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Abstract

Let C : y2 = f(x) be a hyperelliptic curve, with tame potentially semistable

reduction, over a local field with algebraically closed residue field. The p-adic

distances between the roots of f(x) can be described by a purely combinatorial

object known as a cluster picture. We show that the cluster picture of C, along

with the leading coefficient of f , completely determines the dual graph of the

special fibre of the minimal strict normal crossings (SNC) model of C. In

particular, we give an explicit description of the special fibre in terms of this

data. Further to this, we define open quotient BY trees, showing there is a

one-to-one correspondence between these and cluster pictures of hyperelliptic

curves with tame reduction. Using these trees we introduce a way of classifying

reduction types of hyperelliptic curves. As a demonstration of our results

we give a complete classification in genus 2 using cluster pictures and open

quotient BY trees.



Impact Statement

Elliptic curves are well understood, and many people are now studying the

arithmetic of higher genus curves. In particular, the theory surrounding el-

liptic curves is increasingly being generalised to hyperelliptic curves. Models

of hyperelliptic curves are invaluable objects which can be used to deduce a

huge amount of arithmetic information. The p-adic data that features in the

statement of the famous Birch–Swinnerton-Dyer conjecture relies heavily on

models and the data that may be extracted from them, such as Tamagawa

numbers. A significant amount of work has already been done on computing

the special fibres of regular models. For the genus 1 case, Tate’s letter to

Cassels describes an algorithm, known as Tate’s algorithm. This outputs the

minimal regular model of an elliptic curve E, classifying the type of reduction

of E at a prime p. There is also a full account of this in Silverman’s book

‘Advanced Topics in the Arithmetic of Elliptic Curves’, which has become one

of the most standard references for number theory and algebraic geometry. For

genus 2 curves Namikawa and Ueno give a classification of all possible minimal

regular models. However for genus > 2 not so much was known.

This thesis extends existing results due to Dokchitser, Dokchitser,

Maistret and Morgan. We study models of hyperelliptic curves with using

cluster pictures, purely combinatorial objects defined by the root configura-

tions of defining polynomials. Although relatively new objects of interest,

cluster pictures have already proved hugely advantageous in studying arith-

metic of hyperelliptic curves, and have been added to LMFDB, a huge database

of mathematical objects. The results laid out in this thesis make it much easier

to work with models of hyperelliptic curves, describing how to easily check

whether two hyperelliptic curves have the same reduction type, find their

special fibres, and move between different models of any given hyperelliptic

curve.

Hyperelliptic curves also have a direct application to cryptography. Whilst

this is not the purpose of this thesis, nor is it directly related, better un-

derstanding the arithmetic of hyperelliptic curves could prove to have useful

applications in the future.
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Chapter 1

Introduction

1.1 Motivation

Models of curves are invaluable objects which can be used to deduce a large

amount of arithmetic information more easily than would otherwise be possi-

ble. For example, the p-adic data that features in the statement of the famous

Birch–Swinnerton-Dyer conjecture relies heavily on models, and the data that

may be extracted from them such as Tamagawa numbers. Checking for ratio-

nal points is another common problem in number theory. Models can be used

to check for p-adic points, which helps us check for these rational points.

In this thesis we study hyperelliptic curves, with the two main goals of

giving a description of their minimal strict normal crossing (SNC) models, and

providing a way to classify all possible reduction types. Not only will we give a

classification but also a practical way to use it. We are interested in studying

these over p-adic fields, however the arguments work more generally and the

main results will be stated over general local fields. We use cluster pictures,

a relatively new innovation which have already proved advantageous in study-

ing the arithmetic of hyperelliptic curves. In particular, cluster pictures have

been used to calculate semistable models, conductors, minimal discriminants

and Galois representations in [DDMM18], Tamagawa numbers in [Bet18], root

numbers in [Bis19], and differentials in [Kun19]. More recent papers which

make use of cluster pictures are [Mus20], where the author constructs the

minimal regular model with normal crossings of hyperelliptic curves and de-

termines a basis of integral differentials, and [BBB+20], where many of the

numerous papers using cluster pictures are summarised and complemented by

examples. Cluster pictures have also been added to LMFDB, a huge database

of mathematical objects.

1.2 Setup

Let K be a field complete with respect to a discrete valuation vK , with alge-

braically closed residue field k of characteristic p > 2. Write GK = Gal(K̄/K),

the absolute Galois group. Let C/K be a hyperelliptic curve given by Weier-
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strass equation y2 = f(x), with genus g = g(C). Unless explicitly mentioned

otherwise, we assume g ≥ 2 throughout the thesis. We write R for the set of

roots of f(x) in the algebraic closure K̄ of K and cf for the leading coefficient

of f . So,

f(x) = cf
∏
r∈R

(x− r),

and |R| ∈ {2g + 1, 2g + 2}. Following [DDMM18] we associate to C a cluster

picture, defined by the combinatorics of the root configuration of f .

We extend existing results about reduction types and models of hyperellip-

tic curves to the more general case where C has tame (potentially semistable)

reduction over K. That is, there exists some finite extension L/K such that C

has semistable reduction over L, and [L : K] is coprime to p. This is equivalent

to f having tame splitting field, since C will be semistable over the splitting

field of f or a quadratic extension of the splitting field of f . It is important

to note that our theorems do not apply in the case where a wild extension is

required for semistability. However this condition is not too strong since for

large enough p, every curve of genus g has tame reduction.

Using cluster pictures, the collaborative work in [FN20] with Omri

Faraggi, allows us to calculate a combinatorial description of the minimal SNC

model X of C/K: a model whose singularities on the special fibre Xk are

normal crossings (i.e. locally they look like the union of two axes), and where

blowing down any exceptional component of Xk would result in a worse singu-

larity. Such models can be used to calculate arithmetic invariants, to study the

Galois representation, and (in more general settings) to deduce the existence

of K-rational points of C. For the case of elliptic curves, Tate’s algorithm

[Sil94] is sufficient to calculate the minimal SNC model of a given curve. For

hyperelliptic curves, [DDMM18] the authors calculate the SNC model when

C has semistable reduction, and in [Dok18] when C has a particularly nice

cluster picture. In fact, the methods of [Dok18] work for a much larger class

of smooth projective curves, but we restrict our attention to its applications

for hyperelliptic curves. Similar work has also been done on models of differ-

ent classes of curves and the applications of these models — such as [BW17]

on stable models of superelliptic curves and [LLLGR18] and [BCK+20] on

non-hyperelliptic genus 3 curves. Other work on hyperelliptic invariants has

also been done in [OS19], where the authors prove a conductor-discriminant

inequality for hyperelliptic curves.

Most of the information required to classify the reduction types of hyper-

elliptic curves, or deduce the special fibre of X of a hyperelliptic curve C/K,



1.3. Minimal SNC Models 11

is contained in the cluster picture.

Definition 1.2.1. A cluster is a non-empty subset s ⊆ R of the form s = D∩R
for some disc D = z + πn

KOK , where z ∈ K, n ∈ Q and πK is a uniformiser of

K. If s is a cluster and |s| > 1, we say that s is a proper cluster. For a proper

cluster s we define its depth ds to be

ds = min
r,r′∈s

vK(r − r′).

The cluster picture ΣC/K of C is the collection of all clusters of the roots of f .

When there is no risk of confusion, we may simplify this to ΣC . We refer to

R as the top cluster.

The cluster picture ΣC/K comes with a natural action of GK = Gal(K/K).

Example 1.2.2. Take the polynomial f(x) = (x − 1)(x3 − p)(x2 − p4) over

Qp for p > 3, with roots R = {1, p 1
3 , ζ3p

1
3 , ζ23p

1
3 , p2,−p2}, where ζ3 is a third

root of unity. Consider the p-adic valuations of the differences between pairs

of roots:

v(1− r) = 0 for 1 ̸= r ∈ R,

v(ζ i3p
1
3 − ζj3p

1
3 ) =

1

3
for i, j ∈ {0, 1, 2} i ̸= j,

v(ζip
1
3 ± p2) =

1

3
for i ∈ {0, 1, 2},

v(p2 + p2) = 2.

This gives the list of all clusters as:

R, {1}, {p
1
3}, {ζ3p

1
3}, {ζ23p

1
3}, {p2}, {−p2},

s = {p
1
3 , ζ3p

1
3 , ζ23p

1
3 , p2,−p2},

t = {p2,−p2}.

We draw the cluster picture by drawing a node for each root and drawing

circles around them to indicate how p-adically close to each other they are.

These circles represent p-adic discs, and their depths are indicated next to

them. So, the cluster picture of C : y2 = f(x)/Qp is ΣC = .

1.3 Minimal SNC Models
It turns out that, along with the valuation of the leading coefficient vK(cf ),

ΣC/K with its natural action of GK is all we need to calculate a combinatorial
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description of the minimal SNC model of C/K.

Theorem 1.3.1. [Theorem 9.2.1] Let K be a complete discretely valued field

with algebraically closed residue field of characteristic p > 2. Let C : y2 = f(x)

be a hyperelliptic curve over K with tame reduction. Then the structure (i.e.

the dual graph) of the special fibre of the minimal SNC model of C/K, with

genus and multiplicity, is completely determined by ΣC/K (with depths), the

valuation of the leading coefficient vK(cf ) of f , and the action of GK.

Example 1.3.2. Consider the two curves C1 : y
2 = (x2−p)(x−p4)((x−1)3−p9)

and C2 : y
2 = (x−1)((x−1)2−p)(x−p3)(x−p5)(x+p3−p4) over Qur

p , p > 3.

Both C1 and C2 have Namikawa-Ueno type I∗0-III-1. Note that C1 and C2 both

have cluster picture , and their defining polynomials have equal

leading coefficients. This illustrates Theorem 1.3.1, that the reduction type is

completely determined by the cluster picture and leading coefficient.

Another useful example to consider is the following summary of the case

for elliptic curves.

Example 1.3.3. The following table shows the special fibre Xk, of the minimal

SNC model X for the different Kodaira-Néron types of elliptic curves with

tame reduction (for which it is sufficient to take p ≥ 5). Every elliptic curve

can be put into the form y2 = x3+ax+b. After allowing for shifts and scalings

we can present each elliptic curve in precisely one of the following ways.

Type Σ Xk Type Σ Xk

I0
1 g1

I∗0
21 1 1 1

In

1

1

. . .

n-gon
. . .

1

1 I∗n

2

2 . . .n 2

2

1 1 11

II

6

3 2 1 IV∗
3

2 1 2 1 2 1

III

4

1 2 1 III∗

4

2 3 2
1

3 2
1

IV

3

1 1 1 II∗

6

3 4 2 5 4
32

1

Table 1.1: Kodaira-Néron types of elliptic curves with p ≥ 5.



1.3. Minimal SNC Models 13

Here, the g1 labeling represents a component of genus 1. This differs from the

table found in [Sil94, p 365], where instead the special fibres of the minimal

regular models for the different types of elliptic curves are shown. This makes

a difference for type II, III or IV elliptic curves, whereas for all the other types

the minimal regular model is SNC. These special fibres can be read off the

cluster pictures. Roughly, we can apply Theorems 1.3.6 and 1.3.13. It is worth

noting that technically these theorems only apply for genus > 1. However,

looking at the genus 1 case is helpful in familiarising oneself with this way

of studying special fibres. In [Sil94] the special fibres are presented alongside

the discriminants and j-invariants, the inputs required for Tate’s algorithm.

Knowing the discriminant and j-invariant of an elliptic curve is equivalent

to understanding the p-adic distances between roots. By instead taking the

approach of cluster pictures, one can quite naturally read off the special fibre,

removing the need to follow a lengthy algorithm.

We will make use of the following formal definitions from [DDMM18].

Definition 1.3.4. A maximal subcluster s′ of a cluster s is called a child of s,

denoted s′ < s, and s is the parent of s′, denoted P (s′). We say s is odd (resp.

even) if |s| is odd (resp. even) Furthermore, s is a twin if |s| = 2, and s is

übereven if s has only even children. A cluster s is principal if |s| ≥ 3, unless

it has a child of size 2g(C), or if s = R is even and has exactly two children,

in which case s is not principal.

Chapters 8 and 9 are dedicated to explicitly describing the structure,

multiplicities and genera of components of the special fibre Xk of the minimal

SNC model. Before we give a precise statement let us illustrate the main

result of these chapters, along with the definitions of linking chains and central

components, via an example.

Example 1.3.5. Let K = Qur
p for p ≥ 5, and C/K be the hyperelliptic curve

of genus 3 given by

C : y2 = ((x3 − p)3 − p15)((x− 1)4 − p9).

The cluster picture of C/K is shown in Figure 1.1a and the special fibre Xk of

the minimal SNC model of C/K is shown in Figure 1.1b. The principal clusters

in ΣC/K are s1, s2, s3, s4, s5, and R, as labeled in Figure 1.1a. Note that s3, s4

and s5 are permuted by GK and denote their orbit by X. None of the principal

clusters in this example are übereven so, as we will see in Theorem 1.3.6, each
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orbit of principal clusters gives rise to one central component, shown in bold

and labeled in Figure 1.1b. Clusters s1 and s2 are children ofR, and contribute

chains of rational curves linking ΓR and Γsi for i = 1, 2. In this case, the chain

from ΓR to Γs2 is trivial so they intersect, and we get two identical chains from

ΓR to Γs1 . Similarly, the elements ofX are children of s2 and contribute a chain

of rational curves between Γs2 and ΓX . How one determines the number and

(a) Cluster picture ΣC/K .

1
ΓR

1 1

1 1 4
Γs1

2

6

Γs2

2

3

3 3

3 3

3 6
ΓX

333

(b) Special fibre of the minimal SNC
model of C/K.

Figure 1.1: C : y2 = ((x3 − p)3 − p15)((x− 1)4 − p9) over K = Qur
p .

length of the chains linking the central components is discussed in Theorem

1.3.13. Each of Γs1 ,Γs2 , and ΓX are also intersected by a few other components,

again this is discussed in Theorem 1.3.13.

In this example, we can compare the chains intersecting some of the central

components in Xk to those appearing in the minimal SNC models of related

elliptic curves, seen in Table 1.1, but pictured again in Figure 1.2 below. The

component Γs1 , and those intersecting Γs1 , look much like a type III elliptic

curve. Similarly type II for s2, and type I∗0 for X (but with multiplicities

multiplied by |X| = 3).

4

1 2 1

(a) Type III

6

3 2 1

(b) Type II

21 1 1 1

(c) Type I∗0

Figure 1.2: Special fibres of elliptic curves appearing as “submodels” of Xk.

This example illustrates the main idea that every Galois orbit of principal

clusters X contributes components to the special fibre Xk. More precisely:

orbits of principal, übereven clusters contribute either one or two components

and orbits of principal, non-übereven clusters contribute one component. We

call these components central components, and they are linked by either one

or two chains of rational curves which we call linking chains. The central
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components of two orbits X and X ′ are linked by a chain (or chains) of rational

curves if and only if there exits some s ∈ X and s′ ∈ X ′ such that s′ < s. An

orbits of twins gives rise to a chain of rational curves, which intersects the

component(s) arising from their parent’s orbit. Some central components are

also intersected by other chains of rational curves: loops, tails and crossed

tails. Loops are chains from a component to itself; tails are chains which

intersect the rest of the special fibre in only one place; crossed tails are similar

to tails but with two additional components, called crosses, intersecting the

final component of the chain. Figures 1.3 and 1.4 give pictorial descriptions of

the different chains of rational curves that can occur, where the dashed lines

illustrate all the components of Xk that are intersected by the chain.

. . .

(a) Linking chain

. . .

(b) Loop

Figure 1.3: Pictorial description of linking chains and loops.

. . .

(a) Tail

. . .

(b) Crossed tail

Figure 1.4: Pictorial description of tails and crossed tails.

We write such chains of rational curves as C =
⋃λ

i=1Ei, where Ei intersects

Ei+1 exactly once for all 1 ≤ i < λ, and intersects no other components of C.
E1 will intersect the rest of the special fibre, say at component Γ1, exactly

once. If C is a linking chain then Eλ will also intersect the rest of the special

fibre, say at component Γ2, exactly once. In this case we say that C is a linking

chain from Γ1 to Γ2.

The theorems given in this section of the introduction assume that R is

principal. Full theorems including the case whenR is not principal are given in

Chapter 9. Here we give an abridged version of the description of the structure

of the special fibre, given in full in Theorem 9.2.3.

Theorem 1.3.6 (Structure of SNC model). Let K be a complete discretely

valued field with algebraically closed residue field of characteristic p > 2. Let

C/K be a hyperelliptic curve with tame reduction, and with R principal. If X
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is a Galois orbit of even clusters with s ∈ X, define

ϵX = (−1)|X|(vK(cf )+
∑

r ̸∈s vK(rs−r)),

where rs is any root of f in s. Then the special fibre of its minimal SNC model is

structured as follows. Every Galois orbit of principal clusters X contributes one

component ΓX , unless X is übereven with ϵX = 1, in which case X contributes

two components Γ+
X and Γ−

X .

These components are linked by chains of rational curves in the following

cases (where, for any orbit Y , we write Γ+
Y = Γ−

Y = ΓY if Y contributes only

one central component):

Name From To Condition

LX,X′ ΓX ΓX′ X ′ < X both principal, X ′ odd

L+
X,X′ Γ+

X Γ+
X′ X ′ < X both principal, X ′ even with ϵX′ = 1

L−
X,X′ Γ−

X Γ−
X′ X ′ < X both principal, X ′ even with ϵX′ = 1

LX,X′ ΓX ΓX′ X ′ < X both principal, X ′ even with ϵX′ = −1

LX′ Γ−
X Γ+

X X principal, X ′ < X orbit of twins, ϵX′ = 1

TX′ ΓX - X principal, X ′ ≤ X orbit of twins, ϵX′ = −1

Chains where the “To” column has been left blank are crossed tails. Some

central components ΓX are also intersected transversally by tails. These are

explicitly described in Theorem 1.3.13.

The case when R is not principal is described in Theorem 9.2.3. We do

not give explicit equations for the components in the special fibre. However,

these could be calculated using the method laid out in this thesis if desired

(see Remark 9.2.4).

The linking chains, tails, and the multiplicities and genera of the compo-

nents in the special fibre are given explicitly in Theorem 1.3.13 below. In order

to describe the chains of rational curves in detail, we introduce the notion of

sloped chains of rational curves. We also need a few other numerical invariants

associated to clusters.

Definition 1.3.7. Fix µ ∈ N and t1, t2 ∈ Q with t1 > t2. Then we can find

λ ∈ N with λ minimal, and mi ∈ Z, di ∈ Z>0 such that

µt1 =
m0

d0
>
m1

d1
> · · · > mλ

dλ
>
mλ+1

dλ+1

= µt2, and

∣∣∣∣∣ mi mi+1

di di+1

∣∣∣∣∣ = 1.

Suppose C =
⋃λ

i=1Ei is a chain of rational curves where Ei has multiplicity

µdi. Then C is a sloped chain of rational curves with parameters (t2, t1, µ).
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In practice there is an easy way to find such integers λ, mi and di by taking

all numbers in [µt2, µt1]∩Q of denominator ≤ max{denom(µt1), denom(µt2)},
where denom denotes the denominator. This is discussed in Remark 7.2.12. It

is helpful to see a worked example such as in Example 1.4.22.

Notation 1.3.8. Write s̃ for the set of odd children of s, and ssing for the set

of size 1 children of s.

Definition 1.3.9. We define the following invariants for a cluster s:

νs = vK(cf ) +
∑
r∈R

ds∧r, λs =
νs
2
− ds

∑
s′<s

⌊
|s′|
2

⌋
.

Definition 1.3.10. Let s be a cluster, and write ds =
as
bs
, where (as, bs) = 1.

The semistable genus of s, gss(s), is given by

|s̃| = 2gss(s) + 1 or 2gss(s) + 2,

or gss(s) = 0 if s is übereven. If X is a GK-orbit of clusters with s ∈ X, the

semistable genus of X is gss(X) = gss(s). From this we define the genus g(X)

of X. If X = {s} is a trivial orbit g(s) is given by

g(X) = g(s) =


⌊gss(s)

bs
⌋ λs ∈ Z,

⌊gss(s)
bs

+ 1
2
⌋ λs ̸∈ Z, bs even,

0 λs ̸∈ Z, bs odd.

For a general orbit X, define g(X) = g(s) for s ∈ X, where s is considered

as a cluster in ΣC/KX
, and KX is the unique extension of K of degree |X|

(uniqueness follows from k being algebraically closed).

Definition 1.3.11. Let X be a GK-orbit of clusters with s ∈ X, and rs any

root in s. Define eX to be the minimal positive integer such that eX |X|ds ∈ Z
and eX |X|νs ∈ 2Z for all s ∈ X. The orbit X also has the following invariants:

dX = ds, bX = bs, λX = λs and δX =

dR if s = R,

ds − dP (s) otherwise,
.

Definition 1.3.12. A child s′ < s is stable if it has the same GK-stabiliser as

s, and a GK-orbit of clusters is stable if all (or equivalently any) of its elements

are stable.
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Theorem 1.3.13. Let K and C/K be as in Theorem 1.3.6. Let X be a

principal orbit of clusters in the cluster picture of C/K, and suppose that R is

principal. Then Γ±
X has genus g(X) and multiplicity |X|eX . Suppose further

that eX > 1, and choose some s ∈ X. Then the central component(s) associated

to X are intersected transversely by the following tails, which are sloped chains

with parameters ( 1
µ
⌊µt1 − 1⌋, t1, µ) (writing ΓX = Γ+

X = Γ−
X if X contributes

only one central component):

Name From Number t1 µ Condition

T∞ ΓX 1 (g + 1)dR − λR 1 X = {R}, R odd

T±
∞ Γ±

X 2 −dR 1 X = {R}, R even, ϵR = 1

T∞ ΓX 1 −dR 2 X = {R}, R even, eR > 2,

ϵR = −1

Tys=0 ΓX ⌊ |ssing||X|
bX

⌋ −λX bX |ssing| ≥ 2, and eX > bX/|X|
Txs=0 ΓX 1 −dX 2|X| X has no stable child, λX ̸∈

Z, eX > 2, and either

gss(X) > 0 or X is übereven

T±
xs=0 Γ±

X 2 −dX |X| X has no stable child, λX ∈
Z, and either gss(X) > 0 or

X is übereven

T(0,0) ΓX 1 −λX |X| X has a stable singleton,

or gss(X) = 0, X is

not übereven and X has no

proper stable odd child

Furthermore, regardless of whether eX > 1 or not, for X ′ < X an orbit of

clusters, the central components are intersected by the following sloped chains

of rational curves with parameters (t1 − δ, t1, µ):

Name t1 δ µ Condition

LX,X′ −λX δX′/2 |X ′| X ′, X principal, X ′ odd

L+
X,X′ −dX δX′ |X ′| X ′, X principal, X ′ even, ϵX′ = 1

L−
X,X′ −dX δX′ |X ′| X ′, X principal, X ′ even, ϵX′ = 1

LX,X′ −dX δX′ 2|X ′| X ′, X principal, X ′ even, ϵX′ = −1

LX′ −dX 2δX′ |X ′| X principal, X ′ orbit of twins, ϵX′ = 1

TX′ −dX δX′ + 1
µ

2|X ′| X principal, X ′ orbit of twins, ϵX′ = −1

Note that the names indicate the components which each chain intersects, as

explicitly written in the second table of Theorem 1.3.6. Finally, the crosses of

any crossed tail have multiplicity µ
2
.
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This is proved in Theorem 9.2.3. In practice, there is a one-to-one cor-

respondence between the chains intersecting a central component ΓX and the

tails of the unique central component of the minimal SNC model of a related

curve. Roughly, for some s ∈ X we can construct a hyperelliptic curve over

KX (an extension of K of degree |X|) whose set of roots consists of one root of
each odd child of s. This allows us to construct minimal SNC models in terms

of simpler models. This idea was briefly explored in Example 1.3.5, comparing

parts of the special fibre to the special fibres of minimal SNC models of certain

elliptic curves. We now have a closer look at this idea in the following example.

Example 1.3.14. Let C over K = Qur
p for p ≥ 5 be the hyperelliptic curve

given by

C : y2 = f(x) = (x3 − p2)(x4 − p11).

The cluster picture of C/K consists of two proper clusters R and s, shown in

Figure 1.5a. The special fibre Xk of the minimal SNC model X of C/K is

shown in Figure 1.5b.

(a) Cluster picture ΣC/K .

42 3

2 1

1

3

2 1

1
3

1

(b) Special fibre of the minimal SNC model
of C/K.

Figure 1.5: C : y2 = (x3 − p2)(x4 − p11) over K = Qur
p .

Define elliptic curves C1 and C2 over K by C1 : y
2 = f1(x) = x3 − p2 and

C2 : y2 = p2f2(x) = p2(x4 − p11) respectively. Note that f(x) = f1(x) · f2(x).
The roots of f1(x) contribute the roots inR\s, and the roots of f2(x) contribute

the roots in s. The coefficient in the defining equation of C2 is chosen to

somehow “see” the roots of f1. It is interesting to compare the minimal SNC

models of Ci to that of C for i = 1, 2. Note that C1 and C2 are type IV and

type III∗ elliptic curves respectively, as shown in Figure 1.6.

3

1 1 1

(a) Type IV

4

2 3 2
1

3 2
1

(b) Type III∗

Figure 1.6: Special fibres of minimal SNC models of C1 and C2.

It appears that the roots of f1 and f2 are making their own contributions

to Xk, as both the special fibres of the minimal SNC models of Ci can be seen
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as “submodels” of Xk for i = 1, 2. This shows how R and s each make their

own contribution to Xk. Since s is an even child of R, and ϵs = 1, there are

two linking chains between their contributions in Xk .

1.4 Classification
Theorems 1.3.6 and 1.3.13 tell us how to construct special fibres from cluster

pictures. The remainder of the work presented in this thesis is concerned

with classifying these special fibres. Example 1.3.3 demonstrates that cluster

pictures determine the special fibres in the genus 1 setting. It is less clear how

one should produce a similar classification in higher genus. It turns out to be

useful to introduce a notion of quotient BY trees, combinatorial objects which

will enable us to classify cluster pictures of hyperelliptic curves in higher genus

settings. Quotient BY trees are so named because they are quotients of BY

trees, similar objects introduced in [DDMM17] as a way to study semistable

hyperelliptic curves.

In [Bis19] the author describes the possible cluster pictures which can

arise from hyperelliptic curves with tame reduction. Furthermore, it is shown

that the Galois action is determined by the cluster picture (with depths). In

combination with the work laid out in this thesis, this can be used to give

a complete classification of the reduction types of hyperelliptic curves with

tame reduction. Our approach for classifying such hyperelliptic curves gen-

eralises processes described for semistable hyperelliptic curves and BY trees

in [DDMM17]. We demonstrate how open quotient BY trees can be used in

genus 1 in Example 1.4.18, and give the full classification for genus 2 hyper-

elliptic curves in Appendix A.2. A similar classification of genus 2 reduction

types is given by Namikawa and Ueno in [NU73]. Their classification presents

all possible special fibres of minimal regular models of genus 2 curves, rather

than minimal SNC models. We make reference to their type naming conven-

tion in Appendix A, however we also present a naming convention, set out

in [DDMM17] which can easily be used in higher genus settings. It is worth

noting that [NU73] is able to deal with wild reduction and p = 2. However,

our way of classifying reduction types of hyperelliptic curves via quotient BY

trees is particularly useful, as given any hyperelliptic curve of arbitrary genus,

we may not only compute the special fibre of its minimal SNC model, but we

can also provide a complete list of all cluster pictures of hyperelliptic curves of

this reduction type. This classifies all the defining equations for hyperelliptic

curves of this type. In contrast, [NU73] do not even provide an algorithm for

checking the reduction type. Our genus 2 classification presented in Appendix
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A.2, provides a way of quickly reading off the special fibre of any genus 2 curve

with minimal calculation. More generally, for g ≥ 2 open quotient BY trees

provide a way of easily checking whether two hyperelliptic curves with tame

reduction have the same reduction type. It would also be possible to produce

complete classifications in g > 2 using the work set out in this thesis. As

with cluster pictures, useful arithmetic invariants such as the valuation of the

discriminant can also be read off quotient BY trees.

Definition 1.4.1. An open quotient BY tree is a finite tree T with a unique

open edge ε (an edge with only one defined end point), a marked point m

which lies on the closure of the open edge ε̄, a genus function g : V (T ) → Z≥0

on vertices, a multiplicity functionM : V (T )∪E(T ) → Z>0, and a 2-colouring

blue/yellow on vertices and edges such that:

(i) If v is a fixed yellow vertex, then v has genus g(v) = 0, all edges incident

to v are yellow, and

∑
e edge incident to v

M(e)

M(v)
≥ 3.

(ii) Let v0 be the unique vertex incident to ε. Then the embedded path from

v0 to any vertex v has non-decreasing multiplicities.

(iii) Let v ∈ V (T ) be any vertex, then there exists some n ∈ Z>0 such that

either 1 or 2 edges incident to v have multiplicityM(v) and all remaining

incident edges have multiplicity nM(v). Furthermore, M(ε) = 1.

(iv) If v is blue then the genus of v is such that:

• If only one incident edge, say e, has multiplicity M(v) and all other

incident edges have multiplicity nM(v) for n ∈ Z>0, where e = ε if

v = v0 (the unique vertex incident to ε), then

n | 2g(v) + 1 or 2g(v) if e is blue,

n | 2g(v) + 2 or 2g(v) + 1 if e is yellow.

• If two incident edges, say e1 and e2, have multiplicity M(v) and all

other incident edges have multiplicity nM(v) for n ∈ Z>0, where
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ε ∈ {e1, e2} if v = v0, then

n | 2g(v) if e1 and e2 are both blue,

n | 2g(v) + 2 if e1 and e2 are both yellow,

n | 2g(v) + 1 if e1 and e2 are different colours.

Note that when n = 1 there is no constraint on the values of g(v).

(v) Blue vertices of genus 0 have at least one yellow incident edge.

(vi) For every blue vertex v ∈ V (T ), 2g(v) + 2 ≥
∑

e∈E(T ), blue
incident to v

M(e)
M(v)

.

We will put metrics d : T × T → Q≥0 on open quotient BY trees (as

topological spaces), to allow us to move between open quotient BY trees and

cluster pictures of hyperelliptic curves. There are several constraints on which

metrics we can allow, the details of this can be found in Definition 4.1.13.

Theorem 1.4.2 (Theorem 5.1.2). There is a one-to-one correspondence be-

tween metric open quotient BY trees and metric cluster pictures of hyperelliptic

curves with tame reduction and top cluster depth dR ≥ 0.

To pass between the two we define a metric open quotient BY tree from

the cluster picture of such a hyperelliptic curve and vice versa.

Definition 1.4.3. Let C : y2 = f(x) be a hyperelliptic curve over K with

tame reduction such that dR ≥ 0. Define the open quotient BY tree associated

to C, T = T(ΣC/K) as follows. The tree T is finite and is equipped with

a genus marking g : V (T ) → Z≥0 on vertices, a multiplicity function M :

V (T ) ∪ E(T ) → Z>0, and a 2-colouring blue/yellow on vertices and edges.

There is one vertex vX of T for every Galois orbit X of proper clusters in

Σ, coloured yellow if X is übereven and blue otherwise. For X and X ′ both

proper orbits, with X ′ < X, T has an edge between vX and vX′ coloured yellow

if X ′ is even, and blue otherwise. One additional open edge is added to vR, of

multiplicity 1, coloured yellow if R is even, and blue otherwise.

The genus of a vertex vX is defined to be the semistable genus of any

cluster s ∈ X, as in Definition 2.1.14. The multiplicity of a vertex vX′ or an

edge between vX and vX′ , where X ′ < X is defined to be |X ′|. Note that this

means that M(vX) is the minimum of M(e) over all incident edges e, and if e

is incident to v1 and v2, then M(e) = max {M(v1),M(v2)}. For this reason,

we can omit writing the multiplicity of edges when we draw T , as they can be

deduced from the multiplicities of the vertices.
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Furthermore, we can define a metric on T , by defining the length of a

closed edge e between vX and v′X with X ′ < X to be δX′ , and a marked point

m lies distance dR along the open edge. We mark m with a cross on the open

edge.

The construction of a cluster picture from an open quotient BY tree simply

reverses this construction, this is described formally in 5.1.9, and completes

our one-to-one correspondence.

It is useful, in order to produce a usable classification, to have a formula

for the genus of a quotient BY tree. This gives a way of listing all quotient

BY trees corresponding to hyperelliptic curves of a given genus.

Definition 1.4.4. Let T be an open quotient BY tree and let B1, . . . , Bn be

the connected components of Tb, the blue part of T , then the genus of T is

g(T ) =

(
n∑

i=1

min
w∈V (Bi)

{M(w)}

)
− 1 +

∑
v∈V (T )

g(v)M(v).

Proposition 1.4.5 (Proposition 6.2.5). Let C be a hyperelliptic curve with

associated open quotient BY tree T . Then g(T ) = g(C).

Example 1.4.6. There are 56 different non-metric open quotient BY trees

of genus 2, but we will not list them all here. There are 8 non-metric open

quotient BY trees of genus 1. These are shown in Figure 1.7. Here the label-

ings represent the genera and multiplicities of vertices. For example g0 M1

represents a genus 0 multiplicity 1 vertex. Marked points shown by crosses.

Figure 1.7: All open quotient BY trees of genus 1.

The corresponding cluster pictures are shown in Figure 1.8 respectively, where

a line drawn between two proper clusters represents a Galois orbit.

Figure 1.8: All non-metric cluster pictures of genus 1.
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Note that in Figure 1.7, there only two open quotient BY trees with a blue

open edge. This colouring means these open quotient BY trees correspond to

genus 1 curves whose defining equations have 3 roots, whereas those with yellow

open edges correspond to genus 1 curves whose defining equations have 4 roots.

As such, if we wanted to verify that we can recover the Kodaira-Néron types

shown in Table 1.1 using open quotient BY trees we only want to consider the

open quotient BY trees with a blue open edge. We can give open quotient

BY trees different metrics, as defined in Definition 4.1.13, in particular we can

take any of the following metrics:

for (a, b) = 1, a ∈ Z≥0 and b ∈ {1, 2, 3},

for a, b ∈ Z, a ≥ 0, b > 0.

Let E : y2 = cf (x− r1)(x− r2)(x− r3) be an elliptic curve over K. Note that

under a substitution x = px′, y = py′ we get a change of model

y′2 = pcf

(
x′ − r1

p

)(
x′ − r2

p

)(
x′ − r3

p

)
.

This certainly has the same reduction type, although note that the leading

coefficient has been changed, and as a result all depths in the cluster picture

are decreased by 1. In terms of quotient BY trees, provided the top clusters

have depth ≥ 0 we can think of the marked point having moved distance 1

along the open edge.

So, in order to produce a classification, we need to consider isomorphisms

of curves and how these affect cluster pictures and quotient BY trees. Again,

this turns out be possible to determine in a completely combinatorial way. This

motivates the need for a concept of equivalence of open quotient BY trees that

will enable us to classify the reduction types, along with a criterion for how

the leading coefficients are affected. The following technical details help us

achieve this. In general, the principle is that there is some subtree (the core)

that must remain unchanged, and the marked point is allowed to move by an

integer.

Definition 1.4.7. Let T be an open quotient BY tree. Then the core T̃ of T

is the tree obtained from T by deleting the open edge and then possibly one of

the following: Viewing the unique vertex v0 incident to the open edge in T as

a point on an edge in T̃ , provided g(v0) = 0 and there are precisely two closed

edges incident to v0 in T , both of which are coloured the same as v0 and have

multiplicity 1; Deleting v0 along with a unique incident closed edge, provided
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v0 is blue, g(v0) = 0, and the unique incident closed edge has multiplicity 1

and is coloured blue.

Example 1.4.8. The following are some simple examples of open quotient

BY trees along with their cores.

T

T̃

Notation 1.4.9. Let S be an open quotient BY tree or the core of an open

quotient BY tree, then we denote by S1 the subtree consisting of all multiplicity

1 edges and vertices.

Definition 1.4.10. Let T be an open quotient BY tree and v ∈ V (T ). Define

s(v, T ) =


2g(v) + 2−

∑
e∈E(T ), blue
incident to v

M(e)
M(v)

if v is blue,

0 if v is yellow.

This is the number of singletons of a cluster corresponding to v in the cluster

picture associated to T , which is proved in Proposition 5.1.12.

Construction 1.4.11. Let T be a metric open quotient BY tree and v0 the

unique vertex incident to the open edge. Then we create an extended tree B

from T 1 as follows:

• If T̃ is obtained from T by deleting just the open edge: change the colour

of the open edge of T 1 to green if it was previously blue;

• If T̃ is obtained from T by deleting ‘open yellow edge ε → genus 0,

multiplicity 1, blue vertex v0 → closed multiplicity 1 blue edge e’ from

a vertex v1 ∈ V (T ): colour ε, v0 and e green and view v0 as a point on

the open edge rather than a vertex.

For every blue vertex v ∈ V (T̃ 1) if the denominator denom(d(v,m)) ∤ s(v, T )
then add a green open edge, to v. Next, for any point P on T̃ 1 if d(m,P ) ∈ Z
then add a black open edge to P (creating a black vertex at P if P was not

already a vertex). Call the tree resulting from these moves so far A. Finally,

for every leaf v ∈ V (A) add a black open edge to v.
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Example 1.4.12. The following are some simple examples of open quotient

BY trees T along with their extended trees B.

T

B

For an open quotient BY tree T we describe how to obtain a new open

quotient BY tree T ∗ with a yellow open edge and marked point as close to the

centre of the core as possible. This construction is described fully in 4.5.5. Two

open quotient BY trees T1 and T2 are equivalent if T ∗
1 and T ∗

2 are isomorphic.

Definition 1.4.13. Let T be an open quotient BY tree with core T̃ . The

centre c of T̃ is the vertex or the midpoint of the edge between two vertices in

V (T 1) minimising the value of ϕ, where for v ∈ V (T ):

ϕ(v) = max{w(T ′) | T ′ is a connected component of T \ {v}},

where

w(T ′) =
1

minv′∈T ′{M(v′)}
∑
v∈T ′

M(v)w(v),

w(v) =

0 if v is yellow,

2g(v) + 2−
∑

e∈E(Tb),
incident to v

M(e)
M(v)

if v is blue.

Remark 1.4.14. There is indeed either a unique minimising vertex or pre-

cisely two minimising vertices, in which case they are adjacent. This is proved

in Lemma 4.4.4.

An example of this centre calculation is included in Example 1.4.22.

Construction 1.4.15 (T ∗). Let T be a metric open quotient BY tree with

extended tree B. Let m′ be a point on B such that d(c,m′) is minimal subject

to d(m′,m) ∈ Z. Denote by T ∗, a tree obtained in the following way. If m′ is

green add “open yellow edge → genus 0, multiplicity 1 blue vertex → closed

blue edge” to the closest vertex of T̃ to m′. Otherwise, add an open yellow

edge to the closest point of T̃ to m′ creating a vertex there, coloured the same

as the edge it lies on, if it is not already a vertex.
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Remark 1.4.16. Construction 1.4.15 only results in a unique tree when

denom(d(m, c)) ̸= 2. For now we will not worry about this but it is dealt

with in depth in Sections 4.5 and 4.6.

Definition 1.4.17. Two metric open quotient BY trees T1 and T2 are equiv-

alent if T ∗
1
∼= T ∗

2 .

Example 1.4.18. We can use this equivalence to reproduce the classification

for elliptic curves with tame reduction in Example 1.3.3. Considering the

equivalence classes of metric open quotient BY trees of genus 1, we are able to

produce a classification, choosing a representative for each equivalence class of

metric open quotient BY trees, as shown in Table 1.2. There are two choices

of leading coefficient for each representative, giving ten reduction types.

T Σ v(cf ) mod 2 Type Xk

0 I0
1 g1

1 I∗0
21 1 1 1

0 In

1

1

. . .

n-gon
. . .

1

1

1 I∗n

2

2 . . .n 2

2

1 1 11

0 II

6

3 2 1

1 IV∗
3

2 1 2 1 2 1

0 III

4

1 2 1

1 III∗

4

2 3 2
1

3 2
1

0 IV

3

1 1 1

1 II∗

6

3 4 2 5 4
32

1

Table 1.2: Kodaira-Néron types of elliptic curves with p ≥ 5.
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Theorem 1.4.19. Let C and C ′ be two isomorphic hyperelliptic curves over

K, with associated metric open quotient BY trees T and T ′ respectively. Then

T and T ′ are equivalent. Conversely, let T ′′ be a metric open quotient BY

tree equivalent to T . Then there exists a hyperelliptic curve curve C ′′ which is

isomorphic to C over K, such that the metric open quotient BY tree of C ′′ is

isomorphic to T ′′.

For a metric open quotient BY tree T , every equivalent metric open quo-

tient BY tree T ′ can be obtained by taking a new marked point m′ to be any

point on the extended tree of T integer distance distance from m, and adding

either ‘open yellow edge’, ‘open blue edge’, or ‘closed blue multiplicity 1 edge

→ genus 0 multiplicity 1 blue vertex → open yellow edge’ to T̃ at the point

closest to m′ (creating a vertex at this point the same colour as the edge it lies

on if it is not already a vertex of T̃ ). Moreover, we give a full description of

the equivalence class in 4.6.4.

Note that for our classification of elliptic curves in Example 1.4.18 we

choose a representative of each class with a blue open edge. However, more

generally, for a metric open quotient BY tree T we will choose T ∗ as the

canonical representative of the equivalence class. We will see in Section 5.4

that the equivalence class of a metric open quotient BY tree encodes the effect

of Möbius transformations on the roots of the associated cluster picture. These

will affect the leading coefficient, and by Theorem 1.3.1, this is something we

need to keep track of. The following theorem provides an easy way to do this

using metric open quotient BY trees.

Theorem 1.4.20. Let C : y2 = f(x) and C ′ : y2 = f ′(x) be hyperelliptic curves

of genus g over K, with cluster pictures Σ and Σ′ respectively and metric open

quotient BY trees T = T (Σ) and T ′ = T (Σ′). Suppose that the sets of roots R
and R′ of f and f ′ respectively are such that dR, dR′ ≥ 0. Then the dual graphs

of the special fibres of the minimal SNC models of C and C ′ are isomorphic if

T and T ′ are equivalent and the leading coefficients cf and cf ′ of f and f ′ are

such that:

• if g is even: if

v

(
disc

(
f

cf

))
− v

(
disc

(
f ′

cf ′

))
≡ 2(g+1)(2g+1)d(m,m′) mod 4(2g+1)

then v(cf ) ≡ v(cf ′) mod 2, else v(cf ) ̸≡ v(cf ′) mod 2
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• if g is odd: then

v
(
disc

(
1
cf
f
))

− v
(
disc

(
1
cf ′
f ′
))

2(2g + 1)
≡ v(cf )− v(cf ′) mod 2

If either dR, dR′ < 0 then note that a simple scaling gives us a change of

model, and will allow us to transform the cluster picture into something with

non-negative top cluster depth. We will discuss how such a transformation

affects the leading coefficient later. Piecing this together with the theorem

above will allow us to handle changes in leading coefficients regardless of what

the value of the top cluster depths are.

We provide a way of reading off the discriminant of f from its associated

metric open quotient BY tree. This is discussed in more detail in Section 6.3.1,

where the following result is proved.

Theorem 1.4.21. Let C : y2 = f(x) be a hyperelliptic curve with tame reduc-

tion, with metric open quotient BY tree T . Denote the marked point of T by

m, and define a partial order on the vertices of T by setting v′ ⪯ v if v lies on

the embedded path from m to v′. Then

v(∆C) = v(cf )(4g + 2) + v

(
disc

(
1

cf
f

))
= v(cf )(4g + 2) +

∑
v∈V (T )

M(v)d(v,m)

(
|v|2 −

∑
v′<v

|v′|2M(v′)
M(v)

− s(v, T )

)
,

= v(cf )(4g + 2) +
∑

v∈V (T )

M(v)δv|v| (|v| − 1),

where

|v| =
∑
v′⪯v

s(v′, T )
M(v′)

M(v)
,

δv = length(ev), the length of the edge incident to v lying on the embedded path

between v and m, and v′ < v if v′ ̸= v is adjacent to v and v′ ⪯ v. If v = v0,

the unique vertex incident to the open edge, then we take δv0 = d(v0,m).

This allows us to give a complete classification in higher genus cases using

metric open quotient BY trees. We do so for genus 2 in Appendix A.2, following

a proposed naming convention for open quotient BY trees in Appendix A.1.

In particular we can see that the reduction type is determined by the cluster

picture, and we are able to read off the reduction type of any genus 2 curve

from this classification. To demonstrate the power of the work laid out in this

thesis we present a longer worked example that spans all our main results.
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Example 1.4.22. Consider the hyperelliptic curve C : y2 = (x2−p2)(x4−p11)
over Qur

p . Suppose that we wish to find the special fibre of the minimal SNC

model of C/Qur
p , and classify all hyperelliptic curves with the same reduction

type. Here we lay out a process to answer both of these using cluster pictures

and metric open quotient BY trees. The cluster picture Σ and metric open

quotient BY tree T of C/Qur
p are shown in Figure 1.9.

(a) Cluster picture Σ of C/Qur
p (b) Metric open quotient BY tree T

Figure 1.9: Cluster picture and open quotient BY tree associated to C/Qur
p .

Let us start by using the cluster picture and valuation of the leading

coefficient of f , which in this case is cf = 1, to determine the special fibre of

the minimal SNC model, as described in Theorem 1.3.13. The cluster picture

Σ consists of just two proper clusters, R, and the cluster of size 4 which we

will label s. We must first calculate the following arithmetic invariants:

νR = vQur
p
(cf ) +

∑
r∈R

dR∧r,

= 6,

λR =
νR
2

− dR
∑
t<R

⌊
|t|
2

⌋
,

= 1,

νs = vQur
p
(cf ) +

∑
r∈s

ds∧r,

= 13,

λs =
νs
2
− ds

∑
s′<s

⌊
|s′|
2

⌋
,

=
13

2
.

Recall that the genus of a cluster t is given by

g(t) =


⌊gss(t)

bt
⌋ λt ∈ Z,

⌊gss(t)
bt

+ 1
2
⌋ λt ̸∈ Z, bt even,

0 λt ̸∈ Z, bt odd.

So, since gss(R) = 0 we have g(R) = 0, and since λs /∈ Z, bs = 4 ∈ 2Z, we have
g(s) = ⌊gss(s)

bs
+ 1

2
⌋ = ⌊1

4
+ 1

2
⌋ = 0. Recall also that for a proper cluster t, in a

Galois orbit X, et ∈ Z>0 is minimal such that et|X|dt ∈ Z and et|X|νt ∈ 2Z.
Both R and s are in trivial Galois orbits, so we find that eR = 1, and es = 4.

So, by Theorem 1.3.13, R contributes one component of multiplicity 1 and

genus 0, and s contributes one component of multiplicity 4 and genus 0. It

remains to calculate any linking chains and tails/crossed tails. Since eR = 1

there are no sloped tails intersecting ΓR. However s < R is an even child of

R and ϵs = (−1)νs−|s|ds = (−1)2 = 1, so we get two chains L+
R,s, and L−

R,s
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intersecting ΓR. These have parameters t1 = −dR = −1, t2 = t1 − δs = −11
4
,

and µ = 1. Notice that the following inequalities satisfy Definition 1.3.7:

µt1 =
−1

1
>

−2

1
>

−5

2
>

−8

3
>

−11

4
= µt2.

In practice, finding such chains is very straightforward and is discussed in more

detail in Remark 7.2.12. This gives us two chains of rational curves from ΓR

to Γs, each with three components of multiplicity 3, 2 and 1. There are no

further sloped chains intersecting ΓR. Finally, we need to check for sloped

chains intersecting Γs. Note that s has no stable child (all four roots are in an

orbit of size 4) λs =
13
2
/∈ Z, es = 4 > 2 and gss(s) = 1 > 0, therefore we get

one Txs=0 tail intersecting Γs. This has parameters t1 = −ds = −11
4
, µ = 2,

and t2 =
1
µ
⌊µt1 − 1⌋ = −7

2
. The following inequalities satisfy Definition 1.3.7:

µt1 =
−11

2
>

−6

1
>

−7

1
= µt2.

So, Txs=0 has length 1 and its only component has multiplicity µ ·1 = 2. There

are no further sloped chains, and the special fibre is as pictured in Figure 1.10.

Indeed, the Namikawa-Ueno type of C/Qur
p is III∗-II3, so we are in this case

4

2 3

2 1

3

21

1
ΓR

Γs

Figure 1.10: Special fibre of the minimal SNC model of C/Qur
p .

able to verify our construction.

If we wish to produce useable classifications we need to know exactly

which other curves have this reduction type. So, we turn to open quotient BY

trees. The core T̃ of T and the extended tree, constructed from T 1 ∼= T by

adding open edges to the leaves and points which are integer distance from

the marked point m, are shown in Figure 1.11. It is convenient to select a

(a) T̃ (b) B

Figure 1.11: The core T̃ of T and the extended tree B.

canonical representative of the equivalence class as this provides an easy way



1.4. Classification 32

of checking whether or not two metric open quotient BY trees are equivalent

without producing the full equivalence class. To do this we calculate the centre

of T̃ , take a marked point m′ as close to the centre as possible, and add an

open yellow edge to T̃ at the closest point (which is not necessarily a vertex)

to m′. In particular, for this example, the process is carried out as follows.

To calculate the centre we calculate ϕ(v) for all v ∈ V (T 1). Note that here

T 1 ∼= T , and the metric has no effect on the centre calculation. Let us label

the vertices of T̃ as follows:

T̃ =

Then w(v0) = 2g(v0)+2 = 2, and w(v1) = 2g(v1)+2 = 4. So, ϕ(v0) = w(v1) =

4, ϕ(v1) = w(v0) = 2. That is v1 is the minimising vertex and the centre of T̃

is c = v1. We can view c on B and find the closest point m′ of B to c which is

integer distance from m. This is pictured in Figure 1.12. In this case c is the

Figure 1.12: Extended tree B showing c and m′.

closest point of T̃ to m′. So, to construct the canonical representative we take

the marked point to be m′ and add an open yellow edge to T̃ at c = v1. This

results in the following metric open quotient BY tree:

T ∗ =

We can also use the extended tree and the core to construct the full equivalence

class of metric open quotient BY trees. In particular, each equivalent metric

open quotient BY tree is obtained by taking a new marked point m′ to be any

point on the extended tree B integer distance distance from m, and adding

either ‘open yellow edge’, ‘open blue edge’, or ‘closed blue multiplicity 1 edge

→ genus 0 multiplicity 1 blue vertex → open yellow edge’ to T̃ at the point

closest to m′ (creating a vertex at this point the same colour as the edge it

lies on if it is not already a vertex of T̃ ). Any such move which results in a

metric open quotient BY tree is equivalent to T , and every equivalent metric

open quotient BY tree can be obtained by one of these moves. We give a more

precise description of exactly which moves result in metric open quotient BY

trees in 4.6.4. The full equivalence class is shown in Figure 1.13. We have a

one-to-one correspondence between metric open quotient BY trees and cluster

pictures of hyperelliptic curves with tame reduction, whose top cluster has
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Figure 1.13: Full equivalence class of T with n, d ∈ Z, n ≥ 0, d > 0.

depth ≥ 0. In particular the cluster pictures corresponding to the metric open

quotient BY trees in our equivalence class are pictured in Figure 1.14. Note

Figure 1.14: Full equivalence class of T and their corresponding cluster pictures
with n, d ∈ Z, n ≥ 0, d > 0.

that applying a Möbius transformation z 7→ pz to a set of roots increases the

depths of all clusters in a cluster picture by 1. So, we can use our equivalence

class of metric open quotient BY trees to list all cluster pictures of hyperelliptic

curves with tame reduction (even those with top cluster depth < 0) and we

just then drop the condition that n ≥ 0.

The cluster picture, along with the leading coefficient completely deter-

mine the special fibre of the minimal SNC model. For this reason we also need

to determine what leading coefficient a member of the equivalence class can

take to ensure that the reduction type is the same. Note that this is not nec-

essarily the only option, just one that certainly does ensure this. For example,

consider C ′ : y2 = f ′(x)/Qur
p , where f ′(x) = cf ′(x4 − p)(x2 − p4). This has

cluster picture

Σ′ =

and metric open quotient BY tree T ∗. We want to know what valuation of c′f
will ensure that C ′ has the same reduction type as C over Qur

p . By Theorem
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1.4.20, since g = 2 is even we simply need to check whether or not

v

(
disc

(
f

cf

))
− v

(
disc

(
f ′

cf ′

))
≡ 2(g + 1)(2g + 1)d(m,m′) mod 4(2g + 1).

In this case, 2(g+1)(2g+1) = 30, 4(2g+1) = 20, and we can see from Figure

1.12 that d(m,m′) = 3. By Theorem 1.4.21, we are able to read the valuations

of the discriminants of 1
cf
f(x) and 1

cf ′
f ′(x) off the metric open quotient BY

trees T and T ∗ respectively. In particular, we find that

v

(
disc

(
1

cf
f(x)

))
= 51,

v

(
disc

(
1

cf ′
f ′(x)

))
= 11.

Therefore,

v

(
disc

(
f

cf

))
− v

(
disc

(
f ′

cf ′

))
≡ 40 ̸≡ 90 mod 20,

and by Theorem 1.4.21, we will take v(cf ′) ≡ 1 mod 2.

As a check, we can use Theorem 1.3.13 to determine the special fibre of

the minimal SNC model of C ′ : y2 = p(x4 − p)(x2 − p4). Let R′ be the top

cluster of Σ′, and s′ the child of size 2. R′ is the only principal cluster in Σ.

We find that

νR′ =
5

2
, λR′ = 1, eR′ = 4, g(R′) = 0, and ϵR′ = −1.

So, we have one component ΓR′ of multiplicity 4 and genus 0. Using the tables

in Theorem 1.3.13 we find that ΓR′ has one T∞ tail with parameters t1 = −1
4
,

µ = 2, and t2 = −1. This gives a tail of length 1 whose only component has

multiplicity 2. Since s′ is a twin and ϵs′ = −1, we get a Ls′ loop off ΓR′ with

parameters t1 = −1
4
, t2 = −15

4
, µ = 1. This gives that Ls′ has 7 components

of multiplicities 3, 2, 1, 1, 1, 2 and 3 in order. There are no further components

in the special fibre. That is, we have shown that C ′ has the same special fibre

as C over Qur
p , as shown in Figure 1.10.

We can do the same for any hyperelliptic curve whose metric open quotient

BY tree lies in the equivalence class of T and, provided the leading coefficient

has been selected appropriately we will always find that Theorem 1.3.13 pro-

duces isomorphic special fibres. In particular, using metric open quotient BY

trees, Theorem 1.4.20, and accounting for how leading coefficients change under
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scaling we obtain the following complete list of cluster pictures and valuations

of leading coefficients which result in the same special fibre:

v(cg) ≡ 0 mod 2,

v(cg) ≡ n mod 2,

v(cg) ≡ d mod 2,

v(cg) ≡ 1 mod 2,

v(cg) ≡ 0 mod 2.

So, if y2 = g(x) is a hyperelliptic curve over Qur
p with leading coefficient cg,

which has one of these cluster picture and leading coefficient pairs, then it has

the same reduction type as C/Qur
p . That is the Namikawa-Ueno type of any

such hyperelliptic curve is III∗-III3.

1.5 Structure of Thesis
The thesis is structured as follows. In Chapters 2 to 6 we focus on open

quotient BY trees and how we can use them to classify the reduction types of

hyperelliptic curves with tame reduction. Specifically, in Chapter 2 we start

with a brief introduction to cluster pictures and BY trees. This is work taken

from literature which motivates the discussion for what approach we should

take for hyperelliptic curves with tame reduction in Chapter 3. In Chapter

4 we take a purely combinatorial approach, defining open quotient BY trees,

an equivalence relation and a choice of canonical representative. In Chapter

5 we relate open quotient BY trees to polynomials with tame splitting fields,

associating open quotient BY trees to their cluster pictures. We go on to

prove that there is a Möbius transformation between any two equivalent open

quotient BY trees, and applying any Möbius transformation always results in

an equivalent open quotient BY tree. Finally in Chapter 6 we relate Chapters

4 and 5 to hyperelliptic curves including discussions on leading coefficients and

discriminant.

In Chapters 7 to 9 we turn our attention to using cluster pictures to study

special fibres of minimal SNC models. These chapters present a discussion of

relevant background and work of the author and Omri Faraggi as presented in

[FN20]. In Chapter 7, we restate key definitions and theorems from literature,

which we will make use of in the remainder of the thesis. In Chapter 8, we

calculate the minimal SNC model for two special cases. The first of these spe-

cial cases, Section 8.1, is where C has tame potentially good reduction - that
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is, it has a smooth model over a tame extension of K. This will act as a base

case for our eventual proof by induction. The second of these cases, Section

8.2, examines curves C with a cluster picture which consists of exactly two

proper clusters s < R. Curves with such cluster pictures are used to deduce

the linking chains between central components in the main theorems. These

main theorems are stated and proved in Section 9. In Appendix A we propose

a naming convention for open quotient BY trees and give a complete classifi-

cation of the special fibres of genus 2 curves with tame reduction, afforded by

all of the work in this thesis.

1.6 Notation
For the convenience of the reader, the following two tables collate the general

notation and terminology which we make use of throughout the thesis. Table

1.3 lists the general notation associated to fields, hyperelliptic curves, and

models. Table 1.4 lists the notation and terminology associated to BY trees,

cluster pictures and Newton polytopes.

K non-archimedean field vK discrete valuation

OK ring of integers πK uniformiser of K

k residue field of K K algebraic closure of K

C hyperelliptic curve over K

given by y2 = f(x)

L field extension of K over

which CL is semistable

g(C) genus of C, also denoted g R set of roots of f(x) in K

e degree of L/K for such L mod m reduction to the residue field

X Galois orbit of clusters X minimal SNC model of C/K

Xk special fibre of X Γ±
X,K component(s) from X in Xk

Y minimal SNC model of C/L Yk special fibre of Y

Γ±
s,L component(s) from s in Yk Qur

p maximal unramified extension

Table 1.3: General notation associated to fields, hyperelliptic curves, and models

ΣC/K (1.2.1) ε, m (4.1.3) νs (7.1.12)

s (1.2.1) v0 (4.1.3) χ (7.1.14)

ds (1.2.1) Tb (4.1.11) λs (7.1.14)

as, bs (2.1.1) l(e) (4.1.13) αs (7.1.14)

odd cluster (2.1.7) T̃ (4.3.5) βs (7.1.14)

even cluster (2.1.7) w(v) (4.4.1) γs (7.1.14)

twin (2.1.7) ϕ(v) (4.4.1) θs (7.1.14)
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s′ < s (2.1.8) T 1 (4.4.3) ϵs (7.1.14)

P (s) (2.1.8) c (4.4.5) cs (7.1.17)

ŝ, s̃ (2.1.8) B (4.5.1) reds (7.1.17)

cotwin (2.1.8) T ∗ (4.5.5) ∆(C) (7.2.1)

übereven (2.1.8) (T ∗)± (4.5.9) ∆v(C) (7.2.1)

zs (2.1.9) T (Σ) (5.1.5) v∆ (7.2.1)

s ∧ s′ (2.1.10) vX′ (5.1.5) L,F (7.2.2)

δs (2.1.11) Σ(T ) (5.1.9) ∆(Z), L(Z), F (Z) (7.2.3)

δ(s, s′) (2.1.11) sv,i (5.1.9) ∆(Z)L(Z), F (Z) (7.2.3)

principal (2.1.12) orphan (5.1.15) δλ (7.2.4)

s∗ (2.1.13) D(s) (5.2.2) sL1 , s
L
2 (7.2.8)

gss(s) (2.1.14) TK(R) (5.2.3) g(s) (8.1.22)

singleton (2.1.19) T (f/K) (5.2.6) principal orbit (5.1.3)

ssing (2.1.19) T̃ (f/K) (5.2.12) λX (9.1.4)

M(v),M(e) (4.1.1) R+ (5.2.13) KX (9.1.3)

g(v) (4.1.1) g(T ) (6.2.2) eX (9.1.7)

s(v, T ), s(v) (4.1.1) |v| (6.3.8) g(X) (9.1.7)

Table 1.4: Notation for cluster pictures, quotient BY trees and Newton polytopes

Throughout this thesis, the word graph refers to a topological space G

homeomorphic to a finite (combinatorial) graph. It comes with a set of ver-

tices V (G) and edges E(G). Graph isomorphisms are homotopy classes of

homeomorphisms that preserve vertices and edges. With the exception of dual

graphs, we will only be discussing trees where loops and multiple edges are

not allowed. By a metric graph we mean a topological graph G along with

a function l : E(G) → R≥0 which assigns a length to each edge. This can

be extended to a metric on all of G. We will write d(v, v′) for the shortest

distance between two vertices v, v′ ∈ V (G). For metric graphs, isomorphisms

and automorphisms must preserve lengths.

1.6.1 BY Trees

In any figure showing a BY tree or quotient BY tree, genera of vertices are

preceded by g and multiplicities of vertices or edges (in the quotient case) are

preceded by M . So, g2,M1 written next to a vertex indicates that it has

genus 2 and multiplicity 1. For quotient BY trees, marked points are drawn

as crosses.
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1.6.2 Cluster Pictures

Roots in cluster pictures are drawn as nodes, and circles are drawn to represent

the proper clusters, indicating how p-adically close roots are to each other. In

the metric case the depths of clusters are included on the cluster pictures. It

is worth pointing out that this is not the same as writing relative depths on

cluster pictures, the convention used in [DDMM18].

1.6.3 Tame Reduction

A hyperelliptic curve C : y2 = f(x) has tame potentially semistable reduction

over K if there exists some finite extension L/K such that C has semistable

reduction over L, and [L : K] is coprime to p. This is equivalent to f having

tame splitting field. We refer to this as tame reduction.

1.6.4 Special Fibres

Whenever a component in a figure of a special fibre is drawn in bold it is

a central component. In any figure describing the special fibre of a model,

numbers indicate multiplicities, except those preceded by g, which indicate

the genus of a component. So 2 indicates a rational curve of multiplicity 2 and

2g1 indicates a genus 1 curve of multiplicity 2.
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Chapter 2

Background - Cluster Pictures

and BY Trees

2.1 Cluster Pictures
Let C/K be a hyperelliptic curve given by Weierstrass equation y2 = f(x),

with genus g(C) ≥ 1. Let R denote the set of roots of f(x) in K̄. The p-

adic distances between the roots contain a large amount of useful information.

To visualise these p-adic distances we use cluster pictures, as described in

[DDMM18]. In this section we outline the key definitions required for this

thesis concerning cluster pictures.

Definition 2.1.1. A cluster is a non-empty subset s ⊆ R of the form s = D∩R
for some disc D = z + πn

KOK , where z ∈ K, n ∈ Q and πK is a uniformiser of

K. If s is a cluster and |s| > 1, we say that s is a proper cluster. For a proper

cluster s we define its depth ds to be

ds = min
r,r′∈s

vK(r − r′).

We write ds =
as
bs

with as, bs coprime. The cluster picture ΣC/K = (R,Σ, d) of
C is the collection of all clusters of the roots of f . When there is no risk of

confusion, we may simplify this to ΣC .

The cluster picture ΣC is a way of visualising which roots of f are p-

adically close. In a non-archimedean algebra, two discs either have a non

empty intersection or one is contained in the other. So Definition 1.2.1 gives

us that any two clusters are either disjoint or one is contained in the other.

Moreover ds′ > ds if s
′ ⊊ s. Every root is a cluster, that is {r} ∈ ΣC for every

r ∈ R, and R ∈ ΣC . It is also possible to describe cluster pictures as purely

combinatorial objects.

Definition 2.1.2. Let X be a finite set and Σ ⊂ P(X) be a collection of

non-empty subsets of X. Elements of Σ are called clusters. Σ (or (X,Σ)) is a

cluster picture if
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(i) Every singleton (‘root’) of X is a cluster, and X itself is a cluster,

(ii) Two clusters are either disjoint or one is contained in the other.

We refer to X as the top cluster.

Remark 2.1.3. Note that if C/K is a hyperelliptic curve then its cluster

picture ΣC is still a cluster picture in the sense of Definition 2.1.2. The set of

roots R is the top cluster of ΣC .

In order to work with clusters we need a significant amount of terminology

from [DDMM18] which we describe here.

Definition 2.1.4. Two cluster pictures (X,Σ) and (X ′,Σ′) are isomorphic if

there is a bijection X → X ′ that takes Σ to Σ′.

Definition 2.1.5. A cluster picture (X,Σ) is metric if every proper cluster s

has a depth ds ∈ Q assigned to it, and ds′ > ds if s
′ ⊊ s. We may denote the

cluster picture by (X,Σ, d) rather than Σ. An isomorphism of metric cluster

pictures is an isomorphism that preserves these depths. That is, (X,Σ, d) and

(X ′,Σ′, d′) are isomorphic if there is a bijection ϕ : X → X ′ taking Σ to Σ′

such that ds = d′ϕ(s).

Definition 2.1.6. Let (R,Σ) be a cluster picture. Then the genus of Σ is

such that

|R| = 2g(Σ) + 1 or 2g(Σ) + 2.

Definition 2.1.7. A cluster s is even (resp. odd) if |s| is even (resp. odd).

Furthermore s is a twin if |s| = 2.

Definition 2.1.8. Let s be a cluster. If s′ ⊊ s is a maximal subcluster of s

then s′ is a child of s and s is a parent of s′. We write s′ < s, and P (s′) = s.

Denote by ŝ the set of all children of s, and by s̃ the set of all odd children. A

cluster is übereven if it only has even children. A cluster s is a cotwin if it has

a child of size 2g whose complement is not a twin.

Definition 2.1.9. A centre zs of a proper cluster s is any element zs ∈ K such

that vK(zs − r) ≥ ds for all r ∈ s. Equivalently, zs is a centre of s if s can be

written as D ∩ R, where D = zs + πdsOK . Note that any root r ∈ s can be

chosen as a centre, and if s = {r} then the only centre is zs = r.

Definition 2.1.10. For clusters s and s′, write s ∧ s′ for the smallest cluster

containing s and s′.
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Definition 2.1.11. If s and s′ are two clusters then the distance between them

is δ(s, s′) = ds + ds′ − 2ds∧s′ . For a proper cluster s ̸= R define the relative

depth to be δs = δ(s, P (s)) = ds − dP (s).

Definition 2.1.12. A cluster s is principal if |s| ≥ 3 except if either s = R is

even and has exactly two children, or if s has a child of size 2g.

We will see later that principal clusters form an important class of clusters.

Roughly, if C/K is a hyperelliptic curve, every orbit of principal clusters in

ΣC/K makes a contribution to the minimal SNC model of C over K.

Definition 2.1.13. For a cluster s that is not a cotwin we write s∗ for the

smallest cluster containing s such that the parent of s∗ is not übereven. If no

such cluster exists we write s∗ = R. If s is a cotwin, we write s∗ for its child

of size 2g.

Definition 2.1.14. For a proper cluster s we write gss(s) for the semistable

genus of s. If s is übereven, we set gss(s) = 0. Otherwise, if s is not übereven

the semistable genus is determined by

|s̃| = 2gss(s) + 1, or 2gss(s) + 2.

It is important to note that gss(R) is not necessarily the same as g(C).

In fact, they will only be the same when R has no proper children. If C has

semistable reduction over L and s ∈ ΣC/K is principal, the semistable genus

of s represents the genus of the contribution of s to the special fibre of the

minimal semistable model of C over L.

We also need some new terminology, and the remainder of the definitions

in this section are not given in [DDMM18].

Definition 2.1.15. A cluster picture Σ is nested if for all proper clusters

s, s′ ∈ Σ either s ⊆ s′, or s′ ⊆ s. If C is a hyperelliptic curve, we say C is

nested if ΣC is nested.

Since the elements of R lie in K, there is a natural action of GK on R,

hence also on ΣC . Since K has algebraically closed residue field, GK = IK

where IK is the inertia subgroup of GK . It will be important later to know

exactly how GK acts on the clusters of ΣC . The following lemma is useful for

this purpose.

Lemma 2.1.16. Let ΣC be such that K(R)/K is a tame extension, and let

s ∈ ΣC be a proper cluster fixed by GK.
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(i) There exists a centre zs of s such that zs ∈ K.

(ii) Any child s′ < s is in an orbit of size bs, except possibly for one child sf ,

where we can choose zsf such that vK(zsf − zs) > ds, which is fixed by

GK.

Proof. For (i) see [DDMM18, Lemma B.1], and (ii) [Bis19, Theorem 1.3].

Definition 2.1.17. Let s′ < s be clusters in ΣC . Then s′ is a stable child of

s if the stabiliser of s also stabilises s′. Otherwise s′ is an unstable child of s.

Remark 2.1.18. Let s ∈ ΣC be fixed by GK . If s has depth ds with denomi-

nator > 1 then, by Lemma 2.1.16 ii), s has at most one stable child.

Definition 2.1.19. If r ∈ s is a root which is not contained in a proper child

of s then we call r a singleton of s. Define ssing to be the set of all singletons

of s. In other words ssing is the set of all children of size 1 of s.

2.2 BY Trees
Two different presentations y2 = f(x) of the same hyperelliptic curve may have

different cluster pictures. In the semistable setting, an equivalence relation

is defined on cluster pictures by [DDMM17, §3.3]. By [DDMM18, § 14], at

least in the semistable setting, this equivalence relation respects isomorphisms

between hyperelliptic curves. In particular, isomorphic curves have equivalent

cluster pictures, and conversely every cluster picture in the equivalence class

is realised by some curve over K̄. When producing classifications it is useful

to choose a canonical representative.

Given a cluster picture of a semistable hyperelliptic curve, the method for

finding the canonical representative involves passing to something called an

open BY tree (a combinatorial object easily obtained from the cluster picture).

We will generalise this approach in later chapters, so here we collate some useful

definitions from [DDMM17, §3].

Definition 2.2.1 (BY tree). A BY tree is a finite tree T with a genus function

g : V (T ) → Z≥0 on vertices and a 2-colouring blue/yellow on vertices and edges

such that

(1) yellow vertices have genus 0, degree ≥ 3, and only yellow edges;

(2) blue vertices of genus 0 have at least one yellow edge;

(3) at every vertex, 2g(v) + 2 ≥ #{blue edges incident to v}.
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Note that all leaves are blue.

Notation 2.2.2. As a topological space (with the graph topology), a BY tree

T can be written as T = Tb⊔Ty, with Tb the blue part, and Ty the yellow part.

Thus Tb ⊂ T is a closed subset.

Definition 2.2.3. An open BY tree T is a finite tree with a unique open edge,

that is an edge with only one end vertex, a genus function g : V (T ) → Z≥0

on vertices and a 2-colouring blue/yellow on vertices and edges, satisfying

conditions (1), (2) and (3) of Definition 2.2.1.

An open BY tree can be thought of as a BY tree with one “missing” vertex,

that we refer to as ∞. Sometimes we may refer to BY trees as in Definition

2.2.1 as closed, to distinguish them from open BY trees. [DDMM17]

Example 2.2.4. The following is an example of an open BY tree:

In this instance the open edge is labeled ε, and its open end is where the

“missing vertex is” which we refer to as ∞.

Definition 2.2.5. Two (closed or open) BY trees are isomorphic if there is

a homeomorphism between them that preserves their defining data (vertices,

edges, genus markings, colouring).

Definition 2.2.6. A (closed) BY subtree of a (closed or open) BY tree T is a

(closed) BY tree T ′ such that:

• As a topological space, T ′ is a union of vertices and edges of T , and is

closed in T .

• The vertices of T ′ are exactly those vertices of T that are in T ′ (as a

topological space) except for those of genus 0 that in T ′ have degree 2

and incident edges of the same colour as the vertex. These exceptional

vertices become points on the edges of T ′ rather than vertices.

• The genus of a vertex of T ′ is the same as its genus in T .

The core T̃ of an open BY tree T is its maximal closed BY subtree.

Remark 2.2.7. In [DDMM17, Proposition 5.7] the authors show that the core

of a BY tree T is unique and is obtained from T by removing a few vertices

and edges ‘near’ ∞.
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Definition 2.2.8. We say that two open BY trees T and T ′ are equivalent if

they have isomorphic cores, and write T ∼ T ′.

The following example is taken from [DDMM17, Example 3.28]. Take T̃

to be the following closed BY tree:

T̃ =

Up to isomorphism, there are seven open BY trees which have T̃ as their core:

Definition 2.2.9. A metric (open or closed) BY tree is a BY tree with a

length function on the edges (excluding the open edge), δ : E(T ) → R>0. We

denote by δ(v, v′) the distance between v, v′ ∈ V (T ), and we require isomor-

phisms/automorphisms of metric trees to preserve δ. Similarly, we say that

two open metric BY trees are equivalent if there is an isomorphism between

their cores which preserves distance.

There is in fact a one-to-one, genus preserving, correspondence between

isomorphism classes of (either metric or not) cluster pictures and open BY

trees. The proof of this can be seen in [DDMM17, §4.2]. Here we simply

state how to construct the corresponding open BY tree from a cluster picture,

following Construction 4.13 in [DDMM17].

Construction 2.2.10. Let Σ be a cluster picture with set of roots R. Then

the corresponding open BY tree T (Σ) has the following vertices:

• one vertex vs for every proper cluster s that is not a twin, coloured yellow

if s is übereven and blue otherwise,

• one blue vertex (a leaf) vt for every twin t,

and edges:

• for every pair s′ < s with s′ proper, vs′ and vs are linked by an edge,

coloured yellow if s′ is even and blue otherwise,

• add one open edge from vR, coloured yellow if R is even and blue other-

wise.

For the metric version set the length to be δ(s, s′) for blue edges and 2δ(s, s′)

for yellow edges. Finally, define the genus of a vertex vs to be the semistable

genus gss(s) of the cluster s as in Definition 2.1.14.
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The construction in the opposite direction can be found in [DDMM17,

Construction 4.15] but we will not repeat it here. In practice this correspon-

dence is easy to use and examples can be found in [DDMM17, §4.2].
Here we are interested in equivalence classes of cluster pictures, and finding

a canonical representative of each class. As defined in Definition 2.2.8 two BY

trees are equivalent if they have isomorphic cores. By [DDMM17, Theorem

5.1], this can be translated to an equivalence relation on cluster pictures. In

particular, in [DDMM17], they define cluster pictures to be equivalent if the

cores of their open BY trees are isomorphic. Therefore, it is important to know

how to easily move between open BY trees and their cores. Corollary 5.10 of

[DDMM17] tells us when an open BY tree has core T̃ .

Corollary 2.2.11. Let T̃ be a closed BY tree. Then an open BY tree T has

core T̃ if and only if it is obtained from T̃ in one of the following ways:

• declaring a point on an edge of T̃ to be a vertex of genus 0 (and the same

colour as the edge) and adding a yellow open edge at this vertex,

• adding a yellow open edge to a vertex of T̃

• adding a blue open edge to a blue vertex v of T̃ which has

2g(v) + 2 > #{blue edges incident to v},

• adding ‘closed blue edge → genus 0 blue vertex → open yellow edge’ to a

blue vertex v of T̃ which has 2g(v) + 2 > #{blue edges incident to v}.

This corollary can be thought of as describing the equivalence class of open

BY trees arising from semistable hyperelliptic curves with core (isomorphic

to) T̃ . In [DDMM17] the authors choose a canonical representative in each

equivalence class, something which we hope to emulate for the non-semistable

case. To do this, they first define a canonical ‘centre’ (either a vertex or an

edge) for a closed BY tree T̃ . Glueing on an open yellow edge to the centre

gives the canonical representative of the equivalence class of open BY trees

with centre T̃ .

Lemma 2.2.12. Let T be a finite connected tree and w : V (T ) → R≥0 be a

‘weight’ function on the vertices of T such that each vertex of degree one or

two has positive weight. For a subtree T ′ ≤ T , set w(T ′) =
∑

v∈T ′ w(v) and

for each v ∈ T , define

ϕ(v) = max{w(T ′) | T ′ is a connected component of T \ {v}}.

Then either
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(1) minv∈T ϕ(v) <
1
2
w(T ), in which case the minimum is attained at a unique

vertex of T , and all other vertices have ϕ(v) > 1
2
ϕ(T ),

(2) or minv∈T ϕ(v) =
1
2
w(T ), in which case the minimum is attained at pre-

cisely two vertices of T , and these vertices are adjacent.

In case (1) we call the minimising vertex the centre of T with respect to the

weighting ϕ. In case (2), we define the centre to be the midpoint of the edge

joining the two minimising vertices.

Remark 2.2.13. Actually the authors in [DDMM17] take the centre in case

(2) to be the edge joining the two minimising vertices. However, taking the

midpoint of the edge to be the centre does not change any of their results.

Indeed in [BBB+20, Definition 18.2] they take the centre to be the midpoint

rather than the whole edge. In fact, this is taken one step further in [BBB+20]

as an extra genus 0 vertex is added at the centre.

Definition 2.2.14. Let T be a closed BY tree. We define its centre to be

the vertex or edge afforded by Lemma 2.2.12 applied to the weight function

w : V (T ) → Z≥0 given by

w(v) =

0 v yellow,

2g(v) + 2− degTb
(v) v blue,

where degTb
(v) denotes the number of blue edges at v. Note that as w is

invariant under all automorphisms of T , the centre of T is also.

Example 2.2.15. Let us consider the following closed BY tree T :

Using the weight function defined in Definition 2.2.14, we can calculate the

centre of T as follows. Note that w(v1) = 3, w(v2) = 1, and w(v3) = 2. So, we

can calculate the following:

ϕ(v1) = w(v2) + w(v3) = 3,

ϕ(v2) = max{w(v1), w(v3)} = 3,

ϕ(v3) = w(v1) + w(v2) = 4.

Therefore, the minimum is attained at both v1 and v2 and we take the centre

to be the midpoint of the edge between them.
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In [DDMM17, Remark 5.15], they select their canonical representative for

each equivalence class of open BY trees to be the one obtained by glueing

on an open yellow edge to the centre of the core. As stated in [DDMM17,

Lemma 5.25], it turns out that every cluster picture is equivalent to a unique

(up to isomorphism) “balanced” cluster picture. Furthermore, this “balanced”

cluster picture corresponds to this canonical representative of the equivalence

class of the associated open BY tree.
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Chapter 3

Hyperelliptic Curves with Tame

Reduction

3.1 Equivalence and BY Trees
One of the primary aims of this thesis is to create a notion of equivalence class

of cluster pictures for hyperelliptic curves with tame reduction and define a

canonical representative. This would allow us to classify the reduction types

in the tame situation.

Definition 3.1.1. By the reduction type of a hyperelliptic curve of genus ≥ 2

over a non-archimedean local field we mean (the isomorphism class of) the

dual graph of the special fibre of its minimal SNC model with a genus and

multiplicity associated to every vertex.

In the semistable situation, as discussed in the previous section, a notion

of equivalence is given to cluster pictures by [DDMM17, §3.3] and a “balanced”

cluster picture is selected as the canonical representative. Unfortunately, there

are a few things to note that make the tame case more complicated. This means

that the notion of a “balanced” cluster picture as the canonical representative

does not trivially extend. Instead we will seek to define our own equivalence

relation. First let us take a look at the complications that the tame setting

presents:

(i) It is no longer always possible to choose a model whose cluster picture

has the depth of the top cluster being 0;

(ii) It is not always possible to choose a model whose cluster picture has no

clusters (other than R) of size > g + 1;

(iii) There may be situations where we have to choose a model whose cluster

picture either has exactly one cluster of size g+1, or has two clusters of

size g + 1 where their depths are not equal.

We illustrate these complications with an example for each of these situations:
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Example 3.1.2. Let C/Qur
p be the hyperelliptic curve defined by C : y2 =

x6 − p, for p ≥ 5. This has cluster picture and Namikawa-Ueno

Type V. To obtain a cluster picture (Σ′,R′), with dR′ = 0 we could decrease

the depth of all clusters by 1
6
. This would result in Namikawa-Ueno type I0−0−0

or I∗0−0−0, depending on the leading coefficient. It is therefore clear why, in our

situation, we do not want to say that these are equivalent. This demonstrates

complication (i).

An alternative way of thinking about this is as follows. We still want our

classification to apply in semistable cases. That is, whatever we define to be

our equivalence relation should reduce nicely to the semistable situation. As

such, any moves we make over the ground field to obtain something equivalent

should equate to moves upstairs after taking a field extension so that we become

semistable. So, we can restrict ourselves to being able to make (at most)

combinations of the moves we can make in the semistable setting. What this

also tells us is that, if C/K is a hyperelliptic curve and L/K is a finite extension

such that C/L is semistable, we want to take the equivalence class of cluster

pictures of ΣC/K to be a subset of elements in the equivalence class of ΣC/L after

taking the quotient by a degree [L : K] action. Some of these quotients simply

won’t make sense. Our notion of equivalence should also preserve non-trivial

orbits of roots, else certainly we will not get the detail from a classification

arising from equivalence classes of cluster pictures that we are looking for.

Example 3.1.3. We can return to Example 3.1.2 to illustrate this. After a

field extension L/Qur
p of degree 6 so that C/L is semistable, using [DDMM18,

Table 7], we can find all cluster pictures equivalent to ΣC/L. These are clusters

with Namikawa-Ueno type I0−0−0 or I∗0−0−0, depending on the leading coeffi-

cient. In this case the equivalence class of ΣC/L is:

for d, d′ ∈ Z.

So, we only have two other cluster pictures in the equivalence class. The

quotient of either of these by a degree 6 action is not “valid” since, by 5.1.18,

all but at most one child of any given cluster must lie in orbits of the same size.

This suggests that our equivalence relation should not produce any equivalent

cluster pictures (up to scaling the depth by an integer).

Example 3.1.4. Let C/Qur
p be the hyperelliptic curve defined by C : y2 =

x(x4 − p)(x − 1). ΣC consists of two proper clusters R and s, with |R| = 6,

|s| = 5, dR = 0, and ds =
1
4
. As in the previous example, in this case we only

have 2 other possibilities for cluster pictures that lie in this equivalence class.
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Namely, a quotient by degree 4 of clusters with Namikawa-Ueno type I0−0−0 as

pictured in the previous example. As in the semistable setting in [DDMM18],

we want our equivalence class to have a canonical representative with an even

top cluster. This leaves us with only two choices, the cluster picture that we

started with, or the degree 4 quotient of a cluster picture of size 6 and no

proper clusters ̸= R. By [Bis19, Theorem 1.3], we know that the children of

a cluster all lie in inertia orbits of the same size, except possibly for one child

that is fixed by inertia. This means that the latter of these two choices is not

a “valid” cluster picture since it results in two fixed children and four children

in an orbit of size 4. So, we do not want to be able to obtain a cluster picture

equivalent to ΣC/Qur
p

with even size without a cluster s ̸= R of size > g + 1.

This demonstrates (ii).

Example 3.1.5. Let C/Qur
p be the hyperelliptic curve defined by C : y2 =

x(x2 − p)(x− 1)((x− 1)2 − p3). ΣC has |R| = 6, with dR = 0, and two proper

children s1 and s2 with |si| = 3 for i = 1, 2, ds1 = 1
2
, and ds2 = 3

2
. If we

were to try and re-balance the depths to give s1 and s2 equal depths then we

would need to give them both depth 1, since the distance between them must

remain fixed. However, this would mean eliminating our orbits of size 2, as the

denominators of the depths reflect the size of the orbits of children by [Bis19,

Theorem 1.3]. So, we do not to be able to choose an equivalent cluster picture

with two clusters of size g + 1 of equal depths. This demonstrates (iii).

Because of these more complicated situations, it is now clear that extend-

ing the notion of equivalence from [DDMM18] is not as straightforward as one

might initially hope. Instead we will use, but adapt, their method of passing

to the corresponding BY tree of a cluster picture, and calculating the centre

of the core to establish an equivalence relation.

It is important to note that the core, as they defined it, no longer com-

pletely determines what we would like the equivalence classes of open quotient

BY trees to be (and therefore what we would like the equivalence class of clus-

ter pictures to be), as it did in the semistable case. It is now possible for two

cluster pictures which we would like to define to be non-equivalent, to have

open BY trees with the same core. This is illustrated in the following example.

Example 3.1.6. Let C1 and C2 be hyperelliptic curves over Qp defined by

equations

C1 : y
2 = px(x2 − p5)(x− 1)((x− 1)2 − p3),

C2 : y
2 = (x3 − p9)((x− 1)3 − p3).
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Note that C2 is semistable, whereas C1 is not. Therefore, we want to define an

equivalence relation which gives the cluster pictures of C1 and C2, pictured in

Figure 3.1 to be non-equivalent. It is not hard to check that C1 and C2 have

(a) ΣC1
(b) ΣC2

Figure 3.1: Cluster pictures of C1 and C2.

open BY trees T1 and T2 respectively as shown in Figure 3.2. The cores T̃1

and T̃2 turn out to be isomorphic, as shown in Figure 3.3.

(a) Open BY tree of C1 (b) Open BY tree of C2

Figure 3.2: The open BY trees of C1 and C2.

Figure 3.3: Core of the open BY trees of C1 and C2

This demonstrates that the core of the associated open BY tree is no

longer enough to completely determine equivalence classes with our desired

properties. Something extra is needed. The aim for this section is to illustrate

how we need to adapt BY trees. As a starting point, note that open BY trees

only encode the depths of proper clusters s ̸= R, that is the depth of R cannot

be reconstructed from the open BY tree.

Example 3.1.7. Let C1 and C2 be hyperelliptic curves over Qp, with p > 3,

defined by equations

C1 : y
2 = (x2 − p)3 − p4

C2 : y
2 = (x3 − p)((x− 1)3 − p).

The cluster pictures of these two curves are shown in Figure 3.4 below. Since

these are both genus 2 curves, we can check their reduction types using Sage

and find that C1 has Namikawa-Ueno type 2IV−0 and C2 has type II− II−0.

Therefore, we do not want C1 and C2 to have equivalent cluster pictures. It

is not hard to check that both C1 and C2 have open BY tree T as shown in

Figure 3.5. Given T , we have no way of knowing which of these two cluster
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(a) ΣC1
(b) ΣC2

Figure 3.4: Cluster pictures of the hyperelliptic curves C1, and C2.

Figure 3.5: Open BY tree T of both C1 and C2

pictures T came from. In particular we have no way of knowing whether or

not the top cluster had integer depth.

3.2 Marked BY Trees
To solve the problem discussed at the end of the previous section we introduce

a marked point on the open edge which gives us the depth of the top cluster.

We also slightly adjust the lengths of yellow edges.

Definition 3.2.1. Let Σ be a cluster picture with top cluster R and depth

dR ≥ 0, and T = T (Σ) its associated open BY tree as described in Construction

2.2.10, but with all edges (except the open edge) now assigned length δs. We

define the marked point of T to be the point on the open edge distance dR

from vR, the vertex corresponding to R. A marked BY tree is an open BY

tree with marked point.

It is important to emphasise that the Galois action on the cluster picture

can be attached to the associated marked BY tree, and this is certainly how

we should be viewing marked BY trees. To illustrate how the addition of the

marked point is useful let us go back to Example 3.1.7.

Example 3.2.2. Let C1 and C2 be as in Example 3.1.7. Their open BY trees

are the same, however we are able to distinguish between their marked BY

trees due to the marked points. These are shown in Figure 3.6 below.

(a) Marked BY tree of C1 (b) Marked BY tree of C2

Figure 3.6: The marked BY trees of C1 : y2 = (x2 − p)3 − p4, and C2 : y2 =
(x3 − p)((x− 1)3 − p).
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Unfortunately, when we pass to the core we eliminate the open edge, losing

the key information that the marked point adds. In passing to the core we also,

therefore, come up with the same problem that we had before. Two marked

BY trees, which we would like to not be equivalent, have the same core. For

instance T1 and T2 in Example 3.2.2 have the same core. It is also important

to note that, unlike in the semistable case, the open edge may not be always

moved by an integer amount in all directions. This is due to the open edge

of a cluster picture always being in a trivial inertia orbit so, for instance, we

cannot move it to a vertex which itself is in a non-trivial inertia orbit. To solve

this and make things easier we turn to quotient trees, objects that we will see

later are in fact quotients of marked BY trees by their Galois action.
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Chapter 4

Open Quotient BY Trees as

Combinatorial Objects

4.1 Open Quotient BY Trees
In this section we introduce open quotient BY trees. As with BY trees in

[DDMM17], these can be defined as standalone objects as well as objects as-

sociated to cluster pictures. For now we will focus on them as purely combi-

natorial objects, and will not link them back to cluster pictures until Chapter

5. This is to simply emphasise that the work done this chapter does not rely

on curves or indeed even on polynomials. Of course, for this to be practically

useful for our aims we do need to make this link later. After we make this link,

any equivalence relation on open quotient BY trees can be translated to an

equivalence relation on cluster pictures. For now let us just say that the open

quotient BY trees we define in this section will later be shown to be quotients

of marked BY trees associated to hyperelliptic curves by a Galois action. In

particular, we will prove in Section 5.1 that the open quotient BY trees de-

fined here are in one-to-one correspondence with objects associated to cluster

pictures (once we restrict ourselves to the situation where dR ≥ 0). Here edges

and vertices are assigned multiplicities which will turn out to be in accordance

with the Galois orbits of clusters. We will make use of the following notation.

Notation 4.1.1. Let T be an (open or closed) tree with a two colouring,

blue and yellow on vertices and edges, equipped with a multiplicity function

M : V (T ) ∪ E(T ) → Z>0 and a genus function g : V (T ) → Z≥0. For every

vertex v ∈ V (T ) define

s(v, T ) =


2g(v) + 2−

∑
e∈E(T ), blue
incident to v

M(e)
M(v)

if v is blue,

0 if v is yellow.

When there is no risk of confusion we may shorten this notation to s(v).

Remark 4.1.2. We will see later, in Construction 5.1.9 where we associate a
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cluster picture to an open quotient BY tree T , that the notation s(v, T ) refers

to the number of singletons which lie in each cluster arising from a blue vertex

v ∈ V (T ). Likewise if Σ is a cluster picture, and X an orbit of clusters then

when we later define an open quotient BY tree associated to Σ, we will see

that every s ∈ X has s(vX , T ) singletons where vX ∈ V (T ) arises from X. It is

for this reason that, if T is an open quotient BY tree, in Definition 4.1.3 (vi),

we specify that s(v, T ) must be non-negative for every blue vertex v ∈ V (T ).

It is also worth noting that s(v, T ) was not only defined for open quotient BY

trees, so we will be able to make use this notation later when we discuss closed

quotient BY trees and cores in Section 4.3.

Definition 4.1.3. An open quotient BY tree is a finite tree T with a unique

open edge ε, a marked point m which lies on the closure of the open edge, a

genus function g : V (T ) → Z≥0, a multiplicity function M : V (T ) ∪ E(T ) →
Z>0, and a 2-colouring blue/yellow on vertices and edges such that:

(i) If v is a yellow vertex, then v has genus g(v) = 0, all edges incident to v

are yellow, and ∑
e edge incident to v

M(e)

M(v)
≥ 3.

(ii) Let v0 be the unique vertex incident to ε. Then the embedded path from

v0 to any vertex v has non-decreasing multiplicities.

(iii) Let v ∈ V (T ) be any vertex, then there exists some n ∈ Z>0 such that

either 1 or 2 edges incident to v have multiplicityM(v) and all remaining

incident edges have multiplicity nM(v). Furthermore, M(ε) = 1.

(iv) If v is blue then the genus of v is such that:

• If only one incident edge, say e, has multiplicity M(v) and all other

incident edges have multiplicity nM(v) for n ∈ Z>0, where e = ε if

v = v0, then

n | 2g(v) + 1 or 2g(v) if e is blue,

n | 2g(v) + 2 or 2g(v) + 1 if e is yellow.

• If two incident edges, say e1 and e2, have multiplicity M(v) and all

other incident edges have multiplicity nM(v) for n ∈ Z>0, where
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ε ∈ {e1, e2} if v = v0, then

n | 2g(v) if e1 and e2 are both blue,

n | 2g(v) + 2 if e1 and e2 are both yellow,

n | 2g(v) + 1 if e1 and e2 are different colours.

Note that when n = 1 this means that there is no constraint on what

values g(v) can take.

(v) Blue vertices of genus 0 have at least one yellow incident edge.

(vi) For every vertex v ∈ V (T ), s(v, T ) ≥ 0.

As in the case of open BY trees in Section 2.2, an open quotient BY tree T has

a unique open edge which is “missing” one vertex. We refer to this “missing”

vertex as ∞.

Remark 4.1.4. Note that condition (iii) means that for a vertex v, if deg(v) =

1 the only edge incident to v will have multiplicityM(v), and if deg(v) = 2 then

it is also possible that both incident edges have multiplicity M(v). However,

in every other situation there will be at least one edge of multiplicity nM(v),

although it is possible that this is equal to M(v), in which case all edges

incident to v have equal multiplicity.

Lemma 4.1.5. Let T be an open quotient BY tree, and e ∈ E(T ) a closed

edge between two vertices v1 and v2. Then M(e) = max {M(v1),M(v2)}.

Proof. Note that, for any vertex v,

M(v) = min
incident
edges, e

{M(e)}.

So, M(vi) ≤ M(e) for i = 1, 2. Suppose that M(v1) ≥ M(v2). Condition (ii)

tells us that M(v1) ≥ M(e) ≥ M(v2). So, we obtain the inequality M(e) ≥
M(v1) ≥ M(e) ≥ M(v2), meaning we must have M(e) = M(v1). Therefore

M(e) = max {M(v1),M(v2)}.

Remark 4.1.6. As a result of this lemma, the multiplicities of edges can easily

be recovered from the multiplicities of vertices. So, we omit the multiplicities

of the edges when drawing open quotient BY trees.
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Example 4.1.7. The following is an example of an open quotient BY tree:

Example 4.1.8. However, if we instead consider the following, then we find

it is not an example of an open quotient BY tree:

In particular, v1 is a blue vertex of genus 0 but does not have any incident yel-

low edges, therefore does not satisfy condition (v). Furthermore, by condition

(iii), v3 would require the edge [v2, v3] to have multiplicityM(v3) = 3, whereas

v2 would require the edge [v2, v3] to have multiplicity divisible by M(v2) = 2.

So, condition (iii) is also not satisfied.

Remark 4.1.9. From now on, we will omit writing the genera of yellow ver-

tices and only write their multiplicities, since every yellow vertex in an open

quotient BY tree will have genus 0.

Lemma 4.1.10. Let T be an open quotient BY tree. The union of all multi-

plicity 1 edges and vertices, T 1, of T is always non-empty and connected.

Proof. Label the open edge of T by ε. By condition Definition 4.1.3 (iii),

M(ε) = 1. Furthermore, by (iii), for every vertex v the embedded path from

v to v0, the unique vertex incident to ε, has non-decreasing multiplicities.

Notation 4.1.11. Like BY trees (see Section 2.2), as a topological space, an

open quotient BY tree T can be written as T = Tb ⊔Ty, with Tb the blue part,
and Ty the yellow part. Note that Tb ⊂ T is a closed subset.

Definition 4.1.12. Two open quotient BY trees are isomorphic if there is

a homeomorphism between them that preserves their defining data (vertices,

edges, genus markings, multiplicities, and colouring).

We can also define a metric on open quotient BY trees as follows.

Definition 4.1.13. A metric open quotient BY tree is an open quotient BY

tree T , with open edge ε and marked point m, along with a distance function

d : T × T → Q≥0 (on T as a topological space) such that, for all v ∈ V (T ):
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(i) If deg(v) = 1 then

denom(d(v,m)) |M(v)(2g(v) + 2−#{blue edges incident to v}) or

denom(d(v,m)) |M(v)(2g(v) + 1−#{blue edges incident to v}).

(ii) If deg(v) = 2 and both edges incident to v have equal multiplicity then

denom(d(v,m)) |M(v)(2g(v) + 2−#{blue edges incident to v}).

(iii) Otherwise, v has either one or two incident edges of multiplicity M(v)

and all others have multiplicity nM(v) ≥M(v), and d(v,m) is such that

lcm(M(v), denom(d(v,m))) = nM(v).

We write l(e) for the length of an edge e ∈ E(T ).

Remark 4.1.14. For v, v′ ∈ V (T ) then d(v, v′) = d(v,m)+d(v′,m)−2d(w,m),

where w is the closest vertex to v and v′ that lies on both the embedded paths

between v and m, and v′ and m.

Remark 4.1.15. Alternatively, to define a metric on an open quotient BY

tree we could simply have asked that for every vertex v ∈ V (T ) we can take

n = denom(d(v,m))
gcd(denom(d(v,m)),M(v))

in Definition 4.1.3.

Example 4.1.16. It is possible to put the following metric on the open quo-

tient BY tree from Example 4.1.8:

It is worth noting that this is not the only metric we can give to this tree. For

example we could give it any metric where the edge lengths had denominators

as in the above metric.

It is worth noting the following, as we will make use of this later.

Proposition 4.1.17. Let T be a metric open quotient BY tree with marked

point m. For every v ∈ V (T ), lcm(denom(d(v,m)),M(v))
M(v)

| s(v, T ) or s(v, T )− 1.

Proof. Suppose first that deg(v) = 1. By Definition 4.1.13, we have that

denom(d(v,m)) |M(v)(2g(v) + 2− i−#{blue edges incident to v}),
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for i = 0 or 1. Since v has only one incident edge, which has multiplicityM(v)

by construction, we have

∑
e, blue edge
incident to v

M(e)

M(v)
=

0 if the incident edge is yellow,

1 if the incident edge is blue.

In both cases we get

∑
e, blue edge
incident to v

M(e)

M(v)
= #{blue edges incident to v}.

Therefore, we have that M(v)(2g(v) + 2 − #{blue edges incident to v}) =

M(v)s(v, T ). This gives denom(d(v,m)) | M(v)s(v, T ) or M(v)(s(v, T ) − 1),

and so certainly

lcm(denom(d(v,m)),M(v))

M(v)
| s(v, T ) or s(v, T )− 1.

Suppose instead that deg(v) = 2 and both incident edges have equal mul-

tiplicity. Definition 4.1.3 (iii) tells us that both these edges have multiplicity

M(v) and a similar argument to above works.

In all other cases, Definition 4.1.13 tells us that

lcm(denom(d(v,m)),M(v)) = max{M(e) | e edge incident to v}.

Suppose that v has only one incident edge of multiplicity M(v), which is

coloured blue, and all other incident edges have multiplicity max{M(e) |
e edge incident to v} ≥M(v). Then Definition 4.1.3 (iv) tells us that

lcm(denom(d(v,m)),M(v))

M(v)
| 2g(v) + 1 or 2g(v).

Note that in this situation

s(v, T ) = 2g(v) + 2−
∑

e, blue edge
incident to v

M(e)

M(v)
,

= 2g(v) + 1− (#{e ∈ E(Tb) incident to v} − 1) lcm(denom(d(v,m)),M(v))
M(v)

.

Therefore,

lcm(denom(d(v,m)),M(v))

M(v)
| s(v, T ) or s(v, T )− 1.
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The remaining cases can be dealt with in a similar way by referring to Defini-

tion 4.1.3 (iv).

4.2 Moving Between Open Quotient BY Trees

and Open BY Trees
The definition of an open quotient BY tree has been carefully constructed to

coincide with quotients of open BY trees. In particular, let C be a hyperelliptic

curve with tame reduction over K, and L/K be a tame field extension such

that C/L is semistable. We will see later in Section 5.1 how to associate open

quotient BY trees, say T to C/K, and T ′ to C ′/L. The tree T is defined

carefully, so that it is the quotient of T ′ by the action induced by Galois. This

is proved explicitly in Proposition 6.1.3, once we have made the link between

open quotient BY trees and cluster pictures. For now, it will be useful in

proofs to be able to explicitly pass between open quotient BY trees and open

BY trees, so in this section we make the quotient map and its inverse precise.

First let us construct an open BY tree from an open quotient BY tree.

Definition 4.2.1. Let T ′ be an open BY tree with a cyclic group of automor-

phisms acting on the vertices, then q(T ′) is the quotient of T ′ by this action,

and is itself a tree. Of course, q(T ′) depends on the given cyclic group of

automorphisms, however in practice this group is always clear from context so

the notation q(T ′) does not show this.

Conversely, let T be an open quotient BY tree. Then we write q−1(T )

for the unique tree obtained from T by letting every vertex v and edge e of T

give rise to M(v) vertices and M(e) edges respectively, in the way one would

expect.

That, for an open quotient BY tree T , q−1(T ) exists and is unique can be

seen clearly from the following precise construction.

Construction 4.2.2 (q−1(T )). Let T be an open quotient BY tree, then we

construct an open BY tree q−1(T ) such that every vertex v ∈ V (T ) givesM(v)

vertices q−1(v)1, . . . q
−1(v)M(v) in q

−1(T ), all coloured the same as v and with

g(q−1(v)i) = g(v) for all 1 ≤ i ≤M(v). The edges of q−1(T ) are as follows:

• if v, v′ ∈ V (T ) are adjacent vertices with M(v) ≤ M(v′), then there are

edges in q−1(T ) between q−1(v)i and q
−1(v′)

(i−1)
M(v′)
M(v)

+1
, . . . , q−1(v′)

i
M(v′)
M(v)

,

for 1 ≤ i ≤ M(v). These edges are all coloured the same as the edge

between v and v′,
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• if v0 is the unique vertex in T adjacent to the open edge ε, thenM(v0) = 1

so there is just one vertex q−1(v0)1 in q
−1(T ) arising from v0. We attach

an open edge ε′ to q−1(v0)1 and colour it the same as ε.

Note that this means every edge e ∈ E(T ) gives rise to M(e) edges

{q−1(e)1, . . . , q
−1(e)M(e)} in q−1(T ). Furthermore, q−1(T ) comes with a natural

automorphism. In particular, for e ∈ E(T ) the edges {q−1(e)1, . . . , q
−1(e)M(e)}

in q−1(T ) are in an orbit of size M(e), and for v ∈ V (T ) the vertices

{q−1(v)1, . . . , q
−1(v)M(v)} are in an orbit of size M(v). We can use this to

define a surjective graph morphism q : q−1(T ) ↠ T . We say that T is the

quotient of T ′ = q−1(T ) and write T = q(T ′).

Example 4.2.3. Take T to be the open quotient BY tree as in Example 4.1.8,

shown again below. Then q−1(T ) can be constructed following Construction

4.2.2, to give the tree pictured below. Note that in this example q−1(T ) is

indeed an open BY tree. This is proved in general shortly. Assume instead

(a) Open quotient BY tree T

(b) q−1(T )

Figure 4.1: A example of the construction of q−1(T ).

that we were given the open BY tree q−1(T ), but not T , with a cyclic group

of automorphisms acting on q−1(T ) such that the four genus 0 blue vertices

were in an orbit of size 4 and the two yellow vertices were in an orbit of size

2. Then we can recover T by taking the quotient of q−1(T ), provided we keep

track of the marked point.

Remark 4.2.4. Should T or T ′ be metric trees, then these metrics can be

given to q−1(T ) and q(T ′), respectively. At various points we will want to

refer to different metrics. For our current purposes a non-metric version is

all we need. However, later in Section 5.2 we describe the metrics so that for

e ∈ E(T ) the length of each q−1(e)i is l(q
−1(e)i) = l(e), and for each e′ ∈ E(T ′),

l(q(e′)) = l(e′). In Section 6.1 we define a metric that allows us to compare

open quotient BY trees with open BY trees after taking field extensions.

Notation 4.2.5. If there is only one vertex in the preimage of a vertex v ∈
V (T ), i.e. M(v) = 1, then we denote this unique vertex in V (q−1(T )) by

q−1(v) = q−1(v)1.
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Theorem 4.2.6. Let T be an open quotient BY tree. Then q−1(T ) is an open

BY tree.

Proof. One can verify that conditions (1), (2), and (3) of Definition 2.2.1 are

satisfied as follows:

(1) A vertex v ∈ q−1(T ) is yellow if and only if q(v) is. Since every yellow

vertex in T has genus 0, only yellow edges, and
∑

v′ incident to q(v)M(v′) ≥
3 we conclude that yellow vertices in q−1(T ) have genus 0, degree ≥ 3,

and only yellow edges;

(2) Blue vertices in V (T ) of genus 0 have at least one yellow edge, therefore

the same is true in q−1(T );

(3) Let v ∈ V (q−1(T )). Then,

2g(q(v)) + 2 ≥
∑

e, blue edge
incident to q(v)

M(e)

M(q(v))
.

Each edge e incident to q(v) gives rise to M(e)
M(q(v))

edges incident to v, so

we can conclude that

2g(v) + 2 = 2g(q(v)) + 2 ≥ #{blue edges incident to v}.

Proposition 4.2.7. Let T be an open quotient BY tree, then q(q−1(T )) ∼= T ,

where the quotient action on q−1(T ) is the natural action arising from T .

Proof. The proof of this follows trivially from the proof of Lemma 4.4.4.

4.3 Closed Quotient BY Trees and Cores
Recall that the classification of open BY trees relies on considering their cores,

which are maximal closed BY subtrees. In this section we look to define a

similar notion for open quotient BY trees. Unfortunately, closed quotient BY

trees turn out to be difficult to define in a way that is as practically useful

as closed BY trees. However, we instead make a slight adjustment in our

approach in later sections, which still allows us to use cores of open quotient

BY trees to define an equivalence relation.

Before we can define a core of an open quotient BY tree, we first need to

define closed quotient BY trees and subtrees. However, it is worth highlighting
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that these are only used for the purpose of obtaining the core. We will later

see that Proposition 4.3.9 gives a better way of thinking about how to obtain

the core. For this reason one should not be overly concerned with the specifics

or remembering the criteria in Definitions 4.3.1 and 4.3.2.

Definition 4.3.1. A closed quotient BY tree is a finite tree T with a genus

function g : V (T ) → Z≥0 on vertices, a multiplicity function M : V (T ) ∪
E(T ) → Z>0 on vertices and edges, and a 2-colouring blue/yellow on vertices

and edges such that:

(i) yellow vertices have genus 0, only yellow edges, and if v is a yellow vertex

of degree deg(v) ≥ 2 then

∑
e, edge

incident to v

M(e)

M(v)
≥ 3;

(ii) blue vertices of genus 0 have at least one yellow edge, or a blue edge of

multiplicity 2;

(iii) every vertex v ∈ V (T ) has

2g(v) + 2 ≥
∑

v′, blue vertex
adjacent to v in Tb

M(v′)

M(v)
.

Definition 4.3.2. A closed quotient BY subtree of a (closed or open) quotient

BY tree T is a closed quotient BY tree T ′ such that:

• As a topological space, T ′ is a union of vertices and edges of T , and is

closed in T .

• The vertices of T ′ are exactly those vertices in T that are in T ′ as a

topological space, except for those of genus 0 that have degree equal to

2 and both incident edges have multiplicity 1 and are the same colour as

the vertex. These exceptional vertices become points on the edges of T ′.

• The genus of a vertex of T ′, and the multiplicities of the vertices and

edges of T ′ are the same as in T . Note that any two edges of T that were

‘combined’ by removing an exceptional vertex both had multiplicity 1 in

T , so this does not cause any problems in defining the multiplicities of

edges in T ′.
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Example 4.3.3. Let us consider again the open quotient BY tree T as in

Example 4.1.8:

Here we give both an example and a non-example of closed quotient BY sub-

trees of T . Let T1 and T2 be as shown below in Figure 4.2 below. Then T1 is

(a) T1

(b) T2

Figure 4.2: An example and a non-example of a closed quotient BY subtree of T .

a closed quotient BY subtree of T . However, T2 is not a closed quotient BY

subtree of T since it has a genus 0 blue vertex which has no incident edges in

T2. So, v3 ∈ V (T2) does not satisfy condition (ii) of Definition 4.3.1 and is not

a closed quotient BY tree, thus cannot be a closed quotient BY subtree of T .

Definition 4.3.4. Two closed quotient BY trees are isomorphic if there is

a homeomorphism between them that preserves their defining data (vertices,

edges, genus markings, multiplicities, and colouring).

Closed quotient BY trees will not be used in the same way as the closed BY

trees were in the semistable situation, where equivalence classes were classified

by closed BY trees. Closed quotient BY trees do not have anywhere near

enough conditions on them to make them practically useful as standalone

objects. Trying to define additional conditions which would enable them to

be used in such a way is hard, as closed quotient BY trees do not have a

defined marked point (which we have already seen will be key for determining

equivalence classes). Instead, we simplify the definition and will only use closed

quotient BY trees as subtrees of open quotient BY trees (or subtrees of closed

quotient BY trees which are themselves subtrees of an open quotient BY tree).

This allows the conditions that open quotient BY trees satisfy to be inherited

by any closed subtrees that we make use of.

Definition 4.3.5. The core T̃ of an open quotient BY tree T is its maximal

closed quotient BY subtree.
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Remark 4.3.6. Note that a metric on an open quotient BY tree induces a

metric on all closed quotient BY subtrees, in particular on the core. We require

isomorphisms of metric trees to preserve distance.

Example 4.3.7. Let T be the metric open quotient BY tree shown in Figure

4.3. The core of T is the maximal closed quotient BY subtree and is shown in

Figure 4.4.

Figure 4.3: Metric open quotient BY tree T .

Figure 4.4: Core T̃ of T .

One can easily verify that T̃ is indeed a closed quotient BY subtree. To

see that T̃ is the core we must check that it is maximal. Let T1 be the closed

tree obtained by deleting just the open edge of T , as shown in Figure 4.5a.

Note that, as a topological space, T1 is the maximal closed subspace of T .

However, T1 is not a closed BY subtree of T , since v0 has genus 0 and degree

2 in T1 with both incident edges of multiplicity 1. So, by Definition 4.3.2, v0

should become a point on and edge, giving T̃ . Thus T̃ is indeed the core of

T . Any closed quotient BY subtree of T will be contained in T̃ , for example

the closed tree T2 shown in Figure 4.5b is a closed quotient BY subtree and is

contained in T̃ , as a topological space.

(a) T1

(b) T2

Figure 4.5: Subtrees of T which are not the core.

Remark 4.3.8. The three criteria in Definition 4.3.1 nearly mirror the criteria

for a finite tree to be a closed BY tree, given in Definition 2.2.1, but with some
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minor adjustments and the inclusion of multiplicities. The main difference is

we only require yellow vertices to satisfy

∑
e, edge

incident to v

M(e)

M(v)
≥ 3

if they have degree ≥ 2. For BY trees, we required all yellow vertices to have

degree ≥ 3. This adjustment will ensure that, when R is even and R = s1⊔ s2

with X = {s1, s2} a Galois orbit, vR is a vertex of the core. If vR did not lie

on the core T̃ , then T̃ would have no multiplicity 1 components, and “undoing

the quotient” would result in a disconnected graph. Another way to see why

we wish to include vR in the core is to consider q−1(T ). Here, when passing

to the core of q−1(T ), q−1(vR) would be considered as a point on an edge

of q̃−1(T ). Taking the quotient of q̃−1(T ) would result in the edge between

vs1 = q−1(vX)1 and vs2 = q−1(vX)2 being “folded in half on top of itself”, thus

becoming an edge with only one defined end point. Adding vR in as a vertex

makes this process make sense. For more clarity see Proposition 4.3.15, and

the construction preceding it giving the quotient map on closed BY trees.

Proposition 4.3.9. Let T be an open quotient BY tree. Then the core T̃ is

unique and obtained from T by removing a few vertices and edges near ∞. In

particular, T̃ is obtained from T in one of the following ways:

(i) by deleting the open edge,

(ii) by deleting the open edge and viewing v0 as a point on an edge, provided

that g(v0) = 0, v0 has exactly two incident closed edges e and e′, M(e′) =

M(e) = 1, and v0, e, and e
′ are coloured the same,

(iii) by deleting the open edge, along with v0 and a unique blue closed edge

e incident to v0, provided v0 is blue, g(v0) = 0, degT (v0) = 2, and

M(e) = 1.

Proof. Let v0 be the unique vertex which is incident to the open edge. To get

to T̃ from T , the open edge certainly needs to be removed. If after removing

the open edge, v0 satisfies Definition 4.3.1 we are done. Otherwise, v0 must

violate Definition 4.3.1. Note that v0 must satisfy condition (iii) of Definition

4.3.1 since, in T , v0 satisfies condition (vi) of Definition 4.1.3, and the right

hand side of each of these conditions is either decreased or remains constant

by removing the open edge from v0. So, v0 must violate condition (i) or (ii) of

Definition 4.3.1.
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If v0 violates (i) then v0 must be yellow and have degree ≥ 2 in T \
{the open edge} with

∑
e, closed edge
incident to v0

M(e)

M(v0)
=

∑
e, closed edge
incident to v0

M(e) < 3.

This is only possible if v0 has degree 2 in T \{the open edge}, and both incident

closed edges have multiplicity 1. Declaring v0 to not be a vertex, and be a point

on an edge gives a closed BY tree.

If v0 violates (ii) then (since v0 satisfies Definition 4.1.3 (vi) in T ) v0 must

have degree 1 or 2 in T \ {the open edge}, be blue of genus 0, with no yellow

edges and no blue edge of multiplicity 2. In particular, either v0 has either

one or two closed, blue, incident edges of multiplicity 1 and no other closed

incident edges. If v0 has one incident blue edge of multiplicity 1, then removing

v0 and its incident blue edge results in a closed BY tree. If instead v0 has two

incident blue edges of multiplicity 1, then declaring v0 to not be a vertex gives

a closed BY tree.

Proposition 4.3.10. Let T be an open quotient BY tree. Then the core T̃

contains at least one multiplicity 1 vertex.

Proof. This follows as a direct consequence of the proof of Proposition 4.3.9.

In particular, as stated in Proposition 4.3.9, we noted that at most one vertex,

namely v0, is removed when passing from T to T̃ , be that by either deleting

v0 or viewing it as a point on an edge. However, if v0 is the only multiplicity

1 vertex of T then, in the proof of Proposition 4.3.9, v0 never gets deleted and

we see that v0 must lie on the core.

Remark 4.3.11. It is also useful to note that, whilst the relationship is not

quite as strong in the closed case, we can apply the quotient map and inverse

constructed in Section 4.2 to closed quotient BY trees and closed BY trees.

However, a slight tweak is needed given how we remove vertices and edges near

∞ as discussed in Remark 4.3.8.

First, as hinted at above, we are able to extend our construction of the

quotient map and its inverse given in Construction 4.2.2.

Construction 4.3.12 (q−1(T ′)). Let T ′ be a closed subtree of an open quo-

tient BY tree T . We say that a vertex v ∈ V (T ′) with genus 0, multiplicity 1,

degree 1 in T ′, and such that its only closed incident edge has multiplicity 2

and is coloured the same as v, is exceptional. We construct a graph q−1(T ′) in
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the following way. Every vertex v ∈ V (T ′) that is not exceptional gives M(v)

vertices q−1(v)1, . . . q
−1(v)M(v) in q

−1(T ′), all coloured the same as v and with

g(q−1(v)i) = g(v) for all 1 ≤ i ≤M(v). The edges of q−1(T ′) are as follows:

• If v, v′ ∈ V (T ′) are non-exceptional and adjacent with M(v) ≤ M(v′),

then there are edges in q−1(T ) between q−1(v)i and q−1(v′)
(i−1)

M(v′)
M(v)

+1
,

. . . , q−1(v′)
i
M(v′)
M(v)

, for 1 ≤ i ≤ M(v). These edges are all coloured the

same as the edge between v and v′.

• If v is an exceptional vertex and the only vertex adjacent to v is v′, then

M(v′) = 2, and we have an edge between q−1(v′)1 and q−1(v′)2. We call

such edges of q−1(T ) exceptional.

• If v0 is the unique vertex in T adjacent to the open edge ε, thenM(v0) = 1

so there is just one vertex q−1(v0)1 in q
−1(T ) arising from v0. We attach

an open edge ε′ to q−1(v0)1 and colour it the same as ε.

We can use this to define a surjective graph morphism q : q−1(T ′) ↠ T ′. We

say that T ′ is the quotient of q−1(T ′).

Note that the use of the term exceptional here, although it may seem

contradictory to the use of the term in Definition 4.3.2, does actually coincide.

If one were to instead precisely construct the “undone quotient” of T ′, where

every vertex v contributes M(v) vertices, even if v is exceptional, then the

vertex arising from an exceptional vertex of T ′ would be an exceptional vertex

in the sense of Definition 4.3.2.

Remark 4.3.13. Let T ′ be a closed subtree of an open quotient BY tree T .

Then q−1(T ′) is a tree if and only if T ′ contains a multiplicity 1 vertex.

Example 4.3.14. Let T be the following open quotient BY tree:

Two subtrees T1 and T2 of T are shown in Figures 4.6a and 4.7a respectively.

(a) T1

(b) q−1(T1)

Figure 4.6: Subtree T1 of T and q−1(T1)
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(a) T2 (b) q−1(T2)

Figure 4.7: Subtree of T2 of T and q−1(T2)

Using Construction 4.3.12, we can construct both q−1(T1) and q−1(T2),

pictured in Figures 4.6 and 4.7 respectively. We see that T1 contains a mul-

tiplicity 1 vertex, thus q−1(T1) is connected, whereas T2 does not and q−1(T2)

is not a tree. We can further see that, in T1, v0 is an exceptional vertex and

v1 is the unique vertex adjacent to v0, with M(v1) = 2. Therefore, v0 does

not contribute a vertex to q−1(T1), instead we obtain an edge between q−1(v1)1

and q−1(v1)2.

Proposition 4.3.15. Let T be an open quotient BY tree. Then q−1(T̃ ) and

q̃−1(T ) are isomorphic as trees.

Proof. By Proposition 4.3.9, we know that T̃ is obtained from T by either,

removing ε, removing ε and viewing v0 as a point on an edge, or removing

‘ε → genus 0, multiplicity 1 blue vertex, v0 → unique closed edge incident

to v0, coloured blue and with multiplicity 1’. We will consider each of these

cases separately. Note that, the preimage of v0 under q consists of exactly one

vertex, denoted q−1(v0), which is incident to the open edge of q−1(T ).

Suppose first that T̃ is obtained by removing ε and viewing v0 as a point

on an edge. Then, by Proposition 4.3.9, we know that v0 must be a multiplicity

1 vertex, with precisely 2 incident closed edges, each coloured the same as v0

and with multiplicity 1. Therefore, q−1(v0) has exactly 2 incident closed edges,

each coloured the same as q−1(v0). By [DDMM17, Proposition 5.7], we know

that q̃−1(T ) is obtained from q−1(T ) by deleting the open edge and viewing

q−1(v0) as a point on an edge. Thus, q−1(T̃ ) and q̃−1(T ) are isomorphic as

graphs.

Supposed instead that T̃ is obtained from T by removing ‘ε → genus 0,

multiplicity 1 blue vertex, v0 → unique closed edge incident to v0, coloured

blue and with multiplicity 1’. Then, q−1(v0) is a genus 0 blue vertex and has

precisely one incident closed edge, which is blue. By [DDMM17, Proposition

5.7], removing the open edge of q−1(T ) followed by q−1(v0) and its unique

incident closed edge, results in the core q̃−1(T ). So, again q−1(T̃ ) and q̃−1(T )

are isomorphic as graphs.

Finally, let us suppose that T̃ is obtained from T by removing just ε.

Then, by Proposition 4.3.9, v0 must satisfy Definition 4.3.1. We consider the

two different cases for the colouring of v0.
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If v0 is blue, then either g(v0) > 0, or g(v0) = 0 and v0 has at least one

yellow incident closed edge, or a blue incident closed edge of multiplicity 2. If

g(v0) > 0 then g(q−1(v0)) > 0, so q−1(v0) is certainly not removed when passing

from q−1(T ) to q̃−1(T ). If g(v0) = 0 and and v0 has at least one yellow incident

closed edge, then q−1(v0) has at least one yellow incident closed edge. So again,

q−1(v0) is not removed when passing from q−1(T ) to q̃−1(T ). If g(v0) = 0 and

v0 has no incident yellow closed edge, then v0 must have a blue incident closed

edge of multiplicity 2, and no other incident edges (else g(v0) ̸= 0). So, q−1(v0)

has exactly two incident closed edges, both of which are coloured blue. So, by

[DDMM17, Proposition 5.7], removing the open edge of q−1(T ) and viewing

q−1(v0) as a point on an edge, results in the core q̃−1(T ). Taking the quotient

q(q̃−1(T )) of this we see that the two end points of the edge in q̃−1(T ) on

which q−1(v0) lies are mapped to the same vertex in q(q̃−1(T )). So, q−1(T̃ )

and q̃−1(T ) are isomorphic as graphs.

If v0 is yellow then either

∑
e∈E(T̃ )

incident to v0

M(e)

M(v0)
≥ 3,

or

degT̃ (v0) ∈ {0, 1} and
∑

e∈E(T̃ )
incident to v0

M(e)

M(v)
< 3.

In the first instance, by [DDMM17, Proposition 5.7], simply removing the

open edge of q−1(T ) results in the core q̃−1(T ), so we are done. In the second

instance, since v0 must satisfy condition (i) of Definition 4.1.3 and only the

open edge has been deleted from v0 to obtain T̃ , we must have that

degT̃ (v0) = 1 and
∑

e∈E(T̃ )
incident to v

M(e)

M(v)
= 2.

So, in q−1(T )\{ε}, q−1(v0) is yellow and has exactly two incident edges, which

are both coloured yellow. Therefore, by [DDMM17, Proposition 5.7], removing

the open edge of q−1(T ) and viewing q−1(v0) as a point on an edge, results in

the core q̃−1(T ). So, again q−1(T̃ ) and q̃−1(T ) are isomorphic as graphs.

Example 4.3.16. Let T be the open quotient BY tree as in Example 4.3.14.

Note that the subtree denoted by T1, pictured alongside q−1(T1) in Figure 4.6

is actually the core T̃ of T . Using Construction 4.2.2, we can calculate q−1(T ):
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q−1(T ) =

So, we do indeed have that q̃−1(T ) ∼= q−1(T̃ ).

4.4 Centres
Much like for BY trees described in Section 2.2, for an open quotient BY tree

T , we can define a centre of the core T̃ . Doing so will allow us to construct

an open quotient BY tree from T in Section 4.5 with marked point as close to

the centre of T̃ as possible.

Definition 4.4.1. Let T be a closed quotient BY tree then we define the

following weight function w : V (T ) → Z≥0 on the vertices of T :

w(v) = s(v, T ) =

0 if v is yellow,

2g(v) + 2−
∑

e∈E(Tb),
incident to v

M(e)
M(v)

if v is blue.

If T ′ is a closed quotient BY subtree of T then we define

w(T ′) =
1

minv′∈T ′{M(v′)}
∑
v∈T ′

M(v)w(v).

Furthermore, for v ∈ V (T ) we define

ϕ(v) = max{w(T ′) | T ′ is a connected component of T \ {v}}.

Remark 4.4.2. In Remark 5.1.7 we discuss how we can view open BY trees as

open quotient BY trees with all multiplicities equal to 1. Indeed this is proved

formally in Proposition 6.1.3. Since the above definition is not dependent on

the metric, this weight function reduces to the open BY tree formula when all

multiplicities are taken to equal 1.

Notation 4.4.3. For an open or closed quotient BY tree T we write T 1 to be

the subtree of T consisting of all multiplicity 1 vertices and edges.

Note that, by construction, for any open quotient BY tree T , T 1 is con-

nected and closed, therefore is a closed subtree of T . However, T 1 is not

necessarily a closed quotient BY subtree.
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It will be useful to have defined a partial order on the vertices of an open

quotient BY tree T by setting v′ ⪯ v if v lies on the embedded path from m

to v′.

Lemma 4.4.4. Let T be an open quotient BY tree with core T̃ . Then, with w

and ϕ defined as above in Definition 4.4.1, either

(i) minv∈T̃ 1 ϕ(v) < 1
2
w(T̃ ), in which case the minimum is attained at a

unique vertex of T̃ 1, and all other vertices of T̃ 1 have ϕ(v) > 1
2
w(T̃ ),

or

(ii) minv∈T̃ 1 ϕ(v) = 1
2
w(T̃ ), in which case the minimum is attained at either

a unique exceptional vertex of T̃ , or at precisely two vertices of T̃ 1, and

these vertices are adjacent.

Proof. Let T be an open quotient BY tree with core T̃ . Write T ′ = q−1(T ).

We have already proven in Theorem 4.2.6 that T ′ is an open BY tree. For the

first step in this proof we note that the centre of T̃ ′ arises from a multiplicity

1 vertex or a point on a multiplicity 1 edge of T . By [DDMM17, Definition

5.13], the centre of T̃ ′ is invariant under all automorphisms of T ′. It is possible

to describe an automorphism on T ′ arising from q. Note that, if v ∈ V (T ) has

M(v) ≥ 2 then v and all v′ ⪯ v gives rise to M(v) identical branches in T ′.

The natural automorphism on T ′, as described in Construction 4.2.2, permutes

these branches and fixes any elements of T ′ that arose from multiplicity 1

elements of T . Any vertex v′ ∈ V (T ′) has degree M(q(v′)). By Proposition

4.3.15, q−1(T̃ ) ∼= q̃−1(T ) = T̃ ′, and we know that only multiplicity 1 edges and

vertices are removed when passing from T to T̃ . So, only edges and vertices

arising from multiplicity 1 edges and vertices of T are removed when passing

from T ′ to T̃ ′. This also gives an automorphism on T̃ ′ which fixes everything

arising from the multiplicity 1 component of T̃ . Denote the center of T̃ ′ by c′.

Then we must have c′ = q−1(P ), where P is a multiplicity 1 vertex, or a point

on a multiplicity 1 edge of T̃ . Recall that c′ is either a vertex of T̃ ′ or the mid

point of an edge e′ ∈ E(T̃ ′). Suppose first that the centre c′ of T̃ ′ is the mid

point of an edge e′. Then e′ is either an edge in T ′, in which case it arises from

a multiplicity 1 edge in T , or e′ is not an edge in T ′.

If e′ is an edge in T ′, then let e ∈ E(T ) be such that M(e) = 1 and

q−1(e) = e′. Note that the two end points, say v1 and v2, of e must both have

multiplicity 1, and the two end points of e′ arise from these vertices.

If e′ is not an edge in T ′ then we have an exceptional vertex v′ in T ′ which

becomes a point on e′ when passing to the core. Let w′
1, w

′
2 ∈ V (T̃ ′) be the
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two end points of e′. Note that, since the centre of T̃ ′ is fixed by the quotient

action, we have just two options, either the endpoints w′
1 and w

′
2 of e

′ are fixed,

or w′
1 and w′

2 are in an orbit of size 2 (induced by the quotient action on T ′).

If w′
1 and w

′
2 are permuted by the quotient action, then v′ must be equidistant

between them, i.e. v′ is the centre of T̃ ′, and in T there is a multiplicity 1

vertex v with q−1(v) = v′, and a multiplicity 2 vertex w with q−1(w)1 = w′
1

and q−1(w)2 = w′
2. In this situation v is a vertex of T̃ . Otherwise, if w′

1 and

w′
2 are fixed by the quotient action, then v′ is also. So again, in T , there is

a multiplicity 1 vertex v with q−1(v) = v′. Furthermore, there are vertices

w1, w2 ∈ V (T ) with multiplicity 1 and q−1(wi) = w′
i, i = 1, 2. The centre

of T̃ ′ either lies at v′ or between v′ and w′
i for i = 1 or 2. That is, in all

possible situations above, the centre of T̃ ′ lies at a vertex or on an edge of T ′

that arises from a multiplicity one vertex or edge of T . Since all multiplicity 1

edges of T have end points being multiplicity 1 vertices, we can conclude that

the minimising vertex, or vertices, of T̃ ′ for ϕ arise from multiplicity 1 vertices

of T . This last sentence also holds in the case when c′ is a vertex of T̃ ′.

Therefore, in all of these cases above, we have shown that, if q−1(T 1) ∩
V (T̃ ′) ̸= ∅, then

min
v∈V (T̃ ′)

ϕ(v) = min
v∈q−1(T 1)∩V (T̃ ′)

ϕ(v),

and the minimising vertex, or vertices of T̃ ′ will give the centre. If q−1(T 1) ∩
V (T̃ ′) = ∅ then |v(T̃ 1)| = 1 and the single vertex of v(T̃ 1) must be exceptional.

In fact we can say in more generality, that if v(T̃ 1) = {u} then, regardless of

whether u is exceptional or not, q−1(u) is the centre of T̃ ′.

Recall that, by Construction 4.3.12, that a vertex v ∈ T̃ corresponds to

M(v) vertices in T̃ ′ except when v is exceptional, i.e. has genus 0, and exactly

one closed incident edge which is coloured the same as v, and has multiplicity

2. When v is exceptional, q−1(v) is a point on an edge in T̃ ′. Regardless of the

colouring of v, w(v) = 0.

Choose some vertex u of T̃ 1 (by Proposition 4.3.10 we know that such a

vertex will always exist). Suppose first that u is a multiplicity 1 vertex of T̃

such that q−1(u) is a vertex of T̃ ′. That is, u is not exceptional. Let T1, . . . Tn

be the connected components of T̃ \ {u}. So, we get

ϕ(u) = max{w(T1), . . . , w(Tn)}.

Note that, since u has multiplicity 1, q−1(T̃ \ {u}) = q−1(T̃ ) \ {q−1(u)}. The

connected components of T̃ ′ \ {q−1(u)} will be the connected components of
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∪n
i=1q

−1(Ti). There are ni := minv∈Ti
{M(v)} connected components of q−1(Ti),

which we label q−1(Ti)1, . . . , q
−1(Ti)ni

. Note that if Ti has a multiplicity 1

component, this means that q−1(Ti) is connected. For every non-exceptional

vertex v ∈ Ti there will be M(v)
ni

vertices q−1(v)
(k−1)

M(v)
ni

+1
, . . . , q−1(v)

k
M(v)
ni

in

each of q−1(Ti)k, 1 ≤ k ≤ ni. Each blue edge e incident to a non-exceptional

vertex v gives rise to M(e)
M(v)

blue edges incident to q−1(v)j for all 1 ≤ j ≤
M(v). In particular, every non-exceptional vertex v in T̃ is such that w(v) =

w(q−1(v)j) for all 1 ≤ j ≤M(v). If v is exceptional then, as we showed above,

we have w(v) = 0. So we get

w(Ti) =
∑
v∈Ti

M(v)w(v)

minv′∈Ti
{M(v′)}

,

=
∑

v∈Ti, not
exceptional

M(v)w(v)

minv′∈Ti
{M(v′)}

,

=
∑

v∈Ti, not
exceptional

M(v)w(v)

ni

,

=
∑

v∈q−1(Ti)j

w(v), for 1 ≤ j ≤ ni,

= w(q−1(Ti)j), for 1 ≤ j ≤ ni.

Thus, for every non-exceptional vertex u ∈ V (T̃ ), we can conclude that

ϕ(u) = ϕ(q−1(u)).

Suppose instead that u ∈ V (T̃ ) is exceptional. So, q−1(u) is not a vertex

of T̃ ′. Let v be the unique vertex incident to u in T̃ . So, M(v) = 2, and the

two vertices in q−1(v) are v′1 = q−1(v)1 and v′2 = q−1(v)2. Note that q−1(u) is

the mid point of the edge e between v′1 and v′2 in T̃ ′. By construction, q−1(u)

is the centre of T̃ ′, ϕ(v′1) = ϕ(v′2), and q
−1(T̃ \ {u}) ∼= T̃ ′ \ {e}. In particular,

ϕ(v′1) = w(T ′
2) and ϕ(v′2) = w(T ′

1), where T
′
2 is the connected component of

T̃ ′ \ {v′1} which contains v′2, and T
′
1 is the connected component of T̃ ′ \ {v′2}

which contains v′1. Note that T̃ ′ \ {e} has two connected components, which

are T ′
1 and T ′

2. Therefore, by construction and using a similar proof to above,

one can easily show that ϕ(u) = w(T ′
i ) for i = 1, 2. In particular, ϕ(u) =

ϕ(v′i). Since u is exceptional, it is the only multiplicity 1 vertex of T̃ , so we

have minv∈V (T̃ 1) ϕ(v) = ϕ(u) = ϕ(v′1) = ϕ(v′2) = minv′∈V (T̃ ) ϕ(v
′) = 1

2
w(T̃ ′).

Furthermore, this minimum is not obtained elsewhere since V (T̃ 1) = {u}.
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Finally, by a similar argument to above, and excluding any exceptional

vertices from the sum (since if v is exceptional w(v) = 0), one can show that

w(T̃ ) = w(T̃ ′). Applying [DDMM17, Lemma 5.12] gives the desired result.

Definition 4.4.5. For an open quotient BY tree T with core T̃ , we define the

centre, c, of T̃ to be the minimising vertex or edge described in Lemma 4.4.4.

Example 4.4.6. Let T ′ be the following closed quotient BY tree:

T ′ =

Note that T ′ is in fact the core of the open quotient BY tree T in Example

4.1.8. To calculate the centre of T ′ let us first calculate the weight function,

as defined in Definition 4.4.1, for each of the vertices. We find that

w(v0) = 2g(v0) + 2−
∑

e∈E(T ′
b)

incident to v0

M(e)

M(v0)
= 3.

Similarly w(v1) = 5 and w(v3) = 2, and, since v2 is yellow, w(v2) = 0. To find

the centre we must calculate ϕ(v) for all v ∈ V ((T ′)1), where ϕ is as defined

in Definition 4.4.1. That is,

ϕ(v) = max{w(S) | S is a connected component of T ′ \ {v}}.

Note that V ((T ′)1) = {v0, v1}. We find that:

ϕ(v0) =M(v1)w(v1) +M(v2)w(v2) +M(v3)w(v3),

= 13,

ϕ(v1) = max{M(v0)w(v0),
1

M(v2)
(M(v2)w(v2) +M(v3)w(v3))},

= max{3, 4},

= 4.

Therefore, minv∈V ((T ′)1) ϕ(v) is attained at just v1, and v1 is the centre of T ′.

Proposition 4.4.7. Let T be an open quotient BY tree, and let c be the cen-

tre of the core of T . Then q−1(c) is the centre of the core of q−1(T ), and

q(q−1(c)) = c.

Proof. The proof of this follows trivially from the proof of Lemma 4.4.4.
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4.5 A Canonical Representative
In this section we define an equivalence relation on metric open quotient BY

trees and explain a method for finding a canonical representative. Once we

have established a relation between cluster pictures and open quotient BY trees

in Section 5.1, if desired, one can then translate this canonical representative

back into the language of cluster pictures. Roughly, the construction of the

canonical representative of an equivalence class of open quotient BY trees

follows that of open BY trees. We calculate the centre of the core and attach

an open yellow edge as close to the centre as possible. The main difference is

that we also need to keep track of our marked point, and must be more careful

about where we attach the open edge. In particular it is not always possible

to attach an open yellow edge directly to the centre, as it is in the semistable

situation. To enable a description of how the marked point can be selected,

we construct the following tree.

Construction 4.5.1 (Extended tree, B). Let T be a metric open quotient

BY tree with open edge ε, marked point m, and core T̃ .

Define the extended tree B as follows. Perform the following moves to T 1,

and call the resulting tree A. For every vertex v ∈ V ((Tb)
1) if denom(d(v,m)) ∤

s(v, T ) then add a green open edge to T 1 at v. If the open edge ε of T is blue

then change the colouring of the open edge in T 1 to green. Furthermore, if v0,

the unique vertex incident to ε, is blue, of genus 0, has only one closed incident

edge in T , say e, and e has multiplicity 1, then colour ε, v0 and e green and

view v0 as a point on the open edge of A rather than a vertex.

For any leaf v ∈ V (A) if d(v,m) /∈ Z add a black open edge to v. Finally,

at every point P on A \ {open edges of A} with d(P,m) ∈ Z, create a vertex

at P if it was not already a vertex, and add an open black edge there. This

resulting tree is B and a metric is induced by the metric on T 1 with any added

open edges being thought of as intervals [0,∞).

Example 4.5.2. Let us consider the following metric open quotient BY tree:

T =

To find the extended tree B of T we first note that the only multiplicity 1

vertices and edges of T are the open edge ε, v0 and v1, and the edge between

them. That is, T 1 is as pictured in Figure 4.8a. Since denom(d(v1,m)) =
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(a) T 1 (b) Extended tree B of T

Figure 4.8: Computing the extended tree B of T .

denom
(
3
2

)
= 2, and s(v1, T ) = 3, we have that denom(d(v1,m)) ∤ s(v1, T )

and therefore add an open edge coloured green to T 1 at v1. Note that

denom(d(v0,m)) = 1, so certainly denom(d(v0,m)) | s(v0, T ), and we do not

add an open green edge to v0. Finally, we add an open black edge to v0, since

it is integer distance from m, and create a black vertex and black open edge

at the point on the blue edge distance 1 from m. This gives us the extended

tree B pictured in 4.8b.

Example 4.5.3. Let us consider the following metric open quotient BY tree:

T =

To find the extended tree B of T we first note that in this case T 1 = T . In this

example v0 is a genus 0 blue vertex and only has one incident closed edge in

T which is blue and has multiplicity 1. As such we colour the open edge ε, v0,

and the unique closed edge incident to v0, green and view v0 as a point on the

open edge. Note that this means we view the marked point as being distance
4
3
along the open edge from v1. As in the previous example, for each vertex

v ∈ V (T 1) we check whether denom(d(v,m)) | s(v, T ). Here, we find that

denom(d(v3,m)) = denom
(
29
6

)
= 6 ∤ s(v3, T ) = 3, thus add an open green

edge to v3. All other vertices v ∈ V (T 1) \ {v3} have denom(d(v,m)) | s(v, T ),
so we do not add any additional open green edges. Note that v4 is a leaf in

this new tree, so we add an open black edge to v4. Finally, we add open black

edges at every point on T̃ 1 (provided that it is not a leaf) integer distance from

m, creating a black vertex at any such point which was not already a vertex

in V (T 1). This gives us the extended tree B of T as pictured in Figure 4.9.

Figure 4.9: Extended tree B of T .
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For an open quotient BY tree T , recall that the centre c of T̃ is either a

multiplicity 1 vertex, or the midpoint of a multiplicity 1 edge of T̃ . So, we can

view c as a point on T 1, the subtree of T containing only the multiplicity 1

edges and vertices.

Lemma 4.5.4. Let T be a metric open quotient BY tree with marked point m,

and core T̃ with centre c. Take B to be the tree as described in Construction

4.5.1. Let m′ be a point on B with d(c,m′) minimal such that d(m′,m) ∈ Z.

(i) If m′ is green then, m′ does not lie on T̃ , and the closest point of T̃ to

m′ in B is a vertex of T̃ 1.

(ii) If m′ does not lie on T̃ 1 and m′ is not green, then, when viewed in B, the

(necessarily unique) point of T̃ 1 which is closest to m′ is a vertex of T̃ .

In this situation, m′ either lies on a black open edge, or lies on the open

edge of T . Furthermore, if m′ lies on a black open edge then the closest

vertex of T̃ 1 to m′ is a leaf of T̃ 1.

Proof. Suppose first that m′ is green. Then m′ either lies on T 1, or it lies

on part of B \ T 1. Suppose that m′ lies on T 1, then since m′ is green, by

construction we must have that: either v0 is blue, of genus 0, and the only

closed edge incident to v0 is blue and has multiplicity 1; or the open edge of T

is blue. In the first instance, by Proposition 4.3.9, we know that T̃ is obtained

from T by deleting the open edge (which must have been yellow), v0, and the

unique closed edge incident to v0. In the second instance, by Proposition 4.3.9,

we know that T̃ is obtained from T by deleting the open edge. That is, in both

cases m′ does not lie on T̃ . By construction, in both cases, the closest point

of T̃ to m′ in B is a vertex of T̃ .

Suppose instead that m′ is green and does not lie on T 1. Then certainly

m′ does not lie on T̃ 1. In this case m′ must lie on a green edge that has been

added to T 1 to create B. In particular this green open edge has been added

to a vertex say v of T 1, with denom(d(v,m)) ∤ s(v, T ). So, d(v,m) /∈ Z. The

centre of T̃ certainly lies on T 1. Therefore, the closest point to c on this open

green edge that has been added to v which is integer distance from m is, the

point distance ⌈d(v,m)⌉ − d(v,m) from v. So, v ∈ V (T ) is the closest vertex

of T 1 to m′ in B and is unique in this way. Suppose that s(v, T ) = 2, then

(since M(v) = 1), by Proposition 4.1.17, denom(d(v,m)) | s(v, T ) − 1 = 1.

This gives that d(v,m) ∈ Z which is a contradiction, since then we would have

denom(d(v,m)) | s(v, T ) = 2. So, s(v, T ) > 2, or s(v, T ) = 1. If s(v, T ) > 2,

then g(v) > 0. By Proposition 4.3.9, v is not deleted from T when passing to
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T̃ . That is, v ∈ V (T̃ 1). If s(v, T ) = 1 there is at least one edge of multiplicity

> 2 incident to v in T . Again, by Proposition 4.3.9, v is not deleted from T

when passing to T̃ . This completes the proof of (i).

Now, suppose that m′ does not lie on T̃ 1, and m′ is not green. Then m′

either lies on a black part of B, or on a part of T 1 that is deleted from T when

passing to the core. If m′ lies on a black part of B then, since d(m,m′) ∈ Z,
by construction, we must have that m′ lies on a black open edge attached to a

leaf of T 1. Let v be the leaf of T 1 which by construction is the only vertex of

B adjacent to m′. That is, in T , v has exactly one incident edge of multiplicity

1 (and perhaps other incident edges of higher multiplicity). Note that m′ will

be distance ⌈d(v,m)⌉ − d(v,m) from v. So, by Proposition 4.3.9, we know

that v is not removed when passing to the core. Therefore, the unique point

of T̃ 1 which is closest to m′ in B, is a vertex of T̃ . Suppose instead that m′

lies on a part of T 1 that is deleted from T when passing to the core. Then,

since m′ is not green we must have, by Proposition 4.3.9, that T̃ is obtained

from T by deleting a yellow open edge (and possibly viewing v0 as a point on

an edge rather than a vertex). That is, m′ must lie on the open edge of T , and

m′ ̸= v0. Then v0 is the closest point on T̃ 1 to m′. If v0 is a vertex of T̃ then

we are done. So, suppose that v0 is not a vertex of T̃ , that is, v0 is viewed as

a point on an edge of T̃ . Since the center of T̃ lies on T̃ , and m′ lies on the

open edge of T , d(v0, c) < d(m′, c). Since m′ is the closest point to c which is

integer distance from m, we must have that d(v0,m) /∈ Z. Therefore, v0 can

have at most two incident edges of multiplicity 1. In particular, v0 does not

satisfy the requirements to view v0 as a point on an edge of T̃ rather than a

vertex. So, v0 is a vertex of T̃ which completes the proof of (ii).

Construction 4.5.5 (T ∗). Let T be a metric open quotient BY tree with

extended tree B, and let m′ be a point on B such that d(c,m′) is minimal

subject to d(m′,m) ∈ Z. We create a new tree from T and m′ as follows.

Either m′ lies on (T̃ )1 or it does not. We deal with these two cases separately.

Case 1. m′ lies on (T̃ )1 (so, by Lemma 4.5.4, m′ is not green):

(a) If m′ is a vertex of (T̃ )1 then we attach an open yellow edge to T̃ at m′.

(b) Otherwise, m′ is a point on the edge of (T̃ )1 in which case we create a

new genus 0, multiplicity 1 vertex of T̃ at m′, coloured the same as the

edge m′ lies on, and attach an open yellow edge there.

Note that in both situations m′ is distance 0 along this new open edge.
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Case 2. m′ does not lie on (T̃ )1:

(a) If m′ is green then, by Lemma 4.5.4, the closest point of T̃ to m′ on B

is a vertex vc ∈ V (T̃ ). Add ‘open yellow edge → genus 0 blue vertex of

multiplicity 1 → blue edge of length d(m′, vc)’ to T̃ at vc. Note that m′

is distance 0 along this new open edge.

(b) If m′ is not green then let vc be the (necessarily unique) vertex of B

closest to m′. Then add an open yellow edge to T̃ at vc, with m
′ distance

d(vc,m
′) along the open edge.

Denote by T ∗, a tree with marked point m′ obtained by an addition of

an open edge (and extra vertex and closed edge where necessary) to T̃ , as

described above.

Example 4.5.6. Let T be the metric open quotient BY tree in Example 4.5.2.

T =

By Example 4.4.6, the centre of T̃ is v0 (note the change in labeling of vertices).

So, there is a unique tree T ∗, which turns out to be isomorphic to T .

Proposition 4.5.7. Let T be a metric open quotient BY tree with marked

point m, core T̃ and centre c. The description in Construction 4.5.5 yields

a unique tree, except when denom(d(m, c)) = 2, in which case Construction

4.5.5 yields at most two different trees, up to isomorphism.

Proof. Recall that c is either a multiplicity 1 vertex, or the midpoint of a

multiplicity 1 edge of T̃ . If d(c,m) ∈ Z then we are done so suppose otherwise.

Certainly, by construction, there exists at least one point on B distance ≤ 1
2

from c and integer distance from m. Suppose there are two such points, P and

P ′. Take Q to be the point on B which is the centre of a (possibly degenerate)

tripod between P, P ′, and c. If c = Q then we must have d(P, P ′) = 1 so

d(c, P ) = d(c, P ′) = 1
2
. Otherwise, if c ̸= Q then c does not lie on the path

between P and P ′, and Q is a degree ≥ 3 vertex on B. That is, in T 1, Q has

degree ≥ 2, in particular by Definition 4.1.3 (iv) denom(d(m,Q)) | s(Q, T ).
So, by Construction 4.5.1, d(m,Q) ∈ Z, or no edges are added to T 1 at Q

to create B. That is, if d(m,Q) /∈ Z, deg(Q)T 1 = deg(Q)B, so deg(Q)T 1 ≥ 3

and d(m,Q) ∈ Z. Therefore, P = P ′ = Q and there is a unique closest point

to c on B integer distance from m except in the case when denom(d(c,m)) =
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2. It remains to show that there are exactly 2 such points P and P ′ when

denom(d(c,m)) = 2. However, this is straightforward as assuming there are

three distinct such points P, P ′ and P ′′ all distance 1
2
from c leads to the

same conclusion as before. That is, there exists a point Q on B which is the

centre of the tripod between P, P ′, and P ′′. If the tripod is non-degenerate

then d(Q,m) ∈ Z, which provides a contradiction that P, P ′, and P ′′ are all

distinct. Finally, note that by construction of B, if denom(d(c,m)) = 2 there

are always two points on B distance 1
2
from c.

So, we have shown that there is a unique choice for m′ in Construction

4.5.5 except in the case when denom(d(c,m)) = 2 when there are precisely two

options. It is however possible that the two choices for m′ result in isomorphic

trees in Construction 4.5.5.

Proposition 4.5.8. Let T be a metric open quotient BY tree, then a tree T ∗

constructed above in Construction 4.5.5 is itself a metric open quotient BY

tree.

Proof. This is proved later in Section 4.6, and restated as Corollary 4.6.10.

Notation 4.5.9. By Proposition 4.5.7, the notation T ∗ either refers to a

unique tree, or one of two possible trees. We distinguish between the two

possibilities when denom(d(m, c)) = 2, referring to these two trees as (T ∗)+

and (T ∗)− (in no particular order), and T ∗ can refer to either of these two

trees. If denom(d(m, c)) ̸= 2, then we write (T ∗)+ = (T ∗)− = T ∗.

4.6 Equivalence Classes of Open Quotient BY

Trees
Recall that Corollary 2.2.11 gives criteria for when an open BY tree T has

core T̃ and vice versa. In a similar way, it is important for us to know what

“moves” we can make to a closed quotient BY tree T̃ , in order to construct

an open quotient BY tree with this as its core. Recall that, just because two

open quotient BY trees have isomorphic cores, it does not follow that they

have the same reduction type (as defined in Definition 3.1.1). Thus, this is not

the notion of equivalence that we should take. Instead, given a metric open

quotient BY tree T , we want to describe a set of moves which will allow us to

obtain a complete equivalence class of T from T̃ .

Definition 4.6.1. We say that two metric open quotient BY trees T1 and

T2 are equivalent if (T ∗
1 )

± and (T ∗
2 )

± are isomorphic metric open quotient
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BY trees. By this we mean that (T ∗
1 )

+ ∼= (T ∗
2 )

+ and (T ∗
1 )

− ∼= (T ∗
2 )

−, or

(T ∗
1 )

+ ∼= (T ∗
2 )

− and (T ∗
1 )

− ∼= (T ∗
2 )

+. We write T1 ∼ T2.

Remark 4.6.2. We take T ∗ given by Construction 4.5.5 to be our canoni-

cal representative, noting that when denom(d(m, c)) = 2 this is not always

uniquely defined. In practice when there is a choice of two metric open quo-

tient BY trees produced by Construction 4.5.5 it can be helpful to list the set

of both as the ‘canonical representative’ of the equivalence class.

So, our work in the previous section describes how to construct a canonical

representative of the equivalence class of a metric open quotient BY tree T .

We did this by extending T 1, and taking the closest possible point to the centre

of the core. In this section, we list the moves that can be made in order to

obtain every equivalent metric open quotient BY tree. Suppose that T has

marked point m. Throughout this section we extend our tree in the same way

as described in Construction 4.5.5. We let m′ be any point on the extended

tree which is integer distance from m. That is, we allow our new marked point

to be as far from the centre of T̃ as we wish, rather than selecting the closest

possible point. As we are no longer describing one canonical representative,

there will sometimes be multiple ways in which we can attach this new marked

point m′ to T̃ , via an open edge, to obtain a metric open quotient BY tree

equivalent to T . We will also show that every equivalent metric open quotient

BY tree can be constructed in this way. Before we get into the description of

the equivalence class we need to note the following.

Proposition 4.6.3. Let T be a metric open quotient BY tree with marked

point m. Let B be the tree created from T described in Construction 4.5.1.

Let m′ be any point on B which is an integer distance from m. Then, for any

point P on B, we have denom(d(P,m)) = denom(d(P,m′)).

Proof. Note that the paths between m, m′ and P will always form a (possibly

degenerate) tripod, as shown in Figure 4.10, with central point Q. Let us deal

Q

m m′

P

Figure 4.10: The (possibly degenerate) tripod connecting m, m′ and P .

with the degenerate cases first, that is when Q coincides with m, m′, or P .
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• If Q = m then denom(d(P,m′)) = denom(d(P,m) + d(m,m′)) =

denom(d(P,m)).

• If Q = m′ then denom(d(P,m′)) = denom(d(P,m) − d(m,m′)) =

denom(d(P,m)).

• If Q = P then denom(d(P,m′)) = denom(d(m,m′) − d(P,m)) =

denom(d(P,m)).

Now let us assume we are in the non-degenerate case, that is Q ̸= m,m′ or

P . Note that Q must be a vertex of B. Note further that, since d(m,m′) ∈ Z,
d(Q,m) ∈ Z if and only if d(Q,m′) ∈ Z. If d(Q,m), d(Q,m′) ∈ Z then

denom(d(P,m′)) = denom(d(P,Q) + d(Q,m′)),

= denom(d(P,Q)),

= denom(d(P,Q) + d(Q,m)),

= denom(d(P,m)).

So, suppose that d(Q,m), d(Q,m′) /∈ Z. If Q /∈ V (T ) then, by Construction

4.5.1, we must have d(Q,m) ∈ Z, which contradicts our assumption. So Q ∈
V (T ). Since we are in the non-degenerate case, degB(Q) ≥ 3. Note that either

degT 1(Q) = degB(Q) or degT 1(Q) = degB(Q)−1. If degT 1(Q) ≥ 3 then we have

d(Q,m) ∈ Z, by Definition 4.1.13 (iii), again contradicting our assumption.

So we have that degB(Q) = 3 and degT 1(Q) = 2, and by Construction 4.5.1

(since we are assuming d(Q,m) /∈ Z) we must have added an open green edge

to Q when creating B from T . That is, denom(d(Q,m)) ∤ s(Q, T ). However

Definition 4.1.3 (iv) (along with Remark 4.1.15) tells us that denom(d(Q,m)) |
s(Q, T ). This gives a contradiction. So, d(Q,m), d(Q,m′) ∈ Z.

The construction of a representative in the equivalence class with new

marked point integer distance from m in B, say m′, won’t always be unique.

There may well be multiple ways of attaching an open edge to T̃ all of which

result in a metric open quotient BY tree which is equivalent to T . Here we

describe in what ways this attachment can be carried out.

Theorem 4.6.4. Let T be a metric open quotient BY tree with marked point

m, core T̃ and centre c. Let B be the tree constructed from T as described in

Construction 4.5.1. For each possible choice of a point m′ (not necessarily a

vertex) of B such that d(m,m′) ∈ Z, a metric open quotient BY tree T ′ with

marked point m′ can be constructed from T̃ in any of the following ways, pro-

vided the specified conditions hold. Moreover T ′ is equivalent to T . Conversely,
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any metric open quotient BY tree equivalent to T can be constructed in one of

these ways for some choice of m′.

(A) If m′ lies on T̃ and is a vertex of T̃ (note that it is important that m′ is

a vertex of T̃ not just a vertex of B) then we can create T ′ from T̃ in the

following ways:

(A1) Attach an open yellow edge at m′ (so the marked point of T ′ is

distance 0 along the open edge);

(A2) Attach an open blue edge at m′ (so the marked point of T ′ is distance

0 along the open edge), provided m′ is blue,

2g(m′) + 2 >
∑

e∈E(T̃ ) blue,
incident to m′

M(e),

and if g(m′) = 0 then m′ has at least one incident yellow edge in T̃ .

(B) If m′ lies on an edge e of T̃ (note that m′ may be a vertex of B but not

of T̃ ) then:

(B1) Create a genus 0, multiplicity 1 vertex at m′, the same colour as the

edge e, and add an open yellow edge at m′;

(C) If m′ does not lie on T̃ and m′ lies on a green part of B then:

(C1) Let vc be the closest vertex of T̃ to m′ in B. Create a blue genus 0,

multiplicity 1 vertex v′0, and attach v′0 to T̃ at vc via a blue multi-

plicity 1 closed edge and add a yellow open edge at v′0. Finally, v′0

must be such that d(m′, v′0) ∈ Z and 0 < d(v′0, vc) ≤ d(m′, vc);

(C2) Let vc be the closest vertex of T̃ to m′ in B. Add a blue open edge

to vc, the closest vertex of T̃ to m′, with m′ lying distance d(m′, vc)

along this open edge.

(D) If m′ does not lie on T̃ , m′ is not green, and the closest point on T̃ to

m′ is not a vertex of T̃ then:

(D1) Create a genus 0, multiplicity 1 vertex at the closest point on T̃ to

m′, coloured the same as the edge that the point lies on in T̃ , and

attach an open yellow edge there.

(E) If m′ does not lie on T̃ , m′ is not green, and the closest point on T̃ to

m′ is a vertex, say vc, of T̃ then:
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(E1) Add an open yellow edge to vc, provided that if vc has at

least two incident edges of multiplicity 1 in T , and #{e ∈
E(Tb) incident to vc} ≠ #{e ∈ E(T ′

b) incident to vc} then we have

d(vc,m
′) ∈ Z;

(E2) Add an open blue edge to vc, provided vc is blue,

2g(vc) + 2 >
∑

e∈E(T̃ ) blue,
incident to vc

M(e),

and if g(vc) = 0 then vc has at least one incident yellow edge in

T̃ . Finally, we require that if #{incident blue edges to vc in T} ̸=
#{incident blue edges to vc in T

′}, or if degT̃ 1(vc) = 0 (i.e. vc has

no closed incident edges of multiplicity 1), then d(m′, vc) ∈ Z;

(E3) Create a blue genus 0, multiplicity 1 vertex v′0 with d(m′, v′0) ∈ Z
and 0 < d(v′0, vc) ≤ d(m′, vc). Attach v

′
0 to vc via a blue multiplicity

1 closed edge, and add a yellow open edge at v′0, provided vc is blue,

2g(vc) + 2 >
∑

e∈E(T̃ ) blue,
incident to vc

M(e),

and if g(vc) = 0 then vc has at least one incident yellow edge in

T̃ . Finally, we require that if #{incident blue edges to vc in T} ̸=
#{incident blue edges to vc in T

′}, or if degT̃ 1(vc) = 0 (i.e. vc has

no closed incident edges of multiplicity 1), then d(m′, vc) ∈ Z.

Example 4.6.5. Let us consider the metric open quotient BY tree T as in

Example 4.5.2, where we constructed the extended tree B of T . Recall that

T and B are as shown in Figure 4.11 below, where the core T̃ of T is also

shown. Let m′ be any point on B integer distance from m. Let d ≥ 0 denote

(a) T

(b) T̃ (c) B

Figure 4.11: Metric open quotient BY tree T and its extended tree B.

the distance from m′ to the nearest vertex of B. We have the following four

possibilities for where m′ can lie: In Figure 4.12a we can see that m′ lies either

at v0 (i.e. m′ is distance 0 from m), or m′ lies on the open edge of T . Let us
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(a) (b)

(c) (d)

Figure 4.12: Possible placement of m′ on the extended tree B

first consider the case when m′ = v0, that is d = 0. In this situation, m′ is a

vertex of T̃ so we are in case (A) of Theorem 4.6.4. We certainly satisfy the

conditions for (A1), so can add an open yellow edge to T̃ at v0, and note that

the resulting tree is isomorphic to T . Now let us check whether we satisfy the

conditions for (A2). Note that m′ = v0 is blue, and

2g(m′) + 2 = 4 > 1 =
∑

e∈E(T̃ ) blue,
incident to m′

M(e).

So, we can also add an open blue edge to T̃ at v0 as described in (A2). Let us

instead now assume that d > 0, and note that this means we are in case (E)

of Theorem 4.6.4. It is straightforward to check that we satisfy the conditions

of (E1), (E2) and (E3).

We can assess the other three options for the placement of m′ similarly.

In particular, we find the following. Figure 4.12b turns out to satisfy the same

conditions as Figure 4.12a, so we do not need to consider this again. In Figure

4.12c, when d = 0 we are in case (B) and satisfy the conditions of (B1), and

when d > 0 we are in case (D) and satisfy the conditions of (D1). Finally,

in Figure 4.12d note that d ̸= 0, since d(m,m′) ∈ Z, so we are in case (C)

and satisfy the conditions for both (C1) and (C2). This gives the following

complete list of trees afforded by Theorem 4.6.4:

(a) For d ≥ 0 (b) For d ≥ 0 (c) For d′ ∈ Z, 0 < d′ ≤ d

(d) For d ≥ 0
(e) For d ≥ 0 (f) For d′, n ∈ Z≥0, 2 ∤ d′

Figure 4.13: A complete list of metric open quotient BY trees constructed from T
afforded by Theorem 4.6.4
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It is straightforward to check that each of the trees pictured in Figure 4.13 are

indeed metric open quotient BY trees.

Remark 4.6.6. It may be that, for instance, m′ is on a green part of B and

an equivalent metric open quotient BY tree to T can be achieved by adding an

open yellow edge to the closest vertex on T̃ to m′, however we do not include

this construction in this case, instead one will find an isomorphic tree can be

constructed by a different choice of new marked point which is not green.

Before we can prove Theorem 4.6.4 we prove the following Lemma, which

will form an integral part of the proof.

Lemma 4.6.7. Let T be a metric open quotient BY tree with marked point

m, and let m′ be any point on B integer distance from m. Take T ′ to

be any tree with marked point m′ as described in Theorem 4.6.4. Then

lcm(denom(d(m, v)),M(v)) = lcm(denom(d(m′, v)),M(v)) for every vertex

v ∈ V (T̃ ).

Proof. If M(v) = 1 then we are done by Proposition 4.6.3. So, suppose that

M(v) > 1. Consider T ∪ B, and note that v,m,m′ can all be considered as

points on T ∪ B. By Proposition 4.3.10, we know that there exists at least

one multiplicity 1 vertex in T̃ . In particular this means there exists some

vertex w ∈ V (T̃ ) with M(w) = 1 such that, in T ∪ B, d(m, v) = d(m,w) +

d(w, v) and d(m′, v) = d(m′, w)+d(w, v). By Definition 4.1.3 (ii) and (iii), and

Definition 4.1.13, since T is a metric open quotient BY tree, we must have that

denom(d(m,w)) |M(v). So,M(v)d(m,w) ∈ Z. Furthermore, sinceM(w) = 1,

we have already shown that denom(d(m,w)) = denom(d(m′, w)), giving that

M(v)d(m′, w) ∈ Z also. Now,M(v)d(m, v) =M(v)d(m,w)+M(v)d(w, v) and

M(v)d(m′, v) =M(v)d(m′, w) +M(v)d(w, v), so

denom(M(v)d(m, v)) = denom(M(v)d(m′, v)).

Note that denom(M(v)d(m, v)) =
denom(d(m, v))

gcd(denom(d(m, v)),M(v))
,

=
lcm(denom(d(m, v)),M(v))

M(v)
.

Similarly for denom(M(v)d(m′, v)), so

lcm(denom(d(m, v)),M(v)) = lcm(denom(d(m′, v)),M(v)).
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Proof of Theorem 4.6.4. Throughout this proof we will use the notation ε to

refer to the open edge of T , and v0 to refer to the unique vertex incident

to ε. Similarly we will use the notation ε′ to refer to the open edge of T ′,

and v′0 to refer to the unique vertex incident to ε′. Before we prove each

individual case of Theorem 4.6.4, it is important to note that the following

aspects of Definition 4.1.3 are preserved by either the adding or removing of

certain edges and vertices.

(i) Genera of vertices that lie in both T ′ and T are the same. If a yellow

vertex was added (along an edge of T̃ ) to create T ′ it was given genus 0.

So, all yellow vertices in T ′ have genus 0. We have also been careful to

never add a blue edge to a yellow vertex when creating T ′ from T̃ . In

passing from T to T̃ removing edges and vertices does not alter the fact

that yellow vertices have only yellow incident edges. So, every yellow

vertex in T ′ has genus 0 and only yellow incident edges.

So, in each case we will study below, to prove that Definition 4.1.3 (i)

holds, it remains to show that each yellow vertex v′ of T ′ is such that

∑
e∈E(T ′)

incident to v′

M(e)

M(v′)
≥ 3.

The only yellow vertex we ever add to T̃ to obtain T ′ (i.e. the only time

when a yellow vertex of T ′ is not also a yellow vertex of T̃ ) is when we

create a yellow vertex on a yellow edge of T̃ . In this case, we only ever

add an open yellow edge to this vertex, meaning it has degree 3 in T ′ and

satisfies Definition 4.1.3 (i). All other yellow vertices of T ′ are vertices

of T̃ , which in turn are vertices of T . So, let v′ be a yellow vertex of T ′

which also lies in T̃ . Looking at our cases, we can see that we only ever

remove an edge (which is always yellow) from v′ when passing from T to

T̃ if v′ = v0. So, if v′ ̸= v0 then certainly v′ satisfies Definition 4.1.3 (i)

in T̃ , as the number, multiplicity and colouring of edges incident to v′ in

T̃ was not altered when compared to what they were in T . If v′ = v0 and

doesn’t already satisfy Definition 4.1.3 (i) when considered in T̃ , then v0

is yellow and has ∑
e∈E(T̃ )

incident to v0

M(e)

M(v0)
< 3.

We know that in T , v0 satisfies Definition 4.1.3 (i). So, we must have
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that ∑
e∈E(T̃ )

incident to v0

M(e)

M(v0)
= 2.

In particular, v0 must have one incident edge which is yellow of multiplic-

ity 2 (else it has two incident yellow edges in T̃ of multiplicity 1 which is

a contradiction, as then v0 would have been removed when passing from

T to T̃ ). This means that v0 is the only vertex of multiplicity 1 in T̃

(since T satisfies Definition 4.1.3 (ii)). So, v0 is where we add to T̃ to

create T ′. Looking at our possible cases, it is easy to see that we only

ever add an open yellow edge to v0 to create T ′. Therefore, in T ′ every

yellow vertex satisfies Definition 4.1.3 (i).

(ii) In all instances above, an open edge ε′ is attached to T̃ , in such a way that

the unique vertex, v′0, incident to ε
′ in T ′ is always a multiplicity 1 vertex

of T ′ and is such that the trees formed by collapsing the multiplicity 1

components to points are isomorphic, i.e. T ′/(T ′)1 ∼= T/T 1. So, the

embedded path from v′0 to any vertex of T ′ has increasing multiplicities,

that is Definition 4.1.3 (ii) holds for T ′ as it did for T .

(iii) Recall that lcm(denom(d(v,m)),M(v)) = lcm(denom(d(v,m′)),M(v)),

by Lemma 4.6.7. So, given we have only removed edges and vertices

from T to obtain T̃ , and then added multiplicity 1 vertices and edges

to a multiplicity 1 part of T̃ to obtain T ′, we have that all edges

incident to a vertex v ∈ V (T ′) have multiplicity equal to M(v) or

lcm(M(v), denom(d(v,m′))) (since T satisfies Definition 4.1.3 (iii) and

Definition 4.1.13). This gets us part of the way to showing that Def-

inition 4.1.3 (iii) holds for T ′, and we finish proving this for each case

individually below.

(iv) Similarly we inherit a large amount of the information we need to prove

that Definition 4.1.3 (iv) holds for T ′ from the fact that it holds for T ,

but we will prove this case by case below.

(v) By Proposition 4.3.9, we only remove a yellow edge from a blue vertex of

T to obtain T̃ when ε is yellow, v0 is blue and v0 doesn’t get deleted when

passing to T̃ . So, assume this is the case. If v0 has an incident yellow

closed edge then no vertex of T̃ violates Definition 4.1.3 (v). The addition

of any combination of edges and vertices to create T ′ from T̃ maintains

this, meaning T ′ will also satisfy Definition 4.1.3 (v). In order to violate
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Definition 4.1.3 (v), v0 must have genus 0 and no incident yellow edges

in T̃ . Since v0 satisfies Definition 4.1.3 (vi) in T , v0 must have either

exactly one incident closed blue edge of multiplicity 2, or either exactly

1 or 2 blue incident edges of multiplicity 1. However, if v0 has exactly 1

or 2 blue incident edges of multiplicity 1 in T \{ε} (and no other incident

edges), then v0 would not be a vertex of T̃ , contradicting our assumption.

So, the only case left to consider is when v0 is genus 0, blue, and has one

incident edge in T \ {ε} which is blue and of multiplicity 2. In this case,

T̃ 1 = {v0}, so we only ever add to v0 to create T ′. In particular, we only

ever add a yellow open edge. This is clear in cases (A) and (E). Cases

(B), (C) and (D) do not apply to this situation (it is easy to check they

do not coincide with v0 being blue, having degree 1 in T̃ with the only

incident edge in T̃ being blue of multiplicity 2). So, any construction of

T ′ described in the statement of Theorem 4.6.4 satisfies Definition 4.1.3

(v). It is important to note that, if v0 is genus 0, blue, and has one

incident edge in T \{ε} which is blue and of multiplicity 2, then in order

to create a metric open quotient BY tree T ′ equivalent to T , we must

attach a yellow edge to v0 when creating T ′. By Proposition 4.3.9 we

know that the only way of doing this is to add an open yellow edge to

v0. So, there are no ways other than those we have already described,

namely (A) and (E) of creating such a T ′ from T .

(vi) Note that, for every v ∈ T̃ removing edges and vertices from T to obtain

T̃ only decreases any sum over incident blue edges. In particular, for

every v ∈ V (T̃ ),

∑
e∈E(T̃ ) blue,
incident to v

M(e)

M(v)
≤

∑
e∈E(T ) blue,
incident to v

M(e)

M(v)
.

So certainly in T̃ , every vertex satisfies Definition 4.1.3 (vi), as the genus

of a vertex in T̃ is equal to that in T .

Adding in a yellow open edge to a vertex of T̃ does not change this, so

if T ′ is created from T̃ in this way then T ′ certainly satisfies Definition

4.1.3 (vi). That is, Definition 4.1.3 (vi) is certainly satisfied in cases (A1)

and (E1).

If a vertex v′0 is added along an edge e of T̃ when constructing T ′, then

we are in case (B1) or (D1). If e is yellow, then v′0 is yellow and we always

add an open yellow edge to v′0. So in this case v′0 has no incident blue
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edges. If instead, e is blue, then v′0 is blue and is given genus 0. An open

yellow edge is always added to v′0 when creating T ′. So, v′0 has exactly

two incident blue edges, each of multiplicity 1, in T ′, arising from the

edge on which it lay in T̃ . Therefore v′0 satisfies Definition 4.1.3 (vi). In

both cases (e being yellow or blue), all vertices of T̃ have not had any

edges added to them in passing from T̃ to T ′. Therefore, Definition 4.1.3

(vi) is always satisfied in cases (B1) and (D1).

A blue open edge is added directly to a vertex v′0 of T̃ to create T ′ in

cases (A2), (C2) and (E2). In cases (A2) and (E2) we have that

2g(v′0) + 2 >
∑

e∈E(T̃ ) blue,
incident to v′0

M(e).

Since M(v′0) = 1, and given that ε′ has multiplicity 1, T ′ satisfies Def-

inition 4.1.3 (vi) in cases (A2) and (E2). In case (C2), m′ lies on a

green part of B, so either v′0 is blue with denom(d(v′0,m)) ∤ s(v′0, T ) in

T , or v′0 had a blue edge removed from it when passing from T to T̃ . In

this second instance, certainly after adding in a blue open edge at v0, v0

still satisfies Definition 4.1.3 (vi) in T ′. So, suppose that v′0 is blue with

denom(d(v′0,m)) ∤ s(v′0, T ) in T . So, we must have that

denom(d(v′0,m)) ∤ 2g(v′0) + 2−
∑

e∈E(T ) blue,
incident to v′0

M(e)

M(v′0)
.

Note that this means that

2g(v′0) + 2 >
∑

e∈E(T ) blue,
incident to v′0

M(e)

M(v′0)
>

∑
e∈E(T̃ ) blue,
incident to v′0

M(e)

M(v′0)
.

So, by the same argument that we used for (A2) and (E2), we get that

in case (C2) T ′ satisfies Definition 4.1.3 (vi) also.

In our two remaining cases, (C1) and (E3), we add ‘blue multiplicity 1

closed edge → blue genus 0, multiplicity 1 vertex, v′0 → blue open edge’

to a vertex vc of T̃ to create T ′. In case (C1) we can show by a similar

argument to above, that

2g(vc) + 2 >
∑

e∈E(T̃ ) blue,
incident to vc

M(e).
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Note that this condition is already an assumption in (E3), and in both

cases M(vc) = 1. So, by the above argument, vc satisfies Definition 4.1.3

(vi) in T ′ in both (C1) and (E3). It remains to check that v′0 also satisfies

Definition 4.1.3 (vi), but this is clear, so T ′ satisfies Definition 4.1.3 (vi)

in both (C1) and (E3).

Now let us prove the remaining parts of Definition 4.1.3 hold on a case

by case basis. Note that for Definition 4.1.3, we have shown above that T ′

satisfies (i), (ii), (v) and (vi) so it remains finish proving that (iii) and (iv)

hold. It is also important to note that throughout the proofs of these we

take n = denom(d(v,m))
gcd(denom(d(v,m),M(v))

in Definition 4.1.3. By Lemma 4.6.7, we have

that lcm(denom(d(v,m)),M(v)) = lcm(denom(d(v,m′)),M(v)). So, due to

Remark 4.1.15, the proof that Definition 4.1.13 holds follows once the proof of

Definition 4.1.3 is complete with n = denom(d(v,m))
gcd(denom(d(v,m),M(v))

.

(A1) Suppose m′ is a vertex of T̃ and we have attached an open yellow edge

at m′:

(iii) We noted above that every edge incident to a vertex v′ ∈ V (T ′)

has multiplicity M(v′), or lcm(M(v′), denom(d(v′,m′))). It

remains to show that exactly one or two edges incident to

v′ has multiplicity M(v′), and all the rest have multiplicity

lcm(M(v′), denom(d(v′,m′))).

Note that in T̃ , since this is obtained by removing edges and vertices,

every vertex v has at most two incident edges of multiplicity M(v)

(potentially none), and all other incident edges have multiplicity

lcm(M(v), denom(d(v,m′))). Recall from Proposition 4.3.9 that T̃

is obtained by either removing just the open edge ε of T , removing

ε and viewing v0 as a point on an edge, or removing ε, v0 and a

unique closed blue edge of multiplicity 1 incident to v0. In each of

these cases there is at most one vertex v′ ∈ T̃ with no incident edges

of multiplicity M(v′), and this vertex has M(v′) = 1.

If there is such a vertex, then v′ is the only multiplicity 1 vertex

of T̃ (by Definition 4.1.3 (iii)). By construction m′ has multiplicity

1, so we must have m′ = v′, and the open edge w e attached here

to create T ′ ensures that m′ satisfied Definition 4.1.3 (iii) in T ′.

All other vertices of T ′ in this situation have their incident edges

unchanged in the transition from T to T ′. So, because they satisfied

Definition 4.1.3 (iii) in T , they still do in T ′.
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Otherwise, every vertex v in T̃ has an incident edge of multiplicity

M(v). Note that sincem′ is a vertex of T̃ , andm′ is integer distance

from m, that every edge incident to m′ in T̃ has multiplicity 1. The

addition of an open edge at m′ to create T ′ means m′ still satisfies

Definition 4.1.3 (iii) in T ′. Again, all other vertices of T ′ in this

situation had their incident edges unchanged from T , so because

they satisfied Definition 4.1.3 (iii) in T , they still do in T ′.

So T ′ certainly satisfies Definition 4.1.3 (iii).

(iv) Again, it is important to note that there is at most one vertex of

T̃ , where an incident edge to it in T has been deleted in passing to

the core (be that v0 or the unique vertex adjacent to v0 if v0 was

deleted along with a closed blue edge).

If such a vertex exists, call it v′. If v′ has no incident edges of

multiplicity 1 in T̃ then, as already discussed above in the proof of

(A1)(iii), this means m′ = v′. So, the open edge added to produce

T ′ is attached to T̃ at v′. In particular, this means that M(v′) =

denom(d(v′,m′)) = 1, so after the addition of the multiplicity 1

open edge to give T ′ certainly v′ satisfies Definition 4.1.3 (iv), since

1 | N for any integer N . All other vertices of T ′ lie on T and have

not had their incident edges altered in the process of creating T ′

from T , so all still satisfy Definition 4.1.3 (iv).

Otherwise, every vertex of T̃ has had the number of incident edges,

their colouring and multiplicities unaltered, so in T̃ every vertex

satisfies Definition 4.1.3 (iv). The addition of an open edge at m′,

does not change this since M(m′) = denom(d(m′,m′)) = 1, and

1 | n for any integer n.

So T ′ satisfies Definition 4.1.3 (iv).

(A2) Let m′ be a vertex of T̃ such that m′ is blue,

2g(m′) + 2 >
∑

e∈E(T̃ ) blue,
incident to m′

M(e),

and if g(m′) = 0 then m′ has at least one incident yellow edge in T̃ .

Suppose that we have attached an open blue edge at m′:

(iii) The proof of (A1)(iii) did not rely on the colouring of the open

edge at any point. So, the same proof as above can be applied
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to this case where the open edge is instead blue, hence T ′ satisfies

Definition 4.1.3 (iii).

(iv) Again, the proof of (A1)(iv) did not actually use that the open edge

was coloured yellow. So, the same proof as above can be applied

to this case where the open edge is instead blue, hence T ′ satisfies

Definition 4.1.3 (iv).

(B1) Suppose that m′ lies on T̃ but is not a vertex of T̃ , (i.e. m′ lies on an

edge e of T̃ ), and that we have created a multiplicity 1, genus 0 vertex

at m′ coloured the same as e, and added an open yellow edge at m′:

(iii) By construction of B, m′ must lie on a multiplicity 1 edge of T̃ .

As explained in case (A1)(iii) above, there is at most one vertex in

T̃ which has had an edge (of multiplicity 1) removed from it when

passing from T to T̃ . Suppose such a vertex v′ ∈ T̃ exists (i.e.

where its degree in T̃ is one less than its degree in T ). Then, as in

(A1)(iii), M(v′) = 1. If v′ violates Definition 4.1.3 (iii) in T̃ , then it

has no incident edges of multiplicity 1. However, this would mean

that T̃ 1 = {v′}, contradicting m′ lying on a multiplicity 1 edge of

T̃ . So, v′ satisfies Definition 4.1.3 (iii) in T̃ , and therefore in T ′.

It only remains to check that m′ satisfies Definition 4.1.3 (iii) in

T ′ (all other vertices and their incident edges of T ′ have remained

unchanged from T to T ′, so certainly satisfy Definition 4.1.3 (iii)).

It is, however, clear that m′ satisfies Definition 4.1.3 (iii), since all

its incident edges have multiplicity 1. So T ′ satisfies Definition 4.1.3

(iii).

(iv) Again, there is at most one vertex in T̃ which has had an edge (of

multiplicity 1) removed from it when compared with in T . Sup-

pose such a vertex v′ ∈ T̃ exists. Then, as above, v′ still has a

multiplicity 1 incident edge, and all other edges have multiplicity

denom(d(m′, v′)). Since a multiplicity 1 edge was removed from v′

in passing from T to T̃ , in T v′ had (at least) two incident edges of

multiplicity 1. Since v′ satisfies Definition 4.1.3 (iv) in T , we can

see that, regardless of the colouring of the multiplicity 1 incident

edge that remains in T̃ , v′ still satisfies Definition 4.1.3 (iv) in T̃ ,

and therefore in T ′. It remains to check that if m′ is a blue vertex

of T ′ then m′ satisfies Definition 4.1.3 (iv) (all other vertices and

their incident edges of T ′ have remained unchanged from T to T ′,
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so certainly satisfy Definition 4.1.3 (iv)). However this is clear since

d(m′,m′) = 0. So T ′ satisfies Definition 4.1.3 (iv).

(C1) Suppose that m′ does not lie on T̃ and m′ lies on a green part of B.

Suppose also that we have created a blue genus 0, multiplicity 1 vertex

v′0, and attached v′0 to T̃ at vc via a blue multiplicity 1 closed edge

and added a yellow open edge at v′0. Note that, v′0 must be such that

d(m′, v′0) ∈ Z and 0 < d(v′0, vc) ≤ d(m′, vc).

(iii) Again, there is at most one vertex in T̃ which has had an edge (of

multiplicity 1) removed from it when compared with in T . Suppose

such a vertex v′ ∈ T̃ exists (i.e. where its degree in T̃ is one less

than its degree in T ), and recall that we must have M(v′) = 1. If

v′ violates (iii) in T̃ , then it has no incident edges of multiplicity

1. However, this would mean that T̃ 1 = {v′}, in particular v′ = vc,

so we add a multiplicity 1 blue closed edge to v′ to create T ′, so v′

satisfies (iii) in T ′. All other vertices of T̃ and their incident edges

remain unchanged from that in T , so satisfy (iii) in T̃ . Certainly v′0

satisfies (iii) in T ′, so it remains to check that vc does in the case

when no vertex of T̃ violates (iii). If denom(d(vc,m
′)) = 1, or if vc

had exactly one incident edge of multiplicity 1 in T̃ then it is clear

that the addition of a closed multiplicity 1 edge to vc in T ′ does

not change that vc satisfies (iii). So, the only case left to consider

is when vc has exactly two incident edges e1 and e2 of multiplicity

1 in T̃ , and denom(d(vc,m
′)) > 1. Since m′ is green, either a

multiplicity 1 edge was removed from vc when passing from T to

T̃ , or denom(d(vc,m
′)) ∤ s(vc, T ). In the first instance vc had three

incident edges of multiplicity 1 in T , so certainly still satisfies (iv)

in T ′. So, suppose that degT (vc) = degT̃ (vc) and denom(d(vc,m
′)) ∤

s(vc, T ). Note that every edge incident to vc except e1 and e2 has

multiplicity denom(d(vc,m
′)). Suppose e1 and e2 are both yellow.

Then, in T , vc satisfies (iv), so denom(d(vc,m
′)) | 2g(vc) + 2. This

gives that denom(d(vc,m
′)) | s(vc, T ), which is a contradiction. We

can obtain a contradiction in a similar if e1 and e2 are both blue, or

different colours to each other. In particular, this shows that this

case cannot happen so we are done.

(iv) Again, there is at most one vertex v′ ∈ T̃ which has had an edge

(of multiplicity 1) removed from it when compared with in T . If

such a vertex v′ exists then we know, by above, that it has at
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least one incident edge of multiplicity 1 in T̃ , or v′ = vc. In the

first case, v′ must have had two incident edges of multiplicity 1

in T , where it satisfied (iv), so it is not hard to see that (iv) still

holds in T̃ . Otherwise if v′ = vc and vc has no incident edges of

multiplicity 1 in T̃ . In this case, the one edge of multiplicity 1 in

T incident to vc, say e, must have been blue, or denom(d(vc,m
′)) ∤

s(vc, T ). If e was blue then we are done. So suppose e is yellow

and denom(d(vc,m
′)) ∤ s(vc, T ). Since e is yellow we must have

denom(d(vc,m
′)) | 2g(vc) + 1. So, once we have added a closed

blue edge to vc to create T ′ we satisfy (iv). A similar argument can

be applied even if vc did not have higher degree in T that in T̃ ,

since then we must have that denom(d(vc,m
′)) ∤ s(vc, T ) and there

is a unique edge of multiplicity 1 incident to vc in T which does

not get deleted when passing to T̃ . If e is yellow we must have that

denom(d(vc,m
′)) | 2g(vc)+1, and if e is blue that denom(d(vc,m

′)) |
2g(vc). So vc satisfies (iv) in T

′. The vertex v′0 in T
′ clearly satisfies

(iv). All other vertices of T ′ are vertices of T̃ , different from vc and

whose degrees in T equal their degrees in T̃ , that is their incident

edges have not be altered in the move from T to T ′, so they certainly

still satisfy (iv). So T ′ satisfies (iv).

(C2) Suppose that m′ does not lie on T̃ , m′ is green and we have added an

open blue edge to the closest vertex of T̃ to m′, say vc. In order to

prove this case, we simply note that adding a blue open edge to vc,

rather than ‘closed blue edge → genus 0 multiplicity 1 blue vertex →
open yellow edge’ as we did in case (C1), does not change that all the

required conditions are satisfied for every vertex of T (note that here

V (T̃ ) = V (T ′)). So certainly in this case T ′ is a metric open quotient

BY tree.

(D1) Suppose that m′ does not lie on T̃ , m′ is not green, and the closest point

on T̃ tom′ is not a vertex of T̃ but lies on an edge e ∈ E(T̃ ). Suppose also

that we have created a genus 0, multiplicity 1 vertex, say vc at the closest

point on T̃ to m′, coloured the same as the edge e and attached an open

yellow edge to vc. Note that in T ′, by Construction 4.5.1 d(vc,m
′) ∈ Z.

with this in mind it is easy to see that the same method of proof that we

used for case (B1) (i.e. when m′ lay on T̃ but was not a vertex of T̃ ) can

be applied here. To see this more clearly, simply replace any instances of

m′ in the proof of (B1)(iii) with vc, and replace the use of d(m′,m′) = 0
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in the proof of case (B1)(iv) by instead using that d(vc,m
′) ∈ Z.

(E1) Suppose m′ does not lie on T̃ , m′ is not green, the closest point on T̃ to

m′ is a vertex, say vc of T̃ . Suppose further that, if vc has two incident

edges of multiplicity 1 in T and #{blue edges incident to vc in T} ≠

#{blue edges incident to vc in T
′}, then we have d(vc,m

′) ∈ Z. Let us

assume that we have added an open yellow edge to vc. Note that, this

means vc = v′0.

(iii) The proof that (iii) holds in this case follows by the similar method

to case (A1), when m′ was a vertex of T̃ and we added an open

yellow edge at m′. Instead, we note that if there exists a vertex

v′ of T̃ with no incident edges of multiplicity M(v′), then v′ = v′0.

So, in T ′, v′ satisfies (iii). Else, if v′0 has either exactly one incident

edge or > 2 incident edges of multiplicity 1, in T̃ , the addition of

the open edge to v′0 does not change that v
′
0 still satisfies (iii) in T

′.

The only case left to consider is when v′0 has exactly two incident

edges in T̃ , both of multiplicity 1. However we can then simply note

that by construction of B we must have d(m′, v′0) ∈ Z, so again even

after adding an open edge at v′0, v
′
0 satisfies (iii). All other vertices

of T ′ satisfy (iii) in T ′ because they did in T .

(iv) As we’ve done on many occasions above, note that at most one blue

vertex of T̃ has had an edge deleted from it in passing from T to

T̃ . Suppose there exists such a vertex v′ in T̃ (i.e. the degree of v′

in T was one larger than its degree in T̃ ). Then M(v′) = 1. If v′

has no incident edges in T̃ of multiplicity 1 then v′ = v′0 so we want

to show that denom(d(v′,m′)) | 2g(v′) + 2 or 2g(v′) + 1. If v′ had

an incident yellow edge of multiplicity 1 in T then we are done, so

suppose in T the only edge incident to v′ of multiplicity 1 was blue.

So we have denom(d(v′,m′)) | 2g(v′)+1 or 2g(v′), however since m′

is not green, we have that denom(d(v′,m′)) | s(v′, T ), in particular

this means denom(d(v′,m′)) | 2g(v′) + 1 so we are done.

Otherwise, v′ has an incident edge in T̃ of multiplicity 1. If

v′ ̸= v′0 then certainly we are done. So, suppose that v′ = v′0.

If #{e ∈ E(Tb) incident to v
′
0} = #{e ∈ E(T ′

b) incident to v
′
0T

′}
then we are done as ε must have been yellow. Otherwise, #{e ∈
E(Tb) incident to v

′
0} ≠ #{e ∈ E(T ′

b) incident to v
′
0T

′} then we

have assumed that d(v′0,m
′) ∈ Z so we are done. Note that this

assumption is indeed necessary to ensure that we satisfy (iv).
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Now suppose that v′0 has the same degree in T̃ as it did in T (i.e.

no edge was removed from v′0 in passing from T to T̃ . Then v′0 must

have at least one incident edge of multiplicity 1 in T̃ (else v′0 would

be the only vertex of multiplicity 1 in T̃ , contradicting that v′0 has

the same degree in T̃ as it did in T ). If v′0 had 2 or more incident

edges of multiplicity 1 in T̃ then, since v′0 = vc (and m′ does not

lie on T̃ ) we must have added an open edge at v′0 in the process

of obtaining B from T 1. So, by construction of B, d(v′0,m
′) ∈ Z,

and we are done. Otherwise, v′0 has exactly one incident edge of

multiplicity 1, say e, in T̃ . In this case, since m′ is not green (so

denom(d(v′0,m
′)) | s(v′0, T )), if e is blue we have denom(d(v′0,m

′)) |
2g(v′0) + 1, and if e is yellow we have denom(d(v′0,m

′)) | 2g(v′0) + 2.

In either case we are done.

All other vertices of T ′ have not had any edges added or removed

from them in the process of passing from T to T̃ to T ′. Therefore all

remaining vertices of T ′ satisfy (iv) as they did in T . This completes

the proof that T ′ satisfies (iv).

(E2) Suppose that m′ does not lie on T̃ , m′ is not green, the closest point on

T̃ to m′ is a vertex, say vc of T̃ , vc is blue,

2g(vc) + 2 >
∑

e∈E(T̃ ) blue,
incident to vc

M(e),

and if g(vc) = 0 then m′ has at least one incident yellow edge in

T̃ . Furthermore suppose that if #{incident blue edges to vc in T} ≠

#{incident blue edges to vc in T
′}, then d(m′, vc) ∈ Z. Assume that we

have added an open blue edge to vc (So, v
′
0 = vc).

(iii) Note that, although our assumptions here are slightly different, the

proof that (iii) holds in case (E1), when instead we added an open

yellow edge at m′ did not make any reference to the colouring of

the open edge, so we can apply the same proof here.

(iv) Again, we know that at most one vertex, v′ ∈ T̃ has had an edge (of

multiplicity 1) removed from it when compared with in T . Suppose

such a vertex v′ exists. If v′ has no incident edges in T̃ of multiplicity

1, then we must have v′ = vc, as in this case T̃ 1 = {v′}. If in T the

unique edge of multiplicity 1 adjacent to vc was blue then we are

done. Otherwise this unique incident edge of multiplicity 1 in T was
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yellow (in particular it must have been ε). Under our assumption,

d(vc,m
′) ∈ Z, so again we are done. Note that if we had not assumed

that d(vc,m
′) ∈ Z then we would not be able to satisfy (iv) as,

since m′ is not green, we have that denom(d(vc,m
′)) | s(vc, T ), in

particular denom(d(vc,m
′)) | 2g(vc)+2. So, if d(vc,m

′) /∈ Z, adding
an open blue edge here would violate (iv).

Otherwise v′ has an incident edge in T̃ of multiplicity 1. So, in T , v′

had two incident edges of multiplicity 1 and certainly still satisfies

(iv) in T̃ . If v′ ̸= vc then we are done since nothing is added to

v′ in passing from T̃ to T ′ so it certainly still satisfies (iv) in T ′.

Otherwise, v′ = vc. If the multiplicity 1 edge that was removed

from v′ in passing from T to T̃ was blue then we are done. If

instead there was a yellow edge removed from v′ on passing to T̃

from T then this edge must have been ε, so under our assumption

denom(d(vc,m
′)) = 1 and we are done.

Finally, we need to consider the case when vc has not been altered

in passing from T to T̃ . If vc has at least two incident edges of mul-

tiplicity 1 in T then, by construction of B, denom(d(vc,m
′)) = 1,

so we are done. Otherwise, we must have that vc has exactly one

incident edge, e of multiplicity 1 in T (otherwise vc would be the

only multiplicity 1 vertex in T̃ , which would contradict our assump-

tion that vc has not had any edges deleted from it in passing from

T to T̃ ). So, our assumption tells us that denom(d(vc,m
′)) = 1,

and we are done. It is also worth noting that since m′ is not

green, we have denom(d(vc,m
′)) | s(vc, T ). So, if e is blue we

have that denom(d(vc,m
′)) | 2g(vc) + 1, and if e is yellow we

have that denom(d(vc,m
′)) | 2g(vc) + 2 so our assumption that

denom(d(vc,m
′)) = 1, is indeed necessary in order to satisfy (iv).

In all other cases a vertex of T ′ has not had any edges added or

removed from it in passing from T to T̃ and then to T ′. In particular,

all other vertices of T ′ certainly satisfy (iv), so T ′ satisfies (iv).

(E3) Suppose that m′ does not lie on T̃ , m′ is not green, the closest point on

T̃ to m′ is a blue vertex, say vc of T̃ , with

2g(vc) + 2 >
∑

e∈E(T̃ ) blue,
incident to vc

M(e),
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and if g(vc) = 0 then m′ has at least one incident yellow edge in

T̃ . Furthermore, suppose that if #{incident blue edges to vc in T} ≠

#{incident blue edges to vc in T
′}, then d(m′, vc) ∈ Z.

a blue genus 0, multiplicity 1 vertex v′0 with d(m′, v′0) ∈ Z and 0 <

d(v′0, vc) ≤ d(m′, vc). Attach v′0 to vc via a blue multiplicity 1 closed

edge, and add a yellow open edge at v′0

Let us have created a blue genus 0, multiplicity 1 vertex v′0 with

d(m′, v′0) ∈ Z and 0 < d(v′0, vc) ≤ d(m′, vc). Attach v′0 to vc via a

blue multiplicity 1 closed edge, and add a yellow open edge at v′0. It is

not hard to see that the vertex created at v′0 satisfies all required condi-

tions. We can complete the proof by referencing the previous case (E2)

and noting that, for all vertices v′ ̸= v′0 of T ′, v′ satisfies all required

conditions as the same proof can be applied here.

This proves that any such T ′ is indeed a metric open quotient BY tree. It re-

mains to prove that T ′ is equivalent to T and that the converse of the statement

also holds. This is proved in Theorem 4.6.8.

Theorem 4.6.8. Let T be a metric open quotient BY tree. Then any T ′

constructed from T̃ by one of the ways described in Theorem 4.6.4 is equivalent

to T . Moreover, any metric open quotient BY tree which is equivalent to T

can be described in one of these ways. That is to say, the moves described in

Theorem 4.6.4 completely describe the equivalence class of T .

Proof. Since T ′ is an open quotient BY tree (we proved this in Theorem 4.6.4),

we know by Proposition 4.3.9 that the core T̃ ′ is obtained by removing a few

vertices and edges near ∞. After removing the open edge from T̃ ′, just as in

the proof of Proposition 4.3.9, we assess whether or not we keep the unique

vertex v′0 incident to the open edge or either delete it (along with the unique

edge incident to it in this case) or declare it to be a point on an edge of T̃ ′.

When creating T ′ from T̃ we either:

(a) added an open yellow edge to a vertex of T̃ ,

(b) added an open blue edge to a vertex of T̃ ,

(c) created a genus 0 vertex on a multiplicity 1 edge e of T̃ , coloured the

same as e, and added an open yellow edge to this new vertex,

(d) or added ‘closed multiplicity 1 blue edge → blue genus 0, multiplicity 1

vertex → open yellow edge’ to a multiplicity 1 vertex of T̃ .
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Call the unique vertex incident to the open edge in T ′, v′0. In cases (a) and

(b) after removing the open edge we are left with T̃ , which must therefore

be the core or T ′, else this would contradict it being the core of T . In case

(c) after removing the open edge we find that v′0 has exactly two incident

edges each of multiplicity 1 and coloured the same as v′0. If v′0 is yellow then

we find v′0 violates condition (i) of Definition 4.3.1. So, as in the proof of

Proposition 4.3.9, we declare v′0 to be a point on an edge. This gives us T̃ ′

being isomorphic to T̃ . A similar argument applied when v′0 is blue, as then v
′
0

will violate condition (ii) of Definition 4.3.1 in T ′ \ {ε′}. Finally, in case (d),

after removing the open edge we again find that v′0 violates condition (ii) of

Definition 4.3.1. So, by Proposition 4.3.9, we remove v′0 along with the incident

blue edge. This again gives us T̃ ′ being isomorphic to T̃ .

Since T̃ ′ ∼= T̃ they have the same centre. Let B be the tree we obtain

by extending T according to Construction 4.5.1 and B′ be the extended tree

of T ′. By Lemma 4.6.7, under this isomorphism, the closest point(s) of B to

the centre of T̃ which are integer distance from m are mapped to the closest

point(s) of B′ to the centre of T̃ ′ which are integer distance from m′. Suppose

there is a unique such closest point of B, say P , to the centre of T̃ which is

integer distance from m. That is P will be taken to be the marked point of

T ∗. By Lemma 4.6.7 there is then also a unique closest point Q to the centre

of T̃ ′. Similarly Q will be taken to be the marked point of (T ′)∗. Certainly

when P lies on the core, Q does also, and d(P,Q) = 0. So, T ∗ and (T ′)∗ will be

isomorphic (an open yellow edge will be added at P and a vertex created if P

was not already a vertex of T̃ to create both T ∗ and (T ′)∗). So, suppose that P

does not lie on the core. Then certainly Q does not either and d(c, P ) = d(c,Q)

where c is the centre of T̃ ∼= T̃ ′. It remains to show that P and Q are both

either green or not green on B and B′ respectively. So, suppose that P does

not lie on a green part of B. Denote the unique vertex of T̃ closest to P by

vc. That is either P lies on the open edge of T which is coloured yellow (so

v0 = vc), or vc is a leaf of T̃ 1 such that denom(d(vc,m)) | s(vc, T ).
Note that if vc is yellow, no green edges are ever going to be attached to vc

when constructing B or B′ so certainly a yellow open edge is simply attached

at vc to create both T ∗ and (T ′)∗. So T ∗ ∼= (T ′)∗.

So, it remains to deal with the case when vc is blue. If vc has more than

one closed incident edge of multiplicity 1 in T ∗ then in d(m, vc) ∈ Z which

would contradict our assumption that P does not lie on the core, since vc is on

the path between P and m. So vc has either 1 or no incident closed edges of

multiplicity 1 in T ∗. Suppose first that P is not green. That is, T ∗ is obtained
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by attaching an open yellow edge to vc.

If vc has no incident closed edges of multiplicity 1 in T ∗ then V (T̃ 1) = {vc}
and vc is the centre. Note that we then must be in case (C) or (E) when we are

creating T ′. Suppose we are in case (E). Then if a blue edge is added to vc when

creating T ′ from T̃ then we must have that d(m′, vc) ∈ Z, since degT̃ 1(vc) = 0,

which gives a contradiction. So T ′ has a yellow open edge attached at vc. This

gives us that if there is a green edge attached to vc in B then there is also a

green edge attached to vc in B
′. Furthermore, if a green edge is attached to vc

in B, since T ′ was created under case (E), m′ does not lie on this green edge

(as m′ is not green). So, m′ lies on ε, as does P . Therefore P and Q lie on

the same branch and an open yellow edge is added to T̃ at vc to create (T ′)∗.

Thus T ∗ ∼= (T ′)∗. Case (C) can be dealt with similarly.

If vc has one incident closed edge in (T ∗)1 then denom(d(vc,m)) | s(v, T ∗).

So, in (T ′)1, vc is either a leaf or has an edge removed from it when passing from

T ′ to T̃ ′. If vc is a leaf in (T ′)1 then s(vc, T
∗) = s(vc, T

′), so denom(d(vc,m)) |
s(v, T ′) and the open edge added to vc that Q lies on is black. The same holds

if a yellow open edge is attached at vc to create T ′ from T̃ . Otherwise, if a blue

edge is removed from vc when passing from T ′ to T̃ ′, s(v, T ′) = s(v, T ∗) − 1.

However we must have that denom(d(vc,m)) | s(v, T ′), since vc has two incident

multiplicity 1 edges in T ′. So, since denom(d(vc,m)) | s(v, T ∗) = s(v, T ′) + 1

we must have that denom(d(vc,m)) ∈ Z which contradicts that the closest

point integer distance to the centre c does not lie on the core. So, T ∗ ∼= (T ′)∗.

If P is green a similar proof follows and we find that T ∗ ∼= (T ′)∗.

Should there be two points equidistant from the center we can follow the

exact method of the above proof, just accounting for the fact that there will

be two “canonical” representatives.

Suppose that T ′′ is a metric open quotient BY tree with marked point

m′′ that is equivalent to T . Then by Proposition 4.3.9 as above we know

that T ′′ must be obtained from T̃ by one of the four moves (a)-(d). We note

throughout the proof of Theorem 4.6.4 where the assumptions we have made

are necessary to ensure the resulting open tree is indeed a metric open quotient

BY tree. There are just a couple of instances where it might sometimes be

possible to add to T̃ and still obtain a metric open quotient BY tree that is

not obtained by one of the moves in Theorem 4.6.4. In particular, it is possible

that dropping the condition in both (E2) and (E3) that if deg1
T̃
(vc) = 0 then

d(vc,m) = 0 still results in a metric open quotient BY tree, or that in case

(C) we could have instead added an open yellow edge at the closest vertex vc

of T̃ to m′. However, dropping this condition in (E2) and (E3) will not result
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in an equivalent tree. This is proved very similarly to the earlier part of this

proof. Similarly, adding an open yellow edge in case (C) will only result in an

equivalent metric open quotient BY tree when d(m, vc) ∈ Z, in which case this

is covered by case (E1). From this, we conclude that if T ′′ was obtained by

adding an open edge to T̃ via one of (a)-(d), but was not described in Theorem

4.6.4, then T ′′ cannot be a metric open quotient BY tree equivalent to T .

Example 4.6.9. Let T be the metric open quotient BY tree as in Example

4.6.5.

T =

It is straightforward to check that each of the trees pictured in Figure 4.13 is

indeed equivalent to T . Furthermore, any of the possible ways described by

Proposition 4.3.9 to create a metric open quotient BY tree from T̃ are shown

in Figure 4.13. Thus Figure 4.13 depicts the full equivalence class of T . By

Example 4.5.6, the canonical representative T ∗ is isomorphic to T and thus in

its equivalence class.

Corollary 4.6.10. Let T be a metric open quotient BY tree, then a tree T ∗

as constructed in Construction 4.5.5 is itself a metric open quotient BY tree.

Furthermore, T ∗ is equivalent to T .

Proof. In Case 1 (a), when m′ is a vertex of T̃ 1, and we attach an open yellow

edge to T̃ at m′, then we lie in case (A1) of Theorem 4.6.4. So, T ∗ is a metric

open quotient BY tree.

In Case 1 (b), m′ lies on an edge e of T̃ , and we create a genus 0 vertex

there, coloured the same as e, and attach an open yellow edge at m′. That

is, we lie in case (B1) of Theorem 4.6.4, and T ∗ is a metric open quotient BY

tree.

In Case 2 (a), m′ does not lie on T̃ and is coloured green. We attach ’open

yellow edge → genus 0, multiplicity 1, blue vertex → closed blue multiplicity

1 edge’ to the closest vertex vc of T̃ to m′. That is, we lie in case (C1) of

Theorem 4.6.4, and T ∗ is indeed a metric open quotient BY tree.

In Case 2 (b), m′ does not lie on T̃ and is not coloured green. We attach

an open yellow edge to the closest vertex vc of T̃ to m′. By Lemma 4.5.4 (ii),

vc is the closest point on T̃ to m′. Furthermore, by Lemma 4.5.4, vc = v0, or

vc is a leaf of T 1 with denom(d(vc,m)) | s(vc, T ). If vc is a leaf of T 1, then

certainly there is at most one closed edge of multiplicity 1 incident to vc in
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T . So, we satisfy the conditions in (E1) and can attach an open yellow edge

at vc to obtain a metric open quotient BY tree. If vc = v0 ∈ V (T̃ ) then note

that, d(m′, vc) > 0, and vc lies on the path between m′ and c. Since m′ is the

closest point of B to c which is also integer distance from m, we must have

that d(m′, vc) /∈ Z. So, vc either has one or two multiplicity 1 incident edges

in T (including the open edge). If ϵ is blue, and vc = v0 has two incident

edges of multiplicity 1 in T , then by Theorem 4.6.4, we cannot add an open

yellow edge at vc. However, this case cannot occur since if vc has two incident

edges of multiplicity 1 in T , and d(m, vc) /∈ Z then no black edge is added

which means m′ lies on the open edge which is coloured green in B. This is a

contradiction since m′ is not green. In all other cases we do lie in Case (E1)

so adding an open yellow edge at vc to create T ∗ does indeed result in a metric

open quotient BY tree.

It follows that, by Theorem 4.6.8, T ∗ is always equivalent to T .

We will see shortly, that we are able to embed the extended tree described

in Construction 4.5.1 into a larger tree, whose vertices are p-adic discs. This

embedding will allow us to view the possible marked points m′, as described

in Theorem 4.6.4, as the vertices in this tree which are discs with centre in

K and integer radius. First, let us make the link between open quotient BY

trees and cluster pictures, thus allowing the equivalence relation and complete

description of the equivalence class to be translated to metric cluster pictures.
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Chapter 5

Polynomials and Open Quotient

BY Trees

5.1 Open Quotient BY Trees Associated to

Cluster Pictures
In Section 4.1 we defined open quotient BY trees. Here we instead construct

quotient BY trees associated to cluster pictures of what will turn out to be

a tame hyperelliptic curve (but for now we will be thinking purely in terms

of polynomials rather than curves), before showing there is a one-to-one cor-

respondence between these objects. Throughout Chapters 5 and 6, unless

otherwise stated, we restrict ourselves to the situation where a cluster picture

(R,Σ, d) has dR ≥ 0. However, it is worth noting that this will not limit our

final results. If dR < 0, a simple scaling allows us to increase the depths of all

clusters by an integer. This is discussed in more detail in Section 5.3.

For our purposes, a cluster picture will only be “valid” if there is a tame

hyperelliptic curve with an isomorphic cluster picture. We use the following

(slightly restated) definition from [Bis19] to talk about when this is the case.

Definition 5.1.1. Let Σ be a metric cluster picture. Then Σ is of polynomial

type over K if there exists a square-free polynomial f ∈ K[x] whose splitting

field is tamely ramified, such that if R is the set of roots of f in K̄ then

Σ′ = (R,Σ′, d) is isomorphic to Σ.

Note that whilst this definition doesn’t explicitly mention hyperelliptic

curves, it does mean that Σ is of polynomial type over K if there exists a hy-

perelliptic curve C : y2 = f(x) with tame reduction, such that Σ is isomorphic

to ΣC . However, for the purposes of this section it is only necessary to consider

such polynomials rather than hyperelliptic curves.

Theorem 5.1.2. There is a one-to-one correspondence between metric open

quotient BY trees and metric cluster pictures (Σ,R, d) of polynomial type with

dR ≥ 0.



5.1. Open Quotient BY Trees Associated to Cluster Pictures 106

Proof. This is a direct consequence of Theorems 5.1.19 and 5.1.20 and Propo-

sition 5.1.12.

The construction below makes use of Galois orbits of clusters, so we first

make the following definitions.

Definition 5.1.3. Let X be a Galois orbit of clusters. Then X is übereven

if for all s ∈ X, s is übereven. We define an orbit X to be odd, even, and

principal similarly.

Definition 5.1.4. Let X and X ′ be Galois orbits of clusters. We say that X ′

is a child of X, written X ′ < X, if for every s′ ∈ X ′ there exists some s ∈ X

such that s′ < s. Define δX′ = δs′ for some s′ ∈ X ′.

Construction 5.1.5 (T (Σ)). Let (R,Σ) be a cluster picture of polynomial

type, with dR ≥ 0. We define T = T (Σ), the open quotient BY tree associated

to Σ as follows. Let T be a finite tree, equipped with a genus marking g :

V (T ) → Z≥0 on vertices, a multiplicity function M : V (T ) ∪ E(T ) → Z>0,

and a 2-colouring blue/yellow on vertices and edges. T has one vertex vX for

every Galois orbit X of proper clusters in Σ, coloured yellow if X is übereven

and blue otherwise. For X and X ′ both proper orbits, with X ′ < X, T has

an edge between vX and vX′ coloured yellow if X ′ is even, and blue otherwise.

One additional open edge is added to vR, coloured yellow if R is even, and

blue otherwise.

The genus of a vertex vX is defined to be the semistable genus gss(s) of

any cluster s ∈ X, as in Definition 2.1.14. The multiplicity of a vertex vX′

or an edge between vX and vX′ , where X ′ < X is defined to be |X ′|. Note

that this means that M(vX) is the minimum of M(e) over all incident edges e,

and if e is incident to v1 and v2, then M(e) = max {M(v1),M(v2)}. For this

reason, we can omit writing the multiplicity of edges when we draw T , as they

can be deduced from the multiplicities of the vertices.

Furthermore, we can define a metric on T , by defining the length of a

closed edge e between vX and v′X with X ′ < X to be δX′ , and a marked point

m lies distance dR along the open edge. We mark m with a cross.

Example 5.1.6. Let C be the hyperelliptic curve over Qur
p , for p ≥ 5, defined

by

C : y2 = (x2 − p2)((x3 − p)2 − p5)((x− 1)4 − p8)((x− 2)3 − p2).

Then the cluster picture Σ is shown in Figure 5.1 and the open quotient BY

tree of Σ is shown in Figure 5.2 below.
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Figure 5.1: Cluster picture Σ of C/Qur
p .

Figure 5.2: Open quotient BY tree of Σ

Remark 5.1.7. The idea, of open quotient BY trees associated to cluster

pictures, is to generalise open BY trees in a way that is practically useful even

in the non-semistable situation. One slight subtlety to note is the difference in

convention between edge lengths on BY trees and open quotient BY trees. For

BY trees, a yellow edge between vs′ and vs with vs′ ⪯ vs (recall, v
′ ⪯ v if v lies

on the embedded path from m to v′) would be assigned length 2δs′ rather than

δs′ , that is, our yellow edges have half the length of those in BY trees. Although

this notation T (Σ) is also used in the semistable setting, we do not need to

worry about this being confusing. One can simply think of open BY trees as

being open quotient BY trees with all edges and vertices having multiplicity

1 (and all yellow edges having the edge lengths adjusted accordingly). Indeed

this is proved explicitly in Proposition 6.1.3. As such, all statements relating

to BY trees in [DDMM17] and [DDMM18] can be applied to the open quotient

BY tree associated to the cluster picture of a semistable hyperelliptic curve.

So, whilst on occasion we will refer back to BY trees and use the same notation,

one is not to worry about it being confusing as there is no conflict between

them (other than the convention for lengths of yellow edges). The quotient

case simply encapsulates slightly more information, allowing it to be used more

generally.

Example 5.1.8. Consider the following cluster picture of polynomial type:

Σ =
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The associated open BY and open quotient BY trees are shown in Figure 5.3.

(a) Open BY tree associated to Σ (b) Open quotient BY tree associated to Σ

Figure 5.3: Open BY and open quotient BY trees associated to Σ.

The aim for the rest of this section is to prove Theorem 5.1.2. In particular,

we will show that the open quotient BY tree of a cluster picture of polynomial

type is an open quotient BY tree, and that the converse is also true. That

is, every open quotient BY tree corresponds to a cluster picture of polynomial

type. This will give us a one-to-one correspondence (up to isomorphism) and

allow us to work with open quotient BY trees instead of cluster pictures. First,

we describe how to construct a cluster picture from an open quotient BY tree.

We will then show that this construction actually gives a “valid” cluster picture

(i.e. it is of polynomial type), as well as showing that the open quotient BY

tree associated to a cluster picture is indeed an open quotient BY tree in the

sense of Definition 4.1.3. This construction is similar to that of Construction

4.15 in [DDMM17], bar the lengths of yellow edges differing by a factor of 2.

Construction 5.1.9 (Σ(T )). Let T be an open quotient BY tree as defined

in Definition 4.1.3 with marked point m. Then we define the associated cluster

picture Σ(T ) as follows. Define a partial order on the vertices of T by setting

v′ ⪯ v if v lies on the embedded path from m to v′.

Define M(v) sets of singletons:

Rv
i = {xvi,1, . . . xvi,s(v)}, for 1 ≤ i ≤M(v).

Now take

R =
⋃

v∈V (T ),
blue

Rv
1 ∪ · · · ∪Rv

M(v).

Furthermore, for any vertex v ∈ V (T ) (blue or yellow), for 1 ≤ i ≤ M(v)

define

sv,i =
⋃
v′⪯v,
blue

Rv′

(i−1)
M(v′)
M(v)

+1
∪ · · · ∪Rv′

i
M(v′)
M(v)

.

Note that if v′ ⪯ v then by Definition 4.1.3 (iv) M(v) | M(v′), so M(v′)
M(v)

is
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always an integer. Now define Σ ⊆ P(R), a subset of the power set of R, by

Σ =

 ⋃
v∈V (T )

(
sv,1 ∪ · · · ∪ sv,M(v)

) ∪

(⋃
x∈R

{x}

)
,

=
⋃

v∈V (T )

M(v)⋃
i=1

sv,i ∪
⋃
x∈R

{x}.

We define the (non-metric) cluster picture associated to T to be Σ(T ) = (Σ, R).

We may also define a metric on Σ in the following way. If v, w ∈ V (T ) then,

for all 1 ≤ i ≤ M(v) and 1 ≤ j ≤ M(w), we define dsv,i = d(v,m) and

δ(sv,i, sw,j) = dsv,i + dsw,j
− 2d(sv,i∧sw,j), where sv,i ∧ sw,j is the smallest cluster

containing both sv,i and sw,j, and where d(v, w) is the length of the shortest

path between v and w. Define the (metric) cluster picture associated to T to

be Σ(T ) = (R,Σ, d).

Remark 5.1.10. Again, as in Remark 5.1.7, this construction agrees with

that in [DDMM17, Construction 4.15] (after allowing for the difference in

convention between edge lengths of BY trees and open quotient BY trees).

Proposition 5.1.11. Let T be an open quotient BY tree, then Σ(T ) is of

polynomial type. Similarly, let (R,Σ, d) be a cluster picture of polynomial

type, with dR ≥ 0. Then T (Σ) is an open quotient BY tree.

Proof. Theorem 5.1.19 proves that Σ(T ) is of polynomial type, and Theorem

5.1.20 proves that T (Σ) is an open quotient BY tree, in the sense of Definition

4.1.3.

Before we move on to discussing the details of this proof, let us first show

that the construction above works as we would hope and recovers the starting

cluster picture or open quotient BY tree.

Proposition 5.1.12. Let T be a metric open quotient BY tree, then

T (Σ(T )) ∼= T . Similarly, let (R,Σ) be the cluster picture of polynomial

type with dR ≥ 0, then Σ(T (Σ)) ∼= Σ.

Proof. First let us prove that, for a cluster picture Σ of polynomial type,

Σ(T (Σ)) ∼= Σ. Certainly Σ and Σ(T ) have isomorphic clusters. To see this note

that for every Galois orbit of clustersX, T (Σ) has a vertex vX with multiplicity

M(vX) = |X|. So, Σ(T (Σ)) has precisely |X| clusters svX ,i, 1 ≤ i ≤ |X|, arising
from vX .
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Let X ′ be an orbit of proper clusters with X ′ < X, then by definition we

must have precisely |X′|
|X| clusters in X ′ that are children of any s ∈ X. Note

that every proper child of s will lie in such an orbit. X ′ gives rise to a vertex

vX′ , coloured yellow if X ′ is übereven and blue otherwise, in T (Σ) which is

adjacent to vX . The edge between them is coloured blue if X ′ is odd and

yellow otherwise. By construction, all edges incident to vX , except the unique

edge on the path between vX and m (when X = R this will be the open edge),

arise in this way. That is, orbits X ′ < X each contribute a vertex vX′ , which

correspond to precisely the vertices v ∈ V (T (Σ)) which are adjacent to vX ,

with v ⪯ vX , i.e. v < vX . Each such vertex gives rise to |X ′| clusters

svX′ ,i =
⋃

v′⪯vX′ ,
blue

Rv′

(i−1)
M(v′)

M(vX′ )
+1

∪ · · · ∪Rv′

i
M(v′)

M(vX′ )
.

Note that, since svX ,i =
⋃

v′⪯vX ,
blue

Rv′

(i−1)
M(v′)
M(vX )

+1
∪ · · · ∪Rv′

i
M(v′)
M(vX )

, we can write

svX ,i =



⋃
vX′<vX

 ⋃
v′⪯vX′ ,

blue

Rv′

(i−1)
M(v′)
M(vX )

+1
∪ · · · ∪Rv′

i
M(v′)
M(vX )

 , X übereven,

RvX
i ∪

⋃
vX′<vX

 ⋃
v′⪯vX′ ,

blue

Rv′

(i−1)
M(v′)
M(vX )

+1
∪ · · · ∪Rv′

i
M(v′)
M(vX )

 , otherwise.

Note that the set
{
(i− 1) M(v′)

M(vX)
+ 1, (i− 1) M(v′)

M(vX)
+ 2, . . . , i M(v′)

M(vX)

}
can be bro-

ken up in the following way:

M(vX′ )
M(vX )⋃
k=1

M(v′)
M(vX′ )⋃
j=1

{
(i− 1)

M(v′)

M(vX)
+ (k − 1)

M(v′)

M(vX′)
+ j

}
.

So, if X is übereven, we have that

svX ,i =
⋃

vX′<vX

s
vX′ ,(i−1)

M(vX′ )
M(vX )

+1
∪ · · · ∪ s

vX′ ,i
M(vX′ )
M(vX )

,

and otherwise we have

svX ,i = RvX
i ∪

⋃
vX′<vX

s
vX′ ,(i−1)

M(vX′ )
M(vX )

+1
∪ · · · ∪ s

vX′ ,i
M(vX′ )
M(vX )

.
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Therefore, the only proper children of svX ,i arise from X ′ < X and are

s
vX′ ,(i−1)

M(vX′ )
M(vX )

+k
for 1 ≤ k ≤ M(vX′ )

M(vX)
= |X′|

|X| .

The only other possible children of svX ,i will be singletons. Suppose that

X is an orbit of übereven clusters. So every s ∈ X has only even children.

There are no elements of R contained in svX ,i that aren’t also contained in

another cluster in Σ(T (Σ)), that is svX ,i has no singletons.

Otherwise, X is an orbit of non-übereven clusters, so vX is coloured blue.

The singletons of svX ,i are precisely the elements of the set RvX
i , as defined in

Construction 5.1.9. That is, svX ,i has precisely |RvX
i | = s(vX , T (Σ)) singletons.

By definition, for s ∈ X, #{odd children of s} ∈ {2gss(s) + 1, 2gss(s) + 2}. If

X is an even orbit, then we must have #{odd children of s} = 2gss(s) + 2. In

T (Σ) the edge incident to vX which lies on the path between vX and m must

therefore be coloured yellow. Let X ′ be an orbit of odd clusters with X ′ < X,

then by definition we must have precisely |X′|
|X| clusters in X ′ that are children

of any s ∈ X. Note that every proper odd child of s will lie in such an orbit.

X ′ gives rise to a vertex vX′ in T (Σ) which is adjacent to vX , and the edge

between them is coloured blue. By construction, all blue edges incident to vX

arise in this way. So,

2gss(s) + 2 = #{odd children of s},

= #{proper odd children of s}+#{singletons of s},

=
∑

e∈V (T (Σ)b)
incident to vX

M(e)

M(vX)
+ #{singletons of s}.

So, s has s(vX , T (Σ)) singletons, that is the same number of singletons as each

svX ,i has. A similar argument follows when s is odd, bearing in mind that in

this situation #{odd children of s} = 2gss(s) + 1, however the edge incident

to vX , lying between vX and m is now coloured blue. So again, we get that s

and svX ,i have the same number of singletons.

So far we have shown that there is a one-to-one correspondence between

the proper children of s and svX ,i, and, if X is not übereven, the singletons of

svX ,i. It remains to show that |s| = |svX ,i|, their children have the same sizes,

gss(s) = gss(svX ,i) and ds = dsvX,i
.

It follows, by an inductive argument starting at the leaves of T (Σ), that

every cluster svX ,i has the same size as the clusters in X. Since this argument

works for all orbits of clusters in Σ, we also have that every proper child of s

corresponds to a child of svX ,i of the same size. It then also follows that gss(s) =
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gss(svX ,i). Again, an inductive argument starting at the leaves of T (Σ) gives us

an isomorphism between the non-metric versions of the two cluster pictures Σ

and Σ(T (Σ)). Finally, by construction, we have dsvX,i
= d(vX ,m) = dX = ds.

Now let us prove that, for a metric open quotient BY tree T , T (Σ(T )) ∼= T .

This can be proved in a similar way. However, one can also note that if

T (Σ(T )) ̸∼= T then, by construction of Σ, Σ(T (Σ(T ))) ̸∼= Σ(T ). We will see

later in Theorem 5.1.19 that Σ(T ) is a cluster picture of polynomial type,

so this would contradict the first part of this proof since we should have

Σ(T (Σ(T ))) ∼= Σ(T ). Therefore, T (Σ(T )) ∼= T .

So indeed the constructions of T (Σ) and Σ(T ) act as we hoped.

Remark 5.1.13. Note that if v ∈ V (T ) has either degree 1, or degree 2 and

both incident edges have equal multiplicity, then each of the clusters arising

from v, in the construction of Σ(T ), have either no proper child, or exactly

one proper child respectively. In these cases the only possible non-trivial orbits

that can occur are completely determined by the number of singletons each

cluster sv,i has, and M(v) (the size of the orbit of sv,i itself). In all other cases

the construction of Σ(T ) results in more than one proper child of each of sv,i.

In this case, the size of the orbits of children is determined by M(v) and the

maximal multiplicity of edges incident to v. We will discuss in more detail

below that, by [Bis19, Theorem 1.3], for a hyperelliptic curve C all children

of a cluster s ∈ ΣC , except for possibly one child, must be in orbits of the

same size. So, any singletons of sv,i (except for possibly one lone singleton)

must lie in orbits of the same size. Indeed, we saw in Proposition 4.1.17 that

lcm(denom(d(v,m)),M(v)) divides M(v)s(v, T ) or M(v)(s(v, T ) − 1), which

corresponds to the case when all singletons are in orbits of the same size, and

the case where there is one singleton in a smaller orbit.

An open quotient BY tree corresponds to the cluster picture of a hyper-

elliptic curve with tame reduction, if and only if it corresponds to a cluster

picture of polynomial type. So, for an open quotient BY tree T , we need Σ(T )

to be of polynomial type over K. The following hypothesis and theorem from

[Bis19] provide a useful way to check if a cluster picture is of polynomial type.

For a hyperelliptic curve C, by [Bis19, Theorem 1.3], all children of a cluster

s ∈ ΣC , except for possibly one child must be in orbits of the same size. Here

we make this more precise by restating this result, along with the following

notation and definition, from [Bis19].

Notation 5.1.14. For a cluster s, we denote by Gs the stabiliser of s under

the Galois group G.
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Definition 5.1.15. For a cluster picture (R,Σ) an orphan of a cluster s ∈ Σ

is a unique fixed child of s under the action of Gs

One can also replace the Galois group by a subgroup of Sym(R) for an

abstract definition of orphans as follows.

Definition 5.1.16. Let (R,Σ, d) be a metric cluster picture and h ∈ Sym(R)

which induces an automorphism of Σ. Write H = ⟨h⟩. Then an orphan (with

respect to H) of a cluster s ∈ Σ is a child s′ of s such that s′ is fixed under the

stabiliser StabH(s) of s, and s′ is unique in this respect.

Hypothesis H. Let (R,Σ, d) be a cluster picture. Then we say Σ satisfies

Hypothesis H if there exists a h ∈ Sym(R) which induces an automorphism of

Σ such that, if we write H = ⟨h⟩:

• The orbits of non-orphan children of a proper cluster s all have length

equal to denom(ds[H : StabH(s)]) under StabH(s);

• Let R ̸= s ∈ Σ then

[H : StabH(s)] = lcms⊊s′denom(d∗s′),

where for a cluster s′ ⊋ s,

d∗s′ =

1 if the child of s′ containing s is an orphan,

ds′ else.

Remark 5.1.17. The above conditions imply that |H| = lcms∈Σds (where the

lcm runs over all proper clusters). This gives a useful preliminary criterion to

check if a cluster picture satisfies Hypothesis H. [Bis19, Remark 2.3]

Theorem 5.1.18 ([Bis19, Theorem 2.4]). Let (Σ, R, d) be a cluster picture

and suppose that p > |R|. Then Σ is of polynomial type over K if and only if

Σ satisfies Hypothesis H.

We will now prove that for an open quotient BY tree T , Σ(T ) is of poly-

nomial type. The approach is to construct an action on Σ(T ) that satisfies

Hypothesis H.

Theorem 5.1.19. Let T be an open quotient BY tree, then Σ(T ) is of poly-

nomial type over K (for p sufficiently large).
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Proof. We wish to construct an action of a cyclic group H on the clusters

in Σ(T ). Recall, as described in Construction 5.1.9, each vertex v ∈ V (T )

contributes M(v) proper clusters sv,1, . . . , sv,M(v), each containing s(v) single-

tons of Σ(T ). To make life easier for the sake of this proof, we note that we

can relabel the clusters in Σ(T ) inductively as follows: Label the one proper

cluster arising from v0 as sv0 . For any vertex v ∈ V (T ) assume proper clus-

ters arising from v have been labeled sv, σ(sv), . . . , σ
M(v)−1(sv). We also write

σM(v)(sv) = sv, giving us an action of degreeM(v) on the set of clusters arising

from v. Assume further, that these clusters have been labeled in such a way

that for any v, v′ ∈ V (T ) with v′ ⪯ v, σi(sv′) is contained in σj(sv) if and only

if the coset σiStabH(sv′) = σi⟨σM(v′)⟩ is contained in σjStabH(sv) = σj⟨σM(v)⟩,
where σ has order lcmv∈V (T )M(v) and H = ⟨σ⟩. Note that such a labeling is

indeed possible as by construction if v′ ⪯ v then there are precisely M(v′)
M(v)

clus-

ters arising from v′ that are contained in any given cluster arising from v (of

which there are M(v) such clusters).

For any v ∈ V (T ) write s(v) = s(v, T ) and let d = denom(d(v,m)), where

m is the marked point of T . Recall that every cluster arising from v has s(v)

singletons, and
lcm(d,M(v))

M(v)
| s(v) or (s(v)− 1).

If lcm(d,M(v))
M(v)

| s(v) then let us relabel the s(v)M(v) singletons arising from v

as

rv,i, σ(rv,i), . . . , σ
lcm(d,M(v))−1(rv,i), for 1 ≤ i ≤ s(v)M(v)

lcm(d,M(v))
,

in such a way that σi(rv,α) is contained in σj(sv) if and only if the coset

σiStabH(rv,α) = σi⟨σlcm(d,M(v))⟩ is contained in σjStabH(sv) = σj⟨σM(v)⟩. Note
that this means there are precisely s(v) singletons arising from v in each of

σj(sv) for 0 ≤ j ≤ M(v) − 1 (where sv = σ0(sv)). Otherwise, if lcm(d,M(v))
M(v)

|
(s(v)−1), then let us relabel (s(v)−1)M(v) of the s(v)M(v) singletons arising

from v as

rv,i, σ(rv,i), . . . , σ
lcm(d,M(v))−1(rv,i), for 1 ≤ i ≤ (s(v)− 1)M(v)

lcm(d,M(v))
,

and the remaining M(v) singletons arsing from v as

rv, . . . , σ
M(v)−1(rv),

in such a way that σi(rv,α) is contained in σj(sv) if and only if the coset

σiStabH(rv,α) = σi⟨σlcm(d,M(v))⟩ is contained in σjStabH(sv) = σj⟨σM(v)⟩, and
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σi(rv) is contained in σj(sv) if and only if i = j (where σ0 is the identity map).

Note that this means there are precisely s(v) singletons arising from v in each

of σj(sv) for 0 ≤ j ≤M(v)− 1. In either situation, it is clear that if r ∈ σi(sv)

then σM(v)(r) is also, and no lower powers of σ will satisfy this so labeling in

this way is indeed consistent with us having Stab(σi(sv)) = ⟨σM(v)⟩.

It is immediate, after relabeling in this way, that σ is an automorphism

of Σ(T ), and a bijection on R.

In order to verify Hypothesis H, we need to check that the orbits

of non-orphan children of a proper cluster σi(sv) all have length equal to

denom(dσi(sv)[H : StabH(σ
i(sv))]) under StabH(σ

i(sv)) = ⟨σM(v)⟩, where

dσi(sv) = d(v,m). To do this let us calculate the orbit sizes of children of

σi(sv) under σ
M(v).

Again, let us write d = denom(dσi(sv)) = denom(d(v,m)). Let v′ ⪯ v

be a vertex which is adjacent to v. Recall from Definitions 4.1.3 and 4.1.13

that M(v′) = M(v), or M(v′) = lcm(d,M(v)). It is easy to read off this

new labeling that, under σM(v), clusters σj(sv′) have orbit size M(v′)
M(v)

. So,

if M(v′) = lcm(d,M(v)) then under σM(v), clusters σj(sv′) have orbit size
lcm(d,M(v))

M(v)
. If instead, M(v′) = M(v) then the orbit of σj(sv′) under σM(v)

has size 1. It remains to consider the orbit sizes of the singletons of σi(sv).

Similarly, from the labeling it follows that under σM(v) any root σj(rv,α) has

orbit size lcm(d,M(v))
M(v)

. If lcm(d,M(v))
M(v)

| (s(v)−1), then the remaining roots labeled,

σj(rv) have orbit size 1 under σM(v). Note that

lcm(d,M(v))

M(v)
=
dlcm(d,M(v))

dM(v)
,

=
d

gcd(M(v), d)
,

= denom(dσi(sv)M(v)),

= denom(dσi(sv)[H : StabH(σ
i(sv))]).

By Definition 4.1.3 (iii) either every v′ ⪯ v incident to v has multiplic-

ity lcm(d,M(v)), or all but one v′ ⪯ v incident to v has multiplicity

lcm(d,M(v)) ̸= M(v) and the other one has multiplicity M(v). Furthermore,

if every v′ ⪯ v incident to v has multiplicity lcm(d,M(v)) then lcm(d,M(v))
M(v)

can divide s(v) or s(v) − 1, otherwise if there exists a v′ ⪯ v adjacent

to v with multiplicity M(v′) = M(v) ̸= lcm(d,M(v)), then lcm(d,M(v))
M(v)

di-

vides s(v), by Definition 4.1.3 (iv). So, in either case every child of σi(sv)

has orbit size denom(dσi(sv)[H : StabH(σ
i(sv))]) under StabH(σ

i(sv)), except
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possibly for one child which is fixed by StabH(σ
i(sv)) (in which case this

child is an orphan by definition). So, every non-orphan child has orbit size

denom(dσi(sv)[H : StabH(σ
i(sv))]) under StabH(σ

i(sv))

It remains to prove the second part of Hypothesis H. That is, that for

R ̸= s ∈ Σ,

[H : StabH(s)] = lcms⊊s′denom(d∗s′),

where for a cluster s′ ⊋ s,

d∗s′ =

1 if the child of s′ containing s is an orphan,

ds′ otherwise.

We will prove this by induction, but first let us note the following.

By the previous part of this proof we know that if v′ ⪯ v are adja-

cent vertices, then v′ gives rise to an orphan of σj(sv) if and only if

M(v′) =M(v) ̸= lcm(denom(d(v,m)),M(v)), and otherwise we have M(v′) =

lcm(denom(d(v,m)),M(v)). Recall that [H : StabH(σ
j(sv))] =M(v).

For the base case let us assume that v = v0. So, σi(sv′) < R. Note

that M(v′) = M(v0) ̸= lcm(denom(d(v0,m)),M(v0)) if and only if σi(sv′) is

an orphan of R, and otherwise M(v′) = lcm(denom(d(v0,m)),M(v0)). By

definition M(v0) = 1, d(v0,m) = dR. So, M(v′) = 1 ̸= denom(dR) if sv′ =

σi(sv′) is an orphan of R, and otherwise M(v′) = denom(dR). Therefore

[H : StabH(σ
i(sv′))] = denom(d∗R).

For the inductive step let v′ ⪯ v be adjacent vertices and assume that

for every 1 ≤ j ≤ M(v), [H : StabH(σ
j(sv))] = lcmσj(sv)⊊s′denom(d∗s′).

Let σi(sv′) be a child of σj(sv). If σi(sv′) is an orphan of σj(sv) then

M(v′) = M(v) ̸= lcm(denom(dσj(sv)),M(v)), otherwise we have M(v′) =

lcm(denom(dσj(sv)),M(v)). Therefore

[H : StabH(σ
i(sv′))] =

M(v) σi(sv′) orphan of σj(sv),

lcm(denom(dσj(sv)),M(v)) otherwise.

=

lcmσj(sv)⊊s′denom(d∗s′) σi(sv′) orphan of σj(sv),

lcm(denom(dσj(sv)), lcmσj(sv)⊊s′denom(d∗s′)) otherwise.

This can be simplified to [H : StabH(σ
i(sv′))] = lcmσi(sv′ )⊊sdenom(d∗s) which

concludes our proof. In particular, we have shown that for an open quotient

BY tree T , Σ(T ) satisfies Hypothesis H and is therefore of polynomial type.
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Now let us prove that, when Σ is a cluster picture of polynomial type,

T (Σ) is an open quotient BY tree.

Theorem 5.1.20. Let (R,Σ, d) be a cluster picture of polynomial type, with

dR ≥ 0. Then the open quotient BY tree T (Σ) associated to Σ is an open

quotient BY tree in the sense of Definition 4.1.3.

Proof. Since Σ is of polynomial type there exists a square free polynomial

f ∈ K[x] whose splitting field is tamely ramified, such that R is the set of

roots of f in K̄. By Theorem 5.1.18, provided p is sufficiently large, Σ satisfies

Hypothesis H. In particular H can be taken to be the Galois group G of the

splitting field of f (see the proof of Theorem 2.4 in [Bis19, p. 5]). Let’s go

through the criteria in Definition 4.1.3 and check they are all satisfied.

(i) By Construction 5.1.5 a vertex in T (Σ) is coloured yellow if and only if it

arose from an orbit of übereven clusters, say X. Since every such s ∈ X

is even, the edge from the vertex arising from the orbit of P (s) to vX

(or the open edge if X = {R}) will be coloured yellow. All other edges

incident to vX arise from orbits X ′ < X. That is, they arise from the

orbits X ′ of even children. Therefore all incident edges must be yellow.

Finally by Definition 2.1.14 every such vX has genus 0.

(ii) Let vX be any vertex in T (Σ), corresponding to an orbit X of clusters in

Σ. Let P (X) be the orbit of the parents of clusters in X. Then for any

orbit X ′ < X we have that |X ′| ≥ |X|. By construction, the edge from

vP (X) to vX has multiplicity |X|, whereas the edge from vX to the vertex

vX′ arising from the Galois orbit X ′ of s′ has multiplicity |X ′|. So, the

path from m to any vertex in T (Σ) has increasing multiplicities.

(iii) Let X be an orbit of clusters in Σ. Then, by construction, d(vX ,m) =

dX . Hypothesis H says that, for any cluster s ∈ X, |X| = [G : Gs] =

lcms⊊s′denom(d∗s′), where d
∗
s′ is defined in Hypothesis H. So, for s2 < s1 ∈

X we have that

[G : Gs2 ] =

[G : Gs1 ], if s2 is an orphan,

lcm([G : Gs1 ], denom(ds1)), otherwise.

Since the edge from vs1 to vP (s1) always has multiplicity |X| = [G : Gs1 ],

and s1 can have at most one orphan we can conclude that either one or

two edges adjacent to vs1 have multiplicity |X| = [G : Gs1 ] and all others
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have multiplicity lcm(|X|, denom(ds1)). Furthermore, the top cluster R
is always in a trivial Galois orbit, so M(ε) = 1.

(iv) Blue vertices in T (Σ) are in one-to-one correspondence with orbits of

non-übereven proper clusters in Σ. So, let s ∈ Σ be a non-übereven

cluster with Galois orbit X. Note that

denom(ds|X|) = denom(ds)

gcd(denom(ds), |X|)
,

=
lcm(denom(ds), |X|)

|X|
.

We now consider the following cases separately:

• If s is odd and has no orphan proper children then the edge

from vX to vP (X) (or the open edge ε if s = R) is blue, of

multiplicity |X|, and all other incident edges have multiplicity

lcm(|X|, denom(ds)) ≥ |X|. Since s is odd we have from Definition

2.1.14 that |s̃| = 2gss(s)+1. By [Bis19, Theorem 1.3 (iii)], the length

of orbits of non-orphan children of s under Gs is denom(ds|X|).
Under the assumption that s has no proper orphaned children, all

proper odd children must be in orbits of size denom(ds|X|) under

Gs, that is denom(ds|X|) | #{odd proper children of s}. Since s

has no orphan proper children, s will have either one orphan sin-

gleton, or no orphans at all. These two possibilities correspond to

denom(ds|X|) | (|ssing|−1) or denom(ds|X|) | |ssing| respectively. By
definition, |s̃| = #{odd proper children of s}+ |ssing| = 2gss(s) + 1,

so denom(ds|X|) | 2gss(s) + 1 or denom(ds|X|) | 2gss(s).

• If s is even and has no orphan proper children then a similar result

follows, the only difference is that |s̃| = 2gss(s) + 2. The outcome is

that denom(ds|X|) | 2gss(s) + 2 or denom(ds|X|) | 2gss(s) + 1, if s

has no orphans, or if s has an orphaned singleton respectively.

• If s is odd and has an orphaned proper child, then all single-

tons of s must be non-orphans. That is, all singletons and all

but one proper child are in orbits of size denom(ds|X|). So

denom(ds|X|) | |ssing|. If the orphan is even then we have that

denom(ds|X|) | #{ odd proper children of s}, otherwise the orphan
is odd and denom(ds|X|) | #{ odd proper children of s}−1. There-

fore denom(ds|X|) | 2gss(s) + 1 if the orphan is even (i.e. there is

one blue and one yellow edge of multiplicity |X| incident to vX), or
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denom(ds|X|) | 2gss(s) if the orphan is odd (i.e. there are two blue

edges of multiplicity |X| incident to vX).

• Similarly, is s is even and has a proper orphan, one can show that

denom(ds|X|) | 2gss(s) + 2 if the orphan is even (i.e. there are two

yellow edges of multiplicity |X| incident to vX), or denom(ds|X|) |
2gss(s)+1 if the orphan is odd (i.e. there is one blue and one yellow

edge of multiplicity |X| incident to vX).

(v) Let X be an orbit of non-übereven proper clusters such that every s ∈ X

has genus 0, that is vX ∈ V (T (Σ)) is blue and g(vX) = 0. Then, since

|s̃| ∈ {2gss(s) + 1, 2gss(s) + 2}, every s ∈ X has either one or two odd

children. As s is a proper cluster, s must have at least 2 children. If s

is even then the edge from vP (X) to vX (or the open edge if X = {R} is

yellow and we are done. Otherwise s is odd and s has exactly one odd

child. So, s must have at least one even child also (so as to have at least 2

children). Even children are always proper and give rise to yellow edges.

So, every genus 0, blue vertex in T (Σ) has at least one yellow edge.

(vi) Let X be an orbit of proper clusters in Σ, and let s ∈ X. Then by

Definition 2.1.14 we know that g(vX) = gss(s) is such that |s̃| ∈ {2gss(s)+
1, 2gss(s) + 2}. If s is even then |s̃| = 2gss(s) + 2 and the edge from vX

to vP (X) (or the open edge if s = R) is yellow, so

2gss(s) + 2 = |s̃| ≥ #{ odd proper children of s} =
∑

e, blue edge
incident to v

M(e)

M(v)
.

If instead s is odd then |s̃| = 2gss(s) + 1 and the edge from vX to vP (X)

(or the open edge if s = R) is blue, so

2gss(s) + 1 = |s̃| ≥ #{odd proper children of s} = −1 +
∑

e, blue edge
incident to v

M(e)

M(v)
,

where the ‘−1’ accounts for the edge from vX to vP (X) being blue but

not corresponding to an odd child of s.

Therefore, T (Σ) is indeed an open quotient BY tree. It follows immediately

from the above work that T (Σ) is in fact a metric open quotient BY tree in

the sense of Definition 4.1.13.

This concludes the proof of Theorem 5.1.2 and allows us to easily translate

work on open quotient BY trees to work on cluster pictures, and vice versa.
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The goal is to use the equivalence relation we constructed on open quotient BY

trees to study reduction types of tame hyperelliptic curves. It is worth noting

that, now we have this one-to-one correspondence, an equivalence relation on

open quotient BY trees will induce an equivalence relation on cluster pictures

of polynomial type. It is only now that the equivalence relation and canonical

representative of classes of open quotient BY trees becomes practically useful

for us.

5.2 The Bruhat-Tits Tree

In the next few sections we build towards proving two things:

• Given cluster pictures of polynomial type with sets of roots R and R′

and associated open quotient BY trees T and T ′ respectively, if T and

T ′ are equivalent then there is a Möbius transformation taking R to R′.

• Conversely, given any Möbius transformation ψ, and any cluster picture

Σ of polynomial type with roots R, let

R′ =

{ψ(r) | r ∈ R} \ {∞} if R is even,

{ψ(r) | r ∈ R ∪ {∞}} \ {∞} if R is odd,

then the cluster picture of polynomial type, Σ′ with roots R′, is such

that the open quotient BY trees T (Σ) and T (Σ′) are equivalent.

This will get us part of the way to being able to classify reduction types

of hyperelliptic curves. However, note that just because there is a Möbius

transformation between R and R′ this does not mean that C and C ′ are

necessarily isomorphic. It is important to check how Möbius transformations

affect the leading coefficients. This is dealt with in Section 6.3.

Roughly, our approach will be to embed open quotient BY trees and their

cores as subgraphs of the Bruhat-Tits tree. We will then study the effect that

applying Möbius transformations has on the Bruhat-Tits tree. We will prove

in Section 5.3 that the data needed to construct the canonical representative

is unchanged by Möbius transformations, that is cores are preserved, up to

isomorphism, and marked points are integer distances apart. Thus, apply-

ing Möbius transformations results in equivalent open quotient BY trees. In

practice, for an open quotient BY tree T , we actually embed what looks like

q−1(T ), but where edge lengths remain unchanged, into the Bruhat-Tits tree.

Let us start by defining the Bruhat-Tits tree.
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5.2.1 Discs and the Bruhat-Tits Tree

There are several different descriptions of the Bruhat-Tits tree in literature

such as in [Bra08, §3] and [Cas14]. Here we are interested in the definition

where vertices are taken to be discs and the edge set is given by maximal

inclusions.

In [DDMM18], discs were defined to have elements in K̄. For our purposes

it is enough to instead take elements in a finite extension L/K. So, we define

a disc of L/K to be a subset

Dz,d := {x ∈ L | vK(x− z) ≥ d},

with z ∈ L and d ∈ Q. Here d is an invariant of the disc, the depth, denoted

dD. If a disc D has depth dD and z ∈ D is any element of the disc, then

D = Dz,dD . For that reason we call any z ∈ D a centre of D. In practice,

we will take L = K(R) where R is a set of roots of a square free polynomial

f ∈ K[x] whose splitting field is tamely ramified.

Definition 5.2.1. A disc is integral if it has centre in K and integer depth.

Definition 5.2.2. If s ⊆ R is a proper cluster in (R,Σ, d) then we call the

unique smallest disc of K(R)/K cutting out s the defining disc of s, denoted

D(s). It is useful to note that, by definition, for any proper cluster s, the disc

D(s) has depth ds and any root r ∈ s can be taken to be a centre.

Definition 5.2.3. Let R be the set of roots of a square free polynomial f(x)

defined over K with tamely ramified splitting field. We define the Bruhat-Tits

tree of K(R) to be the graph whose vertices are discs

D = Dz,d := {x ∈ K(R) | vK(x− z) ≥ d}

with z ∈ K(R) and d ∈ 1
b
Z, where b = [K(R) : K], and whose edges are given

by maximal inclusions. We denote this by TK(R). We can give TK(R) a metric

by taking the length of an edge between a disc D and a maximal sub-disc

D′ ⊂ D to be dD′ − dD. In particular this means that every edge of TK(R) has

length 1
b
.

Example 5.2.4. In simple cases it is much easier to visualise the Bruhat-Tits

tree. For instance if we look over Qp then TQp is a p + 1-regular tree. For

example, the maximal proper subdiscs of OQp = Zp = D0,0 are precisely the

disjoint discs D0,1, D1,1, . . . , Dp−1,1. There is also a unique maximal disc in

which Zp is properly contained, namely D0,−1. These observations hold for
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arbitrary discs Dz,d, that is there are exactly p + 1 edges incident to each

vertex. It is unfortunately not so straightforward when the residue field is

algebraically closed and in general, for our purposes, the Bruhat-Tits tree is

not a p + 1-regular tree. However, this example should help illustrate the

general idea.

Remark 5.2.5. The boundary of the Bruhat-Tits tree describes P1(K(R)) =

K(R) ∪ {∞}. One can see this by noting that any infinite descending chain

of discs converges to a unique number whose terms in its p-adic expansion

are determined by these discs. All strictly increasing sequences of discs differ

by finitely many vertices, and are therefore said to be equivalent. Under this

equivalence relation, this equivalence class of strictly increasing chains of discs

corresponds to a single point, which we call the point at infinity.

5.2.2 Visualising Open Quotient BY Trees and Their

Cores Using the Bruhat-Tits Tree

Here we describe how we can make a simple construction of a subtree of the

Bruhat-Tits tree which allows us to visualise open quotient BY trees and their

cores as objects arising directly from TK(R). First let us discuss the construc-

tion for open quotient BY trees, before moving on to look at their cores.

Construction 5.2.6. Let f ∈ K[x] be a square free polynomial with tamely

ramified splitting field with set of roots R in K̄, such that dR ≥ 0. Using R
we can construct a tree as a subtree of T = TK(R) as follows:

• For every pair of roots r, r′ ∈ R link r and r′ by the unique path between

them in T

• link the point at infinity (as defined in Remark 5.2.5) to each root r ∈ R

• take the vertex set to be all vertices of T of degree ≥ 3 on these paths

• link vertices by an edge if they are linked by a path in T and are adjacent

(i.e. no other vertex of our tree that is under construction lies on the

path between them in T ) and let this edge length be equal to the length

of the path between them in T .

• additionally adjoin one open edge at the closest vertex to infinity. Note

that by construction the closest point, on the union of the vertices and

edges defined above, to infinity is unique since T is a tree, and will be a

vertex of our subtree.
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• label the point arising from the disc DzR,0 by m. This will be a point

on the open edge, or the unique vertex incident to the open edge, since

dR ≥ 0, so r ∈ DzR,0 for all r ∈ R.

Label the tree constructed from T in this way T (f/K). We define a colouring,

blue or yellow, on the vertices and edges as follows. Starting at the leaves and

working towards the unique vertex vR incident to the open edge, we can colour

the tree in the following way. Colour every leaf blue, and colour the unique

edge incident to it blue if there are an odd number of roots in R contained in

the disc and yellow otherwise. Continuing in this way up every branch to vR

we colour a vertex v once every edge and vertex below it has been coloured.

We colour v blue if there is a root contained in this disc that is not contained

in any of the vertices below it or if there is an edge incident to v that has

already been coloured blue, otherwise we colour v yellow. We then colour the

unique edge incident to the v that lies on the path between v and vR (or the

open edge if v = vR) blue if there are an odd number of roots contained in it,

and yellow otherwise. The genus of a vertex v is defined to be g(v) = 0 if v is

yellow, and

g(v) =
#{r ∈ v | D(r ∧ r′) ⊇ v for all r′ ∈ R}+ degT (f/K)b

(v)− 2

2
,

where D(r ∧ r′) is the smallest disc containing both r and r′, and T (f/K)b is

the blue part of T (f/K). That is, we can calculate the genus of v when v is

blue from the number of roots contained in the disc v, and the number of blue

edges incident to v.

Example 5.2.7. Consider the polynomial f(x) = (x−
√
7+7)(x−

√
7−7)(x+√

7 + 7)(x+
√
7− 7)((x− 1)3 − 77)(x− 8)(x− 2)(x− 3) over K = Qur

7 . This

has set of roots

R = {
√
7 + 7,

√
7− 7,−

√
7 + 7,−

√
7− 7, 7

7
3 + 1, ζ37

7
3 + 1, ζ237

7
3 + 1, 8, 2, 3},

where ζ3 is a third root of unity. Following Construction 5.2.6 we can con-

struct the subtree T (f/k) of TK(R) as pictured in Figure 5.4, where we have

also shown the paths to the roots with dashed lines. We can see that the

vertices have been taken to be the vertices of T of degree ≥ 3 on the paths

between the roots in R and the point at infinity. We now continue to follow

Construction 5.2.6 to give a colouring to this tree, and genera to its vertices.

For example D1, 7
3
contains 3 roots of R and is a leaf thus we colour it blue

and its unique incident edge blue. Similarly, D√
7,1 and D−

√
7,1 are leaves so we
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√
7 + 7

√
7− 7 −

√
7 + 7 −

√
7− 7 7

7
3 + 1 ζ37

7
3 + 1 ζ237

7
3 + 1 82 3

D√
7,1 D−

√
7,1

D7, 1
2

D1, 7
3

D1,1

OK

∞

Figure 5.4: A subtree T (f/k) of T constructed by considering the paths between
the roots in R, and ∞.

Figure 5.5: T (f/K) with colouring and genera.

colour them blue and the edges incident to them yellow. We then can colour

D7, 1
2
and the edge between it and OK . Since D7, 1

2
does not have any edges

incident to it already coloured blue, and no root is a child of it, we colour D7, 1
2
,

and the edge to OK yellow. We can also assign genera to the vertices. For

example g
(
D7, 1

2

)
= 0 since it is coloured yellow, and g

(
D1, 7

3

)
= 3+1−2

2
= 1.

Continuing to follow Construction 5.2.6 in this way we give a colouring to all

of T (f/K), and genera to all its vertices, as shown in Figure 5.5.

Before the following construction it is useful to note that, by Lemma B.1

in [DDMM18], if a disc D is fixed by GK then D has a rational centre, that is

there exists some z ∈ K such that z is a centre of D.

Construction 5.2.8. Let T (f/K) be as in Construction 5.2.6. Note that the

Galois orbits of elements of R induces orbits on the vertices of TK(R). So we

have a Galois action on the entire Bruhat-Tits tree. Galois preserves T (f/K),

hence acting on it by automorphisms that preserves the colouring and genera.

Write q(T (f/K)) for the quotient of T (f/K), with colouring and genera.

Example 5.2.9. Let f , K, and T (f/K) be as in Example 5.2.7. Then the

quotient of T (f/K) is
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q(T (f/K)) =

Note that this is in fact isomorphic to T (Σ), where Σ is the cluster picture

associated to the set of roots of f . This leads us onto the following proposition.

Proposition 5.2.10. Let (R,Σ, d) be a cluster picture of polynomial type aris-

ing from f ∈ K[x] (square free with tamely ramified splitting field). Then the

open quotient BY tree T (Σ) is isomorphic to the tree q(T (f/K)). This iso-

morphism preserves colouring, multiplicities of edges and vertices, the genera

of vertices, and distances.

Proof. Denote by S the subtree of T created by the unique embedded paths

between r and r′ for all pairs of roots r, r′ ∈ R, as well as the path between

∞ and some r ∈ R. First, let us show that the vertices of q(T (f/K)) are in

one-to-one correspondence with the vertices of T . By definition, it is clear that

for a root r ∈ R, the only discs containing r are those that lie on the infinite

path between ∞ and r. Furthermore, again by definition, as we move towards

r the discs are smaller. So, for any two roots r, r′ ∈ R if we let D be the disc

on the path between r and r′ which is closest to infinity, then D is the smallest

disc containing both r and r′. So, certainly a vertex D in S of degree ≥ 3 will

correspond to a proper cluster in Σ, that is there exists some proper cluster

s ∈ Σ such that D = D(s). It remains to show that every proper cluster in Σ

can be seen as a degree ≥ 3 vertex in S in this way.

Let s be a proper cluster in Σ. By definition of being proper, any such

s has at least two children. So, let s1 and s2 be children of s, where |si| ≥ 1.

As we discussed in Remark 5.2.5, two roots r1 and r2 both lie in a disc if and

only if the corresponding terms in their expansions are the same. Roots in s1

and s2 have distinct next terms, so the path from D(s) to any root r1 ∈ s1

must lie on a completely separate branch from the path from D(s) to any root

r2 ∈ s2. The path to infinity in S from D(s) consists of discs which contain

D(s), so D(s) has degree ≥ 3 in S. So the proper clusters of Σ are in one

to one correspondence with the vertices of our tree T (f/K). The action on

the vertices of S is precisely the action of GK on their corresponding clusters.

After taking the quotient by the action of GK we get q(T (f/K)). Namely we

have shown that the vertices of q(T (f/K)) are in one-to-one correspondence

with orbits of such clusters. So, vertices in T (as defined in Definition D.6 in

[DDMM18]) are in one-to-one correspondence with GK orbits of such degree

≥ 3 discs in S, i.e. vertices of q(T (f/K)).
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To see that the edge set is the same and there is an isomorphism is now

not hard. By construction, vertices (i.e. discs) in T are joined by an edge if

one is maximally contained in the other. So two discs D(s) and D(s′), where

s and s′ are proper clusters, are connected by an edge if and only if, either

s′ < s, s < s′. The lengths of edges equal δ(s′, s) by construction of T . The

marked point of T (f/K) is, by construction, distance dR along the open edge

of T (f/K). Taking the quotient by the action of GK as one would expect

(constructed explicitly in Construction 5.2.15) yields the result we are looking

for.

Finally, now that we have this relation between the vertices of T (f/K)

and specific proper clusters of Σ, it is straightforward to see that q(T (f/K))

has the same colouring and genera as described by Construction 5.1.5. In

particular, it is easy to see that, in T (f/K), a vertex is coloured yellow if it

corresponds to an übereven cluster, and blue otherwise. If v′ and v are adjacent

vertices of T (f/K) with v′ a disc that is contained in the disc v, then they

arise from clusters s′ and s respectively with s′ < s, and the edge between v

and v′ is coloured yellow if s′ is even, and blue otherwise. Finally the open edge

of T (f/K) is coloured yellow if R is even, and blue otherwise. Similarly, it is

easy to then see that the genus of a vertex v ∈ V (T (f/K)) is the semistable

genus of its corresponding cluster. This is because blue edges correspond to

proper odd children, with the exception of an additional blue edge incident

to v if v corresponds to an odd cluster, and it is clear that the number of

singletons is the same. So, after taking the quotient we get that q(T (f/K))

and T are isomorphic and the colouring and genera are preserved.

Remark 5.2.11. Note that Construction 5.2.8 is similar to the quotient of the

open BY tree in Construction 4.2.2. For semistable curves we can think of open

quotient BY trees and open BY trees interchangeably as the only difference

between these two trees is that the open quotient BY tree has an additional

marked point along the open edge, whose distance along the open edge gives

us dR. So, for a hyperelliptic curve C : y2 = f(x) over K with L/K such

that C is semistable over L, T (f/L) can be thought of as the open BY tree

associated to Σ(C/L). We constructed a quotient of T (f/L) in Construction

4.2.2. We can also note that T (f/L) is isomorphic to T (f/K) but all lengths

of edges have been scaled by [L : K] since T (f/L) takes its lengths from the

normalised valuation over L, vL, whereas T (f/K) takes its lengths from the

normalised valuation over K, vK . From noting this it is clear that the quotient

we construct in Construction 5.2.8 gives a tree which is isomorphic to the open

quotient BY tree of Σ(C/K).
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We can prove a very similar result for the cores of open quotient BY trees.

Let us first make some similar constructions.

Construction 5.2.12. Let f ∈ K[x] be a square free polynomial with tamely

ramified splitting field and set of roots R in K̄, such that dR ≥ 0. Using R
we can construct a tree from T = TK(R) as follows:

• For every pair of roots r, r′ ∈ R link r and r′ by the unique path between

them in T ;

• If R is odd link the point at infinity (as defined in Remark 5.2.5) to each

root r ∈ R by the unique path between them in T ;

• Take the vertex set to be all vertices of T of degree ≥ 3 on these paths;

• Link vertices by an edge if they are linked by a path in T and no other

vertex lies on this path. Let this edge length be equal to the length of

the path between them in T .

Label the tree constructed from T in this way T̃ (f/K). Furthermore, note

that T̃ (f/K) is a subtree of T (f/K), so the same colouring, blue or yellow,

can be given to all vertices and edges, and the same genera can be given to

every vertex.

Remark 5.2.13. Note that an alternative way of viewing this colouring on

T̃ (f/K) is to note that an edge will be coloured blue if there are an odd

number of elements in R+ on either side of the edge, and yellow if there are

an even number on either side of the edge, where

R+ =

R if R is even,

R∪ {∞} if R is odd.

Note that R+ will always be even, so we only need check the number of ele-

ments of R+ lying on one side as the number on the other side will have the

same parity. Furthermore, after colouring all edges in this manner, if all edges

surrounding a vertex are coloured yellow and the vertex is not the closest ver-

tex to any element of R+ then the vertex gets coloured yellow. Otherwise a

vertex is coloured blue.

The genera can then be read off the colouring of the edges, vertices, and

the number of roots for which any given vertex is the closest vertex.

In fact, it is helpful to note that all of the above is completely determined

by the number of elements of R+ each vertex is the closest vertex to.
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Example 5.2.14. Consider the polynomial f(x) = (x − 1)(x3 − 75)(x − 7 −
72)(x − 7 + 72) over K = Qur

7 . Let ζ3 be a third root of unity. Following

Construction 5.2.6 we can construct the subtree T̃ (f/k) of TK(R) as pictured

in Figure 5.4, where we have also shown the paths to the roots with dashed

lines and the disc OK . Note that in this example D(R) = OK , however this

7 + 72 7− 72 7
5
3 ζ37

5
3 ζ237

5
3 1

D7,2 D0, 5
3

D0,1

OK

Figure 5.6: The subtree T̃ (f/k) of T constructed by considering the paths be-
tween the roots in R+.

only has degree 2 on the union of all the paths between elements of R+ so is

not a vertex of T̃ (f/K). We can then give a colouring to all of T̃ (f/K), and

genera to all its vertices, as shown in Figure 5.7.

Figure 5.7: T̃ (f/K) with colouring and genera.

In order to view the core of an open quotient BY tree as arising from the

Bruhat-Tits tree we construct a quotient in a very similar way to Construction

5.2.8. The only slight complication is that one minor adjustment is sometimes

needed to deal with the vertex set in the case where Σ(C/K) is a union of

two clusters that are swapped by Galois. This is due to a modification in the

vertex set of cores of open quotient BY trees in comparison to cores of open

BY trees, as discussed in Remark 4.3.8, to ensure that cores of open quotient

BY trees always have a vertex of multiplicity 1.

Construction 5.2.15 (q(T̃ (f/K))). Let (R,Σ, d) be a cluster picture of poly-
nomial type arising from f ∈ K[x] (square free with tamely ramified splitting

field), and let T̃ (f/K) be as defined in Construction 5.2.12. As in Construc-

tion 5.2.8, we have an action of Gal(K(R)/K) on the vertices of TK(R). Note

that this action is the same as the action on clusters, i.e. if s, s′ ∈ Σ are in the

same Galois orbit, then so are the vertices D(s) and D(s′) of TK(R). We can
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use this action to define a quotient of T̃ (f/K), in the way one would expect,

which we will denote q(T̃ (f/K)).

In particular, we define the vertex and edge sets of q(T̃ (f/K)) as follows:

• For every Galois orbit of vertices X in V (T̃ (f/K)) we define one vertex

vX of q(T̃ (f/K)), and write q(v) = vX for all v ∈ X.

• If X and X ′ are two distinct Galois orbits of vertices of T̃ (f/K)

and there exist vertices v, v′ ∈ V (T̃ (f/K)) in X and X ′ respectively,

such that [v, v′] ∈ E(T̃ (f/K)), then we define an edge [vX , vX′ ] of

q(T̃ (f/K)), and write q([v, v′]) = [vX , vX′ ] for all [v, v′] ∈ E(T̃ (f/K))

with v ∈ X and v′ ∈ X ′.

• If there exist two vertices v, v′ ∈ V (T̃ (f/K)) with v and v′ in the same

Galois orbit X, and e = [v, v′] ∈ E(T̃ (f/K)), then we must have that

X = {v, v′} is their Galois orbit. Label the midpoint of e, m(e). Add

one additional vertex to V (q(T̃ (f/K))) and label it vm(e). Then add an

edge to q(T̃ (f/K)) between vX and vm(e). Write q(m(e)) = vm(e).

All other points on T̃ (f/K) are mapped by q as one would expect.

Define a multiplicity function M : V (q(T̃ (f/K))) ⊔ E(q(T̃ (f/K))) →
Z>0 to be the number of vertices or edges in the preimage of q, except in the

case when v and v′ are in an orbit and there is an edge e between them. In

this case we define M([m(e), vX ]) = 2 and M(vm(e)) = 1. That M(vX) = 2 in

this exceptional case follows from above.

We define genera of vertices v ∈ V (q(T̃ (f/K))) to be equal to the genera

of vertices in the preimage, i.e. if v′ ∈ V (T̃ (f/K))) is such that q(v′) = v

then we define g(v) = g(v′). Note that since all vertices in the preimage of v

are in a Galois orbit, they must have equal genera, so this is well defined. In

the exceptional case that v ∈ V (q(T̃ (f/K))) is such that v = vm(e) for some

e ∈ E(T̃ (f/K)), we define g(v) = 0.

Finally, we can colour edges and vertices in q(T̃ (f/K)) according to the

colouring of their preimage, where if v ∈ V (q(T̃ (f/K))) is such that v = vm(e)

for some e ∈ E(T̃ (f/K)) we colour v the same colour as e. Again, this is well

defined.

Construction 5.2.16. We can define a metric on q(T̃ (f/K)) as follows. If

P, P ′ are points on q(T̃ (f/K)) then we define d(P, P ′) = min{d(Q,Q′) | Q ∈
q−1(P ), Q′ ∈ q−1(P ′)}. Recall that an edge e ∈ E(q(T̃ (f/K))) is either of the

form e = [q(v), q(v′)] where e′ = [v, v′] ∈ E(T̃ (f/K)) (in which case we write
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e = q(e′)), or of the form e = [q(v), q(m(e′))] where m(e′) is the mid point

of an edge e′ = [v, v′] ∈ E(T̃ (f/K)) where v and v′ are in the same Galois

orbit (in which case we write e = q([v,m(e′)]) = q([v′,m(e′)])). Note that this

gives us that the length l(e) of an edge e ∈ E(q(T̃ (f/K))) is l(e) = l(e′) if

e = q(e′), or l(e) = l(e′)
2

if e = q([v,m(e′)]) = q([v′,m(e′)]), where e′ = [v, v′],

and v and v′ are in the same Galois orbit.

Example 5.2.17. Consider the polynomial f(x) = x6−21x4−1911x2−23667

over Qur
7 , with roots ζ i67

5
6 + 7

1
2 and ζj67

5
6 − 7

1
2 for i = 0, 2, 4, j = 1, 3, 5 and

ζ3 a third root of unity. We can see how T̃ (f/K) is constructed in Figure

5.8. Note that D(R) = D0, 1
2
only has degree 2 on the union of all the paths

7
5
6 + 7

1
2 ζ237

5
6 + 7

1
2 ζ437

5
6 + 7

1
2 ζ37

5
6 − 7

1
2 ζ337

5
6 − 7

1
2 ζ537

5
6 − 7

1
2

D
7
1
2 , 5

6

D
−7

1
2 , 5

6

D0, 1
2

Figure 5.8: The subtree T̃ (f/k) of T constructed by considering the paths be-
tween the roots in R+.

between elements ofR+ = R so is not a vertex of T̃ (f/K). We can then colour

T̃ (f/K), and assign genera to its vertices, as shown in Figure 5.9. Taking the

Figure 5.9: T̃ (f/K) with colouring and genera.

quotient of T̃ (f/K) as described in Construction 5.2.15 to obtain q(T̃ (f/K)),

and giving q(T̃ (f/K)) the metric described in Construction 5.2.16 gives the

tree shown in Figure 5.10.

Figure 5.10: q(T̃ (f/K)) with colouring and genera.

Theorem 5.2.18. Let f ∈ K[k] be a square free polynomial with tamely ram-

ified splitting field and set of roots R in K̄, with dR ≥ 0. Let T̃ be the core of

the of the open quotient BY tree T = T (Σ). Then q(T̃ (f/K)), as defined in

Construction 5.2.15, is isomorphic to T̃ . Distances, genera, multiplicities and

colouring are preserved under this isomorphism.
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Proof. The approach here is very similar to that of Proposition 5.2.10. Denote

by S the subtree of T created by the unique embedded paths between r and

r′ for all pairs of roots r, r′ ∈ R, as well as the path between ∞ and some

r ∈ R if R is odd. First, let us show that the vertices of q(T̃ (f/K)) are in

one-to-one correspondence with the vertices of T̃ . By definition, it is clear that

for a root r ∈ R, the only discs containing r are those that lie on the infinite

path between ∞ and r. Furthermore, again by definition, as we move towards

r the discs are smaller. So, for any two roots r, r′ ∈ R if we let D be the disc

on the path between r and r′ which is closest to infinity, then D is the smallest

disc containing both r and r′. So, certainly a vertex D in S of degree ≥ 3 will

correspond to a proper cluster in Σ, that is there exists some proper cluster

s ∈ Σ such that D = D(s). However, not every proper cluster in Σ can be

seen as a degree ≥ 3 vertex in S in this way. We need to check which proper

clusters these degree ≥ 3 vertices in S correspond to.

Suppose that R is even. Then if a vertex D(s) has degree ≥ 3 in S then

there are at least two roots lying in the cluster s (since the degree indicates

that s has deg(v) − 1 proper children). Note that if R has a child s of size

2g + 1, then there exists a root r ∈ R such that R = s⊔ {r}. So, for any root

r′ ∈ s the path from D(R) to r′ passes through D(s), and has no common discs

other than D(R) with the path from D(R) to r. That is, D(R) has degree 2

in S. Similarly, if R is a union of two proper clusters then D(R) has degree 2

in S since there exist children s, s′ < R with all roots lying in either s or s′. It

remains to show that for all other proper clusters s ∈ Σ, D(s) has degree 3 in

S. By definition of being proper, any such s has at least two children. So, let

s1 and s2 be children of s, where |si| ≥ 1. As we discussed in Remark 5.2.5,

two roots r1 and r2 both lie in a disc if and only if the corresponding terms

in their expansions are the same. Roots in s1 and s2 have distinct next terms,

so the path from D(s) to any root r1 ∈ s1 must lie on a completely separate

branch from the path from D(s) to any root r2 ∈ s2. Note that, since either

s ̸= R or if s = R then s is not a union of two clusters, there exists a root

r ∈ R \ s1 ∪ s2. Again, r will have a different expansion to roots in s1 ∪ s2,

regardless of whether r ∈ s or r /∈ s. So, D(s) has degree ≥ 3 in S, and D(s) is

a vertex of T̃ (f/K). The GK-action on the vertices of S is precisely the action

on their corresponding clusters. After taking the quotient by the action of GK

we get q(T̃ (f/K)). Namely we have shown that the vertices of q(T̃ (f/K))

are in one-to-one correspondence with orbits of such clusters. So, vertices in T̃

(as defined in Definition D.6 in [DDMM18]) are in one-to-one correspondence

with GK orbits of such degree ≥ 3 discs in S, i.e. vertices of q(T̃ (f/K)).
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Suppose instead that R is odd. Note that for any root r ∈ R the path

between r and∞ passes through D(R). FurthermoreR has at least 2 children,

so as above there are at least two distinct branches from D(R) to roots in R.

So, D(R) always has at least degree 3 with one edge incident to it on the path

to infinity and at least two edges incident on paths to roots. All other proper

clusters in Σ correspond to vertices of S of degree ≥ 3 just as in the proof of

the R even case. So, by the same justification as in the R even case, when R
is odd vertices of q(T̃ (f/K)) are in one to one correspondence with GK orbits

of such proper clusters in Σ, which, by Definition D.6 in [DDMM18]), are in

one to one correspondence with vertices of T̃ .

To see that the edge set is the same and there is an isomorphism is now

not hard. By construction, vertices (i.e. discs) in T are joined by an edge if

one is maximally contained in the other. So two discs D(s) and D(s′), where

s and s′ are proper clusters (where if either s or s′ equals R then it is not a

union of two clusters), are connected by an edge if and only if either s′ < s,

or s < s′, or R = s ⊔ s′ with R even. The lengths of edges equal δ(s′, s) by

construction of T . Taking the quotient by the action of GK as one would

expect (constructed explicitly in Construction 5.2.15) yields the result we are

looking for and gives us an isomorphism.

Finally, we can use Proposition 5.2.10 to give us that the colouring and

genera are preserved by this isomorphism.

Example 5.2.19. Let f/K be as in Example 5.2.17. The open quotient BY

tree T associated to f is as follows:

T =

Indeed, q(T̃ (f/K)), shown in Figure 5.10, is isomorphic to the core of T .

Notation 5.2.20. Following Theorem 5.2.18, it now makes sense to use the

notation q−1(T̃ ) = T̃ (f/K), after noting that q−1(q(T̃ (f/K))) ∼= T̃ (f/K),

where q−1 is given explicitly in Construction 4.3.12. We will also introduce

similar notation for T , namely we will write q−1(T ) = T (f/K), taking q−1(T )

as given explicitly in Construction 4.2.2. Note that, as mentioned in Remark

4.2.4, when referring to q−1(T ) and q−1(T̃ ) we are now referring to these as

metric quotient BY trees. In particular, for an edge e ∈ E(T ) we define the

length of each q−1(e)i to be

l(q−1(e)i) = l(e)
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Similarly in T̃ , except for an exceptional edge between q−1(v′)1 and q−1(v′)2,

which we give length 2l(e), where e is the edge between v′ and the exceptional

vertex in T̃ which gives rise to this edge.

Later, in Section 6.1 we will see a different metric on q−1(T ) and q−1(T̃ ).

Remark 5.2.21. Note that we are only able to view T itself on TK(R) if every

vertex of T has multiplicity 1, that is T 1 = T . Note that this is the case if

and only if Σ has no non-trivial Galois orbits of proper clusters. Likewise, we

can only view T̃ itself on TK(R) if every vertex of T̃ has multiplicity 1, that is

T̃ 1 = T̃ . Again, since only multiplicity 1 vertices and edges are ever removed

when passing from T to the core T̃ , this is the case if and only if Σ has no

non-trivial Galois orbits of proper clusters.

Proposition 5.2.22. Let f ∈ K[x] be a square free polynomial with tamely

ramified splitting field and set of roots R in K̄. Let Σ be the cluster picture

and T = T (Σ) the associated open quotient BY tree. Label the marked point

of T by m. Let B be as in Construction 4.5.1. Then the discs of the form

Dz,d with z ∈ K and d ∈ Z on TK(R) correspond to points m′ on B which are

integer distance from m.

Proof. By Theorem 5.2.10, q(T (f/K)) is isomorphic to T . So, we can think

of q(T (f/K))1 as being T 1, thus lying on B. When we “undo the quotient”

we get T (f/K), lying on the Bruhat-Tit tree TK(R). As q(T (f/K))1 is the

multiplicity 1 component of q(T (f/K)) we have an isomorphism between

q(T (f/K))1 and T (f/K)1. Similarly, since B has only multiplicity 1 compo-

nents we can picture B as lying on part of the Bruhat-Tits tree which is Galois

invariant. By construction of T (f/K), the marked point arises from a shift

of DzR,0 by zR ∈ K, i.e. DzR,0. Thus any point m′, an integer distance from

m on B, corresponds to a point on TK(R) which is fixed by GK and integer

distance from DzR,0. Certainly any disc Dz,d with z ∈ K and d ∈ Z will be

integer distance from DzR,0 in T . Conversely if a disc is integer distance from

DzR,0 then it must have an integer depth, and by [DDMM18, Lemma B.1], any

disc which is fixed by GK has a centre in K. So, any point on B which is an

integer distance from DzR,0 when viewed on the Bruhat-Tits tree must be an

integral disc. Therefore, the discs Dz,d with z ∈ K and d ∈ Z correspond to

such points m′.

These result allow us to work with the Bruhat-Tits tree in place of quotient

BY trees and points which are integer distance from the marked point. As such,

we will work explicitly with discs in the following section.
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5.3 Invariance under Möbius Transformations

Our aim is to classify reduction types of tame hyperelliptic curves. To do this

we want to show that the canonical representative of the equivalence class of

open quotient BY trees is model invariant. That is, choosing a different model

for a hyperelliptic curve does not change the canonical representative.

To do this we need to study the effect of Möbius transformations on open

quotient BY trees. In this section we will verify that applying a Möbius trans-

formation results in an equivalent open quotient BY tree. In Section 5.4, we

will show that given any cluster picture Σ of polynomial type arising from

f ∈ K[x], and any T ′ ∼ T(Σ), there exists an f ′ ∈ K[x] isomorphic to f

(obtained by applying a Möbius transformation) with open quotient BY tree

isomorphic to T ′. Recall that we gave a complete description of the equiva-

lence class of open quotient BY trees in 4.6.4. We are now able to study open

quotient BY trees via the Bruhat-Tits tree. So, let us now investigate how

Möbius transformations act on the discs that form the vertices of TK(R).

Let ϕ be a Möbius transformation defined over K, that is

ϕ(z) =
az + b

cz + d
, with a, b, c, d ∈ K,

where ad − bc ̸= 0. Then ϕ can be expressed as a composition of simple

transformations, namely shifts, scalings, or inversions. These simple trans-

formations are themselves Möbius transformations, in particular they are as

follows:

• Scaling: ϕ(z) = az,

• Shift: ϕ(z) = z + b,

• Inversion: ϕ(z) = 1
z
.

As such, it is enough for us to discuss what effect applying these simple Möbius

transformations has on the Bruhat-Tits tree TK(R), and as a result on cores

and canonical representatives of open quotient BY trees. We will discuss each

of these simple transformations separately.

5.3.1 Scaling

Here we consider the effect of Möbius transformations of the form

ϕ(z) = az 0 ̸= a ∈ K.
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Let f ∈ K[x] be square free with tamely ramified splitting field, set of

roots R, cluster picture Σ, and open quotient BY tree T = T (Σ(f/K)) with

marked point m. Firstly, it is important to note that scaling all roots in R by

an integer n, that is applying ϕ(z) = πnz to R, simply increases the depth of

all proper clusters in Σ by n. So, as briefly mentioned at the start of Section

4.1, without loss of generality, we can assume that dR ≥ 0. In particular, for a

hyperelliptic curve C/K this translates into us assuming that we have chosen

a model for C with dR ≥ 0.

Lemma 5.3.1. Consider a Möbius transformation ϕ(z) = az, defined over K,

with 0 ̸= a ∈ K. Let f ∈ K[x] be square free with tamely ramified splitting

field, and set of roots R. Let f ′ ∈ K[x] have set of roots R′ = {ϕ(r) | r ∈ R}.
Then T̃ (f/K) ∼= T̃ (f ′/K) and the genera and colouring are preserved by this

isomorphism.

Proof. Every non-zero element of K can be written as πnu where n ∈ Z and

u is a unit. It is clear that scaling by a unit simply rotates discs around,

preserving adjacency. So, assume that a = πn for some n ∈ Z. It is clear

that ϕ is an isomorphism of TK(R) and for any α, β ∈ P1(K(R)) the line

between α and β in TK(R) is mapped entirely to the line between πnα and

πnβ. Since R′ = {ϕ(r) | r ∈ R}, regardless of the parity of R, we include the

path to ∞ in construction of T̃ (f ′/K) from TK(R) if and only if we did so

for T̃ (f/K). The point of T̃ (f/K) which is closest to ∞ is mapped to the

point of T̃ (f ′/K) which is closest to infinity. Distances are clearly preserved

so T̃ (f/K) ∼= T̃ (f ′/K).

Furthermore, a disc forming a vertex of T̃ (f/K) which is closest to an

element α ∈ P1(K(R)) is mapped to the vertex of T̃ (f ′/K) which is closest

to ϕ(α). So, by Remark 5.2.13, the colouring and genera and preserved.

5.3.2 Shift

Now let us consider the effect of Möbius transformations of the form

ϕ(z) = z + b, 0 ̸= b ∈ K.

This case can be proved similarly to the case of scaling. That is, a shift is an

isomorphism on TK(R), and preserves distances and Galois orbits of roots.

Lemma 5.3.2. Consider the Möbius transformation ϕ(z) = z+b, defined over

K, with 0 ̸= b ∈ K. Let f ∈ K[x] be square free with tamely ramified splitting

field, and set of roots R. Let f ′ ∈ K[x] have set of roots R′ = {ϕ(r) | r ∈ R}.
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Then T̃ (f/K) ∼= T̃ (f ′/K) and the genera and colouring are preserved by this

isomorphism.

Proof. Let f ′ ∈ K[x] have set of roots R′ and cluster picture Σ′, with asso-

ciated open quotient BY tree T ′. The proof that T̃ (f/K) and T̃ (f ′/K) are

isomorphic, and the colouring and genera are preserves follows similarly to

when we applied a scaling above in Lemma 5.3.1.

5.3.3 Inversion

Note that if we apply z 7→ 1
z
to a discD which contains 0, its image is not a disc

since elements ofD closer to 0 get mapped closer to∞. We are therefore unable

to apply this Möbius transformation directly to the vertices of the Bruhat-Tits

tree TK(R) as we did for scalings and shifts. It would however, be useful if we

were able to do something like this. So, we make a slight modification to how

we think of vertices of TK(R). This will enable us to apply z 7→ 1
z
directly to

vertices. It is for this reason that dealing with inversion will take significantly

more work than was required for scalings and shifts. If a disc D contains 0

then we can take 0 as a centre and write

D = {x ∈ K(R) | vK(x) ≥ dD}.

Applying z 7→ 1
z
gives the set {x ∈ K(R) | vK(x) ≤ −dD}, which is not a disc.

If instead we associate an annulus A to D defined by

A = A0,dD = {x ∈ K(R) | vK(x) = dD},

then we can redefine T to be the tree with these annuli in the place of any

disc with 0 as a centre. We say that A0,dD is an annulus of radius dD centred

at 0. It is then easy to see that any such annulus A is mapped to another

annulus

A−1 = A0,−dD = {y ∈ K(R) | vK(y) = −dD}.

Note that the discs that we have replaced with annuli are precisely the vertices

between 0 and ∞ in TK(R). So, annuli are mapped to annuli and it remains

to check that all remaining discs get mapped to discs under z 7→ 1
z
. Let D be

a disc with centre α ∈ K(R), radius dD, and suppose that 0 /∈ D. We must

have dD > vK(α), else 0 would lie in D. So,

D = {x ∈ K(R) | vK(x− α) ≥ dD},
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and any element x ∈ D can be written as x = α + pru where u ∈ OK and

r ≥ dD. If we invert an element x of D we get

1

x
=

1

α + pru
,

=
1

α

1

1 + pruα−1
,

= α−1(1 + pruα−1)−1,

= α−1(1− pruα−1 + . . . ),

= α−1 − pruα−2 + . . . ,

where we have replaced (1 + pruα−1)−1 by its binomial expansion. So,

v

(
1

x
− 1

α

)
= v(−pruα−2) = r − 2v(α) + v(u) ≥ dD − 2v(α).

The converse is also true, and proved similarly. We can conclude from this

that x ∈ D if and only if 1
x
∈ D−1, where D−1 is the disc

D−1 = {y ∈ K(R) | v
(
y − 1

α

)
≥ dD − 2v(α)}.

We will talk about both ways of viewing the vertices of TK(R) interchange-

ably, but will often refer to this alternative description using annuli as the

modified Bruhat-Tits tree. With this new way of viewing of the Bruhat-Tits

tree we can safely apply z 7→ 1
z
to vertices of TK(R).

Let f ∈ K[x] be square free with tamely ramified splitting field, set of

roots R, cluster picture Σ, and open quotient BY tree T = T (Σ(f/K)) with

marked point m. Recall that, by Construction 5.2.12, the vertices of T̃ (f/K)

are precisely the meeting points of triples of distinct elements of R if R is even,

or of R∪ {∞} if R is odd. In order to prove that the Möbius map ϕ : z 7→ 1
z

preserves the core T̃ (f/K) we will prove the following:

• Adjacent vertices of T̃ (f/K) are mapped to adjacent vertices by ϕ.

Moreover distances between vertices are preserved.

• For r ∈ R any disc sufficiently close to r is mapped to a disc close to 1
r
.

• If r and r′ are two distinct roots in R then the unique path between

them in TK(R) is mapped to the unique path between 1
r
and 1

r′
.

• Consequently, for any three roots α, β, γ the unique triple intersection

point between them in TK(R) is mapped to the unique triple intersection
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point of 1
α
, 1

β
, and 1

γ
.

• Finally, we will conclude that the Möbius map z 7→ 1
z
is an isomorphism

on T̃ (f/K) which preserves genera, colouring and Galois orbits.

Lemma 5.3.3. Let v1 and v2 be two vertices of the modified Bruhat-Tits tree

described above. That is, they are either a disc of the form {x ∈ K(R) |
v(x − α) ≥ n}, where α ̸= 0 and n > v(α), or an annulus of the form {x ∈
K(R) | v(x) = n}. Then v1 and v2 are adjacent in TK(R) if and only if their

images under ϕ : z 7→ 1
z
are also adjacent.

Proof. Suppose that v1 and v2 are both discs, D1 and D2 respectively. Since

they are adjacent, one must be maximally contained in the other, so without

loss of generality we can assume that D2 is maximally contained in D1. Let

α be a centre of D2, then we can also choose α to be a centre of D1 since

α ∈ D2 ⊂ D1. Since D1 and D2 are adjacent, we must have that dD1 = dD2− 1
b
,

where b = [K(R) : K]. So, if we write dD1 = n, we have

D1 = {x ∈ K̄ | v(x− α) ≥ n},

D2 =

{
x ∈ K̄ | v(x− α) ≥ n+

1

b

}
,

and since 0 /∈ D1, D2 we have that n > v(α). Write

D−1
1 =

{
y ∈ K(R) | 1

y
∈ D1

}
, and D−1

2 =

{
y ∈ K(R) | 1

y
∈ D2

}
.

We want to show that D−1
1 and D−1

2 are both discs and one is maximally

contained in the other. We have already shown above that

D−1
1 =

{
y ∈ K(R) | v

(
y − 1

α

)
≥ dD1 − 2v(α)

}
,

D−1
2 =

{
y ∈ K(R) | v

(
y − 1

α

)
≥ dD2 − 2v(α)

}
.

So, both D−1
1 and D−1

2 have 1
α

as a centre, and dD−1
1

= dD−1
2

− 1
b
, which

by construction of TK(R) means that D−1
2 is maximally contained in D−1

1 , in

particular D−1
1 and D−1

2 are adjacent.

Suppose instead that v1 and v2 are both annuli, A1 and A2 respectively.

Since A1 and A2 are adjacent we can assume without loss of generality that



5.3. Invariance under Möbius Transformations 139

A2 is maximally contained in A1 and

A1 = {x ∈ K(R) | v(x) = n},

A2 =

{
x ∈ K(R) | v(x) = n+

1

b

}
,

for some n ∈ Z. Write A−1
i =

{
y ∈ K(R) | 1

y
∈ Ai

}
. Then, by above, we have

A−1
1 = {y ∈ K(R) | v (y) = −n} ,

A−1
2 =

{
y ∈ K(R) | v (y) = −n− 1

b

}
.

If we consider the discs corresponding to A−1
1 and A−1

2 , we see that

the disc {y ∈ K(R) | v(y) ≥ −n} is maximally contained in the disc{
y ∈ K(R) | v(y) ≥ −n− 1

b

}
. So we have that A−1

1 and A−1
2 are adjacent.

Finally we need to consider when one of v1 and v2 is a disc and the other

is an annulus. Without loss of generality we can assume that v1 is an annulus

A1 and v2 is a disc D2. Write A1 = {x ∈ K(R) | v(x) = n}. Then A1

corresponds to a disc D1 with centre 0 which we can write as D1 = {x ∈
K(R) | v(x) ≥ n}. Note that, since v2 is a disc D2, we must have that

0 /∈ D2. Under our assumption that v1 and v2 are adjacent, we must have

that either D1 is maximally contained in D2, or D2 is maximally contained

in D1. However 0 ∈ D1 and 0 /∈ D2, so we must have that D2 is maximally

contained in D1. Pick α ∈ K(R) to be a centre of D2, that is D2 = {x ∈
K(R) | v(x − α) ≥ n + 1

b
}. Then α could also be chosen as a centre of D1

giving D1 = {x ∈ K(R) | v(x − α) ≥ n}. Since 0 ∈ D1 we must have that

v(α) = n. Defining A−1
1 and D−1

2 as before we get

A−1
1 = {y ∈ K(R) | v (y) = −n} ,

D−1
2 =

{
y ∈ K(R) | v

(
y − 1

α

)
≥ n+

1

b
− 2v(α) = −n+

1

b

}
.

Write D−1
1 =

{
y ∈ K(R) | v

(
y − 1

α

)
≥ −n

}
, the disc corresponding to the

annulus A−1
1 . Then D−1

2 is maximally contained in D−1
1 , since their depths

differ by 1
b
, and the centre 1

α
of D−1

2 has v
(
1
α

)
= −n so lies in D−1

1 and can

therefore also be chosen to be a centre of D−1
1 . So A−1

1 and D−1
2 are adjacent.

Note that, since ϕ is self inverse, the converse is also immediately true.

So v1 and v2 are adjacent in TK(R) if and only if their images under ϕ : z 7→ 1
z

are also adjacent.



5.3. Invariance under Möbius Transformations 140

Lemma 5.3.4. Let v1 and v2 be two vertices in TK(R) and let v−1
1 and v−1

2 be

their images under ϕ : z 7→ 1
z
. Then d(v1, v2) = d(v−1

1 , v−1
2 ) in TK(R).

Proof. Let v1 = w1, w2, . . . , wn, wn+1 = v2 be the unique path of vertices of

TK(R) between v1 and v2. Then wi and wi+1 are adjacent for all 1 ≤ i ≤ n and

distance 1
b
from each other. So, the distance between v1 and v2 is n

b
. Let w−1

i

be the image of wi under ϕ. By Lemma 5.3.3, for 1 ≤ i, j ≤ n, w−1
i and w−1

j are

adjacent if and only if wi and wj are. That is, w
−1
i and w−1

j are adjacent if and

only if i = j ± 1. So we obtain a path v−1
1 = w−1

1 , w−1
2 , . . . , w−1

n , w−1
n+1 = v−1

2 ,

which does not contain any backtrackings, between v−1
1 and v−1

2 . In particular,

the distance between v−1
1 and v−1

2 is also n
b
.

For the next lemma we will use the following notation to talk about discs

or annuli being closer to elements of P1(K(R)) than others.

Notation 5.3.5. Take α ∈ K(R) and let D1 and D2 be two discs containing

α then we say that D2 is closer to α than D1 if dD2 > dD1 . If D1 and D2

contain 0, and so the corresponding vertices in the modified Bruhat-Tits tree

are annuli, A1 and A2 respectively, then we say that A2 is closer to α than A1.

In this case, we also say that A1 is closer to ∞ than A2.

Lemma 5.3.6. Let α ∈ P1(K(R)) = K(R) ∪ {∞}. If α ̸= 0,∞ then let D1

and D2 be two discs containing α with D2 closer to α than D1, and dD1 >

v(α). Write D−1
1 and D−1

2 for the images of D1 and D2 under the Möbius

transformation ϕ : z 7→ 1
z
as in the proof of Lemma 5.3.3. Then both D−1

1 and

D−1
2 are discs containing 1

α
, and in particular D−1

1 and D−1
2 are vertices of the

modified Bruhat-Tits tree. Moreover, D−1
2 is closer to 1

α
than D−1

1 is.

If α ∈ {0,∞} then let D1 and D2 be two discs centred at 0 with A1 and

A2 their corresponding annuli and vertices of the modified Bruhat-Tits tree.

Suppose that A2 is closer to α than A1 and let A−1
1 and A−1

2 be the images of

A1 and A2 under ϕ respectively. Then both A−1
1 and A−1

2 are annuli centred at

0 and A−1
2 is closer to 1

α
than A−1

1 is, where 1
0
= ∞ and 1

∞ = 0.

Proof. Let α ∈ K(R) ∪ {∞} = P1(K(R)) be any point on the boundary of

the Bruhat-Tits tree. If α ̸= 0,∞ then subsequent discs containing α are

· · · ⊃ Dα,n− 1
b
⊃ Dα,n ⊃ Dα,n+ 1

b
⊃ . . . , where b = [K(R) : K], and

Dα,n = {x ∈ K̄ | v(x− α) ≥ n}.

If n > v(α) then 0 /∈ Dα,n, so Dα,n is a vertex of the modified Bruhat-Tits
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tree. Write D−1
α,n for the image of Dα,n under ϕ. As above, we get that

D−1
α,n = {y ∈ K̄ | v

(
y − 1

α

)
≥ n− 2v(α)}.

Note that, since n > v(α), n − 2v(α) > −n, we have that 0 /∈ D−1
α,n. So, D−1

α,n

is also a vertex of the modified Bruhat-Tits tree. It is clear that D−1
α,n contains

1
α
, and that as n→ ∞, Dα,n gets closer to α whilst D−1

α,n gets closer to 1
α
.

If α ∈ {0,∞} then we must instead consider annuli arising from discs

D0,n, namely the vertices along the path from ∞ to 0 are the annuli

. . . , A0,n− 1
b
, A0,n, A0,n+ 1

b
, . . . for n ∈ Z, where A0,n = {x ∈ K̄ | v(x) = n},

and the larger n is the closer A0,n is to 0 and the closer A−1
0,n is to ∞.

Lemma 5.3.7. Let α, β ∈ P1(K(R)) be distinct. Then the unique embedded

path between α and β in TK(R) is mapped to the unique embedded path between
1
α
and 1

β
in TK(R) under the Möbius transformation ϕ : z 7→ 1

z
, where 1

0
= ∞

and 1
∞ = 0.

Proof. First, we will find two vertices v1 and v2 that lie on the path between α

and β with v1 closer to α than v2 is, and v2 closer to β than v1 is, where their

images v−1
1 and v−1

2 under ϕ lie on the path between 1
α
and 1

β
with v−1

1 closer

to 1
α
than v−1

2 is, and v−1
2 closer to 1

β
than v−1

1 is. Furthermore v1 and v2 will

be such that every vertex between v1 and α maps to a vertex between v−1
1 and

1
α
, and every vertex between v2 and β maps to a vertex between v−1

2 and 1
β
.

If α, β /∈ {0,∞} then we define the wedge of α and β just as we did in

cluster pictures, namely D({α} ∧ {β}) is the smallest disc containing both α

and β. Write vα∧β for the vertex of TK(R) corresponding to D({α}∧{β}). So,
vα∧β is either a disc or an annulus. Vertices lying between vα∧β and α or β are

either discs themselves, or annuli corresponding to discs, that contain α or β

respectively.

Let us now concentrate on α, as the same argument can then be applied

to β. By construction, dD({α}∧{β}) = v(α − β) ≥ min{v(α), v(β)}. So, a

vertex lying strictly between vα∧β and α is either a disc of the form Dα,n

where n > v(α − β) if 0 /∈ Dα,n, or an annulus corresponding to such a disc

if 0 ∈ Dα,n. Taking n > v(α) gives that 0 /∈ Dα,n, so Dα,n is a vertex of the

modified Bruhat-Tits tree. So let n > max{v(α), v(α− β)}. By Lemma 5.3.6,

these discs map to discs containing 1
α
under ϕ. Moreover, Lemma 5.3.6 also

gives that the closer Dα,n is to α, the closer its image under ϕ is to 1
α
. Recall
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that the image of Dα,n is

D−1
α,n = {y ∈ K(R) | v

(
y − 1

α

)
≥ n− 2v(α).

Since v
(

1
α
− 1

β

)
= v(α− β)− v(α)− v(β), we can write

D

({
1

α

}
∧
{
1

β

})
= {y ∈ K(R) | v

(
y − 1

α

)
≥ v(α− β)− v(α)− v(β)}.

Discs which are strictly contained in D({ 1
α
} ∧ { 1

β
}) and which contain 1

α
are

of the form

{y ∈ K(R) | v
(
y − 1

α

)
≥ m},

where m > v(α − β) − v(α) − v(β). Recall that we have assumed that n >

max{v(α), v(α− β)}. Now note that:

• If v(α) > v(β): then v(α− β) = v(β), so v(α− β) + v(α)− v(β) = v(α).

Therefore, since n > v(α) = v(α− β) + v(α)− v(β), we get that

n− 2v(α) > v(α− β)− v(α)− v(β) = v

(
1

α
− 1

β

)
.

• If v(β) > v(α): then v(α − β) = v(α), so v(α − β) + v(α) − v(β) =

2v(α)− v(β) < v(α). Since n > v(α), we get that

n− 2v(α) > v(α− β)− v(α)− v(β) = v

(
1

α
− 1

β

)
.

• If v(α) = v(β): then v(α − β) + v(α) − v(β) = v(α − β). So, since

n > v(α− β), we get that

n− 2v(α) > v(α− β)− v(α)− v(β) = v

(
1

α
− 1

β

)
.

So, in all cases, our assumption that n > max{v(α), v(α − β)} gives that

n − 2v(α) > v
(

1
α
− 1

β

)
. In particular, D−1

α,n lies between D({ 1
α
} ∧ { 1

β
}) and

1
α
, and the greater the value of n, the closer Dα,n is to α and the closer D−1

α,n

is to 1
α
. As already mentioned, the same argument can be applied to β. So,

when α, β ∈ K(R) \ {0}, taking v1 = Dα,n and v2 = Dβ,m for any fixed

n > max{v(α), v(α − β)} and m > max{v(β), v(α − β)} has the desired

properties.
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It remains to find such vertices v1 and v2 when either α = 0 and β ∈
K(R) \ {0}, α = ∞ and β ∈ K(R) \ {0}, or α = 0 and β = ∞.

If α = 0 and β ∈ K(R) \ {0} then v(α− β) = v(β), so D({α} ∧ {β}) has
depth v(β) and can be written

D({α} ∧ {β}) = {x ∈ K(R) | v(x) ≥ v(β)}.

The corresponding vertex on the modified Bruhat-Tits tree is the annulus

A = {x ∈ K(R) | v(x) = v(β)}.

Under ϕ, the image of A is

A−1 = {x ∈ K(R) | v(x) = −v(β)},

which corresponds to a disc, say D−1, where D−1 = {x ∈ K(R) | v(x) ≥
−v(β)}. Clearly 1

β
lies in D−1, so A−1 is on the path between 1

α
= ∞ and 1

β
.

Likewise for any annulus A0,n with n > v(β). So, we can take v1 = A. Note

that discs containing 1
β
are in one-to-one correspondence with vertices on the

path between 1
β
and ∞. Any disc of the form Dβ,n, where n > v(β), is a vertex

and lies on the path between β and 0. As above, discs of this form get mapped

to discs containing 1
β
with D−1

β,n getting closer to 1
β
the larger n is. So, take

v2 = Dβ,n for some fixed n > v(β).

If α = ∞ and β ∈ K(R) \ {0} then similarly to above we can take v1 = A

and v2 = D where

A = {x ∈ K(R) | v(x) = v(β)},

D = {x ∈ K(R) | v(x− β) = n},

for some fixed n > v(β). Note that this works since any annulus closer to ∞
than A is will map to an annulus closer to 0 than A−1 is, and any disc closer

to β than D is will map to a disc (that does not contain 0) closer to 1
β
than

D−1 is under ϕ.

Finally, if α = 0 and β = ∞ then the path between α and β has vertices

which are precisely the set of annuli centred at 0. Take v1 = A1 to be any such

annulus and v2 = A2 to be the unique annulus adjacent to v1 which is closer

to ∞ than A1 is. By Lemma 5.3.6 A−1
1 and A−1

2 are both annuli centred at 0,

and lie on the path between 0 and ∞ with A−1
1 closer to 0 than A−1

2 is to 0.

In all cases v1 and v2 lie on the path between α and β and are such that
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v−1
1 and v−1

2 lie on the path between 1
α
and 1

β
, and vertices which are closer to

α (resp. β) than v1 (resp. v2) is, get mapped to vertices which are closer to 1
α

(resp. 1
β
) than v−1

1 (resp. v−1
2 ) is. Now by Lemma 5.3.3 adjacency is preserved

so we get the path from v1 to α (resp. v2 to β) maps to the path from v−1
1 to

1
α
(resp. v−1

2 to 1
β
) and the path between v1 and v2 maps to the path between

v−1
1 and v−1

2 . Moreover, this gives us that ϕ is an isomorphism between the

path from α to β and the path from 1
α
and 1

β
, this is because if the image had

any backtrackings this would contradict the path selected from α to β being

the shortest path.

Corollary 5.3.8. Let f ∈ K[x] be square free with tamely ramified splitting

field and set of roots R in K̄. Take r1, r2 ∈ R to be distinct roots of f(x).

Then the unique path between r1 and r2 in TK(R) gets mapped to the unique

path between 1
r1

and 1
r2

under the Möbius map ϕ : z 7→ 1
z
, where 1

ri
= ∞ if

ri = 0. Furthermore, for any root r ∈ R the unique path between r and ∞ gets

mapped to the unique path between 1
r
and 0.

Proof. Follows as a direct consequence of Lemma 5.3.7

Lemma 5.3.9. Let f ∈ K[x] be square free with tamely ramified splitting field

and set of roots R in K̄. Take r, s, t to be distinct, with r, s, t ∈ R if R is

even, and r, s, t ∈ R∪ {∞} if R is odd. Write c for the unique point that lies

on all three the paths between r and s, r and t, and s and t. Then c is mapped

to the unique point, c−1, that lies on all three of the embedded paths between 1
r

and 1
s
, 1

r
and 1

t
, and 1

s
and 1

t
under ϕ : z 7→ 1

z
, where 1

0
= ∞ and 1

∞ = 0.

Proof. Recall that c is either a disc or an annulus and its image under ϕ is as

described earlier in this section and denoted by c−1. By Lemma 5.3.7, since c

lies on all three of the paths between r and s, r and t, and s and t, c−1 lies on

all three of the paths between 1
r
and 1

s
, 1

r
and 1

t
, and 1

s
and 1

t
. That is, c−1 is

the unique intersection point of all three paths.

We now have enough to prove that T̃ (f/K) is invariant under the Möbius

transformation z 7→ 1
z
.

Lemma 5.3.10. Consider the Möbius transformation ϕ(z) = 1
z
, defined over

K. Let f ∈ K[x] be square free with tamely ramified splitting field and set of

roots R in K̄. Let f ′ ∈ K[x] have set of roots R′, where R′ = {ϕ(r) | r ∈
R} \ {∞} if R is even, and R′ = {ϕ(r) | r ∈ R ∪ {∞}} \ {∞} if R is odd.

Then T̃ (f/K) ∼= T̃ (f ′/K) and the genera and colouring are preserved by this

isomorphism.
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Proof. Recall that the vertices of T̃ (f/K) are precisely the triple intersection

points of three distinct elements of R if R is even, and of elements of R∪{∞}
if R is odd. Similarly, vertices of T̃ (f ′/K) are the vertices of TK(R) which are

triple intersection points of three distinct elements of R′ if R′ is even and of

R′ ∪ {∞} if R′ is odd.

Suppose thatR is even. ThenR′ = {1
r
| r ∈ R}\{∞}. SoR′ is even if and

only if 0 /∈ R, in which case∞ /∈ {1
r
| r ∈ R} so we can writeR′ = {1

r
| r ∈ R}.

IfR′ is odd then∞ ∈ {1
r
| r ∈ R} so we have thatR′∪{∞} = {1

r
| r ∈ R}. By

Lemma 5.3.9, the intersection point in TK(R) of every triple of elements in R
gets mapped to the intersection point of the corresponding triple of elements

in {1
r
| r ∈ R}. Therefore, we have an isomorphism between the vertices

of T̃ (f/K) and T̃ (f ′/K). Since adjacency is preserved by Lemma 5.3.3,

and distance is preserved by Lemma 5.3.4, we have an isomorphism between

T̃ (f/K) and T̃ (f ′/K) that preserves distances. It remains to show that

the genera of vertices and colouring of the edges and vertices are preserved.

However, by Lemma 5.3.7, a vertex of T̃ (f/K) which is closest to an element

α ∈ P1(K(R)) is mapped to the vertex of T̃ (f ′/K) which is closest to ϕ(α).

So, it follows by Remark 5.2.13, that the colouring and genera are preserved.

5.3.4 Cores and Canonical Representatives are Model

Invariant

All three of our discussions about simple Möbius transformations lead us to

the following result.

Proposition 5.3.11. Let ϕ be any Möbius transformation, defined over K.

Let f ∈ K[x] be square free with tamely ramified splitting field and set of roots

R in K̄. Let f ′ ∈ K[x] have set of roots R′, where R′ = {ϕ(r) | r ∈ R}\{∞} if

R is even, and R′ = {ϕ(r) | r ∈ R∪{∞}}\{∞} if R is odd. Then T̃ (f/K) ∼=
T̃ (f ′/K) and the genera and colouring are preserved by this isomorphism.

Proof. Any Möbius transformation can be broken down into simple Möbius

transformations, namely scalings, shifts, and inversions. The result follows

from Lemmas 5.3.1, 5.3.2, and 5.3.10.

Recall that, if dR, dR′ ≥ 0, Construction 5.2.15 and Theorem 5.2.18 give

us a description of how to obtain T̃ and T̃ ′ from TK(R). In particular we take

the quotients of T̃ (f/K) and T̃ (f ′/K) by their induced Galois actions.

Lemma 5.3.12. If r and r′ are in the same Galois orbit then ϕ(r) and ϕ(r′)

are in the same orbit as each other also, for any Möbius transformation ϕ.
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Proof. Let ϕ(z) = az+b
cz+d

be a Möbius transformation. WriteGK = ⟨σ⟩. Suppose
that r′ = σ(r). Since a, b, c, d ∈ K it is clear that ϕ(σ(r)) = ϕ(r′) = ar′+b

cr′+d
=

aσ(r)+b
cσ(r)+d

= σ
(
ar+b
cr+d

)
= σ(ϕ(r)).

So, as a direct consequence of this and Proposition 5.3.11 we get the

following theorem.

Theorem 5.3.13. Let f ∈ K[x] be square free with tamely ramified splitting

field and set of roots R in K̄ such that dR ≥ 0. Let T be the open quotient

BY tree associated to f . Take ϕ to be any Möbius transformation, defined over

K, such that dR′ ≥ 0, where R′ = {ϕ(r) | r ∈ R} \ {∞} if R is even, and

R′ = {ϕ(r) | r ∈ R∪ {∞}} \ {∞} if R is odd. Let f ′ ∈ K[x] have set of roots

R′ and let T ′ be the open quotient BY tree associated to f ′. Then T̃ ∼= T̃ ′ and

the genera and colouring are preserved by this isomorphism.

Proof. By Lemma 5.3.12, applying ϕ does not change the Galois orbits. So,

the quotient described in Construction 5.2.15 gives that q(T̃ (f/K)) and

q(T̃ (f ′/K)) are isomorphic trees and their colouring, genera, multiplicities

and distances are all preserved by this isomorphism. By Theorem 5.2.18, since

dR, dR′ ≥ 0, q(T̃ (f/K)) ∼= T̃ and q(T̃ (f ′/K)) ∼= T̃ ′.

Recall that two open quotient BY trees T and T ′ are equivalent if and

only if their canonical representatives are isomorphic. That is their cores T̃

and T̃ ′ are isomorphic, and on the extended trees as described in Construction

4.5.1 their marked points are integer distance from each other (although not

every tree satisfying this will be equivalent to T and T ′). Recall also that we

discussed in Proposition 5.2.22 how these marked points will always correspond

to integral discs Dz,d with z ∈ K and d ∈ Z. So, it is important to show that

under any Möbius transformation vertices of the modified Bruhat-Tits tree

corresponding to discs of the form Dα,d with α ∈ K and d ∈ Z get mapped to

vertices corresponding to discs of the same form.

Proposition 5.3.14. Let D be an integral disc, that is, a disc of the form

Dα,d, with α ∈ K and d ∈ Z. Then D (or its corresponding annulus) is

mapped to an integral disc (or its corresponding annulus) under any Möbius

transformation ϕ defined over K.

Proof. Suppose that ϕ(z) = 1
z
. We noted at the start of the discussion about

inversion that a disc D, 0 /∈ D is mapped to

D−1 = {y ∈ K(R) | v
(
y − 1

zD

)
≥ dD − 2v(zD)}.
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Likewise, if 0 ∈ D then the corresponding annulus A is mapped to

A−1 = {y ∈ K(R) | v(y) = −dD}.

It is therefore easy to see that any integral disc (or its corresponding annulus)

is mapped to an integral disc (or its corresponding annulus) under z 7→ 1
z
. We

can similarly apply shifts and scalings to discs and it is easy to show that they

also send integral discs to integral discs.

It is important to note that whilst the vertex that the marked point arises

from on the Bruhat-Tits tree might be mapped to a different vertex under a

Möbius transformation this does not mean that the marked point has moved

in the sense of Theorem 4.6.4. This is because the marked point needs to have

moved relative to the core of the open quotient BY tree and when we visualise

this on the Bruhat-Tits tree, the whole core may also be moved by the Möbius

map, for instance under the map z 7→ z+ β. Likewise, just because the vertex

of the Bruhat-Tits tree which corresponds to the marked point is fixed by a

Möbius map, this does not mean that the marked point has not moved in the

sense of Theorem 4.6.4. For instance under the map z 7→ 1
z
if DzR,0 = OK .

As such we always need to be careful what we mean when we say the marked

point has moved. The default assumption is that we are speaking in the sense

of Theorem 4.6.4.

Finally, we are able to conclude and prove that the canonical representa-

tive is invariant under Möbius transformations.

Theorem 5.3.15. Let f ∈ K[x] be square free with tamely ramified splitting

field and set of roots R in K̄ such that dR ≥ 0. Write T for the open quotient

BY tree associated to f . Take a Möbius transformation ϕ(z), defined over

K, such that dR′ ≥ 0, where R′ = {ϕ(r) | r ∈ R} \ {∞} if R is even, and

R′ = {ϕ(r) | r ∈ R ∪ {∞}} \ {∞} if R is odd. Let f ′ ∈ K[x] have set of

roots R′ and let T ′ be the open quotient BY tree of f ′. Then T and T ′ are

equivalent.

Proof. By Lemma 5.3.13 T̃ ∼= T̃ ′ and their colouring, genera, multiplicities

and distances are all preserved by this isomorphism. Write m and m′ for the

marked points of T and T ′ respectively. By Proposition 5.3.14 m and m′ are

integer distance apart. It follows that if there is a unique closest integral disc

D to the centre c of T̃ then there is a unique closest integral disc D′ to the

centre c′ of T̃ ′. Similarly, if there are two closest discs to c, then there are such

discs for c′. We will deal with the former situation however, as the case when
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there are two closest integral discs follows similarly. It remains to prove that

the open edge is added to T̃ in the same way as it is to T̃ ′. If D lies on T̃ 1

(when viewed on T ) then we are done much like in the proof of Theorem 4.6.8.

So, suppose this is not the case. Recall that we can visualise B and B′, the

extended trees of T and T ′ respectively on T . Note that shifts and scalings

clearly have no effect on whether green edges are added or not, since they do

not change the colouring of the open edge, nor move its positioning relative to

T̃ . It is not hard to show that when D does not lie on T̃ , whether or not D is

coloured green on the extended tree B is entirely determined by the number

of elements of R+ each vertex of T̃ is closest to, and the denominator of the

distance of each vertex to the marked point. Both of these are unchanged

by Mobius transformation (since lines are mapped to lines and adjacency is

preserved - proved in the lemmas earlier in this section). Therefore, D lies on

a green part of B if and only if D′ lies on a green part of B′.

This is the only information we need to calculate their canonical repre-

sentative, so this shows that their canonical representatives are isomorphic.

Namely T and T ′ are equivalent.

We translate this into the setting of hyperelliptic curves in Section 6.1.

5.4 Möbius Maps Between Equivalent Open

Quotient BY Trees

Here, to complete our classification, we study how one can find a Möbius map

between any two equivalent open quotient BY trees. This is formally stated

as follows.

Theorem 5.4.1. Let f ∈ K[x] be square free with tamely ramified splitting

field and set of roots R in K̄ such that dR ≥ 0. Write Σ for the cluster picture,

and T for the open quotient BY tree associated to f . Let T ′ be an open quotient

BY tree equivalent to T . Then there exists a Möbius transformation ψ over K

such that for

R′ =

{ψ−1(r) | r ∈ R} \ {∞} if R is even,

{ψ−1(r) | r ∈ R ∪ {∞}} \ {∞} if R is odd,

the associated cluster picture Σ′ = (Σ′,R′, d′) has d′R′ ≥ 0 and T (Σ′) ∼= T ′.

The rough method for proving this result is as follows. Visualise q−1(T )

on the Bruhat-Tits tree TK(R) via our usual method described in Section 5.2.
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Since T and T ′ are equivalent open quotient BY trees they have isomorphic

cores. So, we can visualise the preimage q−1(T̃ ′) of the core of T ′ as lying in

q−1(T ), and think of it as a subtree of TK(R). By definition T̃ ′ is a subtree

of T ′ so we can use this to visualise q−1(T ′) and thus the marked point m′ of

T ′ (recall m′ has multiplicity 1 so there is precisely one point in the preimage

q−1(m′) of m′, so we think of this as also being labelled m′) as lying on TK(R)

overlapping q−1(T ) at the preimage of their cores.

Example 5.4.2. Consider the polynomial f(x) = (x − 1)(x3 − 75)(x − 7 −
72)(x− 7 + 72) over K = Qur

7 . Let T be the open quotient BY tree associated

to f/K. In Example 5.2.14 we found T̃ (f/k), as pictured in Figure 5.4. We

can similarly view q−1(T ) on T by constructing T (f/K). Note that in this

case T 1 = T , so in fact T ∼= q−1(T ) ∼= T (f/K). This is pictured in Figure

5.11 below, where ζ3 is a third root of unity. Let T ′ be the following open

Figure 5.11: T ∼= q−1 ∼= T (f/k) visualised on the Bruhat-Tits tree.

quotient BY tree:

T ′ =

Similarly, q−1(T ′) ∼= T ′ so we can visualise T ′ as lying on the Bruhat-Tits tree

by overlapping T ′ and T along their core, as shown in Figure 5.12 below.

Figure 5.12: T ∪ T ′.

We will show thatm′ corresponds to a vertex of TK(R) which is an integral

disc. Denote this disc by Dm′ = Dα,n for some α ∈ K and n ∈ Z. We can map
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Dm′ to the ring of integersOK(R) by applying a shift and scaling. Depending on

the case, we make an assumption about whether or not a root lies at 0, possibly

by applying a further shift. We can then apply an inversion so that, roughly

speaking, all vertices (i.e. discs corresponding to vertices of q−1(T ) after the

shifts and scalings above have been applied) get mapped to discs that lie inside

the image of the ring of integers, or get mapped to annuli corresponding to

such discs. That is, the images of all other vertices get mapped to vertices

hanging below the image of the ring of integers.

Example 5.4.3. Continuing with Example 5.4.2, we can consider m′ as cor-

responding to the disc D7,2, a vertex of T . This is shown in Figure 5.13.

Figure 5.13: T ∪ T ′ on the Bruhat-Tits tree.

To map Dm′ = D7,2 to OK we first shift by 7 so it becomes centred at

0, and then scale by 72. That is we can apply the transformation z 7→ z−7
72

to the set of roots R of f . This maps R to the set {1,−1, 1

7
1
3
− 1

7
, ζ3

1

7
1
3
−

1
7
, ζ23

1

7
1
3
− 1

7
, 1
72
− 1

7
}. We can apply z 7→ 1

z
, and denote the resulting set by R′.

When viewed on T the open quotient BY tree afforded by Construction 5.2.6

is indeed isomorphic to T ′. This is shown pictorially in Figure 5.14.

Figure 5.14: Open subtree of T arising from R′, isomorphic to T ′.
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The process will differ slightly depending on the coloring of the open edges

of both T and T ′. Note that at different points in this proof we will have to be

careful about which description of the Bruhat-Tits tree we use, be that either

the standard definition or the modified definition to include annuli. This is

not something to worry about as we are able to use them interchangeably but

it is a subtlety that we need to be aware of in order to complete the proof. In

particular, whenever we are performing a shift or scaling we use the standard

definition, but when we perform an inversion we need to make use of the

modified definition.

Proof of Theorem 5.4.1. Let m and m′ be the marked points of T and T ′

respectively. By definition of T and T ′ being equivalent, their cores T̃ and T̃ ′

are isomorphic. Note that, since dR, dR′ ≥ 0, by Theorems 5.2.10 and 5.2.18,

q(T (f/K)) ∼= T , q(T (f ′/K)) ∼= T ′, q(T̃ (f/K)) ∼= T̃ , and q(T̃ (f ′/K)) ∼= T̃ ′.

So, we are instead able to use notation such as q−1(T ) in the place of T (f/K),

as defined in Notation 5.2.20. Recall, by Remark 5.2.21, that if ΣC has a

non-trivial Galois orbit of proper clusters then we cannot visualise T and T̃

themselves as lying on the Bruhat-Tits tree, but instead q−1(T ) and q−1(T̃ ).

Since T̃ and T̃ ′ are isomorphic it is clear from Construction 5.2.15 that q−1(T̃ )

and q−1(T̃ ′) are also. Note that q−1(T ′) can also then be visualised as lying on

the Bruhat-Tits tree, by overlapping q−1(T ) at q−1(T̃ ). It is important to note

that in this visualisation the open edge of q−1(T ) will be thought of as going

off to the point at infinity of TK(R), whereas it is likely that the open edge of

q−1(T ′) will instead need to be thought of as going off to some element of K on

the boundary of the Bruhat-Tits tree TK(R). The image of any multiplicity 1

point under q−1 has size 1, so we are able to think of T 1 as lying on q−1(T ) and

therefore as lying on TK(R). In particular, as stated in Proposition 5.2.22, m′

corresponds to a vertex of TK(R) which is a disc with centre in K and integer

depth (or equivalently an annulus corresponding to a such disc if we are using

the modified Bruhat-Tits tree). For now let us take the standard description

of the Bruhat-Tits tree where all vertices are discs, and let us denote the disc

which m′ corresponds to as Dm′ = Dα,n where α is some element of K and

n ∈ Z. Applying the shift ϕ1 : z 7→ z − α to K(R), maps Dm′ to the disc

D0,n. Further applying the scaling ϕ2 : z 7→ π−nz maps D0,n to the ring of

integers of K(R), namely D0,0. We proved above in Proposition 5.3.11 that

Möbius transformations are isomorphisms on q−1(T̃ ). So, under ϕ2 ◦ ϕ1 when

we restrict to q−1(T̃ ) this is an isomorphism, and Dm′ is mapped to the ring

of integers of K(R). So we can assume without loss of generality that α = 0
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and dDm′ = 0.

We now subdivide into three different cases depending on what must be

removed from T ′ to obtain T̃ ′ = T̃ . Recall, by Proposition 4.3.9, that to obtain

the core we either:

(a) delete just the open edge,

(b) delete the open edge and view the vertex it was attached to as a point

on an edge,

(c) or delete the open edge along with a genus 0 blue vertex and a closed

blue edge.

So, in order to know which Möbius transformations to apply, we must consider

what case T ′ is in.

(a1) Suppose first that T̃ ′ is obtained from T ′ by simply deleting the open

edge and that T ′ has a yellow open edge. That is, we are in case (A1)

or (E1) of Theorem 4.6.4. After shifting further by some y ∈ OK we can

assume that all elements of Dm′ ∩ R lie in OK(R) and are units, that is

every r ∈ R such that r ∈ Dm′ has v(r) = 0. All other roots r /∈ Dm′ will

have valuation dDm′∧{r} < 0. We now make a shift and consider the mod-

ified Bruhat-Tits tree instead of the standard definition. As such we now

need to consider the annulus corresponding to Dm′ which we will denote

Am′ = A0,0. As discussed earlier, the Möbius transformation ϕ3 : z 7→ 1
z

is an isomorphism on q−1(T̃ ). Furthermore, the image of Am′ under ϕ3

is itself. Let us denote R′ = {ψ(r) | r ∈ R}, where ψ = ϕ3 ◦ ϕ2 ◦ ϕ1.

Let f ′ ∈ K[x] have roots R′. All roots r′ ∈ R′ have images with non-

negative valuation, that is they lie in Dm′ , so we are now able to apply

Construction 5.2.6. Linking up all our roots as in Construction 5.2.6

we certainly obtain a tree which is isomorphic to q−1(T ′), since linking

all the vertices without the additional edge certainly gives us q−1(T̃ ) as

premiages of cores under q (and therefore cores themselves) are invariant

under Möbius transformation, and the marked point arises from OK(R),

namely where Dm′ was mapped to by the inversion. Distances are un-

changed under Möbius maps, so the marked point is certainly the correct

distance along the open edge. The colouring is also as required since the

colouring of the core remains unchanged by the Möbius transformations,

and the colouring of the open edge comes from the size of R′, which is

even so coloured yellow. By Lemma 5.3.12 the Galois orbits of roots
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remain unchanged. So, after taking the quotient, we have that f ′ has

open quotient BY tree isomorphic to T ′ as required.

(a2) Suppose now that T̃ ′ is obtained from T ′ by simply deleting the open edge

but in this case the open edge is coloured blue. In this situation, when

considered in B (the full extended tree of T as defined in Construction

4.5.1), we have the following cases:

(i) Theorem 4.6.4 case (A2): m′ is a blue vertex of T̃ = T̃ ′ with

2g(m′) + 2 >
∑

e∈E(T̃ ) blue,
incident to m′

M(e),

and if g(m′) = 0 then m′ has at least one yellow incident edge in T̃ .

(ii) Theorem 4.6.4 case (C2): m′ lies on a green part of B and the

open edge of T ′ is attached at the vertex vc ∈ V (T̃ ) which is closest

to m′ in B. Note that vc is coloured blue. We also have that

denom(d(v,m)) ∤ s(v, T ), or g(v0) = 0 and there is exactly one

closed edge incident to v0, which is blue of multiplicity 1 and vc is

the unique vertex adjacent to v0 in T , or vc = v0 and the open edge

of T is blue.

(iii) Theorem 4.6.4 case (E2): m′ does not lie on T̃ , and in B m′ is

not coloured green. The open edge of T ′ is attached at the vertex

vc ∈ V (T̃ ) which is closest to m′ in B and vc is blue with

2g(vc) + 2 >
∑

e∈E(T̃ ) blue,
incident to vc

M(e),

and if g(vc) = 0 then vc has at least one yellow incident

edge in T̃ . Furthermore, if #{incident blue edges to vc in T} ≠

#{incident blue edges to vc in T
′} then d(m′, vc) ∈ Z.

We will consider each of these cases separately.

(i) Recall that s(m′, T ) = 2g(m′) + 2−
∑

e∈E(T ) blue,
incident to m′

M(e). In case (i)

we have

2g(m′) + 2 >
∑

e∈E(T̃ ) blue,
incident to m′

M(e).

Recall also that we need to also consider what edges must be re-

moved from T to obtain T̃ . So, if #{e ∈ E(T̃ ) blue incident to m′} =
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#{e ∈ E(T ) blue incident to m′} we have that s(m′, T ) > 0. By

construction, d(m,m′) ∈ Z which means all singletons in Dm′ are

fixed by GK , that is there exists at least one root s ∈ R with

s ∈ Dm′ in q−1(T ) ⊆ TK(R) which is fixed by GK , i.e. such that

s ∈ OK , and {s} is a child of the cluster corresponding to Dm′ in

Σ. As before, we are able to assume that Dm′ = D0,0. All r ∈ Dm′

have v(r) ≥ 0, so, v(s) ≥ 0. If v(s) > 0 we can apply a shift by

some element of K, such as z 7→ z − 1, so we can assume without

loss of generality that v(s) = 0, that is s is a unit. Shifting by s

we can assume that s = 0. Now since s is a child of the cluster

corresponding to Dm′ we have that v(s− r) = 0 for all other roots

r ∈ Dm′ , in particular, v(r) = 0. So, all other roots inDm′ are units.

Finally we apply ϕ3 : z 7→ 1
z
and take R′ = {ϕ−1

3 (r) | r ∈ R} \ {∞}
if R is even and R′ = {ϕ−1

3 (r) | r ∈ R ∪ {∞}} \ {∞} if R is odd.

In either situation under our assumption that s = 0 is a root we

get that R′ is odd. So, if f ′ has roots R′ then its associated open

quotient BY tree is isomorphic to T ′.

If instead

#{e ∈ E(T̃b) incident to m
′} ≠ #{e ∈ E(Tb) incident to m

′},

then m′ must have had a blue edge deleted from it when passing

from T to T̃ . In particular either T has a blue open edge attached

to T̃ at m′, or to obtain T̃ from T we delete “yellow open edge →
blue genus 0 multiplicity 1 vertex → blue closed edge” from m′. In

the first instance a simple scaling of z 7→ πnz with n = −dR gives

the desired result. In the second instance, there exists some s ∈ R
with s /∈ Dm′ , all other r ∈ R lie in Dm′ . Certainly s is fixed by

GK , and therefore lies in K. We can assume, after possibly scaling,

that D(R) = D0,0, so s ∈ OK . Shifting by s we can assume that s

is in fact 0. The shift z 7→ z− s does not change that D(R) = D0,0,

so we have that, for all r ∈ Dm′ , v(r) = v(r − s) = dR = 0. So we

can assume without loss of generality that s = 0 and all elements of

R \ {s} are units. We now apply ϕ3 : z 7→ 1
z
and, since R is even,

take R′ = {ϕ−1
3 (r) | r ∈ R} \ {∞} if R is even. In particular this

gives that R′ = {1
r
| r ̸= 0 ∈ R} and R′ is odd. Note that since

v(r) = 0 for all r ∈ R \ {s} we have that v
(
1
r
− 1

r′

)
= v(r − r′).

So, similarly to before, if f ′ has roots R′ then its associated open
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quotient BY tree isomorphic to T ′.

(ii) Recall that in this case m′ is on a green part of B and the open

edge of T ′ is attached at the closest vertex vc to m
′ in B. As above,

denom(d(vc,m)) ∤ s(vc, T ), or vc = v0 and the open edge of T is

blue, or vc is a unique vertex incident to v0 with g(v0) = 0 and

there is exactly one incident closed edge to v0 in T which is blue.

First let us suppose that denom(d(vc,m)) ∤ s(vc, T ), and we are

not also in either of the other two situations. That is (because

M(vc) = 1) there exists some root s ∈ R that is fixed by GK and is

a child of the cluster associated to the disc vc, that is s ∈ K. Note

that since denom(d(vc,m)) ∤ s(vc) we must have d(vc,m) /∈ Z and

all other singletons of vc are in non-trivial GK orbits. m′ must not

contain any roots that lie in proper children of vc (else there would

be a vertex v′ corresponding to a proper child of vc with m
′ lying on

the path between v′ and vc i.e. m
′ would lie on the core so could not

lie on a green part of B). Since m′ is fixed by GK we can choose

Dm′ to contain s ∈ K. Note that, Dm′ cannot contain a second

root of R since Dm′ ⊂ Dv ⊆ R so if s ̸= r ∈ Dm′ either r lies in a

proper child of Dvc (which we have already mentioned above cannot

happen) or {r} ∧ {s} = Dvc , both of which give contradictions. In

particular, under the transformations we made above that saw us

move Dm′ to D0,0 (in the more general setting, before we entered

this specific case) we also move s to 0. So, we can assume without

loss of generality that Dm′ = D0,0 and that s = 0 is a root in

R. Now for all roots r ∈ R \ {0}, the cluster {r} ∧ {0} contains

the cluster Dm′ and therefore has depth d{r}∧{0} < 0. Furthermore,

v(r) = v(r−s) = d{r}∧{0}, so v(r) < 0 for all r ∈ R\{0}. Finally we

can apply ϕ3 : z 7→ 1
z
and find that all roots r ∈ R\{0} are mapped

to elements of D0,0, which is the image of Dm′ . Take R′ = {ϕ−1
3 (r) |

r ∈ R}\ {∞} if R is even and R′ = {ϕ−1
3 (r) | r ∈ R∪{∞}} \ {∞}

if R is odd. In either situation, under our assumption that s = 0

is a root, we get that R′ is odd. So, if f ′ has roots R′ then its

associated open quotient BY tree isomorphic to T ′.

Suppose instead that vc = v0 and the open edge of T is blue. Note

that it is also possible that denom(d(vc,m)) ∤ s(vc, T ), in which case

there will be two green edges attached to vc in blue. If we lie on

the green edge arising from the fact that denom(d(vc,m)) ∤ s(vc, T ),
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then vc will lie on the path between m and m′. This situation is

handled in the paragraph above. Otherwise, a simple scaling gives

the desired result.

Suppose instead that g(v0) = 0, there is exactly one closed edge

incident to v0 in T , which is blue and has multiplicity 1, and vc is

the unique vertex adjacent to v0 in T . Note that, by Proposition

4.3.9, v0 and the unique closed blue edge incident to v0 gets removed

(along with the open edge of T ) when passing from T , furthermore

the open edge of T must be yellow. Note that again, it is possible

that denom(d(vc,m)) ∤ s(vc, T ) and vc lies on the path between

m and m′. The first paragraph deals with this situation. So let’s

assume that vc is not on the path between m and m′. Since g(v0) =

0, we have that s(v0, T ) = 1 and d(m, v0) ∈ Z. Let us call the one

singleton of D(v0), s. Note that s is fixed by GK , therefore lies in

K. The only children of s(v0) are the one proper odd child, and {s}.
All roots in R \ {s} lie in the disc corresponding to v′0 = vc. Note

that D(s(v0)) has integer radius and the centre can be chosen to be

s. So, after a shift and scaling we can assume that D(s(v0)) = D0,0

and s = 0. Since {s} < s(v0) we have that for all r ∈ R \ {s}
{r} ∧ {s} = s(v0). In particular, we have that v(r) = v(r − s) =

d{r}∧{s} = 0. After inversion we get R′ = {1
r
| r ∈ R} \ {∞}.

Note that D(s(v0)) = D0,0 is fixed by this transformation, and the

image of D(s(vc)) is contained in D0,0. However, since s = 0 is

sent to infinity, the image of D(s(vc)) is now the smallest cluster

containing all roots in R′, which is odd. So far, our transformations

result in an open quotient BY tree with core T̃ , and blue open edge

attached to T̃ as vc, with marked point distance d(v0, vc) along the

open edge. Scaling further by d(m′, v0) gives the desired result.

Note that this gives the total scaling to be πd(m′,v0)

πd(m,v0)
= π±d(m,m′).

(iii) The final situation that can happen in this case is that m′ does not

lie on T̃ , and in B, m′ is not coloured green. As stated above, the

open edge of T ′ is attached at the vertex vc ∈ V (T̃ ) which is closest

to m′ in B. So, v′0 = vc and have that v′0 is blue with

2g(v′0) + 2 >
∑

e∈E(T̃ ) blue,
incident to v′0

M(e).

Furthermore, if g(v′0) = 0 then v′0 has at least one yellow in-
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cident edge in T̃ , and if #{incident blue edges to v′0 in T} ̸=
#{incident blue edges to v′0 in T ′} then d(m′, v′0) ∈ Z.

First, suppose that

#{e ∈ E(Tb) incident to v
′
0} = #{e ∈ E(T ′

b) incident to v
′
0}.

That is there exists a blue edge incident to v′0 in T that gets deleted

when passing to the core. We know v′0 lies on the core, so there

are two possibilities. Either v0 = v′0 and the open edge of T is

coloured blue, or to obtain T from T̃ we attach “open edge →
genus 0 multiplicity 1 blue vertex → closed blue edge” to v′0. In the

first instance a simple scaling will give the desired result. In the

second instance, much as in one situation of the previous case (ii),

there is precisely one root of R, say s which does not lie in the disc

associated to v′0. Furthermore, since m′ is not green, m′ must lie on

an open black edge attached to v′0, thus d(m, v
′
0) ∈ Z. Without loss

of generality we can assume that s = 0 and the disc associated to

v0 is D0,0. All other roots r ∈ R \ {0} will then have v(r) = 0, and

an inversion (followed perhaps by a scaling) gives the desired result

as in previous cases.

Suppose instead that

#{e ∈ E(Tb) incident to v
′
0} ≠ #{e ∈ E(Tb) incident to v

′
0},

so we also have that d(m′, v′0) ∈ Z. Similarly to in case (a2)(ii), we

can assume that Dm′ = D0,0 and, after perhaps shifting further by

some y ∈ OK , we can also assume that some s ∈ R is such that

s = 0 ∈ Dm′ . Every r ∈ Dm′ \ {0} must be a unit and all other

roots r /∈ Dm′ have v(r) < 0. Applying z 7→ 1
z
and taking R′ = {1

r
|

r ∈ R} \ {∞} if R is even, and R′ = {1
r
| r ∈ R ∪ {∞}} \ {∞} if

R is odd gives the desired result.

(b) Next, let us suppose that T̃ ′ is obtained from T ′ by removing the open

edge and viewing v′0 as a point on an edge. Note that in this situation

the open edge of T ′ is always coloured yellow. We have the following

cases:

(i) Theorem 4.6.4 case (B1): m′ lies on an edge e of T̃ (NB: it may be

a vertex of B but not of T̃ ). Then T ′ is obtained from T̃ by creating



5.4. Möbius Maps Between Equivalent Open Quotient BY Trees 158

a genus 0, multiplicity 1 vertex at m′, the same colour as the edge

e, and adding an open yellow edge at m′.

(ii) Theorem 4.6.4 case (D1): m′ does not lie on T̃ , m′ is not green,

and the closest point P on T̃ to m′ is not a vertex of T̃ . Then T ′ is

obtained from T̃ creating a genus 0, multiplicity 1 vertex at P on T̃

to m′, coloured the same as the edge P lies on in T̃ and attaching

an open yellow edge here.

Note that, by construction of B, in case (ii) the point P must be an

integer distance from m′. In particular, (ii) can be obtained from (i) by

a simple scaling z 7→ πd(P,m′)z. For this reason we will not address (ii)

here as it will follow from our proof of (i).

(i) Suppose that m′ lies on an edge e of T̃ and that T ′ is obtained from

T̃ by creating a genus 0, multiplicity 1 vertex at m′, coloured the

same as e, and adding an open yellow edge at m′. Certainly Dm′

can be chosen so that at least one root s ∈ R lies in Dm′ . As in

some of the previous cases, we can assume that Dm′ = D0,0 and all

roots in Dm′ are units. All roots outside of Dm′ must have negative

valuation, since if r /∈ Dm′ then

v(r) = v(r − 0) = d{r}∧{0} < dDm′ = 0.

Taking v 7→ 1
z
gives the desired result.

(c) Finally, let us suppose that T̃ ′ is obtained from T ′ by removing “open

edge → genus 0 mult 1 blue vertex → closed blue edge”. In this situ-

ation, when considered in B (the full extended tree of T as defined in

Construction 4.5.1), we have the following cases:

(i) Theorem 4.6.4 case (C1): m′ does not lie on T̃ andm′ lies on a green

part of B. In this case we can create a blue genus 0, multiplicity 1

vertex v′0 which is attached to the vertex of T̃ which is closest to m′

in B via a blue multiplicity 1 closed edge, and add a yellow open

edge at v′0.

(ii) Theorem 4.6.4 case (E3): m′ does not lie on T̃ and is not coloured

green in B, and the closest point on T̃ to m′ is a vertex vc ∈ V (T̃ )
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where vc is blue,

2g(vc) + 2 >
∑

e∈E(T̃ ) blue,
incident to vc

M(e),

and if g(vc) = 0 then m′ has at least one incident yellow edge in

T̃ . Finally, we require that if #{incident blue edges to vc in T} ≠

#{incident blue edges to vc in T
′} then d(m′, vc) ∈ Z. In this case

we can create a blue genus 0, multiplicity 1 vertex v′0 which is at-

tached to vc via a blue multiplicity 1 closed edge, and add a yellow

open edge at v′0, insuring that d(m′, v′0) ∈ Z.

Again we will consider both of these cases separately.

(i) Suppose that m′ does not lie on T̃ , m′ is green, and T ′ is created

from T by adding to T̃ in the following way. Let vc denote that

vertex in V (T̃ ) which is closest to m′ in B. Create a new genus 0,

multiplicity 1 vertex v′0 such that v′0 lies between vc and m′ in B,

and v′0 is an integer distance from m′. To obtain T ′, attach v′0 to T̃

at vc via a closed blue edge and add an open yellow edge at v′0 with

the distances between v′0, vc, and m′ as they are in B. Note that,

by Construction 4.5.1 at least one of the following hold:

• vc = v0 and the open edge of T is blue,

• v0 (the unique vertex incident to the open edge in T ) is blue of

genus 0 and there is exactly one closed edge incident to v0 in T

(the edge to vc), and this edge is blue and has multiplicity 1,

• or vc is such that denom(d(vc,m)) ∤ s(vc, T ).

Let us first suppose that denom(d(vc,m)) ∤ s(vc, T ) and Dm′ ⊂
Ds(vc). That is, as in case (ii) in the previous situation, because

M(vc) = 1 there exists some root s ∈ R that is fixed by GK and is

a child of the cluster associated to the disc in TK(R) corresponding to

vc. That is, s ∈ K. Again, we have that d(vc,m) /∈ Z and all other

singletons of vc are in non-trivial Galois orbits. Note that Dm′ must

not contain any roots that lie in proper children of v and Dm′ must

contain exactly one root of vc, else this would contradict vc being the

closest vertex on T̃ to m′. Under the usual transformations we can

assume without loss of generality that Dm′ = D0,0, and s = 0. All

other roots r ∈ R\ {s} have v(r) = v(r− s) = d{r}∧{s} < dDm′ = 0.

Let d = d(m′, v′0) and note that d ∈ Z≥0. Note that d(m′, v′0), i.e.
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the distance to m′ along the open edge of T ′ can be achieved by a

simple scaling at the end. As such, we will assume for simplicity

that d(m′, v′0) = 0 and correct this at the end by a simple scaling

if this is not the case. We now make a shift by a unit, say 1,

z 7→ z + 1 so that s = 1 is a unit, and all other roots have had

their valuations unchanged by this shift. Note that under this shift

D0,0 is fixed, that is Dm′ remains in the same place. Inversion,

z 7→ 1
z
, and taking taking R′ = {1

r
| r ∈ R} \ {∞} if R is even and

R′ = {1
r
| r ∈ R∪{∞}}\{∞} if R is odd, now gives us the desired

result. To see this note that Dm′ is mapped to itself, i.e. D0,0, all

roots are mapped to roots in D0,0 (since v(1
r
) = −v(r)) and finally

1 7→ 1, whilst all other roots r get mapped to roots with positive

valuation, meaning v(1− 1
r
) = 0, in particular {1} ∧ {1

r
} = D0,0, so

this is a vertex of the resulting open quotient BY tree. That the

correct colouring is given is clear since R′ is even regardless of the

parity of R.

Now let us suppose that Dm′ ⊇ Dvc and v0 is blue, of genus 0,

multiplicity 1, has exactly one closed incident edge in T , and this

edge is blue and has multiplicity 1. Note that v0 will get removed

when passing from T to T̃ and that the unique vertex incident to

v0 in T will be vc. In particular this means that to get from T̃ to

T we must have to add “open edge → genus 0 multiplicity 1 blue

vertex → closed blue edge” to vc. If d(v0, vc) = d(v′0, vc) then we

can apply a simple scaling to get the desired result. So, let us sup-

pose that d(v0, vc) ̸= d(v′0, vc). Let us also suppose for now that

d(v0, vc) < d(v′0, vc). By construction, the disc corresponding to v0

contains all roots r ∈ R. So, given m′ is on the open edge of T ,

r ∈ Dm′ for all r ∈ R. All but one root in R lies in the disc cor-

responding to vc. Let us denote the unique element of R that does

lie in D(s(vc)) by s. After a shift and a scaling we can assume that

D(s(v0)) = D0,0, and s = 0. Since {s} < D(s(v0)), we have that

v(r) = v(r−s) = d{s}∧{r} = 0. Scaling by d(v0, v
′
0), that is applying

z 7→ π−d(v0,v′0)z, scales the roots in R \ {s} but leaves s = 0 fixed.

Note that every r ∈ R\{s} is mapped to something with valuation

−d(v0, v′0) We can now shift by a unit, say 1, z 7→ z + 1 so that all

r ∈ R are still mapped to elements with valuation −d(v0, v′0), and
s is mapped to a unit. Inversion, followed by a scaling z 7→ πd(v′0,m

′)

so that m′ is the correct distance along the open edge, now gives the
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desired result. If instead d(v0, vc) > d(v′0, vc) then, we instead note

that taking a different marked point lying at v′0 satisfies the required

conditions for (c)(ii), with #{incident blue edges to vc in T} ̸=
#{incident blue edges to vc in T

′}. So, we refer to this part of the

proof instead. Taking v′0 to be the marked point in the proof of

(c)(ii) (where it is labeled m′), and then performing a simple scal-

ing of magnitude d(v0,m
′) at the end gives the desired result.

Suppose instead that Dm′ ⊇ Dvc and v0 = vc and the open edge of

T is blue. Then we can scale and then shift all roots r ∈ R so that

v(r) = 0 and dR = d(vc, v
′
0). Inverting and then scaling if necessary

gives the desired result.

(ii) Suppose now that m′ does not lie on T̃ , is not coloured green in B,

and the closest vertex of T̃ to m′ is vc where vc is blue,

2g(vc) + 2 >
∑

e∈E(T̃ ) blue,
incident to vc

M(e),

and if g(vc) = 0 then m′ has at least one incident yellow edge

in T̃ . Finally we have that, if #{incident blue edges to vc in T} ̸=
#{incident blue edges to vc in T

′} then d(m′, vc) ∈ Z. To obtain T ′

we create a blue genus 0, multiplicity 1 vertex v′0 which is attached

to vc via a blue multiplicity 1 closed edge, and add a yellow open

edge at v′0, so that d(v′0,m
′) ∈ Z.

First let us suppose that

#{e ∈ E(Tb) incident to vc} = #{e ∈ E(T ′
b) incident to vc}.

So, there are two possibilities, either vc = v0 and the open edge of

T is coloured blue, or to obtain T from T̃ add “open edge → genus

0 multiplicity 1 blue vertex → closed blue edge” to vc. In the first

instance, as above we can assume that all roots are units (perhaps

after a shift) and that Dm′ = D0,0 before inverting which gives us

the desired result. To see this just note that, since Dm′ = D0,0 and

all roots in R are units, inversion has no effect on the distances

between these roots but does introduce an additional root at 0. In

the second instance, m′ lies on a black open edge which is attached

at vc. There is precisely one root, say s ∈ R that is not in the

disc associated to vc. Taking m′′ to be a disc on the open edge
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of T with d(m,m′) = d(m,m′′) and adding “open edge → genus 0

multiplicity 1 blue vertex → closed blue edge” to vc with m
′′ as the

marked point results in exactly the same picture T ′. However, in

this situation m′′ is green and we lie in a case previously discussed

so we can apply the same result.

Suppose instead that

#{e ∈ E(Tb) incident to vc} ≠ #{e ∈ E(T ′
b) incident to vc}.

In particular, this means that no blue edge is removed from vc when
passing from T to T̃ , that is:

#{e ∈ E(Tb) incident to vc} ≠ #{e ∈ E(T̃b) incident to vc}.

So, in T , s(vc, T ) > 0 and there exists at least one singleton in the
cluster corresponding to vc. Furthermore, under our requirement

that in this case d(m′, vc) ∈ Z, all children of s(vc) are fixed by

GK . So, in T , vc contains a root, say s ∈ R which lies in no

other clusters and is fixed by Galois, i.e. s ∈ K. Note that in this

situation, either vc = v0, in which case the open edge ε of T must

be coloured yellow, or vc ̸= v0, in which case Dm′ ⊂ D(s(vc)). In

the first instance, note that, since d(vc,m) ∈ Z, vc has an open

black edge attached to it in B. We can assume that m′ lies on this

open black edge rather than on the open edge of T . The reason

we can assume this is because we are only looking for f ′ with BY

tree isomorphic to T ′ and the combinatorial construction of T ′ does

not mind where we picked our m′ to be as long as the distance

from vc is correct and m′ satisfies any conditions required to be

able to create T ′ from T̃ . So, since every edge and vertex in B

has multiplicity 1 (or no multiplicity assigned i.e. multiplicity 1),

we can consider B as lying on the Bruhat-Tits tree in such a way

that m′ contains s and Dm′ ⊂ D(s(vc)). So regardless of whether

vc = v0 or not, we can assume that Dm′ ⊂ D(s(vc)) and s ∈ Dm′ .

Since Dm′ ⊊ D({s} ∧ {r}) for all r ∈ R\ {s} we must have that all

other roots r ̸= s do not lie in Dm′ . As in many other cases, we can

assume that Dm′ = D0,0 and s = 0, therefore v(r) < 0 for all r ̸= s.

Shifting by a unit we can assume that s is instead a unit. Inversion

then gives the desired result.
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Chapter 6

Curves and Open Quotient BY

Trees

6.1 Results for Hyperelliptic Curves

For simplicity, the preceding sections stated results in more generality than we

require. Given we are concerned with classification of hyperelliptic curves, we

now want to pull results from earlier sections, stating them for hyperelliptic

curves rather than general open quotient BY trees or cluster pictures.

Definition 6.1.1. Let C : y2 = f(x) be a hyperelliptic curve overK with tame

reduction. Then f is a square free polynomial in K[x] with tamely ramified

splitting field and the cluster picture ΣC/K is of polynomial type. As such, we

define the open quotient BY tree associated to C over K to be T(ΣC/K).

Open quotient BY trees have been carefully constructed with this in mind.

In particular they have been constructed to be quotients of open BY trees, in

the sense of Definition 2.2.3, hence their name. This is something we are now

able to study, after constructing a sensible metric on q−1(T ).

Construction 6.1.2. Here we make the comments in Remark 4.2.4 more

formal. If T is the metric open quotient BY tree associated to a hyperelliptic

curve C/K and L/K is such that C/L is semistable, then we can define a

metric associated to L/K on q−1(T ). In particular, for an edge e ∈ E(T ) we

define the length of each q−1(e)i to be

l(q−1(e)i) =

[L : K]l(e) if e is blue,

2[L : K]l(e) if e is yellow.

Writing T ′ = q−1(T ), this gives that for any edge e′ ∈ E(T ′),

l(q(e′)) =


l(e′)
[L:K]

if e′ is blue,

l(e′)
2[L:K]

if e′ is yellow.
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Proposition 6.1.3. Let C/K be a hyperelliptic curve with tame reduction, and

let L/K be a field extension such that C is semistable over L. Let T be the

open quotient BY tree associated to C/K, then q−1(T ) (with the metric defined

in Construction 6.1.2) is isomorphic to the metric open BY tree associated to

C/L.

Proof. We already proved in Theorem 4.2.6 that q−1(T ) is an open BY tree. It

is not hard to see from the construction that every proper cluster in ΣC/K con-

tributes one vertex to q−1(T ), which is coloured yellow if the cluster is übereven

and blue otherwise. Proper clusters in ΣC/K are in one-to-one correspondence

with proper clusters in ΣC/L. Likewise, it is not hard to see that the edge

set, colouring of edges, and genera of vertices are as required. So certainly the

non-metric version of this statement is true. To see that the metrics are the

same it is enough to note that when we take a field extension, the effect on the

depths is that they are multiplied by the degree of the extension. Taking into

account the convention for yellow edges in BY trees to have length 2δs, rather

than δs, gives us that the metrics are indeed the same.

Remark 6.1.4. If T ′ is a metric closed quotient BY tree, then we can define

the lengths of edges just as in Construction 6.1.2, except for an exceptional

edge between q−1(v′)1 and q−1(v′)2, which we give length

l([q−1(v′)1, q
−1(v′)2]) =

2[L : K]l(e) if e is blue,

4[L : K]l(e) if e is yellow,

where e is the edge between v′ and the exceptional vertex in T ′ which gives

rise to this edge.

We can use our equivalence relation on open quotient BY trees to study

hyperelliptic curves. In particular, the work in Sections 5.3 and 5.4 gives us

the following two results. Firstly, for a hyperelliptic curve C/K one can find an

isomorphic hyperelliptic curve with any given open quotient BY tree equivalent

to that of C. Stated more formally:

Theorem 6.1.5. Let C : y2 = f(x) be a hyperelliptic curve with cluster picture

Σ, dR ≥ 0, and open quotient BY tree T . Let T ′ be an open quotient BY tree

equivalent to T , then there is a K-isomorphic curve C ′/K with cluster picture

Σ′, and dR′ ≥ 0 such that T (Σ′) ∼= T ′.

This follows as a direct result of Theorem 5.4.1 along with the following

remark.
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Remark 6.1.6. Suppose that C : y2 = f(x) is a hyperelliptic curve. Just as

stated in the proof of Proposition 14.6 in [DDMM18], for a Möbius transfor-

mation ψ(z) = az+b
cz+d

with a, b, c, d ∈ K, a change of variables of the form

x =
ax′ + b

cx′ + d
, y =

y′

(cx′ + d)g+1

gives a model for C/K of the form y′2 = f ′(x′). The set of roots of f ′(x′) is

precisely R′ = {ψ−1(r) | r ∈ R} \ {∞} if R is even and R′ = {ψ−1(r) | r ∈
R ∪ {∞}} \ {∞} if R is odd.

So, we can take C ′/K to be the model afforded by making the appropriate

change of coordinates for the Möbius transformations in the proof of Theorem

5.4.1. Writing Σ′ for the cluster picture of C ′/K, gives T (Σ′) ∼= T ′ as required.

Conversely, we can find a Möbius map between any two equivalent open

quotient BY trees. This is formally stated below in Theorem 6.1.5. It is worth

noting that this a generalisation of [DDMM18, Corollary 14.7].

Theorem 6.1.7. Let C be a hyperelliptic curve over K, with set of roots R
such that dR ≥ 0, and open quotient BY tree T . Take a Möbius transformation

ϕ(z) such that dR′ ≥ 0, where R′ = {ϕ(r) | r ∈ R} \ {∞} if R is even, and

R′ = {ϕ(r) | r ∈ R ∪ {∞}} \ {∞} if R is odd. Let C ′/K be a hyperelliptic

curve with set of roots R′ and let T ′ be the open quotient BY tree of C ′/K.

Then T and T ′ are equivalent.

This follows directly from Theorem 5.3.15 by writing C : y2 = f(x) and

C ′ : y2 = g(x), and applying Theorem 5.3.15 to f and g. It is worth noting

that if we wish to work with curves with negative top cluster depths, then

a simple scaling (at either end of the process) will allow us to work with a

model with non-negative top cluster instead and thus apply Theorem 5.3.15.

What this shows us is, the canonical representative of an open quotient BY

trees associated to a hyperelliptic curve is model invariant. That is, choos-

ing a different model for a hyperelliptic curve does not change the canonical

representative.

6.2 Genus

It would be useful, in order to produce a usable classification, to have a formula

for the genus of a quotient BY tree. In particular, if T is an open quotient BY

tree, we would like the genus of T to equal the genus of a hyperelliptic curve

with cluster picture Σ(T ). This will give a way of listing all open quotient
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BY trees corresponding to hyperelliptic curves of a given genus. To do this we

return to the semistable situation, and examine what is known there.

Definition 6.2.1 ([DDMM17, Definition 3.23]). For a closed or open BY tree

T , the genus of T is

g(T ) = #{connected components of Tb} − 1 +
∑

v∈V (T )

g(v).

There are several useful propositions in [DDMM17] that tell us how the

genus of a BY tree relates to that of a hyperelliptic curve (with semistable

reduction). In particular, by [DDMM17, Proposition 4.17], for an open BY

tree T , g(T ) = g(Σ(T )). Conversely, by [DDMM17, Proposition 4.19], if Σ

is a cluster picture then g(Σ) = g(T (Σ)). Note that if Σ is a cluster picture

of polynomial type, and is the cluster picture of a hyperelliptic curve, say C,

then g(Σ) = g(C). Other useful results include [DDMM17, Proposition 5.7]

which gives that if T is an open BY tree with core T̃ , then g(T ) = g(T̃ ). We

can use quotients of BY trees to easily obtain similar results for open quotient

BY trees and hyperelliptic curves with tame reduction. We define the genus

of quotient BY tree as follows.

Definition 6.2.2. Let T be a (closed or open) quotient BY tree and let

B1, . . . , Bn be the connected components of Tb. Then the genus of T is

g(T ) =

(
n∑

i=1

min
w∈V (Bi)

{M(w)}

)
− 1 +

∑
v∈V (T )

g(v)M(v).

It is worth noting the following:

Proposition 6.2.3. For an open quotient BY tree T , g(T ) = g(T̃ ).

Proof. By Proposition 4.3.9, the only vertices removed when passing to the

core of an open quotient BY tree are of genus 0, so the last part of the genus

formula is clearly unaltered. It remains to show that the first term in the

formula remains unchanged when passing from T to T̃ .

Suppose first that v0 is yellow. Then the open edge ϵ must be yellow and,

by Proposition 4.3.9, we know that no blue vertex or edge is deleted when

passing from T to T̃ . So we are done.

Suppose instead that v0 is blue. Deleting the open edge, regardless of

the colouring, does not have any effect on the genus formula. Let B1 be the

connected component of Tb which contains v0. Recall that M(v0) = 1. By
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Proposition 4.3.9, we know that v0 gets deleted (along with a closed blue

multiplicity 1 edge) if g(v0) = 0 and it has only one incident closed edge,

which is blue of multiplicity 1. If instead g(v0) = 0 and v0 has exactly two

closed incident edges, both coloured the same as v0 and of multiplicity 1, then

v0 is viewed as a point on an edge. In each of these cases v0 has an incident

closed blue edge of multiplicity 1, that is there exists some blue, multiplicity

1 vertex v′ ∈ V (T ) that lies in B1. Neither of these two situations leaves B1

disconnected after removing v0 (be that deleting v0 along with a closed edge

or viewing v0 as a point on an edge). All other connected components of Tb

remain untouched. In particular, the connected components of T̃b are B
′
1 and

B2, . . . , Bn, where B
′
1 ⊆ B1 and minw∈V (B′

1)
{M(w)} = minw∈V (B1){M(w)} =

1.

Corollary 6.2.4. Suppose T ∼ T ′ are two equivalent open quotient BY trees,

then g(T ) = g(T ′).

Proof. Since T and T ′ are equivalent, T̃ ∼= T̃ ′. The result follows.

The remainder of this section is dedicated to proving that this definition

does what we want, in particular proving the following two propositions.

Proposition 6.2.5. Let T be an open quotient BY tree with open edge ε, and

associated cluster picture Σ(T ) = (R,Σ). Then

|R| =

2g(T ) + 2 if ε is yellow,

2g(T ) + 1 if ε is blue.

In particular, g(T ) = g(Σ) = g(C), where C is a hyperelliptic curve with

cluster picture Σ.

Proposition 6.2.6. If Σ is a cluster picture, with associated open quotient

BY tree T (Σ), then g(Σ) = g(T (Σ)).

The idea behind the proofs of these propositions is simple; for a hyperel-

liptic curve C with cluster picture Σ, the genus is unaffected by taking a field

extension. Extending the field to obtain a semistable hyperelliptic curve C ′

enables us to see that g(C) = g(T ′) where T ′ is the open BY tree associated

to C ′. The genus of T ′ is phrased in terms of the connected components of

(T ′)b and the genus of vertices of T ′. These can be rephrased in terms of T

using the quotient map from T ′ to T . This allows us to prove that the formula

defined above indeed gives g(T ) = g(Σ) = g(C). For the converse, we use that
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if T is an open quotient BY tree then we can construct a BY tree T ′ such that

T is the “quotient” of T ′.

Lemma 6.2.7. Let T be an open quotient BY tree, and T ′ = q−1(T ) as defined

in Construction 4.2.2. Let B be a connected component of Tb then there exist

minv∈V (B)M(v) connected components in (T ′)b which map to B under q.

Proof. Let u ∈ V (B) be the vertex closest to the open edge of T . Note that u is

necessarily unique in this way since T is a tree. By definition of T being an open

quotient BY tree, multiplicities decrease as we head towards the open edge.

Thus, minv∈V (B)M(v) = M(u). By construction, u gives M(u) vertices in T ′,

and every vertex v ⪯ u gives M(v)
M(u)

vertices ⪯ q−1(u)i for each 1 ≤ i ≤ M(u).

Again, by construction, there are no edges in T ′ between q−1(u)i and q
−1(u)j,

therefore, there are precisely minv∈V (B)M(v) connected components in (T ′)b

which map to B under q.

Proof of Proposition 6.2.5. Let T be an open quotient BY tree with open edge

ε and associated cluster picture Σ(T ) = (R,Σ). By Theorem 5.1.19 we know

that Σ(T ) is of polynomial type, that is there exists some hyperelliptic curve

C/K with tame reduction such that ΣC/K
∼= Σ(T ). Let L/K be a field ex-

tension such that C/L is semistable. Note that the genus of C is not changed

by extending the field. Then, by Proposition 6.1.3, T ′ = q−1(T ) is the open

BY tree associated to ΣC/L = (R′,Σ′). So, Σ(T ′) ∼= ΣC/L and, by [DDMM17,

Proposition 4.17], we have that

|R′| =

2g(T ′) + 2 if ε is yellow,

2g(T ′) + 1 if ε is blue.

In particular, g(T ′) = g(ΣC/L) = g(C) = g(ΣC/K). By definition

g(T ) =

(
n∑

i=1

min
w∈V (Bi)

{M(w)}

)
− 1 +

∑
v∈V (T )

g(v)M(v),

and by Lemma 6.2.7 and Construction 4.2.2 we can conclude that

g(T ) =

(
n∑

i=1

min
w∈V (Bi)

{M(w)}

)
− 1 +

∑
v∈V (T )

g(v)M(v),

= #{connected components of T ′
b} − 1 +

∑
v′∈V (T ′)

g(v′),

= g(T ′).
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Since the number of roots is unaltered by extending the field we have that

|R′| = |R|.

Proof of Proposition 6.2.6. This follows by a similar argument to the proof of

Proposition 6.2.5, and evoking Proposition 4.19 from [DDMM17].

6.3 Leading coefficient
It remains to discuss how the valuation of the leading coefficient can change

under Möbius transformation. This will allow us to give a relation between the

leading coefficients of two hyperelliptic curves with equivalent open quotient

BY trees, which ensures that they have the same reduction type. We will prove

the following theorem:

Theorem 6.3.1. Let C : y2 = f(x) and C ′ : y2 = f ′(x) be hyperelliptic

curves of genus g over K, with open quotient BY trees T = T (ΣC/K) and

T ′ = T (ΣC′/K). Suppose that the sets of roots R and R′ of f and f ′ respectively

are such that dR, dR′ ≥ 0. Write cf and cf ′ for the leading coefficients of f

and f ′. Then the dual graphs of the special fibres of the minimal SNC models

of C and C ′ are isomorphic if T and T ′ are equivalent and:

• when g is even: if

v

(
disc

(
f

cf

))
− v

(
disc

(
f ′

cf ′

))
≡ 2(g+1)(2g+1)d(m,m′) mod 4(2g+1)

then v(cf ) ≡ v(cf ′) mod 2, else v(cf ) ̸≡ v(cf ′) mod 2

• when g is odd: then

v
(
disc

(
1
cf
f
))

− v
(
disc

(
1
cf ′
f ′
))

2(2g + 1)
≡ v(cf )− v(cf ′) mod 2

If either dR, dR′ < 0 then note that a simple scaling gives us a change of

model, and will allow us to transform the cluster picture into something with

non-negative top cluster depth. We will discuss how such a transformation

affects the leading coefficient later. Piecing this together with the theorem

above will allow us to handle changes in leading coefficients regardless of what

the value of the top cluster depths are.

For any given hyperelliptic curve C/K, our main use of this theorem

is to allow us to select an appropriate leading coefficient to go along with

our canonical representative of T (ΣC/K), ensuring the reduction type of our
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canonical representative and this leading coefficient is the same as that of

C/K. Before we prove Theorem 6.3.1, let us look at a relation between the

discriminants of isomorphic hyperelliptic curves due to [Liu96].

6.3.1 Leading Coefficient and Discriminants

We define the discriminant of a hyperelliptic curve as in [DDMM18] and

[Liu96].

Definition 6.3.2. Let C : y2 = f(x) be a hyperelliptic curve of genus g over

K. The discriminant ∆C of C is

∆C = 16gc4g+2
f disc

(
1

cf
f(x)

)
.

Let y2 = f(x) and y′2 = f ′(x′) be two equations for a hyperelliptic curve

C/K with discriminants ∆ and ∆′ respectively. By [Liu96, §2], we have that

there exist substitutions

x =
ax′ + b

cx′ + d
, y =

ey′

(cx′ + d)g+1
,

where (
a b

c d

)
∈ GL2(K), e ∈ K∗.

Furthermore, we obtain the following relation between their discriminants:

∆′ = ∆e−4(2g+1)(ad− bc)2(g+1)(2g+1). (6.1)

Remark 6.3.3. In [Liu96] there is an additional term, H(x′) ∈ K[x], in the y-

coordinate substitution, but we omit this here since we take all our hyperelliptic

curves to be of the form y2 = f(x).

This relation between ∆ and ∆′ provides us with an easy way to check

whether two hyperelliptic curves are isomorphic. Note that isomorphic curves

will always have the same reduction type, however the converse is not true

and just because two curves have the same reduction type does not mean that

they are isomorphic. Reduction types are a more crude classification than

isomorphism classes of curves. This is important to note as it is a subtlety

that means our theorems need to be worded carefully. The following example

illustrates this.

Example 6.3.4. Consider the two hyperelliptic curves C : y2 = f(x) and

C ′ : y2 = pf(x) over Qur
p , where f(x) = x(x2 − p3)(x − 1)((x − 1)2 − p5).
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Both C and C ′ have Namikawa-Ueno type III-III∗-1. However, C and C ′ are

not isomorphic. This can be easily seen by checking how their discriminants

compare. By [Liu96, §2] we know that if C and C ′ are isomorphic then their

respective discriminants ∆ and ∆′ will differ by a 20th and 30th power. That

is, there exist some a, b, c, d ∈ K and e ∈ K∗ with ad − bc ̸= 0 such that

∆′ = ∆e20(ad − bc)30. However, if we compare their discriminants, we have

∆ = 162disc(f(x)) and ∆′ = 162p10disc(pf(x)
p

) = p10∆. That is, we do not

satisfy the discriminant condition that isomorphic curves must satisfy. So C

and C ′ are not isomorphic even though the dual graphs of the special fibres of

their minimal regular models are isomorphic.

To prove Theorem 6.3.1, we will make use of the effect that applying

Möbius transformations has on the discriminant of a curve. So, before we

proceed to the proof let us first prove a short lemma.

Lemma 6.3.5. Let C be a hyperelliptic curve and ϕ be a Möbius transfor-

mation with ϕ(z) = az+b
cz+d

. Suppose that C ′ is the curve obtained from C by a

change of coordinates

x =
ax′ + b

cx′ + d
, y =

y′

(cx′ + d)g+1
.

Then we have the following relationships between the valuations of the discrim-

inants of C and C ′ when ϕ is a scaling, shift or inversion:

(i) If ϕ(z) = az then v(∆C′) ≡ v(∆C)−v(a)2(g+1)(2g+1) mod 4(2g+1).

(ii) If ϕ(z) = z + b then v(∆C′) ≡ v(∆C) mod 4(2g + 1).

(iii) If ϕ(z) = 1
z
then v(∆C′) ≡ v(∆C) mod 4(2g + 1).

Proof. This follows directly from relation (6.1).

It is also helpful to note the following from [DDMM18, Theorem 16.2]:

Lemma 6.3.6. Let C : y2 = f(x) be a hyperelliptic curve of genus g over K,

and let Σ be the associated cluster picture. Then

v(∆C) = v(cf )(4g + 2) +
∑

s proper

ds

(
|s|2 −

∑
s′<s

|s′|2
)
.

Remark 6.3.7. Note that [DDMM18, Theorem 16.2] also then gives us that

v

(
disc

(
1

cf
f

))
=

∑
s proper

ds

(
|s|2 −

∑
s′<s

|s′|2
)
,
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that is, if two hyperelliptic curves C : y2 = f(x) and C ′ : y2 = f ′(x) have

isomorphic cluster pictures then, v
(
disc

(
1
cf
f
))

= v
(
disc

(
1
cf ′
f ′
))

.

It is clear from this remark that two hyperelliptic curves C : y2 = f(x) and

C ′ : y2 = f ′(x), with associated open quotient BY trees T and T ′ respectively,

will have v
(
disc

(
1
cf
f
))

= v
(
disc

(
1
cf ′
f ′
))

if T and T ′ are isomorphic. It is

however useful to formally rephrase Lemma 6.3.6 in terms of open quotient BY

trees. Recall in Construction 5.1.9 we defined a partial order on the vertices

of T by setting v′ ⪯ v if v lies on the embedded path from m to v′, where m

is the marked point of T .

Definition 6.3.8. For a vertex v of an open quotient BY tree, we define |v| to
be the size of each of the clusters sv,1, sv,2, . . . sv,M(v) as defined in Construction

5.1.9. That is,

|v| =
∑
v′⪯v

s(v′, T )
M(v′)

M(v)
.

Lemma 6.3.9. Let C : y2 = f(x) be a hyperelliptic curve of genus g over K,

and let T be the associated open quotient BY tree. Then

v(∆C) = v(cf )(4g + 2) +
∑

v∈V (T )

M(v)d(v,m)

(
|v|2 −

∑
v′<v

|v′|2M(v′)
M(v)

− s(v, T )

)
,

= v(cf )(4g + 2) +
∑

v∈V (T )

M(v)δv|v| (|v| − 1),

where δv = length(ev), the length of the edge incident to v lying on the embedded

path between v and m, and v′ < v if v′ is adjacent to v with v′ ⪯ v. If v = v0,

the unique vertex incident to the open edge, then we take δv0 = d(v0,m).

Proof. Every vertex v contributesM(v) clusters, sv,1, . . . sv,M(v), each of size |v|
and depth d(v,m), to the associated cluster picture. A child v′ of v contributes
M(v′)
M(v)

proper children of sv,i for each 1 ≤ i ≤ M(v). The only children of a

cluster sv,i that do not arise in this way are singletons. Each sv,i has precisely

s(v, T ) singletons. Putting all of this information into Lemma 6.3.6 we get

the first formula. To see that the second formula holds we note by [BBB+20,

Theorem 15.1] that

v(∆C) = v(cf )(4g + 2) +
∑

s proper

δs|s| (|s| − 1),

where if s = R we take δR = dR.

We now proceed to prove Theorem 6.3.1.
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Proof of Theorem 6.3.1. Since C : y2 = f(x) and C ′ : y2 = f ′(x) have equiva-

lent open quotient BY trees T and T ′, we know by Theorem 6.1.5 that there

is some substitution of the form x = ax′+b
cx′+d

, y = y′

(cx′+d)g+1 that when put in to

C : y2 = f(x) yields a hyperelliptic curve C ′′ : y2 = f ′(x) with open quotient

BY tree isomorphic to T ′. Certainly the special fibres of the minimal SNC

models of C and C ′′ are isomorphic, since C and C ′′ are isomorphic. Since

C ′ and C ′′ have isomorphic open quotient BY trees they must have isomor-

phic cluster pictures. By Theorem 9.2.3 ([FN20, Theorem 7.12]), the cluster

picture and the valuation of the leading coefficient of the defining polynomial

completely determine the structure of the special fibre of the minimal SNC

model. Furthermore, since we can always make a change of variables y = ey′

which is an isomorphism and will send v(cf ) 7→ v(cf )−2v(e), the parity of the

valuation of leading coefficient is actually all that influences the special fibre.

As such, if v(cf ′) ≡ v(cf ′′) mod 2 then we must have that C ′ has special fibre

isomorphic to that of C ′′ and therefore to that of C. It remains to work out

what effect the Möbius transformations we describe in the proof of Theorem

6.1.5 have on the valuation of the leading coefficient. This will give us condi-

tions for when v(cf ′′) ≡ v(cf ) mod 2 and when v(cf ′′) ̸≡ v(cf ) mod 2, thus

allowing us to take v(cf ′) ≡ v(cf ′′) mod 2 and ensuring that C and C ′ have

isomorphic special fibres.

Since we can always perform such a substitution y = ey′, we can assume

that v(cf ), v(cf ′′) ∈ {0, 1}. Since C and C ′′ are isomorphic, we have the fol-

lowing relation between their discriminants, ∆ and ∆′′, due to [Liu96]:

∆′′ = ∆e−4(2g+1)(ad− bc)2(g+1)(2g+1).

Taking valuations we get that

v(∆′′) = v(∆)− 4(2g + 1)v(e) + 2(g + 1)(2g + 1)v(ad− bc).

Note that by Theorem 6.1.5 to go from C to C ′′ we make a series of scalings,

shifts and inversions. The total scaling is always z 7→ αz, where v(α) = n and

n ≡ ±d(m,m′) ≡ d(m,m′) mod 2Z (if we denote the open quotient BY tree

of C ′′ by T ′′ with marked point m′′ then T ′′ ∼= T ′, so d(m,m′) = d(m,m′′)).

By Lemma 6.3.5, shifts and inversions have no effect on the valuation of the

discriminant mod 4(2g+1). As such, we obtain the following relation between

∆ and ∆′′:

v(∆′′) ≡ v(∆) + d(m,m′)2(g + 1)(2g + 1) mod 4(2g + 1).
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In fact, since 2d(m,m′)2(g + 1)(2g + 1) ≡ 0 mod 4(2g + 1), we have

|v(∆′′)− v(∆)| ≡ d(m,m′)2(g + 1)(2g + 1) mod 4(2g + 1).

Suppose that

v
(
disc

(
f ′

cf ′

))
− v
(
disc

(
f
cf

))
≡ d(m,m′)2(g + 1)(2g + 1) mod 4(2g + 1).

By Remark 6.3.7, v
(
disc

(
1
cf ′
f ′
))

= v
(
disc

(
1

cf ′′
f ′′
))

, therefore

v(∆′′)− v(∆) = 2(2g + 1)(v(cf ′′)− v(cf )) + v
(
disc

(
f ′

cf ′

))
− v
(
disc

(
f
cf

))
.

So, |v(∆′′)− v(∆)| ≡ d(m,m′)2(g + 1)(2g + 1) mod 4(2g + 1) if and only if

2(2g + 1)(v(cf ′′)− v(cf )) ≡ 0 mod 4(2g + 1),

which is the case if and only if v(cf ′′) ≡ v(cf ) mod 2. So, in this case, if

v(cf ′) ≡ v(cf ) mod 2 this certainly results in C and C ′ having isomorphic

special fibres. Similarly, if instead

v
(
disc

(
f ′

cf ′

))
− v
(
disc

(
f
cf

))
̸≡ d(m,m′)2(g + 1)(2g + 1) mod 4(2g + 1),

then if v(cf ′) ̸≡ v(cf ) mod 2, C and C ′ have isomorphic special fibres.

Note that when g is odd this simplifies slightly since then

d(m,m′)2(g + 1)(2g + 1) ≡ 0 mod 4(2g + 1),

regardless of the parity of d(m,m′). So, in fact the distance between m and

m′ does not play a role in ensuring which parity of v(cf ′) will certainly give

isomorphic special fibres. We can simply check whether

v
(
disc

(
1
cf ′
f ′
))

− v
(
disc

(
1
cf
f
))

≡ 0 mod 4(2g + 1),

and if it is we know that if v(cf ′) ≡ v(cf ) mod 2 the special fibres will be

isomorphic, otherwise if v(cf ′) ̸≡ v(cf ) mod 2 the special fibres will be iso-

morphic.

6.4 Minimal Discriminant
Recall that the definition of the centre of the core of an open quotient BY tree

T is the minimising vertex or midpoint of an edge of the weight function ϕ as
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defined in Definition 4.4.1.

In the semistable situation, by [BBB+20, §18], the open BY tree created

by adding an open yellow edge at the centre, c, of T̃ has minimal discriminant,

that is a minimal Weierstrass model of C has this associated open BY tree.

Note that, technically, in [BBB+20, §18] they work with closed, rather than

open, BY trees. However, by [BBB+20, Remark 18.9] we can instead consider

the open BY tree obtained from T̃ by adding an open yellow edge at its centre.

In this section we discuss whether we are able to draw a similar conclusion for

our more general setting. Unfortunately, as one may recall from Construction

4.5.5, it is not always possible to attach an open edge at the centre c of T̃ if C

is not semistable. Instead, we choose a marked point m′ to be as close to the

centre as possible, which is integer distance from the marked point m of T .

We remarked earlier, that in the case when denom(d(m, c)) = 2, there is not a

unique choice of point closest to c integer distance from m, as there will be two

choices for m′ each distance 1
2
from c. The centre minimises the discriminant

in the semistable case, so it would be nice if one of the two points either side

of the centre (not necessarily the closest point to the centre) would minimise

the discriminant in the non-semistable case. We will discuss and prove what

we can of this in this section.

Conjecture 6.4.1. let C : y2 = f(x) and C ′ : y2 = f ′(x) be two semistable

hyperelliptic curves over K, with equivalent open quotient BY trees T and T ′

respectively, such that their core is obtained from each of them by removing

their open edges, and possibly viewing v0 or v′0 (the unique vertices incident

to the open edges of T and T ′ respectively) as points on an edge. Let c be the

centre of their core T̃ . If v0 lies on the embedded path between v′0 and c, then

v
(
disc

(
1
cf
f(x)

))
≤ v

(
disc

(
1
cf ′
f ′(x)

))
.

We do not prove all of this here but we are able to prove the following.

Suppose that the centre c of T̃ is a vertex, and c is integer distance from the

marked point m. Recall that q−1(c) is the centre of q̃−1(T ) and note that

taking a ramified extension only multiplies all depths in the cluster picture

by the degree of the extension, so all this does is scale the discriminants so

won’t change where the minimum is attained. If the canonical representative

T ∗ of the equivalence class of T (i.e. the open quotient BY tree obtained by

adding an open yellow edge at c and taking c to be the marked point) did not

give the minimal discriminant then this would contradict that the canonical

representative of q−1(T ) (i.e. the open BY tree obtained by adding an open

yellow edge at q−1(c)) has minimal discriminant.
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In all other situations we conjecture that the minimal discriminant is

obtained by attaching an open yellow edge at one of the two choices of marked

point either side of the centre. Suppose that this conjecture holds. It would

be convenient if we were able to further specify that the minimal discriminant

would always arise from the choice of marked point which is closest to the

centre (if such a unique choice existed). Unfortunately it is more messy than

this. Even if Conjecture 6.4.1 were true, in order to find which of these two

trees results in the minimum discriminant the easiest thing to do is simply

calculate both. Of course, which tree gives the minimal discriminant will also

depend on the original choice of model and leading coefficient. Let’s finish by

illustrating this with some examples which demonstrate that lots of different

things may happen.

Example 6.4.2. Let C : y2 = f(x) = ((x−p)3−p)((x+p)3−p)(x2−p2) /Qur
p

for p ≥ 5, then the cluster picture associated to C has an orbit X of three

twins with depth dX = 1, an additional twin t with depth dt = 1 and top

cluster R with depth dR = 1
3
. So, C has open quotient BY tree T as follows:

Figure 6.1: Open quotient BY tree T associated to C

The core of T is obtained by simply removing the open edge. We can calculate

that ϕ(vR) = 2 and ϕ(vt) = 6, so minv∈V (T̃ 1) ϕ(v) = ϕ(vR) giving that vR is

the centre of T̃ . Note that d(m, vR) =
1
3
, so the two closest possible marked

points for an equivalent open quotient BY tree are distance 1
3
and 2

3
. Taking a

marked point distance 1
3
from the centre results in T . The other option results

in the following equivalent open quotient BY tree T ′:

Figure 6.2: Open quotient BY tree T ′

Let C ′ : y2 = f ′(x) be a hyperelliptic curve, isomorphic to C with open quotient

BY tree T ′ as given by Theorem 6.1.5. We can calculate the discriminants of

C and C ′ from their leading coefficients and open quotient BY trees. First
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note that |vR| = |v1| = 8, |vX | = |vt| = |v3| = 2, and |v2| = 6, so

v

(
disc

(
1

cf
f

))
=
∑

v∈V (T )

M(v)δv|v|(|v| − 1),

=
1

3
· 8 · 7 + 3 · 2

3
· 2 + 2

3
· 2,

= 24,

v

(
disc

(
1

cf ′
f ′
))

=
∑

v∈V (T ′)

M(v)δv|v|(|v| − 1),

= 0 + 3 · 2
3
· 2 + 2

3
· 6 · 5,

= 24.

By Theorem 6.3.1, we can assume that v(cf ′) = 0. So, v(∆C) = v(∆C′) = 24.

Assuming Conjecture 6.4.1 is true, this gives v(∆min
C ) = 24.

Example 6.4.3. Let C : y2 = f(x) = x(x5−p) /Qur
p for p ≥ 7, then the cluster

picture associated to C has just one proper cluster R with depth dR = 1
5
. So,

C has open quotient BY tree T as follows:

Figure 6.3: Open quotient BY tree T associated to C

The core of T is obtained by simply removing the open edge. There is only

one vertex of T̃ , namely vR, so it follows that this is the centre. Note that

d(m, vR) =
1
5
, so the two closest possible marked points for an equivalent open

quotient BY tree are distance 1
5
and 4

5
. Taking a marked point distance 1

5
from

the centre results in T . The other option results in the following equivalent

open quotient BY tree T ′:

Figure 6.4: Open quotient BY tree T ′

Let C ′ : y2 = f ′(x) be a hyperelliptic curve, isomorphic to C with open quotient

BY tree T ′ as given by Theorem 6.1.5. We can calculate the discriminants of

C and C ′ from their leading coefficients and open quotient BY trees. First
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note that |vR| = |v1| = 6, and |v2| = 5, so

v

(
disc

(
1

cf
f

))
=
∑

v∈V (T )

M(v)δv|v|(|v| − 1),

= 6,

v

(
disc

(
1

cf ′
f ′
))

=
∑

v∈V (T ′)

M(v)δv|v|(|v| − 1),

= 16.

Note that by Theorem 6.3.1, since

v

(
disc

(
f

cf

))
− v

(
disc

(
f ′

cf ′

))
= −10 ≡ 30 = 2(g+1)(2g+1)d(m,m′) mod 20,

we can assume that v(cf ′) = 0. So, we get v(∆C) = 6 and v(∆C′) = 16. Assuming

Conjecture 6.4.1 is true, this gives v(∆min
C ) = 6.

Example 6.4.4. Let C : y2 = f(x) = x(x5 − p2) /Qur
p for p ≥ 7, then

the cluster picture associated to C has just one proper cluster R with depth

dR = 2
5
. So, C has open quotient BY tree T as follows:

Figure 6.5: Open quotient BY tree T associated to C

The core of T is obtained by simply removing the open edge. There is only

one vertex of T̃ , namely vR, so it follows that this is the centre. Note that

d(m, vR) =
2
5
, so the two closest possible marked points for an equivalent open

quotient BY tree are distance 2
5
and 3

5
. Taking a marked point distance 2

5
from

the centre results in T . The other option results in the following equivalent

open quotient BY tree T ′:

Figure 6.6: Open quotient BY tree T ′

Let C ′ : y2 = f ′(x) be a hyperelliptic curve, isomorphic to C with open quotient

BY tree T ′ as given by Theorem 6.1.5. We can calculate the discriminants of

C and C ′ from their leading coefficients and open quotient BY trees. First
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note that |vR| = |v1| = 6, and |v2| = 5, so

v

(
disc

(
1

cf
f

))
=
∑

v∈V (T )

M(v)δv|v|(|v| − 1),

= 12,

v

(
disc

(
1

cf ′
f ′
))

=
∑

v∈V (T ′)

M(v)δv|v|(|v| − 1),

= 12.

Note that by Theorem 6.3.1, since

v

(
disc

(
1

cf
f

))
−v

(
disc

(
1

cf ′
f ′
))

= 0 ̸≡ 30 = 2(g+1)(2g+1)d(m,m′) mod 20,

we can assume that v(cf ′) = 1. So, we get v(∆C) = 12, and v(∆C′) = (4g + 2) +

12 = 22. Assuming Conjecture 6.4.1 is true, this gives v(∆min
C ) = 12. Note that

here, unlike if we had done the same in the previous example, if we instead took

C : y2 = pf(x) then we would have v(cf ′) = 0 which would give us v(∆C) = 22

and v(∆C′) = 12. So v(∆min
C ) = 12 again, however in this instance the minimal

discriminant is attained by the open quotient BY tree with marked point being the

second closest integral disc to the centre rather than the closest.

Example 6.4.5. Let C : y2 = f(x)/Qur
p for p ≥ 7 be a genus 5 hyperelliptic

curve such that f has leading coefficient cf and roots ±p3/2 + ζ i3p
1/3, ζj5p

6/5, 0,

for 0 ≤ i ≤ 2, 0 ≤ j ≤ 4, ζ3 a third root of unity, and ζ5 a fifth root of unity.

The cluster picture associated to C has an orbit X of three twins s1, s2, and

s3 with depth dX = 3
2
, a cluster s4 of size 6 with depth ds =

6
5
and top cluster

R with depth dR = 1
3
. So, C has open quotient BY tree T as follows:

Figure 6.7: Open quotient BY tree T associated to C

The core of T is obtained by simply removing the open edge. We can calculate

that ϕ(vR) = 6 and ϕ(vs4) = 6, so minv∈V (T̃ 1) ϕ(v) is attained at both vR

and vs4 giving that the midpoint of the edge between them is the centre c of

T̃ . Note that d(m, c) = 23
30
, so the two closest possible marked points for an

equivalent open quotient BY tree are distance 23
30

and 7
30
. Taking a marked

point distance 23
30

from the centre results in T . The other option results in the
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following equivalent open quotient BY tree T ′:

Figure 6.8: Open quotient BY tree T ′

Let C ′ : y2 = f ′(x) be a hyperelliptic curve, isomorphic to C with open

quotient BY tree T ′ as given by Theorem 6.1.5. As in previous examples, we

can calculate the discriminants of C and C ′ from their leading coefficients and

open quotient BY trees. First note that

v

(
disc

(
1

cf
f

))
=
∑

v∈V (T )

M(v)δv|v|(|v| − 1),

= 77,

v

(
disc

(
1

cf ′
f ′
))

=
∑

v∈V (T ′)

M(v)δv|v|(|v| − 1),

= 37.

Note that by Theorem 6.3.1, we can assume that v(cf ′) ≡ v(cf ) mod 2. So,

regardless of the valuation of cf , T
′ will always give a smaller discriminant than

T . In particular, assuming Conjecture 6.4.1, we get v(∆min
C ) = 37 if v(cf ) ≡ 0

mod 2, and v(∆min
C ) = 4g + 2 + 37 = 55 if v(cf ) ≡ 1 mod 2.
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Chapter 7

Background - Models of Curves

We now turn our attention to studying models of hyperelliptic curves. Recall

that our goal is to show that the structure of the minimal SNC model of a tame

hyperelliptic curve is completely determined by the cluster picture and leading

coefficient of the defining polynomial. We begin with a brief introduction to

models, and some important background work.

7.1 Models

Let C be a hyperelliptic curve over K. If you want to study C/K then the

idea is to do this by reducing, as much as possible, any questions you might

have to ones over k. In this way one can often reduce questions to a finite

computation. The key method for moving from K to k is given by the theory

of models.

Formally, a model of C/K is a scheme X /OK , of finite type, flat and

proper over OK , equipped with an isomorphism

X ×OK
K → C.

We refer to X ×OK
K as the generic fibre of C and define its special fibre to

be the k-scheme Xk = X ×OK
k.

Roughly, finite type means there are finitely many equations and variables.

Flatness ensures that the resulting reduction retains information about C such

as being connected, having dimension 1 and having arithmetic genus equal to

the genus of C. Properness ensures projectivity of the reduction and the

existence of a reduction map on points.

Less formally, we can think of a model in the following way. Spec(OK)

consists of just two points: the maximal ideal m, and the ideal (0). So, a

scheme over OK consists of a fibre above each of these two points, the generic

fibre over (0) and the special fibre over m. This is a model of C if the generic

fibre “looks like” C, and the special fibre is a way of studying the curve over

k. Pictorially, this looks something like Figure 7.1
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Spec(OK) (0)m

generic fibrespecial fibre

∼= C

Figure 7.1: Model of C/K

Example 7.1.1. Take E : y2 = x3 + p over Qp. The simplest model of E

is to take the generic fibre to be E/Qp itself, and simply reduce E modulo p

to obtain the special fibre. This is called a Weierstrass model and for E is

pictured in Figure 7.2.

(0)

y2 = x3 + p

(p)

y2 = x3

Figure 7.2: Weierstrass model of E/Qp

It won’t always be the case that a special fibre can be described by just

one irreducible equation. There may be several equations each describing a

component which intersect the other components.

Example 7.1.2. For instance, if we consider the curve C/Q5 : y
2 = 5x3+x2+

15, the reduction mod 5 is C̄/F5 : y
2 = x2. This is equivalent to (y−x)(y+x) =

0. So, the reduction is the union of two lines y = x and y = −x.

y = −x y = x

It is also possible to get a repeated factor when we reduce. Although this

does not add to the solutions, it is important to distinguish between when Xk

is defined by f(x, y) = 0 and when it is defined by f(x, y)2 = 0.
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Example 7.1.3. Let C/Q5 be defined by y2 + 2xy = 5x3 − x2 + 15. The

reduction mod 5 is C̄/F5 : y2 + 2xy = −x2, equivalently (y + x)2 = 0. So we

can see that the line y=-x appears in the defining equation of the special fibre

with multiplicity 2.

y = −x

2

These examples demonstrate how models are a way of visualising a curve

over K and k. As such, the defining equation needs coefficients in OK , else

we are unable to “reduce mod p”. So, essentially we can think of a model as

being a choice of equation with coefficients in OK (or equivalently a choice

of substitution which yields such an equation). Therefore, there are many

possible models of any given curve. We need a way of specifying which of

these models is the “best” to look at. There are several different ways one

could do this, but here we choose to specify a “best” model as being regular.

Roughly this means that we ask that the tangent space has the “correct”

dimension. More formally this is defined as follows.

Definition 7.1.4. A scheme X is regular at x ∈ X if

dimOX ,x = dimk
mx

m2
x

,

where mx is the maximal ideal of the local ring OX ,x at x ∈ X. Otherwise, X

is singular at x. We say a model X is regular if the underlying scheme X is.

Note that, since we are only concerned with models of curves, in all of our

cases X can be thought of as a surface and is 2 dimensional, so dimOX ,x = 2.

Example 7.1.5. Consider C : y2 = x3 + 5n, n ≥ 1 over Q5. Take X to be

the model with generic fibre C and special fibre C/Fp. The only potentially

singular point on the special fibre is the point corresponding to the maximal

ideal m = (x, y, 5). To check if X is regular it suffices to check regularity at

this point. If n = 1 then 5 = y2 − x3, so 5 ∈ m2 = (x, y, 5)2. Therefore

dimF5

m

m2
= dimF5

(x, y, 5)

(x, y, 5)2
= dimF5⟨x, y⟩ = 2,

and X is regular. If n > 1, 5 /∈ m2, so dim m
m2 ≥ 3 and X is singular at m.

We say a regular model X for C is minimal if for every other regular

model Y for C, the map between their generic fibres corresponding to the
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identity on C extends to a morphism Y → X . In other words, a regular

model X is minimal if X cannot be obtained by blowing up a point on another

regular model. Every hyperelliptic curve has a (unique minimal) regular model.

This is a good reason to choose to ask that our models be regular.

Another advantage of regular models is that there is an intersection pairing

on the irreducible components of the special fibre. Let X be a regular model.

If E1, . . . , Er are the irreducible components of X with multiplicities mi then:

•
∑r

i=1miEi · Ej = 0 for all 1 ≤ j ≤ r,

• Ei · Ej ≥ 0 for i ̸= j, and Ei · Ei = E2
i < 0 (the latter is the self

intersection number of Ei).

It is possible to blow down a component in a regular model if and only if it

is isomorphic to P1
k with self intersection -1. (Castelnuovo’s Criterion, [Liu02,

Theorem 9.3.8])

Strict normal crossing (SNC) models are models which are regular as

schemes and whose special fibre Xk is an SNC divisor - that is, a curve over

k whose worst singularities are normal crossings i.e. the singularities “locally”

look like the union of two axes (possibly with multiplicity). Note that we

do not insist that the irreducible components themselves are smooth. For

a given curve, there is a unique SNC model X min which is minimal in the

sense that any map of SNC models X min → X is an isomorphism ([Liu02,

Proposition 9.3.36]).

Another class of models that are of particular interest to us are semistable

models. These are SNC models which have a reduced special fibre. Curves

which have a semistable model are said to have semistable reduction. The

minimal SNC models of such curves can be calculated explicitly from the

cluster picture, this is done in [DDMM18].

We now collate some facts about models from [Lor90], [CES03], and

[DDMM18] for the convenience of the reader. Similar techniques concerning

quotients of models are also used in [Hal10].

7.1.1 Chains of Rational Curves

Chains of rational curves are central to our descriptions of SNC models. The

following definition explains what we mean by a chain of rational curves and

defines the three main types of chains we are interested in: tails, linking chains

and crossed tails.
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Definition 7.1.6. Let X be a SNC model of a hyperelliptic curve defined

over K. Suppose that E1, . . . , Eλ are smooth irreducible rational components

of Xk. A divisor C =
⋃λ

i=1Ei is a chain of rational curves if

(i) (Ei · Ei+1) = 1 for all 1 ≤ i < λ and (Ei · Ej) = 0 for j ̸= i± 1,

(ii) (E1 · Xk \ C) = 1,

(iii) (Ei · Xk \ C) = 0 for i ̸= 1, λ,

where (E · F ) is the usual intersection pairing defined on regular models. If

(Eλ ·Xk \ C) = 0 then C is a tail. If (Eλ ·Xk \ C) = 1 then C is a linking chain.

We say a chain of rational curves C =
⋃λ

i=1Ei is a loop if C is a linking

chain such that E1 and Eλ both intersect the same component of Xk \ C.
Furthermore, if (Eλ·Xk \ C) = 2 then C is a crossed tail if Eλ intersects two

rational components of Xk \ C, say E+
λ+1 and E−

λ+1, such that (E±
λ+1 · Eλ) = 1

and (E±
λ+1 · Xk \ Eλ) = 0. We call the components E±

λ+1 the crosses of C.

Illustrations of the definitions of tails, linking chains, loops, and crossed

tails are shown in Figures 1.3 and 1.4 in Section 1.

Blowing down a component E results in a regular model if and only if

it is rational and has self intersection −1 (Castelnuovo’s Criterion, [Liu02,

Theorem 9.3.8]). However, blowing down a general rational component of Xk

of self intersection −1 will not necessarily produce an SNC model. For example

the resulting model obtained by blowing down the component of multiplicity 3

in the minimal SNC model of an elliptic curve of Kodaira type IV is no longer

an SNC model. This is shown in Figure 7.3 below.

3
1 1 1

(a) Special fibre of the minimal
SNC model.

1

11

(b) Special fibre of the minimal
regular model.

Figure 7.3: Elliptic curve of Kodaira Type IV.

After blowing down a component of a chain of rational curves of self-

intersection −1, the special fibre is still an SNC divisor. Therefore, we will be

interested in blowing down all such components. If a chain of rational curves

cannot be blown down any further, we call it minimal.

Definition 7.1.7. A chain of rational curves C =
⋃λ

i=1Ei is minimal if (Ei ·
Ei) ≤ −2 for every i.
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7.1.2 Quotients of Models

This section collates several results from [Lor90] and [CES03] concerning taking

quotient of models. Let C be a hyperelliptic curve over K and let L/K be

a tame field extension of degree e such that CL = C ×K L is semistable over

L. Note that the cluster picture of CL/L is the same as the cluster picture of

C/K, except all the depths have been multiplied by e. Since k is algebraically

closed, the extension L/K is totally tamely ramified, hence L/K is Galois with

Gal(L/K) cyclic.

Let Y be the minimal semistable model of CL/OL, so Yk is a reduced,

SNC divisor of Y . Any σ ∈ Gal(L/K) induces a unique automorphism of

Y of the same degree which makes the following diagram commute [Lor90,

p. 136]:

Y Y

OL OL

σ

σ

Although a slight abuse of notation, we will also refer to this automor-

phism on Y as σ, and define G = ⟨σ : Y → Y ⟩ where σ generates Gal(L/K).

The model Y , as well as the automorphism induced on the special fibre, will

be given more explicitly in Section 7.1.3.

Since Y is projective, the quotient Z = Y /G given by q : Y → Z can

be constructed by glueing together the rings of invariants of G-invariant affine

open sets of Y . The resulting scheme Z /OK is a model of C/K. Furthermore,

since Z is a normal scheme, its singularities are closed points lying on the

special fibre Zk. The following proposition, from [Lor90, p. 137], gives the

multiplicities of the components of Zk.

Proposition 7.1.8. Let Y ⊆ Yk be an irreducible component of Yk. Then

Z = q(Y ) is a component of Zk of multiplicity e/|Stab(Y )|, where Stab(Y ) is

the pointwise stabiliser of Y .

Blowing up a singularity on Zk results in a chain of rational curves, as in

Definition 7.1.6. It is well known (e.g. [Lor90, Fact V], [Lip78]) that blowing

up the singularities on Zk and blowing down all rational components in chains

with self intersection -1 results in a minimal SNC model.

The singularities on Zk are tame cyclic quotient singularities, and there is

a precise description of the chain of rational curves that arises after resolving

them. We will prove in Proposition 8.1.11 that singularities z ∈ Zk which lie

on precisely one irreducible component of Zk are tame cyclic quotient singu-

larities. The definition is as follows:
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Definition 7.1.9. Let S be a scheme over OK and let s ∈ S be a closed point.

The point s is a tame cyclic quotient singularity if there exists

– a positive integer m > 1 which is invertible in k,

– a unit r ∈ (Z/mZ)×,

– integers m1 > 0 and m2 ≥ 0 satisfying m1 ≡ −rm2 mod m

such that ÔS,s is isomorphic to the subalgebra of µm-invariants in

kJt1, t2K/(tm1
1 tm2

2 − πK) under the action t1 7→ ζmt1, t2 7→ ζrmt2. We call

the pair (m, r) the tame cyclic quotient invariants of s.

The following theorem, [CES03, Theorem 2.4.1], tells us how to resolve

tame cyclic quotient singularities.

Theorem 7.1.10. Let S be a flat, proper, normal curve over OK with smooth

generic fibre. Suppose s ∈ Sk is a tame cyclic quotient singularity with tame

cyclic quotient invariants (m, r), as in Definition 7.1.9 above.

Consider the Hirzebruch-Jung continued fraction expansion of m
r
given by

m

r
= bλ −

1

bλ−1 − 1
··· − 1

b1

,

where bi ≥ 2 for all 1 ≤ i ≤ λ. Then the minimal regular resolution of s is a

chain of rational curves
⋃λ

i=1Ei such that Ei has self intersection −bi.

Remark 7.1.11. Note that in [CES03] the Ei are labeled in the opposite

order. Instead we use the same labeling of the components in our chain as in

both [Dok18] and [Lor90].

7.1.3 Semistable Models

A critical step in the proof of the main theorem in Chapter 9 will be extending

the field so that C has semistable reduction. The following theorem, a criterion

for C to have semistable reduction in terms of the cluster picture of C, allows

us to do just that. First we need the following definition:

Definition 7.1.12. For a proper cluster s ∈ ΣC define νs = vK(cf ) +∑
r∈R ds∧r.

Theorem 7.1.13 (The Semistability Criterion). Let C : y2 = f(x) be a hy-

perelliptic curve, and let R be the set of roots of f(x) in K. Then C has

semistable reduction over L if and only if
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(i) the extension L(R)/L has ramification degree at most 2,

(ii) every proper cluster of ΣC/L is GL invariant,

(iii) every principal cluster s ∈ ΣC/L has ds ∈ Z and νs ∈ 2Z.

Once the field K has been extended so that C has semistable reduction

over L, there is a very explicit description of the special fibre of Y in terms of

the cluster picture of C/L in [DDMM18, Theorem 8.5]. For this we need some

definitions. Write e = [L : K]. To simplify some invariants, we assume that

all clusters s ∈ ΣC/K have eδs >
1
2
, since a cluster s with eδs =

1
2
introduces

singular irreducible components. This will be sufficient for our purposes since

these invariants are used to describe the explicit automorphism on Yk and

we can always extend our field so that the minimal semistable model has no

singular components, i.e. all components are smooth. Note that the valuation

on K is normalised with respect to K, such that the valuation of a uniformiser

πL of L is vK(πL) =
1
e
.

Definition 7.1.14. For σ ∈ GK let

χ(σ) =
σ(πL)

πL
mod m.

For a proper cluster s ∈ ΣC define

λs =
νs
2
− ds

∑
s′<s

⌊
|s′|
2

⌋
.

Define θs =
√
cf
∏

r/∈s(zs − r). If s is even or a cotwin,we define ϵs : GK → {±1}
by

ϵs(σ) ≡
σ(θs∗)

θ(σs)∗
mod m.

For all other clusters s set ϵs(σ) = 0. We write ϵs without reference to any

σ ∈ Gal(L/K) for ϵs(σ), σ ∈ Gal(L/K) a generator. [DDMM18, Definition 8.2]

Remark 7.1.15. By [DDMM18, Theorem 8.7], the quantity ϵs(σ) = −1 if

and only if σ swaps the two points at infinity of Γs,L. When k = k, ϵs =

(−1)νs∗−|s∗|ds∗ since

νs∗ = vK

(
cf
∏
r/∈s∗

(zs∗ − r)

)
+
∑
r∈s∗

ds∗ .

Remark 7.1.16. Our definition of λs differs slightly from that in [DDMM18].

In [DDMM18] λs is defined to be νs
2
−ds

∑
s′<s,δs′>

1
2
⌊ |s′|

2
⌋, and a second quantity
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λ̃s is defined to be νs
2
−ds

∑
s′<s⌊

|s′|
2
⌋. This is to account for singular components

of the special fibre. Given our assumption that every cluster in ΣC/L has

relative depth > 1
2
, when we calculate these for C/L we find that λs = λ̃s, so

for simplicity we do not write the tilde.

Definition 7.1.17. Let s ∈ ΣC/K be a principal cluster. Define cs ∈ k× by

cs =
cf

π
vK(cf )
L

∏
r ̸∈s

zs − r

π
vK(zs−r)
L

mod m.

These definitions are key for the description of the minimal SNC model of

C. In the interest of brevity, we will not restate [DDMM18, Theorem 8.5] here,

which is a simplification of Theorem 1.3.6 to the case of semistable reduction,

and also gives the action of Gal(K/K) on the minimal SNC model. However,

we recommend that the reader familiarise themselves with this theorem as it is

helpful for understanding the case when C does not have semistable reduction.

The main idea is that principal non-übereven (resp. übereven) clusters each

have one (resp. two) components associated to them, and components of

parents and odd (resp. even) children are linked by one (resp. two) chain(s)

of rational curves. The Galois action on components is induced by the Galois

action on clusters, and the two components (resp. two linking chains) of an

übereven cluster (resp. even child) s are swapped precisely when ϵs = −1.

7.2 Models of Curves via Newton polytopes

In this section we describe a method from [Dok18] for calculating a SNC model

of a curve C/K which is ∆v-regular. The notion of ∆v-regularity, given in

[Dok18, Definition 3.9], applies to more general smooth projective curves. Here

we restrict to the case where C has a nested cluster picture (as defined in

Definition 2.1.15), and note that this condition implies ∆v-regularity. The

results are applied in Section 8.2.

7.2.1 Newton polytopes

Here we briefly collate the key definitions regarding Newton polytopes neces-

sary for this thesis. We begin with the definition of a Newton polytope.

Definition 7.2.1. Let G(x, y) = y2 − f(x) =
∑
aijx

iyj be the defining equa-

tion of a hyperelliptic curve C over K. The Newton polytopes of C over K and
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OK respectively are:

∆(C) = convex hull {(i, j) | aij ̸= 0} ⊆ R2,

∆v(C) = lower convex hull {(i, j, vK(aij)) | aij ̸= 0} ⊆ R2 × R.

Above every point P ∈ ∆(C) there is exactly one point (P, vK(P )) ∈
∆v(C). This defines a piecewise affine function v∆(C) : ∆(C) → R. When there

is no risk of confusion, we may sometimes write ∆ = ∆(C), and ∆v = ∆v(C)

and the pair (∆, v∆) determines ∆v. [Dok18, § 3]

Definition 7.2.2. Under the homeomorphic projection ∆v → ∆, the images

of the 1 and 2 dimensional open faces of ∆v are called v-edges, and v-faces

respectively. Note that a v-edge (often denoted L) is homeomorphic to an

open interval, and a v-face (often denoted F ) is homeomorphic to an open disc

(see [Dok18, Definition 3.1]).

Notation 7.2.3. For a v-edge L and a v-face F we write

L(Z) = L ∩ Z2, F (Z) = F ∩ Z2, ∆(Z) = (∆o) ∩ Z2,

and L(Z), F (Z), ∆(Z) to include points on the boundary. We use subscripts to

restrict to the set of points P with vK(P ) in a given set, for instance F (Z)Z =

{P ∈ F (Z) | v∆(P ) ∈ Z}.

Definition 7.2.4. The denominator δλ, for every v-face or v-edge λ is defined

to be the common denominator of v∆(P ) for P ∈ λ(Z). For two alternate, but

equivalent, definitions see [Dok18, Notation 3.2].

Remark 7.2.5. We shall see that the denominator of a v-face or v-edge λ,

in some sense, tells us the multiplicity of the component or chain of the SNC

model arising from λ. Roughly, for a v-face F , δF is the multiplicity of the

component ΓF , and for a v-edge L, δL is the minimum multiplicity appearing

in the chain of rational curves arising from L.

We distinguish between v-edges which lie on precisely one or two v-faces

of the Newton polytope, the former giving rise to tails and the latter to linking

chains.

Definition 7.2.6. A v-edge L is inner if it is on the boundary of two v-faces.

Otherwise, if L is only on the boundary of one v-face, L is outer.
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7.2.2 Calculating a Model

Before we begin, we give a few constants related to v-faces and v-edges which

will be necessary for our description.

Definition 7.2.7. Let L be a v-edge on the boundary of a v-face F . Write

L∗ = L∗
(F ) = the unique affine function Z2 ↠ Z with L∗|L̄ = 0, and L∗|F ≥ 0.

Definition 7.2.8. Let L be a v-edge. If L is inner it bounds two v-faces, say

F1 and F2. If L is outer it bounds one v-face, say F1. Choose P0, P1 ∈ Z2 with

L∗
(F1)

(P0) = 0, and L∗
(F1)

(P1) = 1. The slopes [sL1 , s
L
2 ] at L are

sL1 = δL(v1(P1)− v1(P0)), and sL2 =

{
δL(v2(P1)− v2(P0)) for L inner,

⌊sL1 − 1⌋ for L outer,

where vi is the unique affine function Z2 → Q that agrees with v∆ on Fi.

Theorem 7.2.9. Suppose C : y2 = f(x) is a nested hyperelliptic curve over K.

Then there exists a regular model C∆/OK of C/K with strict normal crossings.

Its special fibre is as follows:

(i) Every v-face F of ∆ gives a complete smooth curve ΓF/k of multiplicity

δF and genus |F (Z)Z|.

(ii) For every v-edge L with slopes [sL1 , s
L
2 ] pick

mi

di
∈ Q such that

sL1 =
m0

d0
>
m1

d1
> · · · > mλ

dλ
>
mλ+1

dλ+1

= sL2 , with

∣∣∣∣∣ mi mi+1

di di+1

∣∣∣∣∣ = 1.

(7.1)

Then L gives |L(Z)Z| − 1 chains of rational curves of length λ from ΓF1

to ΓF2 (if L is outer these chains are tails of ΓF1) with multiplicities

δLd1, . . . , δLdλ. [Dok18, Theorem 3.13]

Remark 7.2.10. In Theorem 7.2.9 (ii), λ = 0 indicates that ΓF1 and ΓF2

intersect |L(Z)Z| − 1 times in the inner case, and that L contributes no tails

in the outer case.

Remark 7.2.11. An explicit equation for ΓF is given in [Dok18, Defini-

tion 3.7], where it is denoted by XF . However this is more information than

necessary for our situation so we do not give this description here. A de-

scription of a similar object XL is also given in [Dok18, Definition 3.7], and

in Theorem 3.13 of [Dok18] the number of rational chains that a v-edge L
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gives rise to is described in terms of |XL(k)|. However, it is straightforward to

show that in our case, |XL(k)| = |L(Z)Z| − 1, noting that in our situation k is

algebraically closed so k̄ = k, so we omit this description also.

Remark 7.2.12. To see that the sequences in Theorem 7.2.9 exist, take all

numbers in [sL2 , s
L
1 ]∩Q of denominator ≤ max{denom(sL1 ), denom(sL2 )} in de-

creasing order. This is essentially a Farey series, so satisfies the determinant

condition in (7.1). One can then repeatedly remove, in any order, terms of the

form

· · · > a

b
>
a+ c

b+ d
>
c

d
> · · · 7→ · · · > a

b
>
c

d
> . . . ,

where (a+c) and (b+d) are coprime, until no longer possible. This corresponds

to blowing down P1s of self intersection -1 (see Remark 3.16 in [Dok18]). The

resulting minimal sequence is unique (else this would contradict uniqueness of

minimal SNC model), and still satisfies the determinant condition. If (sL2 , s
L
1 )∩

Z = {N, . . . , N + a} ≠ ∅ this minimal sequence has the form

sL1 =
m0

d0
> · · · > mh

dh
> N + a > · · · > N >

ml

dl
> · · · > mλ+1

dλ+1

= sL2 , (7.2)

with d0, . . . , dh strictly decreasing and dl, . . . , dλ+1 strictly increasing. If

(sL2 , s
L
1 ) ∩ Z = ∅ this minimal sequence has the form

sL1 =
m0

d0
> · · · > ml

dl
>
ml+1

dl+1

> · · · > mλ+1

dλ+1

= sL2 , (7.3)

with d0, . . . , dl strictly decreasing, dl+1, . . . , dλ+1 strictly increasing, and di > 1

for all 1 ≤ i ≤ λ. Notice that shifting either sL1 or sL2 by an integer does not

change the denominators di, that appear in this sequence. If s2 > 0 (else shift

by an integer), the numbers N > ml

dl
> · · · > mλ+1

dλ+1
are the approximants of the

Hirzebruch-Jung continued fraction expansion of sL2 , similarly for m0

d0
> · · · >

mh

dh
> N + a consider the expansion of 1− sL1 . [Dok18, Remark 3.15]

7.2.3 Sloped Chains

The following definition allows us to talk about different parts of chains of

rational curves arising from v-edges in the Newton polytope of C.

Definition 7.2.13. Let t1, t2 ∈ Q and µ ∈ N. Pick mi, di as in Theorem 7.2.9;

that is, such that

µt1 =
m0

d0
>
m1

d1
> · · · > mλ

dλ
>
mλ+1

dλ+1

= µt2, and

∣∣∣∣∣ mi mi+1

di di+1

∣∣∣∣∣ = 1,
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with d0 ≥ · · · ≥ dl and dl ≤ · · · ≤ dλ+1, for some 0 ≤ l ≤ λ+ 1.

Let A = {i | 1 ≤ i ≤ λ and di = 1}. If A is non-empty, let a0 be

the minimal element of A and let a1 be the maximal element of A. Suppose

C =
⋃λ

i=1Ei is a chain of rational curves where Ei has multiplicity µdi. Then

C is a sloped chain of rational curves with parameters (t2, t1, µ) and we split C
into three sections. If A ̸= ∅ we define the following:

(i) E1 ∪ · · · ∪ Ea0−1, the downhill section,

(ii) Ea0 ∪ · · · ∪ Ea1 , the level section,

(iii) Ea1+1 ∪ · · · ∪ Eλ, the uphill section.

If instead A = ∅ we define:

(i) E1 ∪ · · · ∪ El, the downhill section,

(ii) El+1 ∪ · · · ∪ Eλ, the uphill section,

and there is no level section.

We define the length of each section to be the number of Ei contained in

it, and each section is allowed to have length 0. For instance, the level section

has length 0 if and only if A = ∅, and the downhill section has length 0 if and

only if 1 ∈ A.

Remark 7.2.14. A tail is a sloped chain with level section of length 1 and no

uphill section. Therefore any tail can be given by just two parameters, namely

t1 and µ (since t2 = 1
µ
⌊µt1 − 1⌋). We will often refer to a tail as a tail with

parameters (t1, µ). It follows from Remark 7.2.12 that a tail with parameters

(t1, µ) has the same multiplicities as the tail obtained by resolving a tame

cyclic quotient singularity with tame cyclic quotient invariants m
r
= 1− µt1.

Remark 7.2.15. All of our chains of rational curves, be they tails, linking

chains or crossed tails, are sloped chains. For example, a linking chain in a

semistable model will consist of only a level section, since all components have

multiplicity 1. Both tails and crossed tails in a minimal SNC model will have

no uphill section.
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Chapter 8

Base Case and Linking Chains

8.1 Tame Potentially Good Reduction

In this section we calculate the minimal SNC model of a hyperelliptic curve

C/K with genus g = g(C) ≥ 1 which has tame potentially good reduction.

That is, there exists a field extension L/K of degree e such that e and p are

coprime, and C has a smooth model over OL. In order to calculate this model,

we assume that L is the minimal such extension.

The minimal SNC model of a hyperelliptic curve has a rather straightfor-

ward description: it consists of a central component with some tails (in the

sense of Definition 7.1.6) whose multiplicities can be explicitly described using

the results of Section 7.1.2. Since C has tame potentially good reduction, by

[DDMM18, Theorem 1.8(3)] we can assume (possibly after a Möbius trans-

form) that the cluster picture of C over K consists of a single proper cluster

s. We will discuss this in more detail shortly, but first we note the following:

The size and depth of the unique proper cluster s, as well as the valuation of

the leading coefficient cf will be sufficient to calculate the (dual graph with

multiplicity of the) minimal SNC model of C over K.

Theorem 8.1.1. Let C be hyperelliptic curve over K with tame potentially

good reduction. Then the special fibre Xk of the minimal SNC model X of

C/K consists of a component Γ = Γs,K, the central component, of multiplicity

e. Furthermore, if e > 1 the following tails intersect the central component Γ:

Name Number Condition

T∞ 1 s odd

T±
∞ 2 s even and vK(cf ) even

T∞ 1 s even, e > 2 and vK(cf ) odd

Tys=0 ⌊ |ssing|
bs

⌋ e = 2bs

Txs=0 1 bs | |s|, λs ̸∈ Z and e > 2

T±
xs=0 2 bs | |s| and λs ∈ Z
T(0,0) 1 bs ∤ |s|
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Remark 8.1.2. The genus of the central component can be calculated using

Riemann Hurwitz, and we prove an explicit formula for it in Proposition 8.1.24.

We now expand slightly on our assumption above that ΣC/K has a unique

proper cluster. Since C has tame potentially good reduction, by [DDMM18,

Theorem 1.8(3)] we know that ΣC/K has no proper clusters of size < 2g + 1.

We can assume that ΣC/K consists of a single proper cluster s since, if ΣC/K

has clusters of size 2g + 1 and of size 2g + 2 then, by applying an appropriate

choice of Möbius transformation we can obtain a cluster picture with just one

proper cluster. After an appropriate shift of the affine line we can assume

further that s is centered around 0 and that C is given by one of the following

two equations:

y2 = cf
∏

0̸=r∈R

(x− urπ
ds), or y2 = cfx

∏
0̸=r∈R

(x− urπ
ds),

if bs | |s| or bs ∤ |s| respectively, where the ur ∈ K are units.

We will proceed in the manner of Section 7.1.2. Let Y be the smooth

Weierstrass model of C over L. This is in general obtained by a substitution

xL = π−dsx, yL = π−λsy and will be given by the equation

y2L = cf,L
∏

0̸=r∈R

(xL − ur), or y2L = cf,LxL
∏

0̸=r∈R

(xL − ur),

if b | |s| or b ∤ |s| respectively, and where cf,L =
cf

π
vK (cf )

K

.

Let q : Y → Z be the quotient map induced by the action of Gal(L/K).

We will explicitly describe the singular points of Z , show that they are tame

cyclic quotient singularities in the sense of Definition 7.1.9, and give their tame

cyclic quotient invariants in Proposition 8.1.11. Theorem 7.1.10 then tells us

the self intersection numbers of the rational curves in the tails obtained by

resolving the tame cyclic quotient singularities. After using intersection theory,

this allows us to describe the special fibre of the minimal SNC model X of

C/K in full.

8.1.1 The Automorphism and its Orbits

To describe the singularities on Zk, we must first explicitly describe the Galois

automorphism on the unique component Γs,L = Γ ⊆ Yk of the special fibre of

the smooth Weierstrass model of C over L. The following fact from [Lor90,

Fact IV p. 139] describes the singularities of Zk in terms of the quotient q :

Y → Z .
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Proposition 8.1.3. Let z1, . . . , zd be the ramification points of the morphism

q : Γ → Zk. Then {z1, . . . , zd} is precisely the set of singular points of Zk.

Furthermore, the ramification points of q correspond to points whose

preimage is an orbit of size strictly less than e.

Definition 8.1.4. Let X be an orbit of points of Yk. If |X| < e, we say that

X is a small orbit.

So, describing the singular points of Zk is equivalent to describing the

small orbits of Gal(L/K). In order to list these orbits, we simplify some

cluster invariants from 7.1.12 and 7.1.14.

Lemma 8.1.5. Let C/K be a hyperelliptic curve with tame potentially good

reduction and unique proper cluster s. Then:

νs = |s|ds + vK(cf ), λs =
νs
2

=
|s|ds + vK(cf )

2
, ϵs = (−1)vK(cf ),

and any σ ∈ Gal(K/K) induces on the special fibre

σ|Γ : (xs, ys) 7−→ (χ(σ)edsxs, χ(σ)
eλsys),

where xs, ys are coordinates on the special fibre.

Proof. Definitions 7.1.12 and 7.1.14 and [DDMM18, Theorem 8.5].

Since χ(σ)eds and χ(σ)eλs are non-zero and k is algebraically closed, the

only points which can lie in orbits of size strictly less than e are points at

infinity, or points where xs = 0 or ys = 0. This gives four cases which we

will take care to distinguish between, as it will make it easier to describe the

minimal SNC model for a general cluster picture. With this in mind we make

the following definitions:

Definition 8.1.6. We split the small orbits that can occur into the following

types.

• ∞-orbits : orbits on the point(s) at infinity of Γ,

• (ys = 0)-orbits : orbits on images in Γ of non-zero roots (i.e. the ur),

• (xs = 0)-orbits : orbits on the points (0,±
√
cf,L) ∈ Γ,

• (0, 0)-orbits : the orbit on the point (0, 0) ∈ Γ.
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The following lemmas describe in which situations we see these small

orbits. We will assume e > 1 since no small orbits occur when e = 1.

Lemma 8.1.7. If deg(f) is odd then there is a single ∞-orbit consisting of a

single point. If deg(f) is even and vK(cf ) ∈ 2Z then there are two ∞-orbits

each of size 1. If deg(f) is even, vK(cf ) ̸∈ 2Z and e > 2 then there is a single

∞-orbit of size 2.

Proof. Let us = 1/xs, vs = ys/x
g+1
s denote the coordinates at infinity of

Γ. The curve Γ has a single point at infinity (us, vs) = (0, 0) if deg(f) is

odd, and two points at infinity (us, vs) = (0,±
√
cf,L) if deg(f) is even. In

the latter case, Lemma 8.1.5 gives the action at infinity σ : (0,
√
cf,L) 7→

(0, χ(σ)e(λs−(g+1)ds)
√
cf,L). Therefore, when deg(f) is even, the points at infin-

ity are swapped if and only if χ(σ)eλs = −1 for some σ ∈ Gal(L/K). This is

the case if and only if vK(cf ) is odd. In this case, the orbit at infinity has size

2 and is only a small orbit if e > 2.

Lemma 8.1.8. If f(0) = 0 then there is a single (0, 0)-orbit consisting of a

single point. Otherwise f(0) ̸= 0, and if λs ∈ Z then there are two (xs = 0)-

orbits of size 1, else λs ̸∈ Z and, if e > 2 then, there is a single (xs = 0)-orbit

of size 2.

Proof. If f(0) = 0 then {(0, 0)} ∈ Γ is the unique (0, 0)-orbit. If f(0) ̸= 0 then

(0,±
√
cf,L) ∈ Γ, and these points are swapped by some element of the Galois

group (see Lemma 8.1.5) if and only if λs ̸∈ Z. If λs ̸∈ Z then the orbit has

size 2 hence it is only a small orbit if e > 2.

Lemma 8.1.9. Either e = bs or e = 2bs, where bs is the denominator of ds.

In particular e = 2bs if and only if bsνs ̸∈ 2Z.

Proof. By Theorem 7.1.13, e is the minimal integer such that eds ∈ Z and

eνs ∈ 2Z. Since eds ∈ Z, we can deduce that bs | e. Since 2bsνs ∈ 2Z, e = bs

or e = 2bs. We can check that the other conditions of Theorem 7.1.13 are

satisfied over a field extension of degree e.

Lemma 8.1.10. If e > bs then there are |s|
bs

(ys = 0)-orbits if bs | |s|, or |s|−1
bs

(ys = 0)-orbits if bs ∤ |s|.

Proof. The non-zero points with ys = 0 are of the form (ζ ibs , 0) for ζbs a primitive

bths root of unity. The (ys = 0)-orbits have size bs so if e = bs then the (ys = 0)-

orbits are not small orbits.



8.1. Tame Potentially Good Reduction 198

These lemmas allow us to fully describe how many singularities Zk has.

The following proposition tells us that they are tame cyclic quotient singular-

ities in the sense of Definition 7.1.9. Theorem 7.1.10 then allows us to resolve

these singularities.

Proposition 8.1.11. Let z ∈ Zk be a singularity which is the image of a

Galois orbit Y ⊆ Yk. Then z is a tame cyclic quotient singularity. In addition,

with notation as in Definition 7.1.9, m
r
= e

r
where 1 ≤ r < e and r mod e is

given in the following table:

Orbit Type r mod e Condition

∞ eλs − e(g(C) + 1)ds s odd

∞ −eds|Y | s even

ys = 0 eλs|Y | None

xs = 0 eds|Y | None

(0, 0) eλs None

Proof. Recall that for z to be a tame cyclic quotient singularity, there must

exist m > 1 invertible in k, a unit r ∈ (Z/mZ)× and integers m1 > 0 and

m2 ≥ 0 such that m1 ≡ −rm2 mod m, and such that OZ ,z is equal to the

subalgebra of µm-invariants in kJt1, t2K/(tm1
1 tm2

2 − πK) under the action t1 7→
ζmt1, t2 7→ ζrmt2. We will show that m = e

|Y | = |Stab(Y )|, m1 = e, m2 = 0 and

will explicitly calculate r.

Let Y ⊆ Yk be a small orbit and let Q ∈ Y . Then OZ ,z is the subalgebra

of µm-invariants of OY ,Q under the action of Stab(Y ), where m = |Stab(Y)|.
This follows from the definition of Z as the quotient of Y under the action

of Gal(L/K), which for a generator σ ∈ Gal(L/K) sends

σ : πL 7−→ χ(σ)πL, σ : xs 7−→ χ(σ)edsxs, σ : ys 7−→ χ(σ)eλsys.

To prove that z is a tame cyclic quotient singularity we must calculate OY ,Q.

First, suppose Y is a (ys = 0) or a (0, 0)-orbit, and write Q = (xQ, 0).

Then OY ,Q is generated by πL, xs − xQ and ys. However, since xs − xQ = uy2

for a unit u ∈ OY ,Q, OY ,Q is generated by πL and ys. Therefore, OY ,Q
∼=

kJπL, ysK/(πe
L−πK), and OZ ,z is the subalgebra of µm-invariants of this under

the action πL 7→ ζmπL, ys 7→ ζeλs
m ys where ζm = χ(σ)|Y | generates Stab(Y ) (as

Gal(L/K) is cyclic). Let r be such that 0 < r < m and r ≡ eλs|Y | mod m.

Then to prove z is a tame cyclic quotient singularity all that is left to show is

that r is a unit in (Z/mZ)× and that e ≡ 0 mod m. The second is clear, and

for the first note that since ζrm also generates Stab(Y ), it must be a primitive

mth root of unity hence r must be a unit.
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If Y is an (xs = 0)-orbit, then Q = (0,±
√
cf,L). By a similar argument to

above, OY ,Q
∼= kJπL, xsK/(πe

L−πK) and OZ ,z is the subalgebra of µm invariants

under the action πL 7→ ζmπL, xs 7→ ζrmxs, where m = e
|Y | and r is such that

0 < r < m and r ≡ eds|Y | mod m.

If Y is an ∞ orbit, then we can calculate m, r,m1 and m2 explicitly by

going to the chart at infinity.

Corollary 8.1.12. If Y is a (ys = 0)-orbit which gives rise to a tame cyclic

quotient singularity z ∈ Zk, then the tame cyclic quotient invariants (m, r) of

z are such that m
r
= 2.

Proof. The orbit Y is a (ys = 0)-orbit hence has size bs. Lemma 8.1.9 tells us

that, |Y | < e if and only if e = 2bs. In this case eλs|Y | = 2bs · νs
2
· bs = b2sνs.

Since bs =
e
2
and bsνs is an odd integer, this gives eλs|Y | ≡ e

2
mod e, hence

m
r
= 2.

8.1.2 Tails

Resolving singularities as in Section 8.1.1 results in tails. These are chains of

rational curves intersecting the central component once and intersecting the

rest of the special fibre nowhere else. It is useful to distinguish between tails

based on the type of orbit they arise from.

Definition 8.1.13. Define the following tails based on the type of singularity

of Zk they arise from:

• ∞-tail : arising from the blow up of a singularity of Zk which arose from an

∞-orbit,

• (ys = 0)-tail : arising from the blow up of a singularity of Zk which arose

from an orbit of non-zero roots,

• (xs = 0)-tail : arising from the blow up of a singularity of Zk which arose

from an orbit on the points (0,±
√
cf,L),

• (0, 0)-tail : arising from the blow up of a singularity of Zk which arose from

the point (0, 0).

Remark 8.1.14. The tails defined in Definition 8.1.13 are the only tails that

can possibly occur in Xk. This is because any tail must arise from a singularity

of Zk which lies on just one component, namely a singularity which arises from

one of the small orbits discussed in Section 8.1.1.
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Proof of Theorem 8.1.1. The central component Γ is the image of the unique

component of Yk under q. Since blowing up points on Γ does not affect its

multiplicity, this has multiplicity e, by Proposition 7.1.8. The description of

the tails follows from Lemmas 8.1.7, 8.1.8, and 8.1.10, since the tails are in a

bijective correspondence with the orbits of points of Yk of size strictly less than

e. We must check that Γ really appears in the minimal SNC model. Suppose

Γ is exceptional. Then g(Γ) = 0 and Riemann-Hurwitz says

∑
z∈Zk

(
e

|q−1(z)|
− 1

)
≥ e.

Therefore there must be at least three ramification points, so Γ intersects at

least three tails.

Remark 8.1.15. The method for calculating the multiplicities of the rational

curves in these tails is described in Theorem 7.1.10 using the tame cyclic

quotient invariants given in Proposition 8.1.11.

Remark 8.1.16. The central component Γ is the only component of Xk which

may have non-zero genus. Its genus, g(Γ), can be calculated via the Riemann-

Hurwitz formula. An even more explicit calculation of g(Γ) in terms of the

Newton polytope is given in Proposition 8.1.24.

8.1.3 Relation to Newton polytopes

Up to this point, this section has described the minimal SNC model of a hy-

perelliptic curve C/K with tame potentially good reduction using the methods

from Section 7.1.2. However, such a hyperelliptic curve has a nested cluster

picture so we can also calculate the minimal SNC model using Newton poly-

topes and the techniques described in Section 7.2. By the uniqueness of the

minimal SNC model, these two methods will give the same result: for the

reader’s sanity, in this section we will show that this is indeed the case. Recall

that without loss of generality we can assume that C/K with tame potentially

good reduction is given by one of the following two equations:

y2 = cf
∏

0̸=r∈R

(x− urπ
ds
K ), if bs | |s|,

y2 = cfx
∏

0̸=r∈R

(x− urπ
ds
K ), if bs ∤ |s|.

The Newton polytope of C is shown in Figure 8.1a if bs | |s|, and in Figure

8.1b if bs ∤ |s|. In each case there is exactly one v-face of ∆v(C), which we
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shall label F . Therefore, by Theorem 7.2.9, the minimal SNC model consists

of a central component Γs = ΓF , and possibly tails arising from the three outer

v-edges of F .

νs
(0, 0)

vK(cf )
(|s|, 0)

0
(0, 2)

F

(a) If 0 ̸∈ R.

νs − ds
(1, 0)

vK(cf )
(|s|, 0)

0
(0, 2)

F

(b) If 0 ∈ R.

Figure 8.1: ∆v(C) of a hyperelliptic curve C with tame potential good reduction.

Lemma 8.1.17. The multiplicity of Γs = ΓF is δF ; that is δF = e.

Proof. We will first show that e | δF , and then that δF | e. Note that,

in both Newton polytopes in Figure 8.1, the valuation map is given by the

affine function v∆(x, y) = νs − dsx − νs
2
y. Since e is such that eds ∈ Z and

eνs ∈ 2Z, we have ev∆(x, y) = eνs − edsx − eνs
2
y ∈ Z. As δF is the common

denominator of all v∆(x, y) for x, y ∈ ∆, this gives that δF | e. Note that

δF (v∆(n− 1, 0)− v∆(n, 0)) = δFds ∈ Z, and δF (v∆(1, 0)− v∆(1, 1)) = δF
νs
2
∈

Z. By minimality of e, this implies e | δF .

Lemma 8.1.18. The ∞-tails arise from the outer v-edge of ∆v(C) between

(0, 2) and (|s|, 0).

Proof. We will first check that this v-edge gives the correct number of ∞-tails,

and then calculate the slope to check that the multiplicities of the components

are the same.

Let us call this v-edge L. By Theorem 7.2.9 then L contributes |L(Z)Z|−1

tails to the SNC model. Since the points (0, 2), (|s|, 0) ∈ L̄(Z)Z, it contributes
two tails if and only if P = ( |s|

2
, 1) ∈ L̄(Z)Z. If s is odd then P ̸∈ L̄∩Z2, hence

L contributes one tail. If s is even then v∆(P ) =
vK(cf )

2
, hence P ∈ L̄(Z)Z if and

only if vK(cf ) ∈ 2Z. Therefore L contributes one tail if s is even and vK(cf ) is

odd, and two tails if s and vK(cf ) are even. This agrees with Theorem 8.1.1.

A quick calculation tells us that δL = 2 if and only if s is even and

vK(cf ) ̸∈ 2Z, and that δL = 1 otherwise. Therefore, δL = |Y |, where Y

is the orbit at infinity. The unique surjective affine function which is zero

on L and non-negative on F is L∗
F (x, y) = 2|s| − 2x − |s|y if s is odd, and

L∗
F (x, y) = |s| − x − 1

2
|s|y if s is even. Therefore, sL1 = (g + 1)ds − λs if s is

odd, and sL1 = −ds|Y | if s is even. Since the multiplicities of the components
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of a tail are the Hirzebruch-Jung approximants of the slopes, we are done after

comparing the slopes to the table in Proposition 8.1.3.

If e = 2 (when s is even and vK(cf ) is odd) has s
1
L ∈ Z, so the associated

tail is empty, which agrees with the table in Theorem 8.1.1.

Lemma 8.1.19. In both cases, when 0 ∈ R and when 0 /∈ R, the (ys = 0)-tails

arise from the outer v-edge of ∆v(C) on the x-axis. Also, if bs | |s| then the

(xs = 0)-tails arise from the v-edge between (0, 0) and (0, 2). Else the (0, 0)-tail

arises from the v-edge between (1, 0) and (0, 2).

Proof. This follows after a similar calculation to Lemma 8.1.18. Denote this

v-edge by L. We will check that |L(Z)Z| = ⌊|ssing|/bs⌋ and that sL1 = −λsbs.
Then, by comparing to the tables in Proposition 8.1.3 and Theorem 8.1.1, we

will done.

First let us calculate |L(Z)Z|. The valuation on the x-axis is given by

v∆(x, 0) = νs − dsx. Since νs ∈ Z, we have that v∆(x, 0) ∈ Z if and only if

bs | x. From this we see that |L(Z)Z| = ⌊|ssing|/bs⌋.
Now, δL = bs, the size of any (ys = 0)-orbit, and the unique surjective

affine function which is zero on L and non-negative on F is L∗
(F )(x, y) = y.

Therefore,

sL1 = δL (v∆(1, 0)− v∆(0, 0)) = −bsλs.

Observe that this gives rise to a non-empty tail if and only if sL1 ̸∈ Z, which
occurs if and only if e = 2bs.

8.1.4 Curves Associated to Principal Clusters

To conclude this section, we drop the requirement for C/K to have tame poten-

tially good reduction. We will describe a hyperelliptic curve with potentially

good reduction which we associate to a principal cluster s ∈ ΣC with gss(s) > 0.

This new curve, which we will denote by Cs̃, will be invaluable in describing

the components of the minimal SNC model of C/K which are associated to

s ∈ ΣC . For s ∈ ΣC/K with gss(s) > 0, the cluster picture Σs̃ of Cs̃/K will be

such that the singletons in Σs̃ correspond to odd children of s and the even

children of s are in effect discarded. The leading coefficient of Cs̃/K is chosen

so that everything behaves well, and allows us to make the comparisons we

wish between the minimal SNC model of C/K and the minimal SNC model

of Cs̃/K. This can be formally described as follows:

Definition 8.1.20. Let C/K be a hyperelliptic curve, not necessarily with

tame potentially good reduction. Let s ∈ ΣC/K be a principal cluster with
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gss(s) > 0 such that s is fixed by GK . Suppose furthermore that σ(zs′) = zσ(s′)

for any σ ∈ GK , s
′ ∈ ΣC/K . We define another hyperelliptic curve Cs̃/K by

Cs̃ : y
2 = cfs

∏
o∈s̃

(x− zo), where cfs = cf
∏
r ̸∈s

(zs − r).

Write Σs̃/K = Σs̃ = Σ(Cs̃/K) for the cluster picture of Cs̃/K, and Xs̃ for the

minimal SNC model of Cs̃/K. The special fibre of the minimal SNC model of

Cs̃ is denoted Xs̃,k, and the central component is denoted Γs̃. We also write

Rs̃ for the set of all roots of cfs
∏

o∈s̃(x − zo), and define ds̃ = dRs̃
, νs̃ = νRs̃

,

and λs̃ = λRs̃
.

Remark 8.1.21. Let Y be the minimal semistable model of C over OL, for

some L/K such that C/L is semistable. Let s be a principal cluster with

gss(s) > 0. If we reduce Cs̃ mod m, we obtain Γs,L, the component of Yk

corresponding to s (see [DDMM18, Theorem 8.5] for the equation of Γs,L). In

addition, cfs has been carefully chosen so that ds = ds̃, νs = νs̃ and λs = λs̃.

In particular, the automorphisms induced by Galois on Γs,L and Γs̃,L are the

same.

Definition 8.1.22. For a principal, Galois-invariant cluster s, define es to

be the minimum integer such that esds ∈ Z and esνs ∈ 2Z. Furthermore, if

gss(s) > 0 define g(s) to be the genus of Γs̃ and if gss(s) = 0 define g(s) = 0.

We call g(s) the genus of s.

Remark 8.1.23. By the Semistability Criterion [DDMM18, Theorem 1.8], if

s is not übereven then es is the minimum integer such that Cs̃ has semistable

reduction over a field extension L/K of degree es. In particular, the central

component Γs̃ of Xs̃,k has multiplicity es and genus g(s). If es = 1 then

gss(s) = g(s), but the converse is not necessarily true.

Proposition 8.1.24. If gss(s) > 0, the genus g(s) is given by

g(s) =


⌊gss(s)

bs
⌋ λs ∈ Z,

⌊gss(s)
bs

+ 1
2
⌋ λs ̸∈ Z, bs even,

0 λs ̸∈ Z, bs odd.

Proof. By Theorem 7.2.9, we know g(s) is given by |F (Z)Z|. This is the number

of interior points with integer valuation of the unique face F of the Newton

polytope of Cs̃. By examining Figure 8.1, we see that all interior points are
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of the form (x, 1) with 1 ≤ x ≤ gss(s). For such points, v∆(x, 1) = λs − dsx.

Therefore,

g(s) = |{x : 1 ≤ x ≤ gss(s), λs − xds ∈ Z}| .

When λs ∈ Z this is therefore equal to

|{x : 1 ≤ x ≤ gss(s), bs | x}| =
⌊
gss(s)

bs

⌋
.

When λs ̸∈ Z, this is equal to∣∣∣∣{x : 1 ≤ x ≤ gss(s), xds ∈
1

2
Z \ Z

}∣∣∣∣ .
When λs ̸∈ Z and bs is odd this set is always empty, and when λs ̸∈ Z and bs

is even it has size
⌊
gss(s)
bs

+ 1
2

⌋
.

Lemma 8.1.25. Let C be a hyperelliptic curve and let s ∈ ΣC/K be a principal

cluster which is fixed by Galois. Let L be an extension such that C is semistable

over L, and let σ generate Gal(L/K). Then σ|Γs,L
: Γs,L → Γs,L has degree es.

Proof. The map σ|Γs,L
is given by (xs, ys) 7→ (χ(σ)esdsxs, χ(σ)

esλsys). The result

follows as es, by definition, is the minimal integer such that esds, esλs ∈ Z.

8.2 Calculating Linking Chains

The minimal SNC model of a general hyperelliptic curve C/K can roughly

be described as follows. Each principal cluster of ΣC has one or two central

components, and some tails associated to it. These central components are

linked by chains of rational curves. Section 8.1 will allow us to describe these

central components and tails, while this section will be used to describe these

linking chains. This includes describing any loops. We will also see the simplest

example of the general philosophy that the components of the special fibre of

the minimal SNC model of C/K associated to a principal cluster s “look like”

the special fibre of the minimal SNC model of Cs̃/K.

Throughout the rest of this section we will take C/K to be a hyperelliptic

curve such that ΣC/K consists of exactly two proper clusters: a proper cluster

s and a unique proper child s′ < s. This is pictured in Figure 8.2. Note that

Figure 8.2: Cluster picture with parent s and one unique proper child s′ with no
proper children of its own.
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ds′ > ds and |s| > |s′|. If C is such that s is even and |s| = |s′| + 1 then C/K

has potentially good reduction, this case is covered in Section 8.1. To avoid

this case we will assume that if s is even then |s| ≥ |s′|+2. Since hyperelliptic

curves of this type are nested we can directly apply the methods from [Dok18].

Before we apply Theorem 7.2.9, we need to understand the Newton polytope

of C/K.

8.2.1 The Newton polytope

Without loss of generality, we can assume that the defining equation of C/K

will be either

y2 = cf
∏

r∈R\s′

(
x− urπ

ds
K

)∏
r∈s′

(
x− urπ

ds′
K

)
, (8.1)

or

y2 = cfx
∏

r∈R\s′

(
x− urπ

ds
K

) ∏
0̸=r∈s′

(
x− urπ

ds′
K

)
, (8.2)

where the ur are units. If C has defining equation (8.1), then νs′ = vK(cf ) +

(|s| − |s′|)ds + |s′|ds′ , and the Newton polytope ∆v(C) of C will be as shown

in Figure 8.3a. If instead C has defining equation (8.2), the Newton polytope

will be as shown in Figure 8.3b.

νs′
(0, 0)

νs′ − |s′|ds′
(|s′|, 0)

vK(cf )

(|s|, 0)

0
(0, 2)

F2 F1

(a) if C has defining equation (8.1)

νs′ − ds′
(1, 0)

νs′ − |s′|ds′
(|s′|, 0)

vK(cf )

(|s|, 0)

0
(0, 2)

F2 F1

(b) if C has defining equation (8.2)

Figure 8.3: Newton polytope ∆v(C) of C.

Lemma 8.2.1. Let C have Newton polytope as in Figure 8.3a. Then there is

an isomorphism ψ : F1 → ∆v(Cs̃), from the closure of the v-face marked F1

to the Newton polytope of Cs̃ (whose only v-face we label Fs̃), shown in Figure

8.4. In particular ψ preserves valuations and δF1 = δFs̃
. In this sense we say

that F1 corresponds to the cluster s. Similarly the v-face F2 in Figure 8.3a

corresponds to s′.

Proof of Lemma 8.2.1. Let us compare the v-face F1 in Figure 8.3a to the

Newton polytope, ∆v(Cs̃), of Cs̃. This is given in Figure 8.4a if s′ is even, and

given in Figure 8.4b if s′ is odd.
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νs′ − |s′|ds′
(0, 0)

vK(cf )

(|s| − |s′|, 0)

0
(0, 2)

Fs̃

(a) if s′ is even

νs′ − |s′|ds′
(1, 0)

vK(cf )

(|s| − |s′| + 1, 0)

0
(0, 2)

Fs̃

(b) if s′ is odd

Figure 8.4: Newton polytope ∆v(Cs̃), where C is given by (8.1) or (8.2).

If s′ is even we can define

ψ : F1 → ∆v(Cs̃) : (x, y) 7→
(
x− |s′|

2
(2− y), y

)
.

It is easy to show that this is an isomorphism, and that the valuations are

preserved. Similarly if s′ is odd we can define

ψ : F1 → ∆v(Cs̃) : (x, y) 7→
(
x− (|s′|+ 1)

2
(2− y), y

)
,

which is also an isomorphism that preserves the valuations. In particular, in

both cases we have δF1 = δFs̃
, and if v1 is the unique affine function agreeing

with v∆(C) on F1, then v1(x, y) = v∆s̃
(ψ(x, y)), where v∆s̃

= v∆(Cs̃).

Similarly, we can see that the v-face F2 in Figure 8.3a corresponds to s′

by considering the Newton polytope ∆v(Cs̃′) of Cs̃′ . This is shown in Figure

8.5.

νs′ = vK(cf ) + (|s| − |s′|)ds + |s′|ds′
(0, 0)

νs′ − |s′|ds′
(|s′|, 0)

0
(0, 2)

Fs̃′

Figure 8.5: Newton polytope ∆v(Cs̃′) of Cs̃′ , where C is given by (8.1).

We see that the map

F2 → ∆v(Cs̃′) : (x, y) 7→ (x, y)

is an isomorphism that preserves the valuations, that is v2(x, y) = v∆(C
s̃′ )
(x, y),

and δF2 = δF
s̃′
, where v2 is the unique affine function agreeing with v∆(C) on

F2.

We can make a similar comparison of the v-faces of the Newton polytope

in Figure 8.3b.
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Lemma 8.2.2. Let C have Newton polytope as in Figure 8.3b. Then the v-

face marked F1 in Figure 8.3b corresponds to the cluster s. That is there is

a valuation preserving isomorphism between F1 and ∆v(Cs̃), and δF1 = δFs̃
,

where Fs̃ is the unique v-face of ∆v(Cs̃). Similarly the v-face marked F2 on

the Newton polytope in Figure 8.3b corresponds to the cluster s′.

Proof. Again, we can see that the v-face marked F1 on the Newton polytope

in Figure 8.3b corresponds to the cluster s by looking at the Newton polytope

of Cs̃. This is shown in Figure 8.4a if s′ is even, and in Figure 8.4b if s′ is

odd. Take ψ to be exactly as in the proof of Lemma 8.2.1 in both the s′ even

and s′ odd cases. This gives us an isomorphism between F1 and ∆v(Cs̃′) which

preserves the valuations. We can also see that δF1 = δFs̃
.

Similarly we can see that the v-face marked F2 on the Newton polytope

in Figure 8.3b corresponds to the cluster s′ by looking at the Newton polytope

of Cs̃′ . This is shown in Figure 8.6.

νs′ − ds′ = vK(cf ) + (|s′| − |s|)ds + (|s′| − 1)ds′
(1, 0)

νs′ − |s′|ds′
(|s′|, 0)

0
(0, 2)

Fs̃′

Figure 8.6: Newton polytope ∆v(Cs̃′) of Cs̃′ , where C is given by (8.2).

The affine map F2 → ∆v(Cs̃′) : (x, y) 7→ (x, y) is an isomorphism which

preserves the valuations, and we can see that δF2 = δF
s̃′
.

8.2.2 Structure of the SNC Model

The following theorem describes the structure of the special fibre of the mini-

mal SNC model for hyperelliptic curves whose cluster picture looks like Figure

8.2.

Theorem 8.2.3. Let C/K be a hyperelliptic curve with cluster picture as in

Figure 8.2. If s is principal, then the special fibre of the minimal SNC model

has a component Γs,K arising from s with multiplicity es and genus g(s). If s′

is principal then there is a component Γs′,K arising from s′ of multiplicity es′

and genus g(s′). These are linked by sloped chain(s) of rational curves with

parameters (t1 − δ, t1, µ), which are described in the following table:
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Name From To t1 δ µ Conditions

Ls,s′ Γs Γs′ −λs δs′/2 1 s principal, s′ odd, principal

L+
s,s′ Γs Γs′ −ds δs′ 1 s and s′ principal, s′ even, ϵs′ = 1

L−
s,s′ Γs Γs′ −ds δs′ 1 s and s′ principal, s′ even, ϵs′ = 1

Ls,s′ Γs Γs′ −ds δs′ 2 s and s′ principal, s′ even, ϵs′ = −1

Ls′ Γs Γs −ds 2δs′ 1 s principal, s′ twin, ϵs′ = 1

Ts′ Γs - −ds δs′ +
1
2 2 s principal, s′ twin, ϵs′ = −1

Ls′ Γs′ Γs′ −ds 2δs′ 1 s cotwin, vK(cf ) ∈ 2Z
Ts′ Γs′ - −ds δs′ +

1
2 2 s cotwin, vK(cf ) ̸∈ 2Z

The chains where the “To” column has been left empty are crossed tails with

crosses of multiplicity 1. If s is principal and es > 1 then Γs has the following

tails with parameters (t1, µ):

Name Number t1 µ Condition

T∞ 1 (g(s) + 1)ds − λs 1 s odd

T±
∞ 2 −ds 1 s even and ϵs = 1

T∞ 1 −ds 2 s even, ϵs = −1 and es > 2

Tys=0 |ssing|/bs −λs bs es = 2bs

If s′ is principal and es′ > 1 then Γs′ has the following tails with parameters

(t1, µ):

Name Number t1 µ Condition

Tys=0 ⌊|s′sing|/bs′⌋ −λs′ bs′ es′ = 2bs′

Txs=0 1 −ds′ 2 bs′ | |s′|, λs′ ̸∈ Z and es′ > 2

T±
xs=0 2 −ds′ 1 bs′ | |s′|, λs′ ∈ Z
T(0,0) 1 −λs′ 1 bs′ ∤ |s′|

Remark 8.2.4. For this particular type of hyperelliptic curve, s will be prin-

cipal unless it is a cotwin (i.e. if |s′| = 2g(C)), and s′ will be principal unless

it is a twin. Since we have assumed that g ≥ 2, these cases cannot coincide.

Note that neither s nor s′ can be übereven in this case.

Remark 8.2.5. Suppose s is principal. In Xk we can see most of the compo-

nents of Xs̃,k. The central component Γs will have the same multiplicity and

genus as Γs̃, and will have almost the same tails. The only difference being

that one or two of the tails (the (0, 0)-tail in the case s′ is odd and the (xs = 0)-

tail(s) otherwise) will instead form either part of a linking chain between Γs

and Γs′ (in the case s′ principal); or a loop or a crossed tail associated to s′

(in the case where s′ is a twin). We will say that the downhill section of the
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linking chain corresponds to this tail. If the linking chain, loop or crossed tail

in Xk has a non-trivial level section, then all the components of the tails in

Xs,k appear in the linking chain(s) in Xk. If the level section has length zero

then some of the lower multiplicity components do not appear - we expand on

this in Section 8.2.3.

Similarly, if s′ is principal, we see most of the components of Xs̃′,k in Xk.

In this case, Γs′ has the same tails as Γs̃′ except that the infinity tail(s) of the

latter are absorbed into the linking chain(s) Ls,s′ (or the loop or crossed tail

arising from s if it is a cotwin). In this case, we say that the uphill section

of the linking chain corresponds to the infinity tail in Xs̃′,k. We shall see that

this is a phenomenon which generalises to the main theorems in Section 9.

Remark 8.2.6. The length of the level section of a linking chain, loop or

crossed tail C ⊆ Xk (that is, the number of P1s with multiplicity µ) is equal

to |(µ(t1 − δ), µt1) ∩ Z|. Let Y be the minimal regular model of C over L,

q : Y → Z be the quotient by Gal(L/K) and ϕ : X → Z the resolution of

singularities. Then any irreducible component E in the level section of C is not

an exceptional divisor - that is to say, it is the image of µ components of Yk

which are permuted by Gal(L/K). This can be seen by looking at the explicit

automorphisms on the components of Y given in [DDMM18, Theorem 6.2].

Example 8.2.7. Consider the hyperelliptic curve C : y2 = (x2 − p)(x3 − p5)

over K = Qur
p , for p ≥ 5. The special fibre of the minimal SNC model of C/K

can be seen in Figure 8.7. The central components Γs and Γs′ are labeled and

shown in bold.

(a) ΣC

4
Γs

1 2

1

3
Γs′

1 1

(b) Special fibre

Figure 8.7: Cluster picture and special fibre of the minimal SNC model of C.

If we consider the curves Cs̃ and Cs̃′ and the special fibres of their minimal

SNC models we find that they are as pictured in Figure 8.8 below. We can see

41 2 1

(a) where Cs̃ : y
2 = x(x2 − p).

31 1 1

(b) where Cs̃′ : y
2 = p(x3 − p5).

Figure 8.8: The special fibres of the minimal SNC models of Cs̃ and Cs̃′

that all the components in both Figures 8.8a and 8.8b also appear in the special
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fibre of the minimal SNC model of C. They are glued together along one of

their multiplicity one components which forms the linking chain in Figure 8.7.

This provides a visualisation of what we mean when we say the tails of Γs

correspond to those of Γs̃, the tails of Γs′ correspond to those of Γs̃′ , and that

some of these tails form part of the linking chains of the special fibre of the

minimal SNC model of C.

Before proving Theorem 8.2.3, we will first prove the following lemmas.

Lemma 8.2.8. If s is principal then the special fibre has an irreducible com-

ponent Γs = ΓF1 of multiplicity es and genus g(s). If s′ is principal then there

is a component Γs′ = ΓF2 of multiplicity es′ and genus g(s′).

Proof. Follows from Lemmas 8.2.1 and 8.2.2.

Remark 8.2.9. Lemma 8.2.8 further proves that δF1 = es and δF2 = es′ since,

by Theorem 7.2.9, ΓFi
has multiplicity δFi

.

Lemma 8.2.10. If s is principal and es > 1, the following tails of Γs arise

from outer v-edges of the v-face F1 in Figure 8.3, with conditions as in Theorem

8.2.3:

(i) ∞-tail(s) arising from the v-edge connecting (0, 2) and (|s|, 0),

(ii) (ys = 0)-tail(s) arising from the v-edge connecting (|s′|, 0) and (|s|, 0).

Proof. This is a consequence of our discussion above, relating F1 to the Newton

polytope of Cs̃. The conditions in Theorem 8.2.3 for the tails to occur follow

since ϵs = (−1)vK(cf ).

Lemma 8.2.11. If s′ is principal and es′ > 1, the following tails of Γs′ arise

from outer v-edges of the v-face F2 in Figure 8.3, with conditions as in Theorem

8.2.3:

(i) if bs′ | |s′|, (xs = 0)-tail(s) arise from the v-edge connecting (0, 0) and

(0, 2),

(ii) if bs′ ∤ |s′|, a (0, 0)-tail arises from the v-edge connecting (1, 0) and (0, 2),

(iii) in both cases, (ys = 0)-tail(s) arise from the v-edge intersecting the x-

axis.

Proof. This is a consequence of our discussion above, relating F2 to the Newton

polytope of Cs̃′ . The conditions in Theorem 8.2.3 for these tails to occur follow

since ϵs′ = (−1)νs′−|s′|ds′ .
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In order to find the lengths of the level sections of the linking chains, we

must calculate the slopes of the unique inner v-edge L, adjacent to both v-faces

F1 and F2 in Figure 8.3.

Lemma 8.2.12. If s′ is odd sL1 = −λs, and sL2 = −λs − δs′
2
. Else sL1 = −δLds,

and sL2 = −δLds′.

Proof. Suppose s′ is odd. Then the only points in L(Z) are the endpoints (0, 2)
and (|s′|, 0), so δL = 1. The unique function L∗

F1
: Z2 → Z such that L∗

F1

∣∣
L
= 0

and L∗
F1

∣∣
F1

≥ 0 is given by

L∗
F1
(x, y) = 2x+ |s′|y − 2|s′|.

To calculate sL1 and sL2 we need P0 and P1 such that L∗
F1
(P0) = 0 and L∗

F1
(P1) =

1. We will take P0 = (|s′|, 0) and P1 =
(

|s′|+1
2
, 1
)
. The unique affine function

which agrees with v∆ on F1 is defined by v1(x, y) = νs − dsx− νs
2
y. Therefore,

sL1 = δL(v1(P1)− v1(P0)),

= νs − ds
|s′|+ 1

2
− νs

2
− νs + ds|s′|,

= −
(
νs
2
− ds

|s′| − 1

2

)
,

= −λs.

The calculations for sL2 and s′ even are similar.

Proof of Theorem 8.2.3. Recall that es is the minimum integer such that esds ∈
Z, and esνs ∈ 2Z. If es = 1 then ds, λs ∈ Z, hence the slopes of the outer v-edges
of F1 are integers and Γs has no tails. If es > 1 then Lemma 8.2.10 describes

the tails of Γs. Similarly if es′ = 1 then Γs′ has no tails and if es′ > 1 then

Lemma 8.2.11 describes the tails of Γs′ . The statement on the parameters of

the tails and the linking chain follows from Remark 7.2.12 and the calculation

of the slopes in Lemma 8.2.12. The multiplicity of the level section is δL where

L is the inner v-edge between F1 and F2.

The two cases left to worry about are when s′ is a twin or when s is a

cotwin. We will only argue the case where s′ is a twin, as the case where s is a

cotwin is proved similarly. Recall from Remark 7.1.15 that ϵs′ = (−1)νs′−|s′|ds′ .

So, ϵs′ = 1 if and only if v∆((|s′|, 0)) = νs′ − |s′|ds′ ∈ 2Z.
Suppose that ϵs′ = 1. Since v∆(0, 2) = 0 ∈ 2Z and |s′| = 2 we have that

( |s
′|
2
, 1) = (1, 1) ∈ Z2, and v∆(1, 1) ∈ Z. So, |L(Z)Z| = 3 and by Theorem 7.2.9

there are two linking chains from Γs to the component ΓF2 arising from the
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v-face F2 of ∆v(C) in Figure 8.3. The component ΓF2 is exceptional by [Dok18,

Proposition 5.2] and the linking chains between Γs and ΓF2 are minimal. After

blowing down ΓF2 , this results in a loop from Γs to itself.

Suppose instead that, ϵs′ = −1. Then there is a single chain of rational

curves from Γs to ΓF2 , and ΓF2 has two other rational curves intersecting it

transversely (which arise from the v-edge connecting (0, 0) and (0, 2)). There-

fore, ΓF2 is not exceptional and must appear in the minimal SNC model. This

means, if we consider ΓF2 as a component of the level section, that this chain

of rational curves is a crossed tail.

8.2.3 Small Distances

Let s1 and s2 be the principal clusters such that there is a linking chain C ⊆
Xk from Γs1 to Γs2 . If C has level section of length greater than 0, it is

straightforward to compare the multiplicities of C to those of the corresponding

tails (see Remark 8.2.5). All of the multiplicities of the corresponding tails

appear in the uphill and downhill sections of C. However, if the level section

is empty and the downhill section of C corresponds to a tail, say T1, then not

all of the multiplicities of T1 ⊆ Xs̃1,k appear in the downhill section of C. The
situation is similar if the uphill section corresponds to a tail, say T2 ⊆ Xs̃2,k.

We shall show that in this case, T1 and T2 “meet” at a component of second

least common multiplicity. In other words, if we consider a chain of rational

curves C ′ such that C ′ has level section of length 1, and whose downhill and

uphill sections correspond to T1 and T2 respectively, then we “cut out” a section

of C ′ to obtain C.

Example 8.2.13. Consider the hyperelliptic curves given by y2 = (x4−p)(x5−
p2+10n) over K = Qur

p for p ≥ 7 and n ∈ Z≥0, with cluster pictures shown in

Figure 8.9. The level section of the linking chain between ΓR and Γs has length

Figure 8.9: Cluster picture ΣC of C : y2 = (x4 − p)(x5 − p2+10n).

n. Figure 8.10 shows the special fibres of the minimal SNC models for both

when n = 1, and the small distance case (when n = 0). Here we can see

that when n = 1 the uphill and downhill sections of the linking chain have a

common multiplicity greater than 1, namely 3, and that to obtain the n = 0

case we remove the dashed section of the linking chain and glue back along

the multiplicity 3 components.
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(a) n = 1 case.
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Figure 8.10: Example of “cutting out” a section of linking chain to obtain the
small distance case.

Let us solidify this with a precise statement.

Theorem 8.2.14. Let C =
⋃λ

i=1Ei be a sloped chain of rational curves with

parameters (t2, t1, µ), as in Definition 7.2.13. Suppose that C has level section

length 0 and [µt2, µt1] ⊂ (0, 1). Suppose Ei has multiplicity µi; the downhill

section comprises Ei for 1 ≤ i ≤ l, for some l ∈ Z with 1 ≤ l ≤ λ; and

all remaining components form the uphill section. Write µ0 = denom(µt1)

and µλ+1 = denom(µt2). Let Tj =
⋃λj

i=1 F
(j)
i for j = 1, 2 be tails (with Tj

possibly empty, in which case λj = 0), where T1 has parameters (t1, µ) and T2

has parameters ( 1
µ
− t2, µ). Let F

(j)
i have multiplicity µ

(j)
i (and write µ

(j)
0 =

denom(µtj)), and let lj < max(1, λj) be maximal such that µ
(1)
l1

= µ
(2)
l2
. Then

l = l1 = λ− l2, µi = µ
(1)
i for 0 ≤ i ≤ l1 and µλ+1−i = µ

(2)
i for 0 ≤ i ≤ l2.

Remark 8.2.15. Let C be as in Theorem 8.2.14. Since the level section of C
is empty, it must be the case that (µt2, µt1) ∩ Z = ∅. Therefore, after shifting
µt2 and µt1 by an integer if necessary, we may insist that [µt2, µt1] ⊆ [0, 1].

If µt2 ∈ Z (hence T2 is empty) then it is immediate from Remark 7.2.12 that

λ = λ1 − 1 and µi = µ
(1)
i for 1 ≤ i ≤ λ, since the multiplicities come from

the same sequence of fractions. A similar conclusion applies if µt1 ∈ Z. So

we are able to assume without loss of generality that µt2, µt1 ̸∈ Z, hence our

assumption in Theorem 8.2.14 that [µt2, µt1] ⊂ (0, 1).

Roughly, Theorem 8.2.14, states that when there is no level section, rather

than seeing all of the multiplicities of the tails which the uphill and downhill

sections correspond to, the two tails “meet” at the component of minimal

shared multiplicity greater than µ. Before we prove this theorem, let us prove

a couple of lemmas.

Lemma 8.2.16. Let q1, q2 ∈ Q with [q1, q2] ∩ Z = ∅. Then there is a unique

fraction with minimal denominator in the set [q1, q2] ∩ Q, when written with

coprime numerator and denominator.
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Proof. Suppose not, and suppose r1, r2 ∈ [q1, q2]∩Q with r1 < r2 can be written

ri =
mi

d
with mi, d coprime and d the minimal denominator of elements in the

set [q1, q2]∩Q. We will show that there exists a rational number r lying between

r1 and r2 of denominator < d.

Write ri =
mi(d−1)
d(d−1)

, and consider the set S = [m1(d − 1),m2(d − 1)] ∩ Z.
Since m2 > m1 and m1,m2 ∈ Z, |S| ≥ d and there must exist a multiple of

d in S. That is, there exists m ∈ Z such that md ∈ S. Since mi and d are

coprime, we have m1 < md < m2. Therefore,

m1(d− 1)

d(d− 1)
<

md

d(d− 1)
<
m2(d− 1)

d(d− 1)
=⇒ r1 <

m

d− 1
< r2,

which contradicts the minimality of d.

Lemma 8.2.17. With notation as in Theorem 8.2.14, there exists some lj <

λj, for j = 1, 2, such that µ
(1)
l1

= µ
(2)
l2
.

Proof. Write si = µti. Recall that we assumed that, [s2, s1] ⊂ (0, 1), so [s2, s1]∩
Z = ∅. Let m

d
be the unique fraction of minimal denominator in [s2, s1], which

exists by Lemma 8.2.16. Then if

s1 = µt1 =
m0

d0
>
m1

d1
> · · · > mλ

dλ
>
mλ+1

dλ+1

= µt2 = s2,

is the reduced sequence giving rise to the linking chain C, as in Remark 7.2.12,

where (mi, di) = 1, d0 > · · · > dl and dl < · · · < dλ+1 for some 1 ≤ l ≤ λ, we

must have that dl = d.

Consider the following two reduced sequences:

µt1 =
m

(1)
0

d
(1)
0

>
m

(1)
1

d
(1)
1

> · · · >
m

(1)
λ1

d
(1)
λ1

>
m

(1)
λ1+1

d
(1)
λ1+1

= −1,

1− µt2 =
m

(2)
0

d
(2)
0

>
m

(2)
1

d
(2)
1

> · · · >
m

(2)
λ2

d
(2)
λ2

>
m

(2)
λ2+1

d
(2)
λ2+1

= −1.

These give rise to the multiplicities µ
(j)
i = µ · d(j)i for 1 ≤ i ≤ λj, j = 1, 2 of

the tails Tj. We will show that there exist 0 ≤ l1 < λ1 +1 and 0 ≤ l2 < λ2 +1

with d
(1)
l1

= d = d
(2)
l2
.

We will first prove that d
(1)
l1

= d for some l1 ∈ Z. Since [s2, s1] ⊂ (0, 1), we

have that s2 > ⌊s1⌋ = 0. So, some fraction of denominator d, say m
d
, appears

in the full sequence of fractions in [⌊s1⌋, s1] ∩ Q of denominator less than or

equal to max{d0, dλ+1}. To obtain a reduced sequence, we remove all terms of
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the form

· · · > a

b
>
a+ c

b+ d
>
c

d
> · · · 7→ · · · > a

b
>
c

d
> . . . ,

as in Remark 7.2.12. We can only remove m
d
if there exists some q ∈ Q with

denom(q) < d and s1 > q > m
d
. No such q can exists since d is the minimal

denominator of any element of [s2, s1]∩Q. Therefore, m
d
cannot be removed in

the reduction process and so must appear in the reduced sequence. Therefore

there exists 0 ≤ l1 < λ1 + 1 such that d
(1)
l1

= d. Proving that there exits

0 ≤ l2 < λ2 + 1 such that d
(1)
l1

= d = d
(2)
l2

is done similarly.

We can now prove Theorem 8.2.14.

Proof of Theorem 8.2.14. The fractions m0

d0
, m1

d1
, . . . , ml

dl
in the reduced sequence

depend only on the elements of [s1,
ml

dl
] of denominator less than or equal

to max(d0, dλ+1), as do the fractions
m

(1)
0

d
(1)
0

, . . . ,
m

(1)
l1

d
(1)
l1

= ml

dl
. This proves that

d
(1)
i = di hence µi = µ

(1)
i for 0 ≤ i ≤ l1. Similarly d

(2)
i = dλ+1−i hence

µλ+1−i = µ
(2)
i for 0 ≤ i ≤ l2. It remains to show maximality of l1 and l2.

Suppose there is some r1, r2 such that λi > ri > li and µ
(1)
r1 = µ

(2)
r2 < µ

(1)
l1
.

In addition to this, d
(1)
r1 = d

(2)
r2 < d (recall m

d
is the unique fraction with

least denominator in [s2, s1] ∩ Q). Therefore q2 = 1 − m
(2)
r2

d
(2)
r2

∈ (s1, 1] and

q1 =
m

(1)
r1

d
(1)
r1

∈ [0, s2). Let q′ be the unique rational with least denominator

d′ in [q1, q2]. By uniqueness, d′ < d
(1)
r1 < d. Therefore, q′ ∈ (s1, q2) or (q1, s2).

Suppose for now that q′ ∈ (s1, q2), and consider again the reduced sequence

1− µt2 =
m

(2)
0

d
(2)
0

>
m

(2)
1

d
(2)
1

> · · · >
m

(2)
λ2

d
(2)
λ2

>
m

(2)
λ2+1

d
(2)
λ2+1

= −1.

However 1 − q2 cannot appear in this reduced sequence since a fraction with

smaller denominator, 1 − q′, appears to the left of it in the non-reduced se-

quence. So, at some step in the reduction process 1 − q2 would have been

removed. Therefore, q′ ̸∈ (s1, q2). Similarly, one can show that q′ ̸∈ (q1, s2).

This is a contradiction. So no such r1 and r2 exist.
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Chapter 9

Hyperelliptic Curves with Tame

Reduction

The previous chapter looked at the minimal SNC models of specific cases

of hyperelliptic curves. In this chapter, we state our main theorems in full

generality. Theorem 9.2.3 gives the structure of the special fibre of the minimal

SNC model, and Theorems 9.3.1 and 9.3.2 give more explicit descriptions of

multiplicities and genera of components appearing in the special fibre.

9.1 Orbits of Clusters
First we need to extend some definitions. The definitions in Section 2.1 come

from [DDMM18], where everything is semistable, so do not deal with orbits

of clusters. Here we make some new definitions which extend the preexisting

ones to orbits. First let us recall Definitions 5.1.3 and 5.1.4.

Definition 9.1.1 (Definition 5.1.3). Let X be a Galois orbit of clusters. Then

X is übereven if for all s ∈ X, s is übereven. Define an orbit X to be odd,

even, and principal similarly.

Definition 9.1.2 (Definition 5.1.4). An orbit X ′ is a child of X, written

X ′ < X, if for every s′ ∈ X ′ there exists some s ∈ X such that s′ < s. Define

δX′ = δs′ for some s′ ∈ X ′.

Definition 9.1.3. Let X be an orbit of clusters. Define KX/K to be the field

extension of K of degree |X|. By Lemma 2.1.16, KX/K is the minimal field

extension over which for any s ∈ X, σ ∈ Gal(K/KX) we have σ(s) = s.

Definition 9.1.4. For X be Galois orbit of clusters, with some s ∈ X, define

dX =
aX
bX

= ds, νX = νs, λX = λs, gss(X) = gss(s), and ϵX = ϵ|X|
s .

There are well defined, i.e they do not depend on the choice of s ∈ X.

Definition 9.1.5. Let X be a principal orbit of clusters with gss(X) > 0 and

fix some s ∈ X. Define CX̃ to be the curve Cs̃ over KX . Denote the minimal

SNC model of CX̃/KX by XX̃/OKX
, and the central component by ΓX̃/k.
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Remark 9.1.6. The curve CX̃ depends on a choice of s ∈ X, but the com-

binatorial description of the special fibre of the minimal SNC model will not.

Since this is what we need CX̃ for, we do not need to worry about this.

Definition 9.1.7. Let X be a principal orbit of clusters. Define eX ∈ Z>0 to

be minimal such that eX |X|ds ∈ Z and eX |X|νs ∈ 2Z for all s ∈ X. Define

g(X) = g(s) for s ∈ X over KX , where g(s) is as defined in Definition 8.1.22.

Remark 9.1.8. Analogously to Lemma 8.1.25, the curve CX̃/KX is semistable

over an extension L/KX of degree eX and the quotient map Γs,L → Γs,KX
has

degree eX for s ∈ X.

9.2 Special Fibre of the Minimal SNC Model
We state here the first of our main theorems. Roughly this tells us that the

cluster picture, the leading coefficient of f , and the action of GK on the cluster

picture is enough to calculate the structure of the minimal SNC model, along

with the multiplicities and genera of the components.

Theorem 9.2.1. Let K be a complete discretely valued field with algebraically

closed residue field of characteristic p > 2. Let C : y2 = f(x) be a hyperelliptic

curve over K with tame reduction and cluster picture ΣC/K. Then the dual

graph, with genus and multiplicity, of the special fibre of the minimal SNC

model of C/K is completely determined by ΣC/K (with depths), the valuation

of the leading coefficient vK(cf ) of f , and the action of GK.

Remark 9.2.2. If K does not have algebraically closed residue field, then

the Frobenius action on the dual graph is determined by this data, as well as

the values of ϵX(Frob) for each orbits of clusters X. We will not discuss this

further here, but one can refer to [FN20].

The proof of this will follow from the theorems proved in the rest of this

section, and we make this more precise later. First we split Theorem 9.2.1 into

several smaller theorems. The first tells us which components appear in the

special fibre of the minimal SNC model. Roughly, there is a central component

for every orbit of principal non-übereven clusters, one or two central compo-

nents for every orbit of principal übereven clusters, and a chain of rational

curves associated to each orbit of twins. These central components are linked

by chains of rational curves, and certain central components will also have tails

intersecting them. The following theorem gives us the structure of the special

fibre but is missing important details such as multiplicities, genera and lengths

of these chains. These remaining details will be discussed in Theorem 9.3.2.
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Theorem 9.2.3 (Structure of SNC model). Let K be a complete discretely

valued field with algebraically closed residue field of characteristic p > 2. Let

C/K be a hyperelliptic curve with tame reduction. Then the special fibre of its

minimal SNC model is structured as follows. Every principal Galois orbit of

clusters X contributes one central component ΓX , unless X is übereven with

ϵX = 1, in which case X contributes two central components Γ+
X and Γ−

X .

These central components are linked by chains of rational curves, or are

intersected transversely by a crossed tail in the following ways (where, for any

orbit Y , we write Γ+
Y = Γ−

Y = ΓY if Y is not übereven):

Name From To Condition

LX,X′ ΓX ΓX′ X ′ < X both principal, X ′ odd

L+
X,X′ Γ+

X Γ+
X′ X ′ < X both principal, X ′ even with ϵX′ = 1

L−
X,X′ Γ−

X Γ−
X′ X ′ < X both principal, X ′ even with ϵX′ = 1

LX,X′ ΓX ΓX′ X ′ < X both principal, X ′ even with ϵX′ = −1

LX′ Γ−
X Γ+

X X principal, X ′ < X orbit of twins, ϵX′ = 1

TX′ ΓX - X principal, X ′ < X orbit of twins, ϵX′ = −1

Note that any chain where the “To” column has been left blank is a crossed tail.

If R is not principal then we also get the following chains of rational curves:

Name From To Condition

Ls Γ−
s′ Γ+

s′ s < R, s a cotwin, s′ < s child of size 2g, ϵs′ = 1

Ts Γs′ - s < R, s a cotwin, s′ < s child of size 2g, ϵs′ = −1

LR Γ−
s Γ+

s R a cotwin, s < R principal of size 2g, ϵs = 1

TR Γs - R a cotwin, s < R principal of size 2g, ϵs = −1

Ls1,s2 Γs1 Γs2 R = s1 ⊔ s2, with si both principal, odd and stable

TX ΓX - R = s1 ⊔ s2, X = {s1, s2} principal, odd orbit

L+
s1,s2

Γ+
s1

Γ+
s2

R = s1 ⊔ s2, si stable, principal and even, ϵsi = 1

L−
s1,s2

Γ−
s1

Γ−
s2

R = s1 ⊔ s2, si stable, principal and even, ϵsi = 1

Ls1,s2 Γs1 Γs2 R = s1 ⊔ s2, si stable, principal and even, ϵsi = −1

T+
X Γ+

X - R = s1 ⊔ s2, X = {s1, s2} principal and even, ϵsi = 1

T−
X Γ−

X - R = s1 ⊔ s2, X = {s1, s2} principal and even, ϵsi = 1

TX ΓX - R = s1 ⊔ s2, X = {s1, s2} principal and even, ϵsi = −1

Lt Γ−
s Γ+

s R = s ⊔ t, s principal and even, t a twin, ϵt = 1

Tt Γs - R = s ⊔ t, s principal and even, t a twin, ϵt = −1

Finally, a central component ΓX is intersected transversally by some tails if

and only if eX > 1. These are explicitly described in Theorem 9.3.2.
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Remark 9.2.4. At no point do we give explicit equations for the central com-

ponents Γ±
X . However, these can be calculated using the method laid out in this

thesis. In particular, one can take the explicit equations given in [DDMM18,

Theorem 8.5] for the components Γ±
s,L in the semistable model of C/L and the

Galois action on these components, and apply [DD18, Theorem 1.1].

Before we prove this, let us prove a couple of results. Recall that L is a

field over which C has semistable reduction and that Γs,L is the component

associated to a cluster s in the special fibre of the minimal semistable model

Y of C over L.

Lemma 9.2.5. Let s be a principal cluster with gss(s) = 0.

(i) If s = R and s is not übereven (resp. übereven) then Γs,L (resp. each of

Γ+
s,L and Γ−

s,L) intersects at least two other components.

(ii) If s ̸= R and s is not übereven (resp. übereven) then Γs,L (resp. each of

Γ+
s,L and Γ−

s,L) intersects at least three other components.

Proof. (i) Let s = R and suppose s is not übereven. Since gss(s) = 0, s can

have at most two odd children and in particular at most two singletons. Since,

g(C) ≥ 2, we have |s| ≥ 5. If |s| is odd then s must have an even child s′ and,

by [DDMM18, Theorem 8.5], Γs,L is intersected by the two linking chains to

Γs′,L. Since s is principal, s cannot be the union of two odd clusters. So, if |s|
is even then s has an even child and we are done by [DDMM18, Theorem 8.5].

If s = R is übereven then every child of s is even. In particular, there are

at least two even children s1 and s2. So, each of Γ±
s,L intersects L±

s1
and L±

s2

(the linking chains to the children).

(ii) Let s ̸= R and suppose s is not übereven. Since s is principal, we

know |s| ≥ 3. Therefore, s must have at least one proper child s′. Suppose

that P (s) is principal. If s′ < s is even then Γs,L intersects the linking chain

to ΓP (s),L and the two linking chains to Γs′,L. Otherwise s must be the union

of two odd clusters, hence s is even. In this case there are two linking chains

to ΓP (s),L and one to Γs′,L. A similar argument works if s is übereven. If

P (s) = R = s⊔ s2 is not principal, the argument is similar, but linking chains

to ΓP (s),L are replaced by linking chains to Γs2,L.

Proposition 9.2.6. Let Y be the semistable model of C/L and Z the image

under the quotient map. Let X be the SNC model obtained by resolving the

singularities of Z such that all rational chains are minimal. Let X be a prin-

cipal orbit of clusters. Let ΓX,K ∈ Xk be the image of Γs,L for some s ∈ X
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under the quotient by Gal(L/K). Then if g(ΓX,K) = 0 and (ΓX,K ·ΓX,K) = −1,

ΓX,K intersects at least three other components of the special fibre (i.e. blowing

down ΓX,K would not result in an SNC model).

Proof. [FN20, Proposition 7.15].

We are now able to prove our structure theorem (Theorem 9.2.3).

Proof of Theorem 9.2.3. First let us find which central components appear.

Over L, by [DDMM18, Theorem 8.5], we know there is a component for every

principal, non-übereven cluster, and we know the action of Gal(L/K) on these

central components is the same as the action on the clusters. After taking the

quotient by Gal(L/K), we get a component for every orbit of principal, non

übereven clusters. Similarly over L, by [DDMM18, Theorem 8.5], we know

there are two components for every übereven cluster s. These are swapped by

Galois if and only if ϵs = −1. Taking the quotient gives us two components

for an übereven orbit X if ϵX = 1 and a single component if ϵX = −1. We

call these components the central components. Showing which linking chains

appear is done similarly, using information given in [DDMM18, Theorem 8.5].

To ensure these central components do in fact appear in the minimal SNC

model, we must check that they cannot be blown down. Any central component

ΓX,K ∈ Xk is the image of Γs,L ∈ Yk for some s ∈ X. A central component

ΓX,K can only be blown down if g(ΓX,K) = 0, and (ΓX,K ·ΓX,K) = −1. However,

by Proposition 9.2.6, any central component ΓX,K with g(ΓX,K) = 0 and (ΓX,K ·
ΓX,K) = −1 intersects at least three other components of the special fibre.

Therefore, if ΓX,K were to be blown down, Xk would no longer be an SNC

divisor. So ΓX,K appears in the special fibre of the minimal SNC model.

Remark 9.2.7. A linking chain can have length 0, and indicates an intersec-

tion between central components (when X ′ < X both principal) or a singular

central component (when X is principal and X ′ < X is an orbit of twins).

9.3 Explicit Description of the Special Fibre
Theorem 9.2.3 describes the structure of the special fibre, but says nothing

about the multiplicity or genera of the components. The following theorems

fill in these details. The first focuses on the central components, and the second

describes the chains of rational curves present in the special fibre.

Theorem 9.3.1 (Central Components). Let K and C/K be as in Theorem

9.2.3. Let X be an orbit of clusters in ΣC/K. Then Γ±
X has multiplicity |X|eX

and genus g(X). Note that if X is übereven then ΓX has genus 0.
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Proof. Let X be a principal, orbit, and choose some s ∈ X. Recall that

KX is the minimal field extension of K such that the clusters of X are fixed

by Gal(K/KX), and L is the minimal field extension of K such that C is

semistable over L. The image Γs,KX
of Γs,L after taking the quotient by

Gal(L/KX) has multiplicity eX , since the action on Γs,L has multiplicity eX

(by Lemma 8.1.25). There are |X| such components, which are permuted by

Gal(KX/K) in the minimal SNC model of C/KX . So, ΓX has multiplicity

|X|eX by [Lor90, Fact IV].

To find the genus of the central components, note that (since genus cannot

increase by taking the quotient) if g(Γs,L) = 0 then g(ΓX,K) = 0. So let us

assume that g(Γs,L) > 0. In this case, as mentioned in Remark 8.1.21, Γs,L is

isomorphic to the special fibre of the smooth model of Cs̃ over L. Furthermore,

the action on Γs,L is the same as the action on Γs̃,L. Hence, the genus of Γs,KX

is g(X), and also the genus of ΓX,K .

Theorem 9.3.2 (Description of Chains). Let K and C/K be as in Theorem

9.2.3. Let X be a principal orbit of clusters. Choose some s ∈ X of depth ds

with denominator bs. If eX > 1, then the central component(s) associated to X

are intersected transversely by the following sloped tails with parameters (t1, µ)

(writing ΓX = Γ+
X = Γ−

X if X is not übereven):

Name From Number t1 µ Condition

T∞ ΓX 1 (g + 1)dR − λR 1 X = {R}, R odd

T±
∞ Γ±

X 2 −dR 1 X = {R}, R even, ϵR = 1

T∞ ΓX 1 −dR 2 X = {R}, R even, eR > 2,

ϵR = −1

Tys=0 ΓX ⌊ |ssing||X|
bX

⌋ −λX bX |ssing| ≥ 2, and eX > bX/|X|
Txs=0 ΓX 1 −dX 2|X| X has no stable child, λX ̸∈

Z, eX > 2, and either

gss(X) > 0 or X is übereven

T±
xs=0 Γ±

X 2 −dX |X| X has no stable child, λX ∈
Z, and either gss(X) > 0 or

X is übereven

T(0,0) ΓX 1 −λX |X| [X has an orphan single-

ton], or [gss(X) = 0, X is

not übereven and X has no

proper stable odd child]

Furthermore, regardless of whether eX > 1 or not, for X ′ < X an orbit of

clusters, the central components are intersected by the following sloped chains

of rational curves with parameters (t1 − δ, t1, µ):
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Name t1 δ µ Condition

LX,X′ −λX δX′/2 |X ′| X ′, X principal, X ′ odd

L+
X,X′ −dX δX′ |X ′| X ′, X principal, X ′ even, ϵX′ = 1

L−
X,X′ −dX δX′ |X ′| X,X principal, X ′ even, ϵX′ = 1

LX,X′ −dX δX′ 2|X ′| X ′, X principal, X ′ even, ϵX′ = −1

LX′ −dX 2δX′ |X ′| X principal, X ′ orbit of twins, ϵX′ = 1

TX′ −dX δX′ + 1
µ

2|X ′| X principal, X ′ orbit of twins, ϵX′ = −1

If R is not principal we get additional sloped chains with parameters (t1 −
δ, t1, µ) as follows:

Name t1 δ µ Condition

Ls −δs 2δs′ 1 s < R cotwin, s′ < s child of

size 2g, v(cf ) ∈ 2Z

Ts −δs δs′ +
1
µ

2 s < R cotwin, s′ < s child of

size 2g, v(cf ) /∈ 2Z

LR −dR 2δs 1 R a cotwin, s < R child of size

2g, vK(cf ) ∈ 2Z

TR −dR δs +
1
µ

2 R a cotwin, s < R child of size

2g, vK(cf ) ̸∈ 2Z

Ls1,s2 (g(s1) + 1)ds1 − λs1
1
2
δ(s1, s2) 1 R = s1 ⊔ s2, si principal, odd,

TX (g(s1) + 1)ds1 − λs1
1
2
δ(s1, s2) 2 R = s1⊔s2, X = {s1, s2} prin-

cipal, odd orbit

L+
s1,s2

ds1 δ(s1, s2) 1 R = s1⊔ s2, si principal, even,

ϵsi = 1

L−
s1,s2

ds1 δ(s1, s2) 1 R = s1⊔ s2, si principal, even,

ϵsi = 1

Ls1,s2 ds1 δ(s1, s2) 2 R = s1⊔ s2, si principal, even,

ϵsi = −1

L+
X ds1 δ(s1, s2) 2 R = s1⊔s2, X = {s1, s2} prin-

cipal, even orbit, and ϵsi = 1

L−
X ds1 δ(s1, s2) 2 R = s1⊔s2, X = {s1, s2} prin-

cipal, even orbit, and ϵsi = 1

TX ds1 δ(s1, s2) +
1
µ

4 R = s1⊔s2, X = {s1, s2} prin-

cipal, even orbit, and ϵsi = −1

Lt ds 2δ(s, t) 1 R = s ⊔ t, s principal even, t

twin, ϵt = 1

Tt ds δ(s, t) + 1
µ

2 R = s ⊔ t, s principal even, t

twin, ϵt = −1

Finally, the crosses of any crossed tail have multiplicity µ
2
.
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Proof. Postponed to Section 9.4.

Remark 9.3.3. If there is any confusion over which central components link-

ing chains or tails intersect, the reader is urged to refer back to the tables in

Theorem 9.2.3. This information has been omitted from the tables in Theorem

9.3.2 due to spatial concerns.

Remark 9.3.4. Let X be a principal orbit of clusters in ΣC/K . As in Remark

8.2.5, we compare the rational chains intersecting a central component ΓX ∈
Xk to the tails in the special fibre of the minimal SNC model XX̃ . The

central component ΓX ∈ Xk will have the same genus as the central component

ΓX̃ ∈ XX̃,k and the multiplicity is multiplied by |X|. It will have the same

tails (with all multiplicities multiplied by |X|) except these tails will make up

part of the linking chains intersecting ΓX in the following cases:

• If X ̸= R and P (X) is principal, an ∞-tail in XX̃,k will form the uphill

section of one of the linking chains L±
P (X),X ,

• If X < R and R is not principal, then any ∞-tail in XX̃,k will form the

uphill section of a chain: the linking chain between Γs1 and Γs2 if R = s1⊔s2

and X = {s1}; the crossed tail if R = s1⊔ s2 and X = {s1, s2}; and the loop

or crossed tail arising from R if R is a cotwin,

• If X ′ < X ̸= R and X is not principal (that is, X ′ must have size 2g, and

X has size 2g + 1), then any ∞-tail in X
X̃′,k will form the uphill section of

a loop or crossed tail arising from X,

• a (ys = 0)-tail will form the downhill section of a linking chain LX,X′ if there

exists some X ′ < X, a non-trivial orbit of odd, principal children,

• a (xs = 0)-tail will form the downhill section of a linking chain L±
X,X′ if there

exists some {s′} = X ′ < X, a stable even child,

• a (0, 0)-tail will form the downhill section of a linking chain LX,X′ if there

exists some {s′} = X ′ < X, a unique stable odd child,

where again, all multiplicities are multiplied by |X|.

9.4 Proof of Theorem 9.3.2
To prove Theorem 9.3.2, we will proceed by induction on two things: the

number of proper clusters in ΣC/K , and the degree e = [L : K] of the minimal

extension L/K such that C/L is semistable. The base cases for these are
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when ΣC/K consists of a single proper cluster (which is covered in Section

8.1, in particular Theorem 8.1.1 and Proposition 8.1.11), and when C has

semistable reduction over K i.e. e = 1 (which is covered in Section 7.1.3).

For our inductive hypothesis, suppose that for any hyperelliptic curve where

the number of proper clusters in its cluster picture is strictly less than that

of C/K, or the degree of an extension needed such that it is semistable is

strictly less than that of C, we can completely determine the special fibre of

its minimal SNC model.

9.4.1 Principal Top Cluster

We start by assuming that the top cluster R is principal, and that it has a

Galois invariant proper child s. We will calculate the tails of Γ±
R,K and, if

s is principal, Γ±
s,K . We will also calculate the linking chain(s) (or the chain

arising from s if s is a twin) between them. This will be done by comparing

the linking chain(s) to those in the special fibre of the minimal SNC model

of another hyperelliptic curve over K, which we will call Cnew. We will write

Cnew : y2 = fnew(x), and denote the set of roots of fnew over K by Rnew.

The curve Cnew/K is chosen so that ΣCnew/K has a unique proper cluster

snew ̸= Rnew, enabling us to apply the results of Section 8.2. We will then use

induction to deduce the components of the model arising from the subclusters

of s. Finally, we will remove the assumption that s is Galois invariant.

Lemma 9.4.1. Let R be principal and suppose that eR > 1. The tails of the

central component(s) associated to R are as described in Theorem 9.3.2.

Proof. First suppose that R is not übereven. Let Y be the semistable model

of C/L and consider ΓR,L ⊆ Y . The stabiliser of R has order eR. Under the

quotient map, a Galois orbit T of points of ΓR,L gives rise to a singularity on

ΓR,K lying on precisely one component of ZK if and only if |T | < eR and the

points of T lie on ΓR,L and no other components of Yk.

Suppose that g(ΓR,L) = 0. There are only two orbits with size less than eR,

which after an appropriate shift we can assume are at xR = 0 and xR = ∞.

The point at ∞ certainly lies on no other component of Yk by [DDMM18,

Propositions 5.5,5.20], so ΓR,K will always have∞-tails. By [DDMM18, Propo-

sition 5.20], the point xR = 0 lies on no other component of Yk if and only

if R has no stable proper odd child. This is because if s < R is a stable odd

child then LR,s intersects ΓR,L at xR = 0, however no other linking chain to a

child will ever intersect ΓR,L at xR = 0. Therefore ΓR,K will have a (0, 0)-tail

if and only if it has no stable proper odd child. The description of the tails

follows.
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Suppose instead that g(ΓR,L) > 0. The orbits of points on ΓR,L of size less

than eR are the same as the small orbits of points on ΓR̃,L, which are described

in Lemmas 8.1.7 - 8.1.10. To complete the description, we must calculate when

these small orbits are intersection points with other components. We do this

using the explicit description of the components of Yk given in [DDMM18,

Proposition 5.20] and how they glue in [DDMM18, Proposition 5.5]. From

this, we can deduce that the points at ∞ never lie on a component other than

ΓR,L, (ys = 0)-orbits are intersection points if and only if s has a non-trivial

orbit of proper odd children, (xs = 0)-orbits are intersection points if and only

if s has a stable even child, and the (0, 0)-orbit is an intersection point if and

only if R has a proper stable odd child.

Now suppose R is übereven. Then each Γ±
R,L has two orbits of size less

than eR, {xR = 0} and {xR = ∞}. The points at ∞ do not lie on any other

components of Yk. The points at 0 lie on no other component of Yk if and

only if R has no stable child. So, Γ±
R,K has a (xs = 0)-tail if and only if R

does not have a stable child. The description of the tails follows.

Lemma 9.4.2. Let s < R be a principal, Galois invariant cluster with es > 1.

Then the tails intersecting the central component(s) associated to s are as

described in Theorem 9.3.2.

Proof. The proof is similar to that of the previous lemma, noting that all of

the orbits at infinity are the intersection points of Γ±
s,L and the linking chain

between Γ±
R,L and Γ±

s,L.

Following is a technical lemma allowing us to compare the chain(s) ap-

pearing between ΓR,K and Γs,K to those of a simpler curve Cnew.

Lemma 9.4.3. Let s1, s2 be two Galois invariant principal clusters (resp. a

principal cluster and a twin) such that either s2 < s1, or R = s1 ⊔ s2 is not

principal. Then any linking chain between Γ±
s1,K

and Γ±
s2,K

(resp. the chain of

rational curves arising from s2 intersecting Γ±
s1,K

) is determined entirely by λsi
mod Z, the parity of |s2|, dsi, and when R is not principal dR.

Proof. Assume that both si are principal, Galois invariant clusters. From Sec-

tion 7.1.2, we know that a linking chain between Γ±
s1,K

and Γ±
s2,K

is completely

determined by the length and number of linking chains between Γ±
s1,L

and Γ±
s2,L

,

the order of the action of Gal(L/K) on any individual component of a link-

ing chain between Γ±
s1,L

and Γ±
s2,L

, and the nature of the singularities at the

intersection points of components after taking the quotient. By [DDMM18,

Theorem 8.5], there is one linking chain, say C, between Γ±
s1,L

and Γ±
s2,L

if s2
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is odd and two linking chains, say C+ and C−, if s2 is even. We will write

C = C+ = C− if s2 is odd. Furthermore, by [DDMM18, Theorem 8.5], the

length of C± is determined by δ(s1, s2), which is given in terms of ds1 and ds2

(and dR in the case where R = s1 ⊔ s2 is not principal).

Let P be an intersection point of components E1, E2 ∈ {Γs1,L,Γs2,L, C±},
and σEi

the induced GK action on Ei for a generator σ ∈ Gal(L/K). Suppose

σa
E1
, and σb

E2
, generate the stabilisers of P in E1 and E2 respectively. Then

q(P ) is a tame cyclic quotient singularity with parameters

n = gcd(o(σa
E1
), o(σb

E2
)), m1 = o(σa

E1
)/n, m2 = o(σb

E2
)/n,

and r =


d−a
E1

dbE2

n2 s2 even,
λ−a
E1

λb
E2

n2 s2 odd,

where for τ ∈ Gal(L/K), o(τ) is the order of τ . In other words, the tame

cyclic quotient singularity is determined entirely by the automorphisms on

the Ei and the parity of s2. Therefore, since the automorphisms on Ei are

determined entirely by the invariants in the statement of the theorem (by

[DDMM18, Theorem 6.2]), we are done. The case where s2 is a twin follows

similarly.

For the following lemma we first need some notation. Recall that a child

of s ∈ ΣC/K is stable if has the same stabiliser as s. Let ŝf denote the set of

stable children of s, and ŝnf denote the set of unstable children of s. Note that

here the superscripts ‘f’ and ‘nf’ stand for ‘fixed’ and ‘not fixed’ respectively.

Lemma 9.4.4. Let C/K be a hyperelliptic curve with R principal, and let

s < R be a Galois invariant proper child. We can construct a hyperelliptic

curve, Cnew, such that the cluster picture ΣCnew of Cnew consists of two proper

clusters snew < Rnew, where |s| ≡ |snew| mod 2, dR = dRnew , ds = dsnew and

λR − λRnew , λs − λsnew ∈ Z.

Proof. Let Cnew be the hyperelliptic curve over K defined by Cnew : y2 =

cffRfs, where

fR =


∏

s̸=o∈R̃

(x− zo) |(R̃ ∪ s) \ s| ≥ 2,

π
|R̂\R̃|dR
K

∏
s̸=s′<R

(x− zs′) otherwise,
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fs =



∏
o∈R̃

(x− zo) |̃s| ≥ 2,∏
o∈s̃f

(x− zo)
∏
s′∈ŝnf

(x− zs′) |̃s| ≤ 1 and |̂snf | even,∏
o∈s̃f

(x− zo)
∏
s′∈ŝnf

(x− zs′)(x+ zs′) |̃s| ≤ 1 and |̂snf | odd.

It is clear that ΣCnew/K consists of proper two clusters which we will call Rnew

and snew, where Rnew consists of the roots of fR · fs, and snew consists of the

roots of fs. It follows that snew < Rnew. It remains to check how the cluster

invariants of Rnew and snew compare to those of R and s. Since any root

in a cluster can be taken as its center, it is immediate that dR = dRnew and

ds = dsnew . By comparing deg(fs) to |s| we see that |s| ≡ |snew| mod 2.

It remains to check that λR−λRnew , λs−λsnew ∈ Z. Let us begin with the

first. By construction, snew is odd if and only if s is. Therefore, if |(R̃∪s)\s| ≥ 2

it follows that λRnew = λR. Else,

2(λRnew − λR) = vK(cf ) + |R̂|dR + |R̂ \ R̃|dR − vK(cf )− |R̃|dR = 2|R̂ \ R̃|dR.

If dR ∈ Z, then clearly λRnew −λR ∈ Z. Otherwise, dR ̸∈ Z. By Lemma 2.1.16,

the children of R must lie in orbits of size bR > 1. Therefore, all even children

are in orbits of size bR, since s < R is fixed so all other children have orbit

sizes bR. Hence, |R̂ \ R̃|dR ∈ Z, and so λRnew − λR ∈ Z. It can be checked

similarly that λsnew − λs ∈ Z.

By the above lemmas and Theorem 8.2.3, we have proved the statements

in Theorem 9.2.3 about the linking chain(s) between Γ±
s,K and Γ±

R,K where

s < R is a Galois invariant proper child.

We now turn our focus to the components of Xk which arise from s and

its subclusters. In order to do this, we construct another new hyperelliptic

curve, which we shall call C ′, given by

C ′ : y2 = c′f
∏
r∈s

(x− r), where c′f = cf
∏
r ̸∈s

(zs − r). (9.1)

Note that C ′ is also semistable over L, and let Y ′ be the semistable model of

C ′ over L. Comparing the cluster pictures of C ′ and C, we see that the cluster

picture ΣC′ appears within the cluster picture ΣC of C. This is illustrated in

Figure 9.1. In particular, s and all of its subclusters in ΣC are drawn in solid

black in Figure 9.1a. These are exactly the clusters that make up ΣC′ , also

shown in solid black.
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. . .

s

. . .

R

(a) Cluster picture ΣC .

. . .

(b) Cluster picture ΣC′ .

Figure 9.1: Comparison of the cluster pictures of C and C ′

The leading coefficient of C ′ has been chosen so that the corresponding

clusters in ΣC and ΣC′ have the same size modulo 2, and the same cluster

invariants modulo Z (as in the theorem statement above). Therefore, there is

a closed immersion Y ′
k → Yk which commutes with the action of GK . The

existence of this immersion is illustrated in Figure 9.2. It is possible to see

this explicitly by calculating the equations of the components of Y ′ and using

the Galois action on these components given in [DDMM18, Theorem 8.5].

Therefore, this immersion also commutes with the quotient by Gal(L/K).

(a) Special fibre Yk, of the minimal SNC
model of C/L.

(b) Special fibre Y ′
k , of the minimal SNC

model of C ′/L.

Figure 9.2: Comparison of the special fibres of the minimal SNC models of C and
C ′

After taking this quotient by Gal(L/K), and performing any appropriate

blow ups and blow downs, we obtain a closed immersion X ′
k \ T∞ → Xk, where

X ′ is the minimal SNC model of C ′/K and T∞ is the set of infinity tails of

X ′
k . We remove the infinity tails since in the small distance case (see Section

8.2.3) the whole tails do not appear in Xk. By our inductive hypothesis (since

the number of proper clusters in ΣC′ is strictly less than that in ΣC), we can

calculate X ′
k . This gives us a full description of the components of Xk which

arise from the subclusters of s.

Finally let us remove the assumption that s is GK invariant. Let X < R
be a non-trivial orbit of children. Extend K by degree |X| to the field KX , the

minimal extension such that each cluster in X is fixed by Gal(K/KX). By our

inductive hypothesis (since C/KX needs an extension of degree strictly less

than C/K does in order to have semistable reduction), we can calculate the

minimal SNC model of C over KX , which we denote XX . Since each cluster of

X is fixed by Gal(L/KX), there is a divisor Ds corresponding to every cluster



9.4. Proof of Theorem 9.3.2 229

s ∈ X and all of the subclusters of s. Let DX =
⋃

s∈X Ds be the union of

these divisors. Since Gal(KX/K) simply permutes these divisors, after taking

the quotient by Gal(KX/K), the image of DX consists of precisely the same

components as Ds for some s ∈ X, but with all the multiplicities multiplied

by |X|. See Figure 9.3 for an illustration. This concludes the proof when R is

principal.

m

Ds1 Ds2 Ds3

. . .

Dsl

q

quotient

|X|m

q(DX)

Figure 9.3: Divisors Dsi , where X = {s1 . . . , sl}, are permuted by Gal(KX/K).
After taking the quotient the image of DX =

⋃l
i=1Dsi consists of the

components of Dsi but where a component of multiplicity m in Dsi

now has multiplicity |X|m.

9.4.2 Not Principal Top Cluster

Now suppose that R is not principal. If R is a cotwin, then the contribution

to the special fibre of the minimal SNC model from R can be deduced using

Remark 8.2.5 and Lemmas 9.4.3 and 9.4.4. The contribution of s < R, the

child of size 2g, can be calculated by induction using a curve C ′ as in (9.1)

above.

If R is not principal and not a cotwin then R is even and the union of

two children. In this case, we will write R = s1 ⊔ s2. Here the si are either

fixed or swapped by GK . We will deal with the case when the si are swapped

at the end of this section, so for now suppose that both si are fixed by GK .

Let us also suppose for now that both s1 and s2 are proper clusters. We will

deal with the case when one of si has size 1 shortly. The first of these lemmas

shows that there is a Möbius transform taking a certain class of curves with

R not principal to the curves we studied in Section 8.2.

Lemma 9.4.5. Let C/K be a hyperelliptic curve with cluster picture ΣC/K,

and set of roots R.

(i) Let s ∈ ΣC/K be a cluster with centre zs. Write every root r ∈ s as

r = zs+ rh, where vK(rh) ≥ ds. Then there exists at most one r ∈ s such

that vK(rh) > ds.

(ii) If R = s1 ⊔ s2 with dR ≥ 0, where s1 and s2 are both fixed by Gal(L/K),

have no proper children, and zs1 = 0. Then the Möbius transform ψ :
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r 7→ 1
r
takes C to a new curve CM which has cluster picture ΣM =

{RM = s1,M , s2,M}, with s1,M = {1
r
: 0 ̸= r ∈ s1}, s2,M = {1

r
: r ∈ s2},

ds1,M = −ds1 and ds2,M = ds2 − 2dR.

Proof. (i) Suppose there are two roots r and r′ such that vK(rh), vK(r
′
h) > ds.

Then ds = vK(r − r′) = vK(rh − r′h) ≥ min(vK(rh), vK(r
′
h)) > ds.

(ii) Since zs1 = 0, we have that vK(r) = ds1 for any 0 ̸= r ∈ s1. Note also

that, vK(zs2) = dR, hence vK(r) = dR for any r ∈ s2. The statement then

follows from the fact that vK

(
1
x
− 1

y

)
= vK(x− y)− vK(x)− vK(y).

Remark 9.4.6. Note that δs1,M = δs1 + δs2 , λs1,M = λs1 − (g(s) + 1)ds and

λs2 − λs2,M = (|s1| − |s2|)dR ∈ 2Z.

The next lemma is analogous to Lemma 9.4.4, it gives us the existence of

some new curve, which we will again call Cnew, to which we can apply Lemma

9.4.5. This will allow us to calculate the linking chain(s) between Γ±
s1
and Γ±

s2
,

by using Lemma 9.4.3.

Lemma 9.4.7. Let R = s1 ⊔ s2 with si both fixed by Galois. Then there exists

a hyperelliptic curve Cnew : y2 = fnew(x) whose set of roots of fnew we denote

by Rnew, such that Rnew = snew1 ⊔ snew2 , where snewi has no proper children,

|si| − |snewi | ∈ 2Z, dsi = dsnewi
and λsi − λsnewi

∈ Z for i = 1, 2.

Proof. For i = 1, 2 define

fsi =



∏
o∈s̃i

(x− zo) g(Γsi,L) > 0,∏
o∈ŝif

(x− zo)
∏

s′∈ŝinf
(x− zs′) g(Γsi,L) = 0 and |ŝinf | even,∏

o∈ŝif
(x− zo)

∏
s′∈ŝinf

(x− zs′)(x+ zs′) g(Γsi,L) = 0 and |ŝinf | odd.

Let fnew = cffs1fs2 , so C
new : y2 = cffs1fs2 . Proving this satisfies the condi-

tions in the statement of this lemma is similar to the proof of Lemma 9.4.4.

So, if R is not principal and is a union of two proper clusters si which

are fixed by GK then, by Lemma 9.4.7, Lemma 9.4.3, and Lemma 9.4.5, we

know now the linking chain(s) between Γ±
s1

and Γ±
s2
. We can calculate the

components associated to si and its subclusters by induction, constructing a

curve as in (9.1). Therefore this gives us the full special fibre of the minimal

SNC model of C/K when R = s1 ⊔ s2 is not principal and the si are fixed by

Galois.
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Suppose now that R is even with R = s ⊔ {r}, that is s < R is a cotwin.

Then, by Theorem 5.4.1 and 6.3.1, there exists an isomorphic curve C ′ whose

cluster picture is isomorphic to s and whose leading coefficient is the same as

C. The result then follows from the case when the top cluster is a cotwin.

It remains to consider the case when R = s1 ⊔ s2 is not principal and the

si are swapped by Galois. This is solved by extending the field K to KX , an

extension of degree two. Here, C/KX has a non principal top cluster R′ =

s′1⊔s′2, where the s
′
i are both proper clusters, and are fixed by Gal(K/KX). So

we can apply the above lemmas to find the special fibre of the minimal SNC

model of C/KX . Taking the quotient by Gal(KX/K), which we know how to

do by Section 7.1.2, gives the special fibre of the minimal SNC model of C/K.

This completes the cases when R is not principal.

Proof of Theorem 9.2.1. Combining the results proved in the rest of this sec-

tion proves this.

Recall that in Section 1 we assumed that R was principal, and gave some

examples. We conclude with a couple of additional examples of when R is not

principal. Let K = Qur
p .

Example 9.4.8. Consider the hyperelliptic curve

C : y2 =
(
(x2 − p)2 + p4

) (
(x− 1)2 − p3

)
over K. Note that t1 and t2 are swapped by GK and denote their orbit by X.

This is a hyperelliptic curve of Namikawa-Ueno type II2−4 as in [NU73, p. 183].

Note that s is übereven and ϵs = 1, hence s gives rise to two components; X

is an orbit of twins with ϵX = 1, so gives rise to a linking chain, and R is a

cotwin (Definition 2.1.8) so gives rise to a linking chain. Also es = 2 so Γ±
s are

both intersected by tails.

(a) Cluster picture ΣC/K .

2
Γ+
s

2
Γ−
s

1 12

1

2

1

2
LX

1 1
Lt3

(b) Special fibre of the minimal SNC model
of C/K.

Figure 9.4: C : y2 = ((x2 − p)2 + p4)((x− 1)2 − p3) over K = Qur
p .
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Example 9.4.9. Let p ≥ 5 and C/K be the hyperelliptic curve given by

C : y2 = x(x2 − p)
(
(x− 1)3 − p2

)
.

This curve has Namikawa-Ueno type IV − III−0 as in [NU73, p. 167]. Observe

that R is not principal so gives rise to a linking chain between Γs1 and Γs2 .

Note that the special fibre here is the same as in Example 8.2.7, and there is

in fact a Möbius transform between the two curves.

(a) Cluster picture ΣC/K .

4
Γs1

1 2

1

3
Γs2

1 1

(b) Special fibre of the minimal SNC model
of C/K.

Figure 9.5: C : y2 = x(x2 − p)((x− 1)3 − p2) over K = Qur
p .
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Appendix A

Appendix

A.1 Naming Convention

For our classifications, we introduce a naming convention for open quotient

BY trees. A naming convention for open BY trees is proposed in [DDMM17,

§8.1]. We extend this here.

Notation A.1.1. Let T be an open quotient BY tree with open edge ε, and

v0 the unique vertex incident to the open edge. For the edges we use:

· blue edge

: yellow edge

·d, :d edge of length d

For the vertices we use:

U yellow vertex

0, 1, 2, . . . blue vertex of multiplicity 1 and genus 0, 1, 2, . . .

0M , 1M , 2M , . . . blue vertex of multiplicity M > 1 and genus 0, 1, 2, . . .

As a topological space, T decomposes into the disjoint union

T = {ε} ∪ {v0} ∪ t1 ∪ · · · ∪ tn ∪ T1 ∪ · · · ∪ TN ,

where the ti are open trees consisting of an open yellow edge, say of length

di, and a genus 0 blue vertex of any multiplicity say mi, and the Tj are the

remaining connected components of T \{ε, v0}. To define a naming convention

or “Type” T we inductively define

Type(T ) = Type(ε)Type(v0)[d1]m1 ,...,[dn]mnType(T1) . . .Type(TN),

where Type(ε) and Type(v0) is the notation for the edge ε and the vertex v0

as above, and when mi = 1, [di]
mi is simplified to di. To avoid any possible

ambiguity, when N > 0 and T is not the full tree we are interested in, we
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bracket everything after the notation for the open edge and write

Type(T ) = Type(ε)(Type(v0)[d1]m1 ,...,[dn]mnType(T1) . . .Type(TN)).

In the non-metric case, the subscripts [di]
mi are simply placeholders to

record the number of genus 0 leaves, rather than lengths.

A.2 Genus 2 Classification
The following table presents the canonical representatives for the equivalence

classes of metric open quotient BY trees of genus 2, alongside their associated

cluster picture, Namikawa-Ueno type, special fibre of the minimal SNC model,

and type name as introduced above.

T ∗, Σ(T ∗) Namikawa-Ueno type Xk

:0 2

I0−0−0 if v(cf ) ∈ 2Z

I∗0−0−0 if v(cf ) /∈ 2Z

: 1
2
2

II

: 1
3
2

III if v(cf ) ∈ 2Z

IV if v(cf ) /∈ 2Z

: 1
5
2

IX-2 if v(cf ) ∈ 2Z

VII-4 if v(cf ) /∈ 2Z
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T ∗, Σ(T ∗) Namikawa-Ueno type Xk

: 2
3
2

IX-4 if v(cf ) ∈ 2Z

VII-2 if v(cf ) /∈ 2Z

: 1
6
2

V if v(cf ) ∈ 2Z

V∗ if v(cf ) /∈ 2Z

:0 0 · 1
2
2

VI

:0 0 · 1
4
2

VII if v(cf ) ∈ 2Z

VII∗ if v(cf ) /∈ 2Z

:0 0 · 1
5
2

VIII-1 if v(cf ) ∈ 2Z

IX-3 if v(cf ) /∈ 2Z

:0 0 · 2
5
2

IX-1 if v(cf ) ∈ 2Z

VIII-3 if v(cf ) /∈ 2Z
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T ∗, Σ(T ∗) Namikawa-Ueno type Xk

: 1
2
0 ·n 12

2I0-n

: 1
2
0 ·n+ 1

2
12

2I∗0-n

: 1
2
0 ·n+ 1

3
12

2IV-n

: 1
2
0 ·n+ 2

3
12

2IV∗-n

: 1
2
0 ·n+ 1

4
12

2III-n

: 1
2
0 ·n+ 3

4
12

2III∗-n

: 1
2
0 ·n+ 1

6
12

2II-n
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T ∗, Σ(T ∗) Namikawa-Ueno type Xk

: 1
2
0 ·n+ 5

6
12

2II∗-n

: 1
3
U[nd ]

3

IIIn if v(cf ) ∈ 2Z

III∗n if v(cf ) /∈ 2Z

:0 1n
2

I1−0−0 if n = 1, v(cf ) ∈ 2Z

In−0−0 if n > 1, v(cf ) ∈ 2Z

I∗n−0−0 if v(cf ) /∈ 2Z

: 1
2
1n

2

If n > 1:

:0 Un−1
2

: 1
2
1

If n = 1 :

:0 0 1
2

IIn−0 if v(cf ) ∈ 2Z

II∗n−0 if v(cf ) /∈ 2Z
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T ∗, Σ(T ∗) Namikawa-Ueno type Xk

: 1
4
1n

2 + 1
4

III-II∗n if n ≥ 0, v(cf ) ∈ 2Z

III∗-II0 if n = 0, v(cf ) /∈ 2Z

III∗-IIn if n > 0, v(cf ) /∈ 2Z

: 1
2
0n

2 , l
2

I1−1−0 if l = n = 1, v(cf ) ∈ 2Z

I1−n−0 if n > l = 1, v(cf ) ∈ 2Z

Il−n−0 if l, n > 1, v(cf ) ∈ 2Z

I∗l−n−0 if v(cf ) /∈ 2Z

If n > 0:

: 1
2
0 ·n 0[ l

4 ]
2

If n = 0:

: 1
2
0[ l

4 ]
2

2I1-n if l = 1

2Il-n if l > 1
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T ∗, Σ(T ∗) Namikawa-Ueno type Xk

: 1
2
0 ·n+ 1

2
0[ l

4 ]
2

2I∗l -n

If n > 0:

:0 Un
2
: 1
3
1

If n = 0:

:0 0 : 1
3
1

IV-IIn if v(cf ) ∈ 2Z

II∗-II∗n if v(cf ) /∈ 2Z

If n > 0:

:0 Un
2
: 1
4
1

If n = 0:

:0 0 : 1
4
1

III-IIn if v(cf ) ∈ 2Z

III∗-II∗n if v(cf ) /∈ 2Z

:0 0 ·n (1) ·n (1)

I0-I0-n if n ≡ v(cf ) mod 2

I∗0-I
∗
0-(n− 1) if n ̸≡ v(cf ) mod 2
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T ∗, Σ(T ∗) Namikawa-Ueno type Xk

If n > 0:

:0 0 ·n (1) ·n+1 (1)

If n = 0:

:0 1 ·1 1

I0-I
∗
0-n

If n > 0:

:0 0 ·n (1) ·n+ 1
2
(1)

If n = 0:

:0 1 · 1
2
1

: 1
2
1 · 1

2
1

I0-III-0 if n = 0 and v(cf ) /∈ 2Z for case

a), or and v(cf ) ∈ 2Z for case b)

I0-III-n if n > 0 and v(cf ) ∈ 2Z

I∗0-III
∗-α if n = 0 and v(cf ) ∈ 2Z for

case a), or and v(cf ) /∈ 2Z for case b)

I∗0-III
∗-(n− 1) if n > 0, v(cf ) /∈ 2Z

:0 0 ·n+1 (1) ·n+ 1
2
(1)

I0-III
∗-n if v(cf ) ∈ 2Z

I∗0-III-n if v(cf ) /∈ 2Z
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T ∗, Σ(T ∗) Namikawa-Ueno type Xk

If n > 0:

:0 0 ·n (1) ·n+ 1
3
(1)

If n = 0:

:0 1 · 1
3
1

I0-II-n if n ≡ v(cf ) mod 2

I∗0-IV
∗-(n− 1) if n ̸≡ v(cf ) mod 2

:0 0 ·n+1 (1) ·n+ 1
3
(1)

I∗0-II-n if n ≡ v(cf ) mod 2

I0-IV
∗-n if n ̸≡ v(cf ) mod 2

If n > 0:

:0 0 ·n (1) ·n+ 2
3
(1)

If n = 0:

:0 1 · 2
3
1

I0-IV-n if n ≡ v(cf ) mod 2

I∗0-II
∗-(n− 1) if n ̸≡ v(cf ) mod 2

:0 0 ·n+1 (1) ·n+ 2
3
(1)

I0-II
∗-n if n ≡ v(cf ) mod 2

I∗0-IV-n if n ̸≡ v(cf ) mod 2
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T ∗, Σ(T ∗) Namikawa-Ueno type Xk

:0 0 ·n+ 1
2
(1) ·n+ 1

2
(1)

III-III-n if n ≡ v(cf ) mod 2

III∗-III∗-α if n = 0 and v(cf ) /∈ 2Z

III∗-III∗-(n − 1) if n > 0, n ̸≡ v(cf )

mod 2

:0 0 ·n+ 1
2
(1) ·n+ 3

2
(1)

III-III∗-n

:0 0 ·n+ 1
3
(1) ·n+ 1

2
(1)

II-III-n if n ≡ v(cf ) mod 2

III∗-IV∗-α if n = 0 and v(cf ) /∈ 2Z

III∗-IV∗-(n − 1) if n > 0, n ̸≡ v(cf )

mod 2

:0 0 ·n+ 2
3
(1) ·n+ 1

2
(1)

IV-III-n if n ≡ v(cf ) mod 2

II∗-III∗-α if n = 0 and v(cf ) /∈ 2Z

II∗-III∗-(n − 1) if n > 0, n ̸≡ v(cf )

mod 2
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T ∗, Σ(T ∗) Namikawa-Ueno type Xk

:0 0 ·n+ 2
3
(1) ·n+ 3

2
(1)

: 1
3
1 · 1

6
1

IV-III∗-α if n = −1 and v(cf ) ∈ 2Z

IV-III∗-n if n ≥ 0, n ≡ v(cf ) mod 2

II∗-III-α if n = −1 and v(cf ) /∈ 2Z

II∗-III-(n − 1) if n ≥ 0, n ̸≡ v(cf )

mod 2

:0 0 ·n+ 1
2
(1) ·n+ 4

3
(1)

IV∗-III-n if n ≡ v(cf ) mod 2

II-III∗-n if n ̸≡ v(cf ) mod 2

:0 0 ·n+ 1
3
(1) ·n+ 1

3
(1)

II-II-n if n ≡ v(cf ) mod 2

IV∗-IV∗-α if n = 0 and v(cf ) /∈ 2Z

IV∗-IV∗-(n − 1) if n > 0, n ̸≡ v(cf )

mod 2
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T ∗, Σ(T ∗) Namikawa-Ueno type Xk

:0 0 ·n+ 2
3
(1) ·n+ 1

3
(1)

II-IV-n if n ≡ v(cf ) mod 2

II∗-IV∗-α if n = 0 and v(cf ) /∈ 2Z

II∗-IV∗-(n − 1) if n > 0, n ̸≡ v(cf )

mod 2

:0 0 ·n+ 1
3
(1) ·n+ 4

3
(1)

II-IV∗-n

:0 0 ·n+ 2
3
(1) ·n+ 2

3
(1)

IV-IV-n if n ≡ v(cf ) mod 2

II∗-II∗-α if n = 0 and v(cf ) /∈ 2Z

II∗-II∗-(n − 1) if n > 0, n ̸≡ v(cf )

mod 2

:0 0 ·n+ 2
3
(1) ·n+ 4

3
(1)

IV-IV∗-n if n ≡ v(cf ) mod 2

II-II∗-n if n ̸≡ v(cf ) mod 2
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T ∗, Σ(T ∗) Namikawa-Ueno type Xk

:0 0 ·n+ 2
3
(1) ·n+ 5

3
(1)

: 1
3
1 · 1

3
1

II∗-IV-α if n = −1

II∗-IV-n if n ≥ 0

: 1
2
U l

2 ,[
n
4 ]

2

IIl−n if v(cf ) ∈ 2Z

II∗l−1 if n = 1, v(cf ) /∈ 2Z

II∗l−n if n > 1, v(cf ) /∈ 2Z

:0 0 · 1
2
0[n4 ]

2

IIIn

:0 0 · 1
3
1n

2 + 1
6

II-II∗n if n ∈ 2Z

IV∗-II0 if n /∈ 2Z

IV∗-IIn if n /∈ 2Z
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T ∗, Σ(T ∗) Namikawa-Ueno type Xk

:0 0 ·n (1) ·n (1 l
2
)

I1-I0-n if l = 1 and n ≡ v(cf ) mod 2

Il-I0-n if l > 1 and n ≡ v(cf ) mod 2

I∗0-I
∗
l -(n− 1) if n ̸≡ v(cf ) mod 2

If n > 0:

:0 0 ·n (1) ·n+1 (0 l
2
)

If n = 0:

:0 1 ·1 0 l
2

If n > 0:

:0 0 ·n+1 (1) ·n (0 l
2
)

If n = 0:

:0 0 l
2
·1 1

I0-I
∗
l -n if n ≡ v(cf ) mod 2 in a), or if

n ̸≡ v(cf ) mod 2 in b)

Il-I
∗
0-n if n ̸≡ v(cf ) mod 2 in a), or if

n ≡ v(cf ) mod 2 in b)
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T ∗, Σ(T ∗) Namikawa-Ueno type Xk

If n > 0:

:0 0 ·n+ 1
2
(1) ·n (0 l

2
)

If n = 0:

:0 0 l
2
· 1
2
1

III-Il-1 if n = 1, 1 ≡ v(cf ) mod 2

III-Il-n if n > 1, n ≡ v(cf ) mod 2

III∗-I∗l -α if n = 1, 0 ≡ v(cf ) mod 2

III∗-I∗l -n if n > 1, 0 ̸≡ v(cf ) mod 2

:0 0 ·n+ 1
2
(1) ·n+1 (0 l

2
)

III-I∗l -n if n ≡ v(cf ) mod 2

III∗-I1-n if l = 1, n ̸≡ v(cf ) mod 2

III∗-Il-n if l > 1, n ̸≡ v(cf ) mod 2
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T ∗, Σ(T ∗) Namikawa-Ueno type Xk

If n > 0:

:0 0 ·n+ 1
3
(1) ·n (0 l

2
)

If n = 0:

:0 0 l
2
· 1
3
1

II-I1-n if l = 1, n ≡ v(cf ) mod 2

II-Il-n if l > 1, n ≡ v(cf ) mod 2

IV∗-I∗l -α if n = 0, 0 ̸≡ v(cf ) mod 2

IV∗-I∗l -(n − 1) if n > 0, 0 ̸≡ v(cf )

mod 2

:0 0 ·n+ 1
3
(1) ·n+1 (0 l

2
)

II-I∗l -n if n ≡ v(cf ) mod 2

IV∗-I1-n if l = 1, n ̸≡ v(cf ) mod 2

IV∗-Il-n if l > 1, n ̸≡ v(cf ) mod 2
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T ∗, Σ(T ∗) Namikawa-Ueno type Xk

If n > 0:

:0 0 ·n+ 2
3
(1) ·n (0 l

2
)

If n = 0:

:0 0 l
2
· 2
3
1

IV-I1-n if l = 1, n ≡ v(cf ) mod 2

IV-Il-n if l > 1, n ≡ v(cf ) mod 2

II∗-I∗l -α if n = 0, 0 ̸≡ v(cf ) mod 2

II∗-I∗l -(n−1) if n > 0, 0 ̸≡ v(cf ) mod 2

:0 0 ·n+ 2
3
(1) ·n+1 (0 l

2
)

IV-I∗l -n if n ≡ v(cf ) mod 2

II∗-I1-n if l = 1, n ̸≡ v(cf ) mod 2

II∗-Il-n if l > 1, n ̸≡ v(cf ) mod 2
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T ∗, Σ(T ∗) Namikawa-Ueno type Xk

If n > 0:

:0 Un
2
: 1
2
0 l

2

If n = 0:

:0 0 : 1
2
0 l

2

If l > 0:

:0 U l−
2

: 1
2
0n+1

2

If l = 0:

:0 0 : 1
2
0n+1

2

IIn+1,l

:0 U l
2 ,

n
2 , q2

Il-In-Iq if 0 ≡ v(cf ) mod 2

I∗l -I
∗
n-I

∗
q if 1 ≡ v(cf ) mod 2
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T ∗, Σ(T ∗) Namikawa-Ueno type Xk

If n > 0:

:0 0 ·n (0 l
2
) ·n (0 q

2
)

If n = 0:

:0 0 : l
2 ,

q
2

I1-I1-n if l = q = 1, n ≡ v(cf ) mod 2

I1-Il-n if l > q = 1, n ≡ v(cf ) mod 2

Iq-Il-n if l, q > 1, n ≡ v(cf ) mod 2

I∗l -I
∗
q-n if n ̸≡ v(cf ) mod 2

If n > 0:

:0 0 ·n (0 l
2
) ·n+1 (0 q

2
)

If n = 0:

:0 0 : l
2 ,

q
2

I1-I
∗
q-n if l = 1, n ≡ v(cf ) mod 2

Il-I
∗
q-n if l > 1, n ≡ v(cf ) mod 2

Iq-I
∗
l -n if q = 1, n ≡ v(cf ) mod 2

Iq-I
∗
l -n if q > 1, n ̸≡ v(cf ) mod 2
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Reduction type of smooth quartics, Arxiv e-prints (2018) available at

arXiv:1803.05816v2.

[Lip78] J. Lipman, Desingularization of two-dimensional schemes, Ann. Math.

(2) 107 (1978), no. 1, 151-–207.

[Liu02] Q. Liu, Algebraic geometry and arithmetic curves, Oxford Graduate

Texts in Mathematics 6, Oxford University Press, 2002.
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