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Abstract—An assist-as-needed semi-autonomous control al-
gorithm is designed to address the problem of safely driving
a vehicle (a power wheelchair) in an environment with static
obstacles. The main idea is to maximize the human driver’s
control experience while allowing them to navigate safely (the
inputs do not lead to collisions). The proposed physically-
inspired model-based obstacle avoidance algorithm relies on
optimal maps of the expected time for executing a safe stop
manoeuvre. These maps are pre-computed using policy iteration
in the case of an experienced driver stochastic model. As the
burden of complex calculations is handled offline, the online
implementation of the algorithm requires little computing
resources. Its efficiency is tested experimentally in a study with
healthy participants: a statistically significant result confirmed
that the proposed algorithm outperforms a baseline rule-based
control. A discussion with pros and cons ends this paper.

Index Terms—shared control, policy iteration, obstacle avoid-
ance, medical robotics

I. INTRODUCTION

This work is inspired by a real need for bespoke control
solutions applicable to medical robotics. In the European
project “ADAPT”, clinicians (medical doctors) identified the
needs of wheelchair users [1] and in response, roboticists
proposed to make use of technology and novel scientific
approaches to tackle those challenges, one of which is
addressed in this article.

A. The need for assistive technology

In health and social care, about 840,000 people in the
UK are regular wheelchair users [2] living with multiple
impairments (physical, cognitive, visual, hearing) who might
benefit from an assisted robotic wheelchair that can help
them navigate safely in any indoor or outdoor environment.
There are currently no such commercially available devices
on the market. Consequently, they are at risk of bumping
unintentionally into obstacles, hurting themselves or the
people around them.

Over the last half century, the UK has seen an increase in
life expectancy and this trend is expected to continue [3]. To
meet the needs of an ageing society, research in innovative
assistive robotic technologies has the potential to empower
healthy aged people towards living an independent and active
life, while keeping them safe and socially connected [4],
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The Program is supported by the European Regional Development Fund
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[5], thus increasing their self-esteem. The beneficiaries of
such technology account for 58% of the people aged 60 and
over in UK who suffer from mobility difficulties [6]. In 2014
there were 14.9 million people aged 60+ and their number
is expected to grow to 18.5 million by 2025 [7].

B. Shared control

Assist-as-needed [8] or shared control [9] is a concept
involving collaboration between a human and a machine. The
human operator informs the machine about their objective
(e.g. by actuating a joystick) and the machine interprets
that action, then implements it in an optimal way. The
algorithms studied in the literature can be divided in two
categories, depending on the need to model system dynamics.
On the one hand there are the black-box control solutions
like the Probabilistic Shared Control [10], optimal control
in [11], [12], and Dynamic Window Approach [13], task-
oriented control [5]. Arguably the most interesting feature
of these algorithms resides in their generic value: they are
most suitable in situations where models of the wheelchair
dynamics or the user intention do not exist, and can easily
be switched (adapted) from one vehicle type to another one.
The second category of algorithms rely on white-box control
solutions that require model identification; discussed next.

C. Model-based control

Moving vehicles obey physical laws which are well-known
and understood (e.g. inertia, gravity, etc.). Consequently, it
is natural to create a model integrating the capabilities of the
machine. Although models in general are a mere reflection
of reality, control-oriented models permit taking into account
the uncertainties from the early phase of designing the
control. The challenge is to be able to derive control policies
based on the control-oriented model and the limited unpre-
dictable information coming from: (i) the sensors observing
the environment (e.g. low-cost time-of-flight sensors that can
measure only the 1D distance to obstacles whereas their 3D
shape remains unknown), and (ii) the human user (e.g. the
joystick interface is a projection of what the user thinks,
and their intention). In what follows, we shall make the
distinction between the availability of significant amount of
sensor data (e.g. measurements at high rate) and the limited
information provided by each sensor (e.g. 1D distance to an
obstacle is not sufficient to know the precise location or form
of an obstacle in 2D Cartesian space; 2D joystick data is
only informative about the immediate intention of the driver,
not the long-term intention like getting closer to a table in



order to serve their lunch). To compensate for this limited
information available via online measurements, recent state-
of-the-art research uses stochastic models.

D. A user-centered design

Taking into account the intention of the user is essential.
An assistive machine should complement their intention in
such a way that the user feels empowered and can make
use of their existing functionality (e.g. physical, cognitive,
visual, hearing, etc.) [14]. Contrary to able-bodied people
who might be more in favour of full automation (think of
Tesla cars driving autonomously), the potential users of semi-
autonomous assist-as-needed technologies want to maximise
their level of control, and be able to develop new skills. They
favour technology that empowers the user rather than further
disabling them by taking away control authority and treating
them like a precious piece of cargo. Therefore, instead of
relying on generic control algorithms intended to satisfy all
users, we shall put forward a method that can be tailored
to specific groups of users, and in this paper we consider
the example of experienced drivers. This is done by taking
into account the stochastic model of the particular user group
(experienced drivers) from the early phase of designing the
assist-as-needed control. The same methodology could be
followed for different user groups, e.g. novice, or those with
particular pathologies.

E. Optimal control

One of the challenges faced by implementing Proba-
bilistic Shared Control algorithms on smart wheelchairs
is the limited computational resources available for online
processing at a minimal cost [10]. Conversely, Stochastic
Dynamic Programming (SDP) is a control design technique
that can handle a stochastic model by solving a global
optimization problem under constraints. The solution is not
analytical, instead it is computed numerically, often on high-
performance computers able to handle the burden of intensive
computations and fairly large matrices, and comes in the
form of optimal control policies [15]. These operations are
carried out offline using algorithms like policy iteration and
the outcome, namely a lookup table containing the optimal
actions, is implemented online on hardware with limited
computational resources (e.g. industrial controllers or single-
board computers). This approach is particularly appealing to
the automotive sector [16] and we propose to translate it to
smart wheelchair applications.

F. The control problem

In this article we address the safe-driving problem of a
semi-autonomous vehicle (the power wheelchair in Fig. 1)
in an environment with static obstacles, as depicted in Fig 2.
In Fig. 2, the angle αb ≥ 0 defines a sector area [−αb, αb]
or field of view where ultrasonic sensors detect obstacles.
The goal is to enable safe navigation while roaming freely
between obstacles. There is no fixed end destination location.
Note the semi-autonomous vehicle case is still an active area
of research [12], unlike the purely autonomous vehicle case,
which is out-of-scope for the purpose of this article and
where robust and well-established path planning algorithms
are readily available [17], [18, §11.1.5].

Electric current sensors

Ultrasonic sensors (rear)

Raspberry Pi

Encoders

IMU

Ultrasonic sensors 
(front)

Voltage measurement

Fig. 1: View under the seat of an off-the-shelf commercial
power wheelchair converted into a prototype instrumented
semi-autonomous robotic vehicle, where bespoke electronics
was added

G. Our contribution

In this article we propose a novel obstacle avoidance
shared control algorithm based on policy iteration. To the
best of our knowledge, policy iteration has not been proposed
yet in the scientific literature for addressing the problem
stated in section I-F. It is our intention to make a significant
contribution in this setting as follows.

Inspired from the automotive sector, where a rather limited
number of successful implementations of policy iteration
algorithms have been published (see, e.g. [19], [20]), this
article builds upon the seminal work [21]. Our article is
similar in the sense that we shall reuse the same idea of
implementing policy iteration to compute global optimal
policies in conjunction with a stochastic model. However,
our contribution differs with respect to the following points:
(i) the application is different (a power wheelchair, not a
passenger car); (ii) the stochastic model is different (we use
the experienced driver model, not a driving cycle model); (iii)
the level of desired autonomy is different (control of semi-
autonomous vehicles, not autonomous vehicles); (iv) the
optimization is carried out in terms of total time to complete
the task (obstacle avoidance), not energy (minimizing fuel
consumption versus battery usage in hybrid electric vehicles
along given driving cycle models).

II. POLICY ITERATION

In this section we formulate an infinite horizon time-
optimal stochastic shortest path problem [15, §7.2]. This is a
finite-state problem involving a finite (but rather large) state
space. The framework was largely inspired by the inventory
control problem in [15, Ex. 1.3.2, p. 28]. The modeling
of the vehicle dynamics is presented first, followed by the
driver model and lastly the results of implementing policy
iteration are shown. The central part of this section is the
computation of a map showing the average time it takes our
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Fig. 2: View from above: instrumented wheelchair advancing
forward in a two-dimension Cartesian environment with
obstacles (in red). o0x0y0 is the fixed (inertial) frame and
obxbyb is the moving (base) frame

experienced driver model to execute a safe stop manoeuvre.
This information is used later on in section III to elaborate
the assist-as-needed semi-autonomous control algorithm.

A. Vehicle model

Various wheelchair dynamical models are proposed in the
literature, e.g. [22]. Building on our previous work [23], the
vehicle in Fig. 1 advancing in straight line is modeled as a
point mass governed by the following dynamics:

xk+1 = max(0,min(dmax, xk + vk∆t)) (1a)
vk+1 = max(vmin, min(vmax, σ1vk + σ2(vd,k + vu,k)) (1b)

with the constraint that vu,k is such that

vmin <= vd,k + vu,k <= vmax (2)

All variables and parameters are defined in Table I together
with their units of measure; subscript k indicates the time
index. The saturation in (1) ensures the existence of a
finite number of states and is necessary for implementing
the policy iteration algorithm. Furthermore, it has physical
meaning:
• in (1a), the space-horizon of the vehicle motion starting at
xk = 0 is limited to the maximum viewing range dmax of
the ultrasonic sensors in Fig. 1;

• in (1b), a low-level safety functionality on each servo-
drive actuating the motors ensures the linear velocity is
kept above vmin < 0 and below vmax > 0. This bypasses
(overrides) any requested control action vd,k + vu,k.

Next, the physical meaning of the constraint (2) is to avoid
requesting an input velocity vd,k + vu,k that is more than the
wheelchair’s power module profile is set to handle.

B. A stochastic driver model

We carried out a preliminary analysis of driver behaviour
which showed that experienced drivers have a tendency
to predominantly use maximum velocity when advancing
forward. This observation motivated the model shown in
Fig. 3. For the purpose of the policy iteration algorithm

TABLE I: Nomenclature

Symbol Meaning Units
αb angle of observation rad
xk position of the vehicle expressed in coordinates

of the fixed frame 0 in Fig. 2
m

dmax maximum distance an obstacle can be detected
(perceived) by a ultrasonic sensor, expressed in
coordinates of the moving base frame in Fig. 2

m

vk linear velocity of the vehicle m/sec
vmin,
vmax

minimum and maximum linear velocity, respec-
tively

m/sec

vd,k driver’s demand (or intention) expressed by actu-
ating the joystick

m/sec

vu,k algorithmic control variable acting additive to the
joystick signal

m/sec

∆t sampling time sec
σ1, σ2 physically-inspired experimentally identified pa-
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Fig. 3: Conceptual illustration of the probability distribution
of the experienced driver model

implemented in this article, and without loss of generality, in
what follows we shall use the generic stochastic user model
depicted in Fig. 3. Future experimental studies could fine
tune it and generate different models for different types of
users, capturing their preferred driving styles.

C. Implementation and Results

Policy iteration is implemented in this section, on the
simplified case αb = 0 in Fig. 2, of a vehicle advancing
in straight line with an obstacle located in front of it. The
results of this section are used in section III where a solution
to the control problem from section I-F is presented, covering
both the situation αb = 0 as well as αb > 0 in Fig. 2, of a
vehicle able to detect multiple forward-facing obstacles on
the sector area [−αb, αb] in Fig. 2.

Using the stochastic driver model from section II-B, we are
now interested in determining the minimum expected time to
termination, defined as the time elapsed from the initial state
(x, v) of the moving vehicle to the moment where it stops
safely as close to that obstacle, but without hitting it. We
call this a safe stop manoeuvre. Formally, we address an
optimization problem where the aim is to compute the total
cost:

J(x, v) = min
vu,k

E
vd,k

{∑
k

g(xk, vk)

}
(3)

along trajectories defined by (1) and such that constraint
(2) holds; k = 1, ..,∞ is the number of stages. In (3),
E is the expected value operator expressing a sum of all
possible (feasible) trajectories that are weighted by their
probability of occurrence. The policy iteration algorithm



that implements the cost (3) will compute numerically that
optimal control policy which works best for all feasible
trajectories (in the sense of a weighted sum). Intuitively, the
dominant trajectories that have higher weights will account
the most in the process of computing the optimal control
policy. The cost per stage g(·, ·) in (3), is defined next.

1) Cost per stage without penalty: First, we defined an
environment similar to a toy circuit where a toy vehicle
bumps into rubber damper walls physically limiting its ability
to advance any further (beyond the boundaries of the circuit)
and also protecting the toy from damage. These boundaries
for states (xk, vk) are defined by the saturation limits in
(1), and placing them on a finite grid is necessary for
computational tractability reasons. Choosing

g(·, ·) ≡ ∆t (4)

in (3), the control policy comes in the form of a bang-bang
control, typical solution when solving time-optimal problems
[25]. It represents an aggressive maneuver of that specific
stochastic driver model advancing in minimum time towards
the obstacle, but still being able to stop safely near the
obstacle, without bumping into it. An interesting fact of this
formulation is that the total cost J in (3) has a physical
meaning: the map in Fig. 4a shows the average elapsed time,
measured in seconds, for executing this safe-stop maneuver
by the stochastic driver model. Intuitively, the slope of the
map in Fig. 4a descends as the vehicle starts closer to the
terminal state.

Second, in the next section we show how to remove the
artificial limitation imposed by using this toy circuit concept.
For that, note that bumping into the rubber damper walls
can only occur in two situations: (i) x = 0 and v < 0; (ii)
x = dmax and v > 0. We introduce soft constraints [25] in
those two situations.

2) Cost per stage with penalty: By choosing

g(xk, vk) =

 β∆t, if (xk = 0 and vk < 0) OR
(xk = dmax and vk > 0)

∆t, otherwise
(5)

with β ≫ 0 a penalty factor, the cost function in (3) changes
both its mean value as well as the shape at extremities: see
Fig. 4b. First, we analyze the shape. Interestingly, we can
now easily identify those initial states (x, v) starting from
which the vehicle would crash into the obstacle (the area
around x = dmax and v > 0), or would advance backwards
beyond the range of sight of the sensors (x = 0 and v < 0):
they correspond to regions where the cost function surges
in Fig. 4b. Those regions act as restrictions where assistive
control should not be enabled, instead safety measures need
to be enforced (e.g. by taking authority from the user, active
braking, etc.) which is a topic out-of-scope for this article.

Second, we analyze the values of the map in Fig. 4b. A
drawback of having introduced the penalty in (5) is that the
mean values of the maps in Fig. 4b went up by approxi-
mately 150%, in average, compared to the results in Fig. 4a,
making them lose their original physical meaning (namely,
the average time for executing a safe stop maneuver). The
results of this section are carried on to the next one, where
we explain the assistive control algorithm.

(a) without additional penalty on the cost per stage g(·) from (4)

(b) with additional penalty on the cost per stage g(·) from (5)

Fig. 4: Policy iteration results. J(x, v) represents the mini-
mum expected time to reach the terminal state (in red), for
the experienced driver stochastic model

III. ASSIST-AS-NEEDED SEMI-AUTONOMOUS CONTROL
(ASC)

The proposed ASC algorithm is designed in two steps.
First, the linear velocity control follows from the map
computed in the previous section II. Second, the angular
velocity control is adjusted proportionally to the reduction
in the linear velocity.

A. Linear velocity control

We start by analyzing the simplified case αb = 0 in
Fig. 2. An arbitrary threshold representing the average time
to execute a safe stop maneuver for our stochastic driver
model is set to, say, 2.2 sec as illustrated by the horizontal
plane in Fig. 5a. The other element of Fig. 5a is the map
taken from Fig. 4a. The projection onto the (x, v) state
space of the intersection between this plane and the map,
gives a boundary, conceptually illustrated by the line segment



(a) Setting up an arbitrary threshold value of 2.2 seconds for the time
to execute a safe stop maneuver (in cyan), in relation to the computed
map (in blue) from Fig. 4a (zoom in around the terminal state in red)
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(b) Conceptual drawing in state-space of the working principle of the
ASC algorithm for controlling the linear velocity: the idea is to reduce
any unsafe linear velocity (see e.g. the red solid circle) within the area of
the triangle ABC towards a safe value (see the green solid circle); note
the terminal state is illustrated as a red rhombus

Fig. 5: Designing the ASC algorithm

AC in Fig. 5b. In addition to that, the line segment BC in
Fig. 5b stands for the boundary where map values surge
in Fig. 4b. Note the line segment AB expresses a physical
constraint where the vehicle advances at maximum velocity
vmax. Finally, the triangle ABC in Fig. 5b defines a region
where it is meaningful to enable ASC as a way to protect
the driver from crashing into the obstacle.

Motivated by the observation that v = vk = vd + vu in
steady-state in (1a), the guiding principle for driving the
vehicle assisted, is to use vu as means to decrease vk in
situations where the user demand vd is too high in spite of
the obstacle being too close. Specifically, measured values v
inside the triangle ABC in Fig. 5b (e.g., the red solid circle)
need to be lowered, to reach the safe boundary depicted by
the line segment AC in Fig. 5b (e.g., the green solid circle).

Next, we show how to control the angular velocity in the
more general case αb > 0 in Fig. 2 of a vehicle advancing in
two-dimension Cartesian space, with multiple forward-facing
obstacles.

B. Angular velocity control

In case of multiple obstacles detected ahead (e.g. three
obstacles in Fig. 2), the ASC handles the most imminent

(a) joystick device (b) corresponding joystick plane

Fig. 6: Working principle of the ASC algorithm for con-
trolling both the linear velocity and the angular velocity: the
unsafe user demand (say, the red solid circle on both images)
is reduced linearly (proportional) to a safe value (say, the
green solid circle)

danger (the closest obstacle).
To complete the proposed ASC algorithm we need to also

consider the angular velocity ωk. In steady-state, ωk = ωd +
ωu, where ωd represents the input from the user (see the
horizontal axis in Fig. 6) and ωu is the contribution of the
assistive control. There is a specific correspondence between
the position (location) of the joystick in Fig. 6a and one
point on the joystick plane in Fig. 6b: see, e.g. the red solid
circle on both images in Fig. 6. Physically, that point in
Fig. 6b expresses the velocities reached in steady-state by the
vehicle, in the absence of assistive control (vu ≡ ωu ≡ 0).
In other words vk → vu and ωk → ωu as k progresses. For
more details, see e.g. [23].

The idea put forward in angular velocity control is to
lower ωk proportionally to the reduction in the linear velocity
control according to section III-A. To visualize this, the red
solid circle in Fig. 6 corresponds to an unsafe user demand
(vd, ωd) and consequently it is reduced towards a safe value
illustrated by the green solid circle, which corresponds in
steady-state to velocities (vk = vd + vu, ωk = ωd + ωu).

IV. EXPERIMENTS

To validate the proposed ASC, we used the research
platform in Fig. 1. To build the environment awareness
capability for the robotic vehicle we used: (i) the standard
joystick to capture the user’s input (vd, ωd), (ii) the wheel
encoders to estimate the actual velocity vk, and (iii) the
front-facing ultrasonic sensors to detect the nearby obstacles
(see Fig. 1). The software architecture relies on a single-
board computer (a Raspberry Pi 3b+) running Robot Oper-
ating System (ROS) on Ubuntu 16.04. The C++ code used
for our experiments is available on https://github.com/UCL-
Aspire-Create/whc pub ASC policy iter.git; Fig. 7a shows
the lab environment where experiments took place, and the
simulators in Figs. 7b and 7c were used for visualization.

A. A study with participants

Due to Covid restrictions, we were only permitted to
recruit four participants, all able-bodied healthy volunteers,

https://github.com/UCL-Aspire-Create/whc_pub_ASC_policy_iter.git
https://github.com/UCL-Aspire-Create/whc_pub_ASC_policy_iter.git


(a) real world

(b) real-time 3D simulation in Unity using Optitrack markers placed on
obstacles and the wheelchair
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(c) offline 2D simulation in Matlab (view from above); note the obstacles
illustrated in orange

Fig. 7: The circuit used for testing the obstacle-avoidance
algorithms: in real world and simulated

who were experienced in driving the wheelchair. Each par-
ticipant was initially shown the circuit in Fig. 7a with 5 card-
board box obstacles, then asked to follow this protocol. They
needed to complete 4 back-to-back iterations (repetitions),
each consisting of the same succession of operations: (1) start
driving the wheelchair from an initial position located to the
left-hand side of Fig. 7a; (2) drive between the obstacles;
(3) pick one sticker attached to the cardboard box located

to the right-hand side of Fig. 7a; (4) drive back between
the obstacles to the starting point; (5) place the sticker in
a basket. At the end of the fourth iteration, 4 blue stickers
are counted inside the basket. Note that drivers were only
allowed to advance forward (no reversing). A video recording
is available on https://youtu.be/X-dQoLpYquQ showing one
participant driver completing one iteration of the circuit. This
study is organized as a competition between the participants:
the winner is the person who can drive in minimum time
and with the least number of collisions. Say td is the time
to complete the track and cd is the number of collision, then
each participant receives a score s representing a penalized
task completion time measured in seconds, based on their
performance:

s = td + α cd (6)

where α > 0 acts as a penalty for hitting obstacles. Inspired
from circuit racing [26], we use α = 5 sec.

The aim of this study was to assess whether the ASC
brings any benefit compared to: (i) the situation with no
assistance (NA): this is used as the control group [27];
(ii) a baseline assist-as-needed semi-autonomous control:
here we shall use our previous rule-based (RB) algorithm
[28]. Hence, we address the research question: how does
the driving condition (NA, RB, ASC) influence the user
performance? We make a first hypothesis that there is a
difference between all these three driving conditions (NA,
RB and ASC), and second that ASC is superior to RB. In
order to reduce order effects (structural bias), the order of the
driving conditions (NA, RB, ASC) is assigned randomly for
each participant using simple random sampling [29, §3]. An
ethics approval was granted for this study by UCL Research
Ethics Committee (ref. 6860/011).

B. Data collection and visualization

The table in Fig. 8a shows the collected data: each row rep-
resents a single participant’s data; each column corresponds
to one of the three driving conditions under consideration
(NA, RB and ASC). This data converted into scores using
(6) can be visualized in Fig. 8b. The mean values (red
lines in Fig. 8b) suggest that the NA group performs the
best, followed by the ASC group and lastly by the RB
group. Before drawing any conclusion, we need to check
the statistical significance of this observation using inference
statistics.

C. Statistical analysis

In order to compare scores of the 3 aforementioned groups,
we shall use ANOVA [27], [29], [30]. Before deciding which
ANOVA variant to use, first we checked the assumption of
parametric data. Only one group, NA, meets this assumption
(Shapiro-Wilk p = 0.836, skewness ρ = 0.724 and no
outliers), whereas the other two groups violate this assump-
tion, RB (Shapiro-Wilk p = 0.003, skewness ρ = 2 and
no outliers) and ASC (Shapiro-Wilk p = 0.125, skewness
ρ = 1.7 and no outliers). This motivates the use of the One
Way Repeated Measures Friedman’s ANOVA which is a non-
parametric alternative to the more popular parametric F-test.

Hence, as the data violated the parametric assumption,
a Friedman’s ANOVA – a within participants design [30],

https://youtu.be/X-dQoLpYquQ


Participant NA RB ASC
1 111 (0) 143 (0) 132 (0)
2 125 (1) 142 (0) 136 (0)
3 102 (0) 142 (0) 133 (0)
4 110 (1) 172 (1) 148 (0)

(a) Data collection. Time to complete the circuit in seconds,
and number of obstacles hit (indicated between round brack-
ets)

NA RB ASC
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(b) Visualizing the data. Box plots of the scores (lower is better)

Fig. 8: Experimental sample data for the 3 different groups:
NA = no assistance; RB = rule-based control; ASC = Assist-
as-needed control

was conducted to test whether the driving condition (NA,
RB or ASC) affects the participants score in completing the
circuit track. The analysis revealed a significant main effect
of driving condition (χ2(2) = 8, p = 0.018). The post-
hoc analysis using pairwise comparisons (Durbin-Conover)
revealed a significant difference (p < .001) between pairs
of groups: (i) the NA (mean=115, σ = 11.7) and RB
(mean=151, σ = 17.3); (ii) the NA and ASC (mean=137,
σ = 7.37); (iii) the RB and ASC. This suggests that ASC is
superior to RB although both are outperformed by NA.

D. Limitations of the study

Note that increasing or decreasing the arbitrary value for
the penalty α on hitting obstacles, will have an immediate
effect on the scores and thus the entire statistical analysis.
For instance, inspired by and consistent with circuit racing
practice [26], another option would be α = 10 sec. Alter-
natively, more general and elaborate methods to adjust the
weighting factor α are discussed in [31].

Due to the ongoing coronavirus pandemic, we were only
able to recruit a rather limited number of participants for
this study. Although results are statistically significant, these
should be interpreted with caution and a follow-up study
involving more participants is recommended.

E. Discussion

The rather intriguing fact that by disabling assistive control
(NA group) the participants in this study obtained better
scores compared to enabling assistive control (RB and ASC
groups) can be explained by multiple factors. First, by the

nature of these assistive control solutions: both gradually take
authority from the driver as the risk of collision increases.
This translates into reduced effective velocities and thus the
time to complete the circuit increases. Second, the partici-
pants in this study were experienced drivers (although not ex-
perts), capable of handling the obstacle avoidance task rather
easily (NA group). Third, participants were all able-bodied,
whereas we expect assistive control to prove its real-world
usefulness for people living with impairments (e.g. cognitive,
visual, hearing, physical, etc.) [1]. To summarize, there is
a trade-off between the risk of collision and the ability to
finish the circuit quickly: the price to pay for reducing the
risk of collision when enabling assistive control is to tolerate
(accept) that it takes more time on average to complete the
circuit. From a broad perspective, our contribution has the
potential to transform the lives of many people by creating
a transportation system that empowers the user by means
of technology to carry out everyday tasks safely, without
bumping unintentionally into static obstacles.

Our statistical analysis used a combined metric (a score),
by weighting together the task completion time and the num-
ber of collisions. If instead, we are interested in analyzing
each metric separately. The following results were obtained.
First, the analysis using the task completion time revealed
a similar (analogous) result: a significant effect of driving
condition (χ2(2) = 8, p = 0.018). Second, the analysis using
the number of collisions showed a non-significant effect of
diving condition (χ2(2) = 3, p = 0.223), meaning that we
cannot conclude that ASC is superior to NA or RB: the
fact that no collision occurred for ASC group in Table 8a,
contrary to the other groups, might be the result of a lucky
sample; we need more participants to the study in order to
obtain a statistically significant result in this setting.

Instead of using policy iteration, a similar result could
have been achieved using the less computationally-intensive
value iteration algorithm [15, §7.2]. However, we chose to
implement policy iteration in view of future research, where
we intend to make use of the computed optimal control
actions.

An interesting fact of this semi-active (dampening) control
design is that in all situations it will not contradict the user’s
intention (e.g. cases where the driver intends to advance to
the left but the SC would make the vehicle turn right, would
not occur). This is due to the linear (proportional) relation
between the locations of the unsafe demand and the corrected
one, as we have explained in section III, say the red solid
circle and the green solid circle in Fig. 6. Such conflicting
situations were analysed theoretically in [32] and this paper
provides a practical solution to that.

The statistical analysis suggested that ASC outperforms
RB, which is quite a positive result because it shows a
progress in our research. However, the scope of this result
is limited to a particular circuit and does not account for
other real-world scenarios like the standardized circuits in
[1] (e.g. entering an elevator, advancing in a wide corridor
with static obstacles, etc.). Follow-up studies are necessary
to address these situations. Another challenging situation is
avoiding dynamic obstacles like pedestrians walking [33].
This would require an extension of the ASC algorithm, and
a possible way to do this is to start from the observation that



the situation of a moving vehicle plus a moving obstacle is
equivalent to the situation of a (faster) moving vehicle and
a static obstacle.

V. CONCLUSIONS

In this article we developed and tested an assist-as-needed
algorithm (we called it AssistMe) that provides a robotic
vehicle with the intelligence (or capability) to avoid obstacles
by collaborating with the user and thus ensuring a safe
driving experience. We showed how this algorithm can be
personalized to meet the needs of a specific stochastic user
model (e.g. the experienced driver model). The algorithm
makes use of pre-computed optimal maps of the average time
to hit an obstacle located ahead of the vehicle: we formulated
a time-optimal stochastic shortest path problem and solved
it numerically by implementing a computationally tractable
policy iteration algorithm. To test it experimentally, low-cost
hardware components are required (ultrasonic sensors, wheel
encoders, a single-board computer) mounted on a powered
wheelchair. An experimental study with healthy participants,
showed a statistically significantly improved score of this
assist-as-needed algorithm over a baseline rule-based control.

ACKNOWLEDGMENT

Authors would like to thank Marie Babel and her team (in
particular, François Pasteau and Louise Devigne) at INSA
and IRISA in Rennes, France, for providing us with an RNET
controller compatible with the Salsa M2 wheelchair in Fig. 1,
used to: (i) publish standard joystick data on a ROS topic,
and (ii) send virtual joystick messages on the RNET bus
to the power module. We acknowledge the work of George
Walker for developing the Unity environment in Fig. 7b.

REFERENCES

[1] E. Leblong, B. Fraudet, L. Devigne, M. Babel, F. Pasteau, B. Nicolas,
and P. Gallien, “SWADAPT1: Assessment of an electric wheelchair-
driving robotic module in standarized circuits: A prospective, con-
trolled, and randomized pilot study,” J. of NeuroEngineering and
Rehabilitation, vol. 18, no. 140, pp. 1–12, 2021.

[2] National Health Service (NHS), “Improving wheelchair services,”
accessed on April 4, 2022. [Online]. Available: https://www.england.
nhs.uk/wheelchair-services/

[3] C. Thompson, “Meeting the challenges of an ageing population,”
National Health Service (NHS), accessed on April 4, 2022. [Online].
Available: https://www.england.nhs.uk/blog/catherine-thompson/

[4] L. Devigne, M. Aggravi, M. Bivaud, N. Balix, C. S. Teodorescu,
T. Carlson, T. Spreters, C. Pacchierotti, and M. Babel, “Power
wheelchair navigation assistance using wearable vibrotactile haptics,”
IEEE Trans. Haptics, vol. 13, no. 1, pp. 52–58, January–March 2020.

[5] J. Vogel, D. Leidner, A. Hagengruber, M. Panzirsch, B. Bäuml,
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