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A B S T R A C T   

Introduction: Amyloid-β (Aβ) deposition is common in dementia with Lewy bodies (DLB) and has been associated 
with more rapid disease progression. An effective biomarker that identified the presence of significant brain Aβ in 
people with DLB may be useful to identify and stratify participants for research studies and to inform prognosis in 
clinical practice. Plasma biomarkers are emerging as candidates to fulfil this role. 
Methods: Thirty-two participants with DLB had brain amyloid (18F-florbetapir) PET, of whom 27 also had an MRI 
to enable the calculation of 18F-florbetapir SUVR. Plasma Aβ42/40, phosphorylated tau (p-tau181), glial 
fibrillary acidic protein (GFAP) and neurofilament light (NfL) were measured using single molecule array 
(Simoa). The plasma biomarkers were investigated for correlation with 18F-florbetapir SUVR, discriminant 
ability to identify Aβ-positive cases based on a predefined SUVR threshold of 1.10 and correlation with subse-
quent cognitive decline over one year. 
Results: All four plasma markers significantly correlated with 18F-florbetapir SUVR (|β| = 0.40-0.49; p < .05). 
NfL had the greatest area under the receiver operating characteristic curve to identify Aβ-positive cases (AUROC 
0.84 (95% CI 0.66, 1); β = 0.46, p = .001), whereas Aβ42/40 had the smallest (AUROC 0.73 (95% CI 0.52, 0.95); 
β = − 0.47, p = .01). Accuracy was highest when combining all four biomarkers (AUROC 0.92 (95% CI 0.80, 1)). 
Lower plasma Aβ42/40 was significantly associated with more rapid decline in cognition (β = 0.53, p < .01). 
Conclusions: Plasma biomarkers have the potential to identify Aβ deposition in DLB. Further work in other co-
horts is required to determine and validate optimal cut-offs for these biomarkers.   

1. Introduction 

The characteristic pathological findings in dementia with Lewy 
bodies (DLB) are Lewy bodies and Lewy neurites. Many people with DLB 
also have comorbid Alzheimer’s disease pathology, and the presence of 
AD pathology has been associated with differences in clinical symptoms 
and rates of disease progression [1–3]. As a result, targeting amyloid-β 
(Aβ), phosphorylated-tau (p-tau) or the interactions between these 
proteins and α-synuclein [4,5] are seen as viable targets for 

disease-modifying treatments in DLB. 
The advent of plasma biomarkers for Aβ and p-tau, along with other 

markers of neurodegeneration such as neurofilament light (NfL) pre-
sents an opportunity to investigate the relationships between these 
biomarkers and clinical and imaging measures of disease progression 
[6]. It also raises the possibility that these markers could be used to 
stratify participants for treatment trials targeting specific proteins. In 
order to do this, it must be demonstrated that plasma markers accurately 
reflect the presence or absence of the relevant protein in the brain. There 
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is growing evidence for this in Alzheimer’s disease [7]. 
Data reporting plasma biomarker levels in DLB are also beginning to 

emerge. Plasma NfL and glial fibrillary acidic protein (GFAP) were found 
to be raised in Lewy body dementia (DLB and Parkinson’s disease de-
mentia) compared with controls, whereas plasma Aβ42/40 ratio did not 
differ between Lewy body dementia and controls [8]. Plasma p-tau181 
in DLB was greater than controls and lower than AD [9], with a similar 
pattern observed in MCI-LB [10]. In DLB, plasma p-tau181 was partic-
ularly high in cases with abnormal CSF Aβ42 levels, and was also 
associated with more rapid cognitive decline [9]. 

The aims of the current study were as follows, to:  

1. Investigate the correlation between plasma biomarkers (plasma 
Aβ42/40, p-tau181, GFAP and NfL) and 18F-florbetapir PET in DLB  

2. Examine the discriminant ability of these markers to identify Aβ- 
positive and -negative DLB cases  

3. Determine the relationship between these biomarkers and cognitive 
decline 

2. Methods 

2.1. Participants 

The methods for recruitment, assessment and imaging have been 
outlined previously [1,11] and will be summarised here. 

Participants ≥60 years old were recruited prospectively from June 
2013 to February 2016 from secondary care services in the North East of 
England and Cumbria. All participants had a diagnosis of probable DLB 
confirmed by two clinicians based on contemporaneous criteria [12] and 
had an MMSE ≥12. All participants also fulfilled the most recent revised 
diagnostic criteria for probable DLB [13]. Participants were not included 
if they had a major concurrent psychiatric illness, severe physical illness, 
a history of clinical stroke or significant neurological illness or experi-
mental treatment with Aβ targeting or other disease modifying agents. 

Participants with mental capacity gave their written informed con-
sent to take part in the study. For those with dementia who lacked ca-
pacity, their participation in the study was discussed with a consultee in 
accordance with the Mental Capacity Act (UK). The study received 
ethical approval from the National Research Ethics Service Committee 
North East—Newcastle & North Tyneside 2 (Research Ethics Committee 
Identification Number 13/NE/0064). 

2.2. Clinical assessment, imaging and image analysis 

Clinical assessment took place at baseline and one year and included 
the MMSE. 

PET imaging was carried out using a Siemens Biograph-40 PET-CT 
scanner. A 15-min scan was undertaken, commencing 30–50 min after 
intravenous injection of 370MBq 18F-florbetapir (Amyvid, Avid/Eli 
Lilly, Cork). MRI scans were performed on all patients unless contra-
indicated (n = 5) using a Philips Achieva 3T scanner (Philips Medical 
Systems, Eindhoven) with body coil transmission and 8-channel head-
coil receiver. Acquisitions included 3D sagittal magnetisation-prepared 
rapid gradient echo (MPRAGE) as described previously [11]. 

The amyloid PET image was co-registered with the native space MRI. 
A mean cortical standardized uptake value ratio (SUVR) was derived 
from the unweighted mean of frontal, temporal, parietal, and cingulate 
regions relative to the whole cerebellum [14]. A threshold of 1.10 was 
used to define Aβ positivity [15]. 

2.3. Blood sampling, storage and analysis 

Venous blood samples were collected in EDTA tubes, centrifuged and 
plasma samples were aliquoted and stored at − 80 ◦C. Plasma samples 
were analysed as part of a larger cohort using Single molecule array 
(Simoa) at the UK Dementia Research Institute Biomarker Laboratory as 

reported previously [8]. Analysis was undertaken using a Simoa-HD1 
analyser and the Quanterix Simoa Human Neurology 4-Plex E (Aβ40, 
Aβ42, GFAP and NfL) and p-tau181 assays (Quanterix Corp, Billerica, 
Massachusetts, USA). All samples were analysed at the same time using 
the same batch of reagents. The mean coefficients of variation were as 
follows: Aβ42 3.06%, Aβ40 2.55%, p-tau181 6.29%, GFAP 4.12% and 
NfL 4.08%. 

2.4. Statistical Analysis 

Statistical analysis was carried out using IBM SPSS Statistics software 
(version 25; http://www-03.ibm.com/software/products/en/spss-statis 
tics). Plasma biomarker assays were not normally distributed. The 
following measures achieved normality: Square AB42/40 ratio, log p- 
tau181, log GFAP, log(log NFL). Unadjusted Pearson’s correlations and 
linear regression including age and sex as covariates were undertaken to 
compare plasma biomarker levels with 18F-florbetapir SUVR. Years in 
education was also included as a covariate in the analysis of cognitive 
decline. The ability of plasma biomarkers to discriminate between Aβ- 
positive and -negative participants based on the SUVR threshold of 1.10 
was analysed using the Area Under the Receiver Operating Character-
istic (AUROC). Sensitivity and specificity were determined for each 
biomarker using discriminant analysis where each participant was 
classified based on a function derived from all other participants except 
that individual. 

Following this, all four biomarkers were entered into a discriminant 
analysis. A discriminant function was defined for the whole group. In-
dividual discriminant scores for this function were used to derive an 
AUROC for the combined biomarker. Sensitivity and specificity were 
again determined based on a function derived from all other participants 
excluding the individual to be classified. 

3. Results 

The demographics of the cohort and plasma biomarker levels are 
displayed in Supplementary Table 1. Plasma biomarkers were measured 
in 32 participants with DLB, of whom 27 had 18F-florbetapir SUVR data 
and 26 had longitudinal MMSE data. 

18F-florbetapir SUVR was inversely correlated with plasma Aβ42/40 
and positively correlated with plasma phosphorylated tau181, GFAP 
and NfL (Table 1, Fig. 1). The strength of correlation was very similar 
across the four biomarkers. 

Based on an SUVR cut-off of 1.10, 16 participants were Aβ-positive 
and 11 were Aβ-negative. The potential for plasma biomarkers to 
differentiate between Aβ-positive and -negative participants was inves-
tigated. NfL had the greatest AUROC (0.84; 95% CI 0.66, 1; sensitivity 
75%, specificity 82%; Table 1). Combining the four biomarkers resulted 
in a numerically greater AUROC compared with NfL alone (AUROC 
0.92; 95%CI 0.80, 1; sensitivity 81%, specificity 82%). 

3.1. Correlation between plasma biomarkers 

P-tau181, GFAP and NFL were all positively correlated with each 
other. The strongest correlation was between GFAP and NFL (r = .67, p 
< .001). Aβ42/40 correlated inversely with GFAP, but did not correlate 
significantly with p-tau181 or NfL (Table 2). 

3.2. Correlation of plasma biomarkers with clinical progression 

Plasma Aβ42/40 and the combined biomarker correlated with 
cognitive decline over one year measured by the MMSE with age, sex 
and years in education included as covariates (Table 3). Lower plasma 
Aβ42/40 (which is associated with increased brain Aβ deposition) was 
associated with more rapid decline (β = 0.53, 95% CI 0.19, 0.86, p =
.004). The other individual biomarkers did not correlate with cognitive 
decline. 
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4. Discussion 

4.1. Summary 

We found that plasma Aβ42/40, p-tau181, GFAP and NfL all corre-
lated with brain Aβ deposition measured by 18F-florbetapir PET. The 
magnitude of the correlation was similar for the four biomarkers (|β| =
0.40-0.49). NfL showed the strongest discriminant ability, and Aβ42/40 
the weakest, though the 95% confidence intervals overlapped for all the 
markers. P-tau181, GFAP and NfL all correlated with each other, and 
GFAP also correlated with Aβ42/40. Lower plasma Aβ42/40 was asso-
ciated with more rapid cognitive decline over one year. 

4.2. Correlation between plasma biomarkers and 18F-florbetapir SUVR 

4.2.1. Aβ42/40 
Aβ42/40 correlated with 18F-florbetapir SUVR with similar strength 

to the other plasma markers. Although the sample size here is insuffi-
cient to allow an adequately powered direct statistical comparison be-
tween different plasma biomarkers, the AUROC for the three other 
biomarkers was numerically greater than for the Aβ42/40 ratio. Plasma 
Aβ42/40 ratio has been shown to be reduced in Aβ-positive controls and 
AD, but the difference between the groups was lower than that observed 
for CSF Aβ42/40 and significant overlap was observed between Aβ- 
positive and -negative cases [7,16]. The accuracy of plasma Aβ42/40 to 

Table 1 
Comparison of plasma biomarkers with 18F-florbetapir PET SUVR.   

Correlation Discrimination 

Unadjusted Adjusted 

R p Beta (95% CI) P AUROC (95% CI) P Sens (%) Spec (%) 

Square Aβ42/40 − .58 .002 − .47 (− .79, − .15) .01 .73 (.52, .95) .04 75 64 
log p-tau181 .58 .001 .40 (.04, .77) .03 .82 (.66, .98) .01 69 64 
log GFAP .60 .001 .49 (.17, .81) .004 .81 (.62, 1) .01 81 73 
log(log NfL) .60 .001 .46 (.10, .83) .02 .84 (.66, 1) .004 75 82 
Combined .81 <.001 .76 (.46, 1.05) <.001 .92 (.80, 1) <.001 81 82 

Adjusted: general linear model with age and sex as covariates. N = 27. Aβ – amyloid-β; p-tau – phosphorylated tau; GFAP – glial fibrillary acidic protein; NfL – 
neurofilament light; AUROC – area under the receiver operating characteristic; Sens – sensitivity; Spec – specificity. 

Fig. 1. Correlation between plasma biomarkers and 18F-florbetapir PET. SUVR – standardised uptake value ratio; Aβ – amyloid-β; p-tau – phosphorylated tau; GFAP 
– glial fibrillary acidic protein; NfL – neurofilament light. Solid line – line of best fit. Dashed line – SUVR threshold of 1.10. 

Table 2 
Pearson’s correlation between plasma biomarkers.   

log p-tau181 log GFAP log log NFL 

Square AB42/40 ratio − .26 − .39* − .17 
log p-tau181 – .40* .36* 
log GFAP – – .67*** 

*p < .05; **p < .01; ***p < .001. Aβ – amyloid-β; p-tau – phosphorylated tau; 
GFAP – glial fibrillary acidic protein; NfL – neurofilament light. N = 32. 

Table 3 
Correlation of plasma markers with change in MMSE score over 1 year.   

Unadjusted Adjusted 

Pearson’s r p Beta (95% CI) P 

Square Aβ 42/40 ratio .62 .001 .53 (.19, .86) .004 
log tau 181 − .51 .01 − .35 (− .77, .08) .11 
log GFAP − .27 .18 − .25 (− .70, .20) .26 
log log NFL − .24 .23 − .17 (− .57, .24) .39 
Combined − .65 <.001 − .55 (− .93, − .17) .01 

Adjusted: general linear model with age, sex and years in education as cova-
riates. N = 26. Aβ – amyloid-β; p-tau – phosphorylated tau; GFAP – glial fibrillary 
acidic protein; NfL – neurofilament light. 
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differentiate between Aβ-positive and -negative PET participants in the 
current DLB cohort was similar previous reports using immunoassays 
across the AD continuum (accuracy 62–79%) [7]. Mass-spectroscopy 
based assays may provide better differentiation (accuracy 82–97%) [7]. 

4.2.2. Tau 
p-Tau181 has been found to be raised in neurodegenerative diseases 

including Alzheimer’s disease [17] and, to a lesser extent DLB [9], but 
not in ‘pure’ tauopathies, such as progressive supranuclear palsy and 
nonfluent primary progressive aphasia [17]. As a result, plasma 
p-tau181 is considered a marker of tau phosphorylation in the presence 
of Aβ. It has been shown to correlate with both amyloid and tau PET 
measures in Alzheimer’s disease and Aβ-positive MCI [18] and with 
medial temporal tau deposition on tau PET and CSF Aβ in DLB [19]. It is 
unsurprising then, that p-tau181 showed correlation with 18F-florbeta-
pir SUVR in the current DLB cohort. Plasma p-tau181 has also been 
previously demonstrated to differentiate between Aβ-positive and 
-negative cases in a mixed dementia/MCI/control cohort [20] and a 
Lewy body dementia cohort (based on CSF measures of Aβ) [19] with 
similar accuracy to that reported here. 

4.2.3. GFAP 
Aβ and tau deposition have been found to be associated with 

increased GFAP expression and astrocytosis in post mortem brain tissue 
[21]. Increase plasma GFAP has been demonstrated in AD and Lewy 
body dementia [8,22]. GFAP correlated with amyloid PET in AD [22]. 
Here we demonstrated that GFAP was correlated with PET amyloid in 
DLB. The discriminant ability for plasma GFAP to identify Aβ-positive 
and -negative cases in DLB was similar to that reported in AD [22]. 

4.2.4. NfL 
Neurofilament light is a non-specific marker of neurodegeneration 

and is raised to varying degrees in a range of diseases including HIV- 
related dementia, multiple sclerosis, progressive supranuclear palsy, 
DLB, AD and PD [23]. We have previously demonstrated that NfL is 
raised in Lewy body dementia [8]. Here, we demonstrate that NfL 
correlated with 18F-Flobetapir PET SUVR and discriminated between 
Aβ-positive and -negative cases in DLB. The discriminant ability is 
numerically greater than was reported in a mixed AD/unimpaired 
cohort [22]. 

4.3. Combined biomarkers and correlation between biomarkers 

Despite the remarkable similarity in results when comparing the four 
biomarkers to amyloid PET (Table 1), correlation between the bio-
markers was generally only moderate (Table 2). There was significant 
correlation between p-tau181, GFAP and NfL, but only GFAP correlated 
with Aβ42/40 ratio. Based on this observation we investigated whether 
combining the biomarkers would show increased accuracy to identify 
Aβ-positive and -negative cases. When all four biomarkers were com-
bined, the AUROC increased from 0.84 (for NfL alone) to 0.92. The 
sample size was not sufficient to statistically compare the accuracy of the 
combined biomarker with the individual biomarkers. 

4.4. Correlation between plasma biomarkers and cognitive decline 

Aβ42/40 correlated with cognitive decline over one year measured 
by the MMSE. This is in keeping with other reports of a relationship 
between Aβ (measured using PET or CSF) and clinical progression in 
DLB [1,24]. We previously reported no association between Aβ42/40 
and cognitive decline measured by the Addenbrooke’s Cognitive Ex-
amination in a mixed group of DLB and PDD participants that included 
the DLB cases reported here. The difference in findings may relate to the 
different cognitive examinations used and heterogeneity in the larger 
study related to the inclusion of two diagnostic groups and participants 
from several different clinical studies. 

There was no significant relationship between cognitive decline and 
p-tau181, GFAP or NfL. A small, but statistically significant association 
between p-tau181 and clinical progression was recently reported in a 
large DLB sample, though stronger correlation was found with p-tau231 
[9]. The absence of significant correlation here is most likely due to the 
modest sample size. 

4.5. Implications for research and clinical practice 

An effective biomarker that differentiates Aβ-positive and -negative 
DLB cases could have potential uses for research and the clinic for the 
following purposes.  

1. Identifying participants for trials of Aβ targeting therapeutics 
2. Identifying participants for trials of treatment that target Aβ/α-syn-

uclein interactions  
3. Stratifying DLB participants for any trial based on prognosis  
4. Advising patients on disease prognosis 

A blood-based biomarker has the potential for rapid introduction to 
research and clinical practice. However, more research is needed to 
identify and validate the biomarker or biomarker panel to fulfil this 
need. We have shown that the relationship between Aβ and plasma 
biomarkers appears similar in DLB to AD. Therefore, it may be possible 
to use biomarkers developed in AD cohorts in DLB, after appropriate 
validation. 

4.6. Strengths/weaknesses 

This data is from a well-characterised cohort of DLB cases with state 
of the art measurement of plasma biomarkers using Simoa and amyloid 
imaging with 18F-florbetapir PET. We demonstrated a relationship be-
tween amyloid PET and plasma Aβ42/40, p-tau181, GFAP and NfL that 
is in keeping with the literature in Alzheimer’s disease. This adds to the 
small, but growing literature in DLB. 

Work is ongoing to determine the best plasma biomarkers in 
neurodegenerative disease. Other biomarkers, such as p-tau231 may 
have closer correlation with clinical progression in DLB [9]. 
Mass-spectroscopy assays may be more effective in differentiating be-
tween Aβ-positive and -negative cases than Simoa [7]. 

We did not undertake corrections for multiple comparisons due to 
the risk of missing important positive findings. As such, the findings 
should be regarded as exploratory. However, the fact that the positive 
findings identified here are in keeping with the performance of these 
biomarkers in AD supports the accuracy of the findings. 

The good performance of a combination of biomarkers in discrimi-
nating between Aβ-positive and negative DLB requires replication in 
other cohorts. In general, further work is needed to identify reproducible 
biomarker cut-offs to identify positive and negative cases that could be 
applied across different cohorts and different sites. 

We previously reported a larger cohort of DLB and PDD participants 
with 18F-florbetapir PET and 11C-Pittsburgh compound B that included 
the participants in the present manuscript [8]. The previous study did 
not analyse correlation between the plasma markers and amyloid PET 
SUVR or discriminant ability to identify Aβ-positive and -negative cases. 
The previous study found no difference between Aβ-positive and 
-negative cases in any of the four biomarkers tested. The ability to detect 
a significant difference may have been adversely impacted by hetero-
geneity due to the inclusion of different disease populations (PDD and 
DLB) in the same analysis, the fact that data from two sites were com-
bined, potential differences in sample processing, and the inclusion of 
two different imaging ligands (florbetapir and PiB) and two different 
PET scanners. 
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5. Conclusions 

Aβ42/40, p-tau181, GFAP and NfL all correlate with brain Aβ 
measured by 18F-florbetapir PET and can discriminate between Aβ- 
positive and -negative DLB cases. A combination of biomarkers may 
improve accuracy. Plasma biomarkers have potential uses in research 
and the clinic. Further work is required to determine optimal and 
reproducible cut-offs to determine the presence or absence of significant 
Aβ deposition in DLB. 
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