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Abstract

Age is a common risk factor in many diseases, but the molecular basis for this relationship is 

elusive. In this study we identified 4 disease clusters from 116 diseases in the UK Biobank data, 

defined by their age-of-onset profiles, and found that diseases with the same onset profile are 

genetically more similar, suggesting a common etiology. This similarity was not explained by 

disease categories, co-occurrences or disease cause-effect relationships. Two of the four disease 

clusters had an increased risk of occurrence from age 20 and 40 years respectively. They both 

showed an association with known aging-related genes, yet differed in functional enrichment and 

evolutionary profiles. Moreover, they both had age-related expression and methylation changes. 

We also tested mutation accumulation and antagonistic pleiotropy theories of aging and found 

support for both.
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Introduction

Aging is associated with a time-dependent decrease in the functional integrity of organisms 

and an increase in susceptibility to pathologies1. The worldwide increase in lifespan has not 

been matched by an increase in healthspan, and there is a growing period of loss of function, 

and disease at the end of life2. Aging thus poses a significant global challenge, because it is 

the major risk factor for chronic conditions, including cardiovascular disease, cancer, and 

dementia3. Although these diseases involve different organs and pathologies, they all show a 
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strong dependence on age4 and could, therefore share common etiologies based upon the 

underlying mechanisms of aging. It is therefore important to understand if the aging process 

itself leads to different age-related conditions through common pathways, or if the age-

dependency of different diseases has independent, time-dependent causes.

Despite the negative impact of aging on organismal fitness and functionality, it is widespread 

in the animal world as well as in humans5 and has therefore been described as an 

evolutionary paradox6. Aging can nonetheless evolve as the force of natural selection 

weakens with age due to extrinsic hazard. Mutations that are deleterious only in later life can 

accumulate in the population through mutation pressure, because the force of natural 

selection eliminating them from the population declines with the age of onset of their effects 

(mutation accumulation theory of aging)7. Pleiotropic variants that are beneficial during 

early life but detrimental later in life can also become prevalent in populations through 

natural selection (antagonistic pleiotropy theory of aging)8. Thus, genome-wide germline 

genetic variants that increase the risk of diseases at old age may not be pruned by natural 

selection or may be associated with beneficial phenotypes earlier in life.

The risk of many age-related diseases (ARDs) is influenced by genetic variation. Genome-

wide association studies (GWAS) have identified genetic variants that alter complex traits. 

Pleiotropy, where variants or genes influence multiple traits, is more prevalent than 

previously thought9–12, indicating that different traits share common causal pathways13. 

Pleiotropy within the disease classification system12 and in certain disease classes, such as 

immune-related diseases14,15 and cancer16, has been studied, but the understanding of 

pleiotropy in ARDs more broadly is limited. Some studies have investigated the common 

pathways between manually curated age-related traits17–19. Despite the challenges of 

combining results from different published datasets, these studies provided the first clues 

that at least some ARDs share common pathways, which are also related to a significant but 

limited number of longevity-regulating genes in model organisms. In this study, using 

disease age-of-onset profiles, we extend the previous efforts by providing the first data- 

driven classification of a large number of diseases according to their age-profile, followed by 

a genetic analysis in one of the largest and most comprehensive cohorts available. In this 

way, we provide a comparative genetic analysis between ARDs and non-ARDs and also 

between ARDs with different age profiles.

The UK Biobank (UKBB)20 includes genetic and health-related data for almost half a 

million participants. We extracted age-of-onset profiles for 116 diseases and identified 

unbiased clusters to define the relationship between disease incidence and age. We identified 

variants associated with each disease and compared the genetic associations between 

diseases based on these clusters. We first found that diseases with the same age profile share 

genetic associations, which cannot be explained by disease categories, co-occurrences, or 

mediated pleiotropy, and thus reflects a common etiology (schematic representation 

presented as Supplementary Fig. 1). We further characterized these shared associations 

compared to previously known longevity-associated genes, genes with age-dependent 

expression or methylation changes, and biological functions. Finally, we compared the 

variants associated with diseases that start to occur at different ages and identified different 
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evolutionary characteristics, supporting the mutation accumulation and antagonistic 

pleiotropy theories of aging.

Results

Data

We used self-reported diseases and age-at-diagnosis covering 484,598 participants, and their 

genotypes in the UKBB20. Age-at-diagnosis for self-reported diseases ranges from the age 

of 0 to 70, and is less biased than age-at-diagnosis for International Classification of 

Diseases – 10th revision (ICD10) codes, which includes data for only after 199221. Details of 

the UKBB data, quality control steps, and exploratory analyses are given in the 

Supplementary Information Section 1, Extended Data Fig. 1, and Supplementary Fig. 2-7. 

Self-reported diseases in the UKBB are hierarchically structured and the top nodes; such as 

cardiovascular or endocrine diseases, were considered as disease categories (Extended Data 

Fig. 1a). We only analyzed common diseases (i.e. with at least 2,000 cases) that were not 

sex-limited (n=116 in 472 self-reported diseases). Importantly, we did not include cancer in 

our analyses as the interaction between genetic and environmental contributors is likely 

different from non-cancer illnesses, even though they may have a similar age-of-onset 

profile (for details, see Methods).

Age-of-onset clusters

Age is associated with increased risk of many diseases. In order to characterize the 

association between age and different diseases we first used age-at-diagnosis as a proxy to 

disease onset and derived disease age-of-onset profiles (Supplementary Fig. 8-17). On 

average, cardiovascular and endocrine diseases had a high median age-of-onset, while 

infections had the lowest age-of-onset (Extended Data Fig. 2). We then clustered diseases 

into 4 clusters (the optimum number determined by the gap statistic) using the PAM 

algorithm and disease dissimilarities calculated using CORT distance22 (Fig. 1, 

Supplementary Table 1). Cluster 1 diseases (n=25) showed a rapid increase with age after 

the age of 40; 11 were cardiovascular diseases, but the cluster also included other diseases 

such as diabetes, osteoporosis, and cataract. Cluster 2 (n=51) diseases started to increase in 

the population at an earlier age of 20, but had a slower rate of increase with age; the diseases 

in this cluster were the most diverse, including 17 musculoskeletal, 13 gastrointestinal 

diseases, as well as others such as anemia, deep venous thrombosis, thyroid problems, 

depression. Cluster 3 diseases (n=30) showed a low age dependency with a mostly uniform 

distribution across ages, but with slight increases around the ages of 10 and 60 years. 

Importantly, an increase after the age of 65 would not be captured in our analysis as we lack 

data from older individuals. This category included similar numbers of immunological, 

neurological, musculoskeletal, gastrointestinal and respiratory diseases but all have an 

‘immune’ component even if not classified in this way by the UKBB (e.g., inflammatory 

bowel disease (gastrointestinal), asthma (respiratory), psoriasis (dermatology)). Cluster 4 

(n=10) had a peak at around 0-10 years of age and included respiratory diseases (n=5) and 

infections (n=4). Notably, all infectious diseases were in this cluster.
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Genetic similarities within age-of-onset clusters

Using linear mixed models implemented in BOLT-LMM23, we performed GWAS for case 

versus control on each disease separately and included approximately 10 million common 

variants that pass quality control and have minor allele frequency (MAF) > 0.01 (see 

Methods)24,25. Considering associations with the literature-standard p-value lower than 5 x 

10-8 as significant26,27, we next quantified the associations for each disease, category, and 

age-of-onset cluster (Extended Data Fig. 3). The major histocompatibility complex (MHC) 

region is excluded from all analyses, as in the literature, because of its unusually high effect 

sizes and linkage disequilibrium (LD) patterns (chr6: 28,477,797 - 33,448,354)28,29. Out of 

116 diseases, 36 had no significant association and the total number of polymorphic sites 

with at least one significant association was 93,817. The maximum number of significant 

associations per disease was 35,001 (hypertension) and the median and mean were 13.5 and 

1389.3, respectively. We also checked if diseases from different age-of-onset clusters vary in 

the number of associations. Cluster 4 had hardly any significant associations (the disease 

with the maximum number of associations had only 3 significant variants). Although cluster 

1 had the highest number of significant associations on average, the values across clusters 1, 

2, and 3 were not significantly different (Extended Data Fig. 3b). Moreover, endocrine, 

immunological, cardiovascular diseases had the highest number of associations and 

infections had the lowest (Extended Data Fig. 3c). Only 1% of the significant 

polymorphisms (n=932) were in coding regions, and of these 49% (n=452) were missense 

and only 1% (n=10) were nonsense. We further found that 47% of significant variants 

(n=43,810) were associated with multiple diseases, but only ~9% were associated with 

multiple diseases from different categories (n=8,048) and again ~9% with different age-of-

onset clusters (n=8,801) (Supplementary Fig. 18).

We next sought to characterize the genetic similarities between diseases using a score that 

shows the excess of overlapping associations between diseases, given the number of 

significant associations for each disease (see Methods). Importantly, we calculated genetic 

similarities between 80 diseases that have at least one significant association, excluding the 

pairs that are vertically connected (i.e. ancestors to child) in the disease hierarchy (e.g. 
essential hypertension and hypertension). We found 47 significant overlaps and diseases 

with similar age-of-onset profiles showed a higher genetic similarity (Extended Data Fig. 4), 

even when controlled for disease categories and co-occurrences (F-test p=1.19 x 10-8, Fig. 

2a-b). Moreover, this trend was reproducible when each cluster was analyzed separately 

(Supplementary Fig. 19). While correcting for the disease categories and co-occurrences, 

some true positive signals may be removed from the analysis. However, this correction is 

necessary, as we used the same cohort for multiple diseases and, thus, diseases that co-occur 

use the same set of samples. Nevertheless, we retained a significant signal even after this 

correction, demonstrating that diseases with a similar age-of-onset profile show increased 

genetic similarity compared to those with different profiles, suggesting shared genetic 

associations (Supplementary Fig. 1).

We repeated the analysis using 1,703 previously defined LD blocks30 instead of considering 

all single nucleotide polymorphisms (SNP) as independent. There was no significant genetic 

similarity between diseases from different age-of-onset clusters (Supplementary Fig. 20) and 
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the similarities within the same age-of-onset cluster were not explained by the disease 

categories (p=0.89) and co-occurrences (p=0.15). We further confirmed the results using 

high-definition likelihood (HDL) inference of genetic correlations, which makes use of the 

genome-wide data instead of the significant associations and also considers LD and is 

applicable to GWAS results for the traits measured from a shared cohort31. Similarity scores 

calculated by SNP overlaps and HDL regression were significantly correlated (ρ = 0.75, 

p<2.2e-16), and the similarities between diseases in the same age-of-onset cluster was 

significantly higher than that of in different age-of-onset clusters (Extended Data Fig. 5), 

confirming the conclusion that diseases with similar age-of-onset profiles show higher 

genetic similarity using another methodology.

Lastly, we checked whether economic status or diet is associated with our results and 

whether that might drive the commonality between diseases. We found no association 

between the list of shared SNPs involved in multiple diseases or multiple disease categories 

and SNPs associated with the “Townsend deprivation index” or any type of special diet, 

except for gluten-free diet32. There was a significant overlap between SNPs associated with 

gluten-free diet in UKBB and SNPs associated with diseases spanning multiple categories in 

the age of onset clusters 1 & 2, and 1 & 2 & 3. If two traits are associated, we would see an 

increased overlap as the p-value cutoff is more stringent; however, this was not the case for 

any of the traits, including the gluten-free diet (Supplementary Fig. 21).

Mediated pleiotropy between diseases

We next asked if mediated pleiotropy, rather than a common etiology (Supplementary Fig. 

1), may explain higher similarity within age-of-onset clusters. Using a recent methodology 

developed by O’Connor & Price, we tested for partial or fully causal relationship between 

diseases33. In particular, the method identifies if a latent causal variable (LCV) mediates the 

genetic correlation between diseases. Using a genetic causality proportion, it assigns a 

causal relationship if one of the diseases is more strongly correlated with the LCV. The 

authors report that, unlike mendelian randomization, this method can distinguish between 

the correlation due to common etiology and causation. We tested for potential causation 

between 60 diseases, excluding the ones with less than 10 significant genetic variants and 

low heritability estimates (Zh<7)33. Also, similar to genetic similarities, we did not calculate 

the causation between diseases that are vertically connected in the disease hierarchy. 

Following the same significance criteria proposed in the methods article (FDR corrected 

p≤0.01 and mean Genetic Causality Proportion (GCP)>0.6), we found significant evidence 

for full or partial genetic causality in 91 disease pairs between 48 out of 116 diseases in our 

analysis (Fig. 2c, Supplementary Table 2). Using Fisher’s exact test, we tested if mediated 

pleiotropy was more common between diseases in certain age-of-onset clusters but did not 

find any significant difference (FDR corrected p>0.1 for all comparisons, inset bar plot in 

Fig. 2c). Thus, although we detected mediated pleiotropy between some diseases, higher 

genetic similarities within the same age-of-onset clusters (Fig. 2a-b) were not explained in 

this way and were more likely to be driven by common etiologies.

We also investigated the diseases with the highest involvement in mediated pleiotropy. Deep 

vein thrombosis (DVT) (n=14), venous thromboembolic disease (n=13), and pulmonary 
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emboĩism (n=9) had the highest number of out degrees, meaning they were found as causal 

for multiple diseases, including all 3 age-of-onset clusters and 5 different disease categories. 

Gastro-oesophageal reflux (GORD)/gastric reflux (n=10) and esophageal disorder (n=8), on 

the other hand, had the highest number of in degrees, meaning there are multiple diseases 

detected as causal. These causal diseases spanned 5 disease categories and age-of-onset 

clusters 1 and 2.

Genes associated with multiple diseases and clusters

We next mapped all variants to genes based on proximity or known expression quantitative 

trait loci (eQTLs) using the GTEx (v8) eQTL associations34 (see Methods). We first 

analyzed the overlap between diseases and tissue-specific eQTLs (Supplementary Fig. 22). 

The results included tissue-disease pairs that were plausible, such as liver and high 

cholesterol. However, overall, the number of tissue-specific eQTLs were biased due to the 

varying number of samples in each tissue and thus, we used eQTLs in all tissues to map 

SNPs to genes. We confirmed that the SNPs associated with diseases spanning multiple 

disease categories have eQTLs in multiple tissues (Supplementary Fig. 23). To assess the 

reproducibility of the genes identified, we compared the significant hits with all those 

reported in the GWAS Catalog. We verified that most of the diseases had significant overlaps 

with the same or associated traits in the GWAS-Catalog (e.g. hypertension and blood 

pressure or osteoporosis and bone density), confirming that our results were reproducible 

with independent data (Supplementary Table 3).

We next compiled the genes associated with multiple diseases and multiple categories and 

grouped them based on the age-of-onset cluster of the associated diseases (Supplementary 

Table 4). In particular we created two sets of genes, ‘multidisease’ and ‘multicategory’, for 

clusters 1, 2, and 3. We excluded cluster 4 because the number of variants significantly 

associated with this cluster was low (n=7 associated with 5 diseases), mapping to only 3 

genes (ZPBP2, NPC1L1, TARID). We also compiled genes associated with multiple 

diseases or categories in combinations of different age-of-onset clusters. Importantly, genes 

associated with multiple clusters are not in the gene sets for individual clusters as the latter 

only include the genes specific to individual clusters, i.e. cluster 1, cluster 2 and cluster 1 & 

2 genes included all mutually exclusive sets.

Longevity modulators and independent aging-related traits

Using these lists, we sought to understand if the common genes between diseases with the 

same age-of-onset profile had previously been associated with aging. We compared the 

multidisease and multicluster gene lists with the literature-based aging databases: GenAge 

human (genes associated lifespan in humans or closely related species), human orthologs in 

GenAge model organism (genes modulating lifespan in model organisms), CellAge (genes 

regulating cellular senescence), DrugAge targets (drugs modulating lifespan in model 

organisms), and all databases combined35–37 (Fig. 3a). In general, genes associated with 

clusters 1 and 2, but not Cluster 3, showed significant enrichment with known aging-related 

genes. The list of overlapping genes is given in Supplementary Table 5. The CellAge 

database showed the significant overlaps with genes associated with clusters 1, 2, and ‘1 & 

3’. DrugAge targets had a significant overlap with clusters 1, 2, and ‘1 & 2’. GenAge 
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Human only had significant association with genes associated with cluster ‘1 & 2’. GenAge 

model organism data significantly overlapped with genes associated with all clusters (1 & 2 

& 3). And the combination of all aging-related gene sets showed significant overlaps with 

clusters 1, 2, 1 & 2, and 1 & 2 & 3. In conclusion, although the association is established 

through a small subset of genes as also reported in the literature17,18, the clusters 1 and 2, 

constituting age-dependent profiles, shared a significant genetic component with known 

longevity- and senescence-modulators, while cluster 3 did not. We further confirmed the 

aging relevance of our cluster 1 and cluster 2 genes using independent GWAS results for 

‘aging’ and ‘longevity’ traits as well as Alzheimer’s, Parkinson’s, and age-related macular 

degeneration diseases which are not represented in our data (Extended Data Fig. 6). The 

significant overlaps include longevity associated APOC1, APOC1P1, TOMM40, and aging 

associated APOE, CHRNA3, DEF8, LINC01239, TRIM59 genes, some of which also 

overlap with Alzheimer’s, Parkinson’s and age-related macular degeneration. CARMIL1 
and SCGN genes associated with all age of onset clusters (multicategory 1 & 2 & 3) also 

showed an association with ‘aging’.

Age-related expression and methylation of the identified genes

To further explore the association between the disease-associated SNPs and ageing, we 

analyzed the age-related expression and methylation profiles of the genes associated with 

SNPs identified in our study (Supplementary Fig. 24, 25, 26). Using tissue-specific eQTL- 

gene associations, we first checked whether the disease-associated SNPs might induce gene 

expression changes that mimic the changes that occur at the age of 40, which might explain 

the age-of-onset distribution of the first cluster. The multicategory cluster 1 eQTLs that 

increase the expression of genes indeed mimicked the age-related expression changes 

(Supplementary Fig. 24, expression difference is positive at the age of 40 and is significantly 

different from 30 and 50). They were enriched in telomere maintenance and organization, 

columnar epithelial cell differentiation, glucose metabolic process, and multicellular 

organismal signaling (p < 0.01 but n.s. after multiple testing correction). Interestingly, 

multicategory cluster 2 and 3 eQTLs that decrease the expression of genes also mimicked 

the age-related changes (Supplementary Fig. 25, expression difference is negative at the age 

of 40 and is significantly different from 30 and 50). These genes were enriched in immune 

response-related categories (Supplementary Table 6). Thus, the overall picture is complex 

and requires further investigation, but it suggests age-related increases in the expression of 

genes associated with multicategory cluster 1 SNPs might influence the age-of-onset curve. 

Still, immune-related genes that decrease in expression may also contribute to the 

occurrence of cluster 2 and 3 diseases in late ages.

We next analyzed the association between age-of-onset clusters and methylation by 

comparing the multidisease and multicategory gene sets with i) DNA methylation 

(“GO:0006306”, n = 29) and demethylation (“GO:0080111”, n = 20) GO Terms, and ii) 

differentially methylated genes reported in previously published studies38,39. Although DNA 

demethylation category included none of the multidisease or multicategory genes, the DNA 

methylation category had 4 overlapping genes. GNAS and HELLS are multidisease cluster 1 

genes, and GATAD2A is a multicategory cluster 1 gene. Disruption in the ortholog of 

HELLS gene in mice (Hells) was found associated with premature aging35,40. The fourth 
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gene, CTCF, is a multidisease cluster 2 gene with no known association with aging. 

Although the overlap is only specific to clusters with age-dependent profiles, these GO 

terms were not significantly enriched in the disease-associated genes (Fig. 3). Next, using 

the published results of two external methylation data analyses38,39, we found a significant 

overlap between the genes that show differential methylation with age and the clusters with 

age-dependent profiles, clusters 1, 2 and 1 & 2 (Supplementary Fig. 26). Overall, although 

there was no significant association with the regulators of DNA methylation, we found age-

related changes in gene expression and methylation for the late-onset clusters.

Functional associations of different age-of-onset clusters

Gene ontology (GO) enrichment analyses were applied to the gene lists, including biological 

process (BP), molecular function (MF) and cellular component (CC) categories. Cluster 1 

was associated with many lipoprotein-related categories, cellular signaling, and blood 

pressure (Fig. 3b). Cluster 2 showed association to plasminogen activation and protein 

activation cascade (Fig. 3c). Cluster 3 and clusters ‘2 & 3’ had associations to many 

immune-related categories and cell adhesion (Fig. 3d, e). Genes in clusters ‘1 & 3’ did not 

have any significant associations. Genes associated with cluster ‘1 & 2’ were related to 

nucleosome complex, glucose homeostasis, retinoic acid binding (Fig. 3f). Genes associated 

with at least one disease in all clusters (‘1 & 2 & 3’) showed association with interleukin-7 

response, differentiation, telomere as well as nucleosome complex (Fig. 3f). Since cluster 3 

did not have an age-dependent profile, the association with nucleosome complex could 

represent pleiotropic genes in general. Here we listed the categories that are representative to 

all other significant functional groups. The full list is given in Supplementary Table 7, and 

the procedure of selecting representatives is described in the Methods. Overall, these results 

suggest that, although cluster 1 and cluster 2 genes were both linked to previously identified 

aging-related genes, they have distinct functional profiles.

Evolution of aging and age-related diseases

Lastly, we sought to understand the abundance of disease-associated variants in the 

population and their relationship with the evolutionary theories of aging. Mutation 

accumulation (MA) theory explains the functional decline at later ages by relatively lower 

selection pressure on deleterious germline variants that are functional at later ages. 

Accordingly, we first hypothesized that SNPs associated with later-onset diseases (Cluster 1) 

would have a higher frequency than the SNPs associated with diseases that occur at earlier 

ages (Clusters 2 and 3), which are presumably under stronger selection pressure. Not finding 

any difference in the power to detect SNPs for different clusters by comparing median MAF 

and number of cases (Supplementary Fig. 27), we compared the allele frequencies 

associated with different age-of-onset clusters41. As SNPs which are close together in the 

genome are expected to have similar allele frequencies due to linkage, we calculated the 

median risk allele frequency for SNPs within previously defined LD blocks30. Supporting 

the MA, diseases of cluster 1 had significantly higher risk allele frequencies than cluster 2, 

both for the SNPs associated with one disease (Fig. 4a, Wilcoxon test p=0.00033) or with 

one cluster (Fig. 4b, Wilcoxon test p=0.0068, also confirmed by bootstrapping n=100 loci 

for B=1,000; Supplementary Fig. 28). We further confirmed that this trend is not specific to 

the UK population, as we obtained comparable results in all super-populations of the 1000 
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Genomes Project42 (Supplementary Fig. 29, 30). Variants associated with cluster 3, which 

includes immune-related diseases, were not significantly different from those associated 

with cluster 1, although cluster 3 diseases can occur even at an earlier age. Moreover, 

although the difference in the median allele frequencies was not significant, the shapes of 

distributions were different, with a significant shift towards higher risk allele frequencies 

only in cluster 1 (pcl1=0.05, pcl3=0.86 calculated using 10,000 permutations). High minor 

allele frequencies, thus a higher variation we observed in cluster 3 is in line with the 

previous suggestion that immune-related genes are under long-term balancing selection in 

humans43, although positive selection also influences immunity44–46.

To test the antagonistic pleiotropy theory (AP), we first asked if the diseases with different 

onsets have an excess of antagonistic SNPs. Similar to a previous study41, we defined a 

pleiotropic biallelic SNP as agonistic if the risk allele is the same for different diseases, and 

as antagonistic if opposite alleles are associated with increased risk for different diseases. If 

one of these diseases is under a stronger negative selection, then the risk allele of the other 

disease could increase over time. Comparing the proportion of agonist and antagonist SNPs 

within and between the age-of-onset clusters, we found that there is an excess of 

antagonistic pleiotropy between diseases with different age-of-onset profiles (Fisher’s exact 

test p<0.001, Supplementary Table 8). Next, we tested the differences in risk allele 

frequencies between the clusters, as AP predicts a higher risk allele frequency for late-onset 

diseases. The risk allele frequencies for antagonistic associations between cluster 1 and 3 or 

2 and 3 did not show any significant difference in the UKBB or 1000 Genome super-

populations (Supplementary Fig. 31, 32). Interestingly, the difference between the risk allele 

frequencies for cluster 1 and cluster 2 was also not significant for the UKBB population 

(Fig. 4c). However, all 1000 Genome super-populations except for Europeans had higher 

risk allele frequencies for cluster 1 diseases (Fig. 4d). We hypothesized that this is mainly 

due to increased power when testing the antagonistic associations with frequency closer to 

0.5. We thus investigated the allele frequency differences for the significant variants with 

increased effect sizes. Indeed, associations with a larger effect size showed the expected 

differences in allele frequencies, although the number of independent loci was limited 

(Supplementary Fig. 33). We also examined the type of diseases and genes associated with 

antagonistic pleiotropy. The main driver of the pattern was the loci with ABCG8 and 

ABCG5 genes, showing antagonistic relationship for high cholesterol (cluster 1) and other 

lipid-related diseases in cluster 2, such as gallbladder disease and cholelithiasis. Another 

locus included variants that show antagonistic relationship with cardiovascular disease 

(cluster 1) and the cluster 2 diseases gout (ADH1B), osteoarthritis and joint disorder 

(SLC39A8), and osteoarthritis (BANK1). Another potential candidate was a locus associated 

with hypertension (cluster 1) and musculoskeletal diseases (cluster 2), but this locus 

included multiple candidate genes (Supplementary Table 9). Nevertheless, our comparison is 

between common diseases that occur after the age of 20 and 40, which are both after the 

average age at first reproduction and therefore the start of the decrease in the force of natural 

selection47. Thus, a better comparison would include the mutations causing rare 

developmental diseases, which are not available in the UKBB.
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Discussion

The number and the incidence of diseases increase with age. In this study, we explored 

whether this results from a common genetic component among ARDs, which might also be 

linked to aging. We compared genetic associations and age-of-onset distributions of 116 

self-reported diseases in the UKBB and found shared variants, genes and pathways, which 

were also associated with aging.

Using an unsupervised, data-driven approach to classify diseases based on their age-of-onset 

profiles, we found 4 main clusters; i) diseases that rapidly increase after 40 years of age, ii) 

diseases that increase after 20 years of age, iii) diseases with no age-related pattern, and iv) 

diseases that peak at around 10 years of age. Notably, unlike previous studies18,48, by using 

this unsupervised approach, we detect a distinction between cluster 1 and cluster 2, which 

both show age-dependency but distinct age-of-onset distributions. These two clusters were 

associated with genes with different functional and evolutionary characteristics, although 

they both overlap with known aging-related genes. Moreover, germline mutations may 

influence late-onset diseases through affecting the function of genes that show differential 

expression or methylation with age.

Based on genetic associations, diseases with similar age-of-onset profiles showed a higher 

genetic similarity on average, compared to diseases in other clusters, even when controlled 

for disease categories and co-occurrences (Fig. 2a, b). Moreover, this similarity within age-

of-onset clusters was not explained by mediated pleiotropy, in which one of the diseases is 

causal for the other one, suggesting instead a common etiology. We then studied the genes 

involved and found that genes associated with clusters 1 and 2 (both constituting ARDs) are 

enriched with known longevity- and senescence-modulators, while genes associated with 

cluster 3, which does not show an age-dependent profile, did not show this enrichment. In 

addition, we found that genes associated with different age-of-onset clusters have different 

functions. Comparing the risk allele frequencies of variants associated with different age-of-

onset profiles, we found support for both mutation accumulation and antagonistic pleiotropy 

theories of aging, although the number of independent loci supporting the second was 

limited. Lastly, we also provide a list of drugs that target the common genetic component 

between ARDs, which may in the future be tested for their effects on multimorbidity and 

polypharmacy associated with late life (Supplementary Information Section 4, Extended 

Data Fig. 7, Supplementary Fig. 34).

In this study, we had a limited age range, covering individuals up to 65 years old and could 

not analyze diseases of later ages, such as Alzheimer’s and Parkinson’s. Thus, it is possible 

that the overall disease landscape includes more age-of-onset profiles than the four clusters 

defined in our study. Neither did we consider the cancers or changes in regulation of gene 

expression for the same cohort, which is affected not only by aging, but also various 

environmental or intrinsic factors. Moreover, similar to other cohorts, the UK Biobank is 

subject to ‘healthy volunteer’ selection bias, meaning the participants are healthier and not a 

perfect representative of the population. The age-of-onset distributions, thus, may differ and 

may have a shift towards earlier ages in the population. Replication of this study in future 

non-volunteer-based cohorts, with a broader age range and spanning multi-omics data, 
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somatic mutations, health outcomes, and lifestyle information, will enable a better 

understanding of the genetic mechanisms of age-of-onset determination and establishing the 

causal link with candidate genes. Despite these limitations, we present a novel approach to 

study ARDs using an unbiased, data-driven approach and show that ARDs share common 

genetic associations linked to aging. Our results suggest that targeting the common pathways 

between multiple ARDs could offer compression of late-life multimorbidity as well as 

alleviating the effects of polypharmacy.

Methods

Ethics statement

UK Biobank has obtained Research Tissue Bank (RTB) approval from its ethics committee 

that covers the majority of proposed uses of the Resource, so researchers do not typically 

need to obtain separate ethics approval. This covers the presented study as we do not re-

contact the participants or collect additional data, and the research use is within the RTB 

approval. The REC reference for UK Biobank is 16/NW/0274. All necessary patient/

participant consent has been obtained and the appropriate institutional forms have been 

archived. We accessed the data through the application number 30688.

UK Biobank Data

Data was downloaded using bash (v4.2) and following the guidelines provided by the UK 

Biobank. Since we did not collect any additional information other than provided by the UK 

Biobank, no randomization or blinding was applied. However, we do consider potential 

confounders in our genetic analysis as detailed in the methods section describing GWAS.

Sample quality control—After excluding all samples from individuals who have 

withdrawn their data from UK Biobank, we first filtered out all samples without genotypes 

(N = 14,248). Then, we used the following criteria for the remaining 488,295 samples.

Discordant sex: Data includes two entries for sex: 1) self-reported and 2) genetic sex 

determined using the call intensities on sex chromosomes. There are multiple reasons why 

these two entries may not correspond, such as sample mishandling, errors in data input, 

transgender individuals, and sex chromosome aneuploidies[Citation error]. Since we used sex 

as a covariate in our GWAS model, we preferred to be cautious about this issue and excluded 

all cases where the genetic sex and self-reported sex did not correspond and all cases where 

sex chromosome aneuploidy was detected. Specifically, we used the fields ‘31-0.0’ (Sex) 

and ‘22001-0.0’ (Genetic sex) to compile discordant information. There were 235 self-

reported males being identified as female by the genetics, and 143 self-reported females 

being identified as males by the genetics. We excluded these 378 cases, 0.077% of the data. 

Moreover, field ‘22019-0.0’ (Sex chromosome aneuploidy) is used to exclude cases with sex 

chromosome aneuploidy. There were 651 cases of aneuploidy, 0.133% of all data. 181 of 

these cases (27.80% of aneuploidy cases) were also detected as discordant information in the 

first step. This corresponds to 47.88% of discordant sex cases. Overall, we identified 848 

samples to be excluded based on this criterion.
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Genotype call rate & Heterozygosity: Genotype missingness and heterozygosity are 

widely used as a measure of DNA sample quality. For quality filtering based on missingness 

and heterozygosity we only used the suggested exclusions by UK Biobank. Specifically, we 

used the field ‘22010-0.0’ (Recommended genomic analysis exclusions) and determined the 

cases with ‘poor heterozygosity/missingness’ (N = 469). We next used the field ‘22018-0.0’ 

(Genetic relatedness exclusions) and noted down the cases with ‘Participant self-declared as 

having a mixed ancestral background’ (N = 692), and the cases with ‘High heterozygosity 

rate (after correcting for ancestry) or high missing rate’ (N = 840). Lastly, there were 968 

cases that are suggested as outliers for heterozygosity or missing rate, field ‘22027-0.0’ 

(Outliers for heterozygosity or missing rate). We then checked the scatter plots for 

logit(Missingness) vs. Heterozygosity for each Ethnic Background, in accordance with the 

identification of samples to exclude by the UK Biobank1 (Supplementary Fig. 35). Logit 

transformation is used to linearize sigmoidal distribution of missingness. Investigation of 

heterozygosity can detect DNA sample contamination, inbreeding, or mixed ethnicity2. This 

quality check reveals when people with a mixed ethnicity tend to have a higher 

heterozygosity, even after correcting for PCs. We confirmed these are in accordance with the 

original article and excluded the samples suggested by the UK Biobank.

Overall, there were 3,697 samples excluded based on these two criteria. Please note that the 

numbers presented above may not add up to this number, because there were some samples 

excluded based on multiple criteria. The percent overlap across multiple criteria is given in 

Supplementary Fig. 36.

Preparing the trait data—Using the samples that passed the quality control 

(N=484,598), we subsetted the data so that it included only the baseline visit. Apart from the 

data that is already available in UK Biobank, we calculated some other values: 1) BMI: 
Using the columns for ‘Weight’ and ‘Standing height’ we calculated BMI as: Weight / 

(Standing Height / 100)2, 2) Parent Age at Death - Minimum: The youngest age at which 

either parent died. 3) Parent Age at Death - Maximum: The age of death for the parent who 

lived longest. 4) Parent Age at Death - Average: The average age of death for the two 

parents. If neither of the parents died, or if the data was unavailable, these values (2-4) were 

set to be NA. If only one parent died, we use the corresponding age as both the minimum, 

maximum, and average. 5) The number of self-reported non-cancer diseases: The number of 

unique self-reported non-cancer illnesses each participant recorded in the baseline 

recruitment. 6) The number of self-reported cancers: The number of unique self-reported 

cancers each participant recorded in the baseline recruitment. 7) Self-reported diseases after 
taking the disease hierarchy into consideration (Propagated disease data): The self-reported 

diseases in UK Biobank are not independent, but rather are organized in a hierarchical 

manner. Using the relationship information between diseases, we propagated disease-

participant associations, upwards, including terms higher up the tree. For example, if a 

person reports having “essential hypertension”, we also annotate that person with 

“hypertension”, and “cardiovascular disease”. 8) Age at diagnosis for the self-reported 
diseases after taking the disease hierarchy into consideration (Propagated age at diagnosis 
data): We re-defined age at diagnosis using the minimum age at diagnosis for all the diseases 

that were child term for a particular disease in the disease hierarchy. 9) The number of self-
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reported non-cancer diseases after taking the disease hierarchy into consideration 
(Propagated number of non-cancer diseases): The number of unique self-reported diseases 

each participant records after taking into account the data propagation. 10) Age when the 
last deceased person died: We calculated the age of each person when the last death entry in 

the UKBB happened. This value is used to calculate the proportion of people who died at a 

certain age interval in Supplementary Fig. 2c.

Selecting diseases to analyze—We calculated the disease occurrences for all self-

reported diseases in UK Biobank. Specifically, among the cohort we used, we calculated 

how many participants and what proportion of males and females reported each disease. 

Since we analyzed the same set of SNPs that have MAF>=0.01 across multiple diseases, to 

decrease the false positive rate in GWAS, we limited the diseases to a subset with at least 

2,000 cases (n = 129 out of 472)3. Moreover, we only focused on diseases that were 

common and not sex-limited, i.e. we only considered diseases that are seen in 1 in every 

1,000 males and females (n = 189 out of 472). The intersection of these two conditions was 

116 diseases and we excluded all others.

We only analyzed self-reported non-cancer diseases (field ‘20002’) and did not combine 

self-reported cancers (field ‘20001’), mainly because i) the number of cases is low (45,224 

compared to 384,906 for other diseases), ii) cancer is thought as a result of a complex 

interaction between germline and somatic mutations4,5, whereas the evidence for the effect 

of somatic mutations in other diseases is limited to rare and neurological disorders6,7, iii) the 

relationship between cancer and aging is complex, e.g. while telomere attrition and cellular 

senescence are thought to be evolved as a tumor suppressor mechanisms; aging-related 

changes in epigenomic landscape and genomic instability contribute to cancer occurrence8. 

Thus, although a similar analysis using cancers would be interesting, we only focused on 

non-cancer self-reported diseases in this study. Since we did not exclude the individuals with 

cancer, we also checked if there is a significant overlap in individuals with cancer with the 

other diseases we analyzed (Supplementary Fig. 37). However, there was no such 

association.

Disease co-occurrence calculations

Relative risk (RR) score—Relative risk is an estimate of having the disease A, when 

already affected by disease B. Overall it measures if disease A co-occurs with disease B 

more frequently than expected if these diseases were independent in the population. It is 

calculated as a fraction between the number of patients diagnosed with both diseases and a 

random expectation based on disease prevalence9. Mathematically it can be expressed as 

follows, using the values from Table 1:

Pexposed =
Nab
Ta

, Pnotexposed =
Nnab
Tna

RR =
Pexposed

Pnotexposed
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CI = lnRR ± 1.96

Ta − Nab
Nab
Ta

+

Tna − Nnab
Nnab
Tna

ϕ value (Pearson correlation for binary variables)

The ϕ value measures the robustness of the association between diseases based on co- 

occurrences10. Mathematically, it can be expressed as:

ϕAB =
CABN − PAPB

PAPB N − PA N − PB

N: the total number of individuals

PA: Prevalence of disease A

CAB: Number of patients with both diseases

ϕ ranges between -1 and 1, where the sign indicates the type of association.

Disease age-of-onset

Disease dissimilarity measure

Temporal correlation: In order to calculate dissimilarities among diseases, we use CORT11 

distance as included in R package TSclust12. Euclidean distance and dynamic time 

warping13 are the two most widely used proximity measures for time series proximity. 

However, they are both calculated based on the closeness of the values and disregard the 

growth behavior. Correlation-based measures are also used to calculate the similarity 

between time series. However, Pearson correlation overestimates the similarity because of 

the underlying temporal dependency and Spearman correlation fails to consider the growth 

rate as it is based on ranks. Chouakria et al., on the other hand, suggested a measure that also 

considers the proximity-based on growth behavior, CORT11. Temporal correlation between 

two time series objects S1=(u1,u2,...,up) and S2=(v1,v2,...,vp) is calculated as follows:

CORT S1, S2 =
∑i = 1

p − 1 u(i + 1) − ui v(i + 1) − vi

∑i = 1
p − 1 u(i + 1) − ui

2 ∑i = 1
p − 1 v(i + 1) − vi

2

CORT ranges between -1 and 1. A value of CORT = 1 implies that two time series increase 

or decrease simultaneously with the same growth rate, whereas a value of -1 shows the same 

growth rate but in opposite direction. If the value is 0, it means there is no temporal 

correlation between the series.

Dissimilarity Index: The dissimilarity index suggested by Chouakria et al.11, is calculated 

based on an automatic adaptive tuning function and considers similarity based on both 

values and behavior, i.e. the strength of monotonicity and closeness of the growth rates as 
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calculated by CORT measure introduced in the previous section. They suggest a 

dissimilarity index D as follows:

D S1, S2 = f CORT S1, S2 . δconv S1, S2

Where f(x)is an exponential adaptive tuning function:

f(x) = 2
1 + exp(kx) , k ≥ 0

As k increases, the contribution of behavior increases. We use k = 2 and as a result behavior 

(CORT) contributes 76.2% to D and values (δconv) contribute 23.8%. For δconv we used 

conventional Euclidean distance.

Clustering diseases by age-of-onset—We clustered data using ‘partition around 

medoids (PAM)’ algorithm14 based on the distance measure calculated using the previous 

step. The aim of this algorithm is to minimize the average distance (based on any 

dissimilarity measure) between the objects and their closest selected medoid object. It works 

very similarly to k-means, except instead of defining arbitrary points as the means, it defines 

medoids among the objects. Thus, it can incorporate any distance measure instead of just 

using the mean distance between points (i.e., euclidean distances). The algorithm first 

searches for k number of objects that represent the structure of the data (Here the number k 

is assumed to be known a priori but see the next section for the determination of k). After 

finding a set of k medoids, k clusters are constructed by assigning each observation to the 

nearest medoid. Overall, the goal is to find k representative objects such that the sum of 

dissimilarities of the observations to their closest representative is as small as possible. After 

each assignment, medoid and non- medoid data points are swapped and a cost (sum of 

distances of points to the new medoid) is calculated. If the total cost of configuration is 

decreased, then the new configuration is maintained, otherwise, it is reversed. We used 

‘pam’ function in the ‘cluster’ package15 in R to apply this algorithm.

Choosing the optimum number of clusters—The clustering algorithm we used, 

PAM, clusters data into k clusters, which is determined by the user. So, even if there is no 

real structure in data, as we increase the number of clusters, we can get more and more 

clusters. A potential way to decide on the number of clusters is using the gap statistic16. This 

value is calculated by comparing the logarithm of the within-sum-of-squares (WSS) to 

averages from simulated data without any structure.

W SSk = ∑
l = 1

k
∑

xi ∈ Cl
d2 xi, xl

k: number of clusters

Ci: objects in the l-th cluster
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x: the average point.

Calculating only WSS, however, is not enough as it would be minimized when each point 

has its own cluster. Thus, we use the gap statistic which suggests calculating log(WSSk)for a 

range of values of k and compare it to that obtained by WSS calculated based on simulated 

data. So, after WSS is calculated for various values of k, the algorithm involves generating B 

(we choose B=1,000) reference datasets, using Monte Carlo sampling from a homogeneous 

distribution and re-calculate WSS for all k values. Using these values gap(k) statistic is 

calculated as:

gap(k) = lk − log W SSk

lk = 1
B ∑

b = 1

B
log W kb

∗

If the clustering is good (i.e. WSS is small) we expect lk to be higher than log(WSS). Thus, 

gap statistic is mostly positive and we are interested in the highest value. Tibshirani et al.16 

suggests using the smallest k such that,

gap(k) ≥ gap(k + 1) − sk + 1′

where

sk + 1′ = sdk + 1 1 + 1
B and sdk

2 = 1
B − 1∑b = 1

B log W kb
∗ − lk

2

Using this approach, we determined k = 4.

Genome wide association study

Preparing the files required for GWAS

Fixing FAM files: In UK Biobank FAM files, the column for ‘phenotype’ includes batch 

that is coded with characters. In order to use BOLT-LMM17 (v2.3.2), we updated all the 

entries in this column to numeric values18.

‘Remove’ files for BOLT-LMM: BOLT-LMM accepts a list of individuals to be removed 

from the analysis as an input. These files are called ‘remove’ files and are in the FAM 

format. We prepared these files for i) withdrawn samples (n = 51), ii) samples that failed the 

quality control (n = 3,779), iii) samples that have information in PLINK files but lack BGEN 

files (n = 968).

Calculating the SNP statistics: In order to apply a quality filter for SNPs, using PLINK2,19 

(v1.90b6.4), we calculated i) p-values for each SNP showing whether it deviates from 

Hardy- Weinberg equilibrium, and ii) Minor allele frequencies (MAF).

Dönertaş et al. Page 16

Nat Aging. Author manuscript; available in PMC 2021 October 01.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



SNP Quality Control: We excluded SNPs that deviate from Hardy-Weinberg equilibrium (p 

≤ 1e-6, n = 202,473) or with a minor allele frequency (MAF) smaller than 0.01 (n = 

127,969). In total, we discarded 314,697 SNPs (Note that the numbers do not add up as 

these SNPs can overlap), resulting in 9,886,868 sites.

Phenotype File: We created a phenotype file that can be used as an input for BOLT-LMM, 

including the following fields: sex, age when attended assessment center, calculated BMI, 

assessment center, ethnicity, batch, first 20 PCs, and self-reported diseases (one column per 

disease).

GWAS run using BOLT-LMM—For each disease, we run GWAS separately using BOLT-

LMM with the following inputs:

• We remove the samples that are in plink files but now in bgen; samples that did 

not pass our QC; samples from the individuals who have withdrawn their data 

from the UKBB

• We excluded the SNPs that deviate from Hardy-Weinberg equilibrium, and have 

minor allele frequency lower than 0.01.

• We used Sex, Age, BMI, assessment center, ethnicity, batch, and the first 20 PCs 

as covariates.

• To run the mixed-model, a reference LD score table is required. We used LD 

scores generated using 1000 Genomes European-ancestry samples, which is 

provided with the BOLT-LMM download.

• Genetic map for hg19 file provided in the BOLT-LMM website.

• We set ‘bgenMinMAF’ argument to 1e-2 and ‘bgenMinINFO’ parameter to 0.5 

to only include SNPs that pass these criteria.

GWAS Results—We removed MHC region (chr6: 28,477,797 - 33,448,354) from the 

analysis and considered positions with a p-value lower than 5x10-8 as a significant 

association.

Coding Variants

We used VarMap20 to map variants to proteins and domains. VarMap provides detailed 

information about coding variants, including annotations for the missense, synonymous, and 

nonsense variations. In our analysis, if a variant is not annotated as a coding variant in 

VarMap output, we assumed it is non-coding.

Genetic similarities between diseases

In order to calculate the overlap between diseases we used the number of SNPs that are 

significantly associated with both diseases, but corrected by the number that is expected by 

chance, if two diseases are independent:
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Genetic Similarity =
Ncommon
Nd1xNd2

xNtotal

Ncommon: Number of SNPs in common.

Ndx: Number of SNPs associated with disease X.

Ntotal: Total number of SNPs analyzed in the study.

The statistical significance of these genetic similarities is calculated using the binomial test, 

and the similarity is only considered for downstream analysis if p<=0.01. Moreover, the 

value is only calculated if two diseases do not have any hierarchical relationships in the 

disease hierarchy.

In order to assess the genetic similarity within age-of-onset clusters, we further used linear 

regression to correct log2 genetic similarity value by disease co-occurrences (risk ratios) and 

disease categories (binary data showing whether two diseases are of the same category). The 

‘corrected genetic similarity’ is the residuals from this linear model.

LD Blocks—In order to assess the similarity between different diseases we use overlaps 

across significant associations and thus preferred not to do fine mapping. However, a 

significant challenge is that genomic variations are not independent but instead linked in the 

genome. To understand the effect of linkage disequilibrium or overcome it, we made use of 

linkage disequilibrium blocks previously defined for human genome21. We repeated the 

analysis for genetic similarity after collapsing all positions within an LD block and thus 

creating independent genomic loci (n = 1,703). We use binary information for LD blocks, 

i.e. blocks with at least one significant association are considered as a hit, and the rest are 

not.

High-definition likelihood (HDL) method to calculate genetic similarities

We repeated the genetic similarity analysis with HDL22, which is a recent alternative to 

LDSC to calculate genetic correlations. Using the code available in github (https://

github.com/zhenin/HDL/) we calculated the genetic similarities between diseases, using the 

leading eigenvalues explaining 99 and their correspondent eigenvectors in LD score matrix.

Comparison between SNPs associated with multiple diseases and economic status or 
specific diet

We used the UK Biobank GWAS summary statistics provided by Neale Lab23, and 

calculated the overlap between SNPs associated with Townsend Deprivation Index (inverse-

rank normalized), or specific diet regimes (i.e. gluten-free, lactose-free, low calorie, vegan, 

vegetarian, or other as specified in the UK Biobank) and the SNPs associated with multiple 

diseases or multiple disease categories in each age-of-onset cluster.
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Analysis of mediated pleiotropy between diseases

Using the LCV method developed by O’Connor & Price, we tested the causal relationships 

between diseases24. We used the R functions developed by the authors and provided on 

GitHub (github.com/lukejoconnor/LCV/). We calculated the genetic causality proportion 

(GCP) between each disease pair, if the diseases have at least 10 significant variants and a 

significant heritability estimate as suggested by the developers (Zh≥7). We only calculated 

GCP if the diseases are not vertically connected on the disease hierarchy. Following the 

criteria applied by the developers, we considered pairs with FDR corrected p≤0.01 and mean 

GCP>0.6 as significant.

SNP to gene mapping

We map all SNPs analyzed in GWAS to genes based on proximity and eQTL results.

Using proximity—Using VariantAnnotation25, 

TxDb.Hsapiens.UCSC.hg19.knownGene26, and GenomicRanges27 packages in R, we 

mapped the genomic co-ordinates for each SNP to genes. Specifically, if a gene is within the 

coding region, intron, 5’ or 3’ UTR, or 1kb down- or up-stream of the transcription start site, 

we annotated that SNP to the gene. As a result, we had 4,443,872 SNP-gene associations for 

4,236,176 SNPs and 22,228 Entrez gene IDs. We used the Ensembl biomaRt28 package in R 

to retrieve HGNC symbols (17,994), Ensembl Gene IDs (20,507), and gene descriptions for 

the Entrez gene IDs obtained from TxDb.Hsapiens.UCSC.hg19.knownGene database.

Using GTEx eQTL data—Using SNP-gene associations based on GTEx v8 eQTL data 

(accessed on 20.10.2020)29, we associated SNPs with the genes they could potentially 

regulate. We first mapped the hg38 variants in GTEx v8 to hg19 using ‘rtracklayer’30, 

‘liftOver’31, packages and ‘hg38ToHg19.over.chain’ data in R. We generated a combined 

tissue list, which associates SNP to the gene if there is at least one tissue in which there is a 

significant (p <= 5e-8) association. We chose to create a combined tissue list due to 

following reasons: 1) disease-tissue matching is not straightforward, especially for complex 

system-wide diseases32 and 2) the power to detect eQTLs depend heavily on the number of 

samples from each tissue. Thus relying on incomparable set of eQTL sets from different 

tissues may bias our analysis.

As a result, there were 3,261,028 unique SNPs associated with 20,043 Ensembl Gene IDs. 

We used the biomaRt28 package in R to retrieve HGNC Symbols (16,068), Entrez IDs 

(14,574), and gene descriptions.

Comparison of proximity and eQTL based mapping—Instead of only focusing on 

disease-associated SNPs, we first mapped all SNPs that we analyzed to discover if there is a 

bias for certain genes (e.g. some genes could have many more SNPs because they are longer, 

or because they are already associated with certain traits and the chip is designed in that 

way). There were as much as 19,195 SNPs mapped to one gene (CSMD1) by proximity, 

whereas there were 68 SNPs per gene on average (median). The number of SNPs per gene 

was on average, higher for the mappings by eQTL (Supplementary Fig. 38a). The maximum 

was 10720 SNPs for C4A gene and the median number of SNPs per gene was 324. 
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However, we did not consider MHC region in our downstream analysis and thus this region 

is also excluded. The correlation between the number of SNPs per gene was low (rho = 0.18, 

Supplementary Fig. 38b). Since the proximity-based mapping is by definition dependent on 

the gene length, we also tested if there is a significant correlation between the number of 

SNPs per gene and gene length. While the correlation is low for gene mappings by eQTL 

(Spearman’s correlation rho = 0.08, p = 2.2e-16), mappings by proximity show a high 

correlation as expected (Spearman’s correlation rho = 0.87, p < 2.2e-16). This also explains 

the low correlation between eQTL and proximity-based mappings. We next checked the 

correlation between the number of SNPs per gene mapped by proximity but only to 

promoter region. The correlation between the number of SNPs and gene length decreased 

(rho = 0.21), and the correlation with the number of SNPs by eQTL slightly increased but 

was still low (rho = 0.14). Overall, we concluded that both eQTL data and proximity-based 

mapping could capture different information and decided to use both for the downstream 

analyses.

GWAS Catalog analysis

We accessed the GWAS Catalog on 30-07-2019 and used v1.0.2 e96 dataset33. We excluded 

all studies which used UK Biobank dataset (n = 190, data courtesy of GWAS Catalog team). 

Using the associations with a p-value lower than 5x10-8, we compiled significant 

associations between MAPPED_GENEs and MAPPED_TRAITs. We use GWAS catalog 

analysis to check if our GWAS hits are supported by previous studies and applied a Fisher 

test between all traits in GWAS catalog and the diseases in our study. P-values are corrected 

for multiple testing using FDR correction.

Analysis of the association with aging

We downloaded GenAge human, GenAge model organism34 and DrugAge35 data on Aug 

13, 2019 and CellAge36 data on Oct 02, 2019 (CellAge data is kindly provided by Avelar et 

al.). We used HGNC Symbols for GenAge and CellAge genes. In order to compile genes 

that are targeted by the drugs in DrugAge database, using the drug names in DrugAge data, 

we first compiled PubChem IDs using PubChem REST API37. Using UniChem38, we 

mapped PubChem IDs to ChEMBL IDs39. Next, using DGIdb40, we compiled the genes 

targeted by these ChEMBL IDs. As a result, we had 307 genes from GenAge human 

database, 902 genes from GenAge model organism database, 279 genes from CellAge 

database, and 714 genes targeted by DrugAge drugs. We next calculated the overlaps 

between these databases and the genes associated with multiple diseases or multiple 

categories in different age-of-onset clusters. To calculate the expected values and statistical 

significance, we used 10,000 permutations calculating the overlap for the same number of 

random genes among genes that can be detected by GWAS. Then, an odds ratio is calculated 

by dividing the observed value to the mean of expected values.

Functional Enrichment Test

Using the goseq package in R41, which takes the gene length bias into account, we 

performed a functional analysis of the genes associated with different age-of-onset clusters. 

Using GO categories with more than 10 and less than 500 annotated genes, we applied an 

enrichment test for the Gene Ontology (GO)42,43 Biological Process (BP), Molecular 
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Function (MF), and Cellular Compartment (CC) categories. BY correction44 is applied to 

the p-values for all tests for all clusters and 3 GO Categories (BP, MF, and CC) combined. 

We considered associations with a BY-corrected p-value lower than 0.05 as significant. For 

the ease of visualization and comprehension we selected representative categories for 

significant associations as follows: For each cluster and GO Ontology (i.e. BP, MF, CC) 

separately; i) Jaccard similarity index (i.e. number of genes in common divided by the 

number of unique genes in each category combined) is calculated between all significantly 

associated GO Categories; ii) Jaccard indices are hierarchically clustered and cut to k 

number of groups, where k is the minimum number of clusters which ensures median 

Jaccard similarity within a cluster is above 0.5; iii) The category with the highest average 

similarity to other categories in the same cluster is assigned as the representative.

Gene Expression Analysis

Using GTEx v8 data45, we analyzed age-related changes in gene expression for the tissues 

with at least 10 samples (n = 48). We filtered out the genes with median TPM lower than 1. 

We next log2 transformed expression matrix and used linear model to correct for the effect 

of sex and death. The normalized expression matrix is quantile normalized using 

normalize.quantiles function from preprocessCore package46 in R. We excluded any sample 

that deviates 3 standard deviation from the first 4 principal components calculated for this 

quantile normalized matrix using ‘prcomp’ function with scale = T argument and repeated 

the procedure until there is no outlier in the data (32 tissues did not have any outliers, 14 had 

all outliers removed in one round, 1 tissue required 2 rounds and 1 tissue - Cells-Cultured 

fibroblasts – required 5 rounds of outlier removal). The whole analysis pipeline and quality 

control steps and results are available in https://github.com/mdonertas/aging_in_GTEx_v8. 

In order to match age-related expression changes with the variants, we used tissue-specific 

eQTL data. More specifically, we identified the gene-tissue pairs that have significant eQTL 

associations and matched their gene expression levels. We only considered genes with 

eQTLs in the same direction. If disease associated variants are associated with different 

direction of change for a gene, we excluded these cases from the analysis given in 

Supplementary Fig. 24–25.

Methylation Analysis

Using the reported gene sets as differentially methylated during ageing from two 

studies47,48, we checked the overlap with our gene sets. We repeated the same analysis 

applied to calculate the overlap with aging-related genes.

Drug Repurposing

We searched for the drugs that specifically target multicategory genes in cluster 1, cluster 2, 

or cluster 1 and 2. Using the Fisher’s exact test, we compiled the drugs in DGIdb40 that 

specifically target these genes (p≤0.01) and drugs that target only one gene in one of these 

clusters. Importantly, we excluded all non-specific drugs (i.e. targeting more than 10 genes) 

from the analyses. The interaction data is compiled from DGIdb, and the names, indications 

and phases of the drugs are obtained from ChEMBL REST API39.
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Evolutionary Analysis

In order to test the mutation accumulation and antagonistic pleiotropy theories of aging we 

used the risk allele frequencies in UK Biobank and 1000 Genomes super-populations49. A 

risk allele is an allele that shows positive association with a disease. Since the SNPs are not 

independent and have similar allele frequencies in a given LD block, we analyzed LD blocks 

instead of individual SNPs and used the median risk allele frequency for a given LD block. 

We used only the biallelic SNPs for this analysis. Allele frequencies for UK Biobank are 

calculated using BOLT-LMM and the allele frequencies for 1000 Genome super-populations 

are obtained from the vcf file provided on the 1000 Genomes project website. To test the 

antagonistic pleiotropy excess, we calculated the proportion of antagonistic vs. agonist SNPs 

within the same vs. different age-of-onset clusters using Fisher’s exact test. We considered 

pleiotropic SNPs as agonist if the risk allele for two or more diseases are the same, and 

antagonist if the risk alleles are opposite. We only tested the risk allele frequency differences 

between cluster 1 and cluster 2. Also, we excluded any SNPs that are antagonistic within an 

age-of-onset cluster and agonist between clusters.

Statistics and Reproducibility

All the analysis is performed using R and open-source software tools. The details of the 

statistical tests are presented under each section. We excluded all participants who 

withdrawn their data from the UK Biobank after data access. We also excluded samples 

without genotypes, discordant sex information, high missingness and heterozygosity. We 

have conducted the whole analysis on 484,598 participants. The details of the exclusion 

criteria is given in the methods section. The study is observational and thus randomization or 

blinding does not apply. Potential confounders are included as covariates in the analysis and 

the GWAS is performed using linear mixed models. Replication in another cohort is not 

performed, however, using independent GWAS results from GWAS catalog, we confirm the 

reproducibility of our results.
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Extended Data

Extended Data Fig. 1. Disease categories and co-occurrences.
a) Disease hierarchy for the 116 diseases included in the analysis. The nodes are colored by 

the disease categories as indicated in the legend. b) Disease co-occurrence matrix 

summarizing relative risk scores and correlations. Each row and column denote diseases, 

ordered by hierarchical clustering of risk scores. The color is defined by relative risk scores 

while the size is determined by ϕ value, indicating the robustness of the association (see 
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Methods). The diagonal tiles are colored by the UK Biobank’s disease hierarchy to visualize 

if diseases from the same category cluster together. Associations for the 62 diseases that 

have at least one relative risk ratio higher than four (log2RR ≥ 2) or lower than minus four 

(log2RR ≤ -2) are plotted.

Extended Data Fig. 2. Distribution of median age-of-onset across disease categories.
Points show diseases grouped by categories (individual boxplots). Categories are ordered by 

the median value of the median age-of-onset. The boxplots show the first and third quartiles, 

the median (dark line), and the whiskers extend from the quartiles to the last point in 

1.5xIQR distance to the quartiles.
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Extended Data Fig. 3. The number of significant variants across diseases, age-of-onset clusters, 
and disease categories.
a) Number of diseases for different number of significant variants (pBOLT-LMM≤5e-8). 

Diseases with the highest number of associations (N≥10,000) are given as an inset table. b) 

Comparison of the number of significant associations (y-axis, on a log scale) across age-of-

onset clusters (x-axis) (ANOVA after excluding cluster 4, p = 0.06). Since the y-axis is on a 

log scale, diseases with zero significant associations are not shown on the graph. c) The 

same as b) but for disease categories. Categories are ordered by the median number of 

significant SNPs. The boxplots (b-c) show the first and third quartiles, the median (dark 

line), and the whiskers extend from the quartiles to the last point in 1.5xIQR distance to the 

quartiles.
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Extended Data Fig. 4. The raw and corrected values of genetic similarities within and across age-
of-onset clusters.
a) The difference between genetic similarity within and across age-of-onset clusters, 

calculated between 47 diseases. Y-axis shows the genetic similarity (see Methods). b) The 

same as a) but the y-axis is corrected for disease category and co-occurrence using a linear 

model. This panel is the same as Figure 2b and given here only for easier comparison. The 

boxplots show the first and third quartiles, the median (dark line), and the whiskers extend 

from the quartiles to the last point in 1.5xIQR distance to the quartiles. P-values are 

calculated using F-test on a linear model between genetic similarity scores and different/

same age of onset clusters for panel a and including different/same disease category and 

disease co-occurrence (risk ratio) as covariates in panel b.
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Extended Data Fig. 5. Genetic similarities calculated using the high-definition likelihood (HDL) 
inference method.
a) The correlation between the genetic similarity scores calculated using the SNP overlap-

based odds ratio (x-axis) and HDL (y-axis). Blue points show the similarities calculated 

between diseases in different age of onset clusters and red points show the similarities 

calculated between diseases in the same age of onset cluster. The correlation coefficient and 

p-value are calculated using a twosided Spearman correlation test. The linear regression line 

(blue) and 95% confidence interval (gray shaded area) are shown. b) The difference between 

genetic similarity within and across age-of-onset clusters, calculated between 59 diseases. Y-

axis shows the genetic similarity calculated using HDL. The difference between different 

and same age clusters is tested using a two-sided Wilcoxon test. The boxplots show the first 

and third quartiles, the median (dark line), and the whiskers extend from the quartiles to the 

last point in 1.5xIQR distance to the quartiles.

Extended Data Fig. 6. The overlap between genes associated with selected aging-related traits 
and genes associated with diseases in different clusters.
The x-axis shows the log2 enrichment score, and the y-axis shows the age-of-onset clusters. 

The numbers of genes in each cluster (for both multidisease and multicategory genes) are 

given. The size of the points shows the statistical significance based on a onesided 

permutation test (large points show nominal p-value≤0.05, small ‘x’ indicates non-

significant overlaps – none of the associations are significant after multiple testing 

correction), and the color shows different aging-related GWAS Catalog traits. The colored 

numbers near the points show the numbers of overlapping genes.
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Extended Data Fig. 7. Drug-target gene interaction network for the drugs specifically targeting 
multicategory genes in agedependent clusters.
‘Drug-target gene’ interaction network for the drugs that specifically target multicategory 

cluster 1, cluster 2, or cluster ‘1 & 2’ genes as determined by Fisher’s exact test. Blue 

diamonds show the drugs with a significant association or targeting only one gene in these 

gene groups. Diamonds without written names are only represented with the ChEMBL IDs 

in the datasets and did not have names. Drug labels written in bold are drugs approved for 

different conditions. Circles represent the genes targeted by the significant hits, colored by 

their age-of-onset cluster. Gray circles show the genes targeted by these drugs but are not 

among the gene set of interest.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Code / Software Availability

BOLT-LMM (v2.3.2) (https://data.broadinstitute.org/alkesgroup/BOLT-LMM/)18, PLINK 

(v1.90b6.4) (https://www.cog-genomics.org/plink/)19, and VarMap (https://www.ebi.ac.uk/

thornton-srv/databases/VarMap)20 software were used. All remaining analyses were 

performed using R50 (v3.5.0) (https://cran.r-project.org/), using RStudio IDE (v1.1.453) 

(https://rstudio.com/). The following R packages were used: TSclust12 (v1.2.4), cluster 

(v2.0.7.1), HDL22 (v1.3.8) (https://github.com/zhenin/HDL/), VariantAnnotation25 

(v1.28.13), TxDb.Hsapiens.UCSC.hg19.knownGene26 (v3.2.2), GenomicRanges27 

(v1.32.3), biomaRt28 (v2.36.1), RCurl51 (v1.98.1.2), jsonlite52 (v1.7.1), rtracklayer30 

(v1.40.3), liftOver31 (v1.12.0), goseq41 (v1.40.0), preprocessCore46 (v1.50.0) and LCV24 

method (github.com/lukejoconnor/LCV) implemented in R. The following packages were 

used for data handling: tidyverse53 (v1.3.0), data.table54 (v1.12.4). The following packages 

were used for data visualisation: igraph55 (v1.2.1), ggnetwork56 (v0.5.8), ggforce57 

(v0.2.2.9000), ggpubr58 (v0.4.0), ggrepel59 (v0.8.2), GGally60 (v2.0.0), RColorBrewer61 

(v1.1.2), scales62 (v1.1.1), ggthemes63 (v4.2.0), pheatmap64 (v1.0.12).

All other analysis is done using custom codes written in bash (v4.2) or R (v3.5.0) and are 

available in GitHub: https://github.com/mdonertas/ukbb_ageonset

Data Availability

The primary data used in the study is the UK Biobank resource1, which requires an 

application for access (https://www.ukbiobank.ac.uk/). This study is conducted under 

application number 30688. The UK Biobank GWAS summary statistics provided by Neale 

Lab were downloaded for Townsend Deprivation Index and diet regimes (http://

www.nealelab.is/uk-biobank)23. GTEx v8 eQTL and expression data were accessed on 

20.10.2020 via the GTEx data portal (https://www.gtexportal.org/home/datasets)29. GWAS 

Catalog v1.0.2 e9633 dataset was accessed on 30-07-2019 via https://www.ebi.ac.uk/gwas/

docs/file-downloads. The gene lists available in “Human Ageing Genomic Resources”34,35 

were downloaded using https://genomics.senescence.info/download.html and CellAge data 

was kindly made available before the data release on Oct 02, 2019 by Avelar et al36. We 

access ChEMBL (https://www.ebi.ac.uk/chembl/)39 and PubChem (https://

pubchem.ncbi.nlm.nih.gov/)37 using their APIs, and UniChem (https://www.ebi.ac.uk/

unichem/)38 mappings are used to map PubChem CIDs to ChEMBL IDs. DGIdb (https://

www.dgidb.org/)40 was used to compile drug-target gene interactions. Results of Adelman et 

al. (2019)47 and Marttila et al. (2015)48 age-related methylation studies were downloaded as 

article supplementary files. We accessed 1000 Genomes49 allele frequencies using the vcf 

file provided on the 1000 Genomes project website (https://www.internationalgenome.org/

data).

The full set of GWAS results from this study can be accessed using BioStudies (S- 

BSST407) and all other results generated in the analysis are provided as Supplementary 

Datasets and Tables.
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Figure 1. 
Age-of-onset profiles clustered by the PAM algorithm, using dissimilarities calculated with 

temporal correlation measure (CORT). The y-axis shows the number of individuals who 

were diagnosed with the disease at a certain age, divided by the total number of people 

having that disease. Values were calculated by taking the median value of 100 permutations 

of 10,000 people in the UKBB (see Methods). The x-axis shows the age-of-onset in years. 

Each line denotes one disease and is colored by disease categories. The heatmap in the right 

upper corner shows the percent overlap between categories and clusters. Numbers give the 

percentage of an age-of-onset cluster belonging to each category. Supplementary Fig. 8-17 

shows the distributions for each disease separately.
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Figure 2. Genetic similarities and mediated pleiotropy across diseases.
(a) Network representation of the genetic similarities calculated by the overlaps between 

significantly associated SNPs between diseases. Nodes (n=47) show diseases with a 

significant genetic similarity to at least one disease and are colored by the age-of-onset 

cluster. Edges (n=167) show the genetic similarity corrected by disease categories and co-

occurrences. (b) The difference between genetic similarity within and across the age-of-

onset clusters. The y-axis shows genetic similarity corrected by category and co-occurrence 

(raw values are available in Extended Data Fig. 4). The x-axis groups similarities into 
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different or same age-of-onset clusters. The boxplots show the first and third quartiles, the 

median (dark line) and the whiskers extend from the quartiles to the last point in 1.5xIQR 

distance to the quartiles. The p-value is calculated using F-test on a linear model between 

genetic similarity scores and different/same age of onset clusters, including different/same 

disease category and disease co-occurrence (risk ratio) as covariates. (c) Network 

representation of the causal relationships between diseases calculated using LCV. Each node 

(n=48) shows a disease, colored by the age-of-onset cluster. Size of the nodes represent the 

number of significant causal relationships between diseases, including both in and out 

degrees. Arrows show the causal relationship between pairs with FDR corrected pLCV≤0.01 

and GCP>0.6. The inset bar plot shows the percent significant causal relationships among all 

possible pairs (y-axis) between disease 1 (x-axis) and disease 2 (bars colored by the age-of-

onset).
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Figure 3. Enrichment of disease-associated genes in known longevity modulators and gene 
ontology categories.
a) Overlap between known aging-related genes in databases and genes associated with 

diseases in different clusters. The x-axis shows log2 enrichment score, and the y-axis shows 

the age-of-onset clusters. The numbers of genes in each cluster (for both Multidisease and 

Multicategory genes) are given. The size of the points shows the statistical significance 

based on a one-sided permutation test (large points show nominal p- value≤0.05, and those 

annotated with a black ‘*’ have FDR corrected p-value≤0.1. Overlaps shown with small ‘x’ 

indicate non-significant associations) and the color shows different databases. The colored 
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numbers near the points show the numbers of overlapping genes. b- f) Gene Ontology (GO) 

Enrichment results for genes associated with diseases in b) Cluster 1, c) Cluster 2, d) Cluster 

3, e) Cluster 2 & 3, f) Cluster ‘1 & 2’, g) Cluster ‘1 & 2 & 3’. Representative GO categories 

for significantly enriched categories (BY-adjusted p-value ≤ 0.05 of hypergeometric tests 

using Wallenius non-central hypergeometric distribution) are listed on the y-axis (see 

Methods). Log2 enrichment scores are given on the x-axis. The color of the bar shows the 

result for multidisease and multicategory genes. There was no significant enrichment for 

cluster 1 & 3.

Dönertaş et al. Page 39

Nat Aging. Author manuscript; available in PMC 2021 October 01.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Figure 4. 
Risk allele frequencies for diseases associated with different age-of-onset clusters. Risk 

allele frequency distributions (y-axis) for different age-of-onset clusters (x-axis) in the 

UKBB for a) SNPs associated with one disease (excluding antagonistic associations), b) 

SNPs specific to one cluster (excluding antagonistic associations) and c) SNPs that have 

antagonistic association with cluster 1 and 2 (excluding agonists between cluster 1 and 2). d) 

The same as panel c but for different 1000 Genomes super-populations (ALL: complete 

1000 Genomes cohort, AFR: African, AMR: Ad Mixed American, EAS: East Asian, EUR: 

European, SAS: South Asian). The nominal p-values are shown for each comparison and are 

calculated using two-sided t-test. The boxplots show the first and third quartiles and the 

whiskers extend from the quartiles to the last point in 1.5xIQR distance to the quartiles. 

Median risk allele frequencies are also noted on the plots.
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Table 1
Contingency table for disease comorbidities.

 Disease B No disease B Total

Disease A N ab N anb T a

No disease A N nab N nanb T na
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