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1. Introduction

In this paper we will finish the program started in [19], and furthered in [20], of relating all five of the integrable abelian
vortex equations from [13] to the geometry of three dimensional Lie groups. In particular we demonstrate that an abelian
vortex is equivalent to a flat non-abelian connection.

This relationship showcases the role that constant curvature geometries play in the construction of explicit vortex config-
urations. The most common way to see this relationship is to consider the Taubes equation satisfied by the modulus of the
Higgs field, in the integrable cases it reduces to the Liouville equation. The Liouville equation is satisfied by the conformal
factor for a metric with constant Gauss curvature. This leads to the interpretation of the modulus of the Higgs field as a
conformal factor for a constant curvature metric. This metric is often called the Baptista metric [2].

The standard Abelian-Higgs model is a two dimensional model of gauged vortices. The model consists of a complex
scalar field ¢ called the Higgs field and a U(1) gauge potential a. On a Riemann surface My with the conformal factor €,
the Abelian-Higgs model at critical coupling has the static energy functional [15]

1 B2 1 . 1 2
E=— — + —D;pDip+ (1 —1|¢|?) ]dvol 11
5 (g3 + 2 2o0e+ 5 (1-108)"aval (1)

with B = f1, = d1a; — d2a;. This can be rewritten using a Bogomol'nyi argument to see that the energy is bounded below,
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Fig. 1. This summarises the four sets of equations and spaces that we relate in this paper. An extension on the left hand side relating the equations on ]HI}U
to vortex magnetic modes on flat spaces can be included when A # 0. This figure is adapted from one in [18].

E>m|N|, (1.2)

with N the winding number of the field. When N > 0 the minimisers solve the first order, Bogomol'nyi, equations

D3¢ = (0z —iaz) ¢ =0, (1.3)
Qo
B=—3(1-18?). (14)
called the vortex equations. For N < 0 the ﬁr;t equation, (1.3), becomes D,¢ =0.
Decomposing the Higgs field as ¢ = e%*™'X  and taking account of the singularities of u at the zeros, Z, r=1,...,N
possibly repeated, of the Higgs field, the Bogomol'nyi equations can be converted into the Taubes equation
N
4 4
——du=1—e— Y 8(z— 7). 15
o 02 % ; (z—Zp) (15)

A detailed study of this equation, for the case of the Abelian-Higgs model on the plane, is given in [9]. From a math-
ematical point of view this model is constructed from the data of a Riemann surface Mg, a connection a and a smooth
complex section ¢ of a complex line bundle over My. The pair (¢, a) is called a vortex.

Fig. 1 summarises the general story followed in this paper, and demonstrates the relationship between vortex config-
urations on Lie groups in the top left and vortices on Riemann surfaces in the bottom left. It guides how we proceed in
this paper starting with explaining the vortex story along the bottom line, before moving on to the three dimensional story
which gives the details of the upper part of the figure.

The paper is ordered as follows. In Sec. 2 we state our conventions for the geometry of Lie groups and Riemann surfaces.
Following this we demonstrate how to encode the structure and Gauss equations within a non-abelian flat connection, and
how this flat connection descends from the Maurer-Cartan form on a Lie group. This describes the right hand side of Fig. 1.

Sec. 3 summarises results about the integrable abelian vortex equations of [13], as well as a discussion of the geometric
interpretations of these vortices. These geometric interpretations are: deformations of the metric introducing degeneracies,
an idea introduced in [2], and non-abelian Cartan connections encoding a degenerate co-frame.

Next in Sec. 4 we introduce and study the three dimensional generalisation of a vortex, a vortex configuration. Vortex
configurations are also given by a flat connection, this time the pull back of the Maurer-Cartan one-form by a bundle map.
This relationship between vortex configurations and flat connections is the key result of the section, and we use it to relate
vortex configurations to vortices. Sec. 5 gives the construction of solutions to massless Dirac equations from vortices. It
includes extensions of the results of [19,20] and suggestions for future work.

Then Sec. 6 compares the non-abelian connections introduced here to describe vortices with the symmetric instantons
given in [3]. The explicit forms of both connections are given and evidence for a conjectured duality between the different
vortex equations is discussed. Finally Sec. 7 summarises the paper and gives some future directions of research.

2. Lie groups and Cartan connections
2.1. Group conventions

To understand how to read Fig. 1 we first need to explain what the notation ]HI; means. We are interested in the three
Lie groups SU(2), SE, and SU (1, 1), which are all groups of determinant one matrices. Respectively these are the group of
determinant one 2 x 2 unitary matrices, the component of the Euclidean group in two dimensions connected to the identity,
and the group of 2 x 2 pseudo-unitary matrices. For a more concrete realisation of the groups we take the generators of the
Lie algebra h! = Lie (H}) to be
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wmi(3 0) 0= F) w=1(0 %),
with the commutation relations

lta, tp]l = Chte  with C=1, Coh=-1, ¢5=-2, (2.2)
and all others vanishing. We use the notation ]HI){ for this group' with;

H!', =SU@2), H)=SE,, Hl=sU@,1). (2.3)

It is convenient to introduce the complex combinations

ty =t1 kit (2.4)

which satisfy

[to,t+] = Fity, [ty,t_]=2iktg. (2.5)

The first of these can be interpreted as to defining a complex structure on its complement such that (t;)t_ is (anti)-
holomorphic.
The group has inverse metric

g% = diag(—x,1,1) (2.6)

which is used to raise and lower group indices, and is degenerate in the A =0 case.
As a submanifold of C2, H is defined as

H} ={(z1,22) € C? | |z11> — A|z2* = 1}, (2.7)

the signature of the submanifold depends on the sign of 1. The complex coordinates (z1, zy) parametrise a determinant one
matrix h € H} through

h= <Z1 ”2) . (2.8)

2 Zn
As Hl is a Lie group there is a real, left-invariant Maurer-Cartan one-form encoding the geometry,
h~ldh =0y +o't; +0t;. (2.9)

We say they encode the geometry as they satisfy the structure equations
dot = — 1 96b A 2.10
o_—ibca/\o, (2.10)

where the C, ¢ are the structure constants of the Lie algebra. As a precursor to what we will consider later, observe that
h='dh can be viewed as a h} valued connection on IHI}, whose flatness is equivalent to the structure equations. Encoding
the geometry of manifolds in terms of flat connections is a central theme of Cartan geometry, see the textbook [21] and the
PhD thesis [23] for a general discussion of Cartan geometry.

Throughout it is convenient to work with the complex combinations

oc=0'+io?, 6=0'—io?, (211)
which obey
. 0 o A _
do =ioc Ao, do :30 AC. (2.12)

In terms of the complex coordinates the left invariant one-forms have the explicit expressions

o =2i(z1dzy — z2dz7) , oV =i (z1dz1 — AzZadzy — z1dZz1 + Az2dZ)) . (213)
In terms of the left invariant one-forms the metric and orientation? are
1 This group is equivalent to the group G¢ considered in [3]. In [3] the authors pick the generators J, = 4‘{ and C = —A\. The conventions here are

chosen so that for A = —1 they match those in [19].
2 The slightly unconventional ordering is so that it makes contact with the volume form on R3 after stereographic projection in the A =1, —1 cases.
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1 1 2 2
ds? = — [ —— (oo) + ((71)2 + (02> , (2.14)
4 A
Vol 1—101/\0%02 (2.15)
HA - 8 . .
The metric is singular in the A = 0 case but the only problem due to this is that we are unable to construct zero modes on

H in Sec. 5.
The dual left-invariant vector fields, X,, generate the right-action h — ht, and have the commutators

[Xa, Xp] = C,f Xec. (2.16)

In terms of the combinations

X =X1tiXy (217)
we have
[Xo, X+]=FiXy, [X4, X_1=2xiXo. (2.18)

In terms of the complex coordinates the left invariant vector fields take the form

i .
X0=—5(213] +2p0) — z10q —2282), (219)
X_=—i(z102 + 12201), (2.20)
X;=X_, (2.21)

where we have used 9; = diz, The only non-zero pairing are

c’Xo)=1, o(X_)=6(Xy)=2. (2.22)

A key feature of ]HI}\ is that it is a circle fibration over a Riemann surface M with constant Gauss curvature K = —A. For
A = —1 this is the familiar Hopf fibration, while in the other cases we have a trivial bundle. The projection is
22

7 H - M, hisz="", (2.23)
1

with z a local complex coordinate on M. There is also the familiar section, local when A = —1 but global otherwise,

1 1 Az

This enables us to relate our Maurer-Cartan one-form to the Cartan connection for the Riemann surface M. Here we use the
same definition of a Cartan connection as in [24], in fact since our Riemann surfaces are all homogeneous spaces we are
actually dealing with Kleinian geometries.

Definition 2.1. A Klein geometry (G, H) is a pair of a Lie group G and a closed subgroup H C G such that the quotient G/H
is smooth and connected.

From [21] this is equivalent to having a principal H-bundle G — G/H, which is equipped with a natural flat connection,
the Maurer-Cartan one-form on G. A Cartan geometry is essentially a manifold that is locally, or infinitesimally, Kleinian.
Klein geometries are the simplest examples of Cartan geometries, where the Cartan connection is flat and the manifold is
globally a homogeneous space.

The group manifold H is not simply connected when A = 0, 1. This is because topologically H! ; = s3, H] =R? x ST,
and IHI} = H? x S'. The generator of the fundamental group is the curve

y = (e e H! | € [0, 47)). (2.25)

This curve is contractible when A = —1 since 771 (H]}) = 71(S3) = 0.
When it is non-contractible, only flat connections with a prescribed holonomy around y can be globally trivialised. We
will encounter this constraint when discussing vortices on the group manifold in Sec. 4.

4
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2.2. Two dimensional geometry

On a Riemann surface M with constant Gauss curvature K we work in local complex coordinates z. As we are considering
M to be either S2, H2 or R2, z is a global coordinate except on $2. The Riemann surface has metric’

_ 4 _
ds® = Qdzdz = —————— dzdz. (2.26)
(1+KzI?)
This metric admits the (local) complexified co-frame
2dz
e=———. 2.27
14+ K|z|? ( )

The geometry of the Riemann surface is encoded in the structure and Gauss equations,

de —ieAnl'=0 (2.28)
i _
dF:R:iKe/\e (2.29)
where
. zdz —zdz
N=iKk——— (2.30)
1+K|z|?

is the spin connection one-form and R is the curvature two-form. When we have two Riemann surfaces we denote the one
with Gauss curvature K by M and the one with Gauss curvature Ko by Mg. There are corresponding 0 subscripts on the
co-frame fields, spin connection, and curvature two-form.

There are two results worth noting here. The first is that the structure and Gauss equations can be interpreted as the
flatness of a Cartan connection A. The second relates A to the Maurer-Cartan one-form on Hi when 1 = —K.

Proposition 2.2. The structure and Gauss equations, (2.28) and (2.29), for the co-frame, (2.27), and spin connection (2.30), are equiv-
alent to the flatness of the f)} valued connection

A=_Tty+ % (et_ —aty), (2.31)

where K = —A is the Gauss curvature.
Note that A is a connection on the principal U(1) bundle

H! - M=H]/Uu). (2.32)
The proof is a straightforward computation of the curvature of A.
Proof. The curvature of A is

FAsz+%[A,A], (2.33)

=— (R—H»%e /\é) to + % (de—il"rne)t_ — % (de+ilAne)ty. (2.34)

The vanishing of the coefficient of ty is equivalent to the Gauss equation, (2.29) with curvature K = —A, and the vanishing
of the t+ coefficients is equivalent to the structure equations, (2.28). O

Proposition 2.3. Using the local section (2.24) the Cartan connection AonM, (2.31), is trivialised as the pullback of the Maurer-Cartan
one-form, (2.9),

A=s*(h""dh). (2.35)

Proof. To prove this use the explicit expression for the section, (2.24), to compute s*o = ie and s*00 = —T. Then directly
computing the pullback of Eq. (2.9) leads to A. O

3 Note that with this choice of metric R? with K =0 has ds®> = 4dzdz. This may seem an unusual choice but it facilitates the same language to be used
for all three surfaces.
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Going the other way round h~'dh can be expressed in terms of 7*A, where 7 is the bundle projection of Eq. (2.23).
Unfortunately, this is only true up to a singular gauge transformation as
.z ) z
rre=—ite, wT=-0"+idln <_—]> (2.36)
Z1 21
These propositions convey a key concept of this work; we encode equations on a Riemann surface as flat connections,
and relate these to the Maurer-Cartan one-form on ]H[}\

3. Integrable vortex equations
3.1. Vortices on Riemann surfaces

We turn now to vortex equations on Riemann surfaces. The vortex solutions of Egs. (1.3) and (1.4) are known as hyper-
bolic vortices, since the equations are integrable on H2. These hyperbolic vortex equations were generalised in [13] to give
integrable vortex equations on a more general Riemann surface My. The hyperbolic case has a long history with the first so-
lutions given in [25], while the spherical case Mg = S% was first considered in [12,17], but the language was unified in [13]
to give five* integrable vortex equations. The equations can be written down on any Riemann surface but the integrability
relies on having constant curvature.

The vortex equations involve two parameters, suggestively called A¢ and A, and describe a pair (¢, a) of a connection a
and a section ¢ of a complex line bundle over Mg. When My is non-compact, appropriate asymptotics, |¢| — 1 on dMp,
need to be imposed to ensure finite energy [9,15].

Definition 3.1. A (1o, A) vortex is a pair (¢, a) of a connection, a, and a section, ¢, of a complex line bundle over Mg which
satisfy the (g, A) vortex equations

dp —iap) Nep=0  Fg=da= (xo—x|¢|2) wo. (3.1)
Here
wg = %eo A€o, (3.2)

is the Kahler form on Mj.
From [13] solutions are given by rational maps f : Mg — M where Mo, M are Riemann surfaces with constant Gauss
curvature —Ag, —X respectively. There is the following direct way to solve (3.1). Define the Higgs field and connection as

ffe=¢eo, a=f*T —Ty. (3.3)

Then pulling back Eq. (2.28) by f gives the first vortex equation, while pulling back the Gauss equation (2.29), noting
f* (e A &) = |¢p|*eg A€o and using the Gauss equation on Mg, leads to the second vortex equation. The data of a holomorphic
map between two constant curvature Riemann surfaces is thus all we need to construct a solution to the vortex equations.

Another way to show this is to reduce the vortex equations to the Liouville equation. Decomposing the Higgs field as
¢ = e!TiX leads to a generalisation of the Taubes equation

N
4 o oh 2w
—Q—Oazazh_(xo—xe )—Q—Oga(z—zr), (3.4)

with Qo the conformal factor on My and Z, € C the zeros of ¢. A scaling argument from [13] shows that there are five
integrable cases:

Hyperbolic vortices 1o =1 =1,

Popov vortices Ag =1 = —1,

Jackiw-Pi vortices Ao =0, A = —1,
Ambjgrn-Olesen vortices Ag =1 = —A,
Bradlow vortices Ag =1, A =0.

As noted above, the case of Lo = A =0, sometimes called Laplace vortices, could also be included. This naturally fits into
the framework that we discuss here. Explicit expressions for ¢ and a in terms of f are given in [13].

4 Or should that be 6 equations? The A = g =0 case was not considered in [13] but was called the Laplace vortex equation in [3]. It corresponds to a
covariantly holomorphic section ¢ and a flat connection a. These Laplace vortices fit into the Cartan framework given here.
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3.2. Baptista metric

The idea of interpreting vortices geometrically stems from [14] where the Higgs field of a hyperbolic vortex is represented
as the ratio of conformal factors

22\
9 ="

2
(3.5)

Then in [2] it was shown that a vortex defines a degenerate conical geometry on My, where the metric has conformal factor
|2 relative to the flat metric dzdz. This conformal factor is zero at the vortex centres. This idea was extended in [13]
where it is referred to as the Baptista metric. In the integrable cases the Baptista metric is given by

ds3 = f*ds® = |p|*ds}. (3.6)

This says that a vortex defines a degenerate co-frame on My, with the vortex equations forming part of the structure and
Gauss equations for this co-frame.

It is important to be aware that since the Baptista metric has the conformal factor |¢|? it is degenerate at the N, not
necessarily distinct, zeros of the Higgs field. As observed in [2] the Riemann curvature two-form associated with the metric
is extended to the zeros by adding delta function singularities

N
R'=Ro+Fa—27 Y 8z, (3.7)
j=1

where we use dz; for the two-form Dirac delta supported on the point Z;.

This can be understood as the Baptista metric having a conical singularity with surplus angle 27 N at a zero of multi-
plicity Nj, with N = Zj Nj. The local geometry around the point Z; thus resembles a ruffled collar and is sometimes called
an Elizabethan geometry. For the case of Popov vortices on S2, a is a connection on a line bundle of even degree, N = 2n—2
withn=1,2,... etc, and thus

f Fo=4nn —4m. (3.8)
S2

This is cancelled by the integral over the delta functions and thus

fR’:/RSZ =4, (3.9)
s2 s2

which can be interpreted as the Gauss-Bonnet theorem holding for R’. This is in contrast to the pullback of the curvature
two-form, f*Rs2, which integrates to 4srn since in this case the map f: $2 — $2 has degree n [13,19].

For the other types of vortex we still have Equation (3.7), and F, still integrates to 2w N, once the appropriate boundary
conditions are taken into account, which is again cancelled by the delta function contribution. However, as H? and R?
are non-compact the integrals of the curvature forms are not defined. One way to get around this is to work on compact
manifolds covered by H? or R2, such as a Riemann surface of genus g > 1 which is the quotient of H2 by a Fuchsian group
A < SU(1,1). This complicates the story somewhat so we do not focus on it here.

This example shows that the spin connection of the degenerate co-frame ¢eg, I differs from the pulled back spin
connection f*I" by a contribution due to the zeros of ¢ and this contribution is what leads to the singularities in R’.

3.3. Vortices as flat connections
From the discussion of the Baptista metric and Proposition 2.2 it follows that the vortex equations are equivalent to the
flatness of the non-abelian connection f*A. The key observation is that pulling back the co-frame field from M, f*e = ¢ey,

defines a degenerate co-frame from the data of the vortex, and the structure and Gauss equations for this co-frame imply
the vortex equations of Eq. (3.1).

Corollary 3.2. Given the flat connection A defined in Eq. (2.31), and a holomorphic map f : Mg — M, the flatness of

f*A=—(a+Ts)to+ % (perot— — denoty), (3.10)

is equivalent to the (\g, A) vortex equations.
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As A is a connection on a U(1) bundle over M, its pullback is a connection on the pulled back bundle over My Since f
is a rational function it can be written as f(z) = f2(z)/f1(z) for two holomorphic functions fi, f. The Higgs field ¢, and
thus the connection f*A have zeros, and potentially singularities, determined by the f;. To see this explicitly note that

f3f1—fif2 ﬁ ,
Lfil2+KIf2? f1 7
which has zeros at the ramification points of f, and singularities at the zeros of f;. There are singularities when the co-
frame e has a singularity, this happens when M = S? as the co-frame is local in a patch with coordinate singularity at one
of the poles of the sphere. Under f the pre-images of the coordinate singularity of e become the zeros of fi.

For example if q is a zero of f; then near q

e = ey =2 (3.11)

5
deo~AZ—44, (3.12)
zZ—q
for a constant A. When ¢e has singularities they are inherited by the vortex Cartan connection f *A. Thus it is not really
defined on the total space ]HI; but on

P=H\J7"@). (3.13)
]

where the q; are the zeros of fi1. For the case of Popov vortices an extensive discussion of the singularities and their
properties is given in [19].

In the language of Cartan connections our results so far are that Alis a gauge potential for the Cartan connection
describing the geometry of M, while f *Ais a gauge potential for a Cartan connection describing the deformed geometry
on Mg due to the vortex (¢, a).

In all six cases the data of a vortex is encoded in a rational map. However, the specific details of the rational map
is related to the geometry of the Riemann surfaces. When M = S? f has poles and when M = R?, H? the boundary
condition |¢| — 1 is applied. Thus for Popov vortices f : S2 — S2 is a ratio of polynomials and has both zeros and poles,
for Jackiw-Pi vortices f : R? — S2 is a based rational map satisfying lim,_,o f(z) — 0 which means that the degree of
the denominator is larger than the degree of the numerator [7]. While for hyperbolic vortices f : H — H? is a bounded
holomorphic function on hyperbolic space, and thus is represented by a finite Blashke product with no poles in the unit disc
[25]. Bradlow vortices correspond to f : H2 — R2 and similar to the hyperbolic case can be expressed as Blashke products.
The Ambjern-Olesen case is similar to the hyperbolic case except that f: H2 — S2 is now a finite Blashke product that can
have poles, the argument for why this is true is given in Sec. 4.2.2. Finally, Laplace vortices have f:RZ% — R2, the only
bounded examples are constant functions so the boundary condition would need to be relaxed to give interesting solutions.

4. Vortices on Lie groups
4.1. Vortex configurations

The next important actors in this story are vortex configurations on Hlo. These are the generalisation of vortices to
three dimensional group manifolds. Unlike vortices they do not involve sections and connections but give a way of writing
the vortex equations in terms of one-forms and complex functions on the total space of the line bundle that vortices were
defined on.

Before discussing vortex configurations we need to understand the equivariant functions on Hl.

Definition 4.1. The space of equivariant functions over ]HI}\ is defined to be

C®(H},C)y ={F:H} - C|2iXoF =NF}, NeZ. (4.1)

In [19] the discussion of equivariant functions followed that in [10,11] with N € N9, This is because for SU(2), equivari-
ant functions are functions on the Lens space S3/Zy and are related to sections of the hyperplane bundle. In general it is
not a priori clear that we need to impose the same restriction that the degree is a non-negative integer. In practice we only
encounter equivariant functions constructed from holomorphic polynomials in z;,z; and for these N € N©.

A short computation using the local section s, (2.24), results in the following commutative diagram

C®(HL, C)y —5> C(H!, C)y 42 (4.2)

N B

C®(My) ————>C®(My)
i(q0—r52)



C. Ross Journal of Geometry and Physics 179 (2022) 104613

where q = (1 — A|z|%). The fact that for » =0 the vector field X is the lift of 3 is not particularly surprising as in this case
g=1, X, =iz19, and the section s identifies z, with z.

As we will be dealing with two, potentially different, group manifolds Hio and Hi we require separate notation for
the geometric objects on the two spaces. We use the notation sy, 0%, X, for the generators, left-invariant one-forms and
left-invariant vector fields respectively of the source group three manifolds, H}O, and t,4, 9, Y, for the same objects on the
target group three manifolds, ]HI}\. Due to the details of our construction the Cartan connection is always valued in the Lie
algebra of the target group.

Definition 4.2. Let A be a one-form on IHH0 and ®: IHI}0 — C a complex function. We call the pair (®, A) a vortex config-
uration if the vortex equations,

i _
d® +iAP) Ao =0 FA=§(A0—/\|¢|2)0AU, (4.3)
with F4 =dA, are satisfied.
In the A = Ag = —1 case of [19] normalisation and equivariance conditions were included in the definition of vortex

configurations. However, in the other cases A(Xp) is not necessarily an integer so we do not include a normalisation con-
dition. When we construct examples of vortex configurations they will be normalised. Equivariance conditions, when A is
normalised, follow from the vortex equations, (4.3) and Cartan’s identity. They are

Lx,® = —iA(X0)®, (4.4)

Lx,A=dA(Xo). (4.5)
These vortex equations possess the U(1) gauge invariance

(@, A) > (P, A+dp),  peC (H]). (4.6)

The three dimensional vortex equations in (4.3) have clear similarities to the vortex equations in (3.1). The left-invariant
one-forms are the analogue of the complexified co-frame and spin connection. The precise relationship was given in the
proof of Proposition 2.3 and in the discussion afterwords.

We now come to the central theorem of the paper, a method for constructing vortex configurations from bundle maps.
Here a bundle map is a fibre-preserving morphism of the bundles covering a map between the bases.

Theorem 4.3. A vortex configuration on Hio determines a gauge potential for a flat h}\ connection of the form

1 1.
A= (A+o°)to+5q>at,+ §<I>c'7t+. 4.7)
Conversely, a flat b} connection A on H} such that

A(Xo) = pto, AX2) =atg + dt_, (4.8)

for functions p : IHI}0 —Rando, ®: I[-]I}\0 — C determines a vortex configuration (®, A) through the expansion (4.7).
Given A, a gauge potential for a flat Lie (H}) connection on ]I-]I}\0 of the form (4.7) which satisfies

/.A = 2mnty, (4.9)
Y

forn € Z and y the curve defined in Eq. (2.25), it can be trivialised as U~'dU for a bundle map U : Hio — ]HI}\ which covers a
holomorphic map f : Mg — M. Without loss of generality U can be taken to have the form

U:(zl,zz)H;C] “2> (410)

JIFIZ =22 \F2 Fi

with F; :]HI}‘0 — C where |F1|?> > A|F3|%
The vortex configuration can be extracted from the bundle map as

®o =U*t, A=U*t"-¢" (4.11)
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This result generalises Theorem 3.2 from [19] and Theorem 3.2 from [20], the result when Ag = A = —1 or 1 respectively.

Note that when A % —1 we can assume that F; 0 since |F|? > A|F;|%. However when A = —1 this assumption is not
valid. This relates to the fact that when A = —1 the map f =s* (i—f) which U covers, can have poles since it is a map

f:Mg— S2.
Proof. Given a h}\ connection on ]HI;0 in the vortex gauge, (4.7), the flatness condition d A + .A A A =0 is equivalent to

(d(d)a)—i—i(A—i—ao) q>)=o dA=%(x0—x|<1>|2)a Ao (412)

Using equation (2.12) these are seen to be equivalent to the vortex equations, (4.3).
For the converse expand the flat h}\ connection, .4, on Hio in terms of the generators, to,ty,t_. The coefficients are

linear combinations of 6%, and &, as they form a basis of the co-tangent space of H}\O. Imposing the conditions in
Equation (4.8) leads to the gauge potential A being in the vortex form, Equation (4.7), with Higgs field ®, and abelian
gauge potential

A:(p—l)ao—i-%(oza—i-o_t&). (413)

The same calculation as above then gives that the vortex equations, (4.3), are satisfied.
To globally trivialise a flat connection .4 on ]I-]I}\0 in terms of U : ]HI}\0 — H! as A=U"1dU, its path-ordered exponential
must be path independent. If this is the case U can be constructed explicitly from P exp < f); .A) along any path y, starting

at a fixed but arbitrary base point, [1].

As A is a flat connection the non-abelian Stokes theorem implies that the path-ordered exponential is path independent
for contractible paths. The conditions in (4.8) ensure that the path-ordered exponential of A along y coincides with the
exponential of the ordinary integral. Then (4.9) implies that

P exp /A =1I. (4.14)
Y

Flatness of the connection .4 and the non-abelian Stokes theorem then combine to give that the path-ordered exponen-
tial of A along any closed curve in ]I-]I}\O is the identity. This gives the path independence of the path-ordered exponential.

The final part of the proof is to show that for A = U~1dU satisfying (4.8) U is a bundle map covering a holomorphic
function Mg — M. The first condition in (4.8) becomes

XoU = pUty, (4.15)

with p: H] — R. This is just the infinitesimal statement that U maps the fibres of H — My to the fibres of H} — M,
in other words that U is a bundle map.
Complex conjugation of the second condition in (4.8) implies that

U~'X, U =aty+ dt,. (4.16)
Now apply
-1 * .0 1 * 1 * =
U~ 'dUu=U*t t()+§U 'Ct_+§U Tt+ (417)

to X4, the condition in (4.16) is thus equivalent to

U*T(X4) =0. (4.18)

We now need to show that this is equivalent to U covering a holomorphic map.
Using the parameterisation of U in terms of the functions F; defined in (4.10) we see that Equation (4.15) becomes

F; i F;
X[ —t—— | =op | ———— ). (4.19)
VIF1|? = A|F2|? 27 \VIF1|? — A|F2?

From this it follows that the map w o U = F—f has equivariant degree zero, from Definition 4.1, and that U covers

f=s* (i—?) : Mo — M. (4.20)

10



C. Ross Journal of Geometry and Physics 179 (2022) 104613

Using (4.2) for % we find that f being holomorphic is equivalent to

F
x+(£)=o (421)
Fq
Returning to (4.18) use (2.13) to see that
" 2i 2i 5, F2
U*T(X4) = (F1X1Fz — F2X 1 Fp) = (4.22)

— ——  _F2X,—=,
|F1]2 — A|F2|2 IF112—A|F22 17T Fy

with the last equality holding away from the zeros of Fi. Thus the condition (4.18) is equivalent to f = s* (;—f) being

holomorphic away from the zeros of Fy. This means that for A = —1 the result has been established. For the A = —1 case f
will have poles at the zeros of F; and is a holomorphic map Mg — S2. O

At the level of the bundle map U the U(1) gauge invariance from (4.6) becomes
U U=Uefo,  BeC™(H],). (4.23)

This defines a new trivialisation with the same f as U. The connection U~'dU differs from A = U~'dU by the gauge
transformation in (4.6).

Notice that when A # —1 a vortex configuration can always be constructed from a given holomorphic map f: My — M
by choosing

Fi(z1,22) =1, F2(21,22)=f(§—?>- (4.24)

This trivial lift results in a connection .4 that is constant along the fibres since .A(Xp) = 0 which implies £x,.A = 0. This
trivial lift is a direct consequence of ]HI} and ]HI}) being trivial bundles. The trivial lift was observed for the A = A9 =1 case
in [20].

4.2. Vortex configurations from vortices

To construct vortex configurations from a non-trivial lift we follow the work of [19,20] and lift vortices from My to Hlo.
The idea behind this is that a vortex is given by a rational function f = f,/f1. We can then take the lift f,/f1 = F2/F;.
This lift is non-trivial since the functions Fq, F, have a non-trivial equivariant degree.

For this lift the Higgs field ® has equivariant degree 2N — 2 in the sense of Definition 4.1, with N the integer equivariant
degree of F; and F, determined from the rational function f. The specific vortex number depends on the type of vortex.
Lifting Popov and hyperbolic vortices has been carried out previously in [19] and [20] respectively.

This leads us to the following Corollary of Theorem 4.3.

Corollary 4.4. Let U : H}O — H! be the bundle map from (4.10) with

2iXoF1 = ZiXOFz =NeZ. (4.25)

The vortex configuration (&, A) constructed from the connection A = U~1dU through Theorem 4.3 has a gauge field which satisfies
the normalisation condition

A(Xg) =N -1, (4.26)
and a Higgs field of equivariant degree 2N — 2. In terms of F1, Fy the vortex configuration is expressed as

_ F1aF2 — P22 Fy

S LA Bl (4.27)
z1 (IF11? + |F21?)

and
0 i 2 i 2 =
A=(N-1o +§X_1nD 0—5X+lnD o (4.28)
with D? = |F1|2 + |F2|%.

To make this result more understandable we give two example; one for Jackiw-Pi vortices, and another for Ambjern-
Olesen vortices.

11
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4.2.1. Jackiw-Pi vortices
In [7] it was shown that the Jackiw-Pi vortex equations on R? with a finite number of zeros are solved by a rational
map f = s :R? — $2 with deg(p) < deg(q). For example a 2N-vortex solution is given by

M N
p@=Y az, q@=) bz, M<N, (4.29)

with the understanding that p and q have no common factors, at least one of ag, by are non-zero, and by # 0. In this case
we can write down the following homogeneous polynomials

P(z1,zz)_Za zN ’z’z, Q (z1, zz)_Zb zN ’2‘2, (4.30)

i=0 i=0

which satisfy

«(PY_P
s <Q>_q. (4.31)

Examples of Jackiw-Pi vortices with N =1 and N = 2, including plots of |¢|2, are given in [6,8].
In Corollary 4.4 taking

Fi(z1,22) = Q (21, 22), Fy(z1,22) = P(z1, 22), (4.32)

with P, Q given in (4.30) so that 2iXgP =2iXyQ = N, defines a Ao =0, A = —1 vortex configuration.

In [13] the case of Jackiw-Pi vortices on the torus is discussed, there the map f is a doubly periodic elliptic function.
As a vortex on the torus it has a finite vortex number, 2N where N is the number of poles of f. However, as a vortex
on R? it has an infinite number of zeros. The torus is obtained from R? by quotienting with a discrete subgroup of SE;
and demanding that the zeros of the Higgs field on R? are periodic under this subgroup and there are 2N of them in the
principal domain. The only way to lift these vortices seems to be via the trivial lift (4.24).

The most popular example of a Jackiw-Pi vortex on R? [6-8] is the axially symmetric case constructed from the rational

function
1
f= e (4.33)

For this choice of f the F; are given by

F] :ZIZV, Fz:Z%V. (4-34)
For this vortex the Higgs field of the vortex configuration is given by
=181
¢=—-N—1_"2_ __ (4.35)

121 12N + |z2|?N
This can be explicitly seen to satisfy 2iXo® = (2N — 2)® and thus @ is a degree 2N — 2 equivariant function.
4.2.2. Ambjorn-Olesen vortices

From [13] we know that Ambjern-Olesen vortices are constructed from a holomorphic map f : H> — S2, subject to
|f(2)] > 1 as |z| — 1. These maps can be expressed in terms of their m zeros, c1,---,cm, and n poles, dq, --- ,dp, as

fo m Z—Cj n ]—aj
f@= h H(l—cz)“(z d) (436)

i=1

To see this we use that the zeros and poles of f define the Blaschke products

n

() ()

i=1 1

The ratio of these Blaschke products % has the same zeros and poles as f and their ratio % is a holomorphic function

with no zeros and no poles satisfying |f(z)| =1 for |z] = 1. Liouville’s theorem then gives that this ratio is a constant,
i € C such that || =1, multiplying f by a constant does not change the vortex that we construct from f so we can take

n=1.

12
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To make use of Corollary 4.4 to construct a Ag = —A =1 vortex configuration take

Fiz1,22) =[[[ [ 21 = Giz2) (z2 - djz1),

i=1j=1

Fazi,z2) =[] ] @2 —ciz0) (21 —ajlz) :

i=1j=1

(4.38)

The equivariant degree is N =m +n.
The same procedure can be used to construct vortex configurations from a given Bradlow vortex.

4.2.3. Lifts at the level of the connection

Working at the level of the flat connections A and f *A we can state the relationship between vortex connections and
vortices. To do this recall that if A =1 then f*A has singularities at the points q; such that fi(g;) =0, and is thus defined
on the space P C Hlo defined in Eq. (3.13).

Note that for a function g : Mg — C we can define the map

£ 0
re: My \{qi) > Hl, rg= ( g i), (4.39)
gl

where the g; are the zeros of g.
Now using the section s defined in (2.24) we get the following corollary of Theorem 4.3 and Proposition 2.3.

Corollary 4.5. For the bundle map U in (4.10) covering the holomorphic map f, the gauge vortex connection f *A from (3.10) is related
to A= U~1dU through the, possibly singular, gauge transformation rf,, where fi = Fyos:

f*A= rj?lls*Arf1 + rj?lldrfl . (4.40)

The trivial lift in (4.24) corresponds to rp, =1, f*A = s* A. Again, this is only possible when A # 1 so that s*.4 and f*A
are both manifestly smooth.

5. A comment on magnetic modes
5.1. Group manifolds and stereographic projection

In the previous work [19,20], vortex configurations on the group manifold, either SU(2) or SU(1,1), were used to
construct solutions to a twisted Dirac equation. These vortex magnetic modes were then pulled back to vortex magnetic
modes on flat R3 or R%!. For both Bradlow and Ambjern-Olesen vortices the approach used in [20] is applicable and the
vortices lead to solutions of a twisted Dirac equation on R?!. For completeness we give the full argument here and stress
that the results of this section are all under the assumption that Ag # 0. This is because both Jackiw-Pi and Laplace vortices,
which have A¢ =0, are related to the group SE; which does not possess a bi-invariant metric. In fact the metric from
Eq. (2.6) is singular’ so we cannot construct a Dirac operator in the usual way. A potential approach to fixing this problem
is to centrally extend SE; to the Nappi-Witten space [16] which has a Lorentzian metric. This central extension would not
affect the construction in the other cases and the hope is that it will enable the construction of vortex magnetic modes
from Jackiw-Pi vortices. This is a current direction of research.

The Killing metric on the Lie algebra of ]H[LJ depends on Ag and is

ds2, = —;—O (dx°)2 +(dx')’ + (dx2)2 , (5.1)

in particular this metric would be singular if the A9 = 0 case was included. We are assuming the oriented (pseudo) or-
thonormal co-frame

(dxo, X', dxz) , (5.2)
such that the volume form is

dxO A dx! A dx?. (5.3)

5 Eq. (2.6) says that the inverse metric is degenerate which is equivalent to the metric being singular.

13
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A point X € ]Rio is given by % = x9b, with by an oriented basis such that g(ba, by) = gas, for g as in (2.6). For X, J € Rio
the scalar product is given by

Xy =gaX"y’, (5.4)
and the distance to X is
r?=X-X=—o(x0)* + x1)* + (x2)°. (5.5)
The cross product of X,y € Rio is
Xxy =gyl (5.6)

with €912 =1, £012 — —Xo-
The Hodge star on the basis is computed in the standard way as

* (dx” T /\dx’k) = gtk Xk A A dXD (5.7)
G —-K! fet1oot
We call this space
R} = (R3, ds,z\o) . (5.8)
On ]HIL) we work with the oriented, orthonormal co-frame
1 1 1
-0% —0o'!,-0?), (5.9)
2 2 2

with respect to which the bi-invariant metric and orientation are given by Eqgs. (2.14) and (2.15) respectively. The slightly
unconventional ordering is so that this gives the volume form on R3 after stereographic projection in the A =1, —1 cases.
We construct two maps between Rio and ]HI}\O,

G.H:R} —H] . (5.10)

As in the earlier papers [19,20], H is a scaled version of inverse stereographic projection and G is the inverse gnomonic
projection. The two maps are related through H(x) = G(X). Note that, as in [20], G, H are not maps from all of Riﬂ to ]HI}‘0

but only from the subspace Z C R?\o defined as
I=[(xo,xl,xz)eR§0|Aor2<1}. (5.11)

In the SU(2) (Ao = —1) case, Z = R3 since the above condition becomes r2 > —1. However, in the SU(1,1) (g =1)
case, the condition on r? is that

2 =—x%%+ &)+ (xH)? <1, (5.12)

and 7 is the interior of a single sheeted hyperboloid.
In the notation used here H is

H:T— Hio, (5.13)
. 1+ 4 . 1 1+ aor? +2ix0 —2ing (x! —ix?
X — X-t= . . . . 5.14
1T—2or2"  1— aor? 1T—aor2 \ 2i(x"+ix?)  1+2er® — szo) (514)
The analogue of the inverse gnomonic projection is
. T—-2x-¢t
G:I—>Hj,, x> ——x. (5.15)
V1 —Agr?
Pulling back the left-invariant one-forms, o, with H we define a co-frame on ]R30, 99, as
* _a 1 a
H*o" = ——v"°, (5.16)
Q
where the scale factor Q2 is defined as
1 — ror?
Q= TO' (517)

14
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The co-frame #“ is related to the standard flat co-frame through conjugation by G,

- _>_ 1 2 - = - - - = - - b
z?-t_m(<1+)»0r)(dx~t)—2Ao(dx-x)(x~t)+2(x><dx)-t), (518)
=G '(dx-1)G.

In other words, the #¢ are a rotated basis for the co-tangent space, with the rotation given by G acting in the adjoint
representation.

Lemma 5.1. The pull-backs of the Maurer-Cartan one-form on Hio by the maps G, H are related via
H™'dH =G7'dG + G~ '(G71dG)G, (5.19)
with the inverse relation

G 1dG = %H‘ldH — Ao % (dS2 A H 1dH). (5.20)

Here  is the Hodge star operator on ]HI} with respect to the orientation (2.15).

Proof. This result follows from a direct computation. The first formula is found by substituting H = G2 into H~'dH. For the
second formula use Eq. (5.19) to rewrite Eq. (5.20) as

—200 % (dQ2 A (dGGT' 4+ G71dG)) =dGG™' — G71dG. (5.21)
Next computing

dx-t+ (x x dx) - €

G ldG =2 : 5.22
1— hor? (5:22)
leads to
dx -t X x dx) -t
dGG™! +G‘1dG=—4u, dGG™! —G‘]dG=4¥. (5.23)
(1 — korz) (1 - korz)
Using these expressions along with
—2x0dQ2 = AZX - dX =X - dX, (5.24)
since Ao = %1, and
*(X-dX Adx-T) = (dX x X) - T, (5.25)
gives (5.21) and thus (5.20) is established. O
5.2. Dirac operators
Next construct the Dirac operators on both Hio and ]Rio. The spin connection on IHI}0 is
Tt = —l[y Yolo® = T h=14n (5.26)
By~ 8" 2 ' '
Introducing € such that 62 = A, this is 1 in the Lorentzian case and i in the Euclidean case, the Dirac operator is written as
3
DHi = 4i0t" X, + 51’)\0911, (5.27)
0
MoXo AoX— 3,
=20 —iArgOl. 5.28
(—X+ —koxo> + 20 (5.28)

The Dirac operator can be minimally coupled to an Abelian gauge potential A as
3
le A =40t (Xg +iAq) + Ei/\g@]l
o

— 29 Ao (Xo +iAg) Xro(X_ +iA-)
=720\ Z(Xy +iAy) —ho (Xo+iAo)

3 (5.29)
) + S itofl.
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The Dirac operator on Rio minimally coupled to the gauge potential A-dx is

%10, 4 = 2i0t% (3, + iAq) (5.30)

Definition 5.2. A spinor W': H}\O — C? that satisfies
D 4,¥=0 (5.31)
/\.0’

is called a magnetic mode or magnetic Dirac mode of the Dirac operator le , coupled to the connection A.
0

Lemma5.3.[fW: ]HI}\0 — €2 is a magnetic Dirac mode of the Dirac operator (5.29) on H}O coupled to the U (1) gauge field A, then

Uy =GQ 'H W (5.32)
is a magnetic mode of the Dirac operator wRi + 4 0N Euclidean 3-space coupled to the connection H* A.
"
Proof. This result follows from the known equivariance properties of the Dirac operator under scaling and changes of frame.

Here we give an explicit verification in the interest of providing a complete discussion. Consider the pull-back of the spin
connection

1

H*FH% = EH_ldH. (5.33)

Then (5.19) implies that
1 1

d+ 5H—1azH =QG™! (d +3 (GdG™'+G'dG) + sz-%m) Q7'G. (5.34)

Next using that GdG~! = —dGG!, (5.23), and
X-dx
Q ldQ=—-2x—n—, 5.35
0 1-— )Lol'z ( )

leads to

. 1 _ _ _ 2)\.0;{'? 2)\05&-?
%, (= (GdG™'+ G 1dG) + @ 1dQ ) = - =0. 5.36
K (2 ( * )+ T—aor2  1—agr? (5.36)

Putting everything together, the pull-back of the Dirac operator on ]HI;0 with spin connection FH} and coupled to the
0

abelian connection A is

1 __ 40 1 -1 e
EEH;LO*A_t 1H* X, <d+ EH dH +iH*A (537)
1
= —QG t%,,G (d + EH—1dH + iH*A) (5.38)
=—Q%G 't%, (d +iH*A)Q7'G, (5.39)

giving the stated relationship between magnetic modes of mHi aand Pps pe,e O
0’ 2o’

5.3. Vortex magnetic modes

As observed in [19,20] vortex configurations give rise to magnetic modes satisfying a second non-linear equation. The
results presented here unify the earlier results and extend them to include a construction of vortex magnetic modes from
Bradlow and Ambjern-Olesen vortex configurations.

Definition 5.4. A pair (¥, A) of a spinor ¥ and a one-form A on I[-]I}\0 is said to be a vortex magnetic mode of the Dirac
equation on ]I-]I}\0 if

A 1
Py 4¥=0, FA=_%4i*\IITh_1dh\IJ—AOZa1 Ao2, (5.40)

with » the Hodge star operator on SU (1, 1) with respect to the metric (2.14) and orientation (2.15).
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Theorem 5.5. Given a vortex configuration (®, A) on ]I-]I}\0 the pair

_ ® ’r_ 3 0
\IJ_<O>, A=A+ 30", (5.41)

is a vortex magnetic mode on Hio.

Proof. As (P, A) is a vortex configuration it solves

Xo® +iAg® =0, X, ®+iA =0, (5.42)

these are just the contraction of (4.3) with (Xp, X-) and (X4, X_) respectively. Now, the spinor in the Theorem is a mag-
netic mode if

3i
Xo® +iAg® — 2@ =0, X @ +iA,®=0. (5.43)

Since, Ay = A'(Xo) = Ao + % and A’(X;) = A(X,) these equations follow from (5.42).
For the non-linear equation consider that for the given form of spinor we know that

A A i
— 2 4i« UTh ' dhW = — = 4i|0)2 [ —=0° ) = A|®|20% Ao, (5.44)
A0 ) 2
On the other hand
3. o2 1 2 M\ 1, 2
FA/:FA—ZAOJ Ao = | A|D| -7 o ANO%, (5.45)

which is nothing but the non-linear equation from Eq. (5.40). O

5.4. Vortex magnetic modes on flat space

Combining Theorem 5.5 with Lemma 5.3, vortex magnetic modes on H}O can be converted to magnetic modes on Rf\o.

Before stating what vortex magnetic modes pull back to on Rio we need to establish what happens to the inhomoge-
neous term in (5.40). Computing its pullback we find
4

1 * 1 2\ _ 0_1 a b c
ZH (U NO )—m*Rfoﬁ —58 beadX Adx©. (546)

The corresponding magnetic field

R 1 1+ xor? +2x3
b=—+——=1 2(ox2+x1%0) |, (5.47)
1— Aor
—2 (MoX1 — X2X0)

is a background magnetic field, with field lines the fibres of the fibration 7 : H}O — M;,. In the A =19 = —1 case considered
in [19] the field lines are the fibres of the Hopf fibration and thus are all linked.

In the Ag =1 case the only differences between the three types of vortex magnetic modes on R? =R!2 comes from
the different coefficients of WTh='dhW in (5.40). More precisely, vortex magnetic modes constructed from the Hyperbolic,
Bradlow, and Ambjern-Olesen vortices, differ only in the relationship between WTh—1dhW and F,.

Definition 5.6. A pair (¥, A) of a spinor W and a one-form A = A . dx is called a vortex magnetic mode on Rio if the
coupled equations

- A 4o -
Bg: 4o ¥=0 B= —2iA—thwH — hob, (5.48)
A0 0
where B =V x A and b is the background field (5.47), are satisfied.

The means of constructing examples of such vortex magnetic modes are through the following Corollary of our earlier
results.

This starts from a bundle map and results in explicit expressions for the spinor and gauge potential in terms of a vortex
configuration.
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Corollary 5.7. A bundle map U : ]I-]Ii0 — ]HI}\ covering a holomorphic map f : My, — M), determines a smooth vortex magnetic mode
onZC Rio. In terms of the vortex configuration (&, A) extracted from U~1dU using (4.7) the vortex magnetic mode is

. 3
po=Q—1c<”Oq’>, A = H* <A+Zao>. (5.49)

The proof of this result follows by bringing together the earlier results. Theorem 4.3 gives the construction of a vortex
configuration from a bundle map, then Theorem 5.5 shows how vortex configurations give rise to vortex magnetic modes,
finally Lemma 5.3 tells us how to turn magnetic modes on ]HI}\0 into magnetic modes on ]Ri . The only thing that needs to
be checked is that the non-linear equation in Eq. (5.48) is satisfied. This follows from a straightforward computation.

6. Vortices and instantons

The representation of vortices as non-abelian connections in three dimensions given here is an alternative to viewing
vortices as symmetric, non-abelian instantons on flat R4, In [3] it was shown that all five of the integrable vortex equations
can be constructed as the dimensional reduction of an appropriate (anti-)self dual Yang-Mills theory on My x Ng, where Ny
is a Riemann surface with constant Gauss curvature —Ky. This construction is based on the general story of gauge fields
which possess space time symmetries introduced in [4]. In [19,20] it was observed that there is an interesting relationship
between the gauge group of the Yang-Mills theory and the Lie algebra that the Cartan connection is valued in. In short if
the Cartan group is H{ then the instanton gauge group is Hl_k.

In our conventions the construction from [3] considers instantons on the four manifold R* ~ Mg x Ng with gauge group
Hl_/\ that are equivariant with respect to the action of Hl—)»g' This amounts to the instanton being independent of the Ng

factor and thus reducing to a (Ao, A) vortex on M,,. Explicitly the instanton is given by the Hlk—connection

i _ i
ACD=—(a—FN0)t0+?€NOt_— ?e—Not-h (6.1)
with (¢, a) the (1o, A) vortex on Mo and ey,, I'n, the complexified co-frame and spin connection on No. From Corollary 3.2
a (Ao, A) vortex is equivalent to a flat H}\-connection

A=—(a+To)tg+ %EOI_ — %éot.;,_. (6.2)

It is interesting to contrast the two connections. Acp is an anti-self dual connection on a conformally flat four-manifold
while A is a flat connection on a Riemann surface. This manifests itself in the fact that A only depends on information on
My, the vortex (¢,a) and the co-frame field and spin connection. On the other hand Acp depends on information from
both My and Ny. Another difference that should be noted is that while we have used the same notation for the generators,
to, t+ they are not exactly the same, the key difference is in t,. For Hi the explicit form of t is

t+=<8 ig). (6.3)

This means the sign in t; is different for the two connections.

However, we know that the flat connection in two dimensions is related to a flat connection on the group manifold
Hio given by Eq. (4.7). An immediate question is if there is a way to go directly between the instanton and the three
dimensional Cartan connection. At the moment we only know how to pass between them by going through the vortex in
two dimensions. There are definitely key differences in their construction with A being constructed from the pullback of
the left-invariant Maurer-Cartan one-form on IHI} while Acp, following the general construction in [4], is constructed from
left-invariant data from IHIL\0 and right-invariant data from ]Hllk.

Finally consider the diagram

H!, xH] —%—H] x H!, (6.4)
¥ ¥
No x Mo—2— M x N

where f: Mo — M is the rational map defining a vortex and U : IHI}0 — ]HI}\ is the bundle map encountered in Theorem 4.3.
From the instanton point of view Hl—xo would be the symmetry group and Hl)\ is the gauge group. This could be flipped
round to
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Hj, xH!, <—H!, xH; (6.5)

Pk

with g: N — Ny a rational map defining a vortex and V :]HIEA — Hlxo a bundle map. Now the instanton point of view

has Hi as the symmetry group and H}O as the gauge group.

This suggests that at the level of the groups there is a potential duality between the different vortex equations. This
duality takes the (1o, A) vortex equations to the (—Xg, —A) vortex equations.

The Hyperbolic and Popov vortex equations are exchanged under this, as are the Bradlow and Jackiw-Pi vortices while
both the Ambjern-Olesen and Laplace vortex equations are “self-dual” in this sense.

7. Conclusions and outlook

This paper has considered the general problem of giving a geometric description of integrable abelian vortices as
non-abelian flat connections. This provides a unified three dimensional interpretation of vortices, complementing the two
dimensional metric geometry interpretation given by Baptista [2], and the four dimensional description of vortices as sym-
metric instantons [3].

The story is summarised in Fig. 1 where the most important maps, spaces and equations are given. This gives a unifying
picture, generalising the work of [19,20] to include all of the integrable vortex equations considered in [13]. As well as
establishing the relationship between vortices and Cartan geometry we have also discussed proposals to construct solutions
to massless Dirac equations from vortices.

A comparison between the Cartan connection picture and the instanton picture of vortices leads to some intriguing
comparisons. Not least the fact that there seems to be a duality at the level of the groups where the (g, A) vortex equations
are sent to the (—ig, —A) vortex equations.

Recently the story of unified vortex equations has been extended. In [22] non-abelian analogues of the integrable abelian
vortex equations have been considered. While in [5], magnetic defects were added which preserved the integrability of the
abelian vortex equations. It is unknown if in either of these cases there is still a geometric understanding of the vortices,
either in the Baptista sense, or in the Cartan geometry sense of this paper. Understanding these cases is a direction worth
pursuing.
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