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Introduction
Natalizumab (NZ) is a monoclonal antibody used for 
treating patients with relapsing-remitting multiple 
sclerosis (RRMS).1 NZ is administered according to a 
standard dosing schedule of 300 mg every 4 weeks 
(standard-interval dosing; SID). When NZ binds to 
α4 integrin on the surface of leukocytes, it prevents 
leukocyte migration from the blood into the central 
nervous system (CNS). NZ effectively reduces dis-
ease activity in RRMS, and it is well tolerated with a 
few adverse effects.2 The main drawback of NZ is 
that it increases the risk of progressive multifocal 
leukoencephalopathy (PML),3 a John Cunningham 
(JC virus) virus infection that often gives rise to 
severe impairment and is lethal in 24% of patients 

treated with NZ.4 In non-randomized observational 
studies, extended-interval dosing (EID) was associ-
ated with a significantly lower risk of developing 
PML, compared to SID,5 but it had similar therapeutic 
efficacy.6–9 Very recently, therapeutic efficacy has 
also been demonstrated to be maintained in EID with 
NZ in a randomized controlled study.10

Previously, when switching NZ dosing from SID to 
EID, disease activity and progression was generally 
monitored with conventional cerebral magnetic reso-
nance imaging (MRI) and clinical evaluations.6,7,9,11 
However, current evidence has suggested that signs of 
inflammatory activity and neurodegeneration may 
escape detection with conventional monitoring.12–14
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The most promising soluble biomarker in MS is neu-
rofilament light (NfL),15 a marker of axonal damage 
that can be determined in cerebrospinal fluid (CSF)16 
as well as in blood.17,18 There is accumulating evi-
dence that NfL is a reliable biomarker of disease 
activity in RRMS,19,20 that may also reflect therapeu-
tic efficacy.21 Consequently, NfL has served as an 
additional outcome measure in clinical trials.22

This study aimed to determine whether switching NZ 
treatment intervals from SID to EID might affect 
serum neurofilament light chain (sNfL) concentra-
tions in patients with RRMS. To reduce potential 
effects of other factors on sNfL levels, we selected 
patients who lacked signs of disease activity in clini-
cal and MRI examinations.

Material and methods

Study design and patients
This prospective observational single-center study 
was conducted for 12 months at the MS center, 
Sahlgrenska University Hospital in Gothenburg, 

Sweden. Eligible patients had RRMS, fulfilled the 
2017 McDonald criteria,23 and had been receiving 
300 mg NZ (Tysabri®, Biogen, Cambridge, MA, 
USA) intravenously, every 4, 5, or 6 weeks, for at 
least 1 year. They should not have any relapse or 
new or enlarging lesions on MRI within 6 months 
prior to baseline. After signing informed consent 
forms, patients were consecutively enrolled in the 
study. The first patients were included on the 1st of 
Oct 2019 and the last follow-up visit was on the 1st 
of June 2021. The inclusion process is illustrated in 
Figure 1.

Procedures
The study participants were divided into two cohorts, 
based on the NZ infusion interval; one cohort had 
received NZ at 4-week intervals prior to baseline, and 
they were switched to receive EID at 6-week intervals 
(EID4–6). The other group had received EID at 5- or 
6-week intervals at baseline, and continued extended 
dosing (EID5/6). Except for one patient, the patients 
in EID5/6 who received EID at 5-week intervals at 
baseline switched to 6-week intervals.

Figure 1.  Flow chart of patient selection and treatment allocation.
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In the EID4–6 cohort, peripheral blood was drawn at 
4 weeks prior to baseline, at baseline (week zero), and 
then every 6 weeks, up to 48 weeks. In the EID5/6 
cohort, blood was drawn at baseline (week zero), at 
5/6 weeks, and at 12 weeks. In both study cohorts, 
MRI scan was performed at baseline, at 24 weeks, and 
at 48 weeks, and clinical examination with Expanded 
Disability Status Scale (EDSS)24 scoring were per-
formed at baseline and at 48 weeks (Figure 2).

Baseline demographic and clinical characteristics 
were retrieved from the Swedish MS Registry 
(SMSreg, http://www.msreg.net) and from electronic 
patient records. A relapse was defined as the appear-
ance of new or worsening neurological symptoms 
compatible with MS that lasted more than 24 hours in 
the absence of any factor that could cause worsening 
of symptoms (i.e. a pseudo relapse). Disability was 
assessed at clinical visits or via telephone due to the 
COVID-19 pandemic, and scored with EDSS or tele-
phone-EDSS.25 Significant disability progression 
was defined as an increase of 1.5 points from a base-
line EDSS score of 0, an increase of 1 point from 
a baseline EDSS score of 1–5.5, and an increase of 
0.5 point from a baseline EDSS score >5.5. The 
MRI protocol included the brain and cervical spinal 
cord with T1-weighted images, T1-weighted images 
with gadolinium contrast, T2-weighted images, 
fluid-attenuated inversion recovery (FLAIR) images, 
and diffusion-weighted imaging (DWI), performed 
according to the Swedish guidelines.26 No evidence 
of disease activity (NEDA-3) was defined as a lack 
of relapse, no new or enlarging lesions detected on 
MRIs, and no significant progression during the 
study period.27

Intravenous peripheral blood samples were obtained 
prior to NZ infusion. Samples were collected in three 

pairs of 5-mL serum-gel and plasma containers. 
Serum samples were maintained at room temperature 
for 30 minutes to allow complete clotting. The sam-
ples were spun at 2000g for 10 minutes, then aliquoted 
in 1-mL portions and frozen directly at −80°C.

All NfL analyses were performed by board-certified 
laboratory technicians who were blinded to clinical 
data. To minimize variation, baseline and follow-up 
samples were analyzed side-by-side on each assay 
plate using one batch of reagents. In addition, sam-
ples from healthy controls were randomly analyzed 
in each assay plate. All analyses were performed at 
room temperature. Serum NfL concentration was 
measured using the Simoa® NF-light™ Advantage 
Kit on an HD-X Analyzer (Quanterix, Billerica, MA, 
USA). Briefly, the samples, including internal quality 
control samples, and calibrator stock were removed 
from storage and allowed to thaw at room tempera-
ture. The RGP reagent was shaken for 30  minutes at 
800  r/min and heated to 30°C. The calibrators, sam-
ples, and QCs were vortexed for 30  seconds at 2000  r/
min. The internal calibrators, samples, and QCs were 
additionally centrifuged for 10  minutes at 4000g. 
Calibrators, samples, and QCs were added to the 
plate and covered with sealing tape. Reagents, sam-
ples, and calibrators were run in the HD-1 Analyzer 
using a 4× dilution. The intra-assay and inter-assay 
coefficients of variation were 10%.

Standard protocol approvals, registrations, and 
patient consents
This study was conducted in accordance with the 
Declaration of Helsinki and the International Good 
Clinical Practice guideline. The study was approved 
by the Regional Committee for Medical Research 
Ethics, Gothenburg (EPN-460-13) and the Swedish 

Figure 2.  Study design for testing the effects of extended natalizumab dosing in patients with relapsing-remitting MS. 
Patients in the EID4–6 treatment group (green) switched from standard (4-week) to extended (6-week) dosing intervals; 
patients in the EID5/6 group (yellow) remained on extended dosing intervals (i.e. 5- or 6-week intervals). Blood samples 
were drawn (color-coded arrows) to analyze serum neurofilament light chain concentrations. Patients underwent 
conventional monitoring with MRI and EDSS at the indicated times.
EDSS: Expanded Disability Status Scale.
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Ethical Review Agency (DNR 2020-04900). Written 
informed consent was obtained from all participating 
patients.

Statistical analyses
Statistical analyses were performed with SAS 9.4 
(SAS Institute Inc., Cary, NC, USA), SPSS version 23 
(IBMCorp., Armonk, NY, USA), and GraphPad Prism 
9.3 (GraphPad Software, San Diego, CA, USA). For 
continuous variables, comparisons between groups 
were performed with Fisher’s Non-Parametric 
Permutation Test.28 For matched pairs, comparisons 
within groups were performed with Fischer’s Non-
Parametric Permutation test. Analysis of covariance 
(ANCOVA) was performed to adjust for age. The 
Wilcoxon signed-rank test was performed to evaluate 
differences between sNfL and plasma neurofilament 
light chain (pNfL) and changes in EDSS from base-
line to 12 months. Pearson’s correlation coefficients 
were used to evaluate correlations between sNfL 
and age or body mass index (BMI). Pearson’s cor-
relation analysis and the Shrout-Fleiss reliability 
random test29 were performed to compare sNfL and 
pNfL. The Mersenne Twister was used for random 
number generation.

Results
The study included 73 patients with RRMS; 48 had 
been treated with SID and 25 had been treated with 

EID. Three patients in the EID4–6 cohort were 
excluded due to concomitant conditions with neuro-
logical injuries (Figure 1). The demographic and clin-
ical characteristics of the study cohorts are presented 
in Table 1.

One patient in the EID5/6 cohort experienced a 
relapse and a new non-enhancing lesion was detected 
on MRI. However, none of the other patients exhib-
ited clinical or MRI signs of disease activity. In the 
EID4–6 cohort, no significant change was observed 
between the mean EDSS values at baseline and at 
48 weeks (p = 0.68). Although three patients con-
verted from RRMS to secondary progressive MS 
during follow-up, only one showed a significant 
increase in the EDSS. Of the other two patients, one 
showed an increase of 0.5 points in the EDSS, and 
the other showed no change in the EDSS, but experi-
enced a progressive reduction in walking distance. 
Accordingly, overall, NEDA-3 was achieved in 66/70 
patients (94%).

sNfL concentrations compared between SID and 
EID treatment groups
In the EID4–6 cohort, the mean sNfL concentration at 
baseline (week zero) was 10.5 ng/L (standard devia-
tion (SD) = 6.1) (i.e. before switching from the 4-week 
to the 6-week dosing interval). We compared changes 
in mean sNfL concentrations between all samples, but 
also between baseline and the early period (weeks 

Table 1.  Baseline demographic and clinical characteristics of patients with RRMS.

Characteristics EID4–6 EID5/6

Patients, N 45 25

Sex, female/male; N (%) 40/5 (89%/11%) 17/7 (68%/22%)

Age, years 43 (25–73) 45 (23–61)

BMI, kg/m2 24.6 (16–48.3) 27 (20.6–56.2)

Median EDSS score 2 (2.0; 0–4.5) 2 (2.1; 0–6.5)

Disease duration, years 13.4 (3–42) 11 (2–27)

NZ treatment, years 5 (1–11) 5.8 (1–12)

Interval from previous MS relapse to baseline, years 7.4 (1–17) 6.4 (2–16)

DMTs before NZ 1.8 (0–4) 1.5 (0–2)

Patients treated with 4-week SID, N 45 0

Patients treated with 5-week EID, N 0 11

Patients treated with 6-week EID, N 0 14
JC virus antibody positivity, N 0 18

RRMS: relapsing-remitting multiple sclerosis; EID: extended-interval dosing; EID4–6: patients switched from treatment at 4-week 
intervals to treatment at 6-week intervals; EID5/6: patients treated at 5- or 6-week intervals; BMI: body mass index; EDSS: 
Expanded Disability Status Scale; NZ: natalizumab; MS: multiple sclerosis; DMT: disease-modifying treatment; SID: standard-
interval dosing; JC virus: John Cunningham virus.
Values are the mean (range), unless indicated otherwise.
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6–18), and between baseline and the entire study 
period (weeks 6–48). Serum NfL concentrations 
remained stable throughout the 48-week study period 
with no significant change in the mean sNfL at any 
time-point (Figure 3).

In the EID5/6 cohort, the mean sNfL concentration at 
baseline was 10.8 ng/L (SD = 5.3) and for all samples 
10.3 ng/L (SD = 4.2), which was of similar level as the 
mean sNfL in the EID4–6 cohort (10.5 ng/L; SD = 6.1) 
before extending the NZ dosing interval (baseline). 
There was no statistically significant difference in the 
baseline mean sNfL between EID4–6 and EID5/6 
(−0.28 ng/L, 95% confidence interval (CI) = −2.97–
2.70). Hence, we found no significant increase of 
sNfL in NZ-treated patients with EID compared with 
SID. Furthermore, the sNfL concentrations did not 
change significantly in the patient who experienced a 
relapse and a non-enhancing new lesion or in patients 
who converted to secondary progressive MS.

Inter- and intra-individual variation of sNfL in 
NZ-treated RRMS
In the EID4-6 cohort, we investigated the inter- and 
intra-individual variation of sNfL in order to evaluate 

sNfL as a biomarker for individual patients. The mean 
sNfL (all samples) was 10.8 ng/L (SD 5.9), and the 
median sNfL 8.9 ng/L (range = 4.5–39.4). We found 
that sNfL concentrations varied significantly with age 
(R = 0.48, p < 0.001), but not with BMI (Spearman’s 
correlation value; −0.18; p = 0.15), EDSS (p = 0.243) 
or gender (p = 0.979). After adjusting for age, the mean 
sNfL (all samples) was 11 ng/L (95% CI = 9.6–12.3).

The sNfL variability in EID4–6 was low, as illus-
trated in Figure 4. The mean individual SD (age 
adjusted) was 1.55 ng/L (SD = 1.12), and the mean 
age adjusted individual range was 4.9 ng/L (95% 
CI = 3.92–5.88).

We set the mean + 1 SD (16.7 ng/L) and the mean + 2 
SD (22.6 ng/L) as cut offs for abnormality. We found 
one or more samples above this limit in six patients 
(47 samples, 10.5%) and three patients (17 samples, 
3.8%), respectively. Furthermore, in three patients, all 
samples were above 1 SD, and in one patient, all sam-
ples were above 2 SD. None of these patients had 
clinical or MRI signs of disease activity or disease 
progression, but all were within the oldest age quartile 
(49–73 years) of the EID4–6 group. All patients 
with sNfL concentrations under or equal to 16.7 ng/L 

Figure 3.  Serum NfL levels in ng/L in group EID4–6 (blue) and EID5/6 (white) where line in box is median and marker 
shows the mean. The boxes indicate the interquartile range and the vertically extending lines are minimum and maximum 
except for individual samples indicated as circles.
N denotes the number of individuals in each group at each sampling.
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(i.e. 1 SD above the mean) were 48 years or younger. 
In contrast, 6/13 (46%) older patients had one or more 
samples with sNfL concentrations above 16.7 ng/L 
(Supplementary Figure S1).

One patient had remarkably high sNfL levels, with a 
declining trend, but no signs of clinical disease activ-
ity on MRIs or evidence of progression in the medical 
records.

Serum-plasma NfL
Both sNfL and pNfL were collected from a randomly 
selected subgroup of the EID4–6 cohort (N = 19). 
The levels of sNfL and pNfL were highly correlated 
(R = 0.94; p < 0.001; intra-class correlation coeffi-
cient = 0.88). Figure 5 shows a pairwise comparison 
of sNfL and pNfL concentrations in individual sam-
ples. On average, the mean sNfL (10.4 ng/L, SD = 3.6) 
was 14% higher than the mean pNfL (9.13 ng/L, 
SD = 3.11; p < 0.001).

Discussion
The results from this study were consistent with those 
from previous studies, which showed that extending 
NZ dosing from 4 to 6 weeks did not affect clinical 
or MRI measures.6–10 In addition, we showed that 
the sNfL concentrations were unchanged during 
12 months of EID with NZ in patients with RRMS. 
The NfL concentrations in patients who received 
SID were similar to those observed in patients who 
had received EID prior to baseline. These findings 
supported the notion that axonal damage, determined 
with sNfL, did not increase when patients were 
switched to EID with NZ.

The SID of 4 weeks was based on pharmacokinetic 
and pharmacodynamic properties of NZ. With SID, 
NZ concentrations are maintained at levels that ensure 
at least 70%–80% continuous saturation of α4β1 inte-
grin receptors.30

However, several studies have shown that much lower 
NZ receptor occupancy was sufficient to block the 

Figure 4.  Variations in individual sNfL concentrations over time in patients with relapsing-remitting MS treated with 
extended-interval natalizumab dosing (EID). All patients were in the EID4–6 group.
Dotted horizontal lines represent 1 (light blue) and 2 (dark blue) standard deviations (SD) above the mean.
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extravasation of autoreactive immune cells,31,32 the 
culprit of the CNS attack in RRMS. Previous studies 
have shown that interruptions longer than 12 weeks 
in NZ treatment led to increased risk of disease 
activity.31–35 In contrast, the efficacy provided with 5- 
to 8-week dosing intervals appeared to be similar to 
that achieved with SID, when evaluating relapse rate, 
EDSS, and lesions detected with MRI.6–11,36

However, inflammatory activity and degeneration may 
escape detection with conventional monitoring.12–14 
We have previously shown that NfL and CXCL13 in 
CSF may be increased in patients without clinical or 
on MRI signs of disease activity or progression.14 
Moreover, patients with clinically stable RRMS may 
experience disability deterioration and/or slowly 
expanding lesions.13

Even though smoldering MS activity may escape 
detection by conventional monitoring of RRMS,12 

paramagnetic rim MRI lesions (PRLs) have been 
associated with chronic or smoldering lesions.13 
Recently, increased sNfL levels were found in RRMS 
and progressive MS without recent disease activity 
but with two or more PRLs.37 Thus, although smold-
ering MS is considered a slow process, it may give 
rise to elevations in sNfL levels. In the same study, 
PRLs were associated with disease severity. In con-
trast, this study population included only patients 
with RRMS at baseline and with a few exceptions 
they did not progress at follow-up. Besides, the obser-
vational period was limited to 12 months which prob-
ably was too short to detect increases of sNfL due to 
smoldering MS. However, we cannot rule out that 
EID with NZ can impact such disease activity.

We monitored sNfL levels to detect new disease activ-
ity in patients treated with NZ that switched from SID 
to EID. Previous studies have used sNfL to evaluate 
potential disease recurrences in patients who switched 

Figure 5.  Paired serum and plasma neurofilament light chain (NfL) levels measured in a randomly selected subgroup 
of patients with relapsing-remitting MS who switched from standard-interval to extended-interval natalizumab dosing 
(EID). All patients (N = 19) were in the EID4–6 treatment group. Data are from 184 samples. The Shrout-Fleiss reliability 
random test showed an intra-class correlation coefficient of 0.88; Pearson’s correlation coefficient is R = 0.94 (p = 0.001).
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from SID to EID. In one previous study, 34 patients 
with RRMS switched from SID to EID (from 5- to 
7-week intervals), and sNfL was essentially unchanged 
from baseline, after 12 months of NZ treatment.8 In 
another study, sNfL remained stable for up to 8 weeks 
after discontinuing NZ, due to JC virus antibody posi-
tivity, but increased sNfL levels were detected at fol-
low-up.38 In a group of 60 stable MS patients on SID 
NZ treatment, no change in sNfL was seen at 6 months 
after switch to ⩾35 days dosing interval.39 However, 
our study was the first to monitor sNfL at a relatively 
high frequency (every 6 weeks) for an extended period 
of time (48 weeks).

Repeated serum sampling provided the means to 
investigate treatment effects at both the individual and 
group levels over time. Due to the temporal change of 
NfL after a relapse or CNS injury, the interval between 
testing sNfL should not exceed 3–6 months.20,40 When 
we determined sNfL concentrations every 6 weeks, we 
found that most NZ-treated patients had only minor 
fluctuations of sNfL. We also found that sNfL concen-
trations were slightly, but significantly higher than 
pNfL concentrations, consistent with findings from a 
previous study.41 With a few exceptions, included 
patients had essentially no disease activity or disability 
progression and 94% achieved NEDA-3. Although 
this selected cohort had apparently very low disease 
activity prior baseline and during the 48-week study 
period, approximately 11% and 4% of samples had 
sNfL concentrations greater than 1 SD and 2 SD, 
respectively, above the mean sNfL. However, most of 
those samples were obtained from a few patients who 
had relatively high sNfL levels during the entire study 
period. In these patients, the elevated sNfL levels were 
not associated with disease activity or progression. 
Among the six patients with sNfL values above 1 SD, 
two had diabetes, which is known to influence sNfL 
levels,42 and all six patients were within the oldest 
quartile of the EID4–6 group. Similarly, in a previ-
ous study, the sNfL variance was higher among 
individuals of older age, in a population of patients 
with RRMS who had been followed with repeated 
serum sampling.43 The sNfL inter-individual varia-
bility seemed larger than the intra-individual varia-
bility, suggesting that the best utility of sNfL 
measurements is for individual longitudinal follow-up 
of younger adult age. Nevertheless, in our cohorts, 
some patients displayed unexplained variations in 
sNfL levels, which suggested the possibility that sub-
tle disease activity could have occurred, but was not 
detected with conventional monitoring.12

This study had some limitations. One limitation was 
the relatively small number of patients included, 

preventing us from establishing a valid age- and 
BMI-adjusted reference sNfL concentration in stable 
RRMS. Although some population-based surveys of 
healthy subjects have provided age- and BMI-adjusted 
sNfL concentrations,41,43 there is an unmet need for 
data on sNfL variability in clinically meaningful sub-
groups of patients with MS. Perhaps the most impor-
tant such cohort would be patients with RRMS that 
receive disease-modifying treatment, particularly 
those with stable disease monitored with conventional 
clinical and MRI measures. Our results from repeated 
sNfL determinations, in most cases, confirmed the 
stability of clinical and MRI measurements, but indi-
vidual deviations could occur. A second limitation 
was that, in contrast to previous studies,19,20,44 we 
identified new disease activity in only one patient. 
Thus, we could not investigate the utility of sNfL test-
ing for detecting disease activity in our patient cohort. 
Another limitation was the lack of healthy control 
subjects to serve as a reference for comparing sNfL 
levels to those found in patients with stable disease 
under NZ treatment. However, the sNfL levels of this 
study population were similar to those observed in 
healthy control subjects in a previous study of ours, 
using similar Simoa assay,17 but slightly higher than 
those reported in other studies.41,43

In conclusion, based on repeated determinations of 
sNfL measurements over 48 weeks, we did not find 
any signs of increased axonal damage in patients who 
received NZ and switched from SID to EID. Our data 
supported the notion that sNfL monitoring was most 
reliable for monitoring younger adult patients with 
RRMS, while increased sNfL concentrations may 
still occur in stable RRMS where confounding factors 
such as comorbidities are more common.
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