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Introduction
Multiple sclerosis (MS) is the most frequent demyeli-
nating, inflammatory and neurodegenerative disease 
of the central nervous system (CNS) in young adults. 
Next to the well-known physical symptoms of the dis-
ease, cognitive impairment is present in up to 65% of 
the people with multiple sclerosis (PwMS).1 Cognitive 
decline is characterized by a slowed information pro-
cessing speed, impaired memory function as well as 
problems with attention and executive function, 
causing (severe) problems in patient’s daily lives (e.g. 
unemployment).1,2

Given the prevalence and impact of cognitive dysfunc-
tion in PwMS, effective cognitive training strategies 
are urgently needed. Restorative, non-pharmacologic 
interventions, especially computerized cognitive train-
ing, show potential for improvements in cognitive 
functioning in PwMS,3,4 although these improvements 
are at best mild-to-moderate on a group level (effect 
sizes ranging from 0.06 to 0.23 standardized mean 
difference).3

The high variability in individual response to cogni-
tive training (i.e. substantial improvements in some 
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patients and no improvement or even decline in 
others) limits the overall group effect of restorative 
interventions.5 This might hamper our enthusiasm for 
such interventions, obscuring the fact that for a sub-
set of patients these interventions may be highly 
beneficial. This introduces a challenge to identify, 
beforehand, which patients will benefit from such 
interventions and which patients will not.

So far, only a few exploratory studies have hinted 
towards specific patient characteristics being benefi-
cial for cognitive training, that is having a high likeli-
hood of successful treatment response. For example, 
less grey and white matter atrophy, a relapsing-remit-
ting disease course, and higher processing speed 
were predictive of better response to training,6,7 as 
were different profiles of default-mode network 
connectivity.8

In this study, we investigated the effect of a restora-
tive computerized cognitive training programme 
(attention training) on cognition in a large sample of 
PwMS. Next, we compared baseline demographic, 
clinical and magnetic resonance imaging (MRI) char-
acteristics between responders and non-responders to 
identify clinical and MRI-based characteristics of 
response (and non-response).

Materials and methods
This study was approved by the Medical Ethical 
Committee of the VUmc. Informed consent was 
obtained prior to participation.

Participants
Eighty-two PwMS were included. Inclusion criteria 
were: MS diagnosis according to the McDonald 
criteria,9 18–68 years of age, and ability to safely 
undergo an MRI examination. Patients were screened 
for motor and visual skills to ensure cognitive training 
participation (Figure 1). Exclusion criteria included 
drug abuse, neurological and psychiatric diseases, 
prior cognitive training participation, and relapses or 
steroid use 4 weeks prior to examination. To assess 
disease severity, a validated Expanded Disability 
Status Scale (EDSS)-based questionnaire was used.10 
Patients underwent visual and motor screening to 
ensure intervention participation. Patients were rand-
omized (by means of computer-generated tables) into 
an intervention group (n = 58) or a waiting-list control 
group (n = 24). Treatment allocation was not con-
cealed, and there was no blinding. Twenty-one age-, 
sex- and education-matched healthy controls (HCs) 
were included at baseline.

Intervention
The intervention consisted of the C-Car computer 
programme, previously used in the field of neuro-
oncology.11 C-Car combined with compensatory train-
ing has been effective in a similarly sized glioma 
patient sample.11 Glioma patients and PwMS exhibit 
comparable, mostly subtle cognitive impairment. The 
focus on attention is based on the fact that attention is 
key for proper functioning in other cognitive domains 
such as memory and information processing speed. In 
MS, deficits in attention have been linked to deficits 
both in working memory and processing speed,12 
making C-Car an interesting programme for this 
study.

C-Car simulates driving a car, with tasks designed to 
train sustained, selective, alternating and divided 
attention. C-Car simulates driving a car while pre-
senting information processing tasks. Tasks include 
forming words out of two consecutive road signs 
(which each present two letters), counting the num-
ber of letters in a word, performing basic arithmetic 
operations (addition and subtraction), and ranking 
words in alphabetical order (Figure 2). With increas-
ing difficulty, distractions are added: distracting 
noise to ignore, and a moving pointer of the petrol 
gauge to which attention should also be paid. The 
programme is adaptive; patients practice at their own 
level, and difficulty is increased throughout the ses-
sions (e.g. faster stimulus rate and longer exercise 
duration, addition of aforementioned distractions). A 
score of at least 90% is needed to progress to the next 
difficulty level. Patients were provided with a laptop, 
and were required to train for 7 weeks (once a week, 
45 minutes per session) at home. Researchers kept 
weekly contact with patients to ensure compliance 
(defined as the total time spent training being 75% or 
more).

Neuropsychological assessment and 
questionnaires
All patients underwent neuropsychological assess-
ment at baseline (T0), post-intervention (T1) and 3 
months follow-up (T2). HC underwent neuropsycho-
logical assessment only at baseline (T0). The follow-
ing six cognitive domains, relevant to MS-specific 
cognitive decline,4 were measured:

•• Verbal memory (California Verbal Learning 
Test – II; CVLT13)

•• Information processing speed (Oral Letter 
Digit Substitution Test; LDST14)

•• Visuospatial memory (Location Learning Test; 
LLT15)

*Hanneke E Hulst now 
affiliated to  Health, Medical 
and Neuropsychology Unit, 
Institute of Psychology, 
Leiden University, Leiden, 
The Netherlands
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•• Working memory (WAIS-III Digit Span; DS 
and WAIS-III Letter Number Sequencing test; 
LNS16)

•• Verbal fluency (Word List Generation; WLG14)
•• Attention (Stroop,17 Concept Shifting Test; 

CST,18 D2-test,19 and Test of Everyday Attention; 
TEA20)

To reduce learning effects, parallel test versions were 
used where available (CVLT and TEA). The primary 
outcome was a statistically significant improvement 
in attention (as measured with the tests mentioned 
above) in the intervention group compared with the 
waiting-list group. Average cognition was assessed by 

calculating the mean of z-scores (based on the HC 
group) of all cognitive domains.

Questionnaires were administered to measure anxiety 
and depression (Hospital Anxiety and Depression 
Scale),21 fatigue (Checklist Individual Strength 
20-revised),22 and subjective cognitive complaints 
(Cognitive Failures Questionnaire23).

Defining response
To differentiate responders from non-responders, a 
reliable change index (RCI) from T0 to T1 was calcu-
lated for each cognitive test score.24 To correct for 

Figure 1.  Flow diagram of patient inclusion.
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practice effects, scores of the waiting-list control 
group were used to calculate the standard error of dif-
ference. If patients reached a post-intervention change 
in test score which corresponded to an RCI thresh-
old of 1.64 (90% confidence interval), a reliable 
improvement (>+1.64) or decline (<−1.64) was 
designated. Responders were defined as scoring 
above the RCI threshold on at least two out of six 
(33%) of the cognitive domains measured (see above), 
on at least one test per domain.

MRI protocol
All patients underwent brain MRI scanning at base-
line (T0) and post-intervention (T1). HCs underwent 
MRI scanning only at baseline (T0). All subjects were 
scanned on a 1.5 T whole-body magnetic resonance 
system (Siemens Magnetom Avanto Syngo, Erlangen, 
Germany), using an eight-channel phased-array head 
coil). The details of the MRI protocol are described in 
the Supplementary Material.

Grey matter, white matter and lesion volumes
White matter lesions were automatically segmented 
on the PD/T2 images using k-nearest neighbour clas-
sification with tissue-type priors,25 which was also 
used to compute lesion volume. The lesion segmenta-
tions were visually inspected and manually corrected 
where necessary. Subsequently, white matter lesion 
masks were registered to the 3D T1-weighted images 
to enable lesion filling.26 Whole-brain, grey and 
white matter volumes were calculated on the lesion-
filled images using SIENAX, following previously 

published pipelines27 and deep grey matter volumes 
were obtained using FIRST.

Diffusion-weighted imaging processing
Diffusion tensor imaging (DTI) data were pre-processed 
using motion and eddy current correction on images 
and gradient vectors followed by diffusion tensor fit-
ting (in FMRIB Software Library FSL). To assess white 
matter integrity, fractional anisotropy (FA) maps were 
computed and non-linearly registered to the FMRIB58_
FA brain. Next, FA maps were averaged across subjects 
and skeletonized to obtain the main white matter tracts 
common to the entire sample using the standard Tract-
Based Spatial Statistics pipeline (part of FSL).

To obtain individual measures of whole-brain white 
matter integrity damage, the severity and extent of 
white matter damage was quantified based on FA (see 
Supplementary Material).

Resting-state functional connectivity
To define which resting-state network each region 
belonged to, the Yeo resting-state network atlas28 was 
overlaid on the Brainnetome atlas,29 after which each 
region was defined to one network based on maximal 
overlap. Based on previous literature on attention and 
FC,30 networks relevant to attention were chosen, that 
is the dorsal attention network (DAN), ventral atten-
tion network (VAN), frontoparietal network (FPN) 
and default-mode network (DMN) (Figure 3). See 
also Supplementary Material.

Statistical analyses
Statistical analyses were performed in SPSS, version 
26. Independent samples t-tests and chi-square tests 
were used to assess baseline group differences, and 
nonparametric tests were used for variables that were 
non-normally distributed. To assess the effects of the 
intervention, linear mixed models were used with the 
intercept as a random factor, and group (intervention 
vs. waiting-list) and time (T0 vs. T1 vs. T2) as fixed 
factors. After the intervention group was divided into 
responders and non-responders, a multivariate gen-
eral linear model was used to assess baseline differ-
ences in (1) demographic variables, (2) cognitive 
test scores, (3) structural MRI outcomes and (4) 
functional MRI outcomes. Finally, a backward logis-
tic regression was performed, with responder/non-
responder classification as dependent outcome, to 
identify the strongest independent baseline predictors 
of response. The Bonferroni post hoc test was used to 
examine differences between groups. Variables were 

Figure 2.  Example of the C-Car computer programme 
interface. In this particular task, participants are required to 
form words out of two consecutive road signs (which each 
present two letters), while at the same time pay attention to 
the petrol gauge that gradually empties.
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entered in four blocks in the following order: demo-
graphics (age, sex, level of education, EDSS score), 
volumetric measures (cortical gray matter volume 
(GMV)), DTI measures (severity of microstructural 
white matter damage)and FC measures between the 
DMN and FPN, DAN and VAN. Group comparison 
p-values < 0.05 after correcting for multiple compari-
sons (Bonferroni correction) were considered statisti-
cally significant.

Results

Baseline characteristics
The sample consisted of 82 PwMS (53 female, mean 
age 48.46 (9.92) years, mean disease duration 13.52 
(8.24) years, median EDSS = 4.0, 1 CIS, 58 RRMS, 
20 SPMS, 3 unknown disease course) and 21 HC (15 
female, mean age 50.27 (10.15) years) (Table 1). 
Patients in the intervention group trained, on average, 
for 138.60 minutes (SD = 54.20), that is 77.87% of the 
total programme duration.

Baseline differences between PwMS and HC.  There 
were no significant differences in age, sex and edu-
cation between HC and PwMS (Table 1). PwMS 
had significantly worse average cognition (t = −4.41, 
p < 0.001), reported higher levels of depression, anxi-
ety, fatigue, subjective cognitive complaints, and had 

Figure 3.  The cortical areas comprising the dorsal attention network (blue), ventral attention network (green) and 
default-mode network (red).

a more passive coping style on average compared 
with HC (see Table 2). Compared with HCs, PwMS 
had significantly less grey matter (GM), white matter 
(WM) and deep grey matter (DGM) volume, as well 
as significantly higher FC between DMN-DAN 
(p = 0.012), DMN-VAN (p = 0.011) and DMN-FPN 
(p = 0.03) (Table 1).

PwMS in the intervention group and in the waiting-
list control condition did not differ in age, sex, educa-
tional level, cognitive performance and self-perceived 
cognition and levels of fatigue, anxiety and depres-
sion at baseline. Imaging measures were not different 
between the two groups (Tables 1–3).

Effects of C-Car
The pre- and post-intervention differences investi-
gated on a group level on short- and long-term follow-
up neuropsychological testing are presented here.

Immediate effects.  A significant group × time effect 
was found for working memory (Letter-Number-
Sequencing) between T0 and T1 (Figure 4). The inter-
vention group improved (T0: 10.28 (SD = 2.69) versus 
T1: 11.1 (SD = 2.93)) compared to the waiting-list con-
trols (T0: 10.96 (SD = 2.65) versus T1: 10.71 (SD = 3.48), 
F = 4.470, p = 0.038), with a standardized mean differ-
ence of 0.37 (effect size). No other significant effects 
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were found for any of the other cognitive tests and 
questionnaires (Table 2), nor for measures of white 
matter damage and FC (Table 3).

Three-month follow-up effects.  For group differences 
between T0, T1 and T2, no significant effects were 
found for any of the cognitive measures. A signifi-
cant group × time effect was found for fatigue 
(CIS-20r, F = 5.177, p = 0.007), with patients in the 
waiting-list control group experiencing increased 
fatigue at 3 months follow-up compared with 
patients in the intervention group (intervention: 
T0 = 81.13 (SD = 23.53), T1 = 81.27 (SD = 25.98), 
and T2 = 93.05 (SD = 20.06) versus waiting-list: 
T0 = 82.82 (SD = 19.65), T1 = 77.56 (SD = 20.11) and 
T2 = 79.32 (SD = 18.38)). No significant effects were 
found for any of the other questionnaires, nor for the 
MRI measures.

Baseline differences between responders and non-
responders
Cognitive characteristics.  Patients in the intervention 
group were divided into responders (n = 22; 38%) and 
non-responders (n = 36, 62%) based on immediate 
post-intervention improvement compared with base-
line. Training duration did not significantly differ 

between responders and non-responders (131.31 
(SD = 58.24) vs. 142.11 (SD = 52.93), p = 0.562). Two 
responders (9.1%) improved on four out of six cogni-
tive domains, seven responders (31.9%) improved on 
three out of six cognitive domains, and 13 responders 
(59%) improved on two out of six cognitive domains. 
Of the cognitive domains for which improvement was 
found, 19 patients (84.6%) improved on one or more 
measures of working memory (Digit Span Forward and 
Backward, Letter-Number-Sequencing), 11 patients 
(50%) improved on verbal memory (CVLT-II), 10 
patients (45.5%) improved on information processing 
speed (LDST), six patients (27.3%) improved on ver-
bal fluency (WLG), six patients (31.8%) improved on 
measures of attention (Stroop, D2-test, CST, TEA), and 
one patient (4.5%) improved on visuospatial memory 
(LLT). For the non-responders, 18 patients (50%) 
improved on one cognitive domain, and the remain-
ing 18 did not improve on any cognitive domain.

Clinical characteristics.  Responders and non-responders 
did not differ on demographic variables (age, sex, level 
of education), clinical variables (disease duration, 
EDSS score, disease phenotype), baseline cognition, 
and any of the questionnaires (depression, anxiety, 
fatigue, sleeping difficulty, coping style, subjective 
cognition).

Table 1.  Demographics and brain volumes of the entire sample..

Healthy controls, 
(n = 21)

MS, (n = 82) Waiting-list, 
(n = 24)

Intervention, 
(n = 58)

Responders, 
(n = 22)

Non-responders, 
(n = 36)

Demographics

  Age, years 50.27 (10.15) 48.46 (9.92) 48.51 (9.37) 48.44 (10.21) 47.48 (8.98) 49.02 (10.98)

  Female, n (%) 15 (71.4) 53 (64.6) 19 (79.2) 34 (58.6) 14 (63.6) 20 (55.6)

  Level of educationa 6 (4–7) 6 (3–7) 6 (5–7) 6 (3–7) 6 (5–7) 6 (3–7)

  Disease duration, years 13.52 (8.24) 13.10 (9.6) 13.69 (7.73) 14.24 (8.47) 13.35 (7.34)

  EDSSa 4 (0–7.5) 4 (2.5–7.5) 4 (0–7.5) 4 (2.5–7.5) 4 (0–7)

 � Disease phenotype (CIS/
RRMS/SPMS/unknown)

1/58/20/3 0/16/6/2 1/42/14/1 0/15/6/1 1/27/8/0

 � % Cognitively impaired 
patientsb

31.7% 33.3% 31.0% 35.7% 29.6%

Normalized brain volumes

 � Cortical grey matter  
volume, ml

800.1 ± 39.4* 736.4 (69.4)* 749.0 (65.4) 731.3 (70.8) 717.0 (53.6) 739.9 (79.0)

  White matter volume, ml 764.4 (38.9)* 734.1 (36.8)* 735.5 (36.9) 733.5 (37.0) 736.8 (38.2) 731.5 (36.7)

  Deep grey matter volume, ml 62.6 (5.8)* 56.6 (10.1)* 55.7 (9.3) 56.9 (10.5) 57.8 (95) 55.9 (10.4)
  Lesion volume, ml 10.2 (10.9) 8.0 (8.4) 11.0 (11.7) 13.1 (13.5) 9.8 (10.5)

MS: multiple sclerosis; EDSS: Expanded Disability Status Scale; CIS: clinically isolated syndrome; RRMS: relapsing-remitting multiple sclerosis; SPMS: 
secondary-progressive multiple sclerosis.
Baseline demographic, clinical and MRI characteristics. All values represent means and SD, unless otherwise denoted.
aMedian and range.
bDefined as having a z-score of <−2.0 SD on at least 2 tests.
*Significant difference between patients with multiple sclerosis and healthy controls at p < 0.05. No significant differences between responders and non-
responders were found.

https://journals.sagepub.com/home/msj


SE Prouskas, MM Schoonheim et al.

journals.sagepub.com/home/msj	 7

T
ab

le
 2

. 
R

aw
 s

co
re

s 
on

 n
eu

ro
ps

yc
ho

lo
gi

ca
l e

va
lu

at
io

n 
an

d 
qu

es
ti

on
na

ir
es

.

H
ea

lt
hy

 c
on

tr
ol

s,
 

(n
 =

 2
1)

W
ai

ti
ng

-l
is

t, 
(n

 =
 2

4)
In

te
rv

en
ti

on
, (

n 
=

 5
8)

T
0

T
1

T
2

T
0

T
1

T
2

C
og

ni
ti

on

 
C

al
if

or
ni

a 
V

er
ba

l L
ea

rn
in

g 
T

es
t

67
.2

4 
(7

.6
5)

*
56

.3
3 

(1
3.

07
)

58
.1

7 
(1

3.
62

)†
61

.6
4 

(1
5.

19
)†

56
.4

8 
(1

1.
5)

59
.5

7 
(1

1.
94

)†
60

.4
 (

12
.6

9)

 
L

et
te

r 
D

ig
it

 S
ub

st
it

ut
io

n 
T

es
t

64
.4

3 
(1

1.
64

)*
55

.1
7 

(1
5.

08
)

57
.6

3 
(1

5.
52

)†
58

.0
5 

(1
6.

1)
†

55
.2

6 
(1

1.
69

)
58

.0
2 

(1
3.

37
)†

58
.5

8 
(1

5.
38

)

 
D

ig
it

 S
pa

n 
F

or
w

ar
d

9.
71

 (
1.

98
)*

9.
04

 (
1.

78
)

8.
96

 (
1.

83
)

9.
09

 (
1.

6)
8.

52
 (

2.
19

)
9.

14
 (

2.
09

)
9.

28
 (

2.
11

)

 
D

ig
it

 S
pa

n 
B

ac
kw

ar
d

7.
86

 (
1.

28
)*

6.
63

 (
1w

.7
1)

6.
96

 (
2.

2)
7.

36
 (

2.
17

)†
6.

71
 (

1.
84

)
7.

31
 (

1.
89

)†
7.

05
 (

2.
33

)

 
N

um
be

r 
L

et
te

r 
S

eq
ue

nc
in

g
11

.2
4 

(1
.8

7)
10

.9
6 

(2
.6

5)
10

.7
1 

(3
.4

8)
11

.0
9 

(3
.6

6)
10

.2
8 

(2
.6

9)
11

.1
0 

(2
.9

3)
‡

10
.4

2 
(3

.4
4)

 
W

or
d 

L
is

t G
en

er
at

io
n

17
.4

5 
(4

.5
3)

*
15

.4
6 

(4
.2

1)
16

.5
7 

(4
.0

6)
†

17
.0

7 
(4

.0
6)

†
15

.1
8 

(4
.0

7)
16

.4
3 

(4
.4

3)
†

16
.6

3 
(4

.0
7)

 
L

oc
at

io
n 

L
ea

rn
in

g 
T

es
ta

15
.1

 (
10

.7
7)

22
.7

5 
(2

6.
93

)
19

.7
5 

(2
1.

93
)

15
.4

1 
(2

0.
03

)
21

.7
4 

(2
4.

54
)

15
.5

3 
(1

7.
35

)
13

.5
6 

(2
0.

74
)

 
S

tr
oo

pa
25

.8
6 

(7
.5

5)
28

.5
9 

(1
3.

9)
26

.5
2 

(1
6.

47
)

22
.7

2 
(1

6.
73

)‡
30

.7
4 

(1
5.

34
)

27
.4

7 
(1

2.
96

)
27

.3
4 

(1
2.

5)

 
D

2-
te

st
15

6.
43

 (
43

.4
4)

*
13

5.
17

 (
59

.2
5)

15
3.

65
 (

61
.3

3)
†

15
4.

9 
(7

0.
7)

12
6.

81
 (

40
.1

7)
14

0.
07

 (
43

.1
3)

†
15

2.
16

 (
48

.7
1)

†

 
C

on
ce

pt
 S

hi
ft

in
g 

T
es

ta
8.

8 
(4

.8
4)

*
11

.6
9 

(1
4.

82
)

11
.7

2 
(8

.2
8)

11
.6

3 
(1

3.
95

)
12

.9
5 

(1
3.

23
)

9.
74

 (
6.

36
)

10
.2

6 
(8

.0
7)

 
T

es
t o

f 
E

ve
ry

da
y 

A
tt

en
ti

on
b

–0
.0

1 
(0

.6
0)

*
–0

.6
4 

(1
.2

3)
–0

.1
2 

(0
.8

3)
†

–0
.3

8 
(1

.2
6)

–0
.7

0 
(1

.0
2)

–0
.3

5 
(0

.9
4)

†
–0

.4
2 

(1
.0

)

Q
ue

st
io

nn
ai

re
s

 
H

A
D

S
 d

ep
re

ss
io

na
2.

4 
(2

.9
8)

*
5.

21
 (

3.
78

)
5.

59
 (

4.
25

)
6.

4 
(4

.4
9)

5.
93

 (
3.

73
)

5.
02

 (
3.

41
)

6.
62

 (
3.

59
)

 
H

A
D

S
 a

nx
ie

ty
a

4.
8 

(4
.1

9)
*

8.
04

 (
4.

63
)

7.
55

 (
4.

53
)

7.
65

 (
4.

52
)

7.
67

 (
4.

1)
6.

62
 (

4.
02

)
7.

82
 (

4.
01

)

 
C

IS
20

-r
 (

fa
ti

gu
e)

a
50

.8
5 

(2
5.

23
)*

81
.1

3 
(2

3.
53

)
81

.2
7 

(2
5.

98
)

93
.0

5 
(2

0.
06

)
82

.8
2 

(1
9.

65
)

77
.5

6 
(2

0.
11

)
79

.3
2 

(1
8.

38
)‡

 
A

IS
 (

sl
ee

pi
ng

 d
if

fi
cu

lt
y)

a
2.

89
 (

3.
13

)*
5.

54
 (

3.
19

)
5.

59
 (

4.
23

)
6.

9 
(3

.5
4)

5.
29

 (
3.

82
)

5.
15

 (
4.

19
)

4.
79

 (
3.

66
)

 
C

op
in

g 
st

yl
es

  


A
ct

iv
e

19
.6

 (
2.

74
)

19
.7

8 
(4

.7
2)

20
.2

3 
(4

.4
8)

19
.3

7 
(4

.3
4)

19
.4

1 
(4

.2
1)

19
.4

 (
4.

11
)

19
.1

 (
4.

0)

  


S
ee

ki
ng

 d
is

tr
ac

ti
on

17
.8

 (
3.

16
)

18
.0

4 
(4

.3
1)

17
.9

1 
(3

.7
9)

18
.3

7 
(3

.7
4)

17
.5

9 
(3

.9
6)

17
.0

4 
(3

.9
5)

16
.5

4 
(3

.2
5)

  


A
vo

id
in

g
16

.3
5 

(2
.7

6)
17

.9
6 

(4
.3

4)
18

.4
8 

(4
.4

3)
17

.3
2 

(3
.3

5)
17

.0
5 

(3
.4

8)
16

.6
2 

(3
.5

9)
16

.9
 (

3.
65

)

  


S
oc

ia
l s

up
po

rt
15

.1
 (

3.
46

)
13

.2
5 

(4
.1

5)
13

.9
5 

(4
.2

1)
12

.5
8 

(4
.6

7)
13

.2
9 

(3
.7

2)
13

.2
 (

3.
47

)
13

.3
1 

(3
.8

6)

  


P
as

si
ve

 c
op

in
g

10
.4

 (
2.

87
)*

12
.6

3 
(4

.0
5)

12
.3

3 
(4

.8
1)

13
.1

6 
(3

.6
4)

12
.0

3 
(3

.0
7)

11
.8

9 
(3

.0
3)

11
.6

9 
(3

.3
9)

  


E
xp

re
ss

in
g 

em
ot

io
ns

5.
55

 (
0.

76
)

6.
38

 (
1.

53
)

6.
5 

(1
.6

5)
6.

32
 (

1.
42

)
5.

83
 (

1.
67

)
5.

35
 (

1.
81

)
5.

18
 (

1.
55

)

  


R
ea

ss
ur

in
g 

th
ou

gh
ts

12
.4

5 
(1

.9
3)

13
.5

4 
(3

.2
3)

13
.0

9 
(3

.1
9)

11
.9

5 
(3

.3
1)

12
.5

9 
(2

.9
3)

12
.4

4 
(3

.0
5)

12
.5

9 
(2

.9
1)

 
S

ub
je

ct
iv

e 
co

gn
it

io
n

  


C
og

ni
ti

ve
 F

ai
lu

re
s 

Q
ue

st
io

nn
ai

re
a

21
.3

5 
(1

1.
86

)*
44

.7
 (

22
.6

4)
43

.9
1 

(2
0.

14
)

47
.8

4 
(2

0.
07

)
41

.8
9 

(1
8.

08
)

38
.2

8 
(1

6.
15

)
36

.3
6 

(1
5.

14
)

  


C
og

ni
ti

ve
 F

un
ct

io
ni

ng
 S

ca
le

a
5 

(4
.2

6)
*

13
.5

8 
(7

.4
5)

12
.8

2 
(7

.3
9)

13
.5

5 
(6

.4
8)

11
.9

 (
5.

35
)

11
.1

3 
(5

.3
)

11
.5

4 
(7

.8
5)

H
A

D
S

: H
os

pi
ta

l A
nx

ie
ty

 a
nd

 D
ep

re
ss

io
n 

S
ca

le
; A

IS
: A

th
en

s 
In

so
m

ni
a 

S
ca

le
; C

IS
20

-r
: C

he
ck

li
st

 I
nd

iv
id

ua
l S

tr
en

gt
h 

– 
R

ev
is

ed
.

R
aw

 s
co

re
s 

on
 c

og
ni

ti
ve

 a
ss

es
sm

en
t b

at
te

ry
 a

nd
 q

ue
st

io
nn

ai
re

s.
 A

ll
 v

al
ue

s 
re

pr
es

en
t m

ea
ns

 a
nd

 S
D

, u
nl

es
s 

ot
he

rw
is

e 
de

no
te

d.
a H

ig
he

r 
sc

or
es

 in
di

ca
te

 w
or

se
 o

ut
co

m
es

.
b z

-S
co

re
.

S
ig

ni
fi

ca
nt

 d
if

fe
re

nc
es

 in
 b

ol
d.

* S
ig

ni
fi

ca
nt

 d
if

fe
re

nc
e 

be
tw

ee
n 

pa
ti

en
ts

 w
it

h 
m

ul
ti

pl
e 

sc
le

ro
si

s 
an

d 
he

al
th

y 
co

nt
ro

ls
 a

t p
 <

 0
.0

5.
† S

ig
ni

fi
ca

nt
 ti

m
e 

ef
fe

ct
 f

or
 T

0–
T

1 
at

 p
 <

 0
.0

5.
‡ S

ig
ni

fi
ca

nt
 ti

m
e 

gr
ou

p 
×

 ti
m

e 
ef

fe
ct

 a
t p

 <
 0

.0
5.

https://journals.sagepub.com/home/msj


Multiple Sclerosis Journal 00(0)

8	 journals.sagepub.com/home/msj

Imaging.  There were no differences between responders 
and non-responders in baseline cortical GMV (731.3 
(70.8) vs. 739.94), white matter volume (WMV; 
736.78 vs. 731.45), deep grey matter volume (DGMV; 
57.79 vs. 55.72) and lesion volume (13.11 vs. 9.83). 
In addition, no differences were seen for DTI-based 
measures of extent (1157.9 vs. 1643.5) and severity 
(−0.17 vs. −0.32) of white matter damage (Tables 1 
and 4). Responders had a significantly lower FC 
between DMN-VAN compared with non-responders 
(0.87 vs. 0.98, p = 0.018) (Figure 5).

Finally, responders did not show significantly differ-
ent FC compared with HC, while non-responders 
showed significantly higher FC between DMN-DAN 
(0.92 vs. 0.81, p = 0.009) and DMN-VAN (0.98 vs. 
0.81, p = 0.001), compared with both responders and 
HC (Figure 5).

Predicting response
The backward logistic regression identified two inde-
pendent predictors for response: lower FC between 

Table 3.  Microstructural white matter changes and functional connectivity in the intervention group, waiting-list group, and healthy controls.

Healthy controls,
(n = 21)

Waiting-list, (n = 24) Intervention, (n = 58)

T0 T1 T0 T1

White matter damage

  Severitya 0.0 (0.23)* –0.23 (0.34) –0.25 (0.37) –0.27 (0.34) –0.27 (0.37)

 � Extent (number of voxels exceeding 
z = −3.1)

6.67 (14.82)* 1358.3 (1921.16) 1755.8 (3355.0) 1459.3 (2256.2) 1509.1 (2538.9)

Normalized functional connectivity between networks

  Default mode – dorsal attention 0.81 (0.14)* 0.89 (0.16) 0.87 (0.14) 0.89 (0.14) 0.89 (0.14)

  Default mode – ventral attention 0.81 (0.13)* 0.87 (0.14) 0.86 (0.15) 0.93 (0.18) 0.93 (0.15)

  Default mode – frontoparietal 1.05 (0.22)* 1.14 (0.28) 1.14 (0.24) 1.18 (0.24) 1.16 (0.25)

  Dorsal attention – ventral attention 1.21 (0.23) 1.12 (0.25) 1.16 (0.23) 1.17 (0.26) 1.14 (0.22)

  Dorsal attention – frontoparietal 1.11 (0.25) 1.19 (0.28) 1.17 (0.25) 1.21 (0.25) 1.17 (0.28)
  Ventral attention – frontoparietal 0.94 (0.16) 0.98 (0.19) 1.0 (0.17) 1.04 (0.18) 1.0 (0.17)

Measures of DTI-based white matter damage, resting-state fMRI functional connectivity.
*Significant difference between patients with multiple sclerosis and healthy controls at p < 0.05.

Figure 4.  Change in working memory (measured with Letter-Number-Sequencing test) between baseline and post-
intervention. Boxplots show median and quartiles, dots show individual scores, with lines connecting individual scores 
between timepoints.
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DMN-VAN (p = 0.004), and lower FC between DMN-
FPN (p = 0.029). The model accurately predicted 
81.8% of non-responders, and 54.5% of responders 
(Nagelkerke R2 = 0.25).

Discussion
The main aim of this study was to gain insight into 
the effectiveness of computerized attention training 
in PwMS and into the clinical and MRI-based char-
acteristics that are associated with successful cogni-
tive training response. Therefore, we performed the 
conventional analysis of pre–post effects of C-Car on 
a group level, which yielded results and effect sizes 
similar to those found in previous cognitive training 
studies.3 Unexpectedly, we saw no significant post-
intervention improvement in attention. However, 
patients in the intervention group showed a modest 
immediate improvement in working memory (stand-
ardized mean difference = 0.37, p = 0.038) with no sus-
tained effects on cognitive performance at 3 months 
follow-up, which is in line with previous results5,31 and 
might indicate the need for a longer duration of cogni-
tive training programmes. Interestingly, we observed a 
long-term effect for fatigue, with patients in the inter-
vention group showing stable fatigue at the 3 month 
follow-up compared with the increased fatigue of the 
waiting-list control group, consistent with previous 

findings of the C-Car intervention in glioma 
patients.11

Comparing responders and non-responders provided 
important information. Responders and non-responders 
did not differ in demographic and clinical variables, 
baseline cognitive performance, nor in the amount of 
atrophy and microstructural damage. In previous 
work, lower grey and white matter volume and a 
relapsing-remitting disease course were predictive of 
better response.6 The fact that we were unable to 
reproduce these results might be explained by sample 
differences. Specifically, patients in our study had a 
higher cortical GM volume and shorter disease dura-
tion (13.52 vs. 21.6 years) compared with patients in 
the study of Fuchs et al.6

Interestingly, regarding fMRI findings, non-responders 
exhibited higher FC between the DMN and attention 
networks compared with responders and HC. More 
precisely, responders showed no differences in FC 
compared with HC, suggesting an intact connectivity 
(Figure 5). This relationship between alterations in 
DMN connectivity and treatment response is in line 
with previous results8 and may be explained by the 
anti-correlation between DMN and attention networks 
both in tasks and during rest.32 The similarity of our 
results to those of previous studies with different 

Table 4.  Microstructural white matter damage and functional connectivity in responders, non-responders and healthy controls.

Healthy controls 
(n = 21)

Responders (n = 22) Non-responders (n = 36)

T0 T1 T0 T1

White matter damage

  Severity (z-score) 0.0 (0.23)† –0.17 (0.32) –0.24 (0.27) –0.32 (0.35) –0.28 (0.42)

 � Extent (number of voxels 
exceeding z = −3.1)

6.67 (14.82)† 1157.9 (1699.0) 1459.3 (882.1) 1643.5 (2542.9) 1805.5 (3119.1)

Functional connectivity

 � Default-mode network – dorsal 
attention network

0.81 (0.14)† 0.84 (0.12)* 0.84 (0.1)* 0.92 (0.15)* 0.92 (0.16)*

 � Default-mode network – 
ventral attention network

0.81 (0.13)† 0.87 (0.15)* 0.88 (0.14)* 0.98 (0.19)* 0.96 (0.15)*

 � Default-mode network – 
frontoparietal network

1.05 (0.22)† 1.18 (0.27) 1.17 (0.23) 1.18 (0.23) 1.16 (0.26)

 � Dorsal attention network – 
ventral attention network

1.21 (0.23) 1.13 (0.26) 1.12 (0.27) 1.2 (0.26) 1.16 (0.2)

 � Dorsal attention network – 
frontoparietal network

1.11 (0.25) 1.13 (0.25) 1.07 (0.25)* 1.25 (0.24) 1.23 (0.28)*

 � Ventral attention network – 
frontoparietal network

0.94 (0.16) 1 (0.18) 1.0 (0.19) 1.06 (0.17) 1.0 (0.16)

Measures of DTI-based white matter damage, resting-state fMRI functional connectivity.
†Significant difference between patients with multiple sclerosis and healthy controls at p < 0.05.
*Significant group effect (responders vs. non-responders) at p < 0.05.
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patient cohorts and interventions,8 might suggest 
that our results are generalizable to other cognitive 
rehabilitation approaches. This should be further 

investigated in future studies; if it is indeed the case, 
this could indicate a mechanism that affects response 
regardless of cognitive domains affected. Perhaps in 

Figure 5.  (a) Functional connectivity between the default-mode network and dorsal attention network, (corrected by 
dividing with average brain connectivity). Boxplots show median and quartiles, dot with whiskers represent mean 
and standard deviation. (b) Functional connectivity between the default-mode network and ventral attention network, 
(corrected by dividing with average brain connectivity). Boxplots show median and quartiles, dot with whiskers represent 
mean and standard deviation.
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non-responders, the DMN insufficiently deactivates 
when needed, and as such shows an increased con-
nectivity with attention networks. Indeed, in healthy 
individuals, an increased FC between the DMN 
and attention networks has been related to poorer 
attention.30 In addition, alterations in DMN connec-
tivity and network dynamics are rather common in 
PwMS and relate to cognitive impairment.33,34 As 
such, it may well be that an intact FC of the DMN is a 
prerequisite for successful cognitive training response, 
regardless of the intervention used. In our multivariate 
prediction model, lower FC between DMN-VAN and 
between DMN-FPN (i.e. ‘normal FC’) were both 
identified as predictors of response. This indicates that 
the fewer deviations there are from HC-like FC, the 
higher the chance for successful cognitive training.

Consequently, it seems that the timing of cognitive 
training in PwMS is of utmost importance. One could 
argue that a mind-set shift from symptom manage-
ment towards preventive intervention aimed at pre-
serving cognition is needed (i.e. enhancement of 
network functioning rather than restoring it, since the 
latter might be impossible).

Our study is not without limitations. The use of a 
waiting-list control group is not as optimal as an 
active control condition.35 Also, cognitive impairment 
was not an inclusion criterion. As a result, the group is 
heterogeneous in terms of cognitive performance at 
baseline. That being said, 57.3% of all PwMS were 
impaired (z < −2.0SD) at baseline on at least one test. 
Moreover, although the definition of cognitive decline 
is well-established in the literature, the definition for 
response is less clear. We thus decided to rely on a 
conservative statistical approach (reliable change 
index). Another limitation of our RCI approach is that 
multiple tests were included in the domains of atten-
tion and working memory. Response in at least one 
test was calculated as response in the cognitive 
domain, hence making response in working memory 
and attention perhaps slightly more likely.

To conclude, our results demonstrated a mild-to-
moderate overall short-term working memory effect 
of a computerized attention training for PwMS. 
Despite the lack of significant improvement in atten-
tion on a group level, we demonstrated that by inves-
tigating individual responses to treatment almost 
40% of PwMS do improve after training, an effect 
that would have gone unnoticed in group-level statis-
tics. Response seems to depend on a window of 
opportunity defined by an intact FC between the 
DMN and attention networks, allowing the brain to 
be receptive for the effects of cognitive training. 

Given the heterogeneity of MS progression, disease 
course and observed differential response to cogni-
tive training,5 it is evident that future studies in the 
field now need to start exploring individualized 
(selection) approaches to maximize the effectiveness 
of cognitive training programmes.6,8
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