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SUMMARY
Much of our understanding of navigation comes from the study of individual species, oftenwith specific tasks
tailored to those species. Here, we provide a novel experimental and analytic framework integrating across
humans, rats, and simulated reinforcement learning (RL) agents to interrogate the dynamics of behavior dur-
ing spatial navigation. We developed a novel open-field navigation task (‘‘Tartarus maze’’) requiring dynamic
adaptation (shortcuts and detours) to frequently changing obstructions on the path to a hidden goal. Humans
and rats were remarkably similar in their trajectories. Both species showed the greatest similarity to RL
agents utilizing a ‘‘successor representation,’’ which creates a predictive map. Humans also displayed tra-
jectory features similar to model-based RL agents, which implemented an optimal tree-search planning pro-
cedure. Our results help refine models seeking to explain mammalian navigation in dynamic environments
and highlight the utility of modeling the behavior of different species to uncover the shared mechanisms
that support behavior.
INTRODUCTION

Adapting to change is fundamental for survival. Adapting to

changes in the structure of the environment has been studied

in a huge diversity of psychological experiments in humans1

but also more ethologically in a remarkable range of different

species.2 One challenge that unites all motile animals on our

planet is spatial navigation. In particular, prime examples are

finding a newpath when a familiar route is blocked and exploiting

a novel shortcut. Efficient detours and shortcuts are considered

the hallmarks of a cognitive map—an internal representation

of the environment that enables novel inferences to guide

behavior.3–6

Both rodents and humans can show an impressive capacity

to identify shortcuts and take optimal detours.5,7–17 However,

not all studies report successful adaptive behavior.18 Rats

often require multiple exposures to a set of paths before

they are able to shift toward an optimal shortcut,9 and may

fail to select an optimal shortcut from a set of novel paths.19

Humans, too, can be poor at judging the directions between

locations in walled mazes, hindering the capacity to identify

shortcuts.20,21
Current Biology 32, 1–14, Sept
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Much of the research into navigation implicitly assumes that

rodents and humans navigate in a fundamentally similar

way,4,22 and this has been used to support the integration of in-

sights across both species.1,5,23–26 In mammals, the hippocam-

pus is thought to form a cognitive map,25 evidenced by spatially

tuned cells (such as ‘‘place cells’’) in the hippocampal formation

of rodents and humans.27–29 However, despite the wide array of

human and rodent research, few experiments have sought to

compare rodents and humans on a directly homologous task.

Understanding the similarities and differences between these

two species on the same task would be useful for allowing the

better integration of findings from different methods, such as

combining data from neuroimaging in humans with neural re-

cordings and disruption methods in rodents.30–32 Moreover,

such integration could potentially benefit the translation of as-

sessments in rodents to assessments for clinical trials in hu-

mans, for example, where tests of spatial navigation may be

important for the early detection of Alzheimer’s disease.33–35

When considering how humans and rodents might differ dur-

ing navigation, differences in sensory perception are important.

Although humans have binocular vision, they may differ in olfac-

tion36 and lack the tactility of whiskers. Meanwhile, rodents have
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a larger visual field of view, lower visual acuity, and can move

their eyes independently.37 In terms of neuroanatomy, the pre-

frontal cortical regions associated with spatial planning differ

greatly between rodents and primates,38,39 while the hippocam-

pus and surrounding structures associated with spatial repre-

sentations are relatively similar.40 Given these similarities and

differences, it is possible that rodents and humans navigate in

a similar fashion or show pronounced differences in certain situ-

ations. Understanding such patterns in behavior is important, not

only for understanding navigation but also how the behavior of

different species is inter-related and may have emerged through

evolutionary pressure.

One approach for identifying potential cross-species mecha-

nisms underlying goal-directed behavior is through comparison

with reinforcement learning (RL) models.41–46 RL is an area of

machine learning that addresses the theoretical problem of

how a learner and decision maker, called an agent, should act

in an environment in order to achieve a certain goal, for which

it earns rewards. Specifically, the agent is not told which actions

it should take but insteadmust learn the actions thatmaximize its

expected future rewards, known as value. Such RL models can

be used to examine how rapid learning and control can be devel-

oped in artificial systems, outcompeting human perfor-

mance,41,47–49 or used for comparison with patterns seen in an-

imals or human behavior.46,50–53

Solutions to RL problems have traditionally been divided into

two categories: model-based (MB) methods that afford the

agent a model of the environment, used to decide actions via a

planning procedure,54 and model-free (MF) methods that learn

from experience which actions lead to the most rewarding

future.55,56 Provided that the model implemented in a MB algo-

rithm contains an accurate depiction of the environment, MB

methods are typically able to respond quickly and optimally to

environmental perturbations. However, the planning proced-

ure—for example, a tree search48—required to successfully

exploit the model brings with it computational complexity and

overhead, particularly in large state spaces with deep transition

structures, such as navigating a city.

In contrast to MB methods, MF methods are generally more

simple and computationally inexpensive through a reliance on

temporal-difference learning rules;55 however, this comes with

a reduced flexibility to environmental changes. As such, MF

mechanisms are often associated with the formation of

habits.57,58 To achieve their simplicity, MF methods typically

learn by directly estimating the value of taking a particular action

in a particular state. This makes it easy to then compare the

values of different actions available to the agent, without the

need to know how the states are interconnected.

While MF and MB methods appear to function at opposite

ends of an algorithmic spectrum, intermediary methods do exist.

One such algorithm that has recently increased in application is

the successor representation59 (SR). The SR somewhat com-

bines parts of MF and MB learning60,61 by using experience to

learn a predictive map between the states in an environment.

This predictive map can be readily combined with a separately

learned reward associated with each state in order to explicitly

compute value. Thus, the SR negates the need for a complicated

planning procedure in order to use the predictive map to guide

action selection.
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The SR has been able to provide a good account of behavior

and hippocampal representations in humans62–66 and ro-

dents.51,67,68 The tasks that are often used to draw these com-

parisons with RL agents typically focus on small state spaces

with 2-step transition structures—as such, the extent of planning

often requires one or two actions. Furthermore, due to the con-

ceptual nature of the underlying task space, translational

research usually requires differing sensory implementations for

humans69 and rodents.70

Here, we created a configurable open-field maze with a layout

of barriers that reconfigured after a set of trials (Tartarus maze).

We tested the navigation of rats in a physical instantiation of the

maze, humans via an immersive head-mounted display virtual

environment and RL agents in a simulation. Using a range of an-

alytic methods, we probed how rat and human spatial behaviors

compare to each other and to MF, MB, and SR reinforcement

learners. We found a strong similarity in the occupancy patterns

of rats and humans. Both rats and humans showed the greatest

likelihood and trajectory similarity to SR-based RL agents, with

humans also displaying trajectory features similar to MB-RL

agents implementing an optimal planning procedure in early tri-

als on a new maze configuration.

RESULTS

Navigation was tested in a large square environment with a fixed

hidden goal location and a prominent directional black wall cue

in one direction (Figure 1; Videos S1—rats and S2—humans).

The maze was divided into a 10 3 10 grid of moveable sections

that could either be removed, leaving impassable gaps to force

detour taking, or added, creating shortcuts. The speed and

size of the humans in the virtual environment were set to match

those of a rat traveling at 20 cm/s. During training, all 10 3 10

maze modules were present, and the rats and humans were

trained to reach the goal within a 45-s time limit, (Figure 1A), while

RL agents were initialized with the optimal value function. During

the testing phase of the experiment, maze modules were

removed to make specific maze configurations that blocked

the direct route to the goal (Figure 1B). Humans (n = 18), rats

(n = 9), and agents were tested on the same sequence of 25

maze configurations each with 10 trials in which a set of defined

starting locations were selected to optimally probe navigation

(Figure 1C). See STAR Methods for details.

Behavioral performance is relatively similar between
rats and humans
We first asked how well humans (Figure 2A) and rodents (Fig-

ure 2B) were able to complete the task during the test sessions.

As expected, repeated exposure over trials to a newmaze config-

uration corresponded to a general increase in the ability of both

the humans and rats to navigate to the goal within the 45-s time

limit (Figure 2C; first 5 trials versus last 5 trials: humans t(17) =

6.3, p < 0.001; rats t(8) = 4.0, p = 0.004). Humans were also gener-

ally better than the rats at finding the goal across the 25maze con-

figurations (Figure 2D; humans versus rats: t(25) = 3.0, p = 0.006).

There were 3 maze configurations in which rats outperformed hu-

mans (2, 10, and 19).We saw a strong correlation between the oc-

cupancy of the rats and human participants (occupancy correla-

tion, humans versus rats: r = 0.67; in particular, toward the later



Figure 1. The Tartarus maze

(A) Schematic of the maze composed of 10 3 10

units for humans, rats, and RL agents. For rats, each

unit (20 3 20 cm) had a port to potentially deliver a

chocolate milk reward after the rat waited 5 s at the

goal (see Video S1). For humans, each unit could be

associated with a hidden gold star linked to financial

reward, which appeared after waiting 5 s at the goal

location. Gaps between units were not visible to

humans to avoid counting distance to the hidden

goal (see Video S2). Example trial shows one of the

possible pseudo-random starting locations on the

edge of the maze.

(B) After training, flexible navigation was tested by

removing units from the maze to create maze con-

figurations with gaps between traversable surfaces.

An example from maze configuration 21 is shown

with one of the 10 starting locations tested. Each

configuration was tested for 10 trials, with each trial

having a different starting location.

(C) Sequence of 25 maze configurations used.

(D) Illustration of the trial sequence, highlighting the

transition in layout every 10 trials across the 250

trials tested in the 25 maze configurations.

See also Figures S1 and S2.
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trials when both were better at navigating to the goal (Figure 2E;

occupancy correlations for first 5 trials versus last 5 trials: t(8) =

3.2, p = 0.013). The routes used were also more efficient (Fig-

ure 2E; deviation from optimal path, first 5 trials versus last 5 trials:

human t(17) =�5.0, p < 0.001; rats t(8) =�4.0, p = 0.004) with hu-

mans generally choosing more optimal routes than the rats (devi-

ation from optimal path humans versus rats: t(25) = �8.2,

p < 0.001). Inspection of trajectories showed that in some cases,
Curr
near optimal paths could be observed in

both species, even on the first trial of a

maze configuration (see Videos S1 and S2).

Observations of the behavior of the
RL agents
Examining the trajectories of the RL

agents, we observed a number of consis-

tent patterns.

As expected, MF agents were relatively

unable to adapt to changes in the maze

layout; whenever there was a barrier ob-

structing the learned route to the goal,

the MF agent would remain in a similar re-

gion of space and often fail when the

new path required traveling away from

the goal or around obstacles (Video S3).

This behavior logically follows from the

fact that it has no representation of the

transition structure and relies on previ-

ously cached optimal actions to select

which transitions to make. The MB-RL

agents generally chose more optimal

routes, especially as the trials progressed,

although they can initially be seen to

occasionally make poor choices in paths
(Video S4). This is consistent with them requiring an accurate

model of the environment in order to conduct a useful tree

search over routes to the goal. However, when a change in

the transition structure occurred and that model was no longer

accurate, they do not have cached values to rely upon and must

extensively explore to acquire a model of the new environment

they can exploit. SR RL agents initially appear to make similar

errors to MF agents but adapt more efficiently to the change
ent Biology 32, 1–14, September 12, 2022 3



Figure 2. Humans and rats were able to successfully navigate to the hidden goal and generally did so using similar routes

(A and B) Examples of the human (A) and rat (B) trajectories overlaying occupancy maps for a given trial. The white-black color gradient shows the beginning-end

of each trajectory.

(C) Proportion of trials where the goal was reached averaged over all configurations as a function of trial number, for rats (red) or humans (green). Gray areas

indicate standard error from the mean.

(D) Proportion of goals reached by humans and rats during the time limit. The rats outperformed humans on a total of three maze configurations (2, 10, and 19),

which was most pronounced for configuration 2. Configuration 1 was the configuration both species performed most inaccurately on.

(E) Correlation between the human and rat occupancy maps. Note the increase across exposure to a maze configuration, implying that they take increasingly

similar routes.

(F) Average deviation from optimal path (measured in extramazemodule visitations) for rats and humans as a function of trial number; humans navigate to the goal

with more efficient routes.

See also Figure S3.
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in the transition structure, for example, avoiding dead ends after

a few trials (Video S5). This is consistent with them updating a

stored transition structure using past experience. Thus, unlike

the MB agents, SR agents have a learned set of biases they

will fall back to, which can aid choice-making after changes in

the environment.

Likelihood analysis of actions reveals that rats and
humans are both most similar to an SR agent
We next investigated how the human and rat trajectories

compared with the RL agents’ representation of optimal ac-

tions. To do this, we computed the likelihood of the human

and rat behavior matching each model by restricting the RL

agents to follow the biological trajectories. We then used the in-

ternal value estimates of the agents to compute a softmax

probability distribution over the available actions at each time-

step. Using these probabilities to compute the likelihood of the

biological data for each agent, we calculated the maximum

likelihood parameter estimates for each model’s learning rate
4 Current Biology 32, 1–14, September 12, 2022
and discount factor across individual humans (Table S1) and

rats (Table S2).

Comparing the MF, MB, and SR algorithms, the value repre-

sentation of the SR agent consistently provided the most likely

fit to the biological behavior (Figure 3A; likelihood-ratio [LR]

test: SR versus MF for human data ln(LR) = 1,911.1; SR versus

MB for human data ln(LR) = 538.2; SR versus MF for rat data

ln(LR) = 842.0; SR versus MB for rat data ln(LR) = 225.2), with

the MF agent consistently providing the worst fit (MF versus

MB for human data ln(LR) = �1,372.9; MF versus MB for rat

data ln(LR) = �616.9). Consequently, the SR agent was the

maximum likelihood model for 70% of the human trials and

60% of the rat trials (Figure 3B). Normalizing these likelihoods

by trial length and using a uniform random walk as a baseline,

we observed this trend was robust throughout the time spent

on a maze configuration (Figure 3C) and across individuals (SR

versus MF for human data: t(17) = 29.2 p < 0.001; SR versus

MB for human data: t(17) = 11.9, p < 0.001; SR versus MF

for rat data: t(8) = 13.0, p < 0.001; SR versus MB for rat



Figure 3. Maximum likelihood analyses of the

human and rat trajectories

Likelihood analysis reveals that the behavior of hu-

mans (left) and rats (right) is better predicted by a

successor representation (SR) agent than model-

based (MB) or model-free (MF) agents.

(A) The value estimates generated by the SR agent

provide a more likely explanation of the biological

behavior than either the MF or MB agents.

(B) The SR agent was themaximum likelihoodmodel

to explain the biological behavior for the majority of

trials.

(C) This trend is true across all individuals in both

species (humans, n = 18; rats, n = 9) and robust

throughout exposure to a maze configuration.

(D) Likelihood estimates vary across the maze con-

figurations used, with a strong correlation between

themodel likelihoods for the human and rat behavior

(r = 0.57, p < 0.001).

See also Tables S1 and S2.
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data: t(8) = 9.6, p < 0.001). We also observed that the agent likeli-

hoods for humans and rats varied across maze configurations

(Figure 3D), with a strong correlation between the fits to the bio-

logical data (r = 0.57, p < 0.001).

Simulating agents using parameters derived from the
human and rat data reveal closest match to SR agent
To investigate whether these differences in agent likelihoods

transfer into measurable differences in the resulting behavior,

we simulated agent trajectories according to each rat and human

participant, using their individual maximum likelihood parame-

ters (Tables S1 and S2). Importantly, these agents were trained

on the trajectories taken by that individual on all maze configura-

tions prior to the one being simulated. The agents then carried

over all model and value representations learned across the 10

trials on the simulated maze configuration. To generate the

behavior, the agents followed an ε-greedy policy that linearly de-

cayed from ε = 0.1 to ε = 0.01 across the 10 trials on a maze

configuration. This means for the first trial on a newmaze config-

uration, the agents exploit (i.e., choose the action with maximum

expected value) 90% of the time and explore (i.e., choose a

randomaction) on the remaining 10%. Then for each subsequent

trial, the agents increase their proportion of time spent exploiting

by 1%. To accurately depict the distribution of trajectories
Curr
generated by an agent under such a policy,

we simulated each RL algorithm 100 times

per rat and human participant, with the

maximum number of state transitions

each agent could make set to match the

maximum possible for a rat traveling along

the grid axes at 20 cm/s (i.e., max 45 tran-

sitions per trial, 1 transition per second). In

the subsequent analyses, individual rats

and human participants are compared

with the RL agent simulations trained on

their individual behavior, using the

maximum likelihood parameters fit to their

individual behavior (Tables S1 and S2).
The MB algorithm generally outperformed the biological

behavior (Figures 4A and 4B), particularly on the first few trials

of a new maze configuration (paired t test, proportion goal

reached on first 5 trials: MB versus humans, t(17) = 2.74, p =

0.014; MB versus rats, t(8) = 3.20, p = 0.013; last 5 trials: MB

versus humans, t(17) = 0.45, p = 0.656; MB versus rats, t(8) =

2.56, p = 0.034). The MB algorithm also consistently outper-

formed the other RL agents (Figures 4A and 4B; paired t test,

proportion goal reached, human simulations: MB versus SR,

t(17) = 22.8, p < 0.001; MB versus MF, t(17) = 167, p < 0.001;

rat simulations: MB versus SR t(8) = 29.0, p < 0.001, MB versus

MF t(8) = 119, p < 0.001), with the MF agent performing worst

(human parameters: MF versus SR, t(17) = �83.8, p < 0.001;

rat parameters: MF versus SR, t(8) = �47.0, p < 0.001). As with

the humans and rats, the MB and SR agents progressively

improved throughout the trials on a given maze configuration

(Figures 4A and 4B; first 5 versus last 5 trials, human simulations:

MB, t(17) = �40.6, p < 0.001; SR, t(17) = �23.6, p < 0.001; rat

simulations: MB t(8) = �18.6, p < 0.001; SR: t(8) = �18.2,

p < 0.001). Meanwhile, the MF agents became progressively

worse at reaching the goal (first 5 versus last 5 trials: human pa-

rameters, t(17) = 35.8, p < 0.001; rat parameters, t(8) = 16.5,

p < 0.001), indicative of the increasingly complex trajectories

required from successive starting positions on a maze
ent Biology 32, 1–14, September 12, 2022 5



Figure 4. Human and rat performance

compared with maximum likelihood rein-

forcement learning agents

(A and B) Goal reaching for agents (n = 100 per

participant/animal) using the maximum likelihood

parameters fit to individual human (A) and rat

(B) trajectories. Gray areas indicate standard error

from the mean.

(C–E) (C and D) Goal reaching varied across maze

configurations. Using this to rank maze configura-

tions by difficulty reveals a significantly more posi-

tive correlation between the human and SR agent’s

difficulty rankings (E) than theMB orMF (paired t test

following Fisher transformation: SR versus MF,

t(17) = 3.27, p = 0.004; SR versus MB, t(17) = 4.57,

p < 0.001; MB versus MF, t(17) = 0.35, p = 0.728).

(F) The rat difficulty rankings (F) correlated signifi-

cantly lower with the MF agents than either of the

other agents (paired t test following Fisher trans-

formation: MF versus MB, t(8) = �4.33, p = 0.002;

MF versus SR, t(8) = �2.87, p = 0.021; SR versus

MB, t(8) = 1.00, p = 0.345). Error bars indicate

standard error from the mean.
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configuration. Goal-reaching performance for the RL algorithms

varied across maze configurations (Figures 4C and 4D), with

configurations that had a contradictory optimal policy to the

one preceding it seeming particularly difficult (e.g., configura-

tions 4, 8, 13, and 21; see Figure 1C for specific layouts).

Conversely, maze configurations that possess a high degree of

coherence in optimal policy with the previous configuration

(e.g., 2, 7, and 25) were consistent with higher levels of agent

goal reaching due to the improved accuracy of the initial value

representations. Ranking maze configuration difficulty by order

of goal-reaching performance revealed a significantly more pos-

itive correlation between the human and SR agent difficulty rank-

ings than either the MB or MF agents (Figure 4E; paired t test

following Fisher transformation: SR versus MF, t(17) = 3.27, p =

0.004; SR versus MB, t(17) = 4.57, p < 0.001). Similarly, the rat

difficulty rankings were significantly more correlated with those

of the SR agent than the MF (Figure 4F; paired t test following

Fisher transformation: SR versus MF, t(8) = 2.87, p = 0.021),

with no significant difference to the MB agent (SR versus MB,

t(8) = 1.00, p = 0.345).
6 Current Biology 32, 1–14, September 12, 2022
In order to establish whether the routes

taken by the rats, humans, and RL agents

within a maze configuration tended to

follow consistent patterns of behavior, we

next quantified each trajectory using diffu-

sivity measures that were inspired by

statistical mechanics and the modeling of

particles moving in boxes. Specifically,

for each trajectory we calculated the linear

diffusivity and the sine and cosine of the

angular diffusivity (Figure 5A). The linear

and angular diffusivities, respectively,

describe the overall directness and direc-

tion of the route, which vary from trial to

trial (Figures 5B and 5C). Taken together

across the entire experiment, we see that
when the trajectories are quantified this way, unsupervised clus-

tering reveals clear patterns of behavior for each of the three RL

agents (Figure 5D). Given these distinct clusters, we then used

the Mahalanobis distance to measure the level of dissimilarity

between the biological and agent trajectories per maze config-

uration. The Mahalanobis distance was used as it accounts for

covariance between the diffusivity measures when calculating

the dissimilarity. Using these diffusivities to quantify the general

shape of the routes taken within a configuration, we found that

the trajectories of the SR agents were consistently more similar

to the corresponding rat and human behavior than the other

agents (Figures 5E and 5F; rat simulations: SR versus MF,

t(8) = �11.1, p < 0.001; SR versus MB, t(8) = �12.7,

p < 0.001; human simulations: SR versus MF, t(17) = �55.7,

p < 0.001; SR versus MB, t(17) = �4.21, p < 0.001). Further,

the MF agent was generally the least similar to the biological

behavior across the maze configurations (rat simulations: MB

versus MF, t(8) = �2.76, p = 0.025; human simulations:

MB versus MF, t(17) = �28.6, p < 0.001; SR versus MB,

t(17) = �4.21, p < 0.001).



Figure 5. Diffusivity analysis reveals rat and

human trajectories are most similar to an SR

agent

(A–C) (A) Each trajectory was quantified using the

average linear diffusivity (B) and the sine (C) and

cosine of the average angular diffusivity. Gray areas

indicate standard error from the mean.

(D) Using these metrics to quantify the trajectories

on each maze configuration, agent behavior can be

seen to form clusters (shown here via t-SNE), where

each point represents the average of an individual

human, rat, or agent over the whole experiment.

Note that for different embeddings, a similar pattern

emerges.

(E and F) Calculating the Mahalanobis distance

between clusters reveals that the human (E) and

rat (F) behavior is more similar to an SR agent

than the MB or MF agents (humans: SR versus

MF, t(17) = �55.7, p < 0.001; SR versus MB,

t(17) = �4.21, p < 0.001; rats: SR versus MF,

t(8) = �11.1, p < 0.001; SR versus MB, t(8) = �12.7,

p < 0.001).
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Finally, to test whether these differences in diffusivity mea-

sures across maze configurations directly translated to a phys-

ical closeness between individual trajectories, we calculated

the minimum path distance between each human/rat trajectory

and the simulated trajectories of the agents trained on each indi-

vidual’s behavior. Calculating this at every state along a human/

rat trajectory and averaging across the length of the trajectory

gives a measure of similarity between the biological and agent

routes taken. We see that the SR agent trajectories are generally

closer to both the human (Figure 6A; SR versus MB: t(17) = 8.32,

p < 0.001 SR versus MF: t(17) = 28.8, p < 0.001) and rat paths

(Figure 6B; SR versus MB: t(8) = 6.44, p < 0.001; SR versus

MF: t(17) = 26.4, p < 0.001). Interestingly, humans displayed ev-

idence of MB planning on the early trials of a new maze config-

uration (Figure 6C; first 5 trials MB versus SR: t(17) = 3.30, p =

0.004; first 5 trials MB versus MF: t(17) = 17.0, p < 0.001), with

the latter half of trials—when the routes to the goal were longer
Curr
and more complex—being significantly

more SR-like in both humans (Figure 6C;

last 5 trials SR versus MB: t(17) = 8.95,

p < 0.001; last 5 trials SR versus MF:

t(17) = 33.6, p < 0.001, see also Figure S4)

and rats (Figure 6D; last 5 trials SR versus

MB: t(8) = 13.4, p < 0.001; last 5 trials SR

versus MF: t(8) = 24.8, p < 0.001, see also

Figure S5). Viewing how this measure of

similarity changes across maze configura-

tions again reveals noticeable variation

(Figures 6E and 6F), with a strong correla-

tion in the level of agent similarity between

the rats and humans (Pearson correlation:

r = 0.93, p < 0.001).

In summary, we used three approaches

to compare RL agents to rats and humans:

a likelihood analysis of rat and human ac-

tions under different agents; the similarity

in performance between rats, humans,

and RL agents trained on the biological
behavior; and the similarity of the resulting trajectories generated

by these agents to the individual rats and humans on which they

were fit and trained. Our results show that both species match

more closely the SR RL agents’ than MF or MB agents, with

some features of behavior during early exposure to a new

maze configuration being consistent with MB planning.

DISCUSSION

To understand the underlying processes that support flexible

navigation in rats and humans, we compared their navigation

performance with three classic instantiations of RL agents in

a maze environment using a dynamic layout of barriers. Using

a combination of likelihood, performance, and trajectory simi-

larity analyses, we find that both rats and humans rapidly

adapted to the dynamic environments, producing similar nav-

igation choices and trajectory patterns that most resembled
ent Biology 32, 1–14, September 12, 2022 7



Figure 6. Trajectory similarity analysis iden-

tifies SR agent trajectories as closest to hu-

man and rat behavior

Trajectory similarity to the MF, MB, and SR agents

was measured using the average minimum path

distance along each human (left column) and rat

(right column) trajectory.

(A) SR agent trajectories were in general closest to

both the human (SR versus MB: t(17) = 8.32,

p < 0.001 SR versus MF: t(17) = 28.8, p < 0.001) and

(B) rat behavior (SR versusMB: t(8) = 6.44, p < 0.001;

SR versus MF: t(17) = 26.4, p < 0.001), although

(C) humans displayed evidence of MB planning in

early trials on a new maze configuration (first 5 trials

on a configuration, MB versus SR: t(17) = 3.30, p =

0.004; MB versus MF: t(17) = 17.0, p < 0.001). Later

trials on a maze configuration requiring longer and

more complex routes to the goal were again closest

to the SR agent behavior for both the human (last 5

trials on a configuration, SR versus MB: t(17) = 8.95,

p < 0.001; SR versus MF: t(17) = 33.6, p < 0.001) and

(D) rat data (last 5 trials on a configuration SR versus

MB: t(8) = 13.4, p < 0.001; SR versus MF: t(8) = 24.8,

p < 0.001). The level of similarity to agent trajectories

varied across maze configurations (E and F) with a

strong correlation between the humans and rats

(Pearson correlation between both matrices: r =

0.93, p < 0.001).

See also Figures S4 and S5.
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SR RL agents. This was most evident for rats, although hu-

mans were also found to show some trajectory patterns similar

to MB-RL agents in early trials. Our findings provide novel

convergent cross-species insights into spatial navigation

behavior and mechanistic understanding of the different

choices made when adapting to a changing environment. In

doing so, we identified a set of metrics that could allow the

prediction of future behavioral and neural dynamics across a

wide range of methods in humans and animals. We discuss:

(1) how these results inform our understanding of mammalian

navigation, (2) insights into RL models, (3) similarities and dif-

ferences between rodent and human behavior, and (4) direc-

tions for future research.

A predictive map for navigation?
Naively, one might view rats as ‘‘creatures of habit,’’ while hu-

mans could be considered deep thinkers, mulling over future

possibilities. These two stereotypes map, to some degree,

onto MF RL (habit-like) agents and MB-RL (flexible planning)

agents. Rather than finding such a dichotomy between rats

and humans, we found that the behavior of both species is

best captured by an RL agent that creates a predictive map of

the environment to guide navigation: the SR. The SR has been

proposed as an efficient alternative to the relatively inflexible

MF RL and the computationally expensive MB-RL. SR stores a

matrix of the possible transitions within the environment and in-

tegrates this with information about reward.59 Recently, it has

been proposed that the hippocampus may implement a system
8 Current Biology 32, 1–14, September 12, 2022
similar to a SR to create a predictivemap to

guide navigation.67,68,71,72 Here, we find

behavioral evidence to support the pro-
posal that both rats and humans use such a predictive map to

guide flexible navigation behavior. This match of the rodent

behavior to SR agents is consistent with evidence that rats can

carefully evaluate different options for navigation.73

A range of previous experiments comparing human behavior

to RL agents has generally focused on a competition of MF

versusMB agents to capture behaviors in small conceptual state

spaces with 2-step transitions. These have found evidence for

MB planning in humans.69,74,75 Using a much larger state space

with the potential for recursive transitions (i.e., loops leading

back to the same state), we extend this approach into a more

complex and naturalistic framework. Our findings add to recent

evidence that the choices of humans are best explained by a

combination of SR and MB behaviors.64–66 Because the SR en-

codes the environment’s transition structure, it is itself a transi-

tion model that can be leveraged for intuitive planning76 or

more explicit planning procedures, such as a tree search, which

may partially explain trajectories observed during hippocampal

replay.24,45,77–80 Given that the MB learner will generally improve

the accuracy of its learned model as it has more experience of a

maze layout, it might be surprising that we observed a greater

match to SR agents during the second half of trials on a new

maze configuration. However, the MB planning mechanism

of simulating possible future paths is considerably more

resource-intensive than drawing upon a cached knowledge of

past behaviors gleaned from experience. Thus, for a metaboli-

cally constrained learning system, it would be more efficient

to fall back on simpler processing mechanisms when they
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reach a certain threshold in terms of performance (e.g., maxi-

mizing reward and/or minimizing uncertainty in an expected

reward), which is supported by evidence in both rodents and

humans.51,81

A few studies have explored human navigation in virtual reality

(VR) environments and compared navigational choices with RL

agents, reporting that the behavior matches a mix of MB and

MF choices.46,50 For example, when paths are short but decision

times are longer, MB-RL agents were found to better match hu-

man behavior.50 However, these past studies did not compare

performance with a SR, nor were the trajectories examined in

relation to metrics such as diffusivity and physical closeness to

understand the match to different RL agents. Here, we show

that navigation in humans ismost similar to SR and that using tra-

jectory information is useful in providing convergent evidence to

understand this.

In our experiment, the MF RL agents showed poor adaptation

to the changes in maze layout. Rather than improving over trials,

performance declined. This could be accounted for by our task

structure; the minimum trajectory length increased as trials pro-

gressed, requiring longer and more complex routes to the goal.

Our maze configurations were designed to be simple but to

include dead-end zones and/or regions where the barriers

extended around the goal zone, requiring extended trajectories

away from the goal to then reach it. It is possible that with

different layouts MF learners would succeed more efficiently.

Understanding how the structure of the task and state space

leads to the emergence of different policies is an important ques-

tion for future research.

A key observation in our data is that it is not sufficient to

conclude on the basis of overall performance which simulated

agents will best fit the biological agent’s data. Although the

MB-RL agent performed best and was closest overall to the hu-

man performance, the SR RL model produced the greatest

match in terms of the proportion of trials as the maximum likeli-

hoodmodel. This is because the patterns of choicesmade by the

MB-RL fail to capture aspects of choice and trajectory patterns

in the rats and humans to the same degree as the SR agents.

This highlights the utility of an environment in which a wide diver-

sity of trajectories can be achieved by the rats and humans to

allow models to be discriminated.

Similarities and differences in the flexible behavior of
rats and humans
Past research has suggested that rats do not always optimally

adapt to selecting appropriate alternative routes when navi-

gating9 and can take time to adjust to such changes to select

the optimal route.14,82 Similarly, humans can struggle to take

optimal shortcuts when presented with options.8,20,21 Here,

rats and humans had to reach the correct goal from a set of

100 possible locations within a 45-s time limit. Because the

maze transition structure was reconfigured every 10 trials,

achieving this was non-trivial. Despite this, both species were

able to reach the goal on the first trial of a new layout on many

maze configurations. This parallels recent evidence from mice

learning new paths remarkably fast in a large labyrinth.83 In

several cases, we saw examples of routes near the optimal

path on the first attempt for both species (e.g., see Videos S1

and S2). Moreover, the occupancy correlation between rats
and humans was relatively high—even from the first trial—and

improved as performance increased across trials in a configura-

tion. These results show that our Tartarus maze, with its visual

access to landmarks, boundary geometry, and canyon-styled

barriers, provides a useful assay for goal-directed navigation

across two species, revealing a remarkable similarity in the pat-

terns of navigation across species.

Despite similarities in behavior, there were noticeable differ-

ences between species. Humans were more successful at

adapting to the changes in maze layout and learning, while rats

spent more time on the perimeter of themaze’s edge. The overall

difference in learning likely relates to the physical differences in

our maze used between rats and humans (real versus VR84)

and the biological differences between species (e.g., differences

in vision, movement, whisking, olfaction, grooming, and pred-

ator/prey status). The currentmodels assume that optimal routes

minimize distance. However, rats will also need to avoid preda-

tors, thus selecting certain routes that are safer may also drive

route choice.14 Rats also need to find suitable and safe places

to groom their fur. These factors may underlie the generally

poorer fit of the models to rats than humans. Additionally, while

fog was used in the human VR to better match the visual acuity

and depth perception between rodents and humans,85 the rats

had visual access to more of the maze during the experi-

ment—with recent evidence in humans suggesting that this

can bias strategies toward an SR.53 Further research would be

needed to disentangle the various contributions that give rise

to the differences we observed.

Benefits of a dynamic open-field environment with
barriers
Prior studies examining navigation in mazes have generally

either used track-based or open-field environments.29,86,87

Although open-field environments place more demands on

self-localization and vector-based navigation,79,88,89 mazes

with tracks enable testing of the effects of blocked paths and

shortcut behaviors.6,9,82,86 By contrast, the Tartarus maze pla-

ces demands on both vector-based navigation and the capacity

to take detours and shortcuts, as occurs with much of the terrain

in the real world. The recent development of the honeycomb

maze for rats90 provides a parallel approach to self-localization

and obstructed paths to goals, where rats sequentially navigate

to a goal over a number of hexagonal platforms that are made

available in pairs until the goal platform is reached. Such an

approach allows for a precise assessment of choice options at

different time points, while placing demands on self-localization

in relation to distal cues. Although the Tartarus maze also de-

mands choices and navigation to distal cues, it allows continual,

often ballistic, trajectories to be taken to the goal, mimicking

naturalistic behaviors that enable integration with more etholog-

ical approaches to navigation.91

A number of rodent studies have examined how maze layout

and changes in layout relate to exploration behavior83,92–96 or

escape behavior.14,97 Here, we found that rats and humans

rapidly adapted to changes in the maze structure by exploring

the new layout. By matching to RL models, it is possible to pro-

vide a more mechanistic account of how goal-directed behavior

is organized during the navigation of a dynamic environment. In

the case of Rosenberg et al.,83 mice had to learn the paths in a
Current Biology 32, 1–14, September 12, 2022 9
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maze with a large number of options. Akin to our task, learning

was rapid. This differs from many non-spatial learning tasks

where learning is typically slow (see Rosenberg et al.83). Other

recent rodent studies exploring navigation behavior have shown

the capacity to model behavior in goal learning and homing vec-

tors for safety.14,89,96,98 Such studies highlight the value in

modeling to understand the mechanisms guiding behavior.

Here, we demonstrate the added benefit of modeling behavior

with simulated agents, examining the trajectory properties

(e.g., diffusivity) and comparing across two different species.

Across many studies distal cues are kept constant allowing for

rapid learning of the new layout. Manipulating these distal cues

would be an interesting direction for future research.

Prior human virtual navigation studies exploring flexible navi-

gation behavior have tended to involve complicated VR environ-

ments that would likely be too demanding for rodents to

learn.10,12,13,21,46,53,99,100 Here, we sought to recreate an envi-

ronment that would challenge human participants generating

sufficient variation in performance and to allow comparison to

rodents within the same maze structure. Being able to integrate

behavioral data from humans, rodents, andRL agents, opens the

possibilities for incorporating data from a wide array of neurosci-

ence methods in humans and rodents. Recent studies have

shown the utility of this approach.30–32 A study by Zhu et al.53

highlights the benefit of examining eye-movement dynamics

during the navigation of virtual environments, using a similar

head-mounted display to our human VR, but where the whole

transition structure was visible to look at. Their results show pat-

terns of eye-movements that sweep across key points in mazes,

maximally important for planning, showing forward sweeps to

the goal aswell as backward sweeps from the goal. Furthermore,

they show evidence that patterns in eye-movements that scan

relevant available transitions relate to SR agent performance.

Future work with eye-tracking integrated into our human task

would be useful to study the selection of sub-goals and eye-

movements after changing the maze layout; could eye-move-

ments predict future choices of route and the match to different

RL agents in subsequent behavior? Eye-tracking in rodents is a

bigger challenge but may also hold some promise.101 Finally, it

may also be useful to explore the search behavior of RL agents,

humans, and rats in relation to models of utility and biased

search.102 Such explorations would be interesting to examine

in mazes ranging in complexity, visibility (fog-levels), and fre-

quency of re-configuration. Based on our results, we would pre-

dict that human behavior would match MB agents more in

rapidly changing environments and environments where they

can see more of a complex layout that would benefit from delib-

erating over the options.

How might the RL agents be improved?
The learning efficiency of RL agents could be improved using off-

line replay of randomly sampled past experiences.45,61,65,103

These replays are typically implemented between agent time-

steps, and the manner in which they are sampled can further

accelerate learning by prioritizing themost useful learning experi-

ences to replay.77 Prioritized replay also has strong parallels with

the phenomenon of hippocampal replay of place-cell activity dur-

ing sleep or quiescence.79,104,105 However, in this study we did

not implement agent replay in order to keep the value
10 Current Biology 32, 1–14, September 12, 2022
representations, and consequently the likelihoods of agents,

deterministic. An alternative way to improve the goal reaching of

agents could be through improving their exploration policy. The

agents simulated here relied on an ε-greedy policy through which

exploration is driven purely by chance. However, methods that

include curiosity106 or uncertainty in the value function107,108

could be used to guide more efficient exploration of a new maze

configuration and consequently lead to faster learning. Finally,

navigation using an options-framework might allow for more effi-

cient navigation;109 rather than planning step by step, efficient

navigation in our maze configurations can be achieved by select-

ing a clockwise versus counter-clockwise path to the goal. Being

able to exploit a hierarchical segmentation of the environment

might allow RL agents to better approximate human and rat

behavior (see Balaguer et al.110). Furthermore, the points where

agents switch between different options may be able to predict

where rats andhumanswould pause in themaze.73More broadly,

new approaches to RL111 and deep learning methods may pro-

vide new ways to examine navigation41,112 as well as integrating

our approach with biologically inspired network models that

seek to explain neural dynamics during navigation.113,114

Exploring the neural substrates of a predictive map
Recent neuroimaging in humans has shown that activity in hip-

pocampal and connected regions tracks the modeled parame-

ters from a SR.63,64,66,68,78 Convergent evidence in rodents sug-

gests that the place-cell activity in the dorsal cornu Ammonis 1

(CA1) of rodents may operate as a SR.67,68,71,115,116 Our protocol

would allow for evidence from both rodent and human data to be

integrated within a single framework to consider how patterns in

the data may interrelate across species and in relation to the pa-

rameters from RL-modeled agents. Evidence from other recent

approaches shows the utility of such an approach.30–32 Our

recent analysis of CA1 place-cell activity found little evidence

for changes in the place field maps when the state space

changed due to blocked doorways in a 4-room maze.17 How-

ever, it appears the changes in layout are evident during hippo-

campal replay events, where paths activated follow the new

layout, perhaps consistent with MB-RL search patterns.80 One

consideration for future research will be to explore changes in

neural activity linked to particular strategies that might occur

over trials or even within a route. For example, one might predict

a shift to a more striatally mediated strategy linked to MF RL, if

the number of trials for a configuration was increased.51,57 Shifts

between the engagement of different structures to guide control

may also occur alongside shifts within structures.51,81 For

example, the hippocampusmight be involved in simulating paths

via replay to guide behavior in highly dynamic environments but

shift to a more cached expression of the stored hippocampal

map once the possible paths have been repeatedly experienced.

Recent work modeling multi-scale SR agents117 has shown

patterns similar to the goal-distance-tuned activity of CA1 cells

in navigating bats.118 Might such patterns emerge in our task?

An important step in better understanding the neural systems

for navigation would be to examine the impact of temporally tar-

geted inactivation of the hippocampal regions, aswell as the pre-

frontal cortex, which is thought to support route planning.38 Such

an approach would provide more causal evidence for the role of

brain structures in supporting our task. More broadly, the task
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we have developed could be adapted for study with a range

of other species that have been examined in isolation: ants,

bees, Drosophila, bats, birds, and other primates. Integrating

across invertebrate and vertebrate species may further our

understanding of the common mechanisms for goal-directed

behavior and adaptations that occurred through evolution.

Conclusions
In summary, we found that rats and humans both display

behavior most similar to a SR RL agent, with humans also

showing some behavior matching MB planning. Future work

exploring single-unit recording or disruption to neural activity

may be useful in revealing how distance to the goal may be

coded, as past studies have failed to dissociate path and

Euclidean distance. Moreover, it will be useful to examine how

neural activity in humans and rodents relates to the parameters

from RL agents, with behavior adjusted to match the humans

and rats. More broadly, the approach provided here could be

adapted to compare behavior across a range of species and

different RL models to help understand the broad spectrum of

navigation behaviors shownby the diverse species on our planet.
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Data and code availability
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resources table.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Nine adult male Lister Hooded rats were handled daily (at start of training: 10-20 weeks old, 350-400 g) and housed communally in

groups of three. All rats were subjected to a reverse light-dark cycle (11:11 light:dark, with 1 hour x2 simulated dawn/dusk) and were

on food-restriction sufficient to maintain 90% of free-feeding weight, with ad libitum access to water. The free-feeding weight was

continuously adjusted according to a calculated growth curve for Lister Hooded Rats.119 Six rats were naive, while three rats had

previously been trained for 2-3 weeks in a shortcut navigation task for a different maze setup. The procedures were conducted

according to UCL ethical guidelines and licensed by the UK Home Office subject to the restrictions and provisions contained in

the Animals Scientific Procedures Act of 1986.

For the human version of the task, 18 healthy participants (9 female; aged = 24.6 ± 5.9, mean ± sd) were recruited from the UCL

Psychology Subject Pool and trained to navigate to an unmarked goal in a virtual arena of approximately the same relative proportion

as for the rats. All participants gave written consent to participate in the study in accordance with the UCL Research Ethics

Committee.

METHOD DETAILS

General methods
Navigation was tested in a large square environment with a fixed hidden goal location and a prominent directional black wall cue in

one direction (Figure 1; Videos S1 and S2). The maze was divided in a 10x10 grid of moveable sections that could either be removed,

leaving impassable gaps to force detour taking, or added, creating shortcuts. During training, all maze modules were present. Rats,

humans and RL agents were trained to reach the goal within a 45s time limit (Figure 1A). During the testing phase of the experiment,

maze modules were removed to block the direct route to the goal (Figure 1B). Humans (n=18), rats (n=9) and agents were tested on

the same sequence of 25 maze configurations each with 10 trials in which a set of defined starting locations were selected to opti-

mally probe navigation (Figure 1C). These maze configurations were generated from a pilot testing with 9 rats and the configuration

sequence chosen maximised the differences in the layouts between trials. The starting positions on each maze configuration grad-

ually increased in the required tortuosity (path distance / Euclidean distance) of the shortest path to the goal to test complex trajec-

tories whilst keeping the rodents motivated.

Upon reaching the goal module, rats and humans had to wait 5s to receive their reward. Human participants were rewarded with

a financial bonus and rats received chocolate milk delivered in a well (Figure S1). In order to better match the visual acuity and

depth perception between rodents and humans,85 a thick virtual fog lined the floor of the maze enabling them to only see adjacent

maze modules and the distal black wall cue (Figure S2; Video S2). Modules were made visually indistinct to avoid humans count-

ing them when traversing the space. Human participants were informed that reward was hidden in the environment and that their

task was to maximise their financial return as quickly and efficiently as possible. The human and rat trajectories were discretised

into the underlying 10x10 modular grid (Figures 2A and 2B) in order to facilitate comparison between each other and the RL

agents.
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In all versions of the experiment, the environment (raised off the floor) consisted of a 10x10 grid of maze modules. These modules

could be removed from the grid in order to form impassable barriers in the environment. One of the modules was rewarded and thus

was the location of the goal in themaze. Navigation was facilitated by a single distal cue consisting of a black curtain that spanned the

majority of one side of the maze. The goal was kept in the same position with respect to this distal cue throughout all versions of the

task. All participants, rats and learning agents were initially trained to navigate to the goal module on the open maze, without any

maze modules removed. Once trained, they were all put through the same sequence of 25 maze configurations, with the same

sequence of starting locations on each configuration.

Rodent methods
All procedures were conducted during the animals’ dark period. The experiment was carried out in a custom-made modular 2x2m

square maze composed of 100 identical square platform tiles elevated 50cm above the ground (Figure S1). The maze was con-

structed fromMediumDensity Fibrewood, with the platforms painted in grey. Each platform contained a plastic well (32mmdiameter)

at its centre, which could be attached to a polymeric tubing system installed beneath the maze. This tubing allowed the experimenter

to reward the rat at the goal module filling the well with chocolate milk (0.1 ml). Importantly, all modules in the rodent maze were iden-

tical in appearance and construction with chocolate milk rubbed into the well of non-goal modules to lower reliance on olfactory navi-

gational cues. The maze was surrounded on all sides by a white curtain, with a black sheet overlaid on one side to provide a single

extra-maze cue. To ensure that no other cue could be used by the animal (uncontrolled room cues, olfactory traces on the maze) the

black sheet was rotated 90� clockwise between sessions. The goal module was always in the same position with respect to this cue.

Moreover, the experimenter stayed next to the maze inside the curtained area throughout all sessions, his positions relative to the

goal were randomised.

Familiarisation

During the first day, the rats received a small amount (0.1ml per rat) of chocolate milk in the home cage to decrease neophobia in the

maze. For the subsequent two days, each rat underwent two 15 minute maze familiarisation sessions, in which the rat was placed at

the centre of the maze and would forage for pieces of chocolate cereal (Weetos) scattered throughout the maze. More cereal was

concentrated in the centre to encourage the animal to be comfortable in the middle of the maze.

Training

Training consisted of two stages, rats were given 2 training sessions per day. In each training trial the rat had 45s to find the goal

module.

For stage 1 of training the goal well was filled with 0.1ml of chocolate milk and the rats were initially placed on themodules adjacent

to the goal, facing the goal. If the rat made two consecutive direct runs to the goal (without exploration of other parts of the maze), the

next trial began onemodule further away from the goal. Conversely, if the rat failed two consecutive training trials, the next trial began

one module closer to the goal until the rat was back at the goal-adjacent modules. On day 1, this procedure was continued until

15 min had elapsed.On the following days, the number of trials was fixed to 16. This procedure was followed every day until the

rat was able to make direct runs from the far edges of the maze.

Stage 2was similar to stage1 but a delay in the release of chocolatemilk was introduced. This delay started at 1s andwas gradually

increased until the rat could wait at the goal location for 5s before the chocolate milk was released. Furthermore, the rat’s starting

position and orientation were randomised. The number of daily trials could be increased up to 25. This procedure was followed until

the rats were able to successfully navigate directly to the goal and on at least 90% of trials. The training phase took on average 24

sessions.

Tartarus Maze testing

Rats were run on the 25maze configurations. For each maze configuration, rats were given 10 trials where they were placed by hand

at the starting positions indicated in Figure 1. Trials were 45s long and rats were required to navigate to the goal within this time and

wait for 5s in order to receive the reward (0.1ml of chocolate milk). If the rat failed to reach the goal, they received no reward and were

placed by hand at the next starting location. The rats would usually complete 3 configurations per day. At the beginning of each day,

rats were given a brief reminder session that consisted of 5 trials from phase 2 of the training phase.

Human methods
Participants were reimbursed for their time as well as a bonus of up to £25 for good performance in the testing phase. Participants

experienced the virtual environment via a HTC Vive virtual reality headset whilst sat on a swivel chair. They were able to adjust move-

ment speed using the HTC Vive controller and movement direction was controlled by the participant’s orientation on the chair. Upon

successful navigation to the goal module, participants were informed of their financial reward along with the presence of a revolving

gold star (Figure S2) at the goal location. In accordance with the rodent experiment, navigation was aided by the presence of a black

distal cue that took up the majority of one of the walls. Goal location, maze configurations and starting positions were all defined with

respect to this distal cue and were identical to the rodent experiment. Importantly, a fog lined the floor (Figure S2; Video S2) of the

maze to prevent the participants fromunderstandingwhatmazemodulesweremissing until theywere at adjacent locations. This also

provided a better match to visual information available to the rats - which are known to have less visual acuity and binocular depth

perception.85 Seamless textures were applied to the floor and walls of the virtual environment, and these were rotated every 10 trials

to prevent them from being used as extraneous cues for navigation.
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The experiment took place over four sessions on four consecutive days. The majority of the first session was usually spent training

the participants to navigate to the goal module. To accelerate this learning process, the participants were initially able to see a

revolving gold star in the goal location. As they progressed through the training session the star became increasingly transparent until

invisible, with the star only appearing again upon successful navigation to the goal module. Along with the decreasing visibility of the

goal, the participants’ starting positions were moved progressively further from the goal in a similar manner to the rat training phase.

All training and testing trials were 45s in length. Training was terminated when the participants were able to navigate to the hidden

goal on at least 80%of trials after being randomly placed at the far edges of the environment. Mean time to complete this training was

41 ± 21 minutes. In order to make the participants’ experience similar to that of the rodents, they were not given any explicit infor-

mation about the nature of the task - only that financial reward was hidden in the environment in the form of a gold star and their task

was to maximise their financial return as quickly and efficiently as possible.

The testing took place over the remaining sessions and on average lasted 125 ± 25 minutes, with participants encouraged to take

short breaks every 10-20 trials to reduce virtual reality sickness. At the beginning of each testing session, participants completed a

short reminder task, which consisted of 5 trials from the end of the training phase.

Reinforcement learner simulations
Reinforcement learning seeks to address how an agent should choose actions in order tomaximise its expected accumulated reward

R yielded from future states st, which is known as the value function V:

VðsÞ = E

"XN
t = 0

gtRðstÞjs0 = s

#

The parameter g is a discount factor that determines the timescale of how motivating future rewards are, such that for g < 1 the

agent exponentially discounts future rewards.54

The reinforcement learning agents were implemented in a 10x10 grid world environment, with each state in the grid world corre-

sponding to a maze module in the human/rat versions of the task (see Figures S1 and S2). Thus, unlike the humans and rats, the

agents were not explicitly required to self-localise with respect to distal cues, rather they were given absolute knowledge of their cur-

rent location (state) on the maze in the form of a one-hot vector (a vector with a ‘1’ in the element corresponding to the current state,

with all other elements in the vector being ‘0’). Upon receiving this information pertaining to its current location, the agent was able to

choose actions (i.e. up, down, left, right) which transition it to adjacent states, with the ultimate aim being to choose a sequence of

states leading to the goal. Crucially, the way in which an agent chooses this sequence of states is different for the model-free, model-

based and successor representation algorithms - which are explained in more detail below. At the beginning of the experiment, all

agents were endowed with the optimal policy on the open maze to simulate the training phase undertaken by rats and humans. They

were then run consecutively on the 25 maze configurations, using the maximum likelihood parameters fit to each individual rat or

human participant’s data. For a given individual rat or human, agent behaviour was simulated on each maze configuration by first

training the agent on all of that individual’s trajectories (in the same sequential order) prior to the configuration being simulated.

Agents then carried over all models/value representations learnt during their 10 trials on the maze configuration being simulated.

Hence, the simulated behaviour of agents was never trained using the human/rat trajectories on the configuration being

simulated, only the trajectories on all configurations prior. Each type of agent (model-free, model-based and successor representa-

tion) was simulated N=100 times per rat/human, using an ε-greedy policy with ε linearly decaying from ε = 0.1 to ε = 0.01 across the 10

trials on amaze configuration. Thismeans that on a new configuration the agents initially chose the greedy action 90%of the time and

a random action the remaining 10% of the time (in order to manage the exploration-exploitation tradeoff), with the agents increasing

the proportion of greedy actions they take by 1% on each subsequent trial. Due to the behavioural variance introduced by this policy,

each algorithmwas implemented 100 times for each rat/human to produce the distribution of behaviour used for the comparison with

biology. In the subsequent analyses, each individual rat or human was compared to the simulated agents trained on their behaviour,

using the maximum likelihood parameters fit to their behaviour.

Model-free agent

The model-free method uses the state-action value function Q instead of the state value function V.

Qðs; aÞ = E

"XN
t = 0

gtRðstÞjs0 = s; a0 = a

#

State-action values were learned using the Q-learning algorithm56 combined with an eligibility trace.54 The eligibility trace is a de-

caying trace of recently taken state-action pairs. Specifically, after taking action at in state st and transitioning to state st+1 where it

receives reward rt, the agent will first decay its eligibility trace e - a matrix with the same dimensions as Q:

e)lge

where l = 0:5 is the eligibility trace decay parameter and g is the discount factor of the value function in Tables S1 and S2. Next, the

model-free agent will update its eligibility trace:

eðst; atÞ) eðst; atÞ+ 1
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before finally updating the state-action values according to:

Q)Q+a

�
rt + gmax

a
Qðst + 1; aÞ � Qðst; atÞ

�
e

where a is the learning rate in Tables S1 and S2. Under a greedy policy, themodel-free agent at decision time will choose the action a

in state swith the highest state-action valueQ(s, a). If multiple actionswith the samemaximal value exist, then the agent samples from

these with equal probability. The eligibility trace e is set to zero at the beginning of each trial. Example trajectories can be seen in

Video S3.

Model-based agent

Themodel-based agent is provided with an internal 10x10 binary grid representation of whichmazemodules are present or not in the

environment. Every state s in the agent’s model c corresponds amodule in themaze (see Figures 1A and 1B); as it transitions through

the environment, it updates the internal model at every timestep according to the adjacent states s0.

cðs0Þ)
�
1 if module s0 is present
0 if module s0 is missing

At decision time, the model-based agent uses its model c and to plan the shortest route to the goal from each possible next state.

Shortest routes were calculated using an A* tree search algorithm.120 In the event of multiple equally short routes to the goal, their

respective actions were sampled with equal probability. Example trajectories can be seen in Video S4.

Successor representation agent

The SR somewhat combines parts of model-free and model-based learning60,61 by using experience to learn a predictive map M

between the states in an environment. For a one-step state transition matrix T, the predictive map is equivalent to the discounted

sum of future state transitions:

M = I+gT +g2T2 +. =
XN
t = 0

gtTt

This discounting of transitionsmeansM can be readily combinedwith a separately learned rewardR associatedwith each state s in

order to explicitly compute value.

VðsÞ =
X
s0
Mðs; s0ÞRðs0Þ

The SR agent uses temporal-difference learning and eligibility traces to update the successor matrixM.121 After transitioning from

state st and to state st+1, the agent will first decay its eligibility trace e - a vector with length equal to the number of states in the

environment:

e)lge

where l = 0.5 is the eligibility trace decay parameter and g is the discount factor of the value function in Tables S1 and S2. Next, the

successor representation agent will update its eligibility trace:

eðstÞ)eðstÞ+ 1

before finally updating the successor representation:121

M)M+a½1st + gMðst + 1; :Þ � Mðst; :Þ�5e

where 5 indicates an outer product. This can then be combined with the state-rewards R at decision time to compute the value of

prospective future states.

RðsÞ =

�
1 if s is the goal
0 otherwise

Under a greedy policy, the successor representation agent at decision time will choose the next available state with the highest

value. If multiple available states exist with equatlly high values, then the agent samples from these with equal probability. The eligi-

bility trace e is set to zero at the beginning of each trial. Example trajectories can be seen in Video S5.

QUANTIFICATION AND STATISTICAL ANALYSIS

Optimal paths were calculated using the A* tree search algorithm120 in the 10x10 grid state space, with path lengthmeasured in terms

of state visitations. Occupancy correlations were calculated using the Pearson correlation between the proportion of time spent in

each state of the 10x10 grid state space. One- and two-sample t-tests were implemented usingMATLAB’s ttest and ttest2 functions.

Likelihoods were calculated by inputting individual human/rat state trajectories to the RL agents and calculating the internal value

estimates of the available state transitions conditional on the human/rat’s past trajectories. These value estimates were used in a

softmax function to calculate at each time point, the probability that the agent would take each of the available actions conditioned
e4 Current Biology 32, 1–14.e1–e5, September 12, 2022
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on the human/rat’s past. Maximum likelihood parameters were estimated usingMATLAB’s fmincon function tominimise the negative

log-likelihood.

Mahalanobis distanceswere calculated usingMATLAB’s pdist2 function on the diffusivity metrics for the humans, rats, model-free,

model-based and successor representation agents.

Theminimumpath distance analysis used an individual human/rat trajectory as a reference trajectory. At each time point along that

trajectory, the A* tree search algorithm120 was used to find the shortest path distance on the maze configuration to the agent trajec-

tories trained from that individual human/rat’s behaviour. Averaging along the length of the trajectory then gives a measure of sim-

ilarity between that reference trajectory and the simulated agents.
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Figure S1: Themaze environment used for the rat experiment, related to Figure 1. The
environment consists of 100 removable mazes modules with a black curtain over one of
the surrounding edges to provide a single extra-maze cue. Reward can be dispensed at the
goal module by filling the well with chocolate milk via polymeric tubing beneath the maze.



Figure S2: The virtual environment used for the human experiment, related to Figure
1. The environment had the same proportions as the rat environment and consisted of 100
removable mazes modules with a black curtain over one of the surrounding edges to
provide a single extra-maze cue. A seamless texture was applied to the maze modules and
walls and a fog lined the floor of the maze (see right image) to ensure humans had to rely
on spatial memory to understand the maze structure. Reward was indicated by a gold star
that would appear at the goal module when the participant successfully navigated to it.



Figure S3: The route choices of humans and rats were o�en suboptimal at the start of
a new maze configuration, related to Figure 2. Examples of the human (top) and rat
(bottom) trajectories overlaying occupancy maps for the first 3 trials on maze
configuration 20. The white-black colour gradient shows the beginning-end of each
trajectory. Initially the paths taken by the humans and rats were o�en suboptimal
(le�most column) with performance generally improving rapidly within the first 3 trials of
a new maze configuration. The goal location is 4 squares right and down from the top-le�
corner.





Figure S4: Human and agent occupancy maps for maze configuration 21, related to
Figure 6. The occupancy maps of the humans (le�most column) and agents for each of the
10 trials (rows) on maze configuration 21. The Model-Based agent (second column) quickly
learns an accurate model of the environment and uses it to choose the shortest route to
the goal with respect to that model (goal location is 4 squares right and down from the
top-le� corner). Conversely, the model-free agent (third column) is unable to update its
value representation fast enough to successfully adapt to the new maze configuration, and
particularly struggles on later trials where the starting position requires longer and more
tortuous routes. The successor representation agent (rightmost column) sits on the
spectrum between model-based and model-free methods, initially struggling to find an
efficient route to the goal but providing a good match to the human behaviour on later
trials.





Figure S5: Rat and agent occupancymaps for maze configuration 21, related to Figure
6. The occupancy maps of the rats (le�most column) and agents for each of the 10 trials
(rows) on maze configuration 21. The Model-Based agent (second column) quickly learns
an accurate model of the environment and uses it to choose the shortest route to the goal
with respect to that model (goal location is 4 squares right and down from the top-le�
corner). Conversely, the model-free agent (third column) is unable to update its value
representation fast enough to successfully adapt to the new maze configuration, and
particularly struggles on later trials where the starting position requires longer and more
tortuous routes. The successor representation agent (rightmost column) sits on the
spectrum between model-based and model-free methods, initially struggling to find an
efficient route to the goal but providing a good match to the rat behaviour on later trials.



Agent MF MB SR MF MB SR

Participant 1 0.09 1 1 0.43 0.80 0.76

Participant 2 0.08 1 0.89 0.43 0.80 0.79

Participant 3 0.11 1 1 0.51 0.81 0.82

Participant 4 0.30 1 0.96 0.62 0.82 0.81

Participant 5 0.07 1 0.80 0.41 0.80 0.77

Participant 6 0.11 1 0.81 0.60 0.82 0.85

Participant 7 0.07 1 1 0.40 0.79 0.78

Participant 8 0.15 1 1 0.54 0.80 0.77

Participant 9 0.09 1 0.93 0.50 0.80 0.77

Participant 10 0.19 1 0.82 0.64 0.83 0.84

Participant 11 0.11 1 0.92 0.54 0.81 0.78

Participant 12 0.16 1 0.98 0.55 0.80 0.75

Participant 13 0.12 1 1 0.52 0.80 0.77

Participant 14 0.12 1 0.94 0.51 0.80 0.76

Participant 15 0.14 1 0.78 0.56 0.80 0.75

Participant 16 0.13 1 1 0.59 0.81 0.80

Participant 17 0.13 1 0.77 0.62 0.82 0.85

Participant 18 0.19 1 0.91 0.55 0.80 0.75

Table S1: Human behaviour maximum likelihood parameters, related to Figure 3. The
learning rates and discount factors for the model-free (MF), model-based (MB) andα γ
successor representation (SR) agents, calculated for each individual.



Agent MF MB SR MF MB SR

Rat 1 0.07 1 0.76 0.43 0.79 0.80

Rat 2 0.11 1 0.77 0.48 0.80 0.83

Rat 3 0.12 1 0.87 0.45 0.79 0.71

Rat 4 0.65 1 0.87 0.01 0.78 0.76

Rat 5 0.42 1 0.77 0.01 0.78 0.77

Rat 6 0.09 1 0.90 0.34 0.79 0.79

Rat 7 0.12 1 0.70 0.16 0.80 0.82

Rat 8 0.08 1 0.91 0.28 0.78 0.81

Rat 9 0.07 1 0.87 0.42 0.80 0.81

Table S2: Rat behaviour maximum likelihood parameters, related to Figure 3. The
learning rates and discount factors for the model-free (MF), model-based (MB) andα γ
successor representation (SR) agents, calculated for each individual.
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