Evaluation of Genetic Improvement Tools for Improvement of
Non-functional Properties of Software

Shengjie Zuo
University College London
London, United Kingdom
shengjie.zuo.19@alumni.ucl.ac.uk

ABSTRACT

Genetic improvement (GI) improves both functional properties of
software, such as bug repair, and non-functional properties, such
as execution time, energy consumption, or source code size. There
are studies summarising and comparing GI tools for improving
functional properties of software; however there is no such study
for improvement of its non-functional properties using GI. There-
fore, this research aims to survey and report on the existing GI
tools for improvement of non-functional properties of software. We
conducted a literature review of available GI tools, and ran multi-
ple experiments on the found open-source tools to examine their
usability. We applied a cross-testing strategy to check whether the
available tools can work on different programs.

Overall, we found 63 GI papers that use a GI tool to improve non-
functional properties of software, within which 31 are accompanied
with open-source code. We were able to successfully run eight GI
tools, and found that ultimately only two —Gin and PyGGI— can
be readily applied to new general software.

CCS CONCEPTS

« Software and its engineering — Search-based software engi-
neering; Software evolution; Extra-functional properties; » General
and reference — Surveys and overviews.

KEYWORDS

genetic improvement, survey, tooling, non-functional properties

ACM Reference Format:

Shengjie Zuo, Aymeric Blot, and Justyna Petke. 2022. Evaluation of Ge-
netic Improvement Tools for Improvement of Non-functional Properties of
Software. In Genetic and Evolutionary Computation Conference Companion
(GECCO °22 Companion), July 9-13, 2022, Boston, MA, USA. ACM, New York,
NY, USA, 10 pages. https://doi.org/10.1145/3520304.3534004

1 INTRODUCTION

Genetic improvement (GI) is an automated software engineering
approach that applies search strategies to optimise existing soft-
ware [69]. It has many applications, including both improving func-
tional properties of software, e.g., automated program repair [57] or
feature transplantation [71], and non-functional properties, such as

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

GECCO ’22 Companion, July 9-13, 2022, Boston, MA, USA

© 2022 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-XXXX-X/18/06.

https://doi.org/10.1145/3520304.3534004

Aymeric Blot
University College London
London, United Kingdom
a.blot@cs.ucl.ac.uk

Justyna Petke
University College London
London, United Kingdom
j.petke@ucl.ac.uk

execution time [85], energy consumption [19], memory usage [88],
or code size [20].

A significant amount of research was conducted on automated
software repair specifically, thus several studies summarising and
comparing tools for software repair exist [66, 79]. Furthermore,
there are many repair tools available, that are frequently compared
with each other [9, 89]. On the other hand, non-functional proper-
ties (NFP) refer to the constraints on how software implements and
delivers their functionalities [78]. NFP are considered to be as im-
portant as functional properties [80]; for example, many software
failures were shown to be caused by unsatisfied non-functional
properties [26], and slow response times may lead to customers
rejecting software [33]. While there are many GI tools tackling NFP
improvement —such as for example GISMO [44, 71, 72], locoGP [22],
Gin [14], and PyGGI [1, 2]— they are seldom reused and compared,
and there is no existing work overviewing all the available GI tools
for NFP improvement.

In this paper, we therefore conduct a literature review on NFP-
improving GI tooling and we discuss and compare their availability,
usability, and generalisability. We hope that this work may con-
tribute to improvement, development, dissemination, and adoption
of GI tools in the community, as well as ultimately their increased
use in real-world industrial context.

Our contributions thus include:

(1) aliterature review resulting in 63 papers using GI tooling for
NFP improvement, 31 of which having associated available
open-source code;

(2) a usability study of the found open-source GI tools; and

(3) a generalisability study of 8 distinct GI tools.

The overarching conclusion of our study is that much of GI
research work does not come with reusable implementations. Fur-
thermore, of the available GI tools only two, Gin [14] and PyGGI [1],
can be easily be applied to new software.

2 BACKGROUND

Genetic improvement (GI) is a relatively new research field [69].
Although its foundation can be traced back to the early days of
computer science, this field arose as an active one only in the last
ten years. GI takes an existing software system and using search-
based methods, generates variants that improve it with respect
to a given fitness function. Depending on the fitness considered,
GI can improve a given software system’s functional properties,
correcting bugs [56] or transplanting new functionalities [5], as
well as improve non-functional properties, such as for example
execution time, energy consumption, memory usage, or code size.

The software under consideration is most often modified by GI at
the level of source code, although some work successfully operated

https://orcid.org/0000-0003-0485-5279
https://orcid.org/0000-0002-7833-6044
https://doi.org/10.1145/3520304.3534004
https://doi.org/10.1145/3520304.3534004

GECCO ’22 Companion, July 9-13, 2022, Boston, MA, USA

at binary or assembly level [74]. One reason is the production
of readable patches that can then be more easily understood and
accepted by the software’s developers [82]. GI tools operating at the
source code level can use lines of code directly, but often use other
types of representation, such as an abstract syntax tree (AST) [56]
or notation similar to BNF grammar [44].

In addition to the different representations of source code, there
are various search strategies to generate patches based on the pro-
cessed code. The most widely used algorithms include random
search, local search, and genetic programming. Random simply
applies, uniformly at random, a mutation operator, usually dele-
tion, insertion, and replacement [67]. Because of its simplicity, it
is often used as a baseline. Local search [34] also only relies on
mutations, but is used to iteratively search for better and better
software variants by considering sequences of mutations. Start-
ing from the original software (therefore an empty sequence), local
search in GI either appends a new mutation to the current sequence,
accepting it if the corresponding software variant is considered bet-
ter. Existing mutations can also be removed, as a way to decrease
bloat, keep the overall sequence length reasonable, and avoid over-
fitting. The different types of edits are usually considered with fixed
probabilities, proportions of which can significantly impact search
performance [76]. Genetic programming (GP) [36, 54], on the other
hand, combines both mutations and crossover to evolve popula-
tions of software variants. GP has been used for GI since the field
inception, and strategies of some successful tools in program repair
are based on GP [28, 57, 83]. The most common types of crossover
used in GI are the concatenation crossover [44], that simply com-
bines two sequences of mutations, and 1-point crossover [57], that
combines the start of the sequence from one individual with the end
of the sequence of a different one. Overall, whilst GP has been for
a very long time the privileged GI search process, local search has
recently been used more often, as it’s simpler and can be equally
effective [12].

3 RESEARCH QUESTIONS

In order to figure out which GI tools are available and how they
work, we set out the following research questions:

RQ1: Which state-to-the-art GI tools target non-functional
properties (NFP) of software? The first question is meant to fill
in the blank in current research in terms of summarising existing
GI tooling for NFP improvement. We are interested in how many
papers used GI tools for NFP improvement thus far and how many
of those tools are available for use.

RQ2: How many GI tools found in previous work can actu-
ally run? Then, we would like to check availability, hardware and
software requirements, and determine which GI tool can actually
be used.

RQ3: How do existing GI tools work, and can they be ap-
plied to different programs? Finally, we want to check how easy
it is to apply existing tools to software to which the tools have not
yet been run on. This is a critical consideration separating research
artefact from actual stand-alone tools that could be widely used by
researchers and developers.

Shengjie Zuo, Aymeric Blot, and Justyna Petke

Source Filters

IEEE Xplore

Metadata with the exact key words of
‘genetic improvement’

Publication time between 2016 and 2022
ACM Digital Library Title OR Abstract with the exact words
of ‘genetic improvement’

Publication year between 2016 and 2022
Publication year between 2016 and 2022
Conference and journal papers only

Living Survey on GI

Table 1: Filters for the collections

Papers
Source Total OnNFP With code
Petke et al. [69] 66 27 19
ACM Digital Library 35 15 4
IEEE Xplore 57 10 9
Living survey on GI 264 63 45

Table 2: Results of the literature review

4 LITERATURE REVIEW

A literature review was conducted to answer RQ1. In order to review
publications on GI tools efficiently, relevant papers published before
2016 were retrieved from an existing comprehensive survey [69].
For the papers published after 2016, we continue the literature
review based on the collections of IEEE Xplore, the ACM Digital
Library and the Living Survey on Genetic Improvement!. Details
on the filters used during the literature review are presented in
Table 1. Moreover, to further filter the relevant papers consistently,
we apply the following rules:

(1) The paper should focus on non-functional properties of soft-
ware.

(2) The paper should propose, implement, or reuse a tool that is
shown to improve the performance of software in terms of
non-functional properties.

(3) The paper should include evaluation on example programs
or real-world projects.

The result of the literature review is summarised in Table 2. The
comprehensive survey on GI [69] details 66 core GI publications
published up to 2016, including 27 on NFP improvement and 19
with GI tools. For the papers published after 2016, the ACM Digital
Library yielded 35 publications on GI, with 15 on NFPs and 4 with
GI tools. IEEE Xplore yielded 57 entries, with only 10 on NFPs and
9 using GI tools. Finally, the living survey on GI yielded 246 GI
publications published since 2016, with 63 relating to NFPs and
45 using GI tools. Overall, we found a total of 63 publications and
7 PhD theses [3, 6, 16, 29, 84, 86] that use GI tools to improve
software’s NFPs. Because for each of them we found corresponding
publications, we won’t include these PhD theses in the remainder
of our study.

!http://geneticimprovementofsoftware.com/learn/survey

http://geneticimprovementofsoftware.com/learn/survey

Evaluation of Genetic Improvement Tools for Improvement of Non-functional Properties of Software

[Execution time (42)

O Application-specific (9)
O Accuracy (6)

O Code size (4)

@ Energy consumption (4)
0 Memory usage (3)

[Readability (1)

Figure 1: Distribution of non-functional properties in GI tool
literature.

We then surveyed in more detail the NFP considered in each of
the 63 papers. Time is the concern addressed in the vast majority of
papers, with 34 papers considering execution time [1, 2, 7, 8, 10, 14,
15, 17, 24, 32, 35, 39, 41-44, 47-50, 55, 58-63, 68, 70-72, 75, 77, 87,
88], number of CPU or bytecode instructions [4, 11, 12, 21, 22, 85],
or also loading time [23]. Other NFPs include code size [25, 38,
90, 91], energy consumption [13, 18, 19, 27], memory usage [7, 8,
88], accuracy of the underlying algorithm [30, 31, 59, 60, 62, 81],
readability [73], or other application-specific NFPs [37, 40, 45, 46,
51-53, 64, 65]. A summary is presented in Figure 1. Furthermore, a
few pieces of work considered multiple NFPs [7, 8, 27, 59, 60, 62, 88].

As for tool availability, we looked for URLs in papers as well as
searched GitHub for the papers’ titles or DOIs. Overall, we found
open-source code associated with 31 papers, either on GitHub,
SourceForge, or the authors’ research website pages. In particular,
we found many variations of the GISMO tool? that targets C/C++
code. Furthermore, despite having sometimes no direct mention in
the publication itself and no available code, by communicating with
authors we were able to confirm that GISMO and its underlying
representation format were used in many more research publica-
tions [17, 18, 41-44, 48-50, 55, 62, 70-72]. We note that in some
GI papers (e.g., [4, 65, 85]), a GI tool was built on top of a general
evolutionary framework; whilst those frameworks are still avail-
able, we were unable to obtain the source code specific to the GI
tool itself. Moreover, a few tools were listed on GitHub without
a license, which would have prohibited their use. We raised the
issue with the authors of such tools in those instances, who have
promptly added a permissive license.

4.1 Summary

Detailed information on the 31 papers from which we were able
to find available code is presented in Table 3. Table 4 details the
32 additional papers describing work that used GI tools, yet their
source code was unavailable.

Answer to RQ1: We found 63 papers whose authors used GI
tools for improvement of non-functional properties of software.
We found source code associated with only 31 of those papers.

Zhttp://www0.cs.ucl.ac.uk/staff/ucacbbl/gismo/

GECCO ’22 Companion, July 9-13, 2022, Boston, MA, USA

5 USABILITY STUDY

In this section, we conduct a set of experiments to answer RQ2:
whether the GI tools we found can actually be used. We downloaded
and tested all found tools following their requirements and the
instructions given by their developers.

5.1 Experiments

Within the 31 papers detailed in Table 3 we can find 13 distinct
tools>: a tool for shader simplification [75], GISMO [70], locoGP [22],
HOMI [87], PyGGI 2.0 [1], GGGP [39], Optmizer [24], a tool for
data optimisation [51], Gin [14], PowerGAUGE [27], GEVO [60],
DFAHC [25], and finally a tool dedicated to routing protocols [64].
However, two of them — the tool for data optimisation and the
tool for routing protocols — target application-specific NFPs and
cannot be expected to be easily applied to different software, as
non-trivial manipulation of the software to be improved is required.
Thus, we only focus on the remaining 11 GI tools. Finally, we only
considered a single version of each tool, either the latest version,
the most general one, or if possible, the version with the fewest
software and hardware dependencies.

5.2 Methodology

All tools were tested on the local virtual machines under their
required environments. Because of the different environmental
requirements, four local virtual machines running Ubuntu 20.04
and Ubuntu 16.04 were set up, with different versions of Java and
C/C++ tools.

The steps to check whether the tools can be run are listed below.
Tools were deemed unable to work if they failed any of those steps.

(A) Whether the testing machines meet hardware requirements.

(B) Whether the dependencies can be installed.

(C) Whether the tool can be compiled.

(D) Whether the tool can successfully run on data provided with
its associated publication.

5.3 Results

Of the 11 tools investigated, we were able to run 8 without any
issues.

We were unable to meet hardware requirements for GEVO [60].
The tool is available, but requires CUDA-compatible GPU hardware
as an essential dependency.

We were unable to install dependencies for Optmizer [24]. The
source code of the tool used in this paper is available on GitHub, but
it relies on outdated Node]S dependencies that do not resolve on a
fresh install. In particular, the dependency tree seems to trigger 23
different deprecated packages, and the installation ultimately fails
to complete.

Finally, we were unable to run HOMI [87]. The source code of the
tool used in this paper is available, but no instruction is provided.
After close observation, the bash file of run.sh was decided to
be the file to run this tool based on the names of files and the
source code. This file can be run, and the information shows that
the tool is running the genetic programming algorithm to improve
its subjects. However, information about current iteration simply

3We cite in brackets the version of software we examined in detail.

GECCO ’22 Companion, July 9-13, 2022, Boston, MA, USA

Shengjie Zuo, Aymeric Blot, and Justyna Petke

Table 3: Papers with open source GI tools targeting non-functional properties of software

Year Paper Tool Properties Language
2011 [75] Genetic Programming for Shader Simplification unnamed GPU time GLSL (C)
2014 [42] Genetically Improved CUDA C++ Software GISMO Execution time CUDA (C++)
[50] Improving 3D Medical Image Registration CUDA Software with ~ GISMO Execution time CUDA (C++)
Genetic Programming
[70] Using Genetic Improvement and Code Transplants to Specialise = GISMO Execution time C
a C++ Program to a Problem Class
2015 [22] locoGP: Improving Performance by Genetic Programming Java locoGP Instructions executed Java
Source Code
[48] Improving CUDA DNA Analysis Software with Genetic Program- GISMO Execution time CUDA (C)
ming
[44] Optimizing Existing Software With Genetic Programming GISMO Execution time C++
2016 [17] Deep Parameter Optimisation for Face Detection Using the Viola- unnamed Execution time C++
Jones Algorithm in OpenCV
[87] HOMLI: Searching Higher Order Mutants for Software Improve- HOMI Execution time C
ment
2017 [2] PYGGI: Python General Framework for Genetic Improvement PYGGI Execution time Java
[39] Improving SSE Parallel Code with Grow and Graft Genetic Pro- GGGP Execution time C
gramming
2018 [24] Challenges on applying genetic improvement in JavaScript using Optmizer Execution time JavaScript
a high-performance computer
[51] Evolving Better Software Parameters unnamed Function accuracy C
[71] Specialising Software for Different Downstream Applications GISMO Execution time C++
Using Genetic Improvement and Code Transplantation
2019 [1] PyGGI 2.0: Language Independent Genetic Improvement Frame- PyGGI Execution time C++
work
[14] Gin: Genetic Improvement Research Made Easy Gin Execution time Java
[27] Automatically Exploring Tradeoffs Between Software Output PowerGAUGE Energy consumption C/C++
Fidelity and Energy Costs and accuracy
[49] Evolving AVX512 Parallel C Code using GP GISMO Execution time C
[60] Genetic Improvement of GPU Code GEVO Execution time and C++
accuracy
[62] Applying genetic improvement to a genetic programming library GISMO Execution time and C++
in C++ accuracy
[68] Software Improvement with Gin: A Case Study Gin Execution time Java
2020 [11] Comparing Genetic Programming Approaches for Non- PyGGI CPU instructions C++
Functional Genetic Improvement Case Study: Improvement of
MiniSAT’s Running Time
[15] Injecting Shortcuts for Faster Running Java Code Gin Execution time Java
[37] Automatically Evolving Lookup Tables for Function Approxima- unnamed Function accuracy C/C++/Java
tion
[41] Genetic Improvement of Genetic Programming GISMO Execution time C++
[45] Evolving sqrt into 1/x via software data maintenance unnamed Function accuracy C
[58] GEVO: GPU Code Optimization Using Evolutionary Computation =GEVO Execution time C++
2021 [12] Empirical Comparison of Search Heuristics for Genetic Improve- PyGGI CPU instructions C/C++/Java
ment of Software
[25] Evolving JavaScript Code to Reduce Load Time DFAHC Code size JavaScript
[46] Genetic Improvement of Data for Maths Functions unnamed Function accuracy C
[64] Genetic Improvement of Routing Protocols for Delay Tolerant unnamed Delivery probability Java

Networks

Evaluation of Genetic Improvement Tools for Improvement of Non-functional Properties of Software

GECCO ’22 Companion, July 9-13, 2022, Boston, MA, USA

Table 4: Papers with unavailable GI tools targeting non-functional properties of software

Year Paper Tool Properties Language
2008 [4] Multi-objective Improvement of Software Using Co-evolution and Smart ECJ CPU cycles Java
Seeding
2011 [85] Evolutionary Improvement of Programs ECJ] Instructions executed C
2013 [21] The Emergence of Useful Bias in Self-focusing Genetic Programming for unnamed Instructions executed Java
Software Optimisation
[72] Applying Genetic Improvement to MiniSAT GISMO Execution time C++
2015 [18] Reducing Energy Consumption Using Genetic Improvement GISMO Energy consumption C
[38] Removing the Kitchen Sink from Software unnamed Code size C
[43] Grow and Graft a Better CUDA pknotsRG for RNA Pseudoknot Free ~GISMO Execution time CUDA (C)
Energy Calculation
[88] Deep Parameter Optimisation unnamed Execution time and C
memory usage
[90] Embedding Adaptivity in Software Systems using the ECSELR framework ~ECSELR Code size Java
2016 [35] Automatic Improvement of Apache Spark Queries using Semantics- Hylas Execution time Spark (SQL)
preserving Program Reduction
[55] API-Constrained Genetic Improvement GISMO Execution time C++
[63] Genetic Programming: From Design to Improved Implementation GISMO Processing time C++
[65] A General-Purpose Framework for Genetic Improvement uGP Hash function size C/Java/Python
2017 [7] Optimising Darwinian Data Structures on Google Guava ARTEMIS Execution time and Java
memory usage
[13] Search-based energy optimization of some ubiquitous algorithms Opacitor Energy consumption Java
[32] Genetic Improvement of Runtime and its Fitness Landscape in a Bioin- JM Execution time C/C++
formatics Application
[31] The use of predictive models in dynamic treatment planning M Accuracy Python
[47] Genetically improved BarraCUDA GGGP Execution time CUDA (C)
[77] Polytypic Genetic Programming Polytope Execution time Scala
[81] Trading between quality and non-functional properties of median filter ~unnamed Accuracy C
in embedded systems
[91] Online Genetic Improvement on the Java virtual machine with ECSELR ECSELR Code size Java
2018 [8] Darwinian Data Structure Selection ARTEMIS Execution time and C++/Java
memory usage
[23] Investigating the Evolvability of Web Page Load Time unnamed Load time JavaScript
[30] Predicting changes in quality of life for patients in vocational rehabilita- JM Accuracy Python
tion
[53] Evolving Better RNAfold Structure Prediction GISMO Accuracy C
[61] Novelty Search for Software Improvement of a SLAM System GISMO Execution time C++
[73] Evolving Exact Decompilation BED Readability C
2019 [10] A comparison of tree- and line-oriented observational slicing T-ORBS Execution time C/C++/Java
[19] Approximate Oracles and Synergy in Software Energy Search Spaces GISMO Energy consumption C/C++
[52] Genetic improvement of data gives binary logarithm from sqrt unnamed Function accuracy C
[40] Genetic Improvement of Data gives double precision invsqrt unnamed Function accuracy C
2020 [59] GEVO-ML: a proposal for optimizing ML code with evolutionary compu- GEVO-ML Execution time and CUDA (C)

tation

accuracy

returns the following error: could not find or load main class
executable.Evolve. It is difficult to determine the reason for this
error because without proper documentation we do not even know
whether the environmental settings are correct for this tool.

5.4 Summary

Section 4 exposed 63 papers that used GI tools to improve software’s
NFPs. Upon investigation, we found a total of 13 distinct GI tools

with open-source code, 11 of which deemed possible to be run on
other software. Further 3 had to be excluded due to lack of required
hardware, software dependencies, and required documentation
details. Ultimately, we were able to successfully run 8 GI tools.

Answer to RQ2: From our literature review we found 13 dis-
tinct GI tools that target software’s NFPs, 8 of which we were
able to run without any issues.

GECCO ’22 Companion, July 9-13, 2022, Boston, MA, USA

6 GENERALISABILITY STUDY

Section 5 revealed eight working GI tools. To answer RQ3, these
tools were investigated in more detail to examine how they work
and how easily they can be applied to other software.

6.1 Methodology

We apply a cross-testing strategy to check whether the tools can
work on different software. More precisely, we applied each tool to
anew software, chosen to have been previously targeted by another
similar tool. This strategy ensures that targeted software are not
chosen blindly, and that there are known improvements to be found
for all tools.

Because of the significant amount of time required to undertake
complete GI experimentation, we only checked whether the tools
can be run on different software. This means that GI runs were
terminated early as soon as it could be decided that the tool can
successfully run. Therefore, the records and results of the tools
were not analysed.

In particular, we conducted the following experiments*:

(1) Testing Gin with SAT4J, which is the software improved by
PyGGI 2.0 in previous work [12].

(2) Testing PyGGI 2.0 with Gson, which is the software improved
by Gin in previous work [68].

(3) Testing LocoGP with Gson.

(4) Testing the tool for shader simplification with MiniSAT,
which is the software used in previous work on a GISMO-
based tool [70].

(5) Testing the GISMO-based tool with RNAfold, which is the
software improved by GGGP in previous work [39].

(6) Testing the tool for OpenCV with MiniSAT.

(7) Testing GGGP with MiniSAT.

(8) Testing PowerGAUGE with MiniSAT.

6.2 Evaluation of Gin

Gin’ is a well-developed tool. It can operate on the source code of
the target software at both line-level and AST-level. Unlike other GI
work that focuses on NFP improvement, it targets methods, rather
than entire class files for improvement. Furthermore, Gin supports
both local search and genetic programming algorithms for genetic
improvement. By default, it improves runtime, though program
repair, and memory consumption can be improved using the latest
version of Gin.

The experiment of running Gin on SAT4J was successful. It was
possible to run the profiling function of Gin on SAT4J (which finds
the most time-consuming methods in a given project), although
the processing was time-consuming and was stopped in 2 minutes
when we found this function works. Also, we provided a simulated
profiling result, and Gin worked with that file to try to improve
SAT4]. This processing was also stopped after 2 minutes because
we believe this tool is likely to work fine for SAT4].

As to the available instructions of the tool, we find that the docu-
mentation of Gin is one of the best ones among all the available tools
in this section. Several frequently used commands are presented

4We frequently chose MiniSAT, if not previously improved by a given GI tool, due to
quick setup required.
Shttps://github.com/gintool/gin

Shengjie Zuo, Aymeric Blot, and Justyna Petke

in the README instruction, and an example case of applying Gin
on spatial4j is provided for reference. Moreover, all the commands
used in this research are well explained, meaning that it is easy to
get the explanation of the arguments for this command and the
detailed information about what the arguments are for.

Moreover, Gin works well with Maven and Gradle. It can auto-
matically find the classpath for these projects, saving time for the
settings of the subjects. Also, It has the profiling function, which is
very useful for finding the methods used frequently in the projects
and helps users decide which methods to improve. Gin also pro-
vides a function to automatically validate generated patches on a
given test suite.

However, Gin has some limitations. Firstly, as the developers in-
dicated in the README instruction, the documentation of this tool
is not complete, which may cause trouble when users intend to use
it for projects that are not in Maven or Gradle. Also, because of the
limitation of the GI research circle, there are not many developers
who can help with the maintenance of Gin. We found some issues
from three years ago that were still not solved.

In summary, Gin is the GI tool with the most detailed documenta-
tion among all the tools we investigated. Also, it provides relatively
complete functions for Maven and Gradle projects, making it easy
to use. We thus conclude it can be easily used for different projects.
We flag the need for better maintainance of the tool.

6.3 Evaluation of PyGGI

PyGGI® can operate on the target software’s source code at both
line-level or AST-level. Unlike Gin, which only works for Java,
PyGGI can target software written in Python, C, Java, and others.
It provides only a local search algorithm (although variants of it in
later research also implement GP). PyGGI requires users to provide
a script to execute the target software and its variants. The default
fitness is the execution time of the software but can also be manually
provided. The documentation of PyGGI also provides information
on how to run it for the purpose of program repair.

The experiment on Gson was successful. We modified the ex-
ample code of improve_java.py, which is the file to define the
software to be improved, and TestRunner. java, which is the file
to define how the patches are to be validated in PyGGI. Since PyGGI
does not have a profiling tool to find the frequently used Java files,
we use the same file of GsonBuilder. java in Gson and define the
test file as GsonBuilderTest. java. We do not validate the gener-
ated patches with the complete test files because this experiment
only tests whether PyGGI can work on other software. Therefore,
we only test the patches with one test file, which saves the time to
modify the source code in TestRunner. java. The improvement is
terminated after several iterations, and the result shows that PyGGI
can be applied to other software.

The validation procedure of PyGGI is easy to modify for different
software. Although PyGGI cannot automatically find the tests and
execute them to validate the generated patches, users can under-
stand the code of validation definition in the provided example
and choose their preferred validation method. Taking Gson as an
example; users can choose different ways to validate the patches,
such as using mvn test or using JUnit to run the tests chosen by

®https://github.com/coinse/pyggi

https://github.com/gintool/gin
https://github.com/coinse/pyggi

Evaluation of Genetic Improvement Tools for Improvement of Non-functional Properties of Software

users. PyGGI only requires the result of the validation, which is
represented in the format of "true/false” and the execution time of
the tests in milliseconds.

However, PyGGI does not have the tool for analysing the patches
recorded in the log file. Only the changes on the source code of the
best patch in each epoch are shown in the terminal output, and this
only happens when the best patch has a better fitness score than
the original code.

Also, the documentation of PyGGI is not as detailed as that of
Gin, but it is unlikely to cause serious difficulty for using the tool
because the source code of PyGGI is straightforward and easy to
understand.

In summary, PyGGI is an easy-to-use tool and can be used for dif-
ferent software, written in different programming languages. Better
documentation and further development of the patch analyser are
suggested.

6.4 Evaluation of LocoGP

LocoGP’ modifies the source code to the AST representation and
applies the genetic programming algorithm to improve a given Java
program. The evaluation of the performance of the modified code
relies on the number of instructions used in execution to calculate
the fitness score.

However, this tool is unlikely to be used for large projects such
as Gson. There is no instruction on how to apply this tool to gen-
eral software, meaning that we have to refer to the example file of
Ascon128V11DecryptProblem. java to modify the tool for Gson.
After close inspection, we find that this tool requires users to com-
plete considerable programming work to define the subject to be
improved. In this experiment, we selected GsonBuilder. java for
improvement and had to modify eleven functions in the example
file to make this example file suitable for Gson.

Moreover, tests defined in Gson cannot be used directly in this
tool. This tool requires that all tests should be defined in classes.
A list of all test classes for validation is also required, which helps
the tool retrieve information, including the results of tests and
the number of cases. Moreover, this tool does not rely on JUnit to
execute the test cases but applies the simple method to directly
check whether the output is consistent with the expected one. It
means that the original tests written with JUnit are no longer helpful
for this tool, and all the testing files have to be re-written for this
tool.

Therefore, the workload for using the tool for Gson is highly
significant. We have to define the improvement by imitating the
example code and re-define thousands of tests to make them avail-
able for this tool. Because of the unacceptable preparation work to
use this tool, this tool is not tested with Gson.

In summary, the usability of this tool is not satisfactory, espe-
cially for large-scale Java projects. Users have to modify a significant
amount of the source code to define the software to be improved
and create new test classes for the software.

"https://github.com/codykenb/locoGP

GECCO ’22 Companion, July 9-13, 2022, Boston, MA, USA

6.5 Evaluation of the tool for shader
simplification

This tool (reimplementation®) modifies software source code at

the AST level. It uses genetic programming to improve the target

software. As for patch fitness it relies on both rendering time and

error. The tool is easy to use as is does not require dependency

installation.

This tool is very unlikely to improve MiniSAT. After close ob-
servation of the source code, this tool is likely only useful for the
shader software. For the core Python files determining how this
tool behaves, they are designed for shader simplification only. For
the validation, the relevant files are “evaluator.py” and “fresnel.py".
In these files, the improved AST is transformed into the OpenGL
Shading Language, which is the language used in shader programs,
and evaluated the improved code by rendering the new code of the
shader. Therefore, necessary modification is required if this tool is
planned to be used for different software.

Meanwhile, the files used for genetic programming are also
closely related to the shader software. The generate_individual
function in the gp.py file requires a shader variant as an input,
meaning that this genetic programming algorithm is unlikely to
work on software like MiniSAT. Furthermore, as its name shows,
the shader. py file is mainly about representing the operators in
the shader programs and converting shader programs to the genetic
programming tree, which is unlikely to be suitable for software
not related to a shader. Therefore, it can be concluded that the core
algorithms used in this tool are targeted to improve shader software
only.

Since the tool is specifically designed for shader software and
the source code is targeted at shader programs, it is not easy to
re-write the code for other kinds of software. The workload can be
significant because all the files in this tool have to be reviewed and
modified. Therefore, MiniSAT is not tested with this tool.

In summary, although the tool for shader simplification is easy
to use, it is likely to work with shader software only. Significant
modification is required for the core algorithms and validation code
if users intend to use this tool for other kinds of software.

6.6 Evaluation of the GISMO-based tool

This tool® uses a BNF grammar to represent the target software’s
source code. It implements a genetic programming algorithm to
improve the fitness of software variants. For the evaluation of the
generated patches, this tool inserts and uses a counter incremented
at each executed statement, however, execution time is also pre-
sented in the final result.

The experiment of running the GISMO-based tool on RNAfold
is not successful because the tool fails to find the program to be
improved in BNF format. There is no general instruction provided
on how to apply this tool to different software, and we did not
find any comment in the source code that may contribute to the
modification. Therefore, we fail to find a way to transfer the source
code of RNAfold into the BNF format. Moreover, it can still be
challenging to modify the code even if the source code is in BNF
format due to the lack of direction.

8https://github.com/fabianishere/shadevolution
http://www0.cs.ucl.ac.uk/staff/W.Langdon/gismo

https://github.com/codykenb/locoGP
https://github.com/fabianishere/shadevolution
http://www0.cs.ucl.ac.uk/staff/W.Langdon/gismo

GECCO ’22 Companion, July 9-13, 2022, Boston, MA, USA

However, we find that the GISMO framework has been used for
different software in other research, such as the work conducted
by Langdon [41]. Therefore, it is very likely that this framework
can work on different software, but we fail to make it because of
the poor documentation and missing instruction about how to use
this tool for general software.

In summary, the GISMO-based tool failed to improve RNAfold
because of the missing method to generate the BNF representation
and the lack of necessary instructions for applying this tool on dif-
ferent software. It is suggested that the developers of the tool should
improve the documentation and conduct essential maintenance.

6.7 Evaluation of the tool for OpenCV

This tool!? uses deep parameter optimisation [88] to form a more
extensive search space for optimisation and tuning the found pa-
rameters with the NSGA-II algorithm. Modifications of the source
code are determined at the level of lines, and the generated patches
are evaluated in terms of execution time and accuracy.

However, the testing with MiniSAT failed. In order to understand
the failure better, the previous publication [17] is reviewed. As the
paper indicates, three steps are required while using the tool:

(1) finding the location of the deep parameters;
(2) exposing the deep parameters;
(3) tuning the parameters.

The error occurred in the second step. We learn from the example
provided with the tool that the replace.hpp file, which defines
integer constants, is required as an input for this step to expose the
deep parameters in the files found in Step 1. However, there was
no such file defining the integer constants for MiniSAT. Although
we intended to solve the problem, we did not find any information
about how to generate this file from the paper and the README
instruction.

Therefore, applying the tool for MiniSAT is unlikely to be com-
pleted because of the error in exposing the deep parameters. How-
ever, it is possible that this tool can be used in other similar projects,
especially the ones containing a large number of parameters if the
step of defining parameter constants can be well explained or auto-
mated. However, the performance of this tool can be determined
mainly by the number of deep parameters in the software to be
improved.

6.8 Evaluation of GGGP

Similarly to GISMO, from the same author, this tool!! represents the
source code of the software using a BNF grammar and implements a
genetic programming algorithm. For the evaluation of the generated
patches, this tool relies on the test cases and uses the execution
time of the tests as the fitness score.

However, we were unable to use this tool to improve MiniSAT.
A README file is present but provides no instruction on how to
apply this tool to another program. We tried but ultimately were
unsuccessful in modifying the RNAfold example to accommodate
MiniSAT instead. More precisely, we were unable to fix errors
pertaining to the RE_gp.bat file. Inspection of the source code was
also unhelpful as the code includes no comments.

Ohttps://github.com/BobbyRBruce/DPT-OpenCV
Uhttp://www0.cs.ucl.ac.uk/staff/ucacbbl/gggp

Shengjie Zuo, Aymeric Blot, and Justyna Petke

Therefore, unless additional documentation can be provided, this
tool is not likely to be used on other software.

6.9 Evaluation of PowerGAUGE

This tool'? harnesses the GenProg [57] software! to apply a genetic
programming algorithm to the targeted software. Fitness compu-
tation is to be manually provided, although code samples provide
examples for execution time and output-related fitness functions.

We were unable to use this tool on MiniSAT. PowerGAUGE
evolves and thus requires access to assembly files for the targeted
software. Whilst those may generally not be hard to obtain, in prac-
tice it could require rewriting the entire compilation pipeline, which
even in the case of the fairly simple MiniSAT was unreasonable.

Overall, it is unlikely that this tool can easily be applied to other,
especially complex, software.

6.10 Summary

We tried to assess the generalisability of all eight GI tools we could
run by applying them to new software. For only two tools, Gin
and PyGGI, we were able to find adequate documentation to do so.
Ultimately we were unsuccessful in making any of the six other
tools work on new software. We note that some tools target spe-
cialist software (e.g., shaders), and thus cannot be easily applied on
general software.

Answer to RQ3: Gin and PyGGI are the only two GI tools are
application-agnostic and can be easily applied to improve new
software.

7 CONCLUSION

In this paper we investigated genetic improvement (GI) tooling for
improvement of non-functional properties (NFP) of software. More
precisely, we focused on the available GI tools described in the
literature, whether they were available, whether they were actually
usable, and whether they could easily be applied to software, to
which they have not been applied to in previous work.

In the survey, we found 63 relevant papers, within which 31
come with associated open-source code. The usability study ex-
posed 11 different general GI tools, but only 8 that we were able to
run without any issues. Furthermore, the generalisability study ulti-
mately showed that within these eight GI tools only two — Gin and
PyGGI — can be readily applied to new software for improvement
of non-functional properties of software. We recommend addition
of more detailed documentation and better maintenance of current
GI tooling.

ACKNOWLEDGMENTS
This work was supported by UK EPSRC Fellowship EP/P023991/1.

REFERENCES

[1] Gabin An, Aymeric Blot, Justyna Petke, and Shin Yoo. 2019. PyGGI 2.0: Lan-
guage Independent Genetic Improvement Framework. In Proceedings of the 27th
ACM Joint European Software Engineering Conference and Symposium on the
Foundations of Software Engineering (ESEC/FSE 2019). ACM, 1100-1104.

2https://github.com/dornja/powergauge
Bhttps://github.com/squaresLab/genprog-code

https://github.com/BobbyRBruce/DPT-OpenCV
http://www0.cs.ucl.ac.uk/staff/ucacbbl/gggp
https://github.com/dornja/powergauge
https://github.com/squaresLab/genprog-code

Evaluation of Genetic Improvement Tools for Improvement of Non-functional Properties of Software

[10]

[11]

[12

[13

[14]

(15

[16

[17]

[18]

[19

[20]

[21]

[22]

[23]

Gabin An, Jinhan Kim, Seongmin Lee, and Shin Yoo. 2017. PyGGI: Python
General framework for Genetic Improvement. In Proceedings of the Korea Software
Congress (KSC 2017). 536-538.

Andrea Arcuri. 2009. Automatic software generation and improvement through
search based techniques. Ph. D. Dissertation. University of Birmingham, UK.
Andrea Arcuri, David Robert White, John A. Clark, and Xin Yao. 2008. Multi-
objective Improvement of Software Using Co-evolution and Smart Seeding. In
Proceedings of the 7th International Conference on Simulated Evolution and Learning
(SEAL) (LNCS, Vol. 5361). Springer, 61-70.

Earl T. Barr, Mark Harman, Yue Jia, Alexandru Marginean, and Justyna Petke.
2015. Automated software transplantation. In Proceedings of the 2015 International
Symposium on Software Testing and Analysis (ISSTA 2015). ACM, 257-269.
Michail Basios. 2019. Darwinian Code Optimisation. Ph. D. Dissertation. University
College London, UK.

Michail Basios, Lingbo Li, Fan Wu, Leslie Kanthan, and Earl T. Barr. 2017. Op-
timising Darwinian Data Structures on Google Guava. In Proceedings of the
9th International Symposium on Search Based Software Engineering (SSBSE 2017)
(LNCS, Vol. 10452). Springer, 161-167.

Michail Basios, Lingbo Li, Fan Wu, Leslie Kanthan, and Earl T. Barr. 2018. Dar-
winian data structure selection. In Proceedings of the 26th ACM Joint European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering (ESEC/FSE 2018). ACM, 118-128.

Samuel Benton, Xia Li, Yiling Lou, and Lingming Zhang. 2020. On the Effective-
ness of Unified Debugging: An Extensive Study on 16 Program Repair Systems.
In Proceedings of the 35th International Conference on Automated Software Engi-
neering (ASE 2020). IEEE, 907-918.

David W. Binkley, Nicolas Gold, Syed S. Islam, Jens Krinke, and Shin Yoo. 2019.
A comparison of tree- and line-oriented observational slicing. Empirical Software
Engineering 24, 5 (2019), 3077-3113.

Aymeric Blot and Justyna Petke. 2020. Comparing Genetic Programming Ap-
proaches for Non-Functional Genetic Improvement — Case Study: Improvement
of MiniSAT’s Running Time. In Proceedings of the 23th European Conference on
Genetic Programming (EuroGP 2020) (LNCS, Vol. 12101). Springer, 68-83.
Aymeric Blot and Justyna Petke. 2021. Empirical Comparison of Search Heuris-
tics for Genetic Improvement of Software. IEEE Transactions on Evolutionary
Computation 25, 5 (2021), 1001-1011.

Alexander E. I. Brownlee, Nathan Burles, and Jerry Swan. 2017. Search-Based
Energy Optimization of Some Ubiquitous Algorithms. IEEE Transactions on
Emerging Topics in Computational Intelligence 1, 3 (2017), 188-201.

Alexander E. I. Brownlee, Justyna Petke, Brad Alexander, Earl T. Barr, Markus
Wagner, and David R. White. 2019. Gin: Genetic improvement research made
easy. In Proceedings of the 14th Genetic and Evolutionary Computation Conference
(GECCO 2019). ACM, 985-993.

Alexander E. I. Brownlee, Justyna Petke, and Anna F. Rasburn. 2020. Inject-
ing Shortcuts for Faster Running Java Code. In Proceedings of the Congress on
Evolutionary Computation (CEC 2020). IEEE, 1-8.

Bobby R. Bruce. 2018. The Blind Software Engineer — Improving the Non-Functional
Properties of Software by Means of Genetic Improvement. Ph.D. Dissertation.
University College London, UK.

Bobby R. Bruce, Jonathan M. Aitken, and Justyna Petke. 2016. Deep Parameter
Optimisation for Face Detection Using the Viola-Jones Algorithm in OpenCV. In
Proceedings of the 8th International Symposium on Search Based Software Engi-
neering (SSBSE 2016) (LNCS, Vol. 9962). Springer, 238-243.

Bobby R. Bruce, Justyna Petke, and Mark Harman. 2015. Reducing Energy
Consumption Using Genetic Improvement. In Proceedings of the 10th Genetic and
Evolutionary Computation Conference (GECCO 2015). ACM, 1327-1334.

Bobby R. Bruce, Justyna Petke, Mark Harman, and Earl T. Barr. 2019. Approximate
Oracles and Synergy in Software Energy Search Spaces. IEEE Transactions on
Software Engineering 45, 11 (2019), 1150-1169.

Bobby R. Bruce, Tianyi Zhang, Jaspreet Arora, Guoqing Harry Xu, and Miryung
Kim. 2020. JShrink: In-depth investigation into debloating modern Java appli-
cations. In Proceedings of the 28th ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE
2020). ACM, 135-146.

Brendan Cody-Kenny and Stephen Barrett. 2013. The Emergence of Useful Bias
in Self-focusing Genetic Programming for Software Optimisation. In Proceedings
of the 5th International Symposium on Search Based Software Engineering (SSBSE
2013) (LNCS, Vol. 8084). Springer, 306-311.

Brendan Cody-Kenny, Edgar Galvan Lopez, and Stephen Barrett. 2015. locoGP:
Improving Performance by Genetic Programming Java Source Code. In Com-
panion Material Proceedings of the 10th Genetic and Evolutionary Computation
Conference (GECCO 2015 companion). ACM, 811-818.

Brendan Cody-Kenny, Umberto Manganiello, John Farrelly, Adrian Ronayne,
Eoghan Considine, Thomas McGuire, and Michael O’Neill. 2018. Investigating
the Evolvability of Web Page Load Time. In Proceedings of the 21st International
Conference on Applications of Evolutionary Computation (EvoApp 2018) (LNCS,
Vol. 10784). Springer, 769-777.

[24

[25

[26

[28

[29

[30

w
—

(32

(33]

[34

=
=

[41

[42

[43

[44

S
&

[46

[47

GECCO ’22 Companion, July 9-13, 2022, Boston, MA, USA

Fabio de Almeida Farzat, Marcio de Oliveira Barros, and Guilherme Horta Travas-
so0s. 2018. Challenges on applying genetic improvement in JavaScript using
a high-performance computer. Journal of Software Engineering Research and
Development 6 (2018), 12.

Fabio de Almeida Farzat, Marcio de Oliveira Barros, and Guilherme H. Travassos.
2021. Evolving JavaScript Code to Reduce Load Time. IEEE Transactions on
Software Engineering 47, 8 (2021), 1544-1558.

Darshan Domah and Frank J. Mitropoulos. 2015. The NERV methodology: A
lightweight process for addressing non-functional requirements in agile software
development. In SoutheastCon 2015. 1-7. https://doi.org/10.1109/SECON.2015.
7133028

Jonathan Dorn, Jeremy Lacomis, Westley Weimer, and Stephanie Forrest. 2019.
Automatically Exploring Tradeoffs Between Software Output Fidelity and Energy
Costs. IEEE Transactions on Software Engineering 45, 3 (2019), 219-236.
Stephanie Forrest, ThanhVu Nguyen, Westley Weimer, and Claire Le Goues. 2009.
A genetic programming approach to automated software repair. In Proceedings
of the 4th Genetic and Evolutionary Computation Conference (GECCO 2009). ACM,
947-954.

Saemundur O. Haraldsson. 2017. Genetic Improvement of Software — From Program
Landscapes to the Automatic Improvement of a Live System. Ph.D. Dissertation.
University of Stirling, UK.

Saemundur O. Haraldsson, Ragnheidur D. Brynjolfsdottir, Vilmundur Gudnason,
Kristinn Tomasson, and Kristin Siggeirsdottir. 2018. Predicting changes in quality
of life for patients in vocational rehabilitation. In Proceedings of the Evolving and
Adaptive Intelligent Systems (EAIS 2018). 1-8.

Saemundur O. Haraldsson, Ragnheidur D. Brynjolfsdottir, John R. Woodward,
Kristin Siggeirsdottir, and Vilmundur Gudnason. 2017. The use of predictive
models in dynamic treatment planning. In Proceedings of the Symposium on
Computers and Communications (ISCC 2017). IEEE Computer Society, 242-247.
Saemundur Oskar Haraldsson, John R. Woodward, Alexander E.I. Brownlee, Al-
bert V. Smith, and Vilmundur Gudnason. 2017. Genetic Improvement of Runtime
and its fitness landscape in a Bioinformatics Application. In Companion Material
Proceedings of the 12th Genetic and Evolutionary Computation Conference (GECCO
2017 companion). ACM.

Chih-Wei Ho, M.J. Johnson, L. Williams, and E.M. Maximilien. 2006. On agile
performance requirements specification and testing. In AGILE 2006. 6 pp.—52.
https://doi.org/10.1109/AGILE.2006.41

Holger H. Hoos and Thomas Stiitzle. 2004. Stochastic Local Search: Foundations &
Applications. Elsevier / Morgan Kaufmann.

Zoltan A. Kocsis, John H. Drak, Douglas Carson, and Jerry Swan. 2016. Automatic
Improvement of Apache Spark Queries using Semantics-preserving Program
Reduction. In Companion Material Proceedings of the 11th Genetic and Evolutionary
Computation Conference (GECCO 2016 companion). ACM, 1141-1146.

John R. Koza. 1992. Genetic programming. MIT Press.

Oliver Krauss and William B. Langdon. 2020. Automatically Evolving Lookup
Tables for Function Approximation. In Proceedings of the 23th European Conference
on Genetic Programming (EuroGP 2020) (LNCS, Vol. 12101). Springer, 84-100.
Jason Landsborough, Stephen Harding, and Sunny Fugate. 2015. Removing the
Kitchen Sink from Software. In Companion Material Proceedings of the 10th Genetic
and Evolutionary Computation Conference (GECCO 2015 companion). ACM.

W. Langdon and R. Lorenz. 2017. Improving SSE Parallel Code with Grow
and Graft Genetic Programming. In Companion Material Proceedings of the 12th
Genetic and Evolutionary Computation Conference (GECCO 2017 companion). ACM,
1537-1538.

William B. Langdon. 2019. Genetic Improvement of Data gives double precision
invsqrt. In Companion Material Proceedings of the 14th Genetic and Evolutionary
Computation Conference (GECCO 2019 companion). ACM, 1709-1714.

William B. Langdon. 2020. Genetic Improvement of Genetic Programming. In
Proceedings of the Congress on Evolutionary Computation (CEC 2020). IEEE, 1-8.
William B. Langdon and Mark Harman. 2014. Genetically Improved CUDA C++
Software. In Proceedings of the 17th European Conference on Genetic Programming
(EuroGP 2014) (LNCS, Vol. 8599). Springer, 87-99.

William B. Langdon and Mark Harman. 2015. Grow and Graft a better CUDA
pknotsRG for RNA pseudoknot free energy calculation. In Companion Material
Proceedings of the 10th Genetic and Evolutionary Computation Conference (GECCO
2015 companion). ACM, 805-810.

William B. Langdon and Mark Harman. 2015. Optimizing Existing Software
With Genetic Programming. IEEE Transactions on Evolutionary Computation 19,
1(2015), 118-135.

William B. Langdon and Oliver Krauss. 2020. Evolving sqrt into 1/x via software
data maintenance. In Companion Material Proceedings of the 14th Genetic and
Evolutionary Computation Conference (GECCO 2020 companion). ACM, 1928-
1936.

William B. Langdon and Oliver Krauss. 2021. Genetic Improvement of Data for
Maths Functions. ACM Transactions on Evolutionary Learning and Optimization
1, 2 (2021), 7:1-7:30.

William B. Langdon and Brian Yee Hong Lam. 2017. Genetically improved
BarraCUDA. BioData Mining 10, 1 (2017), 28:1-28:11.

https://doi.org/10.1109/SECON.2015.7133028
https://doi.org/10.1109/SECON.2015.7133028
https://doi.org/10.1109/AGILE.2006.41

GECCO ’22 Companion, July 9-13, 2022, Boston, MA, USA

[48]

[49

[50

[51]

[52

[53

[54]

[55

[56

[57

[58]

[59]

[61]

[62

[63

[64

[65]

(66

[67]

N
&

[69]

William B. Langdon, Brian Yee Hong Lam, Justyna Petke, and Mark Harman.
2015. Improving CUDA DNA Analysis Software with Genetic Programming. In
Proceedings of the 10th Genetic and Evolutionary Computation Conference (GECCO
2015). ACM, 1063-1070.

William B. Langdon and Ronny Lorenz. 2019. Evolving AVX512 Parallel C Code
Using GP. In Proceedings of the 22nd European Conference on Genetic Programming
(EuroGP 2019) (LNCS, Vol. 11451). Springer, 245-261.

William B. Langdon, Marc Modat, Justyna Petke, and Mark Harman. 2014. Improv-
ing 3D medical image registration CUDA software with genetic programming. In
Proceedings of the 9th Genetic and Evolutionary Computation Conference (GECCO
2014). ACM, 951-958.

William B. Langdon and Justyna Petke. 2018. Evolving Better Software Parame-
ters. In Proceedings of the 10th International Symposium on Search Based Software
Engineering (SSBSE 2018) (LNCS, Vol. 11036). Springer, 363-369.

William B. Langdon and Justyna Petke. 2019. Genetic improvement of data
gives binary logarithm from sqrt. In Companion Material Proceedings of the 14th
Genetic and Evolutionary Computation Conference (GECCO 2019 companion). ACM,
413-414.

William B. Langdon, Justyna Petke, and Ronny Lorenz. 2018. Evolving Better
RNAfold Structure Prediction. In Proceedings of the 21st European Conference on
Genetic Programming (EuroGP 2018) (LNCS, Vol. 10781). Springer, 220-236.
William B. Langdon and Riccardo Poli. 2002. Foundations of genetic programming.
Springer.

William B. Langdon, David Robert White, Mark Harman, Yue Jia, and Justyna
Petke. 2016. API-Constrained Genetic Improvement. In Proceedings of the 8th In-
ternational Symposium on Search Based Software Engineering (SSBSE 2016) (LNCS,
Vol. 9962). Springer, 224-230.

Claire Le Goues, Michael Dewey-Vogt, Stephanie Forrest, and Westley Weimer.
2012. A systematic study of automated program repair: Fixing 55 out of 105
bugs for $8 each. In Proceedings of the 34th International Conference on Software
Engineering (ICSE 2012). IEEE, 3-13.

Claire Le Goues, ThanhVu Nguyen, Stephanie Forrest, and Westley Weimer. 2012.
GenProg: A Generic Method for Automatic Software Repair. IEEE Transactions
on Software Engineering 38, 1 (2012), 54-72.

Jhe-Yu Liou, Xiaodong Wang, Stephanie Forrest, and Carole-Jean Wu. 2020.
GEVO: GPU Code Optimization Using Evolutionary Computation. ACM Trans-
actions on Architecture and Code Optimization 17, 4 (2020), 33:1-33:28.

Jhe-Yu Liou, Xiaodong Wang, Stephanie Forrest, and Carole-Jean Wu. 2020.
GEVO-ML: a proposal for optimizing ML code with evolutionary computation. In
Companion Material Proceedings of the 14th Genetic and Evolutionary Computation
Conference (GECCO 2020 companion). ACM, 1849-1856.

Jhe-Yu Liou, Stephanie Forrest, and Carole-Jean Wu. 2019. Genetic Improve-
ment of GPU Code. In Proceedings of the 6th International Workshop on Genetic
Improvement (GI@ICSE 2019). ACM, 20-27.

Victor R. Lopez-Lopez, Leonardo Trujillo, and Pierrick Legrand. 2018. Novelty
Search for Software Improvement of a SLAM system. In Companion Material
Proceedings of the 13th Genetic and Evolutionary Computation Conference (GECCO
2018 companion). ACM.

Victor R. Lopez-Lopez, Leonardo Trujillo, and Pierrick Legrand. 2019. Applying
genetic improvement to a genetic programming library in C++. Soft Computing
23, 22 (2019), 11593-11609.

Victor R. Lopez-Lopez, Leonardo Trujillo, Pierrick Legrand, and Gustavo Olague.
2016. Genetic Programming: From design to improved implementation. In Com-
panion Material Proceedings of the 11th Genetic and Evolutionary Computation
Conference (GECCO 2016 companion). ACM, 1147-1154.

Michela Lorandi, Leonardo Lucio Custode, and Giovanni Iacca. 2021. Genetic Im-
provement of Routing Protocols for Delay Tolerant Networks. ACM Transactions
on Evolutionary Learning and Optimization 1, 1 (2021), 4:1-4:37.

Francesco Marino, Giovanni Squillero, and Alberto Paolo Tonda. 2016. A General-
Purpose Framework for Genetic Improvement. In Proceedings of the 14th Inter-
national Conference on Parallel Problem Solving from Nature (PPSN XIV) (LNCS).
Springer, 345-352.

Hiroki Nakajima, Yoshiki Higo, Haruki Yokoyama, and Shinji Kusumoto. 2016.
Toward Developer-like Automated Program Repair — Modification Comparisons
between GenProg and Developers. In Proceedings of the 23rd Asia-Pacific Software
Engineering Conference (APSEC 2016). IEEE Computer Society, 241-248.
Justyna Petke, Brad Alexander, Earl T. Barr, Alexander E.I. Brownlee, Markus
Wagner, and David R. White. 2019. A Survey of Genetic Improvement Search
Spaces. In Companion Material Proceedings of the 14th Genetic and Evolutionary
Computation Conference (GECCO 2019 companion). ACM, 1715-1721.

Justyna Petke and Alexander E. I. Brownlee. 2019. Software Improvement with
Gin: A Case Study. In Proceedings of the 11th International Symposium on Search
Based Software Engineering (SSBSE 2019) (LNCS, Vol. 11664). Springer, 183-189.
Justyna Petke, Saemundur O. Haraldsson, Mark Harman, William B. Langdon,
David R. White, and John R. Woodward. 2018. Genetic Improvement of Software:
A Comprehensive Survey. IEEE Transactions on Evolutionary Computation 22, 3
(2018), 415-432.

[70]

(71

[72]

=
&

(74

[75

[76

[77

[78

[79

(80

=
=

(82

(83

[84

(85

[86

(87

(88]

(89]

[91

Shengjie Zuo, Aymeric Blot, and Justyna Petke

Justyna Petke, Mark Harman, William B. Langdon, and Westley Weimer. 2014.
Using Genetic Improvement and Code Transplants to Specialise a C++ Program
to a Problem Class. In Proceedings of the 17th European Conference on Genetic
Programming (EuroGP 2014) (LNCS, Vol. 8599). Springer, 137-149.

Justyna Petke, Mark Harman, William B. Langdon, and Westley Weimer. 2018.
Specialising Software for Different Downstream Applications Using Genetic Im-
provement and Code Transplantation. IEEE Transactions on Software Engineering
44, 6 (2018), 574-594.

Justyna Petke, William B. Langdon, and Mark Harman. 2013. Applying Genetic
Improvement to MiniSAT. In Proceedings of the 5th International Symposium
on Search Based Software Engineering (SSBSE 2013) (LNCS, Vol. 8084). Springer,
257-262.

Eric Schulte, Jason Ruchti, Matt Noonan, David Ciarletta, and Alexey Loginov.
2018. Evolving Exact Decompilation. In Workshop on Binary Analysis Research
(BAR@NDSS 2018).

Eric Schulte, Westley Weimer, and Stephanie Forrest. 2015. Repairing COTS
Router Firmware without Access to Source Code or Test Suites: A Case Study
in Evolutionary Software Repair. In Companion Material Proceedings of the 10th
Genetic and Evolutionary Computation Conference (GECCO 2015 companion,).
ACM.

Pitchaya Sitthi-Amorn, Nicholas Modly, Westley Weimer, and Jason Lawrence.
2011. Genetic Programming for Shader Simplification. ACM Transactions on
Graphics 30, 6 (2011), 152.

Marta Smigielska, Aymeric Blot, and Justyna Petke. 2021. Uniform Edit Selection
for Genetic Improvement: Empirical Analysis of Mutation Operator Efficacy. In
Proceedings of the 43rd International Conference on Software Engineering: Work-
shops (ICSE 2021 Workshops). ACM, 1-8.

Jerry Swan, Krzysztof Krawiec, and Neil Ghani. 2017. Polytypic Genetic Pro-
gramming. In Proceedings of the 20th European Conference on Applications of
Evolutionary Computation (EvoApp 2017) (LNCS, Vol. 10200). Springer, 66—81.
Richard Taylor, Nenad Medvidovic, and Eric. Dashofy. 2009. Designing for Non-
Functional Properties. In Software Architecture: Foundations, Theory, and Practice.
Wiley, Chapter 12.

Christopher Steven Timperley, Susan Stepney, and Claire Le Goues. 2017. An
Investigation into the Use of Mutation Analysis for Automated Program Re-
pair. In Proceedings of the 9th International Symposium on Search Based Software
Engineering (SSBSE 2017) (LNCS, Vol. 10452). Springer, 99-114.

Mahrukh Umar and Naeem Ahmed Khan. 2011. Analyzing Non-Functional
Requirements (NFRs) for software development. In 2011 IEEE 2nd International
Conference on Software Engineering and Service Science. 675-678. https://doi.org/
10.1109/ICSESS.2011.5982328

Zdenek Vasicek and Vojtech Mrazek. 2017. Trading between quality and non-
functional properties of median filter in embedded systems. Genetic Programming
and Evolvable Machines 18, 1 (2017), 45-82.

Westley Weimer. 2006. Patches as better bug reports. In Proceedings of the 5th
International Conference on Generative Programming and Component Engineering
(GPCE 2006). ACM, 181-190.

Westley Weimer, ThanhVu Nguyen, Claire Le Goues, and Stephanie Forrest. 2009.
Automatically finding patches using genetic programming. In Proceedings of the
31st International Conference on Software Engineering (ICSE 2009). IEEE, 364-374.
David Robert White. 2009. Genetic Programming for Low-Resource Systems. Ph. D.
Dissertation. University of York, UK.

David R. White, Andrea Arcuri, and John A. Clark. 2011. Evolutionary Improve-
ment of Programs. IEEE Transactions on Evolutionary Computation 15, 4 (2011),
515-538.

Fan Wu. 2017. Mutation-Based Genetic Improvement of Software. Ph.D. Disserta-
tion. University College London, UK.

Fan Wu, Mark Harman, Yue Jia, and Jens Krinke. 2016. HOMI: Searching Higher
Order Mutants for Software Improvement. In Proceedings of the 8th International
Symposium on Search Based Software Engineering (SSBSE 2016) (LNCS, Vol. 9962).
Springer, 18-33.

Fan Wu, Westley Weimer, Mark Harman, Yue Jia, and Jens Krinke. 2015. Deep
Parameter Optimisation. In Proceedings of the 10th Genetic and Evolutionary
Computation Conference (GECCO 2015). ACM, 1375-1382.

He Ye, Matias Martinez, and Martin Monperrus. 2021. Automated patch assess-
ment for program repair at scale. Empirical Software Engineering 26, 2 (2021),
20.

Kwaku Yeboah-Antwi and Benoit Baudry. 2015. Embedding Adaptivity in Soft-
ware Systems using the ECSELR framework. In Companion Material Proceedings
of the 10th Genetic and Evolutionary Computation Conference (GECCO 2015 com-
panion). ACM, 839-844.

Kwaku Yeboah-Antwi and Benoit Baudry. 2017. Online Genetic Improvement
on the java virtual machine with ECSELR. Genetic Programming and Evolvable
Machines 18, 1 (2017), 83-109.

https://doi.org/10.1109/ICSESS.2011.5982328
https://doi.org/10.1109/ICSESS.2011.5982328

	Abstract
	1 Introduction
	2 Background
	3 Research Questions
	4 Literature Review
	4.1 Summary

	5 Usability Study
	5.1 Experiments
	5.2 Methodology
	5.3 Results
	5.4 Summary

	6 Generalisability study
	6.1 Methodology
	6.2 Evaluation of Gin
	6.3 Evaluation of PyGGI
	6.4 Evaluation of LocoGP
	6.5 Evaluation of the tool for shader simplification
	6.6 Evaluation of the GISMO-based tool
	6.7 Evaluation of the tool for OpenCV
	6.8 Evaluation of GGGP
	6.9 Evaluation of PowerGAUGE
	6.10 Summary

	7 Conclusion
	Acknowledgments
	References

