sample, coloured by whether the genotype was homozygous reference, heterozygous or
homozygous alternate.

reproduced Fig 2.6 but using setting uncertainty such that, at each SNP, I set the entry in

ChromoPainter input as:

Pr(a = alt) =

1.0 − max(GP ) a = 1

max(GP ) a = 0
(E.1)

, where a is the value of the allele at a given position. Whilst using max(GP ) (Fig. E.4)

rather than U did reduce the TV D between the full coverage and downsampled individuals,

it did not perform better than not accounting for uncertainty at all (Fig. E.5).
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Figure E.4: For five different samples (columns), the proportion of DNA that each downsampled
(y-axis) or full coverage (x-axis) genome matches to each of 125 ancient individuals
(dots). Results are shown for 0.1x (top row) and 0.5x (bottom row) downsampled
genomes. Points coloured by manual assignment to broad-scale populations. Red
line is line of equality (y = x). x and y units are normalised copying values and thus
removed for clarity. Results obtained from using max(GP ) as the uncertainty metric,
shown in equation 2.1.
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Figure E.5: For five different samples (columns), the proportion of DNA that each downsampled
(y-axis) or full coverage (x-axis) genome matches to each of 125 ancient individuals
(dots). Results are shown for 0.1x (top row) and 0.5x (bottom row) downsampled
genomes. Points coloured by manual assignment to broad-scale populations. Red
line is line of equality (y = x). x and y units are normalised copying values and thus
removed for clarity. Results obtained from not account for any uncertainty in the
genotype calls.
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