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Abstract. We consider boundary element methods where the Calderón projector is used for the
system matrix and boundary conditions are weakly imposed using a particular variational boundary
operator designed using techniques from augmented Lagrangian methods. Regardless of the boundary
conditions, both the primal trace variable and the flux are approximated. We focus on the imposition
of Dirichlet conditions on the Helmholtz equation, and extend the analysis of the Laplace problem
from Boundary element methods with weakly imposed boundary conditions [3] to this case. The
theory is illustrated by a series of numerical examples.
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1. Introduction. In a previous paper [3], we introduced a method of weakly
imposing boundary conditions on the boundary element method, inspired by Nitsche’s
method [16] and Babus̆ka’s penalty method [1] for the finite element method. Weak
imposition of boundary conditions here means that neither the Dirichlet trace nor
the Neumann trace is imposed exactly, instead an h-dependent boundary condition is
imposed that is weighted in such a way that optimal error estimates may be derived
and the exact boundary condition is recovered in the asymptotic limit.

In [3], we introduced the weak imposition of Dirichlet, Neumann and Robin
boundary conditions on Laplace’s equation; in [7], we applied this method to Sig-
norini contact conditions, again for Laplace’s equation. In this paper, we look at how
this method and its analysis can be extended to be used for the Helmholtz equa-
tion, focussing on the exterior Helmholtz Dirichlet problem: Find u = uinc + uscat ∈
H1

loc(∆,Ω+) such that

−∆u− k2u = 0 in Ω+,(1.1a)

∂uscat

∂ |x|
− ikuscat = o(|x|−1

) as |x| → ∞,(1.1b)

u = gD on Γ,(1.1c)

where Ω– ⊂ R3 is a bounded interior open domain with polyhedral boundary Γ, Ω+ =
R3\Ω– is the open domain exterior to Ω–, ν is the unit normal to the surface Γ pointing
outwards into Ω+, uinc is a known incident wave, and k ∈ R is the wavenumber of the
problem. We assume that gD ∈ H1/2(Γ). Whenever it is ambiguous, we write νx to
denote the outward-pointing normal at the point x.

Due to the Sommerfeld radiation condition (1.1b), the problem (1.1) has a unique
solution [20]. The formulation of Helmholtz problems using boundary integral equa-
tions are covered in detail in [15], and their discretisation is examined in [23, section
7.6].
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The use of discretisation and the boundary element method to solve Helmholtz
problems has been well studied. For sufficiently small wavenumbers k, and sufficiently
smooth boundaries, the operators involved are coercive, and hence a priori error
bounds can be derived [22, 21, 8]. For values of k and domains for which coercivity
cannot be shown, error bounds have been shown that involve both the mesh size h
and the wavenumber k [2, 19]. If the wavenumber is varied, then the mesh must be
refined to keep the value of hk constant in order to maintain a low error [10]. The
use of hp-BEM methods for Helmholtz has also been studied and analysed [13, 14].

The use of blocked operator formulations to solve Helmholtz problems is com-
mon for domain decomposition problems, where the boundary element method is
used in multiple domains with different wavenumbers [17, 12], or a combination of
finite and boundary element methods can be used [11]. To avoid the appearance of
spurious resonances in solutions, coupled stabilised formulations can be solved [9].
The formulations presented in this paper are, in general, more expensive than stan-
dard formulations, as they require the assembly of the full Calderón system. In these
cases, however, larger blocked systems are already being assembled, and so it may be
possible to impose boundary conditions on them weakly with little additional cost.

The method proposed in this paper is applicable to low and medium frequency
problems. In practice, preconditioning limits the method’s effectiveness for higher
frequency problems. However, one main advantage of this method is its immunity to
eigenvalues of the interior problem: the solution to (1.1) can be found for any real
wavenumber using our method without any modification to stabilise against eigenval-
ues being necessary.

Although we do not present an analysis of problems with mixed boundary condi-
tions, we discuss our method’s potential application to such problems in section 6. As
we discussed in [3] for Laplace problems, our method of weakly imposing boundary
conditions is advantageous when solving mixed problems, as they can be implemented
by assembling different sparse terms on different parts of the mesh without needing
to adapt the Calderón part of the formulation.

In section 2, we define the boundary operators used in our formulations, and
present some of their important properties. In section 3, we derive our formulation
for Dirichlet Helmholtz problems. In section 4, we analyse this formulation, and prove
a priori error bounds. In section 5, we present some numerical experiments, and in
section 6 we give some concluding remarks.

2. Boundary operators. We define the Green’s function for the Helmholtz
operator in R3 by

(2.1) G(x,y) =
eik|x−y|

4π|x− y|
.

In this paper, we focus on the problem in R3. Similar analysis can be used for problems

in R2, in which case this definition should be replaced by G(x,y) = i
4H

(1)
0 (k |x− y|),

where H
(1)
0 is a Hankel function of the first kind.

In the standard fashion (see eg [23, chapter 6]), we define the single layer potential
operator, V : H−1/2(Γ) → H1

loc(Ω
+ ∪ Ω–), and the double layer potential operator,
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K : H1/2(Γ) → H1
loc(Ω

+ ∪ Ω–), for v ∈ H1/2(Γ), µ ∈ H−1/2(Γ), and x ∈ R3 \ Γ by

(Vµ)(x) :=
∫
Γ

G(x,y)µ(y) dy,(2.2)

(Kv)(x) :=

∫
Γ

∂G(x,y)

∂νy
v(y) dy.(2.3)

We recall that νy denotes the normal to the surface Γ at the point y pointing outwards
into Ω+.

We define the space H1
loc(∆,Ω+) := {v ∈ H1

loc(Ω
+) : ∆v ∈ L2(Ω+)}, and then

we define the exterior Dirichlet and Neumann traces, γ+
D : H1

loc(Ω
+) → H1/2(Γ) and

γ+
N : H1

loc(∆,Ω+) → H−1/2(Γ), by

γ+
Df(x) := lim

Ω+∋y→x∈Γ
f(y),(2.4)

γ+
Nf(x) := lim

Ω+∋y→x∈Γ
νx · ∇f(y).(2.5)

The interior traces γ–
D and γ–

N can be defined in the same way but taking the limit
from within Ω–.

We recall that if the Dirichlet and Neumann traces of a solution of (1.1) are
known, then the potentials (2.2) and (2.3) may be used to reconstruct the function in
Ω+ using the following relation.

(2.6) u = K(γ+
Du)− V(γ+

Nu).

It is also known [23, lemma 6.6] that for all µ ∈ H−1/2(Γ), the function

(2.7) uV
µ := Vµ

satisfies −∆uV
µ − k2uV

µ = 0 in R3 \ Γ. Similarly, for the double layer potential there

holds [23, lemma 6.10] that for all v ∈ H1/2(Γ), the function

(2.8) uK
v := Kv

satisfies −∆uK
v − k2uK

v = 0 in R3 \ Γ.
We define {γDf}Γ and {γNf}Γ to be the averages of the interior and exterior

Dirichlet and Neumann traces of f . We define the single layer, double layer, ad-
joint double layer, and hypersingular boundary integral operators, V : H−1/2(Γ) →
H1/2(Γ), K : H1/2(Γ) → H1/2(Γ), K′ : H−1/2(Γ) → H−1/2(Γ), and W : H1/2(Γ) →
H−1/2(Γ), by

(Kv)(x) := {γDKv}Γ (x), (Vµ)(x) := {γDVµ}Γ (x),(2.9a)

(Wv)(x) := −{γNKv}Γ (x), (K′µ)(x) := {γNVµ}Γ (x),(2.9b)

where x ∈ Γ, v ∈ H1/2(Γ) and µ ∈ H−1/2(Γ) [23, chapter 6].
We define JγDKΓ := γ+

D −γ–
D and JγNKΓ := γ+

N −γ–
N to be the jumps of the interior

and exterior Dirichlet and Neumann traces across the boundary. In [23, chapter 6],
the following jump conditions are shown:

JγDKΓ V = JγNKΓ K = 0, JγNKΓ V = − JγDKΓ K = −Id,(2.10)

where Id is the identity operator.
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It follows from (2.9) and (2.10) that

γ+
DV = V, γ+

NV = − 1
2 Id+ K′,(2.11a)

γ+
DK = 1

2 Id+ K, γ+
NK = −W,(2.11b)

γ–
DV = V, γ–

NV = 1
2 Id+ K′,(2.11c)

γ–
DK = − 1

2 Id+ K, γ–
NK = −W.(2.11d)

We let ⟨·, ·⟩Γ denote the H1/2(Γ)–H−1/2(Γ) duality pairing. For all v, w ∈
H1/2(Γ), µ, η ∈ H−1/2(Γ), and a ∈ C, this pairing satisfies

⟨v + w, µ⟩Γ = ⟨v, µ⟩Γ + ⟨w, µ⟩Γ , ⟨v, µ+ η⟩Γ = ⟨v, µ⟩Γ + ⟨v, η⟩Γ ,(2.12a)

⟨av, µ⟩Γ = a ⟨v, µ⟩Γ , ⟨v, aµ⟩Γ = a ⟨v, µ⟩Γ ,(2.12b)

where a denotes the complex conjugate of a.
Following [23, section 2.5], the norms ∥·∥H1/2(Γ) and ∥·∥H−1/2(Γ) are defined, for

v ∈ H1/2(Γ) and µ ∈ H−1/2(Γ), by

∥v∥H1/2(Γ) :=

(
∥v∥L2(Γ) +

∫
Γ

∫
Γ

(v(x)− v(y))
2

|x− y|3
dx dy

) 1
2

,(2.13)

∥µ∥H−1/2(Γ) := sup
w∈H1/2(Γ)\{0}

|⟨w, µ⟩Γ|
∥w∥H1/2(Γ)

.(2.14)

The following results are known for the single layer and hypersingular operators
in R3.

Lemma 2.1 (G̊arding’s inequality for V). There exists a compact operator TV :
H−1/2(Γ) → H1/2(Γ) and αV > 0 such that

αV ∥µ∥2H−1/2(Γ) ⩽ ⟨Vµ, µ⟩Γ + ⟨TVµ, µ⟩Γ , ∀µ ∈ H−1/2(Γ).(2.15)

Proof. [23, theorem 6.40].

Lemma 2.2 (G̊arding’s inequality for W). There exists a compact operator TW :
H1/2(Γ) → H−1/2(Γ) and αW > 0 such that

αW ∥v∥2H1/2(Γ) ⩽ ⟨Wv, v⟩Γ + ⟨TWv, v⟩Γ , ∀v ∈ H1/2(Γ).(2.16)

Proof. This follows by applying the proof of [23, theorem 6.40] to the hypersin-
gular operator.

The following boundedness results are also known.

Lemma 2.3 (Boundedness). There exist CV, CK, CK′ , CW > 0 such that

i) ∥Vµ∥H1/2(Γ) ⩽ CV ∥µ∥H−1/2(Γ) ∀µ ∈ H−1/2(Γ),(2.17)

ii) ∥Kv∥H1/2(Γ) ⩽ CK ∥v∥H1/2(Γ) ∀v ∈ H1/2(Γ),(2.18)

iii) ∥K′µ∥H−1/2(Γ) ⩽ CK′ ∥µ∥H−1/2(Γ) ∀µ ∈ H−1/2(Γ),(2.19)

iv) ∥Wv∥H−1/2(Γ) ⩽ CW ∥v∥H1/2(Γ) ∀v ∈ H1/2(Γ).(2.20)

Proof. [23, sections 6.2–6.5 and 6.9].
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We define the exterior Calderón projector by

(2.21) C+ :=

(
1
2 Id+ K −V
−W 1

2 Id− K′

)
,

and recall that if u is a solution of (1.1a) then it satisfies

(2.22) C+

(
γ+
Du

γ+
Nu

)
=

(
γ+
Du

γ+
Nu

)
.

When considering eigenvalues of the Laplacian, we will make use of the interior
Calderón projector. This is defined by

(2.23) C– :=

(
1
2 Id− K V

W 1
2 Id+ K′

)
.

If u– is a solution of an interior Helmholtz problem, then it satisfies

(2.24) C–

(
γ–
Du

–

γ–
Nu

–

)
=

(
γ–
Du

–

γ–
Nu

–

)
.

Taking the product of the exterior identity (2.22) with two test functions, we
arrive at the following equations.〈

γ+
Du, µ

〉
Γ
=
〈
( 12 Id+ K)γ+

Du, µ
〉
Γ
−
〈
Vγ+

Nu, µ
〉
Γ

∀µ ∈ H−1/2(Γ),(2.25) 〈
γ+
Nu, v

〉
Γ
=
〈
( 12 Id− K′)γ+

Nu, v
〉
Γ
−
〈
Wγ+

Du, v
〉
Γ

∀v ∈ H1/2(Γ).(2.26)

For a more compact notation, we write u in the place of γ+
Du and introduce

λ = γ+
Nu and the exterior Calderón form

(2.27) C+[(u, λ), (v, µ)] :=
〈
( 12 Id+ K)u, µ

〉
Γ
− ⟨Vλ, µ⟩Γ

+
〈
( 12 Id− K′)λ, v

〉
Γ
− ⟨Wu, v⟩Γ .

We may then rewrite (2.25) and (2.26) as

(2.28) C+[(u, λ), (v, µ)] = ⟨u, µ⟩Γ + ⟨λ, v⟩Γ .

We will also frequently use the multitrace form, defined by

(2.29) A[(u, λ), (v, µ)] := −⟨Ku, µ⟩Γ + ⟨Vλ, µ⟩Γ + ⟨K′λ, v⟩Γ + ⟨Wu, v⟩Γ ,

and the multitrace form with compact perturbation,

(2.30) AT[(u, λ), (v, µ)] := −⟨Ku, µ⟩Γ + ⟨(V + TV)λ, µ⟩Γ
+ ⟨K′λ, v⟩Γ + ⟨(W + TW)u, v⟩Γ ,

where TV and TW are the compact operators from Lemmas 2.1 and 2.2. Using (2.29),
we may rewrite (2.28) as

(2.31) A[(u, λ), (v, µ)] = − 1
2 ⟨u, µ⟩Γ − 1

2 ⟨λ, v⟩Γ .

To quantify the two traces we introduce the product space

V := H1/2(Γ)×H−1/2(Γ).
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We also introduce the associated norm

∥(v, µ)∥V := ∥v∥H1/2(Γ) + ∥µ∥H−1/2(Γ) .

Using the results in Lemmas 2.1 to 2.3, we obtain the continuity and coercivity
of A.

Lemma 2.4 (Continuity). There exists C > 0 such that

|A[(w, η), (v, µ)]| ⩽ C ∥(w, η)∥V ∥(v, µ)∥V ∀(w, η), (v, µ) ∈ V.

Proof. Use Lemma 2.3.

Lemma 2.5 (Coercivity). There exists α > 0 and compact operators TV :
H−1/2(Γ) → H1/2(Γ) and TW : H1/2(Γ) → H−1/2(Γ) such that

α
(
∥v∥2H1/2(Γ) + ∥µ∥2H−1/2(Γ)

)
⩽ A[(v, µ), (v, µ)] + ⟨TWv, v⟩Γ + ⟨TVµ, µ⟩Γ

∀(v, µ) ∈ V.

Proof. Use the coercivity of V and W from Lemmas 2.1 and 2.2 and let α =
min(αW, αV).

3. Derivation of a formulation for Helmholtz Dirichlet problems. In
this section, we derive a formulation for the exterior Helmholtz problem with non-
homogeneous Dirichlet conditions.

As in [3], we write the boundary condition as

(3.1) RΓ(u, λ) = 0,

and look to solve

(3.2) A[(u, λ), (v, µ)] = − 1
2 ⟨u, µ⟩Γ − 1

2 ⟨λ, v⟩Γ +
〈
RΓ(u, λ), β1v + β2µ

〉
Γ
,

for some β1, β2 ∈ C.

3.1. Dirichlet boundary condition. To impose a Dirichlet boundary con-

dition, we choose β1 = −iβ
1/2
D , β2 = iβ

−1/2
D , where βD will be identified with a

mesh-dependent penalty parameter, and

(3.3) RD(u, λ) := iβ
1/2
D (gD − u)

where gD ∈ H1/2(Γ) is the Dirichlet data.
Inserting this into (3.2), we obtain the formulation

(3.4) A[(u, λ), (v, µ)]− 1
2 ⟨u, µ⟩Γ + 1

2 ⟨λ, v⟩Γ + ⟨βDu, v⟩Γ =
〈
gD, βDv − µ

〉
Γ
.

This leads us to the following formulation for the Helmholtz Dirichlet problem:
Find (u, λ) ∈ V such that

A[(u, λ), (v, µ)] + B+
D [(u, λ), (v, µ)] = L+

D(v, µ) ∀(v, µ) ∈ V,(3.5)

where

B+
D [(u, λ), (v, µ)] :=

1
2 ⟨λ, v⟩Γ − 1

2 ⟨u, µ⟩Γ + ⟨βDu, v⟩Γ ,(3.6)

L+
D(v, µ) :=

〈
gD, βDv − µ

〉
Γ
.(3.7)

We now show that a solution of the Helmholtz problem (1.1) is also a solution of
this weak formulation.
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Proposition 3.1. If u is a solution of (1.1), then (γ+
Du, γ+

Nu) is a solution of
(3.5).

Proof. Let (v, µ) ∈ V. By (2.31), we see that

(A+ B+
D)[(γ

+
Du, γ+

Nu), (v, µ)]

= − 1
2

〈
γ+
Du, µ

〉
Γ
− 1

2

〈
γ+
Nu, v

〉
Γ
+ 1

2

〈
γ+
Nu, v

〉
Γ
− 1

2

〈
γ+
Du, µ

〉
Γ
+
〈
βDγ

+
Du, v

〉
Γ
,

= −
〈
γ+
Du, µ

〉
Γ
+
〈
βDγ

+
Du, v

〉
Γ

=
〈
γ+
Du, βDv − µ

〉
Γ
.

Using (1.1c), we see that

(A+ B+
D)[(γ

+
Du, γ+

Nu), (v, µ)] =
〈
gD, βDv − µ

〉
Γ

= L+
D(v, µ).

To discretise (3.5), we introduce a family of conforming, shape regular triangula-
tions of Γ, {Th}h>0, indexed by the largest element diameter of the mesh, h. We then
consider the following finite element spaces.

Pp
h := {vh ∈ C0(Γ) : vh|T ∈ Pp(T ), for every T ∈ Th},

DPq
h := {vh ∈ L2(Γ) : vh|T ∈ Pq(T ), for every T ∈ Th},

where Pp(T ) denotes the space of polynomials of order less than or equal to p on a
triangle T , and {Γi}Mi=1 are the polygonal faces of Γ. We observe that Pp

h ⊂ H1/2(Γ)
and DPq

h ⊂ L2(Γ).
We let Vh be a discrete product space: in our case, we take this to be equal to

either Pp
h(Γ)×DPq

h(Γ) or P
p
h(Γ)× Pq

h(Γ), although a wide range of other choices are
possible.

Using the space Vh, we look to solve the discrete problem: Find (uh, λh) ∈ Vh

such that

A[(uh, λh), (vh, µh)] + B+
D [(uh, λh), (vh, µh)] = L+

D(vh, µh) ∀(vh, µh) ∈ Vh.(3.8)

We define the norm

∥(v, µ)∥BD
:= ∥(v, µ)∥V + |βD|1/2 ∥v∥L2(Γ) .

We note that since βD may be dependent on h, this norm is not equivalent to the
norm ∥·∥V independently of h.

4. Analysis. In this section, we analyse the formulation derived in the previous
section. Throughout the analysis, we will use the following notation.

Definition 4.1. For two quantities a and b that may vary with h, we write a ≲ b
if there is a constant h0 > 0 and an h-independent constant c ∈ R such that a ⩽ cb
for all h < h0. We write a ≂ b if a ≲ b and b ≲ a.

4.1. Analysis of the continuous problem. We begin by analysing the con-
tinuous problem (3.5). In the same way as we did in [3], we prove that the form
A+ B+

D is continuous.

Proposition 4.2 (Continuity). There exists M > 0 such that ∀(w, η), (v, µ) ∈
V, ∣∣A[(w, η), (v, µ)] + B+

D [(w, η), (v, µ)]
∣∣ ⩽ M ∥(w, η)∥BD

∥(v, µ)∥BD
.
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Proof. This can be proved in the same way as [3, proposition 4.13], but with |βD|
in the place of βD.

Eigenvalues of the interior Laplacian have an effect on the boundary integral
formulation of the exterior problem. These eigenvalues are defined as follows.

Definition 4.3 (Eigenvalues of the Laplacian). If the interior Laplace problem:
Find u such that

−∆u = lDu in Ω–,(4.1a)

u = 0 on Γ,(4.1b)

has multiple solutions, then lD is called a Dirichlet eigenvalue of the interior Lapla-
cian.

If the interior Laplace problem: Find u such that

−∆u = lNu in Ω–,(4.2a)

∂u

∂ν
= 0 on Γ,(4.2b)

has multiple solutions that differ by more than a constant, then lN is called a Neumann
eigenvalue of the interior Laplacian.

If the interior Laplace problem: Find u such that

−∆u = lRu in Ω–,(4.3a)

∂u

∂ν
+ βDu = 0 on Γ,(4.3b)

has multiple solutions, then we call lR a Robin eigenvalue of the interior Laplacian
with Robin parameter βD.

We now prove some important properties of these eigenvalues.

Lemma 4.4. For l ∈ C, at most one of the following statements is true:
• l is a Dirichlet eigenvalue of the interior Laplacian;
• l is a Neumann eigenvalue of the interior Laplacian;
• l is a Robin eigenvalue of the interior Laplacian (for some βD ̸= 0).

Proof. By [23, section 7.6], we know that a value cannot be both a Dirichlet and
a Neumann eigenvalue.

If l is both a Dirichlet and a Robin eigenvalue, then there exist u1 and u2 satisfying
(4.1a) whose values on Γ satisfy u1 = u2 = 0 and

0 =
∂u1

∂ν
+ βDu1 =

∂u1

∂ν
,

0 =
∂u2

∂ν
+ βDu2 =

∂u2

∂ν
.

If u1 and u2 differed by a constant, their values on Γ would differ by the same constant,
contradicting the boundary conditions u1 = u2 = 0. Therefore l is also a Neumann
eigenvalue, which is a contradiction.

Similarly, if l is both a Neumann and a Robin eigenvalue, then in the same way
we see that l is also a Dirichlet eigenvalue, leading to a similar contradiction.

Lemma 4.5. If Im(βD) ̸= 0, then the interior Laplacian with Robin parameter βD

has no non-trivial real Robin eigenvalues.
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Proof. Let βD ∈ C with Im(βD) ̸= 0. Suppose that lR ∈ R \ {0} is a Robin
eigenvalue of the interior Laplacian with corresponding eigenfunction uR, ie

−∆uR = lRuR in Ω–,

∂uR

∂ν
+ βDuR = 0 on Γ.

Consider the weak formulation of this problem: Find uR ∈ H1(Ω) such that

⟨∇uR,∇v⟩Ω + βD ⟨uR, v⟩Γ = lR ⟨uR, v⟩Ω , ∀v ∈ H1(Ω).

Taking v = uR leads to

∥∇uR∥2L2(Ω) + βD ∥uR∥2L2(Γ) = lR ⟨uR, uR⟩2Ω .

Taking the imaginary part of this gives

Im(βD) ∥uR∥2L2(Γ) = 0.

As Im(βD) ̸= 0, this implies that ∥uR∥L2(Γ) = 0, and so uR = 0 on Γ.
This, however, implies that uR is also a Dirichlet eigenfunction of the Laplacian

with eigenvalue lR, contradicting Lemma 4.4. Hence no such real eigenvalue exists.

We now proceed to prove that the form A+ B+
D is injective. First we prove this

when k2 is not a Dirichlet eigenvalue. Note that by Lemma 4.5, the assumption that
k2 is not a Robin eigenvalue of the interior Laplacian holds whenever Im(βD) ̸= 0.

Lemma 4.6 (Injectivity, part one). Let (v, µ) ∈ V. If k2 is not a Dirichlet
eigenvalue of the interior Laplacian and k2 is not a Robin eigenvalue of the interior
Laplacian with Robin parameter βD, then ∀(w, η) ∈ V

A[(v, µ), (w, η)] + B+
D [(v, µ), (w, η)] = 0

implies that (v, µ) = 0.

Proof. Suppose that (v, µ) ∈ V such that

(A+ B+
D)[(v, µ), (w, η)] = 0 ∀(w, η) ∈ V.(4.4)

Taking w = 0 in (4.4), we see that, for all η ∈ H−1/2(Γ),

⟨Vµ, η⟩Γ =
〈
( 12 Id+ K)v, η

〉
Γ
.(4.5)

k2 is not a Dirichlet eigenvalue of the interior Laplacian, so by [23, section 7.6]
we see that V is invertible, and (as (4.5) is a direct boundary integral formulation)
there exists a solution to the interior Helmholtz equation p̃ ∈ H1(Ω–) such that

γ–
Dp̃ = v,

γ–
Np̃ = µ.

Taking η = 0 in (4.4), we see that, for all w ∈ H1/2(Γ),

0 = ⟨Wv, w⟩Γ + ⟨βDv, w⟩Γ +
〈
( 12 Id+ K′)µ,w

〉
Γ
.(4.6)
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We also know from the second line of the interior Calderón identity (2.24) that

⟨Wv, w⟩Γ +
〈
( 12 Id+ K′)µ,w

〉
Γ
= ⟨Wγ–

Dp̃, w⟩Γ +
〈
( 12 Id+ K′)γ–

Np̃, w
〉
Γ

(4.7)

= ⟨γ–
Np̃, w⟩Γ(4.8)

= ⟨µ,w⟩Γ ,(4.9)

and so using (4.6) we see that

0 = ⟨µ,w⟩Γ + ⟨βDv, w⟩Γ ,(4.10)

and so µ = −βDv.
This means that p̃ is the solution of (4.3) with lR = k2. Since k2 is not a Robin

eigenvalue, the unique solution of (4.3) is p̃ = 0, and so v = µ = 0.

In order to prove injectivity at Dirichlet eigenvalues, we require the following
lemma.

Lemma 4.7. If k2 is not a Neumann eigenvalue of the interior Laplacian, then
the operator 1

2 Id+ K′ is surjective.

Proof. We prove this lemma using [6, theorem 2.20]. This states that if a linear
operator F : H−1/2(Γ) → H−1/2(Γ) is densely defined and closed, then F is surjective
if and only if

∥v∥H1/2(Γ) ⩽ c ∥F′v∥H1/2(Γ) ∀v ∈ H1/2(Γ).

Let F = 1
2 Id+K′. F is (trivially) densely defined. Using (2.19), we see that for all

v ∈ H1/2(Γ)

∥Fv∥H1/2(Γ) ⩽
∥∥ 1
2v
∥∥
H1/2(Γ)

+ ∥K′v∥H1/2(Γ)

⩽ ( 12 + CK′) ∥v∥H1/2(Γ) ,

and so F is bounded. This implies that F is closed.
Taking the adjoint, we see that F′ = 1

2 Id+K. In [23, section 7.6], it is shown that
if k2 is not a Neumann eigenvalue of the interior Laplacian, then the equation

F′v = g

has a unique solution for any g ∈ H1/2(Γ). This implies that the operator (F′)
−1

is

well-defined. As F is bounded, it follows from [6, corollary 2.7] that (F′)
−1

is also
bounded. Hence,

∥v∥H1/2(Γ) =
∥∥∥(F′)

−1
g
∥∥∥
H1/2(Γ)

⩽ c ∥g∥H1/2(Γ)

= c ∥F′v∥H1/2(Γ) .

We therefore conclude by [6, theorem 2.20] that F is surjective.

We can now prove that A+ B+
D is injective when k2 is a Dirichlet eigenvalue.

Lemma 4.8 (Injectivity, part two). Let (v, µ) ∈ V. If k2 is a Dirichlet eigenvalue
of the interior Laplacian, then ∀(w, η) ∈ V

A[(v, µ), (w, η)] + B+
D [(v, µ), (w, η)] = 0

implies that (v, µ) = 0.
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Proof. Suppose that (v, µ) ∈ V such that

(A+ B+
D)[(v, µ), (w, η)] = 0 ∀(w, η) ∈ V.(4.11)

Taking w = 0 in (4.11), we see that, for all η ∈ H−1/2(Γ),

⟨Vµ, η⟩Γ =
〈
( 12 Id+ K)v, η

〉
Γ
.(4.12)

As k2 is a Dirichlet eigenvalue of the interior Laplacian, then we see by Lemma 4.4
that k2 is not a Neumann eigenvalue or a Robin eigenvalue.

As k2 is not a Neumann eigenvalue, we see by [23, section 7.6] that the equation〈
( 12 Id+ K)u, η

〉
Γ
= ⟨g, η⟩Γ ∀η ∈ H−1/2(Γ)

has a unique solution. By (4.12), we see that v is the solution of this equation with
g = Vµ.

Let p̃ = Vµ−Kv. By (2.7) and (2.8), we see that

−∆p̃− k2p̃ = 0 in Ω–.(4.13)

Taking the Dirichlet trace of p̃ and applying (4.12), we see that on Γ,

γ–
Dp̃ = Vµ+ ( 12 Id− K)v

= ( 12 Id+ K)v + ( 12 Id− K)v

= v.(4.14)

We therefore conclude, using the first line of the interior Calderón identity (2.24) and
(4.12), that

Vγ–
Np̃ = ( 12 Id+ K)γ–

Dp̃

= ( 12 Id+ K)v

= Vµ.(4.15)

Note that as k2 is a Dirichlet eigenvalue, V is not injective so this does not necessarily
imply that γ–

Np̃ = µ.
As k2 is not a Neumann eigenvalue, we can apply Lemma 4.7 to show that the

boundary integral equation

( 12 Id+ K′)f = µ− γ–
Np̃.(4.16)

has at least one solution f ∈ H−1/2(Γ). Let q̃ = Vf . By (2.7), we see that

−∆q̃ − k2q̃ = 0 in Ω–.(4.17)

Taking the Neumann trace of q̃ and using (2.11c) and (4.16), we see that on Γ,

γ–
Nq̃ = γ–

N(Vf)
= ( 12 Id+ K′)f

= µ− γ–
Np̃.(4.18)

We know from the first line of the interior Calderón identity (2.24) that

( 12 Id+ K)γ–
Dq̃ = Vγ–

Nq̃.
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Applying (4.18) then using (4.15) gives

( 12 Id+ K)γ–
Dq̃ = V(µ− γ–

Np̃)

= 0.(4.19)

By [23, lemma 7.6], 1
2 Id+K is injective, so γ–

Dq̃ = 0. By the interior Calderón identities
(2.24), this implies that ( 12 Id− K′)γ–

Nq̃ = 0, and so by (4.18),

( 12 Id− K′)γ–
Np̃ = ( 12 Id− K′)µ.(4.20)

Using (4.20) and the second line of the interior Calderón identity (2.24), we see
that, for all w ∈ H1/2(Γ),

⟨Wv, w⟩Γ +
〈
( 12 Id+ K′)µ,w

〉
Γ
= ⟨Wv, w⟩Γ + ⟨µ,w⟩Γ −

〈
( 12 Id− K′)µ,w

〉
Γ

= ⟨Wγ–
Dp̃, w⟩Γ + ⟨µ,w⟩Γ −

〈
( 12 Id− K′)γ–

Np̃, w
〉
Γ

= ⟨µ,w⟩Γ .(4.21)

Taking η = 0 in (4.11) and applying (4.21), we see that

0 = ⟨Wv, w⟩Γ + ⟨βDv, w⟩Γ +
〈
( 12 Id+ K′)µ,w

〉
Γ

= ⟨µ,w⟩Γ + ⟨βDv, w⟩Γ ,(4.22)

and so µ = −βDv.
Consider p̃+ q̃. From (4.13) and (4.17), we see that

−∆(p̃+ q̃)− k2(p̃+ q̃) = 0 in Ω–.(4.23)

Using the fact that γ–
Dq̃ = 0 (as we concluded from (4.19)) and (4.14) and (4.18), we

see that on Γ,

γ–
D(p̃+ q̃) = γ–

Dp̃+ γ–
Dq̃

= v,(4.24)

γ–
N(p̃+ q̃) = γ–

Np̃+ γ–
Nq̃

= µ,(4.25)

and so, using (4.22), we see that

∂(p̃+ q̃)

∂ν
+ βD(p̃+ q̃) = µ+ βDv

= 0.(4.26)

Therefore p̃ + q̃ is solution of the Robin problem (4.3). Since k2 is not a Robin
eigenvalue, we see that p̃+ q̃ = 0 in Ω–, and so by (4.24) and (4.25) v = µ = 0.

We now combine the previous two results.

Proposition 4.9 (Injectivity). Let (v, µ) ∈ V. If k2 is not a Robin eigenvalue
of the interior Laplacian with Robin parameter βD, then ∀(w, η) ∈ V

A[(v, µ), (w, η)] + B+
D [(v, µ), (w, η)] = 0

implies that (v, µ) = 0.
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Proof. Combine Lemmas 4.6 and 4.8.

Using Lemma 4.5, we see that the following corollary holds.

Corollary 4.10. If Im(βD) ̸= 0 and ∀(w, η) ∈ V

A[(v, µ), (w, η)] + B+
D [(v, µ), (w, η)] = 0,

then (v, µ) = 0.

We now prove that the form AT+B+
D is coercive, where AT is the multitrace form

with compact perturbation as defined in (2.30).

Lemma 4.11 (coercivity). If Re(βD) ⩾ 0 then there exists α > 0 such that for
all (v, µ) ∈ V,

α ∥(v, µ)∥2V ⩽
∣∣(AT + B+

D)[(v, µ), (v, µ)]
∣∣ .

Proof. Using the definitions of AT and B+
D , we see that

Re((AT + B+
D)[(v, µ), (v, µ)])

= Re(−⟨Kv, µ⟩Γ + ⟨(V + TV)µ, µ⟩Γ + ⟨K′µ, v⟩Γ
+ ⟨(W + TW)v, v⟩Γ + 1

2 ⟨µ, v⟩Γ − 1
2 ⟨v, µ⟩Γ + ⟨βDv, v⟩Γ)

= ⟨(V + TV)µ, µ⟩Γ + ⟨(W + TW)v, v⟩Γ + ⟨Re(βD)v, v⟩Γ .

Applying Lemmas 2.1 and 2.2 and using the assumption that Re(βD) ⩾ 0, we see that

Re((AT + B+
D)[(v, µ), (v, µ)]) ⩾ αV ∥µ∥2H−1/2(Γ) + αW ∥v∥2H1/2(Γ) +Re(βD) ∥v∥2L2(Γ)

⩾ αV ∥µ∥2H−1/2(Γ) + αW ∥v∥2H1/2(Γ)

⩾ α ∥(v, µ)∥2V ,

for some α > 0.
The result then follows from that fact that for any c ∈ C, |c| ⩾ Re(c).

We conclude our analysis of the continuous problem by showing that it is well-
posed.

Proposition 4.12. If Re(βD) > 0 and k2 is not a Robin eigenvalue of the interior
Laplacian with Robin parameter βD, then the continuous problem (3.5) has a unique
solution.

Proof. As shown in [23, theorem 3.15], this is a direct consequence of Proposi-
tion 4.9 and Lemma 4.11.

4.2. Analysis of the discrete problem. We can now use [18, theorem 4.2.9]
to show that the discrete problem (3.8) is well-posed, and prove a quasi-optimal error
estimate.

Proposition 4.13. If k2 is not a Robin eigenvalue of the interior Laplacian with
Robin parameter βD, then there exists h0 ∈ R such that for all h < h0, the discrete
problem (3.8) has a unique solution.

Proof. From Lemma 4.11 and Proposition 4.12, we see that the assumptions of
[18, theorem 4.2.9] are true, hence the result holds.

To prove our a priori error bounds, we will use the following lemma.
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Lemma 4.14. Assume that Re(βD) > 0, h < h0 and k2 is not a Robin eigenvalue
of the interior Laplacian with Robin parameter βD. Let (u, λ) be the solution of (3.5),
and let (uh, λh) be the solution of (3.8). These solutions satisfy

∥(u− uh, λ− λh)∥BD
≲ inf

(vh,µh)∈Vh

∥(u− vh, λ− µh)∥BD
.

Proof. This also follows from [18, theorem 4.2.9].

4.3. A priori error bounds. If Γ is a discretisation of a smooth surface, then
we can take Vh = Pp

h(Γ)×Pq
h(Γ) as our discrete space. The following result gives the

approximation properties of this space.

Lemma 4.15 (Approximation in Pp
h(Γ) × Pq

h(Γ)). If |βD| ≲ h−1, then ∀(v, µ) ∈
Hs(Γ)×Hr(Γ),

inf
(wh,ηh)∈Pp

h(Γ)×Pq
h(Γ)

∥(v − wh, µ− ηh)∥BD
≲ hζ−1/2 |v|Hζ

pw(Γ)
+ hξ+1/2 |µ|Hξ

pw(Γ)
,

where ζ = min(p+ 1, s), ξ = min(q + 1, r), s ⩾ 1
2 and r ⩾ − 1

2 .

Proof. This can be proved in the same way as [3, proposition 4.14].

We can now prove the a priori error bound for Vh = Pp
h(Γ)× Pq

h(Γ).

Theorem 4.16. Assume that h < h0, Re(βD) > 0, |βD| ≲ h−1, and k2 is not a
Robin eigenvalue of the interior Laplacian with Robin parameter βD. The solution,
(u, λ) ∈ Hs(Γ)×Hr(Γ), of (3.5), and the solution, (uh, λh) ∈ Pp

h(Γ)×Pq
h(Γ), of (3.8)

satisfy
∥(u− uh, λ− λh)∥BD

≲ hζ−1/2 |u|Hζ
pw(Γ)

+ hξ+1/2 |λ|Hξ
pw(Γ)

,

where ζ = min(p+ 1, s) and ξ = min(q + 1, r).

Proof. Combine Lemma 4.15 and Lemma 4.14.

When Γ is not smooth, the flux space must be chosen so that it can represent
jumps in the normal derivative between cells. In this case, we take Vh = Pp

h(Γ) ×
DPq

h(Γ). The following result gives the approximation properties of this space.

Lemma 4.17 (Approximation in Pp
h(Γ)×DPq

h(Γ)). If |βD| ≲ h−1, then ∀(v, µ) ∈
Hs(Γ)×Hr(Γ),

inf
(wh,ηh)∈Pp

h(Γ)×DPq
h(Γ)

∥(v − wh, µ− ηh)∥BD
≲ hζ−1/2 |v|Hζ

pw(Γ)
+ hξ+1/2 |µ|Hξ

pw(Γ)
,

where ζ = min(p+ 1, s), ξ = min(q + 1, r), s ⩾ 1
2 and r ⩾ − 1

2 .

Proof. See [3, proposition 4.14].

We can now prove the a priori error bound for Vh = Pp
h(Γ)×DPq

h(Γ).

Theorem 4.18. Assume that h < h0, Re(βD) > 0, |βD| ≲ h−1, and k2 is not a
Robin eigenvalue of the interior Laplacian with Robin parameter βD. The solution,
(u, λ) ∈ Hs(Γ) × Hr(Γ), of (3.5), and the solution, (uh, λh) ∈ Pp

h(Γ) × DPq
h(Γ), of

(3.8) satisfy

∥(u− uh, λ− λh)∥BD
≲ hζ−1/2 |u|Hζ

pw(Γ)
+ hξ+1/2 |λ|Hξ

pw(Γ)
,

where ζ = min(p+ 1, s) and ξ = min(q + 1, r).
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Proof. Combine Lemma 4.17 and Lemma 4.14.

Recall that due to Lemma 4.5, the Robin eigenvalue assumption in the results in
this section holds whenvever Im(βD) ̸= 0.

5. Numerical results. In this section, we demonstrate the theory with a series
of numerical examples. All the results presented were computed using version 0.2.4
of Bempp-cl, an open source Python boundary element method library [4]. We pre-
condition all linear systems in this section with blocked mass matrix preconditioners
applied from the left. We take Vh = P1

h(Γ) × P1
h(Γ) throughout this section, so we

use the preconditioner (
M 0
0 M

)
,

where M = (mij) is defined by

mij = ⟨ϕj , ϕi⟩Γ ,

where {ϕ0, ϕ1, ...} is the basis of the space P1
h(Γ). The preconditioning corresponds

to taking the discrete strong form of the operator, as described in [5].
Define

gD(x) =
eik|r1|

|r1|
+

eik|r2|

|r2|
,(5.1)

where r1 = x− ( 1
10 ,

1
2 ,

1
2 ) and r2 = x− ( 1

10 ,
1
4 ,

1
4 ). Let Ω

– be a bounded open domain

such that ( 1
10 ,

1
2 ,

1
2 ) ∈ Ω– and ( 1

10 ,
1
4 ,

1
4 ) ∈ Ω–, and let Ω+ := R3 \ Ω–. It is easy to

check that for any wavenumber k > 0, u(x) = eik|r1|

|r1| + eik|r2|

|r2| is the solution of the

exterior Helmholtz problem

−∆u− k2u = 0 in Ω+,(5.2a)

∂uscat

∂ |x|
− ikuscat = o(|x|−1

) as |x| → ∞,(5.2b)

u = gD on Γ,(5.2c)

with uinc = 0 (and so u = uscat). It can also be seen that

∂u

∂ν
=

(ik |r1| − 1)eik|r1|

|r1|3
r1 · ν +

(ik |r2| − 1)eik|r2|

|r2|3
r2 · ν on ΓN.(5.3)

Using (5.1) and (5.3), we can compute the error of the solutions obtained in this
section.

Figure 1 shows how the error and number of GMRES iterations vary as k is
increased, using βD = 1. It can be seen that at various points, the number of iterations
and error grows as k approaches a problematic Robin eigenvalue of the problem: one
of these is near 2.759, as indicated by the dashed lines.

In section 4, we saw that our formulation can fail to have a unique solution when
k2 is Robin eigenvalues of the Laplacian with Robin parameter βD. This implies that
adjusting the parameter βD will adjust the locations of these eigenvalues. This can
be oberved in Figure 2, where the error and number of iterations are shown for the
problem with k = 2.759 and varying real βD. The spike in the error and number
of iterations at βD = 1 (as shown by the dashed lines) is due to approaching the



16 T. BETCKE, E. BURMAN, AND M. W. SCROGGS

1 2 3 4 5
10−2

10−1

k

∥(
u
−

u
h
,λ

−
λ
h
)∥

V

1 2 3 4 5
0

20

40

k

№
of

G
M
R
E
S
it
er
a
ti
on

s

Fig. 1: The error (left) and GMRES iteration counts (right) of the penalty method
with βD = 1 for the Helmholtz Dirichlet problem with varying k on the unit sphere
with h = 2−2. Here we take (uh, λh), (vh, µh) ∈ P1

h(Γ)×P1
h(Γ) and solve to a GMRES

tolerance of 10−5.
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Fig. 2: The error (left) and GMRES iteration counts (right) of the penalty method
with varying real βD for the Helmholtz Dirichlet problem with k = 2.759 on the unit
sphere with h = 2−2 (red triangles), h = 2−3 (red diamonds), and h = 2−4 (red
pentagons). Here we take (uh, λh), (vh, µh) ∈ P1

h(Γ)× P1
h(Γ) and solve to a GMRES

tolerance of 10−5.

same eigenvalue that we saw in Figure 1. We observe that the increase in the error is
less pronounced for meshes with a lower value of h. This is due to 2.759 being near
an eigenvalue of a given discretisation of the sphere: the exact approximation of the
sphere changes a little as we increase the number of cells in the mesh, and so the
eigenvalues differ on the different meshes used.

As we saw in [3] for Laplace problems, we observe in Figure 2 that the error and
iteration counts for the problem increase once βD is increased above a certain level.

Figure 3 shows how the error and iteration counts vary as we adjust the imaginary
part of βD when the real part of βD is fixed as 1, again taking k = 2.759 so that we hit
an eigenvalue when Im(βD) = 0. We see that once | Im(βD)| is greater than around
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Fig. 3: The error (top) and GMRES iteration counts (bottom) of the penalty method
with varying βD with Re(βD) = 1 for the Helmholtz Dirichlet problem with k = 2.759
on the unit sphere with h = 2−2 (red triangles), h = 2−3 (red diamonds), and h = 2−4

(red pentagons). Here we take (uh, λh), (vh, µh) ∈ P1
h(Γ) × P1

h(Γ) and solve to a
GMRES tolerance of 10−5.

10−2, the error and iteration count drop. Once | Im(βD)| is too large, the error and
iteration count rise in a similar way to that we observed when taking a large real βD.
We observe that the iteration count is slightly lower for a small range of values when
Im(βD) is negative.

Motivated by our observations in Figure 3, we fix βD = 1 − i. Figure 4 shows
how the error and iteration counts change as we increase k with this value of βD.
In agreement with Lemma 4.5, we observe that (in contrast to Figure 1) there is no
vulnerability to eigenvalues in this case, and the iteration count remains steady as we
increase k.

Figure 5 shows the error and number of iterations as we reduce h. We observe
order 2 convergence, and see that the number of iterations remains the same as h is
reduced, demonstrating the effectiveness of the mass matrix preconditioner.

6. Conclusions. In this paper, we have derived and analysed a formulation
for weak imposition of Dirichlet boundary conditions on the Helmholtz equation. By
taking a parameter with a non-zero imaginary part, Helmholtz problems can be solved
at any real wavenumber without any difficulties caused by resonances of the interior
problem.
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Fig. 4: The error (left) and GMRES iteration counts (right) of the penalty method
with βD = 1− i for the Helmholtz Dirichlet problem with varying k on the unit sphere
with h = 2−2. Here we take (uh, λh), (vh, µh) ∈ P1

h(Γ)×P1
h(Γ) and solve to a GMRES

tolerance of 10−5.
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Fig. 5: The error (left) and GMRES iteration counts (right) of the penalty method
with βD = 1−i for the Helmholtz Dirichlet problem with k = 3 on the unit sphere as we
reduce h. The dashed line shows order 2 convergence. Here we take (uh, λh), (vh, µh) ∈
P1
h(Γ)× P1

h(Γ) and solve to a GMRES tolerance of 10−5.

The formulation derived in this paper bears a close resemblance to the formula-
tions for Laplace that we derived and analysed in [3]. Formulations for Helmholtz
problems with mixed Dirichlet–Neumann or Robin boundary conditions could be de-
rived in the same way. We expect that these formulations could be analysed following
a similar method as used here, although this analysis appears to pose some additional
challenges. The weak imposition of mixed boundary conditions is demonstrated in
Figure 6, where we have plotted the scattering of an incident wave colliding with
a collection of sound-hard (a 0 Neumann boundary condition) and sound-soft (a 0
Dirichlet boundary condition) spheres.

One benefit of formulating mixed problems in this way is that the boundary
conditions are imposed by adding sparse terms to the full Calderón system: for
mixed boundary conditions, sparse terms assembled on parts of the boundary can
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Fig. 6: The incident wave uinc = eikx·d, where d = (0, 1, 0) and k = 2, scattering off
25 spheres. The white spheres are sound-hard and the black spheres are sound-soft.

be added without any need to adjust the dense Calderón term. When solving an in-
verse problem—for example when looking to find the material properties that should
be used to give a scatterer a certain desired property—the Calderón term (which is
the most expensive part to assemble) can be reused and different sparse terms added
to solve the same problem with different boundary conditions.

One avenue of interest for further interest would be the weak imposition of bound-
ary condition on Maxwell problems. In the experiments we have run to explore this,
however, we have been unable to obtain good solutions in a reasonable amount of
time. Maxwell problems are prone to being strongly ill-conditioned, and it appears
that mass matrix preconditioning is not enough to achieve good performance in the
Maxwell case. Therefore, we believe that it is necessary to design more powerful pre-
conditioners for these weak formulations in order to make this method feasible for
Maxwell problems.
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[15] J.-C. Nédélec, Acoustic and Electromagnetic Equations, vol. 144 of Applied Mathematical
Sciences, Springer-Verlag New York, 2001, https://doi.org/10.1007/978-1-4757-4393-7.
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