
Journal of Geometry and Physics 179 (2022) 104613
Contents lists available at ScienceDirect

Journal of Geometry and Physics

www.elsevier.com/locate/geomphys

Cartan connections and integrable vortex equations

Calum Ross a,b,∗
a Department of Mathematics, University College London, London WC1E 6BT, United Kingdom
b Department of Physics and Research and Education Center for Natural Sciences, Keio University, Hiyoshi 4-1-1, Yokohama,
Kanagawa 223-8521, Japan

a r t i c l e i n f o a b s t r a c t

Article history:
Received 21 December 2021
Received in revised form 23 June 2022
Accepted 25 June 2022
Available online 4 July 2022

MSC:
53Z05
58Z05

Keywords:
Integrable vortex equations
Cartan geometry
Dirac Operator

We demonstrate that integrable abelian vortex equations on constant curvature Riemann 
surfaces can be reinterpreted as flat non-abelian Cartan connections. By lifting to three 
dimensional group manifolds we find higher dimensional analogues of vortices. These vor-
tex configurations are also encoded in a Cartan connection. We give examples of different 
types of vortex that can be interpreted this way, and compare and contrast this Cartan 
representation of a vortex with the symmetric instanton representation.
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1. Introduction

In this paper we will finish the program started in [19], and furthered in [20], of relating all five of the integrable abelian 
vortex equations from [13] to the geometry of three dimensional Lie groups. In particular we demonstrate that an abelian 
vortex is equivalent to a flat non-abelian connection.

This relationship showcases the role that constant curvature geometries play in the construction of explicit vortex config-
urations. The most common way to see this relationship is to consider the Taubes equation satisfied by the modulus of the 
Higgs field, in the integrable cases it reduces to the Liouville equation. The Liouville equation is satisfied by the conformal 
factor for a metric with constant Gauss curvature. This leads to the interpretation of the modulus of the Higgs field as a 
conformal factor for a constant curvature metric. This metric is often called the Baptista metric [2].

The standard Abelian-Higgs model is a two dimensional model of gauged vortices. The model consists of a complex 
scalar field φ called the Higgs field and a U (1) gauge potential a. On a Riemann surface M0 with the conformal factor �0, 
the Abelian-Higgs model at critical coupling has the static energy functional [15]
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dVol, (1.1)

with B = f12 = ∂1a2 − ∂2a1. This can be rewritten using a Bogomol’nyi argument to see that the energy is bounded below,
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Fig. 1. This summarises the four sets of equations and spaces that we relate in this paper. An extension on the left hand side relating the equations on H1
λ0

to vortex magnetic modes on flat spaces can be included when λ0 �= 0. This figure is adapted from one in [18].

E ≥ π |N|, (1.2)

with N the winding number of the field. When N > 0 the minimisers solve the first order, Bogomol’nyi, equations

Dz̄φ = (∂z̄ − iaz̄)φ = 0, (1.3)

B = �0

2

(
1 − |φ|2

)
, (1.4)

called the vortex equations. For N < 0 the first equation, (1.3), becomes Dzφ = 0.
Decomposing the Higgs field as φ = eu+iχ , and taking account of the singularities of u at the zeros, Zr r = 1, . . . , N

possibly repeated, of the Higgs field, the Bogomol’nyi equations can be converted into the Taubes equation

− 4

�0
∂z∂z̄u = 1 − e2u − 4π

�0

N∑
r=1

δ(z − Zr). (1.5)

A detailed study of this equation, for the case of the Abelian-Higgs model on the plane, is given in [9]. From a math-
ematical point of view this model is constructed from the data of a Riemann surface M0, a connection a and a smooth 
complex section φ of a complex line bundle over M0. The pair (φ, a) is called a vortex.

Fig. 1 summarises the general story followed in this paper, and demonstrates the relationship between vortex config-
urations on Lie groups in the top left and vortices on Riemann surfaces in the bottom left. It guides how we proceed in 
this paper starting with explaining the vortex story along the bottom line, before moving on to the three dimensional story 
which gives the details of the upper part of the figure.

The paper is ordered as follows. In Sec. 2 we state our conventions for the geometry of Lie groups and Riemann surfaces. 
Following this we demonstrate how to encode the structure and Gauss equations within a non-abelian flat connection, and 
how this flat connection descends from the Maurer-Cartan form on a Lie group. This describes the right hand side of Fig. 1.

Sec. 3 summarises results about the integrable abelian vortex equations of [13], as well as a discussion of the geometric 
interpretations of these vortices. These geometric interpretations are: deformations of the metric introducing degeneracies, 
an idea introduced in [2], and non-abelian Cartan connections encoding a degenerate co-frame.

Next in Sec. 4 we introduce and study the three dimensional generalisation of a vortex, a vortex configuration. Vortex 
configurations are also given by a flat connection, this time the pull back of the Maurer-Cartan one-form by a bundle map. 
This relationship between vortex configurations and flat connections is the key result of the section, and we use it to relate 
vortex configurations to vortices. Sec. 5 gives the construction of solutions to massless Dirac equations from vortices. It 
includes extensions of the results of [19,20] and suggestions for future work.

Then Sec. 6 compares the non-abelian connections introduced here to describe vortices with the symmetric instantons 
given in [3]. The explicit forms of both connections are given and evidence for a conjectured duality between the different 
vortex equations is discussed. Finally Sec. 7 summarises the paper and gives some future directions of research.

2. Lie groups and Cartan connections

2.1. Group conventions

To understand how to read Fig. 1 we first need to explain what the notation H1
λ means. We are interested in the three 

Lie groups SU (2), S E2, and SU (1, 1), which are all groups of determinant one matrices. Respectively these are the group of 
determinant one 2 ×2 unitary matrices, the component of the Euclidean group in two dimensions connected to the identity, 
and the group of 2 × 2 pseudo-unitary matrices. For a more concrete realisation of the groups we take the generators of the 
Lie algebra h1 = Lie

(
H1

)
to be
λ λ

2



C. Ross Journal of Geometry and Physics 179 (2022) 104613
t0 = − i

2

(
1 0
0 −1

)
, t1 = − i

2

(
0 −λ

1 0

)
, t2 = 1

2

(
0 λ

1 0

)
, (2.1)

with the commutation relations

[ta, tb] = C c
abtc with C 2

01 = 1, C 1
02 = −1, C 0

12 = −λ, (2.2)

and all others vanishing. We use the notation H1
λ for this group1 with;

H1−1 = SU (2), H1
0 = S E2, H1

1 = SU (1,1). (2.3)

It is convenient to introduce the complex combinations

t± = t1 ± it2 (2.4)

which satisfy

[t0, t±] = ∓it±, [t+, t−] = 2iλt0. (2.5)

The first of these can be interpreted as t0 defining a complex structure on its complement such that (t+)t− is (anti)-
holomorphic.

The group has inverse metric

gab = diag(−λ,1,1) (2.6)

which is used to raise and lower group indices, and is degenerate in the λ = 0 case.
As a submanifold of C2, H1

λ is defined as

H1
λ = {(z1, z2) ∈C2 | |z1|2 − λ|z2|2 = 1}, (2.7)

the signature of the submanifold depends on the sign of λ. The complex coordinates (z1, z2) parametrise a determinant one 
matrix h ∈H1

λ through

h =
(

z1 λz̄2
z2 z̄1

)
. (2.8)

As H1
λ is a Lie group there is a real, left-invariant Maurer-Cartan one-form encoding the geometry,

h−1dh = σ 0t0 + σ 1t1 + σ 2t2. (2.9)

We say they encode the geometry as they satisfy the structure equations

dσ a = −1

2
C a

bc σ b ∧ σ c, (2.10)

where the C a
bc are the structure constants of the Lie algebra. As a precursor to what we will consider later, observe that 

h−1dh can be viewed as a h1
λ valued connection on H1

λ , whose flatness is equivalent to the structure equations. Encoding 
the geometry of manifolds in terms of flat connections is a central theme of Cartan geometry, see the textbook [21] and the 
PhD thesis [23] for a general discussion of Cartan geometry.

Throughout it is convenient to work with the complex combinations

σ = σ 1 + iσ 2, σ̄ = σ 1 − iσ 2, (2.11)

which obey

dσ = iσ ∧ σ 0, dσ 0 = iλ

2
σ ∧ σ̄ . (2.12)

In terms of the complex coordinates the left invariant one-forms have the explicit expressions

σ = 2i (z1dz2 − z2dz1) , σ 0 = i (z̄1dz1 − λz̄2dz2 − z1dz̄1 + λz2dz̄2) . (2.13)

In terms of the left invariant one-forms the metric and orientation2 are

1 This group is equivalent to the group GC considered in [3]. In [3] the authors pick the generators Ja = −tT
a and C = −λ. The conventions here are 

chosen so that for λ = −1 they match those in [19].
2 The slightly unconventional ordering is so that it makes contact with the volume form on R3 after stereographic projection in the λ = 1, −1 cases.
3
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ds2 = 1

4

(
− 1

λ

(
σ 0

)2 + (
σ 1)2 +

(
σ 2

)2
)

, (2.14)

VolH1
λ
= 1

8
σ 1 ∧ σ 0 ∧ σ 2. (2.15)

The metric is singular in the λ = 0 case but the only problem due to this is that we are unable to construct zero modes on 
H1

0 in Sec. 5.
The dual left-invariant vector fields, Xa , generate the right-action h → hta and have the commutators

[Xa, Xb] = C c
ab Xc . (2.16)

In terms of the combinations

X± = X1 ± i X2 (2.17)

we have

[X0, X±] = ∓i X±, [X+, X−] = 2λi X0. (2.18)

In terms of the complex coordinates the left invariant vector fields take the form

X0 = − i

2

(
z1∂1 + z2∂2 − z̄1∂̄1 − z̄2∂̄2

)
, (2.19)

X− = −i (z̄1∂2 + λz̄2∂1) , (2.20)

X+ = X−, (2.21)

where we have used ∂i = ∂
∂zi

. The only non-zero pairing are

σ 0(X0) = 1, σ (X−) = σ̄ (X+) = 2. (2.22)

A key feature of H1
λ is that it is a circle fibration over a Riemann surface M with constant Gauss curvature K = −λ. For 

λ = −1 this is the familiar Hopf fibration, while in the other cases we have a trivial bundle. The projection is

π : H1
λ → M, h 	→ z = z2

z1
, (2.23)

with z a local complex coordinate on M . There is also the familiar section, local when λ = −1 but global otherwise,

s : z 	→ 1√
1 − λ|z|

(
1 λz̄
z 1

)
. (2.24)

This enables us to relate our Maurer-Cartan one-form to the Cartan connection for the Riemann surface M . Here we use the 
same definition of a Cartan connection as in [24], in fact since our Riemann surfaces are all homogeneous spaces we are 
actually dealing with Kleinian geometries.

Definition 2.1. A Klein geometry (G, H) is a pair of a Lie group G and a closed subgroup H ⊂ G such that the quotient G/H
is smooth and connected.

From [21] this is equivalent to having a principal H-bundle G → G/H , which is equipped with a natural flat connection, 
the Maurer-Cartan one-form on G . A Cartan geometry is essentially a manifold that is locally, or infinitesimally, Kleinian. 
Klein geometries are the simplest examples of Cartan geometries, where the Cartan connection is flat and the manifold is 
globally a homogeneous space.

The group manifold H1
λ is not simply connected when λ = 0, 1. This is because topologically H1−1 = S3, H1

0 =R2 × S1, 
and H1

1 = H2 × S1. The generator of the fundamental group is the curve

γ = {eϕt0 ∈H1
λ|ϕ ∈ [0,4π)}. (2.25)

This curve is contractible when λ = −1 since π1(H1
λ) = π1(S3) = 0.

When it is non-contractible, only flat connections with a prescribed holonomy around γ can be globally trivialised. We 
will encounter this constraint when discussing vortices on the group manifold in Sec. 4.
4
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2.2. Two dimensional geometry

On a Riemann surface M with constant Gauss curvature K we work in local complex coordinates z. As we are considering 
M to be either S2, H2 or R2, z is a global coordinate except on S2. The Riemann surface has metric3

ds2 = �dzdz̄ = 4(
1 + K |z|2)2

dzdz̄. (2.26)

This metric admits the (local) complexified co-frame

e = 2dz

1 + K |z|2 . (2.27)

The geometry of the Riemann surface is encoded in the structure and Gauss equations,

de − ie ∧ � = 0 (2.28)

d� = R = i

2
K e ∧ ē (2.29)

where

� = iK
zdz̄ − z̄dz

1 + K |z|2 (2.30)

is the spin connection one-form and R is the curvature two-form. When we have two Riemann surfaces we denote the one 
with Gauss curvature K by M and the one with Gauss curvature K0 by M0. There are corresponding 0 subscripts on the 
co-frame fields, spin connection, and curvature two-form.

There are two results worth noting here. The first is that the structure and Gauss equations can be interpreted as the 
flatness of a Cartan connection Â . The second relates Â to the Maurer-Cartan one-form on H1

λ when λ = −K .

Proposition 2.2. The structure and Gauss equations, (2.28) and (2.29), for the co-frame, (2.27), and spin connection (2.30), are equiv-
alent to the flatness of the h1

λ valued connection

Â = −�t0 + i

2
(et− − ēt+) , (2.31)

where K = −λ is the Gauss curvature.

Note that Â is a connection on the principal U (1) bundle

H1
λ → M = H1

λ/U (1). (2.32)

The proof is a straightforward computation of the curvature of Â .

Proof. The curvature of Â is

F Â = dÂ + 1

2
[ Â, Â], (2.33)

= −
(
R+ λ

i

2
e ∧ ē

)
t0 + i

2
(de − i� ∧ e) t− − i

2
(dē + i� ∧ ē) t+. (2.34)

The vanishing of the coefficient of t0 is equivalent to the Gauss equation, (2.29) with curvature K = −λ, and the vanishing 
of the t± coefficients is equivalent to the structure equations, (2.28). �
Proposition 2.3. Using the local section (2.24) the Cartan connection Â on M, (2.31), is trivialised as the pullback of the Maurer-Cartan 
one-form, (2.9),

Â = s∗ (
h−1dh

)
. (2.35)

Proof. To prove this use the explicit expression for the section, (2.24), to compute s∗σ = ie and s∗σ 0 = −�. Then directly 
computing the pullback of Eq. (2.9) leads to Â. �

3 Note that with this choice of metric R2 with K = 0 has ds2 = 4dzdz̄. This may seem an unusual choice but it facilitates the same language to be used 
for all three surfaces.
5
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Going the other way round h−1dh can be expressed in terms of π∗ Â, where π is the bundle projection of Eq. (2.23). 
Unfortunately, this is only true up to a singular gauge transformation as

π∗e = −i
z̄1

z1
σ , π∗� = −σ 0 + id ln

(
z1

z̄1

)
. (2.36)

These propositions convey a key concept of this work; we encode equations on a Riemann surface as flat connections, 
and relate these to the Maurer-Cartan one-form on H1

λ .

3. Integrable vortex equations

3.1. Vortices on Riemann surfaces

We turn now to vortex equations on Riemann surfaces. The vortex solutions of Eqs. (1.3) and (1.4) are known as hyper-
bolic vortices, since the equations are integrable on H2. These hyperbolic vortex equations were generalised in [13] to give 
integrable vortex equations on a more general Riemann surface M0. The hyperbolic case has a long history with the first so-
lutions given in [25], while the spherical case M0 = S2 was first considered in [12,17], but the language was unified in [13]
to give five4 integrable vortex equations. The equations can be written down on any Riemann surface but the integrability 
relies on having constant curvature.

The vortex equations involve two parameters, suggestively called λ0 and λ, and describe a pair (φ, a) of a connection a
and a section φ of a complex line bundle over M0. When M0 is non-compact, appropriate asymptotics, |φ| → 1 on ∂M0, 
need to be imposed to ensure finite energy [9,15].

Definition 3.1. A (λ0, λ) vortex is a pair (φ, a) of a connection, a, and a section, φ, of a complex line bundle over M0 which 
satisfy the (λ0, λ) vortex equations

(dφ − iaφ) ∧ e0 = 0 Fa = da =
(
λ0 − λ|φ|2

)
ω0. (3.1)

Here

ω0 = i

2
e0 ∧ ē0, (3.2)

is the Kähler form on M0.
From [13] solutions are given by rational maps f : M0 → M where M0, M are Riemann surfaces with constant Gauss 

curvature −λ0, −λ respectively. There is the following direct way to solve (3.1). Define the Higgs field and connection as

f ∗e = φe0, a = f ∗� − �0. (3.3)

Then pulling back Eq. (2.28) by f gives the first vortex equation, while pulling back the Gauss equation (2.29), noting 
f ∗ (e ∧ ē) = |φ|2e0 ∧ ē0 and using the Gauss equation on M0, leads to the second vortex equation. The data of a holomorphic 
map between two constant curvature Riemann surfaces is thus all we need to construct a solution to the vortex equations.

Another way to show this is to reduce the vortex equations to the Liouville equation. Decomposing the Higgs field as 
φ = eu+iχ leads to a generalisation of the Taubes equation

− 4

�0
∂z∂z̄h =

(
λ0 − λe2h

)
− 2π

�0

N∑
r=1

δ (z − Zr) , (3.4)

with �0 the conformal factor on M0 and Zr ∈ C the zeros of φ. A scaling argument from [13] shows that there are five 
integrable cases:

• Hyperbolic vortices λ0 = λ = 1,
• Popov vortices λ0 = λ = −1,
• Jackiw-Pi vortices λ0 = 0, λ = −1,
• Ambjørn-Olesen vortices λ0 = 1 = −λ,
• Bradlow vortices λ0 = 1, λ = 0.

As noted above, the case of λ0 = λ = 0, sometimes called Laplace vortices, could also be included. This naturally fits into 
the framework that we discuss here. Explicit expressions for φ and a in terms of f are given in [13].

4 Or should that be 6 equations? The λ = λ0 = 0 case was not considered in [13] but was called the Laplace vortex equation in [3]. It corresponds to a 
covariantly holomorphic section φ and a flat connection a. These Laplace vortices fit into the Cartan framework given here.
6
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3.2. Baptista metric

The idea of interpreting vortices geometrically stems from [14] where the Higgs field of a hyperbolic vortex is represented 
as the ratio of conformal factors

|φ|2 = f ∗�
�0

∣∣∣∣df

dz

∣∣∣∣
2

. (3.5)

Then in [2] it was shown that a vortex defines a degenerate conical geometry on M0, where the metric has conformal factor 
|φ|2�0 relative to the flat metric dzdz̄. This conformal factor is zero at the vortex centres. This idea was extended in [13]
where it is referred to as the Baptista metric. In the integrable cases the Baptista metric is given by

ds2
B = f ∗ds2 = |φ|2ds2

0. (3.6)

This says that a vortex defines a degenerate co-frame on M0, with the vortex equations forming part of the structure and 
Gauss equations for this co-frame.

It is important to be aware that since the Baptista metric has the conformal factor |φ|2 it is degenerate at the N , not 
necessarily distinct, zeros of the Higgs field. As observed in [2] the Riemann curvature two-form associated with the metric 
is extended to the zeros by adding delta function singularities

R′ = R0 + Fa − 2π

N∑
j=1

δZ j , (3.7)

where we use δZ j for the two-form Dirac delta supported on the point Z j .
This can be understood as the Baptista metric having a conical singularity with surplus angle 2π N j at a zero of multi-

plicity N j , with N = ∑
j N j . The local geometry around the point Z j thus resembles a ruffled collar and is sometimes called 

an Elizabethan geometry. For the case of Popov vortices on S2, a is a connection on a line bundle of even degree, N = 2n −2
with n = 1, 2, . . . etc, and thus∫

S2

Fa = 4πn − 4π. (3.8)

This is cancelled by the integral over the delta functions and thus∫
S2

R′ =
∫
S2

RS2 = 4π, (3.9)

which can be interpreted as the Gauss-Bonnet theorem holding for R′ . This is in contrast to the pullback of the curvature 
two-form, f ∗RS2 , which integrates to 4πn since in this case the map f : S2 → S2 has degree n [13,19].

For the other types of vortex we still have Equation (3.7), and Fa still integrates to 2π N , once the appropriate boundary 
conditions are taken into account, which is again cancelled by the delta function contribution. However, as H2 and R2

are non-compact the integrals of the curvature forms are not defined. One way to get around this is to work on compact 
manifolds covered by H2 or R2, such as a Riemann surface of genus g > 1 which is the quotient of H2 by a Fuchsian group 
� < SU (1, 1). This complicates the story somewhat so we do not focus on it here.

This example shows that the spin connection of the degenerate co-frame φe0, �̃ differs from the pulled back spin 
connection f ∗� by a contribution due to the zeros of φ and this contribution is what leads to the singularities in R′ .

3.3. Vortices as flat connections

From the discussion of the Baptista metric and Proposition 2.2 it follows that the vortex equations are equivalent to the 
flatness of the non-abelian connection f ∗ Â. The key observation is that pulling back the co-frame field from M , f ∗e = φe0, 
defines a degenerate co-frame from the data of the vortex, and the structure and Gauss equations for this co-frame imply 
the vortex equations of Eq. (3.1).

Corollary 3.2. Given the flat connection Â defined in Eq. (2.31), and a holomorphic map f : M0 → M, the flatness of

f ∗ Â = − (
a + �λ0

)
t0 + i

2

(
φeλ0t− − φ̄ēλ0t+

)
, (3.10)

is equivalent to the (λ0, λ) vortex equations.
7
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As Â is a connection on a U (1) bundle over M , its pullback is a connection on the pulled back bundle over M0 Since f
is a rational function it can be written as f (z) = f2(z)/ f1(z) for two holomorphic functions f1, f2. The Higgs field φ, and 
thus the connection f ∗ Â have zeros, and potentially singularities, determined by the f i . To see this explicitly note that

f ∗e = φe0 = 2
f ′
2 f1 − f ′

1 f2

| f1|2 + K | f2|2
f̄1

f1
dz, (3.11)

which has zeros at the ramification points of f , and singularities at the zeros of f1. There are singularities when the co-
frame e has a singularity, this happens when M = S2 as the co-frame is local in a patch with coordinate singularity at one 
of the poles of the sphere. Under f the pre-images of the coordinate singularity of e become the zeros of f1.

For example if q is a zero of f1 then near q

φe0 ∼ A
z̄ − q̄

z − q
dz, (3.12)

for a constant A. When φe has singularities they are inherited by the vortex Cartan connection f ∗ Â. Thus it is not really 
defined on the total space H1

λ but on

P = H1
λ\

⋃
j

π−1(q j), (3.13)

where the q j are the zeros of f1. For the case of Popov vortices an extensive discussion of the singularities and their 
properties is given in [19].

In the language of Cartan connections our results so far are that Â is a gauge potential for the Cartan connection 
describing the geometry of M , while f ∗ Â is a gauge potential for a Cartan connection describing the deformed geometry 
on M0 due to the vortex (φ, a).

In all six cases the data of a vortex is encoded in a rational map. However, the specific details of the rational map 
is related to the geometry of the Riemann surfaces. When M = S2 f has poles and when M0 = R2, H2 the boundary 
condition |φ| → 1 is applied. Thus for Popov vortices f : S2 → S2 is a ratio of polynomials and has both zeros and poles, 
for Jackiw-Pi vortices f : R2 → S2 is a based rational map satisfying limz→∞ f (z) → 0 which means that the degree of 
the denominator is larger than the degree of the numerator [7]. While for hyperbolic vortices f : H2 → H2 is a bounded 
holomorphic function on hyperbolic space, and thus is represented by a finite Blashke product with no poles in the unit disc 
[25]. Bradlow vortices correspond to f : H2 →R2 and similar to the hyperbolic case can be expressed as Blashke products. 
The Ambjørn-Olesen case is similar to the hyperbolic case except that f : H2 → S2 is now a finite Blashke product that can 
have poles, the argument for why this is true is given in Sec. 4.2.2. Finally, Laplace vortices have f : R2 → R2, the only 
bounded examples are constant functions so the boundary condition would need to be relaxed to give interesting solutions.

4. Vortices on Lie groups

4.1. Vortex configurations

The next important actors in this story are vortex configurations on H1
λ0

. These are the generalisation of vortices to 
three dimensional group manifolds. Unlike vortices they do not involve sections and connections but give a way of writing 
the vortex equations in terms of one-forms and complex functions on the total space of the line bundle that vortices were 
defined on.

Before discussing vortex configurations we need to understand the equivariant functions on H1
λ .

Definition 4.1. The space of equivariant functions over H1
λ is defined to be

C∞ (
H1

λ,C
)

N = {F : H1
λ → C | 2i X0 F = N F }, N ∈Z. (4.1)

In [19] the discussion of equivariant functions followed that in [10,11] with N ∈N0. This is because for SU (2), equivari-
ant functions are functions on the Lens space S3/ZN and are related to sections of the hyperplane bundle. In general it is 
not a priori clear that we need to impose the same restriction that the degree is a non-negative integer. In practice we only 
encounter equivariant functions constructed from holomorphic polynomials in z1, z2 and for these N ∈N0.

A short computation using the local section s, (2.24), results in the following commutative diagram

C∞(H1
λ,C)N

X+

s∗

C∞(H1
λ,C)N+2

s∗

C∞(Mλ)
i(q∂̄−λ N z)

C∞(Mλ)

(4.2)
2

8



C. Ross Journal of Geometry and Physics 179 (2022) 104613
where q = (1 − λ|z|2). The fact that for λ = 0 the vector field X+ is the lift of ∂̄ is not particularly surprising as in this case 
q = 1, X+ = iz1∂̄2 and the section s identifies z2 with z.

As we will be dealing with two, potentially different, group manifolds H1
λ0

and H1
λ we require separate notation for 

the geometric objects on the two spaces. We use the notation sa, σ a, Xa for the generators, left-invariant one-forms and 
left-invariant vector fields respectively of the source group three manifolds, H1

λ0
, and ta, τ a, Ya for the same objects on the 

target group three manifolds, H1
λ . Due to the details of our construction the Cartan connection is always valued in the Lie 

algebra of the target group.

Definition 4.2. Let A be a one-form on H1
λ0

and � :H1
λ0

→C a complex function. We call the pair (�, A) a vortex config-
uration if the vortex equations,

(d� + i A�) ∧ σ = 0 F A = i

2

(
λ0 − λ|�|2

)
σ̄ ∧ σ , (4.3)

with F A = dA, are satisfied.

In the λ = λ0 = −1 case of [19] normalisation and equivariance conditions were included in the definition of vortex 
configurations. However, in the other cases A(X0) is not necessarily an integer so we do not include a normalisation con-
dition. When we construct examples of vortex configurations they will be normalised. Equivariance conditions, when A is 
normalised, follow from the vortex equations, (4.3) and Cartan’s identity. They are

LX0� = −i A(X0)�, (4.4)

LX0 A = dA(X0). (4.5)

These vortex equations possess the U (1) gauge invariance

(�, A) 	→ (e−iβ�, A + dβ), β ∈ C∞(H1
λ0

). (4.6)

The three dimensional vortex equations in (4.3) have clear similarities to the vortex equations in (3.1). The left-invariant 
one-forms are the analogue of the complexified co-frame and spin connection. The precise relationship was given in the 
proof of Proposition 2.3 and in the discussion afterwords.

We now come to the central theorem of the paper, a method for constructing vortex configurations from bundle maps. 
Here a bundle map is a fibre-preserving morphism of the bundles covering a map between the bases.

Theorem 4.3. A vortex configuration on H1
λ0

determines a gauge potential for a flat h1
λ connection of the form

A =
(

A + σ 0
)

t0 + 1

2
�σ t− + 1

2
�̄σ̄ t+. (4.7)

Conversely, a flat h1
λ connection A on H1

λ0
such that

A(X0) = pt0, A(X−) = αt0 + �t−, (4.8)

for functions p :H1
λ0

→R and α, � :H1
λ0

→C determines a vortex configuration (�, A) through the expansion (4.7).

Given A, a gauge potential for a flat Lie 
(
H1

λ

)
connection on H1

λ0
of the form (4.7) which satisfies

∫
γ

A = 2πnt0, (4.9)

for n ∈ Z and γ the curve defined in Eq. (2.25), it can be trivialised as U−1dU for a bundle map U : H1
λ0

→ H1
λ which covers a 

holomorphic map f : M0 → M. Without loss of generality U can be taken to have the form

U : (z1, z2) 	→ 1√|F1|2 − λ|F2|2
(

F1 λ F̄2

F2 F̄1

)
(4.10)

with Fi :H1
λ0

→C where |F1|2 > λ|F2|2 .
The vortex configuration can be extracted from the bundle map as

�σ = U∗τ , A = U∗τ 0 − σ 0. (4.11)
9
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This result generalises Theorem 3.2 from [19] and Theorem 3.2 from [20], the result when λ0 = λ = −1 or 1 respectively. 
Note that when λ �= −1 we can assume that F1 �= 0 since |F1|2 > λ|F2|2. However when λ = −1 this assumption is not 
valid. This relates to the fact that when λ = −1 the map f = s∗

(
F2
F1

)
, which U covers, can have poles since it is a map 

f : M0 → S2.

Proof. Given a h1
λ connection on H1

λ0
in the vortex gauge, (4.7), the flatness condition dA +A ∧A = 0 is equivalent to

(
d (�σ) + i

(
A + σ 0

)
�

)
= 0 dA = i

2

(
λ0 − λ|�|2

)
σ̄ ∧ σ . (4.12)

Using equation (2.12) these are seen to be equivalent to the vortex equations, (4.3).
For the converse expand the flat h1

λ connection, A, on H1
λ0

in terms of the generators, t0, t+, t− . The coefficients are 
linear combinations of σ 0, σ and σ̄ , as they form a basis of the co-tangent space of H1

λ0
. Imposing the conditions in 

Equation (4.8) leads to the gauge potential A being in the vortex form, Equation (4.7), with Higgs field �, and abelian 
gauge potential

A = (p − 1)σ 0 + 1

2
(ασ + ᾱσ̄ ) . (4.13)

The same calculation as above then gives that the vortex equations, (4.3), are satisfied.
To globally trivialise a flat connection A on H1

λ0
in terms of U :H1

λ0
→H1

λ as A = U−1dU , its path-ordered exponential 

must be path independent. If this is the case U can be constructed explicitly from P exp
(∫

γ̃ A
)

along any path γ̃ , starting 
at a fixed but arbitrary base point, [1].

As A is a flat connection the non-abelian Stokes theorem implies that the path-ordered exponential is path independent 
for contractible paths. The conditions in (4.8) ensure that the path-ordered exponential of A along γ coincides with the 
exponential of the ordinary integral. Then (4.9) implies that

P exp

⎛
⎝∫

γ

A

⎞
⎠ = I. (4.14)

Flatness of the connection A and the non-abelian Stokes theorem then combine to give that the path-ordered exponen-
tial of A along any closed curve in H1

λ0
is the identity. This gives the path independence of the path-ordered exponential.

The final part of the proof is to show that for A = U−1dU satisfying (4.8) U is a bundle map covering a holomorphic 
function M0 → M . The first condition in (4.8) becomes

X0U = pUt0, (4.15)

with p : H1
λ0

→ R. This is just the infinitesimal statement that U maps the fibres of H1
λ0

→ M0 to the fibres of H1
λ → M , 

in other words that U is a bundle map.
Complex conjugation of the second condition in (4.8) implies that

U−1 X+U = ᾱt0 + �̄t+. (4.16)

Now apply

U−1dU = U∗τ 0t0 + 1

2
U∗τ t− + 1

2
U∗τ̄ t+ (4.17)

to X+ , the condition in (4.16) is thus equivalent to

U∗τ (X+) = 0. (4.18)

We now need to show that this is equivalent to U covering a holomorphic map.
Using the parameterisation of U in terms of the functions Fi defined in (4.10) we see that Equation (4.15) becomes

X0

(
Fi√|F1|2 − λ|F2|2

)
= i

2
p

(
Fi√|F1|2 − λ|F2|2

)
. (4.19)

From this it follows that the map π ◦ U = F2
F1

has equivariant degree zero, from Definition 4.1, and that U covers

f = s∗
(

F2
)

: M0 → M. (4.20)

F1

10
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Using (4.2) for F2
F1

we find that f being holomorphic is equivalent to

X+
(

F2

F1

)
= 0. (4.21)

Returning to (4.18) use (2.13) to see that

U∗τ (X+) = 2i

|F1|2 − λ|F2|2 (F1 X+ F2 − F2 X+ F1) = 2i

|F1|2 − λ|F2|2 F 2
1 X+

F2

F1
, (4.22)

with the last equality holding away from the zeros of F1. Thus the condition (4.18) is equivalent to f = s∗
(

F2
F1

)
being 

holomorphic away from the zeros of F1. This means that for λ �= −1 the result has been established. For the λ = −1 case f
will have poles at the zeros of F1 and is a holomorphic map M0 → S2. �

At the level of the bundle map U the U (1) gauge invariance from (4.6) becomes

U 	→ Ũ = Ueβt0 , β ∈ C∞ (
H1

λ0

)
. (4.23)

This defines a new trivialisation with the same f as U . The connection Ũ−1dŨ differs from A = U−1dU by the gauge 
transformation in (4.6).

Notice that when λ �= −1 a vortex configuration can always be constructed from a given holomorphic map f : M0 → M
by choosing

F1(z1, z2) = 1, F2(z1, z2) = f

(
z2

z1

)
. (4.24)

This trivial lift results in a connection A that is constant along the fibres since A(X0) = 0 which implies LX0A = 0. This 
trivial lift is a direct consequence of H1

1 and H1
0 being trivial bundles. The trivial lift was observed for the λ = λ0 = 1 case 

in [20].

4.2. Vortex configurations from vortices

To construct vortex configurations from a non-trivial lift we follow the work of [19,20] and lift vortices from M0 to H1
λ0

. 
The idea behind this is that a vortex is given by a rational function f = f2/ f1. We can then take the lift f2/ f1 = F2/F1. 
This lift is non-trivial since the functions F1, F2 have a non-trivial equivariant degree.

For this lift the Higgs field � has equivariant degree 2N − 2 in the sense of Definition 4.1, with N the integer equivariant 
degree of F1 and F2 determined from the rational function f . The specific vortex number depends on the type of vortex. 
Lifting Popov and hyperbolic vortices has been carried out previously in [19] and [20] respectively.

This leads us to the following Corollary of Theorem 4.3.

Corollary 4.4. Let U :H1
λ0

→H1
λ be the bundle map from (4.10) with

2i X0 F1 = 2i X0 F2 = N ∈Z. (4.25)

The vortex configuration (�, A) constructed from the connection A = U−1dU through Theorem 4.3 has a gauge field which satisfies 
the normalisation condition

A(X0) = N − 1, (4.26)

and a Higgs field of equivariant degree 2N − 2. In terms of F1, F2 the vortex configuration is expressed as

� = F1∂2 F2 − F2∂2 F1

z1
(|F1|2 + |F2|2

) , (4.27)

and

A = (N − 1)σ 0 + i

2
X− ln D2σ − i

2
X+ ln D2σ̄ (4.28)

with D2 = |F1|2 + |F2|2 .

To make this result more understandable we give two example; one for Jackiw-Pi vortices, and another for Ambjørn-
Olesen vortices.
11
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4.2.1. Jackiw-Pi vortices
In [7] it was shown that the Jackiw-Pi vortex equations on R2 with a finite number of zeros are solved by a rational 

map f = p
q :R2 → S2 with deg(p) < deg(q). For example a 2N-vortex solution is given by

p(z) =
M∑

i=0

ai z
i, q(z) =

N∑
i=0

bi z
i, M < N, (4.29)

with the understanding that p and q have no common factors, at least one of a0, b0 are non-zero, and bN �= 0. In this case 
we can write down the following homogeneous polynomials

P (z1, z2) =
M∑

i=0

ai z
N−i
1 zi

2, Q (z1, z2) =
N∑

i=0

bi z
N−i
1 zi

2, (4.30)

which satisfy

s∗
(

P

Q

)
= p

q
. (4.31)

Examples of Jackiw-Pi vortices with N = 1 and N = 2, including plots of |φ|2, are given in [6,8].
In Corollary 4.4 taking

F1(z1, z2) = Q (z1, z2), F2(z1, z2) = P (z1, z2), (4.32)

with P , Q given in (4.30) so that 2i X0 P = 2i X0 Q = N , defines a λ0 = 0, λ = −1 vortex configuration.
In [13] the case of Jackiw-Pi vortices on the torus is discussed, there the map f is a doubly periodic elliptic function. 

As a vortex on the torus it has a finite vortex number, 2N where N is the number of poles of f . However, as a vortex 
on R2 it has an infinite number of zeros. The torus is obtained from R2 by quotienting with a discrete subgroup of S E2
and demanding that the zeros of the Higgs field on R2 are periodic under this subgroup and there are 2N of them in the 
principal domain. The only way to lift these vortices seems to be via the trivial lift (4.24).

The most popular example of a Jackiw-Pi vortex on R2 [6–8] is the axially symmetric case constructed from the rational 
function

f = 1

zN
. (4.33)

For this choice of f the Fi are given by

F1 = zN
2 , F2 = zN

1 . (4.34)

For this vortex the Higgs field of the vortex configuration is given by

� = −N
zN−1

1 zN−1
2

|z1|2N + |z2|2N
. (4.35)

This can be explicitly seen to satisfy 2i X0� = (2N − 2)� and thus � is a degree 2N − 2 equivariant function.

4.2.2. Ambjørn-Olesen vortices
From [13] we know that Ambjørn-Olesen vortices are constructed from a holomorphic map f : H2 → S2, subject to 

| f (z)| → 1 as |z| → 1. These maps can be expressed in terms of their m zeros, c1, · · · , cm , and n poles, d1, · · · , dn , as

f (z) = f2

f1
=

m∏
i=1

(
z − ci

1 − c̄i z

) n∏
j=1

(
1 − d̄ j z

z − d j

)
. (4.36)

To see this we use that the zeros and poles of f define the Blaschke products

f2 =
m∏

i=1

(
z − ci

1 − c̄i z

)
, f1 =

n∏
j=1

(
z − d j

1 − d̄ j z

)
. (4.37)

The ratio of these Blaschke products f2
f1

has the same zeros and poles as f and their ratio f f1
f2

is a holomorphic function 
with no zeros and no poles satisfying | f (z)| = 1 for |z| = 1. Liouville’s theorem then gives that this ratio is a constant, 
μ ∈C such that |μ| = 1, multiplying f by a constant does not change the vortex that we construct from f so we can take 
μ = 1.
12
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To make use of Corollary 4.4 to construct a λ0 = −λ = 1 vortex configuration take

F1(z1, z2) =
n∏

i=1

m∏
j=1

(z1 − c̄i z2)
(
z2 − d j z1

)
,

F2(z1, z2) =
n∏

i=1

m∏
j=1

(z2 − ci z1)
(

z1 − d̄ j z2

)
.

(4.38)

The equivariant degree is N = m + n.
The same procedure can be used to construct vortex configurations from a given Bradlow vortex.

4.2.3. Lifts at the level of the connection
Working at the level of the flat connections A and f ∗ Â we can state the relationship between vortex connections and 

vortices. To do this recall that if λ = 1 then f ∗ Â has singularities at the points q j such that f1(q j) = 0, and is thus defined 
on the space P ⊂H1

λ0
defined in Eq. (3.13).

Note that for a function g : M0 →C we can define the map

rg : Mλ0\{qi} → H1
λ, rg =

(
ḡ

|g| 0
0 g

|g|

)
, (4.39)

where the qi are the zeros of g .
Now using the section s defined in (2.24) we get the following corollary of Theorem 4.3 and Proposition 2.3.

Corollary 4.5. For the bundle map U in (4.10) covering the holomorphic map f , the gauge vortex connection f ∗ Â from (3.10) is related 
to A = U−1dU through the, possibly singular, gauge transformation r f1 , where f1 = F1 ◦ s:

f ∗ Â = r−1
f1

s∗Ar f1 + r−1
f1

dr f1 . (4.40)

The trivial lift in (4.24) corresponds to r f1 = I, f ∗ Â = s∗A. Again, this is only possible when λ �= 1 so that s∗A and f ∗ Â
are both manifestly smooth.

5. A comment on magnetic modes

5.1. Group manifolds and stereographic projection

In the previous work [19,20], vortex configurations on the group manifold, either SU (2) or SU (1, 1), were used to 
construct solutions to a twisted Dirac equation. These vortex magnetic modes were then pulled back to vortex magnetic 
modes on flat R3 or R2,1. For both Bradlow and Ambjørn-Olesen vortices the approach used in [20] is applicable and the 
vortices lead to solutions of a twisted Dirac equation on R2,1. For completeness we give the full argument here and stress 
that the results of this section are all under the assumption that λ0 �= 0. This is because both Jackiw-Pi and Laplace vortices, 
which have λ0 = 0, are related to the group S E2 which does not possess a bi-invariant metric. In fact the metric from 
Eq. (2.6) is singular5 so we cannot construct a Dirac operator in the usual way. A potential approach to fixing this problem 
is to centrally extend S E2 to the Nappi-Witten space [16] which has a Lorentzian metric. This central extension would not 
affect the construction in the other cases and the hope is that it will enable the construction of vortex magnetic modes 
from Jackiw-Pi vortices. This is a current direction of research.

The Killing metric on the Lie algebra of H1
λ0

depends on λ0 and is

ds2
λ0

= − 1

λ0

(
dx0

)2 + (
dx1)2 +

(
dx2

)2
, (5.1)

in particular this metric would be singular if the λ0 = 0 case was included. We are assuming the oriented (pseudo) or-
thonormal co-frame(

dx0,dx1,dx2
)

, (5.2)

such that the volume form is

dx0 ∧ dx1 ∧ dx2. (5.3)

5 Eq. (2.6) says that the inverse metric is degenerate which is equivalent to the metric being singular.
13
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A point �x ∈R3
λ0

is given by �x = xa�ba with �ba an oriented basis such that g(�ba, �bb) = gab , for g as in (2.6). For �x, �y ∈R3
λ0

the scalar product is given by

�x · �y = gabxa yb, (5.4)

and the distance to �x is

r2 = �x · �x = −λ0(x0)
2 + (x1)

2 + (x2)
2. (5.5)

The cross product of �x, �y ∈R3
λ0

is

�x × �y = ε k
i j xi y jbk, (5.6)

with ε012 = 1, ε012 = −λ0.
The Hodge star on the basis is computed in the standard way as

�
(

dxi1 ∧ · · · ∧ dxik

)
= 1

(3 − k)!ε
i1,··· ,ik

ik+1,··· ,i3
dxik+1 ∧ · · · ∧ dxi3 . (5.7)

We call this space

R3
λ0

=
(
R3,ds2

λ0

)
. (5.8)

On H1
λ0

we work with the oriented, orthonormal co-frame(
1

2
σ 0,

1

2
σ 1,

1

2
σ 2

)
, (5.9)

with respect to which the bi-invariant metric and orientation are given by Eqs. (2.14) and (2.15) respectively. The slightly 
unconventional ordering is so that this gives the volume form on R3 after stereographic projection in the λ = 1, −1 cases.

We construct two maps between R3
λ0

and H1
λ0

,

G, H : R3
λ0

→ H1
λ0

. (5.10)

As in the earlier papers [19,20], H is a scaled version of inverse stereographic projection and G is the inverse gnomonic 
projection. The two maps are related through H(�x) = G(�x)2. Note that, as in [20], G, H are not maps from all of R3

λ0
to H1

λ0

but only from the subspace I ⊂R3
λ0

defined as

I =
{(

x0, x1, x2
)

∈ R3
λ0

|λ0r2 < 1
}

. (5.11)

In the SU (2) (λ0 = −1) case, I = R3 since the above condition becomes r2 > −1. However, in the SU (1, 1) (λ0 = 1) 
case, the condition on r2 is that

r2 = −(x0)2 + (x1)2 + (x2)2 < 1, (5.12)

and I is the interior of a single sheeted hyperboloid.
In the notation used here H is

H : I → H1
λ0

, (5.13)

�x 	→ 1 + λ0r2

1 − λ0r2
I − 4

1 − λ0r2
�x · �t = 1

1 − λ0r2

(
1 + λ0r2 + 2ix0 −2iλ0

(
x1 − ix2

)
2i

(
x1 + ix2

)
1 + λ0r2 − 2ix0

)
. (5.14)

The analogue of the inverse gnomonic projection is

G : I → H1
λ0

, �x 	→ I − 2�x · �t√
1 − λ0r2

. (5.15)

Pulling back the left-invariant one-forms, σ a , with H we define a co-frame on R3
λ0

, ϑa , as

H∗σ a = − 1

�
ϑa, (5.16)

where the scale factor � is defined as

� = 1 − λ0r2

. (5.17)

4
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The co-frame ϑa is related to the standard flat co-frame through conjugation by G ,

�ϑ · �t = 1

1 − λ0r2

((
1 + λ0r2

)
(d�x · �t) − 2λ0

(
d�x · �x) (�x · �t) + 2

(�x × d�x) · �t
)

,

= G−1 (
d�x · �t) G.

(5.18)

In other words, the ϑa are a rotated basis for the co-tangent space, with the rotation given by G acting in the adjoint 
representation.

Lemma 5.1. The pull-backs of the Maurer-Cartan one-form on H1
λ0

by the maps G, H are related via

H−1dH = G−1dG + G−1(G−1dG)G, (5.19)

with the inverse relation

G−1dG = 1

2
H−1dH − λ0 � (d� ∧ H−1dH). (5.20)

Here � is the Hodge star operator on H1
λ with respect to the orientation (2.15).

Proof. This result follows from a direct computation. The first formula is found by substituting H = G2 into H−1dH . For the 
second formula use Eq. (5.19) to rewrite Eq. (5.20) as

−2λ0 �
(
d� ∧ (

dGG−1 + G−1dG
)) = dGG−1 − G−1dG. (5.21)

Next computing

G−1dG = −2
d�x · �t + (�x × d�x) · �t

1 − λ0r2
, (5.22)

leads to

dGG−1 + G−1dG = −4

(
d�x · �t)(

1 − λ0r2
) , dGG−1 − G−1dG = 4

(�x × d�x) · �t(
1 − λ0r2

) . (5.23)

Using these expressions along with

−2λ0d� = λ2
0�x · d�x = �x · d�x, (5.24)

since λ0 = ±1, and

�
(�x · d�x ∧ d�x · �t) = (

d�x × �x) · �t, (5.25)

gives (5.21) and thus (5.20) is established. �
5.2. Dirac operators

Next construct the Dirac operators on both H1
λ0

and R3
λ0

. The spin connection on H1
λ0

is

�H1
λ0

= −1

8
[γa, γb]ωab = 1

2
h−1dh. (5.26)

Introducing θ such that θ2 = λ0, this is 1 in the Lorentzian case and i in the Euclidean case, the Dirac operator is written as

/DH1
λ0

= 4iθta Xa + 3

2
iλ0θI, (5.27)

= −2θ

(
λ0 X0 λ0 X−
−X+ −λ0 X0

)
+ 3

2
iλ0θI. (5.28)

The Dirac operator can be minimally coupled to an Abelian gauge potential A as

/DH1
λ0

,A = 4iθta (Xa + i Aa) + 3

2
iλ0θI

= −2θ

(
λ0 (X0 + i A0) λ0 (X− + i A−)

− (X + i A ) −λ (X + i A )

)
+ 3

iλ0θI.
(5.29)
+ + 0 0 0 2

15



C. Ross Journal of Geometry and Physics 179 (2022) 104613
The Dirac operator on R3
λ0

minimally coupled to the gauge potential �A · �dx is

/DR3
λ0

,A = 2iθta (∂a + i Aa) (5.30)

Definition 5.2. A spinor � :H1
λ0

→C2 that satisfies

/DH1
λ0

,A� = 0 (5.31)

is called a magnetic mode or magnetic Dirac mode of the Dirac operator /DH1
λ0

, coupled to the connection A.

Lemma 5.3. If � :H1
λ0

→C2 is a magnetic Dirac mode of the Dirac operator (5.29) on H1
λ0

coupled to the U (1) gauge field A, then

�H = G�−1 H∗� (5.32)

is a magnetic mode of the Dirac operator /DR3
λ0

,H∗ A on Euclidean 3-space coupled to the connection H∗ A.

Proof. This result follows from the known equivariance properties of the Dirac operator under scaling and changes of frame. 
Here we give an explicit verification in the interest of providing a complete discussion. Consider the pull-back of the spin 
connection

H∗�H1
λ0

= 1

2
H−1dH . (5.33)

Then (5.19) implies that

d + 1

2
H−1dH = �G−1

(
d + 1

2

(
GdG−1 + G−1dG

) + �−1d�

)
�−1G. (5.34)

Next using that GdG−1 = −dGG−1, (5.23), and

�−1d� = −2λ0
�x · d�x

1 − λ0r2
, (5.35)

leads to

tai∂a

(
1

2

(
GdG−1 + G−1dG

) + �−1d�

)
= 2λ0�x · �t

1 − λ0r2
− 2λ0�x · �t

1 − λ0r2
= 0. (5.36)

Putting everything together, the pull-back of the Dirac operator on H1
λ0

with spin connection �H1
λ0

and coupled to the 
abelian connection A is

1

4iθ
/DH1

λ0
,A = taiH∗ Xa

(
d + 1

2
H−1dH + iH∗ A

)
(5.37)

= −�G−1tai∂a G

(
d + 1

2
H−1dH + iH∗ A

)
(5.38)

= −�2G−1tai∂a

(
d + iH∗ A

)
�−1G, (5.39)

giving the stated relationship between magnetic modes of /DH1
λ0

,A and /DR3
λ0

,H∗ A . �
5.3. Vortex magnetic modes

As observed in [19,20] vortex configurations give rise to magnetic modes satisfying a second non-linear equation. The 
results presented here unify the earlier results and extend them to include a construction of vortex magnetic modes from 
Bradlow and Ambjørn-Olesen vortex configurations.

Definition 5.4. A pair (�, A) of a spinor � and a one-form A on H1
λ0

is said to be a vortex magnetic mode of the Dirac 
equation on H1

λ0
if

/DH1
λ0

,A� = 0, F A = − λ

λ0
4i � �†h−1dh� − λ0

1

4
σ 1 ∧ σ 2, (5.40)

with � the Hodge star operator on SU (1, 1) with respect to the metric (2.14) and orientation (2.15).
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Theorem 5.5. Given a vortex configuration (�, A) on H1
λ0

the pair

� =
(

�

0

)
, A′ = A + 3

4
σ 0, (5.41)

is a vortex magnetic mode on H1
λ0

.

Proof. As (�, A) is a vortex configuration it solves

X0� + i A0� = 0, X+� + i A+� = 0, (5.42)

these are just the contraction of (4.3) with (X0, X−) and (X+, X−) respectively. Now, the spinor in the Theorem is a mag-
netic mode if

X0� + i A′
0� − 3i

4
� = 0, X+� + i A′+� = 0. (5.43)

Since, A′
0 = A′(X0) = A0 + 3

4 and A′(X+) = A(X+) these equations follow from (5.42).
For the non-linear equation consider that for the given form of spinor we know that

− λ

λ0
4i � �†h−1dh� = − λ

λ0
4i|�|2 �

(
− i

2
σ 0

)
= λ|�|2σ 2 ∧ σ 1. (5.44)

On the other hand

F A′ = F A − 3

4
λ0σ

2 ∧ σ 1 =
(

λ|�|2 − λ0

4

)
σ 1 ∧ σ 2, (5.45)

which is nothing but the non-linear equation from Eq. (5.40). �
5.4. Vortex magnetic modes on flat space

Combining Theorem 5.5 with Lemma 5.3, vortex magnetic modes on H1
λ0

can be converted to magnetic modes on R3
λ0

.

Before stating what vortex magnetic modes pull back to on R3
λ0

we need to establish what happens to the inhomoge-
neous term in (5.40). Computing its pullback we find

1

4
H∗ (

σ 1 ∧ σ 2
)

= 4(
1 − λ0r2

)2
�R3

λ0
ϑ0 = 1

2
εa

bcbadxb ∧ dxc. (5.46)

The corresponding magnetic field

�b = 1

1 − λ0r2

⎛
⎝ 1 + λ0r2 + 2x2

0
2 (λ0x2 + x1x0)

−2 (λ0x1 − x2x0)

⎞
⎠ , (5.47)

is a background magnetic field, with field lines the fibres of the fibration π :H1
λ0

→ Mλ0 . In the λ = λ0 = −1 case considered 
in [19] the field lines are the fibres of the Hopf fibration and thus are all linked.

In the λ0 = 1 case the only differences between the three types of vortex magnetic modes on R3
1 = R1,2 comes from 

the different coefficients of �†h−1dh� in (5.40). More precisely, vortex magnetic modes constructed from the Hyperbolic, 
Bradlow, and Ambjørn-Olesen vortices, differ only in the relationship between �†h−1dh� and F ′

A .

Definition 5.6. A pair (�, A) of a spinor � and a one-form A = �A · d�x is called a vortex magnetic mode on R3
λ0

if the 
coupled equations

/DR3
λ0

,H∗ A� = 0, �B = −2i
λ

λ0
�

†
H
�t�H − λ0�b, (5.48)

where �B = ∇ × �A and �b is the background field (5.47), are satisfied.

The means of constructing examples of such vortex magnetic modes are through the following Corollary of our earlier 
results.

This starts from a bundle map and results in explicit expressions for the spinor and gauge potential in terms of a vortex 
configuration.
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Corollary 5.7. A bundle map U :H1
λ0

→H1
λ covering a holomorphic map f : Mλ0 → Mλ determines a smooth vortex magnetic mode 

on I ⊂R3
λ0

. In terms of the vortex configuration (�, A) extracted from U−1dU using (4.7) the vortex magnetic mode is

�H = �−1G

(
H∗�

0

)
, A′ = H∗

(
A + 3

4
σ 0

)
. (5.49)

The proof of this result follows by bringing together the earlier results. Theorem 4.3 gives the construction of a vortex 
configuration from a bundle map, then Theorem 5.5 shows how vortex configurations give rise to vortex magnetic modes, 
finally Lemma 5.3 tells us how to turn magnetic modes on H1

λ0
into magnetic modes on R3

λ0
. The only thing that needs to 

be checked is that the non-linear equation in Eq. (5.48) is satisfied. This follows from a straightforward computation.

6. Vortices and instantons

The representation of vortices as non-abelian connections in three dimensions given here is an alternative to viewing 
vortices as symmetric, non-abelian instantons on flat R4. In [3] it was shown that all five of the integrable vortex equations 
can be constructed as the dimensional reduction of an appropriate (anti-)self dual Yang-Mills theory on M0 × N0, where N0
is a Riemann surface with constant Gauss curvature −K0. This construction is based on the general story of gauge fields 
which possess space time symmetries introduced in [4]. In [19,20] it was observed that there is an interesting relationship 
between the gauge group of the Yang-Mills theory and the Lie algebra that the Cartan connection is valued in. In short if 
the Cartan group is H1

λ then the instanton gauge group is H1−λ .
In our conventions the construction from [3] considers instantons on the four manifold R4 � M0 × N0 with gauge group 

H1−λ that are equivariant with respect to the action of H1−λ0
. This amounts to the instanton being independent of the N0

factor and thus reducing to a (λ0, λ) vortex on Mλ0 . Explicitly the instanton is given by the H1−λ-connection

ACD = − (
a − �N0

)
t0 + iφ

2
ēN0t− − iφ̄

2
e−N0t+, (6.1)

with (φ, a) the (λ0, λ) vortex on M0 and eN0 , �N0 the complexified co-frame and spin connection on N0. From Corollary 3.2
a (λ0, λ) vortex is equivalent to a flat H1

λ-connection

A = − (a + �0) t0 + iφ

2
e0t− − iφ̄

2
ē0t+. (6.2)

It is interesting to contrast the two connections. ACD is an anti-self dual connection on a conformally flat four-manifold 
while A is a flat connection on a Riemann surface. This manifests itself in the fact that A only depends on information on 
M0, the vortex (φ, a) and the co-frame field and spin connection. On the other hand ACD depends on information from 
both M0 and N0. Another difference that should be noted is that while we have used the same notation for the generators, 
t0, t± they are not exactly the same, the key difference is in t+ . For H1

λ the explicit form of t+ is

t+ =
(

0 iλ
0 0

)
. (6.3)

This means the sign in t+ is different for the two connections.
However, we know that the flat connection in two dimensions is related to a flat connection on the group manifold 

H1
λ0

given by Eq. (4.7). An immediate question is if there is a way to go directly between the instanton and the three 
dimensional Cartan connection. At the moment we only know how to pass between them by going through the vortex in 
two dimensions. There are definitely key differences in their construction with A being constructed from the pullback of 
the left-invariant Maurer-Cartan one-form on H1

λ while ACD, following the general construction in [4], is constructed from 
left-invariant data from H1−λ0

and right-invariant data from H1−λ .
Finally consider the diagram

H1−λ0
×H1

λ0

π

U H1
λ ×H1−λ

π

N0 × M0
f

M × N

(6.4)

where f : M0 → M is the rational map defining a vortex and U :H1
λ0

→H1
λ is the bundle map encountered in Theorem 4.3. 

From the instanton point of view H1−λ0
would be the symmetry group and H1−λ is the gauge group. This could be flipped 

round to
18



C. Ross Journal of Geometry and Physics 179 (2022) 104613
H1
λ0

×H1−λ0

π

H1−λ ×H1
λ

π

V

M0 × N0 N × Mg

(6.5)

with g : N → N0 a rational map defining a vortex and V : H1−λ → H1−λ0
a bundle map. Now the instanton point of view 

has H1
λ as the symmetry group and H1

λ0
as the gauge group.

This suggests that at the level of the groups there is a potential duality between the different vortex equations. This 
duality takes the (λ0, λ) vortex equations to the (−λ0, −λ) vortex equations.

The Hyperbolic and Popov vortex equations are exchanged under this, as are the Bradlow and Jackiw-Pi vortices while 
both the Ambjørn-Olesen and Laplace vortex equations are “self-dual” in this sense.

7. Conclusions and outlook

This paper has considered the general problem of giving a geometric description of integrable abelian vortices as 
non-abelian flat connections. This provides a unified three dimensional interpretation of vortices, complementing the two 
dimensional metric geometry interpretation given by Baptista [2], and the four dimensional description of vortices as sym-
metric instantons [3].

The story is summarised in Fig. 1 where the most important maps, spaces and equations are given. This gives a unifying 
picture, generalising the work of [19,20] to include all of the integrable vortex equations considered in [13]. As well as 
establishing the relationship between vortices and Cartan geometry we have also discussed proposals to construct solutions 
to massless Dirac equations from vortices.

A comparison between the Cartan connection picture and the instanton picture of vortices leads to some intriguing 
comparisons. Not least the fact that there seems to be a duality at the level of the groups where the (λ0, λ) vortex equations 
are sent to the (−λ0, −λ) vortex equations.

Recently the story of unified vortex equations has been extended. In [22] non-abelian analogues of the integrable abelian 
vortex equations have been considered. While in [5], magnetic defects were added which preserved the integrability of the 
abelian vortex equations. It is unknown if in either of these cases there is still a geometric understanding of the vortices, 
either in the Baptista sense, or in the Cartan geometry sense of this paper. Understanding these cases is a direction worth 
pursuing.
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