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Abstract

Let C : y? = f(z) be a hyperelliptic curve, with tame potentially semistable
reduction, over a local field with algebraically closed residue field. The p-adic
distances between the roots of f(x) can be described by a purely combinatorial
object known as a cluster picture. We show that the cluster picture of C', along
with the leading coefficient of f, completely determines the dual graph of the
special fibre of the minimal strict normal crossings (SNC) model of C. In
particular, we give an explicit description of the special fibre in terms of this
data. Further to this, we define open quotient BY trees, showing there is a
one-to-one correspondence between these and cluster pictures of hyperelliptic
curves with tame reduction. Using these trees we introduce a way of classifying
reduction types of hyperelliptic curves. As a demonstration of our results
we give a complete classification in genus 2 using cluster pictures and open

quotient BY trees.



Impact Statement

Elliptic curves are well understood, and many people are now studying the
arithmetic of higher genus curves. In particular, the theory surrounding el-
liptic curves is increasingly being generalised to hyperelliptic curves. Models
of hyperelliptic curves are invaluable objects which can be used to deduce a
huge amount of arithmetic information. The p-adic data that features in the
statement of the famous Birch—Swinnerton-Dyer conjecture relies heavily on
models and the data that may be extracted from them, such as Tamagawa
numbers. A significant amount of work has already been done on computing
the special fibres of regular models. For the genus 1 case, Tate’s letter to
Cassels describes an algorithm, known as Tate’s algorithm. This outputs the
minimal regular model of an elliptic curve E, classifying the type of reduction
of E at a prime p. There is also a full account of this in Silverman’s book
‘Advanced Topics in the Arithmetic of Elliptic Curves’, which has become one
of the most standard references for number theory and algebraic geometry. For
genus 2 curves Namikawa and Ueno give a classification of all possible minimal
regular models. However for genus > 2 not so much was known.

This thesis extends existing results due to Dokchitser, Dokchitser,
Maistret and Morgan. We study models of hyperelliptic curves with using
cluster pictures, purely combinatorial objects defined by the root configura-
tions of defining polynomials. Although relatively new objects of interest,
cluster pictures have already proved hugely advantageous in studying arith-
metic of hyperelliptic curves, and have been added to LMFDB, a huge database
of mathematical objects. The results laid out in this thesis make it much easier
to work with models of hyperelliptic curves, describing how to easily check
whether two hyperelliptic curves have the same reduction type, find their
special fibres, and move between different models of any given hyperelliptic
curve.

Hyperelliptic curves also have a direct application to cryptography. Whilst
this is not the purpose of this thesis, nor is it directly related, better un-
derstanding the arithmetic of hyperelliptic curves could prove to have useful

applications in the future.
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Chapter 1

Introduction

1.1 Motivation

Models of curves are invaluable objects which can be used to deduce a large
amount of arithmetic information more easily than would otherwise be possi-
ble. For example, the p-adic data that features in the statement of the famous
Birch-Swinnerton-Dyer conjecture relies heavily on models, and the data that
may be extracted from them such as Tamagawa numbers. Checking for ratio-
nal points is another common problem in number theory. Models can be used
to check for p-adic points, which helps us check for these rational points.

In this thesis we study hyperelliptic curves, with the two main goals of
giving a description of their minimal strict normal crossing (SNC) models, and
providing a way to classify all possible reduction types. Not only will we give a
classification but also a practical way to use it. We are interested in studying
these over p-adic fields, however the arguments work more generally and the
main results will be stated over general local fields. We use cluster pictures,
a relatively new innovation which have already proved advantageous in study-
ing the arithmetic of hyperelliptic curves. In particular, cluster pictures have
been used to calculate semistable models, conductors, minimal discriminants
and Galois representations in [DDMM18], Tamagawa numbers in [Bet18], root
numbers in [Bis19], and differentials in [Kunl9]. More recent papers which
make use of cluster pictures are [Mus20], where the author constructs the
minimal regular model with normal crossings of hyperelliptic curves and de-
termines a basis of integral differentials, and [BBB*20], where many of the
numerous papers using cluster pictures are summarised and complemented by
examples. Cluster pictures have also been added to LMFDB, a huge database

of mathematical objects.

1.2 Setup

Let K be a field complete with respect to a discrete valuation vy, with alge-
braically closed residue field k of characteristic p > 2. Write Gx = Gal(K/K),
the absolute Galois group. Let C'/K be a hyperelliptic curve given by Weier-



1.2. Setup 10

strass equation y? = f(z), with genus g = g(C). Unless explicitly mentioned
otherwise, we assume g > 2 throughout the thesis. We write R for the set of
roots of f(x) in the algebraic closure K of K and c¢; for the leading coefficient
of f. So,

flx) = [J@@ =),

reR
and |R| € {29 + 1,2¢g + 2}. Following [DDMM18] we associate to C' a cluster

picture, defined by the combinatorics of the root configuration of f.

We extend existing results about reduction types and models of hyperellip-
tic curves to the more general case where C' has tame (potentially semistable)
reduction over K. That is, there exists some finite extension L/K such that C'
has semistable reduction over L, and [L : K| is coprime to p. This is equivalent
to f having tame splitting field, since C' will be semistable over the splitting
field of f or a quadratic extension of the splitting field of f. It is important
to note that our theorems do not apply in the case where a wild extension is
required for semistability. However this condition is not too strong since for

large enough p, every curve of genus ¢g has tame reduction.

Using cluster pictures, the collaborative work in [FN20] with Omri
Faraggi, allows us to calculate a combinatorial description of the minimal SNC
model 2" of C'/K: a model whose singularities on the special fibre 2} are
normal crossings (i.e. locally they look like the union of two axes), and where
blowing down any exceptional component of 2} would result in a worse singu-
larity. Such models can be used to calculate arithmetic invariants, to study the
Galois representation, and (in more general settings) to deduce the existence
of K-rational points of C'. For the case of elliptic curves, Tate’s algorithm
[Sil94] is sufficient to calculate the minimal SNC model of a given curve. For
hyperelliptic curves, [DDMM18]| the authors calculate the SNC model when
C' has semistable reduction, and in [Dok18] when C has a particularly nice
cluster picture. In fact, the methods of [Dok18] work for a much larger class
of smooth projective curves, but we restrict our attention to its applications
for hyperelliptic curves. Similar work has also been done on models of differ-
ent classes of curves and the applications of these models — such as [BW17]
on stable models of superelliptic curves and [LLLGRI18] and [BCK*20] on
non-hyperelliptic genus 3 curves. Other work on hyperelliptic invariants has
also been done in [OS19], where the authors prove a conductor-discriminant

inequality for hyperelliptic curves.

Most of the information required to classify the reduction types of hyper-

elliptic curves, or deduce the special fibre of 2" of a hyperelliptic curve C'/K,
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is contained in the cluster picture.

Definition 1.2.1. A cluster is a non-empty subset § C R of the form s = DNR
for some disc D = z + 7% O, where z € K, n € Q and 7 is a uniformiser of
K. If s is a cluster and |s| > 1, we say that s is a proper cluster. For a proper

cluster s we define its depth d; to be

ds = min vg(r —r').
r,r’'€s

The cluster picture Yc/ of C'is the collection of all clusters of the roots of f.
When there is no risk of confusion, we may simplify this to Xc. We refer to

R as the top cluster.
The cluster picture ¢/ comes with a natural action of Gx = Gal(K/K).

Example 1.2.2. Take the polynomial f(z) = (z — 1)(2® — p)(2? — p*) over
Q, for p > 3, with roots R = {1,p3, C;;pé,gfp%,p?, —p*}, where (3 is a third
root of unity. Consider the p-adic valuations of the differences between pairs

of roots:

v(l=r)=0 for 1 £r € R,
v(Gp® — p?) for i,j € {0,1,2} i # j,
v(GpT £ p?)

v(p? + p°)

Il
| — W

for i € {0, 1,2},

N o

This gives the list of all clusters as:
1 1 9 1 2 2
R> {1}7 {p3}7 {<3p3}7 {C3p3}7 {p }7 {_p }7

1 1 1
5= {p37<3p37<-§p37p27_p2}7
t={p*, —p’}.
We draw the cluster picture by drawing a node for each root and drawing
circles around them to indicate how p-adically close to each other they are.

These circles represent p-adic discs, and their depths are indicated next to

TR
them. So, the cluster picture of C : y? = f(2)/Q, is ¥¢ = |(@®} 009}, @
20

1.3 Minimal SNC Models

It turns out that, along with the valuation of the leading coefficient vi (cy),

Yo/ with its natural action of G is all we need to calculate a combinatorial
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description of the minimal SNC model of C'/K.

Theorem 1.3.1. [Theorem 9.2.1] Let K be a complete discretely valued field
with algebraically closed residue field of characteristic p > 2. Let C : y* = f(x)
be a hyperelliptic curve over K with tame reduction. Then the structure (i.e.
the dual graph) of the special fibre of the minimal SNC model of C/K, with
genus and multiplicity, is completely determined by Yok (with depths), the
valuation of the leading coefficient vk (cy) of f, and the action of G.

Example 1.3.2. Consider the two curves C : y* = (22—p)(z—p*)((z—1)3—p?)
and Cy @ y* = (z—1)((x —1)*> = p)(z — p*)(z — p°) (x4 p* — p*) over Q)F, p > 3.
Both C; and 5 have Namikawa-Ueno type Ij-III-1. Note that C; and C5 both
have cluster picture |(@99:@9 ;3 X and their defining polynomials have equal
leading coefficients. This illustrates Theorem 1.3.1, that the reduction type is

completely determined by the cluster picture and leading coefficient.

Another useful example to consider is the following summary of the case

for elliptic curves.

Example 1.3.3. The following table shows the special fibre 27, of the minimal
SNC model £ for the different Kodaira-Néron types of elliptic curves with
tame reduction (for which it is sufficient to take p > 5). Every elliptic curve
can be put into the form y? = 23 +ax +b. After allowing for shifts and scalings

we can present each elliptic curve in precisely one of the following ways.

Type > 2 Type by Zk
11|11 2
L | @9, Lg1 p @9, | AL
>1<n—g01>1< | \2\ \2\ |
L@, U ro @, | ihlfale [ih
6 | \ |
211 2|1 2|1
1 €@ 35[, e | @8®s | 21 21 21
4
4 5 312, 3|2,
111 @99 121 ik @e9: 1] 1]
6
5 3| 42 5|4
2|3
v | @®: | 1]y | @8 i

Table 1.1: Kodaira-Néron types of elliptic curves with p > 5.
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Here, the g1 labeling represents a component of genus 1. This differs from the
table found in [Sil94, p 365], where instead the special fibres of the minimal
reqular models for the different types of elliptic curves are shown. This makes
a difference for type II, I or IV elliptic curves, whereas for all the other types
the minimal regular model is SNC. These special fibres can be read off the
cluster pictures. Roughly, we can apply Theorems 1.3.6 and 1.3.13. It is worth
noting that technically these theorems only apply for genus > 1. However,
looking at the genus 1 case is helpful in familiarising oneself with this way
of studying special fibres. In [Sil94] the special fibres are presented alongside
the discriminants and j-invariants, the inputs required for Tate’s algorithm.
Knowing the discriminant and j-invariant of an elliptic curve is equivalent
to understanding the p-adic distances between roots. By instead taking the
approach of cluster pictures, one can quite naturally read off the special fibre,

removing the need to follow a lengthy algorithm.
We will make use of the following formal definitions from [DDMM18].

Definition 1.3.4. A maximal subcluster s’ of a cluster s is called a child of s,
denoted " < s, and s is the parent of s, denoted P(s’). We say s is odd (resp.
even) if |s| is odd (resp. even) Furthermore, s is a twin if |s| = 2, and s is
tibereven if s has only even children. A cluster s is principal if |s| > 3, unless
it has a child of size 2¢(C), or if s = R is even and has exactly two children,

in which case s is not principal.

Chapters 8 and 9 are dedicated to explicitly describing the structure,
multiplicities and genera of components of the special fibre 2}, of the minimal
SNC model. Before we give a precise statement let us illustrate the main
result of these chapters, along with the definitions of linking chains and central

components, via an example.

Example 1.3.5. Let K = Q)" for p > 5, and C /K be the hyperelliptic curve
of genus 3 given by

C:y*=((="—p)’ —p")((xz— 1) = p”).

The cluster picture of C'/K is shown in Figure 1.1a and the special fibre 2}, of
the minimal SNC model of C'/ K is shown in Figure 1.1b. The principal clusters
in Yo/ are §1,52, 53, 54,55, and R, as labeled in Figure 1.1a. Note that s3, 54
and s5 are permuted by G and denote their orbit by X. None of the principal

clusters in this example are libereven so, as we will see in Theorem 1.3.6, each
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orbit of principal clusters gives rise to one central component, shown in bold
and labeled in Figure 1.1b. Clusters s; and s, are children of R, and contribute
chains of rational curves linking 'z and I';, for ¢ = 1, 2. In this case, the chain
from I'g to I, is trivial so they intersect, and we get two identical chains from
'z to IT',. Similarly, the elements of X are children of s, and contribute a chain

of rational curves between I's, and I'x. How one determines the number and

R

6
55 5,,52 55 51 1—‘
[((0 [ O)§(O ® 0)13_3(0 o o)l—;’J1<° 0 0)%]
3
0

6

3
Cluster picture Yo/ x. - r
(a) Cluster picture Y¢/ g W D¢

(b) Special fibre of the minimal SNC
model of C/K.

Figure 1.1: C: y2 = ((:c3 —p)3 —p15)(($ - 1)4 —pg) over K = Q};r-

length of the chains linking the central components is discussed in Theorem
1.3.13. Each of I's,, I's,, and I' x are also intersected by a few other components,
again this is discussed in Theorem 1.3.13.

In this example, we can compare the chains intersecting some of the central
components in 2}, to those appearing in the minimal SNC models of related
elliptic curves, seen in Table 1.1, but pictured again in Figure 1.2 below. The
component ['s,, and those intersecting I's,, look much like a type III elliptic
curve. Similarly type II for sy, and type If for X (but with multiplicities
multiplied by | X| = 3).

4 6 LI 2
1121 3121 T
(a) Type III (b) Type II (¢) Type Iy

Figure 1.2: Special fibres of elliptic curves appearing as “submodels” of 2.

This example illustrates the main idea that every Galois orbit of principal
clusters X contributes components to the special fibre 2. More precisely:
orbits of principal, tibereven clusters contribute either one or two components
and orbits of principal, non-tibereven clusters contribute one component. We
call these components central components, and they are linked by either one

or two chains of rational curves which we call linking chains. The central
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components of two orbits X and X’ are linked by a chain (or chains) of rational
curves if and only if there exits some s € X and s’ € X’ such that ' < s. An
orbits of twins gives rise to a chain of rational curves, which intersects the
component(s) arising from their parent’s orbit. Some central components are
also intersected by other chains of rational curves: loops, tails and crossed
tails. Loops are chains from a component to itself; tails are chains which
intersect the rest of the special fibre in only one place; crossed tails are similar
to tails but with two additional components, called crosses, intersecting the
final component of the chain. Figures 1.3 and 1.4 give pictorial descriptions of
the different chains of rational curves that can occur, where the dashed lines
illustrate all the components of 2} that are intersected by the chain.

_

(a) Linking chain (b) Loop

Figure 1.3: Pictorial description of linking chains and loops.

(a) Tail (b) Crossed tail

Figure 1.4: Pictorial description of tails and crossed tails.

We write such chains of rational curves as C = Ug\:l E;, where F; intersects
E; 1 exactly once for all 1 <17 < A, and intersects no other components of C.
E; will intersect the rest of the special fibre, say at component I'y, exactly
once. If C is a linking chain then E) will also intersect the rest of the special
fibre, say at component I'y, exactly once. In this case we say that C is a linking
chain from I'y to I's.

The theorems given in this section of the introduction assume that R is
principal. Full theorems including the case when R is not principal are given in
Chapter 9. Here we give an abridged version of the description of the structure

of the special fibre, given in full in Theorem 9.2.3.

Theorem 1.3.6 (Structure of SNC model). Let K be a complete discretely
valued field with algebraically closed residue field of characteristic p > 2. Let
C/K be a hyperelliptic curve with tame reduction, and with R principal. If X
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1s a Galois orbit of even clusters with s € X, define

€x = (_1)|X|('UK(Cf)+ZT€5 UK(Ts—r))

Y

where s is any root of f ins. Then the special fibre of its minimal SNC model is
structured as follows. Every Galois orbit of principal clusters X contributes one
component I'x, unless X is tibereven with ex = 1, in which case X contributes
two components T and T'y.

These components are linked by chains of rational curves in the following
cases (where, for any orbit Y, we write Iy, =Ty, =Ty if Y contributes only

one central component):

Name | From | To Condition

Lxx | I'x |T'xs X' < X both principal, X' odd

Ly v | T% | T4 | X' <X both principal, X' even with exr =1
Lyx | Tx |Tx | X' <X both principal, X' even with ex: =1

Lxx | I'x |I'x | X' <X both principal, X' even with ex» = —1
Lx ry | I'i X principal, X' < X orbit of twins, exr =1
Ty I'x - | X principal, X' < X orbit of twins, ex: = —1

Chains where the “To” column has been left blank are crossed tails. Some
central components I'x are also intersected transversally by tails. These are

explicitly described in Theorem 1.5.13.

The case when R is not principal is described in Theorem 9.2.3. We do
not give explicit equations for the components in the special fibre. However,
these could be calculated using the method laid out in this thesis if desired
(see Remark 9.2.4).

The linking chains, tails, and the multiplicities and genera of the compo-
nents in the special fibre are given explicitly in Theorem 1.3.13 below. In order
to describe the chains of rational curves in detail, we introduce the notion of
sloped chains of rational curves. We also need a few other numerical invariants

associated to clusters.

Definition 1.3.7. Fix u € N and t;,t, € Q with ¢; > t5. Then we can find
A € N with A minimal, and m; € Z, d; € Z~q such that
mo mq my mx+1

phy = —> — > .- > —= >
YT dy T dy ~ dyg

mi  Miy1 1

= uty, and
i din

Suppose C = Uj‘zl FE; is a chain of rational curves where E; has multiplicity

pd;. Then C is a sloped chain of rational curves with parameters (to,t1, 1t).
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In practice there is an easy way to find such integers A, m; and d; by taking
all numbers in [uts, pt1] NQ of denominator < max{denom(ut;),denom(uts)},
where denom denotes the denominator. This is discussed in Remark 7.2.12. It

is helpful to see a worked example such as in Example 1.4.22.

Notation 1.3.8. Write s for the set of odd children of s, and s, for the set

of size 1 children of s.

Definition 1.3.9. We define the following invariants for a cluster s:

Vs s’
Vg = ’UK(Cf) + st/\m Ag = 3 - dﬁz \‘|2—|J .

reR §'<s

Definition 1.3.10. Let s be a cluster, and write d, = %=, where (as, bs) = 1.

Ea
The semistable genus of s, g(s), is given by

51 = 2g.(s) + 1 or 2gu,(s) + 2,

or gss(s) = 0 if s is iibereven. If X is a Gk-orbit of clusters with s € X, the
semistable genus of X is gss(X) = gss(8). From this we define the genus g(X)
of X. If X = {s} is a trivial orbit g(s) is given by

(52 Aez,
g(X) =g(s) = [ 4 1]\, & Z,b, even,
0 \e & Z, b, odd.

For a general orbit X, define g(X) = ¢g(s) for s € X, where s is considered
as a cluster in ¥¢/x,, and Kx is the unique extension of K of degree |X|

(uniqueness follows from k being algebraically closed).

Definition 1.3.11. Let X be a Gg-orbit of clusters with s € X, and r; any
root in 6. Define ex to be the minimal positive integer such that ex|X|ds € Z
and ex|X|v; € 2Z for all s € X. The orbit X also has the following invariants:

d’R if s = R,
dX:ds, bX:bs, )\X:)\g and 5)(: .
ds — dp(sy otherwise,

Definition 1.3.12. A child s’ < s is stable if it has the same G i-stabiliser as
s, and a Gg-orbit of clusters is stable if all (or equivalently any) of its elements

are stable.
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Theorem 1.3.13. Let K and C/K be as in Theorem 1.3.6. Let X be a
principal orbit of clusters in the cluster picture of C'/ K, and suppose that R is
principal. Then T's has genus g(X) and multiplicity | X|ex. Suppose further
thatex > 1, and choose some s € X. Then the central component(s) associated
to X are intersected transversely by the following tails, which are sloped chains
with parameters (,ﬂﬂtl — 1,1, 1) (writing Tx = T =Ty if X contributes
only one central component):

Name | From | Number t1 7 Condition

T. | T'x 1 G+1dr— Az | 1 | X={R}, R odd

T F)i( 2 —dn 1 X ={R}, R even, eg =1

T I'x 1 —dp 2 X ={R}, R even, eg > 2,
e = —1

Ty—o | Tx | [Pl —Ax bx | |ssing] =2, and ex > bx/|X]|

T,.—0 | T'x 1 —dx 2|X| | X has no stable child, \x ¢
Z, ex > 2, and either
9ss(X) > 0 or X is tbereven

T;E:O F)i( 2 —dx | X| | X has no stable child, A\x €
Z, and either gss(X) > 0 or
X is ubereven

Too | I'x 1 —Ax | X| | X has a stable singleton,
or gs(X) = 0, X s
not tbereven and X has no
proper stable odd child

Furthermore, regardless of whether ex > 1 or not, for X' < X an orbit of
clusters, the central components are intersected by the following sloped chains

of rational curves with parameters (t; — 6,t1, pu):

Name | 1t ) 1 Condition

Lxx | =Ax | o0x/2 | |X'| X', X principal, X' odd
L;X, —dx dxr | X X', X principal, X' even, ex: = 1
Lyx | —dx dx: | X' X', X principal, X' even, exr =1

Lx x| —dx dx 2|.X'| X', X principal, X' even, exr = —1
Ly | —dx 20 | X X principal, X' orbit of twins, exr = 1
Txr | —dx | ox/ + i 21X’| | X principal, X' orbit of twins, ex, = —1

Note that the names indicate the components which each chain intersects, as
explicitly written in the second table of Theorem 1.5.6. Finally, the crosses of

any crossed tail have multiplicity &.
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This is proved in Theorem 9.2.3. In practice, there is a one-to-one cor-
respondence between the chains intersecting a central component I'y and the
tails of the unique central component of the minimal SNC model of a related
curve. Roughly, for some s € X we can construct a hyperelliptic curve over
Kx (an extension of K of degree | X|) whose set of roots consists of one root of
each odd child of s. This allows us to construct minimal SNC models in terms
of simpler models. This idea was briefly explored in Example 1.3.5, comparing
parts of the special fibre to the special fibres of minimal SNC models of certain

elliptic curves. We now have a closer look at this idea in the following example.

Example 1.3.14. Let C over K = Q)" for p > 5 be the hyperelliptic curve
given by

Cry® = fz) = (a° —p*)(a* = p").
The cluster picture of C'/K consists of two proper clusters R and s, shown in

Figure 1.5a. The special fibre 2} of the minimal SNC model 2" of C'/K is
shown in Figure 1.5b.

(o ONE X OJ2 2|1

: : 2] 4|3

\

(b) Special fibre of the minimal SNC model
of C/K.

(a) Cluster picture Y¢ /-

Figure 1.5: C : 9% = (2% — p?)(z* — p!!) over K = Q"

Define elliptic curves C; and Cy over K by C : y* = fi(z) = 2° — p? and
Cy 1 y? = pPfa(x) = p*(2* — p'?) respectively. Note that f(x) = fi(z) - fo(x).
The roots of fi(x) contribute the roots in R\s, and the roots of fo(x) contribute
the roots in 5. The coefficient in the defining equation of C5 is chosen to
somehow “see” the roots of f;. It is interesting to compare the minimal SNC
models of C; to that of C' for i = 1,2. Note that C; and Cs are type IV and

type III* elliptic curves respectively, as shown in Figure 1.6.

3 | 4
W o 3[2, 3|2,
111 i Tl
(a) Type IV (b) Type III*

Figure 1.6: Special fibres of minimal SNC models of C; and Cs.

It appears that the roots of f; and f, are making their own contributions
to Z, as both the special fibres of the minimal SNC models of C; can be seen
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as “submodels” of 2} for i = 1,2. This shows how R and s each make their
own contribution to Z%. Since s is an even child of R, and ¢; = 1, there are

two linking chains between their contributions in 2 .

1.4 Classification

Theorems 1.3.6 and 1.3.13 tell us how to construct special fibres from cluster
pictures. The remainder of the work presented in this thesis is concerned
with classifying these special fibres. Example 1.3.3 demonstrates that cluster
pictures determine the special fibres in the genus 1 setting. It is less clear how
one should produce a similar classification in higher genus. It turns out to be
useful to introduce a notion of quotient BY trees, combinatorial objects which
will enable us to classify cluster pictures of hyperelliptic curves in higher genus
settings. Quotient BY trees are so named because they are quotients of BY
trees, similar objects introduced in [DDMM17] as a way to study semistable
hyperelliptic curves.

In [Bis19] the author describes the possible cluster pictures which can
arise from hyperelliptic curves with tame reduction. Furthermore, it is shown
that the Galois action is determined by the cluster picture (with depths). In
combination with the work laid out in this thesis, this can be used to give
a complete classification of the reduction types of hyperelliptic curves with
tame reduction. Our approach for classifying such hyperelliptic curves gen-
eralises processes described for semistable hyperelliptic curves and BY trees
in [DDMM17]. We demonstrate how open quotient BY trees can be used in
genus 1 in Example 1.4.18, and give the full classification for genus 2 hyper-
elliptic curves in Appendix A.2. A similar classification of genus 2 reduction
types is given by Namikawa and Ueno in [NU73|. Their classification presents
all possible special fibres of minimal regular models of genus 2 curves, rather
than minimal SNC models. We make reference to their type naming conven-
tion in Appendix A, however we also present a naming convention, set out
in [DDMM17] which can easily be used in higher genus settings. It is worth
noting that [NU73] is able to deal with wild reduction and p = 2. However,
our way of classifying reduction types of hyperelliptic curves via quotient BY
trees is particularly useful, as given any hyperelliptic curve of arbitrary genus,
we may not only compute the special fibre of its minimal SNC model, but we
can also provide a complete list of all cluster pictures of hyperelliptic curves of
this reduction type. This classifies all the defining equations for hyperelliptic
curves of this type. In contrast, [NU73] do not even provide an algorithm for

checking the reduction type. Our genus 2 classification presented in Appendix
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A.2, provides a way of quickly reading off the special fibre of any genus 2 curve
with minimal calculation. More generally, for ¢ > 2 open quotient BY trees
provide a way of easily checking whether two hyperelliptic curves with tame
reduction have the same reduction type. It would also be possible to produce
complete classifications in g > 2 using the work set out in this thesis. As
with cluster pictures, useful arithmetic invariants such as the valuation of the

discriminant can also be read off quotient BY trees.

Definition 1.4.1. An open quotient BY tree is a finite tree T' with a unique
open edge ¢ (an edge with only one defined end point), a marked point m
which lies on the closure of the open edge &, a genus function g : V(T') — Z>
on vertices, a multiplicity function M : V(T)U E(T) — Z~, and a 2-colouring

blue/yellow on vertices and edges such that:

(i) If v is a fixed yellow vertex, then v has genus g(v) = 0, all edges incident

to v are yellow, and

e edge incident to v

(ii) Let vy be the unique vertex incident to €. Then the embedded path from

vp to any vertex v has non-decreasing multiplicities.

(iii) Let v € V(T') be any vertex, then there exists some n € Z~q such that
either 1 or 2 edges incident to v have multiplicity M (v) and all remaining

incident edges have multiplicity nM (v). Furthermore, M(e) = 1.

(iv) If v is blue then the genus of v is such that:

e If only one incident edge, say e, has multiplicity M (v) and all other
incident edges have multiplicity nM (v) for n € Z~q, where e = ¢ if

v = vy (the unique vertex incident to ¢), then

n | 2g(v) + 1 or 2g(v) if e is blue,
n|2g(v) 4+ 2 or 2g(v) + 1 if e is yellow.

e If two incident edges, say e; and es, have multiplicity M (v) and all

other incident edges have multiplicity nM (v) for n € Z-o, where
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e € {e1, e} if v = vy, then

n | 2g(v) if e; and es are both blue,
n | 2g(v) 4+ 2 if e; and ey are both yellow,
n | 2g(v) + 1 if e; and ey are different colours.

Note that when n = 1 there is no constraint on the values of g(v).

(v) Blue vertices of genus 0 have at least one yellow incident edge.

(vi) For every blue vertex v € V(T), 2g(v) +2> > %Ei;
e€E(T), blue
incident to v
We will put metrics d : T'x T — Qs on open quotient BY trees (as
topological spaces), to allow us to move between open quotient BY trees and
cluster pictures of hyperelliptic curves. There are several constraints on which

metrics we can allow, the details of this can be found in Definition 4.1.13.

Theorem 1.4.2 (Theorem 5.1.2). There is a one-to-one correspondence be-
tween metric open quotient BY trees and metric cluster pictures of hyperelliptic

curves with tame reduction and top cluster depth dr > 0.

To pass between the two we define a metric open quotient BY tree from

the cluster picture of such a hyperelliptic curve and vice versa.

Definition 1.4.3. Let C : y?> = f(z) be a hyperelliptic curve over K with
tame reduction such that dg > 0. Define the open quotient BY tree associated
to C, T = T(X¢/k) as follows. The tree T is finite and is equipped with
a genus marking g : V(T) — Zs¢ on vertices, a multiplicity function M :
V(T)U E(T) — Zo, and a 2-colouring blue/yellow on vertices and edges.
There is one vertex vy of T for every Galois orbit X of proper clusters in
3], coloured yellow if X is iibereven and blue otherwise. For X and X’ both
proper orbits, with X’ < X, T has an edge between vx and vy coloured yellow
if X’ is even, and blue otherwise. One additional open edge is added to vg, of
multiplicity 1, coloured yellow if R is even, and blue otherwise.

The genus of a vertex vy is defined to be the semistable genus of any
cluster s € X, as in Definition 2.1.14. The multiplicity of a vertex vy, or an
edge between vx and vy, where X’ < X is defined to be | X’|. Note that this
means that M(vy) is the minimum of M (e) over all incident edges e, and if e
is incident to v; and vy, then M(e) = max {M (vy), M(vq)}. For this reason,
we can omit writing the multiplicity of edges when we draw 7', as they can be

deduced from the multiplicities of the vertices.
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Furthermore, we can define a metric on 7', by defining the length of a
closed edge e between vy and v with X’ < X to be dx/, and a marked point
m lies distance dr along the open edge. We mark m with a cross on the open

edge.

The construction of a cluster picture from an open quotient BY tree simply
reverses this construction, this is described formally in 5.1.9, and completes
our one-to-one correspondence.

It is useful, in order to produce a usable classification, to have a formula
for the genus of a quotient BY tree. This gives a way of listing all quotient

BY trees corresponding to hyperelliptic curves of a given genus.

Definition 1.4.4. Let T be an open quotient BY tree and let By,..., B, be
the connected components of Tj, the blue part of T', then the genus of T is

o(T) = (Zw%ﬁ{ww}) —1+ S g)M).

' veV(T)

1=

Proposition 1.4.5 (Proposition 6.2.5). Let C' be a hyperelliptic curve with
associated open quotient BY tree T. Then g(T) = g(C).

Example 1.4.6. There are 56 different non-metric open quotient BY trees
of genus 2, but we will not list them all here. There are 8 non-metric open
quotient BY trees of genus 1. These are shown in Figure 1.7. Here the label-
ings represent the genera and multiplicities of vertices. For example g0 M1

represents a genus 0 multiplicity 1 vertex. Marked points shown by crosses.

® s0M1
g1 M1 M1 go M2 goM1 gOM1 M1
4—0 @ L @ @ @
@ go M1
gl M1 goM1 goOM1 goM1 glM1 goM1 goOM1 gOM1
] > L o—0 *—© L

Figure 1.7: All open quotient BY trees of genus 1.

The corresponding cluster pictures are shown in Figure 1.8 respectively, where

a line drawn between two proper clusters represents a Galois orbit.

(@@e9) (@@99) (@@@9)
@9 @

Figure 1.8: All non-metric cluster pictures of genus 1.
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Note that in Figure 1.7, there only two open quotient BY trees with a blue
open edge. This colouring means these open quotient BY trees correspond to
genus 1 curves whose defining equations have 3 roots, whereas those with yellow
open edges correspond to genus 1 curves whose defining equations have 4 roots.
As such, if we wanted to verify that we can recover the Kodaira-Néron types
shown in Table 1.1 using open quotient BY trees we only want to consider the
open quotient BY trees with a blue open edge. We can give open quotient
BY trees different metrics, as defined in Definition 4.1.13, in particular we can

take any of the following metrics:

b

>—@  for (a,b) =1, a € Z>o and b € {1,2,3},

m  glM1

a

*—0 ® fora,beZ,a>0,b>0.

m  goM1 glMil

Let F : y* = ¢s(x — 1) (@ — r2)(z — r3) be an elliptic curve over K. Note that

under a substitution x = pa’, y = py’ we get a change of model

o2 - -3)
D p p

This certainly has the same reduction type, although note that the leading
coefficient has been changed, and as a result all depths in the cluster picture
are decreased by 1. In terms of quotient BY trees, provided the top clusters
have depth > 0 we can think of the marked point having moved distance 1
along the open edge.

So, in order to produce a classification, we need to consider isomorphisms
of curves and how these affect cluster pictures and quotient BY trees. Again,
this turns out be possible to determine in a completely combinatorial way. This
motivates the need for a concept of equivalence of open quotient BY trees that
will enable us to classify the reduction types, along with a criterion for how
the leading coefficients are affected. The following technical details help us
achieve this. In general, the principle is that there is some subtree (the core)
that must remain unchanged, and the marked point is allowed to move by an

integer.

Definition 1.4.7. Let T be an open quotient BY tree. Then the core T of T
is the tree obtained from 7" by deleting the open edge and then possibly one of
the following: Viewing the unique vertex vy incident to the open edge in T as
a point on an edge in T, provided g(vg) = 0 and there are precisely two closed
edges incident to vg in 7', both of which are coloured the same as vy and have

multiplicity 1; Deleting vy along with a unique incident closed edge, provided
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vo is blue, g(vg) = 0, and the unique incident closed edge has multiplicity 1

and is coloured blue.

Example 1.4.8. The following are some simple examples of open quotient

BY trees along with their cores.

@ g0 M1
g0,M1
o
g1M1 goM1  gOoM2 goM1  goM1 goM1  goM1 gOoM1
T | —e o —® 0 @ gomt —eo o
~ g1M1 goM1  goM2 goM1  goM1 goM1  goM1 goM1  goM1
T o e L e o o o

Notation 1.4.9. Let S be an open quotient BY tree or the core of an open
quotient BY tree, then we denote by S! the subtree consisting of all multiplicity

1 edges and vertices.

Definition 1.4.10. Let 7" be an open quotient BY tree and v € V(7). Define

2g(v) +2— > %Eg if v is blue,

_ e€E(T), blue
S(U, T) - incident to v

0 if v is yellow.

This is the number of singletons of a cluster corresponding to v in the cluster

picture associated to T', which is proved in Proposition 5.1.12.

Construction 1.4.11. Let T be a metric open quotient BY tree and vg the
unique vertex incident to the open edge. Then we create an extended tree B

from T as follows:

e If T is obtained from T by deleting just the open edge: change the colour

of the open edge of T to green if it was previously blue;

e If T is obtained from T by deleting ‘open yellow edge ¢ — genus 0,
multiplicity 1, blue vertex vy — closed multiplicity 1 blue edge e’ from
a vertex v; € V(T): colour ¢, vy and e green and view vy as a point on

the open edge rather than a vertex.

For every blue vertex v € V(T") if the denominator denom(d(v,m)) { s(v,T)
then add a green open edge, to v. Next, for any point P on T' if d(m,P) € Z
then add a black open edge to P (creating a black vertex at P if P was not
already a vertex). Call the tree resulting from these moves so far A. Finally,

for every leaf v € V(A) add a black open edge to v.
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Example 1.4.12. The following are some simple examples of open quotient
BY trees T along with their extended trees B.

® go M2
90, M1
1 1 o
3 g1M1 5 giM1 goM1 | gOM1 gOM1
T | <—e H—e @ 1M1 e—eo o
1 ‘ g0 M1 g1 M1 , goM1 go M1
- g1m1 S glM1 ® T ® > T T ®
B o o— |

For an open quotient BY tree T we describe how to obtain a new open
quotient BY tree T™ with a yellow open edge and marked point as close to the
centre of the core as possible. This construction is described fully in 4.5.5. Two

open quotient BY trees T} and T; are equivalent if T} and T are isomorphic.

Definition 1.4.13. Let T be an open quotient BY tree with core 7. The
centre ¢ of T is the vertex or the midpoint of the edge between two vertices in
V(T') minimising the value of ¢, where for v € V(T):

d(v) = max{w(T") | T' is a connected component of T\ {v}},

where
1

"0 = e iy 22 M)

veT”’

0 if v is yellow,
29(v) +2 =3 cermy), % if v is blue.

incident to v

w(v) =

Remark 1.4.14. There is indeed either a unique minimising vertex or pre-
cisely two minimising vertices, in which case they are adjacent. This is proved

in Lemma 4.4.4.
An example of this centre calculation is included in Example 1.4.22.

Construction 1.4.15 (7*). Let T be a metric open quotient BY tree with
extended tree B. Let m/ be a point on B such that d(c,m’) is minimal subject
to d(m/,m) € Z. Denote by T*, a tree obtained in the following way. If m' is
green add “open yellow edge — genus 0, multiplicity 1 blue vertex — closed
blue edge” to the closest vertex of T to m/. Otherwise, add an open yellow
edge to the closest point of T to m/ creating a vertex there, coloured the same

as the edge it lies on, if it is not already a vertex.
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Remark 1.4.16. Construction 1.4.15 only results in a unique tree when
denom(d(m,c)) # 2. For now we will not worry about this but it is dealt
with in depth in Sections 4.5 and 4.6.

Definition 1.4.17. Two metric open quotient BY trees T} and Ty are equiv-
alent if Ty = T5.

Example 1.4.18. We can use this equivalence to reproduce the classification
for elliptic curves with tame reduction in Example 1.3.3. Considering the
equivalence classes of metric open quotient BY trees of genus 1, we are able to
produce a classification, choosing a representative for each equivalence class of
metric open quotient BY trees, as shown in Table 1.2. There are two choices

of leading coefficient for each representative, giving ten reduction types.

T b U(Cf) mod 2 | Type Zi
0 9LM1 0 I 1g1
*—0 0
LILLL] 2
1 I T
VRS
-gon
1 1
o 90M1 - goml | (@Dz @ 0 L,
’ ° ' L2 2,
1 I 1‘1‘ 2‘-71 2 ‘1‘1
59 AR
%glMl Ooo% 0 11 3121
EVEERLFY ‘ ‘ —
21 2|1 2|1
1 Iv* J»
4
%glMl 200! 0 III
X*—=0 p) ‘ ;
2‘ 312, 3|2,
1 I11* 1 T
59 T
gglMl 200 0 1V 1111
e ’ | | 6
3\ ‘&Q 54
%,3
1 II* 1

Table 1.2: Kodaira-Néron types of elliptic curves with p > 5.
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Theorem 1.4.19. Let C' and C’ be two isomorphic hyperelliptic curves over
K, with associated metric open quotient BY trees T and T" respectively. Then
T and T' are equivalent. Conversely, let T" be a metric open quotient BY
tree equivalent to T'. Then there exists a hyperelliptic curve curve C" which is
isomorphic to C' over K, such that the metric open quotient BY tree of C" is

isomorphic to T".

For a metric open quotient BY tree T, every equivalent metric open quo-
tient BY tree 7" can be obtained by taking a new marked point m’ to be any
point on the extended tree of T" integer distance distance from m, and adding
either ‘open yellow edge’, ‘open blue edge’, or ‘closed blue multiplicity 1 edge
— genus 0 multiplicity 1 blue vertex — open yellow edge’ to T at the point
closest to m’ (creating a vertex at this point the same colour as the edge it lies
on if it is not already a vertex of T) Moreover, we give a full description of
the equivalence class in 4.6.4.

Note that for our classification of elliptic curves in Example 1.4.18 we
choose a representative of each class with a blue open edge. However, more
generally, for a metric open quotient BY tree T we will choose T as the
canonical representative of the equivalence class. We will see in Section 5.4
that the equivalence class of a metric open quotient BY tree encodes the effect
of Mobius transformations on the roots of the associated cluster picture. These
will affect the leading coefficient, and by Theorem 1.3.1, this is something we
need to keep track of. The following theorem provides an easy way to do this

using metric open quotient BY trees.

Theorem 1.4.20. Let C : y* = f(z) and C" : y* = f'(z) be hyperelliptic curves
of genus g over K, with cluster pictures X and X' respectively and metric open
quotient BY trees T =T(X) and T" = T(X'). Suppose that the sets of roots R
and R’ of f and f' respectively are such that dg,dgr: > 0. Then the dual graphs
of the special fibres of the minimal SNC models of C' and C' are isomorphic if
T andT" are equivalent and the leading coefficients ¢y and ¢y of f and f' are
such that:

o if g is even: if

o (dise( 2)) - v (e £)) = 200400, m) mod a2

Cf Cf/

then v(cy) = v(cp) mod 2, else v(cy) # v(cp) mod 2
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e if g is odd: then

v (diSC (%fl) —v (disc (%f’))

(29 +1)

=v(cs) —v(ep) mod 2

If either dgr,dr/ < 0 then note that a simple scaling gives us a change of
model, and will allow us to transform the cluster picture into something with
non-negative top cluster depth. We will discuss how such a transformation
affects the leading coefficient later. Piecing this together with the theorem
above will allow us to handle changes in leading coefficients regardless of what
the value of the top cluster depths are.

We provide a way of reading off the discriminant of f from its associated
metric open quotient BY tree. This is discussed in more detail in Section 6.3.1,

where the following result is proved.

Theorem 1.4.21. Let C : y* = f(x) be a hyperelliptic curve with tame reduc-
tion, with metric open quotient BY tree T'. Denote the marked point of T by
m, and define a partial order on the vertices of T by setting v' < v if v lies on
the embedded path from m to v'. Then

o(Ae) = v(ey)(4g +2) + v (disc (if)>

cf

= v(ep)(g+2)+ Y M(v)d(v,m) (W— > W%—sw)),

veV(T) v'<v

=v(er)(dg+2)+ Y M(v)d, ol (jo] — 1),

veV(T)

where M)
— / v
o] = s(v ,T)W,
v'<v
0y = length(e,), the length of the edge incident to v lying on the embedded path
between v and m, and v' < v if v' # v is adjacent to v and v X v. If v = vy,

the unique vertex incident to the open edge, then we take d,, = d(vy, m).

This allows us to give a complete classification in higher genus cases using
metric open quotient BY trees. We do so for genus 2 in Appendix A.2, following
a proposed naming convention for open quotient BY trees in Appendix A.l.
In particular we can see that the reduction type is determined by the cluster
picture, and we are able to read off the reduction type of any genus 2 curve
from this classification. To demonstrate the power of the work laid out in this

thesis we present a longer worked example that spans all our main results.
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Example 1.4.22. Consider the hyperelliptic curve C' : y* = (22 —p?)(z* —p'!)
over Q). Suppose that we wish to find the special fibre of the minimal SNC
model of C'/QyF, and classify all hyperelliptic curves with the same reduction
type. Here we lay out a process to answer both of these using cluster pictures
and metric open quotient BY trees. The cluster picture ¥ and metric open
quotient BY tree T" of C'/Q)" are shown in Figure 1.9.

[OOOOQOOJ m oML | giMi
2 1 ® ®
(a) Cluster picture X of C/Qp" (b) Metric open quotient BY tree T'

Figure 1.9: Cluster picture and open quotient BY tree associated to C/ Q.

Let us start by using the cluster picture and valuation of the leading
coefficient of f, which in this case is ¢; = 1, to determine the special fibre of
the minimal SNC model, as described in Theorem 1.3.13. The cluster picture
> consists of just two proper clusters, R, and the cluster of size 4 which we

will label 5. We must first calculate the following arithmetic invariants:

VR = Uqyr (Cf> + Z dR/\T'7 Vs = ’UQ;Y (Cf) + Z ds/\r7
reR rEs
=6, =13,
!

VR i A=y I¢']
)\RZT_dRZ\‘gJ’ S 2 55/2 2 )
t<R 13
=1, _ 2

2

Recall that the genus of a cluster t is given by

50 ez,
g(t) — Lgszft) + %J )\t ¢ Z, bt even,
0 M € Z, b odd.

So, since gs(R) = 0 we have g(R) = 0, and since A\ ¢ Z, by = 4 € 27, we have
g(s) = LQSZ—(E) + 1] = |3 + 3] = 0. Recall also that for a proper cluster t, in a
Galois orbit X, e; € Z~¢ is minimal such that e|X|d; € Z and e X |y € 2Z.
Both R and s are in trivial Galois orbits, so we find that e = 1, and e, = 4.
So, by Theorem 1.3.13, R contributes one component of multiplicity 1 and
genus 0, and s contributes one component of multiplicity 4 and genus 0. It
remains to calculate any linking chains and tails/crossed tails. Since eg = 1
there are no sloped tails intersecting I'r. However s < R is an even child of

R and ¢ = (—1)»7Fl&s = (—1)2 = 1, so we get two chains L, and Ly,
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intersecting I'z. These have parameters t; = —dr = —1, to =t — 05 = —%,

and p = 1. Notice that the following inequalities satisfy Definition 1.3.7:

In practice, finding such chains is very straightforward and is discussed in more
detail in Remark 7.2.12. This gives us two chains of rational curves from I'g
to I's, each with three components of multiplicity 3,2 and 1. There are no
further sloped chains intersecting I'z. Finally, we need to check for sloped
chains intersecting I's. Note that s has no stable child (all four roots are in an
orbit of size 4) A\ = % ¢ Z, e =4 > 2 and gi(s) = 1 > 0, therefore we get
one T, _o tail intersecting I's;. This has parameters t; = —d; = —%, 0= 2,
and ty = i[utl — 1] = —1. The following inequalities satisfy Definition 1.3.7:
-1 -6 =7

= — > —>— = uls.
fh =y 1 1 M

So, T,,,—o has length 1 and its only component has multiplicity p-1 = 2. There
are no further sloped chains, and the special fibre is as pictured in Figure 1.10.

Indeed, the Namikawa-Ueno type of C’/Q}‘;r is IIT*-II3, so we are in this case

1
211 1]2

I'r

I 4 Fﬁ

Figure 1.10: Special fibre of the minimal SNC model of C’/@;r.

able to verify our construction.

If we wish to produce useable classifications we need to know exactly
which other curves have this reduction type. So, we turn to open quotient BY
trees. The core T of T and the extended tree, constructed from 7! = T by
adding open edges to the leaves and points which are integer distance from

the marked point m, are shown in Figure 1.11. It is convenient to select a

m goM1 gl M1

goM1 . glMi
@ o

(a) T (b) B

Figure 1.11: The core T of T and the extended tree B.

canonical representative of the equivalence class as this provides an easy way
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of checking whether or not two metric open quotient BY trees are equivalent
without producing the full equivalence class. To do this we calculate the centre
of T, take a marked point m’ as close to the centre as possible, and add an
open yellow edge to T at the closest point (which is not necessarily a vertex)
to m’. In particular, for this example, the process is carried out as follows.
To calculate the centre we calculate ¢(v) for all v € V(T!). Note that here
T' =~ T, and the metric has no effect on the centre calculation. Let us label

the vertices of T' as follows:

Then w(vg) = 2g(vy)+2 = 2, and w(vy) = 2g(v1)+2 = 4. So, ¢(vg) = w(vy) =
4, ¢(v1) = w(vy) = 2. That is vy is the minimising vertex and the centre of T
is ¢ = v1. We can view c on B and find the closest point m’ of B to ¢ which is

integer distance from m. This is pictured in Figure 1.12. In this case c is the

m  g0M1 giM1 m'
1
4

Figure 1.12: Extended tree B showing ¢ and m/'.

closest point of 7' to m/. So, to construct the canonical representative we take
the marked point to be m’ and add an open yellow edge to T at ¢ = v;. This

results in the following metric open quotient BY tree:

m' gl M1 go M1
*
1" = @ @

We can also use the extended tree and the core to construct the full equivalence
class of metric open quotient BY trees. In particular, each equivalent metric
open quotient BY tree is obtained by taking a new marked point m’ to be any
point on the extended tree B integer distance distance from m, and adding
either ‘open yellow edge’, ‘open blue edge’, or ‘closed blue multiplicity 1 edge
— genus 0 multiplicity 1 blue vertex — open yellow edge’ to T at the point
closest to m’ (creating a vertex at this point the same colour as the edge it
lies on if it is not already a vertex of T) Any such move which results in a
metric open quotient BY tree is equivalent to 7', and every equivalent metric
open quotient BY tree can be obtained by one of these moves. We give a more
precise description of exactly which moves result in metric open quotient BY
trees in 4.6.4. The full equivalence class is shown in Figure 1.13. We have a
one-to-one correspondence between metric open quotient BY trees and cluster

pictures of hyperelliptic curves with tame reduction, whose top cluster has



1.4. C(Classification 33

go M1 gl M1 n goM1 gl M1 gl M1 go M1
@ @ - @
@ g0 M1
goM1 5 gOM1 . g1M1 M1
o—©O @
® js0M1

Figure 1.13: Full equivalence class of T' with n,d € Z, n > 0, d > 0.

depth > 0. In particular the cluster pictures corresponding to the metric open

quotient BY trees in our equivalence class are pictured in Figure 1.14. Note

m , goM1 . glM1 m , gOM1 . glM1l m glM1 . goM1
@ @ @ @ @

oooonJr%oon oooonJr%on n+2°°°°n+1
g 4

" @ g0 M1
I m
m goM1 4 gOM1 gl.Ml -
[n+d+%ono+d] ® g0 u
n (n + 17;, + %Jn

Figure 1.14: Full equivalence class of T" and their corresponding cluster pictures
with n,d € Z, n >0, d > 0.

that applying a Mobius transformation z +— pz to a set of roots increases the
depths of all clusters in a cluster picture by 1. So, we can use our equivalence
class of metric open quotient BY trees to list all cluster pictures of hyperelliptic
curves with tame reduction (even those with top cluster depth < 0) and we
just then drop the condition that n > 0.

The cluster picture, along with the leading coefficient completely deter-
mine the special fibre of the minimal SNC model. For this reason we also need
to determine what leading coefficient a member of the equivalence class can
take to ensure that the reduction type is the same. Note that this is not nec-
essarily the only option, just one that certainly does ensure this. For example,

consider C" : y? = f'(x)/Q¥, where f'(z) = cp(x* — p)(2* — p*). This has

D
cluster picture

Y= @9, 00009|,
4

and metric open quotient BY tree 7. We want to know what valuation of c’f

will ensure that C” has the same reduction type as C' over Q,*. By Theorem



1.4. C(Classification 34

1.4.20, since g = 2 is even we simply need to check whether or not

v (disc(i)) — v <disc< fl)) =2(g+1)(29 + 1)d(m,m') mod 4(2g + 1).

Cf Cf/

In this case, 2(g+1)(2g+1) = 30, 4(29 + 1) = 20, and we can see from Figure
1.12 that d(m, m’) = 3. By Theorem 1.4.21, we are able to read the valuations

of the discriminants of = f(z) and - f'(z) off the metric open quotient BY
f Cf/
trees T and T™ respectively. In particular, we find that

. (disc (%f(x))) _ 51,
v (disc (; f’(@)) 1

v (disc (i)) — v (disc( fl)) =40#90 mod 20,
Cr Cyr

and by Theorem 1.4.21, we will take v(cy) =1 mod 2.

Therefore,

As a check, we can use Theorem 1.3.13 to determine the special fibre of
the minimal SNC model of C’ : y* = p(a? — p)(2% — p*). Let R’ be the top
cluster of ¥/, and s’ the child of size 2. R’ is the only principal cluster in 3.
We find that

)
VRt = 5,)\73/ =1l,err =4,9(R') =0, and exr = —1.

So, we have one component 'z, of multiplicity 4 and genus 0. Using the tables
in Theorem 1.3.13 we find that 'z has one T, tail with parameters t; = —i,
i =2, and ty = —1. This gives a tail of length 1 whose only component has
multiplicity 2. Since s’ is a twin and e = —1, we get a Ly loop off I'r, with
parameters t; = —}1, ty = —%, i = 1. This gives that Ly has 7 components
of multiplicities 3,2,1,1,1,2 and 3 in order. There are no further components
in the special fibre. That is, we have shown that C’ has the same special fibre

as C' over Q)F, as shown in Figure 1.10.

We can do the same for any hyperelliptic curve whose metric open quotient
BY tree lies in the equivalence class of T and, provided the leading coefficient
has been selected appropriately we will always find that Theorem 1.3.13 pro-
duces isomorphic special fibres. In particular, using metric open quotient BY

trees, Theorem 1.4.20, and accounting for how leading coefficients change under
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scaling we obtain the following complete list of cluster pictures and valuations

of leading coefficients which result in the same special fibre:

@999, 10 o v(cy) =0 mod 2,
@e909, 19 v(cy) =n mod 2,
E&=9s) v(e)=d mod2
€9,:29999 .. v(¢) =1 mod 2,
€9, ,6399,.3) v(cg) =0 mod 2.

So, if y?> = g(z) is a hyperelliptic curve over Q" with leading coefficient cg,
which has one of these cluster picture and leading coefficient pairs, then it has
the same reduction type as C'/Q;". That is the Namikawa-Ueno type of any
such hyperelliptic curve is ITT*-1115.

1.5 Structure of Thesis

The thesis is structured as follows. In Chapters 2 to 6 we focus on open
quotient BY trees and how we can use them to classify the reduction types of
hyperelliptic curves with tame reduction. Specifically, in Chapter 2 we start
with a brief introduction to cluster pictures and BY trees. This is work taken
from literature which motivates the discussion for what approach we should
take for hyperelliptic curves with tame reduction in Chapter 3. In Chapter
4 we take a purely combinatorial approach, defining open quotient BY trees,
an equivalence relation and a choice of canonical representative. In Chapter
5 we relate open quotient BY trees to polynomials with tame splitting fields,
associating open quotient BY trees to their cluster pictures. We go on to
prove that there is a Mobius transformation between any two equivalent open
quotient BY trees, and applying any Mobius transformation always results in
an equivalent open quotient BY tree. Finally in Chapter 6 we relate Chapters
4 and 5 to hyperelliptic curves including discussions on leading coefficients and
discriminant.

In Chapters 7 to 9 we turn our attention to using cluster pictures to study
special fibres of minimal SNC models. These chapters present a discussion of
relevant background and work of the author and Omri Faraggi as presented in
[FN20]. In Chapter 7, we restate key definitions and theorems from literature,
which we will make use of in the remainder of the thesis. In Chapter 8, we
calculate the minimal SNC model for two special cases. The first of these spe-

cial cases, Section 8.1, is where C has tame potentially good reduction - that
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is, it has a smooth model over a tame extension of K. This will act as a base
case for our eventual proof by induction. The second of these cases, Section
8.2, examines curves C' with a cluster picture which consists of exactly two
proper clusters s < R. Curves with such cluster pictures are used to deduce
the linking chains between central components in the main theorems. These
main theorems are stated and proved in Section 9. In Appendix A we propose
a naming convention for open quotient BY trees and give a complete classifi-
cation of the special fibres of genus 2 curves with tame reduction, afforded by
all of the work in this thesis.

1.6 Notation

For the convenience of the reader, the following two tables collate the general
notation and terminology which we make use of throughout the thesis. Table
1.3 lists the general notation associated to fields, hyperelliptic curves, and
models. Table 1.4 lists the notation and terminology associated to BY trees,

cluster pictures and Newton polytopes.

K non-archimedean field VK discrete valuation
Ok  ring of integers TK uniformiser of K
k residue field of K K algebraic closure of K
hyperelliptic curve over K L field extension of K over
given by y? = f(z) which C7, is semistable
g(C) genus of C, also denoted g R set of roots of f(z)in K
€ degree of L/K for such L mod m reduction to the residue field
X Galois orbit of clusters A minimal SNC model of C'/K
Zi  special fibre of 2 F; 5 component(s) from X in 2
% minimal SNC model of C/L %, special fibre of %

I'E,  component(s) from s in % maximal unramified extension

Table 1.3: General notation associated to fields, hyperelliptic curves, and models

So (1.2.0) e,m (4.1.3) v (7.1.12)

5 (1.2.1) v (4.1.3) X (7.1.14)

ds (1.2.1) T,  (4.1.11) s (7.1.14)

as, b (2.1.1) ()  (4.1.13) a (7.1.14)
odd cluster (2.1.7) T (4.3.5) Bs (7.1.14)
even cluster (2.1.7) w(v) (4.4.1) Vs (7.1.14)
twin (2.1.7) o(v)  (4.4.1) 0, (7.1.14)
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§ <s (2.1.8) T! (4.4.3) € (7.1.14)
P(s) (2.1.8) c (4.4.5) Co (7.1.17)
55 (2.1.8) B (4.5.1) red, (7.1.17)

cotwin  (2.1.8) T* (4.5.5) A(C) (7.2.1)

ibereven  (2.1.8) (T*)*  (4.5.9) AL (C) (7.2.1)
2 (2.1.9) ()  (5.1.5) N (7.2.1)
sAS (2.1.10) v (5.1.5) L, F (7.2.2)
5 (2.1.11) S(T)  (5.1.9) A(Z),L(Z),F(Z) (7.2.3)
5(s,5") (2.1.11) Sy (5.1.9) A(Z)L(Z),F(Z) (7.2.3)
principal ~ (2.1.12) orphan  (5.1.15) Oz (7.2.4)
s* (2.1.13) D(s)  (5.2.2) st st (7.2.8)

Ges(5) (2.1.14) Ty (5.2.3) g(s) (8.1.22)

singleton  (2.1.19) J(f/K) (5.2.6) principal orbit  (5.1.3)

Ssing (21.19) F(f/K) (5.2.12) Ax (9.1.4)

M(v),M(e) (4.1.1) R (5.2.13) Kx (9.1.3)
g(v) (4.1.1) g9(T) (6.2.2) ex (9.1.7)
s(,T),s(v) (4.1.1) ] (6.3.8) g(X) (9.1.7)

Table 1.4: Notation for cluster pictures, quotient BY trees and Newton polytopes

Throughout this thesis, the word graph refers to a topological space G
homeomorphic to a finite (combinatorial) graph. It comes with a set of ver-
tices V(G) and edges E(G). Graph isomorphisms are homotopy classes of
homeomorphisms that preserve vertices and edges. With the exception of dual
graphs, we will only be discussing trees where loops and multiple edges are
not allowed. By a metric graph we mean a topological graph G along with
a function [ : E(G) — Rs( which assigns a length to each edge. This can
be extended to a metric on all of G. We will write d(v,v’) for the shortest
distance between two vertices v,v" € V(G). For metric graphs, isomorphisms

and automorphisms must preserve lengths.

1.6.1 BY Trees

In any figure showing a BY tree or quotient BY tree, genera of vertices are
preceded by g and multiplicities of vertices or edges (in the quotient case) are
preceded by M. So, g2, M1 written next to a vertex indicates that it has
genus 2 and multiplicity 1. For quotient BY trees, marked points are drawn

as Crosses.
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1.6.2 Cluster Pictures

Roots in cluster pictures are drawn as nodes, and circles are drawn to represent
the proper clusters, indicating how p-adically close roots are to each other. In
the metric case the depths of clusters are included on the cluster pictures. It
is worth pointing out that this is not the same as writing relative depths on

cluster pictures, the convention used in [DDMM18§].

1.6.3 Tame Reduction
A hyperelliptic curve C' : y? = f(x) has tame potentially semistable reduction

over K if there exists some finite extension L/K such that C has semistable
reduction over L, and [L : K] is coprime to p. This is equivalent to f having

tame splitting field. We refer to this as tame reduction.

1.6.4 Special Fibres

Whenever a component in a figure of a special fibre is drawn in bold it is
a central component. In any figure describing the special fibre of a model,
numbers indicate multiplicities, except those preceded by g, which indicate
the genus of a component. So 2 indicates a rational curve of multiplicity 2 and

2¢1 indicates a genus 1 curve of multiplicity 2.
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Chapter 2

Background - Cluster Pictures
and BY Trees

2.1 Cluster Pictures

Let C'/K be a hyperelliptic curve given by Weierstrass equation y* = f(z),
with genus g(C) > 1. Let R denote the set of roots of f(x) in K. The p-
adic distances between the roots contain a large amount of useful information.
To visualise these p-adic distances we use cluster pictures, as described in
[DDMM18]. In this section we outline the key definitions required for this

thesis concerning cluster pictures.

Definition 2.1.1. A cluster is a non-empty subset s C R of the form s = DNR
for some disc D = z + 7}, O, where z € K, n € Q and 7g is a uniformiser of
K. If s is a cluster and |s| > 1, we say that s is a proper cluster. For a proper
cluster s we define its depth d; to be
ds = min vg(r —r').
r,r'€s
We write ds = = with as, bs coprime. The cluster picture Yo x = (R,%,d) of
C' is the collection of all clusters of the roots of f. When there is no risk of

confusion, we may simplify this to >¢.

The cluster picture ¥ is a way of visualising which roots of f are p-
adically close. In a non-archimedean algebra, two discs either have a non
empty intersection or one is contained in the other. So Definition 1.2.1 gives
us that any two clusters are either disjoint or one is contained in the other.
Moreover dy > d, if s C s. Every root is a cluster, that is {r} € ¢ for every
r € R, and R € Y¢. It is also possible to describe cluster pictures as purely

combinatorial objects.

Definition 2.1.2. Let X be a finite set and ¥ C P(X) be a collection of
non-empty subsets of X. Elements of 3 are called clusters. ¥ (or (X,X)) is a

cluster picture if
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(i) Every singleton (‘root’) of X is a cluster, and X itself is a cluster,
(ii) Two clusters are either disjoint or one is contained in the other.
We refer to X as the top cluster.

Remark 2.1.3. Note that if C'/K is a hyperelliptic curve then its cluster
picture X is still a cluster picture in the sense of Definition 2.1.2. The set of

roots R is the top cluster of ¥¢.

In order to work with clusters we need a significant amount of terminology

from [DDMM18] which we describe here.

Definition 2.1.4. Two cluster pictures (X, X) and (X', ¥') are isomorphic if
there is a bijection X — X' that takes 3 to X'.

Definition 2.1.5. A cluster picture (X, ) is metric if every proper cluster s
has a depth d; € Q assigned to it, and dy > d, if s C 5. We may denote the
cluster picture by (X, X, d) rather than . An isomorphism of metric cluster
pictures is an isomorphism that preserves these depths. That is, (X, >, d) and
(X',%,d’) are isomorphic if there is a bijection ¢ : X — X' taking ¥ to ¥’
such that d, = d;(s).

Definition 2.1.6. Let (R, %) be a cluster picture. Then the genus of 3 is
such that
IR| =2¢(X) + 1 or 2g(X) + 2.

Definition 2.1.7. A cluster s is even (resp. odd) if |s| is even (resp. odd).

Furthermore s is a twin if |s| = 2.

Definition 2.1.8. Let s be a cluster. If §' C s is a maximal subcluster of s
then s’ is a child of s and s is a parent of s'. We write §' < s, and P(s') = s.
Denote by s the set of all children of s, and by 5 the set of all odd children. A
cluster is tibereven if it only has even children. A cluster s is a cotwin if it has

a child of size 2g whose complement is not a twin.

Definition 2.1.9. A centre z, of a proper cluster s is any element z, € K such
that vg(z, — 1) > ds for all r € s. Equivalently, z, is a centre of s if s can be
written as D N'R, where D = z, + 7% O%. Note that any root r € s can be

chosen as a centre, and if s = {r} then the only centre is z; = 7.

Definition 2.1.10. For clusters s and s', write s A s’ for the smallest cluster

containing s and §’.
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Definition 2.1.11. If s and s’ are two clusters then the distance between them
is §(s,8") = ds + dy — 2dspy. For a proper cluster s # R define the relative
depth to be 0; = 6(s, P(s)) = ds — dp(s).

Definition 2.1.12. A cluster s is principal if |s| > 3 except if either s = R is

even and has exactly two children, or if s has a child of size 2g.

We will see later that principal clusters form an important class of clusters.
Roughly, if C'//K is a hyperelliptic curve, every orbit of principal clusters in

Yo/k makes a contribution to the minimal SNC model of C' over K.

Definition 2.1.13. For a cluster s that is not a cotwin we write §* for the
smallest cluster containing s such that the parent of §* is not tibereven. If no
such cluster exists we write s* = R. If 5 is a cotwin, we write s* for its child

of size 2g.

Definition 2.1.14. For a proper cluster s we write gs(s) for the semistable
genus of . If s is libereven, we set gs(s) = 0. Otherwise, if s is not {ibereven

the semistable genus is determined by
5| = 2gss(5) + 1, or 2g4(s) + 2.

It is important to note that g«(R) is not necessarily the same as g(C').
In fact, they will only be the same when R has no proper children. If C' has
semistable reduction over L and s € X/ is principal, the semistable genus
of s represents the genus of the contribution of s to the special fibre of the
minimal semistable model of C' over L.

We also need some new terminology, and the remainder of the definitions

in this section are not given in [DDMM18].

Definition 2.1.15. A cluster picture ¥ is nested if for all proper clusters
5,6 € ¥ either s C ¢, or s C 5. If C is a hyperelliptic curve, we say C is

nested if Y is nested.

Since the elements of R lie in K, there is a natural action of Gx on R,
hence also on ¥¢. Since K has algebraically closed residue field, Gx = I
where I is the inertia subgroup of Gg. It will be important later to know
exactly how Gg acts on the clusters of X¢. The following lemma is useful for

this purpose.

Lemma 2.1.16. Let ¢ be such that K(R)/K is a tame extension, and let
s € Yo be a proper cluster fized by G .
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(1) There exists a centre z; of s such that z; € K.

(it) Any child §' < s is in an orbit of size by, except possibly for one child sy,
where we can choose Zs, such that "UK(Zg,f — zs) > ds, which is fized by
Gg.

Proof. For (i) see DDMM18, Lemma B.1], and (ii) [Bis19, Theorem 1.3]. [

Definition 2.1.17. Let s’ < s be clusters in X¢. Then s’ is a stable child of

s if the stabiliser of s also stabilises §'. Otherwise s’ is an unstable child of s.

Remark 2.1.18. Let s € X be fixed by Gg. If s has depth d; with denomi-
nator > 1 then, by Lemma 2.1.16 ii), s has at most one stable child.

Definition 2.1.19. If r € 5 is a root which is not contained in a proper child
of s then we call r a singleton of 5. Define sg,, to be the set of all singletons

of 5. In other words s, is the set of all children of size 1 of s.

2.2 BY Trees

Two different presentations y? = f(z) of the same hyperelliptic curve may have
different cluster pictures. In the semistable setting, an equivalence relation
is defined on cluster pictures by [DDMM17, §3.3]. By [DDMM18, § 14], at
least in the semistable setting, this equivalence relation respects isomorphisms
between hyperelliptic curves. In particular, isomorphic curves have equivalent
cluster pictures, and conversely every cluster picture in the equivalence class
is realised by some curve over K. When producing classifications it is useful
to choose a canonical representative.

Given a cluster picture of a semistable hyperelliptic curve, the method for
finding the canonical representative involves passing to something called an
open BY tree (a combinatorial object easily obtained from the cluster picture).
We will generalise this approach in later chapters, so here we collate some useful

definitions from [DDMM17, §3].

Definition 2.2.1 (BY tree). A BY tree is a finite tree 7" with a genus function
g : V(T') — Z>( on vertices and a 2-colouring blue/yellow on vertices and edges
such that

(1) yellow vertices have genus 0, degree > 3, and only yellow edges;
(2) blue vertices of genus 0 have at least one yellow edge;

(3) at every vertex, 2g(v) + 2 > #{blue edges incident to v}.
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Note that all leaves are blue.

Notation 2.2.2. As a topological space (with the graph topology), a BY tree
T can be written as T' = T, UT,, with T}, the blue part, and 7}, the yellow part.
Thus T, C T is a closed subset.

Definition 2.2.3. An open BY tree T is a finite tree with a unique open edge,
that is an edge with only one end vertex, a genus function g : V(T') — Zsq
on vertices and a 2-colouring blue/yellow on vertices and edges, satisfying
conditions (1), (2) and (3) of Definition 2.2.1.

An open BY tree can be thought of as a BY tree with one “missing” vertex,
that we refer to as co. Sometimes we may refer to BY trees as in Definition
2.2.1 as closed, to distinguish them from open BY trees. [DDMM17]

Example 2.2.4. The following is an example of an open BY tree:

*—©0
90 g0 gl
—0
® 40

In this instance the open edge is labeled ¢, and its open end is where the

“missing vertex is” which we refer to as oc.

Definition 2.2.5. Two (closed or open) BY trees are isomorphic if there is
a homeomorphism between them that preserves their defining data (vertices,

edges, genus markings, colouring).

Definition 2.2.6. A (closed) BY subtree of a (closed or open) BY tree T is a
(closed) BY tree 7" such that:

e As a topological space, T" is a union of vertices and edges of T', and is

closed in T.

e The vertices of 1" are exactly those vertices of T' that are in 7" (as a
topological space) except for those of genus 0 that in 77 have degree 2
and incident edges of the same colour as the vertex. These exceptional

vertices become points on the edges of T” rather than vertices.
e The genus of a vertex of 7" is the same as its genus in 7.

The core T of an open BY tree T is its maximal closed BY subtree.

Remark 2.2.7. In [DDMM17, Proposition 5.7] the authors show that the core
of a BY tree T is unique and is obtained from 71" by removing a few vertices

and edges ‘near’ co.
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Definition 2.2.8. We say that two open BY trees T and 1" are equivalent if

they have isomorphic cores, and write 1" ~ T".

The following example is taken from [DDMM17, Example 3.28]. Take T
to be the following closed BY tree:

T—0 @
g0

gl

Up to isomorphism, there are seven open BY trees which have T as their core:

— e —© o —e 0o
g0 g1 g1 g0 g0 g1 g0
@ @ L ] o—e o o O o
g0 g1l gl g0 g0 g0 gl gl g0 g1

Definition 2.2.9. A metric (open or closed) BY tree is a BY tree with a
length function on the edges (excluding the open edge), § : E(T) — Ry We
denote by d(v,v’) the distance between v,v" € V(T'), and we require isomor-
phisms/automorphisms of metric trees to preserve 6. Similarly, we say that
two open metric BY trees are equivalent if there is an isomorphism between

their cores which preserves distance.

There is in fact a one-to-one, genus preserving, correspondence between
isomorphism classes of (either metric or not) cluster pictures and open BY
trees. The proof of this can be seen in [DDMM17, §4.2]. Here we simply
state how to construct the corresponding open BY tree from a cluster picture,
following Construction 4.13 in [DDMM17].

Construction 2.2.10. Let ¥ be a cluster picture with set of roots R. Then
the corresponding open BY tree T(X) has the following vertices:

e one vertex v, for every proper cluster s that is not a twin, coloured yellow

if s is libereven and blue otherwise,

e one blue vertex (a leaf) v¢ for every twin ¢,
and edges:

e for every pair s’ < s with s’ proper, vy and v, are linked by an edge,

coloured yellow if s is even and blue otherwise,

e add one open edge from vy, coloured yellow if R is even and blue other-

wise.

For the metric version set the length to be (s, s’) for blue edges and 24(s, s)
for yellow edges. Finally, define the genus of a vertex v, to be the semistable

genus gss(s) of the cluster s as in Definition 2.1.14.
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The construction in the opposite direction can be found in [DDMM17,
Construction 4.15] but we will not repeat it here. In practice this correspon-
dence is easy to use and examples can be found in [DDMM17, §4.2].

Here we are interested in equivalence classes of cluster pictures, and finding
a canonical representative of each class. As defined in Definition 2.2.8 two BY
trees are equivalent if they have isomorphic cores. By [DDMM17, Theorem
5.1], this can be translated to an equivalence relation on cluster pictures. In
particular, in [DDMM17], they define cluster pictures to be equivalent if the
cores of their open BY trees are isomorphic. Therefore, it is important to know
how to easily move between open BY trees and their cores. Corollary 5.10 of
[DDMM17] tells us when an open BY tree has core 7.

Corollary 2.2.11. Let T be a closed BY tree. Then an open BY tree T has

core T if and only if it is obtained from T in one of the following ways:

o declaring a point on an edge of T' to be a vertex of genus 0 (and the same

colour as the edge) and adding a yellow open edge at this vertez,
e adding a yellow open edge to a vertex of T

e adding a blue open edge to a blue vertex v of T which has
2g(v) + 2 > #{blue edges incident to v},

e adding ‘closed blue edge — genus 0 blue vertex — open yellow edge’ to a
blue vertez v of T which has 29(v) 4+ 2 > #{blue edges incident to v}.

This corollary can be thought of as describing the equivalence class of open
BY trees arising from semistable hyperelliptic curves with core (isomorphic
to) 7. In [DDMM17] the authors choose a canonical representative in each
equivalence class, something which we hope to emulate for the non-semistable
case. To do this, they first define a canonical ‘centre’ (either a vertex or an
edge) for a closed BY tree T. Glueing on an open yellow edge to the centre
gives the canonical representative of the equivalence class of open BY trees

with centre 7.

Lemma 2.2.12. Let T be a finite connected tree and w : V(T) — Rxq be a
‘weight’ function on the vertices of T' such that each vertex of degree one or
two has positive weight. For a subtree T < T, set w(T") = Y, . w(v) and
for each v € T, define

d(v) = max{w(T") | T is a connected component of T \ {v}}.

Then either
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(1) minyer ¢(v) < sw(T), in which case the minimum is attained at a unique
vertez of T, and all other vertices have ¢(v) > $¢(T),

(2) or minyer ¢(v) = sw(T), in which case the minimum is attained at pre-

cisely two vertices of T', and these vertices are adjacent.

In case (1) we call the minimising vertex the centre of T with respect to the
weighting ¢. In case (2), we define the centre to be the midpoint of the edge

joining the two minimising vertices.

Remark 2.2.13. Actually the authors in [DDMM17] take the centre in case
(2) to be the edge joining the two minimising vertices. However, taking the
midpoint of the edge to be the centre does not change any of their results.
Indeed in [BBB*20, Definition 18.2] they take the centre to be the midpoint
rather than the whole edge. In fact, this is taken one step further in [BBB*20]

as an extra genus 0 vertex is added at the centre.

Definition 2.2.14. Let T be a closed BY tree. We define its centre to be
the vertex or edge afforded by Lemma 2.2.12 applied to the weight function
w: V(T) — Z>o given by

0 v yellow,
w(v) =
29(v) + 2 — degg, (v) v blue,

where degy, (v) denotes the number of blue edges at v. Note that as w is

invariant under all automorphisms of 7', the centre of T is also.

Example 2.2.15. Let us consider the following closed BY tree T

V1 V2 V3
o—O L
g1 g0 g0

Using the weight function defined in Definition 2.2.14, we can calculate the
centre of T as follows. Note that w(v;) = 3, w(vy) = 1, and w(v3) = 2. So, we

can calculate the following:

d(v1) = w(vg) +w(vz) = 3,
¢(va) = max{w(v1), w(vs)} = 3,
¢(vs3) = w(v1) + w(ve) = 4.

Therefore, the minimum is attained at both v; and v, and we take the centre

to be the midpoint of the edge between them.
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In [DDMM17, Remark 5.15], they select their canonical representative for
each equivalence class of open BY trees to be the one obtained by glueing
on an open yellow edge to the centre of the core. As stated in [DDMM17,
Lemma 5.25], it turns out that every cluster picture is equivalent to a unique
(up to isomorphism) “balanced” cluster picture. Furthermore, this “balanced”
cluster picture corresponds to this canonical representative of the equivalence

class of the associated open BY tree.
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Chapter 3

Hyperelliptic Curves with Tame

Reduction

3.1 Equivalence and BY Trees

One of the primary aims of this thesis is to create a notion of equivalence class
of cluster pictures for hyperelliptic curves with tame reduction and define a
canonical representative. This would allow us to classify the reduction types

in the tame situation.

Definition 3.1.1. By the reduction type of a hyperelliptic curve of genus > 2
over a non-archimedean local field we mean (the isomorphism class of) the
dual graph of the special fibre of its minimal SNC model with a genus and

multiplicity associated to every vertex.

In the semistable situation, as discussed in the previous section, a notion
of equivalence is given to cluster pictures by [DDMM17, §3.3] and a “balanced”
cluster picture is selected as the canonical representative. Unfortunately, there
are a few things to note that make the tame case more complicated. This means
that the notion of a “balanced” cluster picture as the canonical representative
does not trivially extend. Instead we will seek to define our own equivalence
relation. First let us take a look at the complications that the tame setting

presents:

(i) It is no longer always possible to choose a model whose cluster picture
has the depth of the top cluster being 0;

(ii) It is not always possible to choose a model whose cluster picture has no
clusters (other than R) of size > g + 1;

(iii) There may be situations where we have to choose a model whose cluster
picture either has exactly one cluster of size g 4+ 1, or has two clusters of

size g + 1 where their depths are not equal.

We illustrate these complications with an example for each of these situations:
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Example 3.1.2. Let C/Q)" be the hyperelliptic curve defined by C' : y? =
2% — p, for p > 5. This has cluster picture @esev09: and Namikawa-Ueno
Type V. To obtain a cluster picture (X', R’), with dgs = 0 we could decrease
the depth of all clusters by é. This would result in Namikawa-Ueno type [5_g_g
or I§_,_,, depending on the leading coefficient. It is therefore clear why, in our
situation, we do not want to say that these are equivalent. This demonstrates

complication (i).

An alternative way of thinking about this is as follows. We still want our
classification to apply in semistable cases. That is, whatever we define to be
our equivalence relation should reduce nicely to the semistable situation. As
such, any moves we make over the ground field to obtain something equivalent
should equate to moves upstairs after taking a field extension so that we become
semistable. So, we can restrict ourselves to being able to make (at most)
combinations of the moves we can make in the semistable setting. What this
also tells us is that, if C'/ K is a hyperelliptic curve and L/ K is a finite extension
such that C'/L is semistable, we want to take the equivalence class of cluster
pictures of ¥¢/ i to be a subset of elements in the equivalence class of ¢/, after
taking the quotient by a degree [L : K| action. Some of these quotients simply
won’t make sense. Our notion of equivalence should also preserve non-trivial
orbits of roots, else certainly we will not get the detail from a classification

arising from equivalence classes of cluster pictures that we are looking for.

Example 3.1.3. We can return to Example 3.1.2 to illustrate this. After a
field extension L/Q)" of degree 6 so that C'/L is semistable, using [DDMM18,
Table 7], we can find all cluster pictures equivalent to X¢,r,. These are clusters
with Namikawa-Ueno type Iy_g_o or Ij_,_,, depending on the leading coeffi-

cient. In this case the equivalence class of Xy, is:

@9999, @00009, d for d,d' € Z.

So, we only have two other cluster pictures in the equivalence class. The

quotient of either of these by a degree 6 action is not “valid” since, by 5.1.18,
all but at most one child of any given cluster must lie in orbits of the same size.
This suggests that our equivalence relation should not produce any equivalent

cluster pictures (up to scaling the depth by an integer).

Example 3.1.4. Let C /Q;,1r be the hyperelliptic curve defined by C : y? =
z(x? — p)(x — 1). B¢ consists of two proper clusters R and s, with |R| = 6,
|s| =5, dr =0, and ds = Zi' As in the previous example, in this case we only

have 2 other possibilities for cluster pictures that lie in this equivalence class.
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Namely, a quotient by degree 4 of clusters with Namikawa-Ueno type Ig_g_¢ as
pictured in the previous example. As in the semistable setting in [DDMM18],
we want our equivalence class to have a canonical representative with an even
top cluster. This leaves us with only two choices, the cluster picture that we
started with, or the degree 4 quotient of a cluster picture of size 6 and no
proper clusters # R. By [Bis19, Theorem 1.3], we know that the children of
a cluster all lie in inertia orbits of the same size, except possibly for one child
that is fixed by inertia. This means that the latter of these two choices is not
a “valid” cluster picture since it results in two fixed children and four children
in an orbit of size 4. So, we do not want to be able to obtain a cluster picture
equivalent to Xc/gu with even size without a cluster s # R of size > g + 1.

This demonstrates (ii).

Example 3.1.5. Let C/Q)" be the hyperelliptic curve defined by C' : y? =
z(2? —p)(x —1)((x — 1)® — p3). ¥¢ has |R| = 6, with dg = 0, and two proper
children s; and s, with |s;| = 3 for i = 1,2, d,, = 3, and ds, = 2.
were to try and re-balance the depths to give s; and s, equal depths then we

If we

would need to give them both depth 1, since the distance between them must
remain fixed. However, this would mean eliminating our orbits of size 2, as the
denominators of the depths reflect the size of the orbits of children by [Bis19,
Theorem 1.3]. So, we do not to be able to choose an equivalent cluster picture

with two clusters of size g + 1 of equal depths. This demonstrates (iii).

Because of these more complicated situations, it is now clear that extend-
ing the notion of equivalence from [DDMM18] is not as straightforward as one
might initially hope. Instead we will use, but adapt, their method of passing
to the corresponding BY tree of a cluster picture, and calculating the centre
of the core to establish an equivalence relation.

It is important to note that the core, as they defined it, no longer com-
pletely determines what we would like the equivalence classes of open quotient
BY trees to be (and therefore what we would like the equivalence class of clus-
ter pictures to be), as it did in the semistable case. It is now possible for two
cluster pictures which we would like to define to be non-equivalent, to have

open BY trees with the same core. This is illustrated in the following example.

Example 3.1.6. Let C; and C; be hyperelliptic curves over Q, defined by

equations

Ci:y® = pa(a? = p°) (@ — D((z = 1)* = p°),
Cyry® = (27 = p")((x — 1)° = p°).
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Note that C5 is semistable, whereas C is not. Therefore, we want to define an
equivalence relation which gives the cluster pictures of C'; and Cs, pictured in

Figure 3.1 to be non-equivalent. It is not hard to check that C; and C5 have

(€=9:699) (©@9,699),

(a) 201 (b) ZCz

Figure 3.1: Cluster pictures of C7 and Cb.

open BY trees Ty and Tj respectively as shown in Figure 3.2. The cores T}

and T, turn out to be isomorphic, as shown in Figure 3.3.

5 3
2 2 3 1
o o 0 o0 0
g1 g0 g1 g1 90 g1
(a) Open BY tree of C; (b) Open BY tree of Co

Figure 3.2: The open BY trees of C; and C5.

4

o—0
gl gl

Figure 3.3: Core of the open BY trees of C'y and Cs

This demonstrates that the core of the associated open BY tree is no
longer enough to completely determine equivalence classes with our desired
properties. Something extra is needed. The aim for this section is to illustrate
how we need to adapt BY trees. As a starting point, note that open BY trees
only encode the depths of proper clusters s # R, that is the depth of R cannot

be reconstructed from the open BY tree.

Example 3.1.7. Let C; and C, be hyperelliptic curves over Q,, with p > 3,
defined by equations

Croy?=(a® —p)* - p'
Cyry® = (2 —p)((x —1)° = p).

The cluster pictures of these two curves are shown in Figure 3.4 below. Since
these are both genus 2 curves, we can check their reduction types using Sage

and find that C'; has Namikawa-Ueno type 2IV — 0 and C5 has type II —II—0.
Therefore, we do not want C; and Cs to have equivalent cluster pictures. It
is not hard to check that both C; and C5 have open BY tree T" as shown in

Figure 3.5. Given T, we have no way of knowing which of these two cluster
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[gg); (@99.:699]

1
30

(a) ECI (b) e,
Figure 3.4: Cluster pictures of the hyperelliptic curves Cy, and Cs.

1 1

3 3
—o—0

g1 g0 g1

Figure 3.5: Open BY tree T of both Cy and Cs

pictures 1" came from. In particular we have no way of knowing whether or

not the top cluster had integer depth.

3.2 Marked BY Trees

To solve the problem discussed at the end of the previous section we introduce
a marked point on the open edge which gives us the depth of the top cluster.
We also slightly adjust the lengths of yellow edges.

Definition 3.2.1. Let X be a cluster picture with top cluster R and depth
dr > 0,and T' = T'(X) its associated open BY tree as described in Construction
2.2.10, but with all edges (except the open edge) now assigned length d,. We
define the marked point of T' to be the point on the open edge distance dgr
from vy, the vertex corresponding to R. A marked BY tree is an open BY

tree with marked point.

It is important to emphasise that the Galois action on the cluster picture
can be attached to the associated marked BY tree, and this is certainly how
we should be viewing marked BY trees. To illustrate how the addition of the
marked point is useful let us go back to Example 3.1.7.

Example 3.2.2. Let C] and Cs be as in Example 3.1.7. Their open BY trees
are the same, however we are able to distinguish between their marked BY

trees due to the marked points. These are shown in Figure 3.6 below.

m m
! ! ! !
3 3 3 3
@ @ @ @ @ @
g1 90 g1 g1 g0 g1
(a) Marked BY tree of C (b) Marked BY tree of Cy

Figure 3.6: The marked BY trees of C1 : 32 = (22 — p)® — p*, and Cy : 3% =
(2® = p)((z = 1)° = p).
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Unfortunately, when we pass to the core we eliminate the open edge, losing
the key information that the marked point adds. In passing to the core we also,
therefore, come up with the same problem that we had before. Two marked
BY trees, which we would like to not be equivalent, have the same core. For
instance 77 and 75 in Example 3.2.2 have the same core. It is also important
to note that, unlike in the semistable case, the open edge may not be always
moved by an integer amount in all directions. This is due to the open edge
of a cluster picture always being in a trivial inertia orbit so, for instance, we
cannot move it to a vertex which itself is in a non-trivial inertia orbit. To solve
this and make things easier we turn to quotient trees, objects that we will see

later are in fact quotients of marked BY trees by their Galois action.
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Chapter 4

Open Quotient BY Trees as
Combinatorial Objects

4.1 Open Quotient BY Trees

In this section we introduce open quotient BY trees. As with BY trees in
[DDMM17], these can be defined as standalone objects as well as objects as-
sociated to cluster pictures. For now we will focus on them as purely combi-
natorial objects, and will not link them back to cluster pictures until Chapter
5. This is to simply emphasise that the work done this chapter does not rely
on curves or indeed even on polynomials. Of course, for this to be practically
useful for our aims we do need to make this link later. After we make this link,
any equivalence relation on open quotient BY trees can be translated to an
equivalence relation on cluster pictures. For now let us just say that the open
quotient BY trees we define in this section will later be shown to be quotients
of marked BY trees associated to hyperelliptic curves by a Galois action. In
particular, we will prove in Section 5.1 that the open quotient BY trees de-
fined here are in one-to-one correspondence with objects associated to cluster
pictures (once we restrict ourselves to the situation where dg > 0). Here edges
and vertices are assigned multiplicities which will turn out to be in accordance

with the Galois orbits of clusters. We will make use of the following notation.

Notation 4.1.1. Let T be an (open or closed) tree with a two colouring,
blue and yellow on vertices and edges, equipped with a multiplicity function
M :V(T)UE(T) = Z- and a genus function g : V(T') — Z>(. For every
vertex v € V(T') define

29()+2— Y MO ify s blue,

_ e€E(T), blue
S(U? T) - incident to v

0 if v is yellow.

When there is no risk of confusion we may shorten this notation to s(v).

Remark 4.1.2. We will see later, in Construction 5.1.9 where we associate a
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cluster picture to an open quotient BY tree 7', that the notation s(v,T') refers
to the number of singletons which lie in each cluster arising from a blue vertex
v € V(T). Likewise if ¥ is a cluster picture, and X an orbit of clusters then
when we later define an open quotient BY tree associated to X, we will see
that every s € X has s(vx,T) singletons where vy € V(T') arises from X. It is
for this reason that, if 7" is an open quotient BY tree, in Definition 4.1.3 (vi),
we specify that s(v,T") must be non-negative for every blue vertex v € V(T).
It is also worth noting that s(v,T") was not only defined for open quotient BY
trees, so we will be able to make use this notation later when we discuss closed

quotient BY trees and cores in Section 4.3.

Definition 4.1.3. An open quotient BY tree is a finite tree T' with a unique
open edge €, a marked point m which lies on the closure of the open edge, a
genus function g : V(T') — Z>o, a multiplicity function M : V(T) U E(T) —

Z~0, and a 2-colouring blue/yellow on vertices and edges such that:

(i) If v is a yellow vertex, then v has genus g(v) = 0, all edges incident to v

are yellow, and

> g

=

e edge incident to v

(ii) Let vy be the unique vertex incident to . Then the embedded path from

vp to any vertex v has non-decreasing multiplicities.

(i) Let v € V(T') be any vertex, then there exists some n € Z- such that
either 1 or 2 edges incident to v have multiplicity M (v) and all remaining

incident edges have multiplicity nM (v). Furthermore, M(e) = 1.

(iv) If v is blue then the genus of v is such that:

e If only one incident edge, say e, has multiplicity M (v) and all other
incident edges have multiplicity nM (v) for n € Z~q, where e = ¢ if
v = vy, then
n | 2g(v) + 1 or 2g(v) if e is blue,
n | 2g(v) +2 or 2g(v) + 1 if e is yellow.

e If two incident edges, say e; and es, have multiplicity M (v) and all

other incident edges have multiplicity nM (v) for n € Z-o, where



4.1. Open Quotient BY Trees 56

e € {e1, e} if v = vy, then

n | 2g(v) if e; and es are both blue,
n | 2g(v) 4+ 2 if e; and ey are both yellow,

n | 2g(v) + 1 if e; and ey are different colours.

Note that when n = 1 this means that there is no constraint on what

values g(v) can take.
(v) Blue vertices of genus 0 have at least one yellow incident edge.
(vi) For every vertex v € V(T), s(v,T) > 0.

As in the case of open BY trees in Section 2.2, an open quotient BY tree T has
a unique open edge which is “missing” one vertex. We refer to this “missing”

vertex as oo.

Remark 4.1.4. Note that condition (iii) means that for a vertex v, if deg(v) =
1 the only edge incident to v will have multiplicity M (v), and if deg(v) = 2 then
it is also possible that both incident edges have multiplicity M (v). However,
in every other situation there will be at least one edge of multiplicity nM (v),
although it is possible that this is equal to M(v), in which case all edges

incident to v have equal multiplicity.

Lemma 4.1.5. Let T be an open quotient BY tree, and e € E(T) a closed
edge between two vertices v1 and vy. Then M(e) = max {M (vq), M (vy)}.

Proof. Note that, for any vertex v,

M(v) = min {M(e)}.
edges, e

So, M(v;) < M(e) for i = 1,2. Suppose that M(vy) > M(vy). Condition (ii)
tells us that M (vy) > M( ) > M (v3). So, we obtain the inequality M(e) >
M(vy) = M(e) = M(vy), m

M (e) = max {M(vy), M (v

meaning we must have M (e) = M (vy). Therefore

2)}- 0

Remark 4.1.6. As a result of this lemma, the multiplicities of edges can easily
be recovered from the multiplicities of vertices. So, we omit the multiplicities

of the edges when drawing open quotient BY trees.
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Example 4.1.7. The following is an example of an open quotient BY tree:

m. g2,M1_~ 40,M2 g0, M4
&
g1,M1

Example 4.1.8. However, if we instead consider the following, then we find
it is not an example of an open quotient BY tree:
v, V3

@
mog2,M1_~ 40,M2 go,M3

€ v
g0, M1

U1

In particular, vy is a blue vertex of genus 0 but does not have any incident yel-
low edges, therefore does not satisfy condition (v). Furthermore, by condition
(i), v3 would require the edge [vq, v3] to have multiplicity M (vs) = 3, whereas
ve would require the edge [vq, v3] to have multiplicity divisible by M (vy) = 2.

So, condition (iii) is also not satisfied.

Remark 4.1.9. From now on, we will omit writing the genera of yellow ver-
tices and only write their multiplicities, since every yellow vertex in an open

quotient BY tree will have genus 0.

Lemma 4.1.10. Let T be an open quotient BY tree. The union of all multi-

plicity 1 edges and vertices, T, of T is always non-empty and connected.

Proof. Label the open edge of T" by . By condition Definition 4.1.3 (iii),
M(e) = 1. Furthermore, by (iii), for every vertex v the embedded path from

v to v, the unique vertex incident to ¢, has non-decreasing multiplicities. [J

Notation 4.1.11. Like BY trees (see Section 2.2), as a topological space, an
open quotient BY tree T" can be written as T" = T}, UT,,, with Tj the blue part,
and T, the yellow part. Note that T;, C 7" is a closed subset.

Definition 4.1.12. Two open quotient BY trees are isomorphic if there is
a homeomorphism between them that preserves their defining data (vertices,

edges, genus markings, multiplicities, and colouring).
We can also define a metric on open quotient BY trees as follows.

Definition 4.1.13. A metric open quotient BY tree is an open quotient BY
tree T', with open edge € and marked point m, along with a distance function
d:T xT — Qs (on T as a topological space) such that, for all v € V(T'):
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(i) If deg(v) =1 then
denom(d(v,m)) | M(v)(2g(v) + 2 — #{blue edges incident to v}) or
denom(d(v,m)) | M(v)(2g(v) + 1 — #{blue edges incident to v}).

(ii) If deg(v) = 2 and both edges incident to v have equal multiplicity then
denom(d(v,m)) | M(v)(2g(v) + 2 — #{blue edges incident to v}).

(iii) Otherwise, v has either one or two incident edges of multiplicity M (v)
and all others have multiplicity nM (v) > M (v), and d(v, m) is such that
lem(M (v), denom(d(v, m))) = nM (v).

We write I(e) for the length of an edge e € E(T).

Remark 4.1.14. For v,v" € V(T) then d(v,v") = d(v, m)+d(v', m)—2d(w, m),
where w is the closest vertex to v and v’ that lies on both the embedded paths

between v and m, and v' and m.

Remark 4.1.15. Alternatively, to define a metric on an open quotient BY
tree we could simply have asked that for every vertex v € V(T') we can take

_ denom(d(wim)) -
n= gcd(deﬁofn(d(v?’m))’M(v)) in Definition 4.1.3.

Example 4.1.16. It is possible to put the following metric on the open quo-
tient BY tree from Example 4.1.8:

m  g2,M1 g()C,>M2 g0, M4
&
1 g1, M1
3

It is worth noting that this is not the only metric we can give to this tree. For
example we could give it any metric where the edge lengths had denominators

as in the above metric.
It is worth noting the following, as we will make use of this later.

Proposition 4.1.17. Let T be a metric open quotient BY tree with marked

point m. For every v € V(T), lcm(denomﬁEZSm))’M(v)) | s(v,T) or s(v,T) — 1.

Proof. Suppose first that deg(v) = 1. By Definition 4.1.13, we have that

denom(d(v,m)) | M(v)(2g(v) + 2 — i — #{blue edges incident to v}),
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for i = 0 or 1. Since v has only one incident edge, which has multiplicity M (v)

by construction, we have

Z M(e) )0 if the incident edge is yellow,

e, blue edge M(v) 1 if the incident edge is blue.
incident to v

In both cases we get

M (e) o
Z (o) = #{blue edges incident to v}.

e, blue edge
incident to v

Therefore, we have that M (v)(2¢(v) + 2 — #{blue edges incident to v}) =
M (v)s(v,T'). This gives denom(d(v,m)) | M(v)s(v,T) or M(v)(s(v,T) — 1),
and so certainly

lem(denom(d(v, m)), M(v))
M(v)

| s(v,T) or s(v,T) — 1.

Suppose instead that deg(v) = 2 and both incident edges have equal mul-
tiplicity. Definition 4.1.3 (iii) tells us that both these edges have multiplicity

M (v) and a similar argument to above works.

In all other cases, Definition 4.1.13 tells us that
lem(denom(d(v,m)), M (v)) = max{M(e) | e edge incident to v}.

Suppose that v has only one incident edge of multiplicity M (v), which is
coloured blue, and all other incident edges have multiplicity max{M (e) |
e edge incident to v} > M (v). Then Definition 4.1.3 (iv) tells us that

lem(denom(d(v, m)), M(v))
M(v)

| 2g(v) + 1 or 2g(v).

Note that in this situation

s(v,T) =2g(v) + 2 — Z M((ze};’

e, blue edge
incident to v

=2¢g(v) + 1 — (#{e € E(T}) incident to v} — l)lcm(denom$EZ;m))’M(v)).

Therefore,

lem(denom(d(v, m)), M (v))
M(v)

| s(v,T) or s(v,T) — 1.
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The remaining cases can be dealt with in a similar way by referring to Defini-
tion 4.1.3 (iv). O

4.2 Moving Between Open Quotient BY Trees
and Open BY Trees

The definition of an open quotient BY tree has been carefully constructed to
coincide with quotients of open BY trees. In particular, let C' be a hyperelliptic
curve with tame reduction over K, and L/K be a tame field extension such
that C'/L is semistable. We will see later in Section 5.1 how to associate open
quotient BY trees, say T to C/K, and 7" to C'/L. The tree T is defined
carefully, so that it is the quotient of 7" by the action induced by Galois. This
is proved explicitly in Proposition 6.1.3, once we have made the link between
open quotient BY trees and cluster pictures. For now, it will be useful in
proofs to be able to explicitly pass between open quotient BY trees and open
BY trees, so in this section we make the quotient map and its inverse precise.

First let us construct an open BY tree from an open quotient BY tree.

Definition 4.2.1. Let 77 be an open BY tree with a cyclic group of automor-
phisms acting on the vertices, then ¢(7”) is the quotient of 7" by this action,
and is itself a tree. Of course, ¢(7") depends on the given cyclic group of
automorphisms, however in practice this group is always clear from context so
the notation ¢(7") does not show this.

Conversely, let T be an open quotient BY tree. Then we write ¢~ (7T')
for the unique tree obtained from T by letting every vertex v and edge e of T
give rise to M (v) vertices and M (e) edges respectively, in the way one would

expect.

That, for an open quotient BY tree T, ¢~!(T) exists and is unique can be

seen clearly from the following precise construction.

Construction 4.2.2 (¢~ (T)). Let T be an open quotient BY tree, then we
construct an open BY tree ¢~1(T) such that every vertex v € V(T') gives M (v)
vertices ¢~ (v)1, ... ¢ (V) m@) in ¢ H(T), all coloured the same as v and with
9(g7 (v);) = g(v) for all 1 < i < M(v). The edges of ¢~'(T') are as follows:

o if v, € V(T) are adjacent vertices with M (v) < M(v'), then there are
edges in ¢ 1(T') between ¢~ (v); and ¢ (V') mwr) e @ (V) My s
(z—l)W—i—l Bvien

for 1 < i < M(v). These edges are all coloured the same as the edge

between v and v/,
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e if vy is the unique vertex in 7" adjacent to the open edge €, then M (vy) = 1
so there is just one vertex ¢~ (vg); in ¢~'(T') arising from vy. We attach

an open edge £ to ¢~!(vp); and colour it the same as €.

Note that this means every edge e € FE(T) gives rise to M(e) edges
{a7 (e, ...,qa7 (e)m(e)} in ¢ 1 (T). Furthermore, ¢~'(T') comes with a natural
automorphism. In particular, for e € E(T') the edges {g ' (e)1,....¢  (e)m(e)}
in ¢7'(T) are in an orbit of size M(e), and for v € V(T) the vertices
{7 (v)1,..., ¢ (V)@ } are in an orbit of size M(v). We can use this to
define a surjective graph morphism ¢ : ¢~ }(T) — T. We say that T is the
quotient of T' = ¢~ *(T) and write T = ¢(T").

Example 4.2.3. Take T to be the open quotient BY tree as in Example 4.1.8,
shown again below. Then ¢ !(T) can be constructed following Construction
4.2.2, to give the tree pictured below. Note that in this example ¢~ (T is

indeed an open BY tree. This is proved in general shortly. Assume instead

90 ® 50
@ o @ @90
mogZ,M1_g0,M2  gO,M4 g2 %) @90
&
.\.gl'm .\. ® 40
(a) Open quotient BY tree T g1
(b) ¢~ (T)

Figure 4.1: A example of the construction of ¢~ 1(T).

that we were given the open BY tree ¢~ !(T'), but not T, with a cyclic group
of automorphisms acting on ¢~ !(T") such that the four genus 0 blue vertices
were in an orbit of size 4 and the two yellow vertices were in an orbit of size
2. Then we can recover T by taking the quotient of ¢~!(T), provided we keep
track of the marked point.

Remark 4.2.4. Should T or 7" be metric trees, then these metrics can be
given to ¢~ }(T) and ¢(T"), respectively. At various points we will want to
refer to different metrics. For our current purposes a non-metric version is
all we need. However, later in Section 5.2 we describe the metrics so that for
e € E(T) the length of each g1 (e); is [(¢™!(e);) = I(e), and for each ¢’ € E(T"),
l(q(e')) = l(€¢’). In Section 6.1 we define a metric that allows us to compare

open quotient BY trees with open BY trees after taking field extensions.

Notation 4.2.5. If there is only one vertex in the preimage of a vertex v €
V(T), i.e. M(v) = 1, then we denote this unique vertex in V(¢ '(T)) by

¢ '(v) =g (V).
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Theorem 4.2.6. Let T be an open quotient BY tree. Then ¢~ *(T) is an open
BY tree.

Proof. One can verify that conditions (1), (2), and (3) of Definition 2.2.1 are

satisfied as follows:

(1) A vertex v € ¢ (T is yellow if and only if g(v) is. Since every yellow
) M) >

3 we conclude that yellow vertices in ¢~!(7") have genus 0, degree > 3,

vertex in T has genus 0, only yellow edges, and

v’ incident to g(v

and only yellow edges;

(2) Blue vertices in V(T") of genus 0 have at least one yellow edge, therefore

the same is true in ¢~ (7);

(3) Let v € V(¢ Y(T)). Then,

) +2> Y MO

e, blue edge
incident to g(v)

M(e)
M (q(v))

Each edge e incident to ¢(v) gives rise to edges incident to v, so

we can conclude that

2g(v) + 2 = 2¢(q(v)) + 2 > #{blue edges incident to v}.

O

Proposition 4.2.7. Let T be an open quotient BY tree, then q(q~*(T)) = T,

where the quotient action on q~*(T) is the natural action arising from T.

Proof. The proof of this follows trivially from the proof of Lemma 4.4.4. [

4.3 Closed Quotient BY Trees and Cores

Recall that the classification of open BY trees relies on considering their cores,
which are maximal closed BY subtrees. In this section we look to define a
similar notion for open quotient BY trees. Unfortunately, closed quotient BY
trees turn out to be difficult to define in a way that is as practically useful
as closed BY trees. However, we instead make a slight adjustment in our
approach in later sections, which still allows us to use cores of open quotient
BY trees to define an equivalence relation.

Before we can define a core of an open quotient BY tree, we first need to

define closed quotient BY trees and subtrees. However, it is worth highlighting
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that these are only used for the purpose of obtaining the core. We will later

see that Proposition 4.3.9 gives a better way of thinking about how to obtain

the core. For this reason one should not be overly concerned with the specifics

or remembering the criteria in Definitions 4.3.1 and 4.3.2.

Definition 4.3.1. A closed quotient BY tree is a finite tree T with a genus

function g : V(T') — Zs¢ on vertices, a multiplicity function M : V(T') U

E(T) — Z~¢ on vertices and edges, and a 2-colouring blue/yellow on vertices

and edges such that:

(i)

(i)

(iii)

yellow vertices have genus 0, only yellow edges, and if v is a yellow vertex
of degree deg(v) > 2 then

O R
e, edge M(U)
incident to v

blue vertices of genus 0 have at least one yellow edge, or a blue edge of

multiplicity 2;

every vertex v € V(T') has

2g(v) +2 > > M)

v/, blue vertex
adjacent to v in Tj

Definition 4.3.2. A closed quotient BY subtree of a (closed or open) quotient
BY tree T is a closed quotient BY tree 7" such that:

e As a topological space, T" is a union of vertices and edges of T', and is

closed in T'.

The vertices of T” are exactly those vertices in T' that are in 7" as a
topological space, except for those of genus 0 that have degree equal to
2 and both incident edges have multiplicity 1 and are the same colour as

the vertex. These exceptional vertices become points on the edges of T".

The genus of a vertex of 7", and the multiplicities of the vertices and
edges of T" are the same as in T'. Note that any two edges of T that were
‘combined’ by removing an exceptional vertex both had multiplicity 1 in
T, so this does not cause any problems in defining the multiplicities of

edges in T".
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Example 4.3.3. Let us consider again the open quotient BY tree T as in
Example 4.1.8:

V2 U3

@ @
m. g2,M1_~ 450 M2 g0, M4
&

Vo g1, M1

U1

Here we give both an example and a non-example of closed quotient BY sub-
trees of T'. Let T7 and T, be as shown below in Figure 4.2 below. Then 77 is

V2 V3
o &
g2M1 g0, M2 g0,M4 o
[ g0, M4
Vo
(a) T (b) T3
1

Figure 4.2: An example and a non-example of a closed quotient BY subtree of T

a closed quotient BY subtree of T'. However, T, is not a closed quotient BY
subtree of 71" since it has a genus 0 blue vertex which has no incident edges in
Ty. So, vy € V(T3) does not satisfy condition (ii) of Definition 4.3.1 and is not

a closed quotient BY tree, thus cannot be a closed quotient BY subtree of T

Definition 4.3.4. Two closed quotient BY trees are isomorphic if there is
a homeomorphism between them that preserves their defining data (vertices,

edges, genus markings, multiplicities, and colouring).

Closed quotient BY trees will not be used in the same way as the closed BY
trees were in the semistable situation, where equivalence classes were classified
by closed BY trees. Closed quotient BY trees do not have anywhere near
enough conditions on them to make them practically useful as standalone
objects. Trying to define additional conditions which would enable them to
be used in such a way is hard, as closed quotient BY trees do not have a
defined marked point (which we have already seen will be key for determining
equivalence classes). Instead, we simplify the definition and will only use closed
quotient BY trees as subtrees of open quotient BY trees (or subtrees of closed
quotient BY trees which are themselves subtrees of an open quotient BY tree).
This allows the conditions that open quotient BY trees satisfy to be inherited

by any closed subtrees that we make use of.

Definition 4.3.5. The core T of an open quotient BY tree T is its maximal

closed quotient BY subtree.
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Remark 4.3.6. Note that a metric on an open quotient BY tree induces a
metric on all closed quotient BY subtrees, in particular on the core. We require

isomorphisms of metric trees to preserve distance.

Example 4.3.7. Let T be the metric open quotient BY tree shown in Figure
4.3. The core of T is the maximal closed quotient BY subtree and is shown in
Figure 4.4.

1 v U3

3
mo gOML~g0M1  g1,M3
Vo
11 g2, M1

5

Figure 4.3: Metric open quotient BY tree T

38
1% E %) V3

o—©0 @

g2,M1 g0, M1 g1, M3

Figure 4.4: Core T of T.

One can easily verify that 7" is indeed a closed quotient BY subtree. To
see that T is the core we must check that it is maximal. Let T} be the closed
tree obtained by deleting just the open edge of T, as shown in Figure 4.5a.
Note that, as a topological space, T} is the maximal closed subspace of T
However, T} is not a closed BY subtree of T', since vy has genus 0 and degree
2 in T} with both incident edges of multiplicity 1. So, by Definition 4.3.2, v,
should become a point on and edge, giving T. Thus 7T is indeed the core of
T. Any closed quotient BY subtree of T' will be contained in T, for example
the closed tree T, shown in Figure 4.5b is a closed quotient BY subtree and is

contained in 7, as a topological space.

l 2] V3
3 . v 1 V. v
g0, M1 g0, M1 g1,M3 0 3 2 3
0,M1 , M1 1, M3
Yo IN@ g2, M1 g 90 g
5 7 (b) TS
(a) Ty

Figure 4.5: Subtrees of 7" which are not the core.

Remark 4.3.8. The three criteria in Definition 4.3.1 nearly mirror the criteria

for a finite tree to be a closed BY tree, given in Definition 2.2.1, but with some
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minor adjustments and the inclusion of multiplicities. The main difference is

we only require yellow vertices to satisfy

M{e)
M (v)

>3

e, edge
incident to v

if they have degree > 2. For BY trees, we required all yellow vertices to have
degree > 3. This adjustment will ensure that, when R is even and R = s; U sy
with X = {s1,82} a Galois orbit, vg is a vertex of the core. If vg did not lie
on the core T, then T would have no multiplicity 1 components, and “undoing
the quotient” would result in a disconnected graph. Another way to see why
we wish to include vg in the core is to consider ¢~ (7). Here, when passing
to the core of ¢ }(T'), ¢ *(vg) would be considered as a point on an edge
of q/—?(?) Taking the quotient of q/—?(?) would result in the edge between
vs, = q *(vx)1 and v, = ¢ (vx)2 being “folded in half on top of itself”, thus
becoming an edge with only one defined end point. Adding v in as a vertex
makes this process make sense. For more clarity see Proposition 4.3.15, and

the construction preceding it giving the quotient map on closed BY trees.

Proposition 4.3.9. Let T be an open quotient BY tree. Then the core T is
unique and obtained from T by removing a few vertices and edges near co. In

particular, T is obtained from T in one of the following ways:
(1) by deleting the open edge,

(i1) by deleting the open edge and viewing vy as a point on an edge, provided
that g(ve) = 0, vy has exactly two incident closed edges e and €', M(e') =

M(e) =1, and vy, e, and €' are coloured the same,

(111) by deleting the open edge, along with vy and a unique blue closed edge
e incident to vy, provided vy is blue, g(vg) = 0, degp(ve) = 2, and
M(e) = 1.

Proof. Let vy be the unique vertex which is incident to the open edge. To get
to T from T, the open edge certainly needs to be removed. If after removing
the open edge, vy satisfies Definition 4.3.1 we are done. Otherwise, vy must
violate Definition 4.3.1. Note that vy must satisfy condition (iii) of Definition
4.3.1 since, in T, vy satisfies condition (vi) of Definition 4.1.3, and the right
hand side of each of these conditions is either decreased or remains constant
by removing the open edge from vy. So, vy must violate condition (i) or (ii) of
Definition 4.3.1.
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If vy violates (i) then vy must be yellow and have degree > 2 in 7'\
{the open edge} with

M(e
S (e) _ Y M(e) <.
M(Uo)
e, closed edge e, closed edge
incident to vg incident to vg

This is only possible if vy has degree 2 in T'\ {the open edge}, and both incident
closed edges have multiplicity 1. Declaring vy to not be a vertex, and be a point
on an edge gives a closed BY tree.

If vy violates (ii) then (since vy satisfies Definition 4.1.3 (vi) in T") vy must
have degree 1 or 2 in T\ {the open edge}, be blue of genus 0, with no yellow
edges and no blue edge of multiplicity 2. In particular, either vy has either
one or two closed, blue, incident edges of multiplicity 1 and no other closed
incident edges. If vy has one incident blue edge of multiplicity 1, then removing
v and its incident blue edge results in a closed BY tree. If instead vy has two
incident blue edges of multiplicity 1, then declaring vy to not be a vertex gives
a closed BY tree. O]

Proposition 4.3.10. Let T be an open quotient BY tree. Then the core T

contains at least one multiplicity 1 vertex.

Proof. This follows as a direct consequence of the proof of Proposition 4.3.9.
In particular, as stated in Proposition 4.3.9, we noted that at most one vertex,
namely vy, is removed when passing from T to T, be that by either deleting
v or viewing it as a point on an edge. However, if vy is the only multiplicity
1 vertex of T' then, in the proof of Proposition 4.3.9, vy never gets deleted and

we see that vg must lie on the core. O

Remark 4.3.11. It is also useful to note that, whilst the relationship is not
quite as strong in the closed case, we can apply the quotient map and inverse
constructed in Section 4.2 to closed quotient BY trees and closed BY trees.
However, a slight tweak is needed given how we remove vertices and edges near

oo as discussed in Remark 4.3.8.

First, as hinted at above, we are able to extend our construction of the

quotient map and its inverse given in Construction 4.2.2.

Construction 4.3.12 (¢~ '(T")). Let T" be a closed subtree of an open quo-
tient BY tree T. We say that a vertex v € V(T”) with genus 0, multiplicity 1,
degree 1 in T, and such that its only closed incident edge has multiplicity 2

and is coloured the same as v, is exceptional. We construct a graph ¢~ '(T”) in
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the following way. Every vertex v € V(1”) that is not exceptional gives M (v)
vertices ¢~ (v)1,...¢ (V) m() in ¢ H(T7), all coloured the same as v and with
(g7 (v);) = g(v) for all 1 < i < M(v). The edges of ¢~*(1") are as follows:

o If v,0' € V(T') are non-exceptional and adjacent with M (v) < M(v'),
then there are edges in ¢~ *(T) between ¢! (v); and qil(v’)(i_l)%ﬂ,
..,q_l(v’)iM(v/), for 1 < i < M(v). These edges are all coloured the
same as the I\égige between v and v'.

e If v is an exceptional vertex and the only vertex adjacent to v is v/, then
M(v") = 2, and we have an edge between ¢~'(v'); and ¢~ (v')2. We call
such edges of ¢~'(T') exceptional.

e If vy is the unique vertex in 7" adjacent to the open edge ¢, then M (vy) = 1
so there is just one vertex ¢~ (vg); in ¢~ '(T') arising from vy. We attach

an open edge £ to ¢~ !(vp); and colour it the same as ¢.

We can use this to define a surjective graph morphism ¢ : ¢7'(7") — T'. We
say that T" is the quotient of ¢~ '(T").

Note that the use of the term exceptional here, although it may seem
contradictory to the use of the term in Definition 4.3.2, does actually coincide.
If one were to instead precisely construct the “undone quotient” of 7", where
every vertex v contributes M (v) vertices, even if v is exceptional, then the
vertex arising from an exceptional vertex of 7" would be an exceptional vertex

in the sense of Definition 4.3.2.

Remark 4.3.13. Let 7" be a closed subtree of an open quotient BY tree T

Then ¢~ (T") is a tree if and only if 7" contains a multiplicity 1 vertex.

Example 4.3.14. Let T be the following open quotient BY tree:

m Vo L2 V2

o—=O L

g0, M1 g1, M2 g0, M4

Two subtrees T7 and T, of T" are shown in Figures 4.6a and 4.7a respectively.

g0
gl @ 7 '(v2)1
-1
Vo v, v, q (v

o——0 o

g0, M1 gl,M2 g0, M4

g0
@ 7 '(v2):
@ 7' (v2)3

g7 (v1)2 g0
(a) Ty g1 @ 7' (v2)s

g0

(b) ¢~ (T1)

Figure 4.6: Subtree T} of T and ¢~ 1(T)
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V2 a7 w1 W)z (s 4 '(v2)s

@ Y ) ) °®
g0, M4 g0 go g0 90
(a) Tz (b) ¢~ (T3)

Figure 4.7: Subtree of T of T and ¢~ (73)

Using Construction 4.3.12, we can construct both ¢~!(73) and ¢~ (%),
pictured in Figures 4.6 and 4.7 respectively. We see that T} contains a mul-
tiplicity 1 vertex, thus ¢~!(T}) is connected, whereas Ty does not and ¢~!(T3)
is not a tree. We can further see that, in 77, vy is an exceptional vertex and
v is the unique vertex adjacent to vy, with M(v;) = 2. Therefore, vy does
not contribute a vertex to ¢~*(7}), instead we obtain an edge between ¢~ (v;);

and ¢~ (tn)s.
Proposition 4.3.15. Let T be an open quotient BY tree. Then ¢ ' (T) and

q~Y(T) are isomorphic as trees.

Proof. By Proposition 4.3.9, we know that T is obtained from T by either,
removing ¢, removing € and viewing vy as a point on an edge, or removing
‘e — genus 0, multiplicity 1 blue vertex, vy — unique closed edge incident
to vp, coloured blue and with multiplicity 1°. We will consider each of these
cases separately. Note that, the preimage of vy under ¢ consists of exactly one
vertex, denoted ¢~!(vg), which is incident to the open edge of ¢~'(T).

Suppose first that T is obtained by removing e and viewing vy as a point
on an edge. Then, by Proposition 4.3.9, we know that vy must be a multiplicity
1 vertex, with precisely 2 incident closed edges, each coloured the same as v
and with multiplicity 1. Therefore, ¢~!(vg) has exactly 2 incident closed edges,
each coloured the same as ¢~ *(vg). By [DDMM17, Proposition 5.7, we know
that q/—?(?) is obtained from ¢~!(T') by deleting the open edge and viewing
¢ '(vy) as a point on an edge. Thus, ¢~'(T) and q:\(?) are isomorphic as
graphs.

Supposed instead that 7" is obtained from 7 by removing ‘e — genus 0,
multiplicity 1 blue vertex, vy — unique closed edge incident to vy, coloured
blue and with multiplicity 1’. Then, ¢~ *(vg) is a genus 0 blue vertex and has
precisely one incident closed edge, which is blue. By [DDMM17, Proposition
5.7], removing the open edge of ¢~'(T) followed by ¢~'(vg) and its unique
incident closed edge, results in the core qfl\(?) So, again ¢~ (7)) and qfl\(?)
are isomorphic as graphs.

Finally, let us suppose that T is obtained from 7 by removing just e.
Then, by Proposition 4.3.9, vy must satisfy Definition 4.3.1. We consider the

two different cases for the colouring of vyg.
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If vy is blue, then either g(vy) > 0, or g(vy) = 0 and vy has at least one
yellow incident closed edge, or a blue incident closed edge of multiplicity 2. If
g(vg) > 0 then g(¢g ' (vg)) > 0, so ¢~ *(vp) is certainly not removed when passing
from ¢~ (T') to q:\(?) If g(vg) = 0 and and v, has at least one yellow incident
closed edge, then ¢~!(vg) has at least one yellow incident closed edge. So again,
q (vo) is not removed when passing from ¢~1(T') to q/—?(?) If g(vy) = 0 and
vo has no incident yellow closed edge, then vy must have a blue incident closed
edge of multiplicity 2, and no other incident edges (else g(vg) # 0). So, ¢~ (v)
has exactly two incident closed edges, both of which are coloured blue. So, by
[DDMM17, Proposition 5.7], removing the open edge of ¢7*(T) and viewing
q¢ *(vg) as a point on an edge, results in the core qfl\(-f) Taking the quotient
q(q%)) of this we see that the two end points of the edge in q/—?(?) on
Which/q\_/l(vo) lies are mapped to the same vertex in q(qfl\(?)) So, ¢~ (T

and ¢~1(7T') are isomorphic as graphs.

If v is yellow then either

M(e
Z~ M((Uo)) =9

ecE(T)
incident to vg

or

M{e)
(v)

degs(vo) € {0,1} and < 3.

e€E(T)
incident to vo

In the first instance, by [DDMM17, Proposition 5.7], simply removing the
open edge of ¢~ (T') results in the core ¢~1(T'), so we are done. In the second
instance, since vy must satisfy condition (i) of Definition 4.1.3 and only the

open edge has been deleted from vy to obtain T', we must have that

degs(vg) =1 and Z %((3 =2.

ecE(T)
incident to v
So, in ¢ H(T)\ {e}, ¢ *(vp) is yellow and has exactly two incident edges, which
are both coloured yellow. Therefore, by [DDMM17, Proposition 5.7], removing
the open edge of ¢ (T and viewing ¢! (vp) as a point on an edge, results in

the core ¢~1(T). So, again ¢ *(T) and ¢—1(T') are isomorphic as graphs.  [J

Example 4.3.16. Let T be the open quotient BY tree as in Example 4.3.14.
Note that the subtree denoted by T3, pictured alongside ¢~'(7}) in Figure 4.6
is actually the core T of T. Using Construction 4.2.2, we can calculate g NT):
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g0

gl L

g0

g0 o

—1
g (T)=

o

g0

g1 o

g0

So, we do indeed have that ¢=1(T) = ¢ (7).

4.4 Centres

Much like for BY trees described in Section 2.2, for an open quotient BY tree
T, we can define a centre of the core T. Doing so will allow us to construct
an open quotient BY tree from 7" in Section 4.5 with marked point as close to

the centre of T as possible.

Definition 4.4.1. Let T be a closed quotient BY tree then we define the
following weight function w : V(T') — Zx( on the vertices of T

0 if v is yellow,
w(v) = s, T) = ME)
29(v) +2 =3 ccEmy), (o) if v is blue.

incident to v

If T" is a closed quotient BY subtree of T' then we define

1

W) = e )]

> M(v)w(v).

veT’

Furthermore, for v € V(T') we define
o(v) = max{w(T") | T" is a connected component of T\ {v}}.

Remark 4.4.2. In Remark 5.1.7 we discuss how we can view open BY trees as
open quotient BY trees with all multiplicities equal to 1. Indeed this is proved
formally in Proposition 6.1.3. Since the above definition is not dependent on
the metric, this weight function reduces to the open BY tree formula when all

multiplicities are taken to equal 1.

Notation 4.4.3. For an open or closed quotient BY tree T we write T to be

the subtree of T' consisting of all multiplicity 1 vertices and edges.

Note that, by construction, for any open quotient BY tree 7', T" is con-
nected and closed, therefore is a closed subtree of 7. However, T" is not

necessarily a closed quotient BY subtree.
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It will be useful to have defined a partial order on the vertices of an open
quotient BY tree T' by setting v" < v if v lies on the embedded path from m

to .

Lemma 4.4.4. Let T be an open quotient BY tree with core T. Then, with w
and ¢ defined as above in Definition 4.4.1, either

(i) min, 1 ¢(v) < %w(T), in which case the minimum is attained at a
unique vertex of T, and all other vertices of T* have ¢(v) > %w(T),

or

(it) min, . ¢(v) = 3w(T), in which case the minimum is attained at either
a unique exceptional vertex of T, or at precisely two vertices of T, and

these vertices are adjacent.

Proof. Let T be an open quotient BY tree with core T. Write T/ = ¢~ '(T)).
We have already proven in Theorem 4.2.6 that 7" is an open BY tree. For the
first step in this proof we note that the centre of T arises from a multiplicity
1 vertex or a point on a multiplicity 1 edge of T. By [DDMM17, Definition
5.13], the centre of T" is invariant under all automorphisms of 7”. It is possible
to describe an automorphism on 7" arising from ¢. Note that, if v € V(T') has
M(v) > 2 then v and all v' < v gives rise to M (v) identical branches in T".
The natural automorphism on 7", as described in Construction 4.2.2, permutes
these branches and fixes any elements of 7" that arose from multiplicity 1
elements of T. Any vertex v' € V(T") has degree M(q(v')). By Proposition
4.3.15, ¢ YT = qflx(f) = 7", and we know that only multiplicity 1 edges and
vertices are removed when passing from 7' to T. So, only edges and vertices
arising from multiplicity 1 edges and vertices of T' are removed when passing
from T” to T". This also gives an automorphism on 7" which fixes everything
arising from the multiplicity 1 component of 7. Denote the center of 7" by ¢.
Then we must have ¢ = ¢~'(P), where P is a multiplicity 1 vertex, or a point
on a multiplicity 1 edge of T. Recall that ¢ is either a vertex of T" or the mid
point of an edge ¢ € E(T"). Suppose first that the centre ¢ of 77 is the mid
point of an edge €’. Then €’ is either an edge in 7", in which case it arises from
a multiplicity 1 edge in T', or €’ is not an edge in 7".

If ¢ is an edge in 77, then let e € E(T) be such that M(e) = 1 and
¢ *(e) = €¢'. Note that the two end points, say v; and v,, of e must both have
multiplicity 1, and the two end points of €’ arise from these vertices.

If ¢’ is not an edge in 7" then we have an exceptional vertex v’ in 7" which

becomes a point on ¢ when passing to the core. Let w/,w!, € V(T") be the
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two end points of €/. Note that, since the centre of 7" is fixed by the quotient
action, we have just two options, either the endpoints w] and w) of ¢’ are fixed,
or wy and wj are in an orbit of size 2 (induced by the quotient action on 7”).
If w} and w) are permuted by the quotient action, then v" must be equidistant
between them, i.e. o' is the centre of 77, and in T there is a multiplicity 1
vertex v with ¢7!(v) = v/, and a multiplicity 2 vertex w with ¢! (w); = w}
and ¢~ '(w), = w). In this situation v is a vertex of T. Otherwise, if w/ and
wy are fixed by the quotient action, then v’ is also. So again, in 7', there is
a multiplicity 1 vertex v with ¢~(v) = ¢/. Furthermore, there are vertices
wy,wy € V(T) with multiplicity 1 and ¢ '(w;) = w}, i« = 1,2. The centre
of T" either lies at v’ or between v’ and w) for i = 1 or 2. That is, in all
possible situations above, the centre of 7" lies at a vertex or on an edge of T”
that arises from a multiplicity one vertex or edge of T'. Since all multiplicity 1
edges of T" have end points being multiplicity 1 vertices, we can conclude that
the minimising vertex, or vertices, of T" for ¢ arise from multiplicity 1 vertices

of T. This last sentence also holds in the case when ¢ is a vertex of 1".

Therefore, in all of these cases above, we have shown that, if ¢~1(7") N
V(T") # ), then
min o) = min (),
veV (T") veqg~ 1 (THNV (T7)
and the minimising vertex, or vertices of 7" will give the centre. If ¢~ '(T") N
V(T") = 0 then [v(T")| = 1 and the single vertex of v(7") must be exceptional.
In fact we can say in more generality, that if v(T") = {u} then, regardless of

whether u is exceptional or not, ¢~ (u) is the centre of T

Recall that, by Construction 4.3.12, that a vertex v € T corresponds to
M (v) vertices in T except when v is exceptional, i.e. has genus 0, and exactly
one closed incident edge which is coloured the same as v, and has multiplicity
2. When v is exceptional, ¢~'(v) is a point on an edge in 7. Regardless of the

colouring of v, w(v) = 0.

Choose some vertex u of T* (by Proposition 4.3.10 we know that such a
vertex will always exist). Suppose first that u is a multiplicity 1 vertex of T
such that ¢~ (u) is a vertex of T". That is, u is not exceptional. Let T1,...T,

be the connected components of T\ {u}. So, we get
o(u) = max{w(Ty),...,w(T,)}.

Note that, since u has multiplicity 1, ¢~%(T\ {u}) = ¢~ (1) \ {¢"*(u)}. The

connected components of 7"\ {¢~*(u)} will be the connected components of
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U™, ¢ Y(T;). There are n; := min,er,{ M (v)} connected components of ¢~ (T}),
which we label ¢ Y(T})1,...,q¢ (T})n,. Note that if T; has a multiplicity 1

component, this means that ¢~'(7}) is connected. For every non-exceptional
M(v)
n;

vertex v € T; there will be vertices q’l(v)(k_l)mﬂ, g N (V) e in

each of ¢ 1(T}), 1 < k < n;. Each blue edge ¢ incident to a non-exceptional
vertex v gives rise to % blue edges incident to ¢ '(v); for all 1 < j <

M (v). In particular, every non-exceptional vertex v in T is such that w(v) =
w(qg ' (v);) for all 1 < j < M(v). If v is exceptional then, as we showed above,

we have w(v) = 0. So we get

M(v)w(v)
W) = 2 e DT
B M (v)w(v)
2 inen Q)]

v€ET;, not
exceptional

Z M(v)w(v)

9

1
veT;, not
exceptional
= E w(v), forl<j<mn,
’Ueq_l(Ti)j

=w(qg (T3);), forl<j<mn,.

Thus, for every non-exceptional vertex u € V(T'), we can conclude that

d(u) = ¢(q~" (u))-

Suppose instead that u € V(T') is exceptional. So, ¢~'(u) is not a vertex
of T'. Let v be the unique vertex incident to w in 7. So, M(v) = 2, and the
two vertices in ¢~ !(v) are v] = ¢ !(v); and vh = ¢ (v)s. Note that ¢~'(u) is
the mid point of the edge e between v and v/, in 7”. By construction, ¢~ (u)
is the centre of 7', ¢(v}) = ¢(vh), and ¢~ (T \ {u}) = 7"\ {e}. In particular,
o(vy) = w(Ty) and ¢(vh) = w(T]), where Tj is the connected component of
7'\ {v}} which contains v, and 77 is the connected component of 7"\ {v}}
which contains v|. Note that 7"\ {e} has two connected components, which
are 7] and Tj. Therefore, by construction and using a similar proof to above,
one can easily show that ¢(u) = w(T) for i = 1,2. In particular, ¢(u) =

¢(v}). Since u is exceptional, it is the only multiplicity 1 vertex of T, so we

have min,eyin) $(0) = $(u) = $(§) = B(v}) = mingey ez 9(v') = ().
Furthermore, this minimum is not obtained elsewhere since V(T") = {u}.
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Finally, by a similar argument to above, and excluding any exceptional
vertices from the sum (since if v is exceptional w(v) = 0), one can show that
w(T) = w(T"). Applying [DDMM17, Lemma 5.12] gives the desired result. []

Definition 4.4.5. For an open quotient BY tree T with core T, we define the

centre, ¢, of T to be the minimising vertex or edge described in Lemma 4.4.4.

Example 4.4.6. Let T” be the following closed quotient BY tree:

, Vo v v, A
"= e—@ @ L)
gLM1  g2,M1  gO,M2  g0,M4
Note that 7" is in fact the core of the open quotient BY tree T in Example
4.1.8. To calculate the centre of T" let us first calculate the weight function,

as defined in Definition 4.4.1, for each of the vertices. We find that

w(vg) = 2g(vg) +2 — Z ]\]\44((1)60)) = 3.
ecE(T))

incident to wvo

Similarly w(v;) = 5 and w(vs) = 2, and, since vy is yellow, w(vy) = 0. To find
the centre we must calculate ¢(v) for all v € V((T")!), where ¢ is as defined
in Definition 4.4.1. That is,

$(v) = max{w(S) | S is a connected component of 7"\ {v}}.
Note that V((T")") = {vo,v1}. We find that:

d(vo) = M(v))w(vy) + M (va)w(vy) + M (vs)w(vs),
— 13,

0(00) = max{M (v)(un) 37 (M (va)(e2) + M (13)u()}.
= max{3,4},
=4.

Therefore, min,cy (7)) ¢(v) is attained at just vy, and v, is the centre of T".

Proposition 4.4.7. Let T be an open quotient BY tree, and let ¢ be the cen-
tre of the core of T. Then q~*(c) is the centre of the core of ¢~*(T), and

q(qg'(c)) = c.

Proof. The proof of this follows trivially from the proof of Lemma 4.4.4. [
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4.5 A Canonical Representative

In this section we define an equivalence relation on metric open quotient BY
trees and explain a method for finding a canonical representative. Once we
have established a relation between cluster pictures and open quotient BY trees
in Section 5.1, if desired, one can then translate this canonical representative
back into the language of cluster pictures. Roughly, the construction of the
canonical representative of an equivalence class of open quotient BY trees
follows that of open BY trees. We calculate the centre of the core and attach
an open yellow edge as close to the centre as possible. The main difference is
that we also need to keep track of our marked point, and must be more careful
about where we attach the open edge. In particular it is not always possible
to attach an open yellow edge directly to the centre, as it is in the semistable
situation. To enable a description of how the marked point can be selected,

we construct the following tree.

Construction 4.5.1 (Extended tree, B). Let T be a metric open quotient
BY tree with open edge &, marked point m, and core 7.

Define the extended tree B as follows. Perform the following moves to T,
and call the resulting tree A. For every vertex v € V((T3)?) if denom(d(v, m)) ¢
s(v,T) then add a green open edge to T at v. If the open edge ¢ of T is blue
then change the colouring of the open edge in T" to green. Furthermore, if vy,
the unique vertex incident to ¢, is blue, of genus 0, has only one closed incident
edge in T', say e, and e has multiplicity 1, then colour €, vy and e green and
view vg as a point on the open edge of A rather than a vertex.

For any leaf v € V(A) if d(v,m) ¢ Z add a black open edge to v. Finally,
at every point P on A\ {open edges of A} with d(P,m) € Z, create a vertex
at P if it was not already a vertex, and add an open black edge there. This
resulting tree is B and a metric is induced by the metric on 7" with any added

open edges being thought of as intervals [0, 00).

Example 4.5.2. Let us consider the following metric open quotient BY tree:

2 V3
m 2,M1 o ®
T — g4, g0, M2 g0, M4
£ Yo
3 g1, M1
2 n

To find the extended tree B of T' we first note that the only multiplicity 1
vertices and edges of T" are the open edge €, vy and vy, and the edge between

them. That is, T is as pictured in Figure 4.8a. Since denom(d(vi,m)) =
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3 1
" .UO 2 .171 m 1 2
g2,M1 gl,M1 g2,M1 gl,M1
(a) T! (b) Extended tree B of T

Figure 4.8: Computing the extended tree B of T'.

denom (2) = 2, and s(vy,T) = 3, we have that denom(d(vi,m)) t s(vi,T)
and therefore add an open edge coloured green to 7' at v;. Note that
denom(d(vg, m)) = 1, so certainly denom(d(vy,m)) | s(vg,T"), and we do not
add an open green edge to vy. Finally, we add an open black edge to vy, since
it is integer distance from m, and create a black vertex and black open edge
at the point on the blue edge distance 1 from m. This gives us the extended

tree B pictured in 4.8b.

Example 4.5.3. Let us consider the following metric open quotient BY tree:

1 Vs

4 3 g0, M1
T — m v 3 " 92, M1
& l l
go,M1 g1,M1 v, 3 g0, M1
2 Vs

To find the extended tree B of T' we first note that in this case 7' = T'. In this
example vy is a genus 0 blue vertex and only has one incident closed edge in
T which is blue and has multiplicity 1. As such we colour the open edge ¢, vy,
and the unique closed edge incident to vy, green and view vy as a point on the
open edge. Note that this means we view the marked point as being distance
% along the open edge from v;. As in the previous example, for each vertex
v € V(T") we check whether denom(d(v,m)) | s(v,T). Here, we find that
denom(d(vs,m)) = denom (%) = 6 { s(v3,T) = 3, thus add an open green
edge to vs. All other vertices v € V(T") \ {v3} have denom(d(v,m)) | s(v,T),
so we do not add any additional open green edges. Note that v, is a leaf in
this new tree, so we add an open black edge to v,. Finally, we add open black
edges at every point on T (provided that it is not a leaf) integer distance from
m, creating a black vertex at any such point which was not already a vertex

in V(T"). This gives us the extended tree B of T as pictured in Figure 4.9.

Figure 4.9: Extended tree B of T
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For an open quotient BY tree T, recall that the centre ¢ of T is either a
multiplicity 1 vertex, or the midpoint of a multiplicity 1 edge of T. So, we can
view ¢ as a point on T, the subtree of T' containing only the multiplicity 1

edges and vertices.

Lemma 4.5.4. Let T be a metric open quotient BY tree with marked point m,
and core T with centre c. Take B to be the tree as described in Construction
4.5.1. Let m' be a point on B with d(c,m’) minimal such that d(m’,m) € Z.

(i) If m' is green then, m' does not lie on T, and the closest point of T to

m' in B is a vertex of T.

(i1) If m’ does not lie on T and m/ is not green, then, when viewed in B, the
(necessarily unique) point of T which is closest to m' is a vertex of T.
In this situation, m' either lies on a black open edge, or lies on the open
edge of T'. Furthermore, if m’ lies on a black open edge then the closest

vertex of T' to m/ is a leaf of T".

Proof. Suppose first that m’ is green. Then m' either lies on T, or it lies
on part of B\ T'. Suppose that m’ lies on T, then since m’ is green, by
construction we must have that: either vy is blue, of genus 0, and the only
closed edge incident to vg is blue and has multiplicity 1; or the open edge of T
is blue. In the first instance, by Proposition 4.3.9, we know that T is obtained
from T by deleting the open edge (which must have been yellow), vy, and the
unique closed edge incident to vy. In the second instance, by Proposition 4.3.9,
we know that T is obtained from T by deleting the open edge. That is, in both
cases m’ does not lie on T. By construction, in both cases, the closest point
of T to m' in B is a vertex of T'.

Suppose instead that m' is green and does not lie on 7. Then certainly
m’ does not lie on 7. In this case m’ must lie on a green edge that has been
added to T* to create B. In particular this green open edge has been added
to a vertex say v of T", with denom(d(v,m)) { s(v,T). So, d(v,m) ¢ Z. The
centre of T certainly lies on 7. Therefore, the closest point to ¢ on this open
green edge that has been added to v which is integer distance from m is, the
point distance [d(v,m)] — d(v,m) from v. So, v € V(T) is the closest vertex
of T' to m/ in B and is unique in this way. Suppose that s(v,T) = 2, then
(since M(v) = 1), by Proposition 4.1.17, denom(d(v,m)) | s(v,T) — 1 = 1.
This gives that d(v, m) € Z which is a contradiction, since then we would have
denom(d(v,m)) | s(v,T) = 2. So, s(v,T) > 2, or s(v,T) = 1. If s(v,T) > 2,
then g(v) > 0. By Proposition 4.3.9, v is not deleted from 7" when passing to
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T. That is, v € V(T"). If s(v,T) = 1 there is at least one edge of multiplicity
> 2 incident to v in 7. Again, by Proposition 4.3.9, v is not deleted from T
when passing to 7. This completes the proof of (i).

Now, suppose that m’ does not lie on T, and m’ is not green. Then m/
either lies on a black part of B, or on a part of T that is deleted from 7T when
passing to the core. If m/' lies on a black part of B then, since d(m,m’) € Z,
by construction, we must have that m’ lies on a black open edge attached to a
leaf of T!. Let v be the leaf of T which by construction is the only vertex of
B adjacent to m’. That is, in T', v has exactly one incident edge of multiplicity
1 (and perhaps other incident edges of higher multiplicity). Note that m’ will
be distance [d(v,m)] — d(v,m) from v. So, by Proposition 4.3.9, we know
that v is not removed when passing to the core. Therefore, the unique point
of T* which is closest to m’ in B, is a vertex of T. Suppose instead that m/
lies on a part of T that is deleted from 7" when passing to the core. Then,
since m’ is not green we must have, by Proposition 4.3.9, that T is obtained
from T by deleting a yellow open edge (and possibly viewing vy as a point on
an edge rather than a vertex). That is, m’ must lie on the open edge of T', and
m' # vy. Then vy is the closest point on T' to m'. If vy is a vertex of T then
we are done. So, suppose that vy is not a vertex of T, that is, v is viewed as
a point on an edge of T. Since the center of T lies on T, and m’ lies on the
open edge of T', d(vg,c) < d(m’,c). Since m’ is the closest point to ¢ which is
integer distance from m, we must have that d(vg, m) ¢ Z. Therefore, vy can
have at most two incident edges of multiplicity 1. In particular, vy does not
satisfy the requirements to view vy as a point on an edge of T rather than a

vertex. So, v is a vertex of T which completes the proof of (ii). H

Construction 4.5.5 (7). Let T be a metric open quotient BY tree with
extended tree B, and let m’ be a point on B such that d(c,m’) is minimal
subject to d(m’,m) € Z. We create a new tree from 7" and m' as follows.

Either m’ lies on (T')! or it does not. We deal with these two cases separately.
Case 1. m/ lies on (T)" (so, by Lemma 4.5.4, m' is not green):
(a) If m' is a vertex of (T)' then we attach an open yellow edge to T at m/.

(b) Otherwise, m' is a point on the edge of (T)' in which case we create a
new genus 0, multiplicity 1 vertex of T at m/, coloured the same as the

edge m’ lies on, and attach an open yellow edge there.

Note that in both situations m’ is distance 0 along this new open edge.
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Case 2. m' does not lie on (T)*:

(a) If m' is green then, by Lemma 4.5.4, the closest point of T to m' on B
1S a vertex v, € V(T) Add ‘open yellow edge — genus 0 blue vertex of
multiplicity 1 — blue edge of length d(m’,v.)” to T at v.. Note that m'

is distance 0 along this new open edge.

(b) If m' is not green then let v. be the (necessarily unique) vertex of B
closest tom’. Then add an open yellow edge to T at v,, with m’ distance

d(ve,m’) along the open edge.

Denote by T*, a tree with marked point m’ obtained by an addition of
an open edge (and extra vertex and closed edge where necessary) to T, as

described above.

Example 4.5.6. Let T be the metric open quotient BY tree in Example 4.5.2.

2 vy
m 2,M1 O .
T — 92, go,M2  g0,M4
£ Vo
3N@g1, M1
2 U

By Example 4.4.6, the centre of T is v, (note the change in labeling of vertices).

So, there is a unique tree 7™, which turns out to be isomorphic to 7.

Proposition 4.5.7. Let T be a metric open quotient BY tree with marked
point m, core T and centre c. The description in Construction 4.5.5 yields
a unique tree, except when denom(d(m,c)) = 2, in which case Construction

4.9.5 yields at most two different trees, up to isomorphism.

Proof. Recall that c¢ is either a multiplicity 1 vertex, or the midpoint of a
multiplicity 1 edge of T. If d(c, m) € Z then we are done so suppose otherwise.
Certainly, by construction, there exists at least one point on B distance < %
from ¢ and integer distance from m. Suppose there are two such points, P and
P’. Take @ to be the point on B which is the centre of a (possibly degenerate)
tripod between P, P’, and c¢. If ¢ = @ then we must have d(P,P') = 1 so
d(e,P) = d(c,P") = % Otherwise, if ¢ # @ then ¢ does not lie on the path
between P and P’, and @ is a degree > 3 vertex on B. That is, in 7%, @ has
degree > 2, in particular by Definition 4.1.3 (iv) denom(d(m,Q)) | s(Q,T).
So, by Construction 4.5.1, d(m, Q) € Z, or no edges are added to T! at Q
to create B. That is, if d(m, Q) ¢ Z, deg(Q)m = deg(Q)p, so deg(Q)r > 3
and d(m, Q) € Z. Therefore, P = P’ = () and there is a unique closest point

to ¢ on B integer distance from m except in the case when denom(d(c,m)) =
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2. It remains to show that there are exactly 2 such points P and P’ when
denom(d(c,m)) = 2. However, this is straightforward as assuming there are
three distinct such points P, P’ and P” all distance % from c¢ leads to the
same conclusion as before. That is, there exists a point ) on B which is the
centre of the tripod between P, P’, and P”. If the tripod is non-degenerate
then d(Q,m) € Z, which provides a contradiction that P, P’, and P” are all
distinct. Finally, note that by construction of B, if denom(d(c, m)) = 2 there
are always two points on B distance % from c.

So, we have shown that there is a unique choice for m’ in Construction
4.5.5 except in the case when denom(d(c, m)) = 2 when there are precisely two
options. It is however possible that the two choices for m’ result in isomorphic

trees in Construction 4.5.5. O]

Proposition 4.5.8. Let T' be a metric open quotient BY tree, then a tree T™
constructed above in Construction 4.5.5 is itself a metric open quotient BY

tree.
Proof. This is proved later in Section 4.6, and restated as Corollary 4.6.10. [

Notation 4.5.9. By Proposition 4.5.7, the notation T™* either refers to a
unique tree, or one of two possible trees. We distinguish between the two
possibilities when denom(d(m,c)) = 2, referring to these two trees as (T*)"

and (T*)~ (in no particular order), and T* can refer to either of these two
trees. If denom(d(m,c)) # 2, then we write (T*)" = (T*)” =T*.

4.6 Equivalence Classes of Open Quotient BY
Trees

Recall that Corollary 2.2.11 gives criteria for when an open BY tree T has
core T and vice versa. In a similar way, it is important for us to know what
“moves” we can make to a closed quotient BY tree T, in order to construct
an open quotient BY tree with this as its core. Recall that, just because two
open quotient BY trees have isomorphic cores, it does not follow that they
have the same reduction type (as defined in Definition 3.1.1). Thus, this is not
the notion of equivalence that we should take. Instead, given a metric open
quotient BY tree T', we want to describe a set of moves which will allow us to

obtain a complete equivalence class of T' from 7.

Definition 4.6.1. We say that two metric open quotient BY trees T; and

T, are equivalent if (T7)* and (T3)* are isomorphic metric open quotient
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BY trees. By this we mean that (77)" = (T))* and (77)” = (1), or
(TH* = (Ty)” and (17)” = (I5)". We write 17 ~ Tb.

Remark 4.6.2. We take 7™ given by Construction 4.5.5 to be our canoni-
cal representative, noting that when denom(d(m,c)) = 2 this is not always
uniquely defined. In practice when there is a choice of two metric open quo-
tient BY trees produced by Construction 4.5.5 it can be helpful to list the set

of both as the ‘canonical representative’ of the equivalence class.

So, our work in the previous section describes how to construct a canonical
representative of the equivalence class of a metric open quotient BY tree T'.
We did this by extending 7", and taking the closest possible point to the centre
of the core. In this section, we list the moves that can be made in order to
obtain every equivalent metric open quotient BY tree. Suppose that T has
marked point m. Throughout this section we extend our tree in the same way
as described in Construction 4.5.5. We let m’ be any point on the extended
tree which is integer distance from m. That is, we allow our new marked point
to be as far from the centre of T as we wish, rather than selecting the closest
possible point. As we are no longer describing one canonical representative,
there will sometimes be multiple ways in which we can attach this new marked
point m’ to T, via an open edge, to obtain a metric open quotient BY tree
equivalent to T'. We will also show that every equivalent metric open quotient
BY tree can be constructed in this way. Before we get into the description of

the equivalence class we need to note the following.

Proposition 4.6.3. Let T' be a metric open quotient BY tree with marked
point m. Let B be the tree created from T described in Construction 4.5.1.
Let m' be any point on B which is an integer distance from m. Then, for any
point P on B, we have denom(d(P, m)) = denom(d(P,m')).

Proof. Note that the paths between m, m’ and P will always form a (possibly
degenerate) tripod, as shown in Figure 4.10, with central point (). Let us deal

m m/

P

Figure 4.10: The (possibly degenerate) tripod connecting m, m’ and P.

with the degenerate cases first, that is when () coincides with m, m/, or P.
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o If @ = m then denom(d(P,m')) = denom(d(P,m) + d(m,m’)) =
denom(d(P,m)).

o If @ = m' then denom(d(P,m')) = denom(d(P,m) — d(m,m’)) =
denom(d(P,m)).

e If ) = P then denom(d(P,m’)) = denom(d(m,m’) — d(P,m)) =
denom(d(P,m)).

Now let us assume we are in the non-degenerate case, that is Q) # m, m’ or
P. Note that Q) must be a vertex of B. Note further that, since d(m,m’) € Z,
d(Q,m) € Z if and only if d(Q,m’) € Z. If d(Q,m),d(Q,m’) € Z then

So, suppose that d(Q,m),d(Q,m') ¢ Z. If Q ¢ V(T) then, by Construction
4.5.1, we must have d(Q, m) € Z, which contradicts our assumption. So @ €
V(T). Since we are in the non-degenerate case, degz(Q)) > 3. Note that either
degm (Q) = degp(Q) or deg (Q) = degp(Q)—1. If degs (Q) > 3 then we have
d(Q,m) € Z, by Definition 4.1.13 (iii), again contradicting our assumption.
So we have that degg(Q) = 3 and deg;(Q) = 2, and by Construction 4.5.1
(since we are assuming d(Q), m) ¢ 7Z) we must have added an open green edge
to @ when creating B from 7. That is, denom(d(Q,m)) t s(Q,T). However
Definition 4.1.3 (iv) (along with Remark 4.1.15) tells us that denom(d(Q, m)) |
s(Q,T). This gives a contradiction. So, d(Q,m),d(Q,m') € Z. ]

The construction of a representative in the equivalence class with new
marked point integer distance from m in B, say m/, won’t always be unique.
There may well be multiple ways of attaching an open edge to T all of which
result in a metric open quotient BY tree which is equivalent to T'. Here we

describe in what ways this attachment can be carried out.

Theorem 4.6.4. Let T' be a metric open quotient BY tree with marked point
m, core T and centre ¢. Let B be the tree constructed from T as described in
Construction 4.5.1. For each possible choice of a point m’ (not necessarily a
vertex) of B such that d(m,m') € Z, a metric open quotient BY tree T' with
marked point m’ can be constructed from T in any of the following ways, pro-

vided the specified conditions hold. Moreover T' is equivalent to T. Conversely,
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any metric open quotient BY tree equivalent to T can be constructed in one of

these ways for some choice of m’.

(A) If m' lies on T and is a vertez of T (note that it is important that m’ is
a vertez of T not just a vertex of B) then we can create T" from T in the

following ways:

(A1) Attach an open yellow edge at m’' (so the marked point of T' is
distance 0 along the open edge);

(A2) Attach an open blue edge at m' (so the marked point of T is distance
0 along the open edge), provided m’ is blue,

29(m')+2> Y Mle),

ecE(T) blue,
incident to m’

and if g(m’) = 0 then m’ has at least one incident yellow edge in T.

(B) If m’ lies on an edge e of T (note that m' may be a vertex of B but not
of T) then:

B1) Create a genus 0, multiplicity 1 vertex at m’, the same colour as the
9 Y

edge e, and add an open yellow edge at m/';
(C) If m' does not lie on T and m/ lies on a green part of B then:

(C1) Let v, be the closest vertex of T to m' in B. Create a blue genus 0,
multiplicity 1 vertex v}y, and attach vl to T at v, via a blue multi-
plicity 1 closed edge and add a yellow open edge at vj. Finally, v}
must be such that d(m’,v)) € Z and 0 < d(v),v.) < d(m’,v.);

(C2) Let v, be the closest vertex of T tom' in B. Add a blue open edge

to ve, the closest vertex of T to m!, with m’ lying distance d(m/,v,)

along this open edge.

(D) If m' does not lie on T, m' is not green, and the closest point on T to

m’ is not a vertex of T then:

(D1) Create a genus 0, multiplicity 1 vertex at the closest point on T to
m/, coloured the same as the edge that the point lies on in T, and

attach an open yellow edge there.

(E) If m’ does not lie on T, m' is not green, and the closest point on T to

m' is a vertex, say v., of T then:
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(E1) Add an open yellow edge to v., provided that if v. has at
least two incident edges of multiplicity 1 in T, and #{e €
E(Ty) incident to v.} # #{e € E(1}) incident to v.} then we have
d(ve,m’) € Z;

(E2) Add an open blue edge to v., provided v. is blue,

29(ve) +2> > Mle),

e€E(T) blue,

incident to ve
and if g(v.) = 0 then v. has at least one incident yellow edge in
T. Finally, we require that if #{incident blue edges to v, in T} #
#{incident blue edges to v, in T'}, or if degsi(v.) = 0 (i.e. v. has
no closed incident edges of multiplicity 1), then d(m’,v.) € Z;

(E3) Create a blue genus 0, multiplicity 1 vertex vy with d(m',v}) € Z
and 0 < d(v),v.) < d(m’,v.). Attach v] to v. via a blue multiplicity

1 closed edge, and add a yellow open edge at v}, provided v. is blue,

2g(ve) +2 > Z M(e),

e€E(T) blue,

incident to ve
and if g(v.) = 0 then v. has at least one incident yellow edge in
T. Finally, we require that if #{incident blue edges to v, in T} #
#{incident blue edges to v, in T'}, or if degsi (v.) = 0 (i.e. v. has
no closed incident edges of multiplicity 1), then d(m’,v.) € Z.

Example 4.6.5. Let us consider the metric open quotient BY tree 1" as in
Example 4.5.2, where we constructed the extended tree B of T'. Recall that
T and B are as shown in Figure 4.11 below, where the core T of T is also

shown. Let m/ be any point on B integer distance from m. Let d > 0 denote

v, vy
m. g2,M1 OO M2 0. M4 ”Il 3 ”IO V2 Vs m :
£ > - gLM1  g2,M1 gOOMZ gO.M4 : :
Yo 3N\@g1,M1 ’ ’ ~ ' 92.M1 gL.M1
o (b) T (c) B
(a) T

Figure 4.11: Metric open quotient BY tree T" and its extended tree B.

the distance from m’ to the nearest vertex of B. We have the following four
possibilities for where m’ can lie: In Figure 4.12a we can see that m/’ lies either

at v (i.e. m' is distance 0 from m), or m/’ lies on the open edge of T". Let us
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1 m 1
>"2' m 1 2 m d 4 3
d g2, M1 g1,M1 g2, M1 g1 M1
(=) (b)
m' 1 .
m 1 dl 2 m 1 2 a
g2,M1 g1,M1 g2,M1 g1,M1
(c) (d)

Figure 4.12: Possible placement of m’ on the extended tree B

first consider the case when m’ = vg, that is d = 0. In this situation, m’ is a
vertex of T' so we are in case (A) of Theorem 4.6.4. We certainly satisfy the
conditions for (A1), so can add an open yellow edge to T at vy, and note that
the resulting tree is isomorphic to 7. Now let us check whether we satisfy the
conditions for (A2). Note that m’ = vy is blue, and

29(m)+2=4>1= > M(e).

e B(T) blue,

incident to m’
So, we can also add an open blue edge to T at v, as described in (A2). Let us
instead now assume that d > 0, and note that this means we are in case (E)
of Theorem 4.6.4. It is straightforward to check that we satisfy the conditions
of (E1), (E2) and (E3).

We can assess the other three options for the placement of m’ similarly.

In particular, we find the following. Figure 4.12b turns out to satisfy the same
conditions as Figure 4.12a, so we do not need to consider this again. In Figure
4.12c, when d = 0 we are in case (B) and satisfy the conditions of (B1), and
when d > 0 we are in case (D) and satisfy the conditions of (D1). Finally,
in Figure 4.12d note that d # 0, since d(m,m’) € Z, so we are in case (C)
and satisfy the conditions for both (C1) and (C2). This gives the following
complete list of trees afforded by Theorem 4.6.4:

3

= Z d 3
2 . 2 -~ 5 @

Aed A 4
g1, M1 92,M1 g0,M2 g0,M4 g1, M1 g2,M1 g0,M2 g0, M4 gL M1 g2 M1 g0, M2 J0.M4
(a) FOI‘dZO (b) FOYdZO (C) FOI‘dIEZ,O<d/Sd
1 " m' E w a 3
2 1 —— - Q@ L) —_—eo-‘e O o
- Q@ L ] gLM1  g2,M1 gO,M2 g0,M4 gOM1 gLM1 g2,M1 gO,M2  g0,M4

*—0—0 @
g1L,M1 gO,M1 g2,M1 g0,M2  g0,M4

(d) Ford >0 (e) Ford>0 (f) For d',n € Z>o, 21 d'

Figure 4.13: A complete list of metric open quotient BY trees constructed from 7'
afforded by Theorem 4.6.4



4.6. Equivalence Classes of Open Quotient BY 'Irees 87

It is straightforward to check that each of the trees pictured in Figure 4.13 are

indeed metric open quotient BY trees.

Remark 4.6.6. It may be that, for instance, m’ is on a green part of B and
an equivalent metric open quotient BY tree to T' can be achieved by adding an
open vellow edge to the closest vertex on T to m’, however we do not include
this construction in this case, instead one will find an isomorphic tree can be

constructed by a different choice of new marked point which is not green.

Before we can prove Theorem 4.6.4 we prove the following Lemma, which

will form an integral part of the proof.

Lemma 4.6.7. Let T be a metric open quotient BY tree with marked point
m, and let m' be any point on B integer distance from m. Take T' to
be any tree with marked point m' as described in Theorem 4.6.4. Then
lem(denom(d(m,v)), M(v)) = lem(denom(d(m',v)), M(v)) for every vertex
ve V(T).

Proof. If M(v) = 1 then we are done by Proposition 4.6.3. So, suppose that
M (v) > 1. Consider T'U B, and note that v, m,m’ can all be considered as
points on 7'U B. By Proposition 4.3.10, we know that there exists at least
one multiplicity 1 vertex in T. In particular this means there exists some
vertex w € V(T) with M(w) = 1 such that, in T'U B, d(m,v) = d(m,w) +
d(w,v) and d(m/,v) = d(m’, w)+d(w,v). By Definition 4.1.3 (ii) and (iii), and
Definition 4.1.13, since T is a metric open quotient BY tree, we must have that
denom(d(m,w)) | M(v). So, M(v)d(m,w) € Z. Furthermore, since M (w) = 1,
we have already shown that denom(d(m,w)) = denom(d(m/, w)), giving that
M (v)d(m',w) € Z also. Now, M (v)d(m,v) = M(v)d(m,w)+ M (v)d(w,v) and
M(v)d(m',v) = M(v)d(m',w) + M(v)d(w,v), so

denom(M (v)d(m,v)) = denom (M (v)d(m',v)).

denom(d(m,v))
ged(denom(d(m,v)), M(v))’
lem(denom(d(m,v)), M(v))
M(v) '

Note that denom(M (v)d(m,v)) =

Similarly for denom (M (v)d(m’,v)), so

lem(denom(d(m, v)), M (v)) = lem(denom(d(m’, v)), M (v)).
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Proof of Theorem 4.6.4. Throughout this proof we will use the notation ¢ to
refer to the open edge of T, and vy to refer to the unique vertex incident
to €. Similarly we will use the notation &’ to refer to the open edge of T",
and v}, to refer to the unique vertex incident to &’. Before we prove each
individual case of Theorem 4.6.4, it is important to note that the following
aspects of Definition 4.1.3 are preserved by either the adding or removing of

certain edges and vertices.

(i) Genera of vertices that lie in both 7" and T are the same. If a yellow
vertex was added (along an edge of T) to create T” it was given genus 0.
So, all yellow vertices in 7" have genus 0. We have also been careful to
never add a blue edge to a yellow vertex when creating 7" from 7. In
passing from T to T removing edges and vertices does not alter the fact
that yellow vertices have only yellow incident edges. So, every yellow

vertex in 7" has genus 0 and only yellow incident edges.

So, in each case we will study below, to prove that Definition 4.1.3 (i)

holds, it remains to show that each yellow vertex v" of T” is such that

Mi(e
> M((U,)) >3,
ecE(T")

incident to v’

The only yellow vertex we ever add to T to obtain 7" (i.e. the only time
when a yellow vertex of 7" is not also a yellow vertex of f) is when we
create a yellow vertex on a yellow edge of T. In this case, we only ever
add an open yellow edge to this vertex, meaning it has degree 3 in 7" and
satisfies Definition 4.1.3 (i). All other yellow vertices of 7" are vertices
of T, which in turn are vertices of T'. So, let v’ be a yellow vertex of T”
which also lies in 7. Looking at our cases, we can see that we only ever
remove an edge (which is always yellow) from v" when passing from T' to
T if v' = vy. So, if v # vy then certainly v’ satisfies Definition 4.1.3 (i)
in T, as the number, multiplicity and colouring of edges incident to ¢’ in
T was not altered when compared to what they were in T'. If v/ = vy and
doesn’t already satisfy Definition 4.1.3 (i) when considered in T, then v

is yellow and has

M
> (@) <3
v
ecE(T) 0
incident to vo

We know that in 7', v, satisfies Definition 4.1.3 (i). So, we must have
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that

>

Vi .
eEE(T) (UO)
incident to vg

In particular, vy must have one incident edge which is yellow of multiplic-
ity 2 (else it has two incident yellow edges in T of multiplicity 1 which is
a contradiction, as then vy would have been removed when passing from
T to T) This means that v is the only vertex of multiplicity 1 in 7
(since T satisfies Definition 4.1.3 (ii)). So, v, is where we add to 1" to
create T”. Looking at our possible cases, it is easy to see that we only
ever add an open yellow edge to vy to create T”. Therefore, in T” every

yellow vertex satisfies Definition 4.1.3 (i).

In all instances above, an open edge £’ is attached to T, in such a way that
the unique vertex, vy, incident to ¢’ in 7" is always a multiplicity 1 vertex
of T" and is such that the trees formed by collapsing the multiplicity 1
components to points are isomorphic, i.e. T'/(T')! = T/T'. So, the
embedded path from v, to any vertex of 7" has increasing multiplicities,
that is Definition 4.1.3 (ii) holds for 7" as it did for T

Recall that lem(denom(d(v,m)), M(v)) = lem(denom(d(v, m’)), M(v)),
by Lemma 4.6.7. So, given we have only removed edges and vertices
from T to obtain 7', and then added multiplicity 1 vertices and edges
to a multiplicity 1 part of T to obtain 7", we have that all edges
incident to a vertex v € V(71") have multiplicity equal to M (v) or
lem(M (v), denom(d(v,m’))) (since T' satisfies Definition 4.1.3 (iii) and
Definition 4.1.13). This gets us part of the way to showing that Def-
inition 4.1.3 (iii) holds for 7", and we finish proving this for each case

individually below.

Similarly we inherit a large amount of the information we need to prove
that Definition 4.1.3 (iv) holds for 7" from the fact that it holds for T,

but we will prove this case by case below.

By Proposition 4.3.9, we only remove a yellow edge from a blue vertex of
T to obtain T when ¢ is yellow, v is blue and vy doesn’t get deleted when
passing to T. So, assume this is the case. If vy has an incident yellow
closed edge then no vertex of T’ violates Definition 4.1.3 (v). The addition
of any combination of edges and vertices to create T” from T maintains

this, meaning 7" will also satisfy Definition 4.1.3 (v). In order to violate
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Definition 4.1.3 (v), vo must have genus 0 and no incident yellow edges
in T. Since v, satisfies Definition 4.1.3 (vi) in 7', v, must have either
exactly one incident closed blue edge of multiplicity 2, or either exactly
1 or 2 blue incident edges of multiplicity 1. However, if vy has exactly 1
or 2 blue incident edges of multiplicity 1 in 7'\ {€} (and no other incident
edges), then vy would not be a vertex of T, contradicting our assumption.
So, the only case left to consider is when vy is genus 0, blue, and has one
incident edge in 7'\ {¢} which is blue and of multiplicity 2. In this case,
T" = {wy}, so we only ever add to vy to create T". In particular, we only
ever add a yellow open edge. This is clear in cases (A) and (E). Cases
(B), (C) and (D) do not apply to this situation (it is easy to check they
do not coincide with vy being blue, having degree 1 in T with the only
incident edge in T being blue of multiplicity 2). So, any construction of
T’ described in the statement of Theorem 4.6.4 satisfies Definition 4.1.3
(v). It is important to note that, if vy is genus 0, blue, and has one
incident edge in 7"\ {e} which is blue and of multiplicity 2, then in order
to create a metric open quotient BY tree T" equivalent to T, we must
attach a yellow edge to vy when creating 7’. By Proposition 4.3.9 we
know that the only way of doing this is to add an open yellow edge to
vp. So, there are no ways other than those we have already described,

namely (A) and (E) of creating such a 7" from 7.

Note that, for every v € T removing edges and vertices from T to obtain

T only decreases any sum over incident blue edges. In particular, for

every v € V(T),

M (e M (e
MO g M)
- M(v) — M (v)
e€E(T) blue, e€E(T) blue,
incident to v incident to v

So certainly in T, every vertex satisfies Definition 4.1.3 (vi), as the genus

of a vertex in T is equal to that in 7.

Adding in a yellow open edge to a vertex of T does not change this, so
if T' is created from T in this way then T” certainly satisfies Definition
4.1.3 (vi). That is, Definition 4.1.3 (vi) is certainly satisfied in cases (A1)
and (E1).

If a vertex v], is added along an edge e of T when constructing 77, then
we are in case (B1) or (D1). If e is yellow, then ] is yellow and we always

add an open yellow edge to v). So in this case v, has no incident blue
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edges. If instead, e is blue, then vy is blue and is given genus 0. An open
yellow edge is always added to v{, when creating 7". So, v} has exactly
two incident blue edges, each of multiplicity 1, in 7”7, arising from the
edge on which it lay in 7. Therefore v}, satisfies Definition 4.1.3 (vi). In
both cases (e being yellow or blue), all vertices of T have not had any
edges added to them in passing from 7 to T". Therefore, Definition 4.1.3
(vi) is always satisfied in cases (B1) and (D1).

A blue open edge is added directly to a vertex vj of T to create T' in
cases (A2), (C2) and (E2). In cases (A2) and (E2) we have that

29(v)) +2> > M(e).

e€E(T) blue,

incident to v,
Since M (v}) = 1, and given that ¢’ has multiplicity 1, 7" satisfies Def-
inition 4.1.3 (vi) in cases (A2) and (E2). In case (C2), m’ lies on a
green part of B, so either v} is blue with denom(d(vj, m)) 1 s(vy, T') in
T, or v} had a blue edge removed from it when passing from 7" to T. In
this second instance, certainly after adding in a blue open edge at vg, v
still satisfies Definition 4.1.3 (vi) in 7”. So, suppose that v} is blue with
denom(d(vj, m)) 1 s(v), T) in T'. So, we must have that

M{(e)

denom(d(uhym)) 1 20(0) +2— D
e€E(T) blue, M(UO)
incident to v,

Note that this means that

S T N e )

! M(vh)
- v,
e€E(T) blue, ( 0) e€E(T) blue, ( 0)
incident to v) incident to v},

So, by the same argument that we used for (A2) and (E2), we get that
in case (C2) T” satisfies Definition 4.1.3 (vi) also.

In our two remaining cases, (C1) and (E3), we add ‘blue multiplicity 1
closed edge — blue genus 0, multiplicity 1 vertex, v, — blue open edge’
to a vertex v, of T to create T". In case (C1) we can show by a similar

argument to above, that

29(ve) +2> Y Mle).

e€E(T) blue,
incident to v¢
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Note that this condition is already an assumption in (E3), and in both
cases M (v.) = 1. So, by the above argument, v, satisfies Definition 4.1.3
(vi) in 7" in both (C1) and (E3). It remains to check that v} also satisfies
Definition 4.1.3 (vi), but this is clear, so T” satisfies Definition 4.1.3 (vi)
in both (C1) and (E3).

Now let us prove the remaining parts of Definition 4.1.3 hold on a case
by case basis. Note that for Definition 4.1.3, we have shown above that T’
satisfies (i), (ii), (v) and (vi) so it remains finish proving that (iii) and (iv)

hold. It is also important to note that throughout the proofs of these we
denom(d(v,m))
ged(denom(d(v,m),M (v)

that lem(denom(d(v,m)), M(v)) = lem(denom(d(v,m’)), M(v)). So, due to

Remark 4.1.15, the proof that Definition 4.1.13 holds follows once the proof of
denom(d(v,m))
ged(denom(d(v,m),M(v))

take n = ) in Definition 4.1.3. By Lemma 4.6.7, we have

Definition 4.1.3 is complete with n =

(A1) Suppose m’ is a vertex of T and we have attached an open vellow edge

at m’:

(iii) We noted above that every edge incident to a vertex v € V/(71”)

has multiplicity M (v'), or lem(M(v'),denom(d(v',m’))). It
remains to show that exactly one or two edges incident to
v' has multiplicity M (v"), and all the rest have multiplicity
lem(M (v"), denom(d(v', m’))).
Note that in 7', since this is obtained by removing edges and vertices,
every vertex v has at most two incident edges of multiplicity M (v)
(potentially none), and all other incident edges have multiplicity
lem(M (v), denom(d(v, m’))). Recall from Proposition 4.3.9 that T
is obtained by either removing just the open edge ¢ of T', removing
¢ and viewing vy as a point on an edge, or removing ¢, vy and a
unique closed blue edge of multiplicity 1 incident to vy. In each of
these cases there is at most one vertex v’ € T with no incident edges
of multiplicity M (v"), and this vertex has M (v') = 1.

If there is such a vertex, then v’ is the only multiplicity 1 vertex
of T (by Definition 4.1.3 (iii)). By construction m’ has multiplicity
1, so we must have m’ = ¢/, and the open edge w e attached here
to create T ensures that m' satisfied Definition 4.1.3 (iii) in 7".
All other vertices of T” in this situation have their incident edges
unchanged in the transition from 7" to T”. So, because they satisfied
Definition 4.1.3 (iii) in 7, they still do in 7”.
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Otherwise, every vertex v in T has an incident edge of multiplicity
M (v). Note that since m’ is a vertex of T, and m/’ is integer distance
from m, that every edge incident to m’ in 7 has multiplicity 1. The
addition of an open edge at m’ to create T means m’ still satisfies
Definition 4.1.3 (iii) in 7”. Again, all other vertices of 7" in this
situation had their incident edges unchanged from T, so because
they satisfied Definition 4.1.3 (iii) in 7', they still do in 7".

So T" certainly satisfies Definition 4.1.3 (iii).

(iv) Again, it is important to note that there is at most one vertex of
T, where an incident edge to it in 7 has been deleted in passing to
the core (be that vy or the unique vertex adjacent to vy if vy was

deleted along with a closed blue edge).

If such a vertex exists, call it v'. If v’ has no incident edges of
multiplicity 1 in T then, as already discussed above in the proof of
(A1)(iii), this means m’ = v'. So, the open edge added to produce
T’ is attached to T at v'. In particular, this means that M (V) =
denom(d(v',m')) = 1, so after the addition of the multiplicity 1
open edge to give T" certainly v’ satisfies Definition 4.1.3 (iv), since
1| N for any integer N. All other vertices of 7" lie on T" and have
not had their incident edges altered in the process of creating T”
from T, so all still satisfy Definition 4.1.3 (iv).

Otherwise, every vertex of T has had the number of incident edges,
their colouring and multiplicities unaltered, so in T every vertex
satisfies Definition 4.1.3 (iv). The addition of an open edge at m/,
does not change this since M(m') = denom(d(m’,m’)) = 1, and
1 | n for any integer n.

So T" satisfies Definition 4.1.3 (iv).

(A2) Let m/ be a vertex of T such that m/ is blue,

29(m')+2> ) Mle),

e€E(T) blue,
incident to m/’

and if g(m’) = 0 then m’ has at least one incident yellow edge in 7.

Suppose that we have attached an open blue edge at m/:

(iii) The proof of (A1)(iii) did not rely on the colouring of the open

edge at any point. So, the same proof as above can be applied
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to this case where the open edge is instead blue, hence T" satisfies
Definition 4.1.3 (iii).

Again, the proof of (A1)(iv) did not actually use that the open edge
was coloured yellow. So, the same proof as above can be applied
to this case where the open edge is instead blue, hence T” satisfies
Definition 4.1.3 (iv).

(B1) Suppose that m’ lies on T but is not a vertex of T, (i.e. m/ lies on an

edge e of T), and that we have created a multiplicity 1, genus 0 vertex

at m’ coloured the same as e, and added an open yellow edge at m':

(iii)

(iv)

By construction of B, m’ must lie on a multiplicity 1 edge of T.
As explained in case (A1)(iii) above, there is at most one vertex in
T which has had an edge (of multiplicity 1) removed from it when
passing from T to T. Suppose such a vertex v/ € T exists (i.e.
where its degree in T is one less than its degree in T). Then, as in
(A1)(iii), M (v') = 1. If o' violates Definition 4.1.3 (iii) in 7', then it
has no incident edges of multiplicity 1. However, this would mean
that 7% = {v'}, contradicting m’ lying on a multiplicity 1 edge of
T. So, ' satisfies Definition 4.1.3 (iii) in 7', and therefore in 7”.
It only remains to check that m’ satisfies Definition 4.1.3 (iii) in
T" (all other vertices and their incident edges of 7" have remained
unchanged from 7" to 7", so certainly satisfy Definition 4.1.3 (iii)).
It is, however, clear that m’ satisfies Definition 4.1.3 (iii), since all
its incident edges have multiplicity 1. So 7" satisfies Definition 4.1.3
(ii).

Again, there is at most one vertex in 7" which has had an edge (of
multiplicity 1) removed from it when compared with in 7. Sup-
pose such a vertex v/ € T exists. Then, as above, v’ still has a
multiplicity 1 incident edge, and all other edges have multiplicity
denom(d(m’,v")). Since a multiplicity 1 edge was removed from v’
in passing from 7 to 7', in T' v’ had (at least) two incident edges of
multiplicity 1. Since v’ satisfies Definition 4.1.3 (iv) in 7', we can
see that, regardless of the colouring of the multiplicity 1 incident
edge that remains in 7', v’ still satisfies Definition 4.1.3 (iv) in 7,
and therefore in T”. It remains to check that if m’ is a blue vertex
of 7" then m’ satisfies Definition 4.1.3 (iv) (all other vertices and

their incident edges of 7" have remained unchanged from 7" to 17,
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so certainly satisfy Definition 4.1.3 (iv)). However this is clear since
d(m/,m’) = 0. So T" satisfies Definition 4.1.3 (iv).

(C1) Suppose that m’ does not lie on T' and m’ lies on a green part of B.

Suppose also that we have created a blue genus 0, multiplicity 1 vertex

v, and attached v) to T at v. via a blue multiplicity 1 closed edge

and added a yellow open edge at v). Note that, v, must be such that
d(m’,vy) € Z and 0 < d(vj, v.) < d(m/,v.).

(i)

Again, there is at most one vertex in 7" which has had an edge (of
multiplicity 1) removed from it when compared with in 7. Suppose
such a vertex v/ € T exists (i.e. where its degree in T is one less
than its degree in T'), and recall that we must have M(v") = 1. If
v violates (iii) in 7', then it has no incident edges of multiplicity
1. However, this would mean that 7% = {v'}, in particular v/ = v,,
so we add a multiplicity 1 blue closed edge to v’ to create T”, so v’
satisfies (iii) in 7”. All other vertices of 7" and their incident edges
remain unchanged from that in 7', so satisfy (iii) in T. Certainly v
satisfies (iii) in 7", so it remains to check that v. does in the case
when no vertex of 7" violates (iii). If denom(d(v.,m’)) = 1, or if v,
had exactly one incident edge of multiplicity 1 in 7" then it is clear
that the addition of a closed multiplicity 1 edge to v, in T" does
not change that v, satisfies (iii). So, the only case left to consider
is when v, has exactly two incident edges e; and ey of multiplicity
1 in T, and denom(d(v.,m’)) > 1. Since m’ is green, either a
multiplicity 1 edge was removed from v, when passing from 7' to
T, or denom(d(ve, m')) 1 s(ve, T). In the first instance v, had three
incident edges of multiplicity 1 in 7', so certainly still satisfies (iv)
in 7", So, suppose that degy(v.) = degs(v.) and denom(d(v., m’)) t
s(ve, T'). Note that every edge incident to v. except e; and es has
multiplicity denom(d(v.,m’)). Suppose e; and ey are both yellow.
Then, in T, v, satisfies (iv), so denom(d(v., m)) | 2g(v.) + 2. This
gives that denom(d(v., m)) | s(ve, T'), which is a contradiction. We
can obtain a contradiction in a similar if e; and ey are both blue, or
different colours to each other. In particular, this shows that this

case cannot happen so we are done.

Again, there is at most one vertex v € T" which has had an edge
(of multiplicity 1) removed from it when compared with in 7. If

such a vertex v exists then we know, by above, that it has at



(C2)

(D1)

4.6. Equivalence Classes of Open Quotient BY 'Irees 96

least one incident edge of multiplicity 1 in 7', or v/ = v.. In the
first case, v must have had two incident edges of multiplicity 1
in T, where it satisfied (iv), so it is not hard to see that (iv) still
holds in 7. Otherwise if v/ = v. and v, has no incident edges of
multiplicity 1 in 7. In this case, the one edge of multiplicity 1 in
T incident to v, say e, must have been blue, or denom(d(v.,m’)) {
s(ve, T'). If e was blue then we are done. So suppose e is yellow
and denom(d(v.,m’)) 1 s(ve,T). Since e is yellow we must have
denom(d(v.,m’)) | 2g(v.) + 1. So, once we have added a closed
blue edge to v, to create T we satisfy (iv). A similar argument can
be applied even if v, did not have higher degree in T that in 7,
since then we must have that denom(d(v., m’)) 1 s(v., T) and there
is a unique edge of multiplicity 1 incident to v. in 7" which does
not get deleted when passing to T If e is yellow we must have that
denom(d(v.,m’)) | 2g(v.)+1, and if e is blue that denom(d(v., m")) |
2¢(v.). So v, satisfies (iv) in 7”. The vertex v, in 7" clearly satisfies
(iv). All other vertices of 7" are vertices of T, different from v, and
whose degrees in T' equal their degrees in T, that is their incident
edges have not be altered in the move from T to 7", so they certainly
still satisfy (iv). So 1" satisfies (iv).

Suppose that m’ does not lie on T, m/ is green and we have added an
open blue edge to the closest vertex of T to m/, say v.. In order to
prove this case, we simply note that adding a blue open edge to v,
rather than ‘closed blue edge — genus 0 multiplicity 1 blue vertex —
open yellow edge’ as we did in case (C1), does not change that all the
required conditions are satisfied for every vertex of 7' (note that here
V(T) = V(T")). So certainly in this case 7" is a metric open quotient
BY tree.

Suppose that m’ does not lie on T, m/ is not green, and the closest point
on T tom’ is not a vertex of T but lies on an edge e € F(T). Suppose also
that we have created a genus 0, multiplicity 1 vertex, say v. at the closest
point on T to m/, coloured the same as the edge e and attached an open
yellow edge to v.. Note that in 7", by Construction 4.5.1 d(v.,m’) € Z.
with this in mind it is easy to see that the same method of proof that we
used for case (B1) (i.e. when m’ lay on T but was not a vertex of T) can
be applied here. To see this more clearly, simply replace any instances of

m’ in the proof of (B1)(iii) with v., and replace the use of d(m’,m’) =0



(E1)

4.6. Equivalence Classes of Open Quotient BY 'Irees 97

in the proof of case (B1)(iv) by instead using that d(v., m’) € Z.

Suppose m’ does not lie on T, m/ is not green, the closest point on 7' to

m' is a vertex, say v, of T. Suppose further that, if v, has two incident

edges of multiplicity 1 in 7" and #{blue edges incident to v, in T'} #
#{blue edges incident to v. in 1"}, then we have d(v.,m') € Z. Let us

assume that we have added an open yellow edge to v.. Note that, this

means v, = vy.

(i)

(iv)

The proof that (iii) holds in this case follows by the similar method
to case (A1), when m/ was a vertex of T and we added an open
yellow edge at m’. Instead, we note that if there exists a vertex
v' of T with no incident edges of multiplicity M (v'), then v = ).
So, in T", v’ satisfies (iii). Else, if v, has either exactly one incident
edge or > 2 incident edges of multiplicity 1, in 7', the addition of
the open edge to v} does not change that v} still satisfies (iii) in 7".
The only case left to consider is when v; has exactly two incident
edges in T, both of multiplicity 1. However we can then simply note
that by construction of B we must have d(m/,v})) € Z, so again even
after adding an open edge at v, v|, satisfies (iii). All other vertices
of T" satisfy (iii) in 7" because they did in 7.

As we’ve done on many occasions above, note that at most one blue
vertex of T has had an edge deleted from it in passing from T to
T. Suppose there exists such a vertex v' in T (i.e. the degree of v/
in T was one larger than its degree in 7). Then M(v') = 1. If ¢/
has no incident edges in T of multiplicity 1 then v/ = v, SO we want
to show that denom(d(v',m’)) | 2¢9(v") + 2 or 2¢g(v') + 1. If ' had
an incident yellow edge of multiplicity 1 in 7" then we are done, so
suppose in 1" the only edge incident to v’ of multiplicity 1 was blue.
So we have denom(d(v',m’)) | 2¢g(v") 4+ 1 or 2g(v’), however since m/
is not green, we have that denom(d(v',m’)) | s(v/,T), in particular
this means denom(d(v’,m’)) | 2g(v") + 1 so we are done.

Otherwise, ¢/ has an incident edge in T of multiplicity 1. If
v # v then certainly we are done. So, suppose that v = v.
If #{e € E(T}) incident to v} = #{e € E(T}) incident to v(T"}
then we are done as e must have been yellow. Otherwise, #{e €
E(T}) incident to vy} # #{e € E(T}) incident to vjT"} then we
have assumed that d(vj, m’) € Z so we are done. Note that this

assumption is indeed necessary to ensure that we satisfy (iv).
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Now suppose that v}, has the same degree in T as it did in T (i.e.
no edge was removed from ) in passing from 7' to 7. Then v}, must
have at least one incident edge of multiplicity 1 in 7" (else v} would
be the only vertex of multiplicity 1 in T, contradicting that v has
the same degree in T as it did in 7). If v}, had 2 or more incident
edges of multiplicity 1 in T then, since vj = v, (and m’ does not
lie on T) we must have added an open edge at v in the process
of obtaining B from T'. So, by construction of B, d(v, m’) € Z,
and we are done. Otherwise, v} has exactly one incident edge of
multiplicity 1, say e, in 7. In this case, since m’ is not green (so
denom(d(vj, m)) | s(v, T)), if e is blue we have denom(d(v, m")) |
2g(vy) + 1, and if e is yellow we have denom(d(vj, m')) | 2g(vf) + 2.
In either case we are done.

All other vertices of T” have not had any edges added or removed
from them in the process of passing from T to 7" to T". Therefore all
remaining vertices of 7" satisfy (iv) as they did in 7". This completes
the proof that 7" satisfies (iv).

(E2) Suppose that m’ does not lie on T, m' is not green, the closest point on

T to m' is a vertex, say v, of T, v, is blue,

2g(ve) +2 > Z M (e),

ecE(T) blue,

incident to v¢
and if g(v.) = 0 then m’' has at least one incident yellow edge in
T. Furthermore suppose that if #{incident blue edges to v, in T'} #
#{incident blue edges to v, in 7"}, then d(m’,v.) € Z. Assume that we

have added an open blue edge to v, (So, v) = v.).

(iii) Note that, although our assumptions here are slightly different, the
proof that (iii) holds in case (E1), when instead we added an open
yellow edge at m’ did not make any reference to the colouring of

the open edge, so we can apply the same proof here.

(iv) Again, we know that at most one vertex, v’ € T has had an edge (of
multiplicity 1) removed from it when compared with in 7. Suppose
such a vertex v’ exists. If v/ has no incident edges in T’ of multiplicity
1, then we must have v/ = v,, as in this case 7' = {v'}. If in T the
unique edge of multiplicity 1 adjacent to v. was blue then we are

done. Otherwise this unique incident edge of multiplicity 1 in 7" was
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yellow (in particular it must have been €). Under our assumption,
d(v., m') € Z, so again we are done. Note that if we had not assumed
that d(v.,m') € Z then we would not be able to satisfy (iv) as,
since m' is not green, we have that denom(d(v., m’)) | s(v.,T'), in
particular denom(d(v., m')) | 2g(v.) +2. So, if d(v., m') ¢ Z, adding

an open blue edge here would violate (iv).

Otherwise v has an incident edge in T of multiplicity 1. So, in T', v/
had two incident edges of multiplicity 1 and certainly still satisfies
(iv) in T. If v # v, then we are done since nothing is added to
v in passing from T to T” so it certainly still satisfies (iv) in 7”.
Otherwise, v = v.. If the multiplicity 1 edge that was removed
from v’ in passing from T to T was blue then we are done. If
instead there was a vellow edge removed from v’ on passing to T
from T then this edge must have been ¢, so under our assumption

denom(d(v.,m’')) = 1 and we are done.

Finally, we need to consider the case when v. has not been altered
in passing from 7 to T If v, has at least two incident edges of mul-
tiplicity 1 in 7" then, by construction of B, denom(d(v.,m’)) = 1,
so we are done. Otherwise, we must have that v. has exactly one
incident edge, e of multiplicity 1 in 7" (otherwise v, would be the
only multiplicity 1 vertex in 7', which would contradict our assump-
tion that v, has not had any edges deleted from it in passing from
T to T). So, our assumption tells us that denom(d(v.,m’)) = 1,
and we are done. It is also worth noting that since m’ is not
green, we have denom(d(v.,m’)) | s(ve,T). So, if e is blue we
have that denom(d(v.,m')) | 2g(v.) + 1, and if e is yellow we
have that denom(d(v.,m')) | 2¢(v.) + 2 so our assumption that

denom(d(v.,m')) = 1, is indeed necessary in order to satisfy (iv).

In all other cases a vertex of 7" has not had any edges added or
removed from it in passing from 7T to T and then to T". In particular,

all other vertices of 7" certainly satisfy (iv), so 7" satisfies (iv).

(E3) Suppose that m’ does not lie on T, m' is not green, the closest point on

T to m’ is a blue vertex, say v, of T, with

29(ve) +2> > Me),

ecE(T) blue,
incident to v¢
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and if g(v.) = 0 then m’ has at least one incident yellow edge in
T. Furthermore, suppose that if #{incident blue edges to v, in T} #
#{incident blue edges to v. in 7"}, then d(m/,v.) € Z.

a blue genus 0, multiplicity 1 vertex v} with d(m’,v})) € Z and 0 <
d(vh,ve) < d(m/,v.). Attach v} to v. via a blue multiplicity 1 closed
edge, and add a yellow open edge at v},

Let us have created a blue genus 0, multiplicity 1 vertex v with
dim/,v)) € Z and 0 < d(v),v.) < d(m',v.). Attach v} to v. via a
blue multiplicity 1 closed edge, and add a yellow open edge at vj. It is
not hard to see that the vertex created at v, satisfies all required condi-
tions. We can complete the proof by referencing the previous case (E2)
and noting that, for all vertices v # v, of T”, v satisfies all required

conditions as the same proof can be applied here.

This proves that any such 7" is indeed a metric open quotient BY tree. It re-
mains to prove that 7" is equivalent to 7" and that the converse of the statement
also holds. This is proved in Theorem 4.6.8. ]

Theorem 4.6.8. Let T' be a metric open quotient BY tree. Then any T’
constructed from T by one of the ways described in Theorem 4.6.4 is equivalent
to T'. Moreover, any metric open quotient BY tree which is equivalent to T
can be described in one of these ways. That is to say, the moves described in

Theorem 4.6.4 completely describe the equivalence class of T'.

Proof. Since T" is an open quotient BY tree (we proved this in Theorem 4.6.4),
we know by Proposition 4.3.9 that the core T” is obtained by removing a few
vertices and edges near co. After removing the open edge from 77, just as in
the proof of Proposition 4.3.9, we assess whether or not we keep the unique
vertex v, incident to the open edge or either delete it (along with the unique
edge incident to it in this case) or declare it to be a point on an edge of 7.

When creating T” from T we either:
(a) added an open yellow edge to a vertex of T,
(b) added an open blue edge to a vertex of T,

(c) created a genus 0 vertex on a multiplicity 1 edge e of T, coloured the

same as e, and added an open yellow edge to this new vertex,

(d) or added ‘closed multiplicity 1 blue edge — blue genus 0, multiplicity 1

vertex — open yellow edge’ to a multiplicity 1 vertex of 7.
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Call the unique vertex incident to the open edge in 7", v{. In cases (a) and
(b) after removing the open edge we are left with 7', which must therefore
be the core or T”, else this would contradict it being the core of T. In case
(c) after removing the open edge we find that v} has exactly two incident
edges each of multiplicity 1 and coloured the same as vj. If v} is yellow then
we find v} violates condition (i) of Definition 4.3.1. So, as in the proof of
Proposition 4.3.9, we declare v} to be a point on an edge. This gives us T
being isomorphic to 7. A similar argument applied when v, is blue, as then v}
will violate condition (ii) of Definition 4.3.1 in 7"\ {¢'}. Finally, in case (d),
after removing the open edge we again find that v, violates condition (ii) of
Definition 4.3.1. So, by Proposition 4.3.9, we remove v, along with the incident
blue edge. This again gives us 7" being isomorphic to T'.

Since 7' = T they have the same centre. Let B be the tree we obtain
by extending T according to Construction 4.5.1 and B’ be the extended tree
of T'. By Lemma 4.6.7, under this isomorphism, the closest point(s) of B to
the centre of T which are integer distance from m are mapped to the closest
point(s) of B’ to the centre of T which are integer distance from m/. Suppose
there is a unique such closest point of B, say P, to the centre of T which is
integer distance from m. That is P will be taken to be the marked point of
T*. By Lemma 4.6.7 there is then also a unique closest point () to the centre
of T'. Similarly @ will be taken to be the marked point of (7")*. Certainly
when P lies on the core, @ does also, and d(P, Q) = 0. So, T* and (T")* will be
isomorphic (an open yellow edge will be added at P and a vertex created if P
was not already a vertex of T  to create both T* and (7")*). So, suppose that P
does not lie on the core. Then certainly @) does not either and d(c¢, P) = d(c, Q)
where ¢ is the centre of T2 T". It remains to show that P and Q are both
either green or not green on B and B’ respectively. So, suppose that P does
not lie on a green part of B. Denote the unique vertex of T closest to P by
ve. That is either P lies on the open edge of T which is coloured yellow (so
Vo = Ve), Or v, is a leaf of T' such that denom(d(ve,m)) | s(ve, T).

Note that if v. is yellow, no green edges are ever going to be attached to v,
when constructing B or B’ so certainly a yellow open edge is simply attached
at v, to create both 7% and (7")*. So T™ = (1T")*.

So, it remains to deal with the case when v, is blue. If v, has more than
one closed incident edge of multiplicity 1 in 7% then in d(m,v.) € Z which
would contradict our assumption that P does not lie on the core, since v, is on
the path between P and m. So v, has either 1 or no incident closed edges of

multiplicity 1 in 7. Suppose first that P is not green. That is, T™ is obtained
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by attaching an open yellow edge to v..

If v has no incident closed edges of multiplicity 1 in 7% then V(T") = {v,}
and v, is the centre. Note that we then must be in case (C) or (E) when we are
creating 7. Suppose we are in case (E). Then if a blue edge is added to v. when
creating T from T then we must have that d(m/,v.) € Z, since deg (ve) = 0,
which gives a contradiction. So T” has a yellow open edge attached at v.. This
gives us that if there is a green edge attached to v. in B then there is also a
green edge attached to v, in B’. Furthermore, if a green edge is attached to v,
in B, since 7" was created under case (E), m’ does not lie on this green edge
(as m’ is not green). So, m' lies on ¢, as does P. Therefore P and @ lie on
the same branch and an open vellow edge is added to T at v, to create (T")*.
Thus T = (T")*. Case (C) can be dealt with similarly.

If v, has one incident closed edge in (T*)! then denom(d(v., m)) | s(v, T*).
So, in (")}, v, is either a leaf or has an edge removed from it when passing from
T' to T". If v, is a leaf in (T")" then s(v., T*) = s(ve, T"), so denom(d(v,, m)) |
s(v,T") and the open edge added to v, that @ lies on is black. The same holds
if a yellow open edge is attached at v, to create T' from T. Otherwise, if a blue
edge is removed from v, when passing from 7" to T", s(v,T") = s(v, T*) — 1.
However we must have that denom(d(v., m)) | s(v,T"), since v, has two incident
multiplicity 1 edges in 7". So, since denom(d(v.,m)) | s(v,T*) = s(v,T") + 1
we must have that denom(d(v.,m)) € Z which contradicts that the closest
point integer distance to the centre ¢ does not lie on the core. So, T* = (T")*.

If P is green a similar proof follows and we find that 7% = (7")*.

Should there be two points equidistant from the center we can follow the
exact method of the above proof, just accounting for the fact that there will
be two “canonical” representatives.

Suppose that 7" is a metric open quotient BY tree with marked point
m” that is equivalent to 7. Then by Proposition 4.3.9 as above we know
that 7" must be obtained from 7 by one of the four moves (a)-(d). We note
throughout the proof of Theorem 4.6.4 where the assumptions we have made
are necessary to ensure the resulting open tree is indeed a metric open quotient
BY tree. There are just a couple of instances where it might sometimes be
possible to add to T and still obtain a metric open quotient BY tree that is
not obtained by one of the moves in Theorem 4.6.4. In particular, it is possible
that dropping the condition in both (E2) and (E3) that if deg}(v.) = 0 then
d(ve,m) = 0 still results in a metric open quotient BY tree, or that in case
(C) we could have instead added an open yellow edge at the closest vertex v,

of T to m/. However, dropping this condition in (E2) and (E3) will not result
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in an equivalent tree. This is proved very similarly to the earlier part of this
proof. Similarly, adding an open yellow edge in case (C) will only result in an
equivalent metric open quotient BY tree when d(m,v.) € Z, in which case this
is covered by case (E1). From this, we conclude that if 7" was obtained by
adding an open edge to T via one of (a)-(d), but was not described in Theorem

4.6.4, then T"” cannot be a metric open quotient BY tree equivalent to 7. [

Example 4.6.9. Let T be the metric open quotient BY tree as in Example
4.6.5.

2 V3
m 2,M1 O .
T — 92, go,M2  g0,M4
£ Vo
3 @g1, M1
2 U

It is straightforward to check that each of the trees pictured in Figure 4.13 is
indeed equivalent to T'. Furthermore, any of the possible ways described by
Proposition 4.3.9 to create a metric open quotient BY tree from T are shown
in Figure 4.13. Thus Figure 4.13 depicts the full equivalence class of T. By
Example 4.5.6, the canonical representative T* is isomorphic to 7" and thus in

its equivalence class.

Corollary 4.6.10. Let T be a metric open quotient BY tree, then a tree T
as constructed in Construction 4.5.5 is itself a metric open quotient BY tree.

Furthermore, T™ is equivalent to T.

Proof. Tn Case 1 (a), when m’ is a vertex of T, and we attach an open yellow
edge to T at m/, then we lie in case (A1) of Theorem 4.6.4. So, T* is a metric
open quotient BY tree.

In Case 1 (b), m’ lies on an edge e of T, and we create a genus 0 vertex
there, coloured the same as e, and attach an open yellow edge at m/. That
is, we lie in case (B1) of Theorem 4.6.4, and 7™ is a metric open quotient BY
tree.

In Case 2 (a), m’ does not lie on T and is coloured green. We attach "open
yellow edge — genus 0, multiplicity 1, blue vertex — closed blue multiplicity
1 edge’ to the closest vertex v, of T to m’. That is, we lie in case (C1) of
Theorem 4.6.4, and T is indeed a metric open quotient BY tree.

In Case 2 (b), m/ does not lie on T and is not coloured green. We attach
an open yellow edge to the closest vertex v, of T to m/. By Lemma 4.5.4 (ii),
v is the closest point on 7' to m/. Furthermore, by Lemma 4.5.4, v, = vg, or
v, is a leaf of T' with denom(d(v., m)) | s(ve, T). If v, is a leaf of T, then

certainly there is at most one closed edge of multiplicity 1 incident to v. in
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T. So, we satisfy the conditions in (E1) and can attach an open yellow edge
at v, to obtain a metric open quotient BY tree. If v, = vy € V(T') then note
that, d(m/,v.) > 0, and v, lies on the path between m’ and c. Since m’ is the
closest point of B to ¢ which is also integer distance from m, we must have
that d(m’,v.) ¢ Z. So, v. either has one or two multiplicity 1 incident edges
in 7' (including the open edge). If € is blue, and v, = vy has two incident
edges of multiplicity 1 in 7', then by Theorem 4.6.4, we cannot add an open
yellow edge at v.. However, this case cannot occur since if v, has two incident
edges of multiplicity 1 in T, and d(m,v.) ¢ Z then no black edge is added
which means m' lies on the open edge which is coloured green in B. This is a
contradiction since m’ is not green. In all other cases we do lie in Case (E1)
so adding an open yellow edge at v, to create T™ does indeed result in a metric
open quotient BY tree.

It follows that, by Theorem 4.6.8, T* is always equivalent to 7. O

We will see shortly, that we are able to embed the extended tree described
in Construction 4.5.1 into a larger tree, whose vertices are p-adic discs. This
embedding will allow us to view the possible marked points m/, as described
in Theorem 4.6.4, as the vertices in this tree which are discs with centre in
K and integer radius. First, let us make the link between open quotient BY
trees and cluster pictures, thus allowing the equivalence relation and complete

description of the equivalence class to be translated to metric cluster pictures.
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Chapter 5

Polynomials and Open Quotient
BY Trees

5.1 Open Quotient BY Trees Associated to

Cluster Pictures

In Section 4.1 we defined open quotient BY trees. Here we instead construct
quotient BY trees associated to cluster pictures of what will turn out to be
a tame hyperelliptic curve (but for now we will be thinking purely in terms
of polynomials rather than curves), before showing there is a one-to-one cor-
respondence between these objects. Throughout Chapters 5 and 6, unless
otherwise stated, we restrict ourselves to the situation where a cluster picture
(R,%,d) has dg > 0. However, it is worth noting that this will not limit our
final results. If dgx < 0, a simple scaling allows us to increase the depths of all
clusters by an integer. This is discussed in more detail in Section 5.3.

¢

For our purposes, a cluster picture will only be “valid” if there is a tame
hyperelliptic curve with an isomorphic cluster picture. We use the following

(slightly restated) definition from [Bis19] to talk about when this is the case.

Definition 5.1.1. Let ¥ be a metric cluster picture. Then ¥ is of polynomial
type over K if there exists a square-free polynomial f € K[z] whose splitting
field is tamely ramified, such that if R is the set of roots of f in K then
¥ = (R, ,d) is isomorphic to X.

Note that whilst this definition doesn’t explicitly mention hyperelliptic
curves, it does mean that X is of polynomial type over K if there exists a hy-
perelliptic curve C : y? = f(z) with tame reduction, such that ¥ is isomorphic
to X¢. However, for the purposes of this section it is only necessary to consider

such polynomials rather than hyperelliptic curves.

Theorem 5.1.2. There is a one-to-one correspondence between metric open
quotient BY trees and metric cluster pictures (X, R,d) of polynomial type with
dr > 0.
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Proof. This is a direct consequence of Theorems 5.1.19 and 5.1.20 and Propo-
sition 5.1.12. [

The construction below makes use of Galois orbits of clusters, so we first

make the following definitions.

Definition 5.1.3. Let X be a Galois orbit of clusters. Then X is ubereven
if for all s € X, s is iibereven. We define an orbit X to be odd, even, and

principal similarly.

Definition 5.1.4. Let X and X’ be Galois orbits of clusters. We say that X’
is a child of X, written X' < X, if for every s’ € X’ there exists some § € X
such that s’ < 5. Define 0x» = 0y for some s’ € X'.

Construction 5.1.5 (T'(X)). Let (R, %) be a cluster picture of polynomial
type, with dg > 0. We define T' = T'(X), the open quotient BY tree associated
to X as follows. Let T be a finite tree, equipped with a genus marking g :
V(T) — Zso on vertices, a multiplicity function M : V(T) U E(T) — Zxo,
and a 2-colouring blue/yellow on vertices and edges. T" has one vertex vy for
every Galois orbit X of proper clusters in X, coloured yellow if X is iibereven
and blue otherwise. For X and X’ both proper orbits, with X’ < X, T has
an edge between vy and vy coloured yellow if X’ is even, and blue otherwise.
One additional open edge is added to vgr, coloured yellow if R is even, and
blue otherwise.

The genus of a vertex vy is defined to be the semistable genus g (s) of
any cluster s € X, as in Definition 2.1.14. The multiplicity of a vertex vy
or an edge between vy and vy, where X’ < X is defined to be |X’|. Note
that this means that M (vx) is the minimum of M (e) over all incident edges e,
and if e is incident to v; and vy, then M (e) = max {M (vq), M(ve)}. For this
reason, we can omit writing the multiplicity of edges when we draw T, as they
can be deduced from the multiplicities of the vertices.

Furthermore, we can define a metric on T, by defining the length of a
closed edge e between vx and vy with X’ < X to be dx/, and a marked point

m lies distance dr along the open edge. We mark m with a cross.

Example 5.1.6. Let C' be the hyperelliptic curve over Q. for p > 5, defined
by
C:y?= (2 = p")((2® = p)* = P)((z = 1)' = p*)((& — 2)° = p?).

Then the cluster picture X is shown in Figure 5.1 and the open quotient BY

tree of X is shown in Figure 5.2 below.
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R

55
51 59 53 54 56 57
(%(o o)%(o o)%(o 0)1]1 @90009,00 o)g
3
0

Figure 5.1: Cluster picture ¥ of C'/Q}".

g1,M1 Ve
2 Us7 @ g0, M1
3
m  g0,M1 M1
—¢ 5
UR Vs
@Y= @ g0,M3
vx!
g1,M1

Figure 5.2: Open quotient BY tree of X

Remark 5.1.7. The idea, of open quotient BY trees associated to cluster
pictures, is to generalise open BY trees in a way that is practically useful even
in the non-semistable situation. One slight subtlety to note is the difference in
convention between edge lengths on BY trees and open quotient BY trees. For
BY trees, a yellow edge between vy and v, with vy < vs (recall, v < v if v lies
on the embedded path from m to v") would be assigned length 24, rather than
0y, that is, our yellow edges have half the length of those in BY trees. Although
this notation T'(X) is also used in the semistable setting, we do not need to
worry about this being confusing. One can simply think of open BY trees as
being open quotient BY trees with all edges and vertices having multiplicity
1 (and all yellow edges having the edge lengths adjusted accordingly). Indeed
this is proved explicitly in Proposition 6.1.3. As such, all statements relating
to BY trees in [DDMM17] and [DDMM18] can be applied to the open quotient
BY tree associated to the cluster picture of a semistable hyperelliptic curve.
So, whilst on occasion we will refer back to BY trees and use the same notation,
one is not to worry about it being confusing as there is no conflict between
them (other than the convention for lengths of yellow edges). The quotient
case simply encapsulates slightly more information, allowing it to be used more

generally.

Example 5.1.8. Consider the following cluster picture of polynomial type:

Y= [[@00)461900)137]1_300]0

3 4
3

0
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The associated open BY and open quotient BY trees are shown in Figure 5.3.

1
0 = 0,M1
g0 g1 g2 3 g m . goMi giLM1 g2,m1 @Y
.T. o—o
3 3 g0 3 3 g0,M1
2 2

(a) Open BY tree associated to (b) Open quotient BY tree associated to X

Figure 5.3: Open BY and open quotient BY trees associated to X.

The aim for the rest of this section is to prove Theorem 5.1.2. In particular,
we will show that the open quotient BY tree of a cluster picture of polynomial
type is an open quotient BY tree, and that the converse is also true. That
is, every open quotient BY tree corresponds to a cluster picture of polynomial
type. This will give us a one-to-one correspondence (up to isomorphism) and
allow us to work with open quotient BY trees instead of cluster pictures. First,
we describe how to construct a cluster picture from an open quotient BY tree.
We will then show that this construction actually gives a “valid” cluster picture
(i.e. it is of polynomial type), as well as showing that the open quotient BY
tree associated to a cluster picture is indeed an open quotient BY tree in the
sense of Definition 4.1.3. This construction is similar to that of Construction
4.15 in [DDMM17], bar the lengths of yellow edges differing by a factor of 2.

Construction 5.1.9 (X(7")). Let T' be an open quotient BY tree as defined
in Definition 4.1.3 with marked point m. Then we define the associated cluster
picture X(T') as follows. Define a partial order on the vertices of T' by setting
v' < v if v lies on the embedded path from m to v’.

Define M (v) sets of singletons:
R} ={x}y,.. . 7]y}, forl<i< M(v).

Now take
R= |J RiU---URj,.

veV(T),
blue

Furthermore, for any vertex v € V(T') (blue or yellow), for 1 < i < M(v)
define

!
Spi = RU. 2!
vt (i~ e+

U U R

LM (0)

vl jv?
blue

Note that if v/ < v then by Definition 4.1.3 (iv) M(v) | M(v'), so 20 g
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always an integer. Now define ¥ C P(R), a subset of the power set of R, by

S U (surUe Usuar) u(u{x})

veV(T) z€ER
M(v)
= U U Su.i U U{:C}
veV(T) i=1 z€ER

We define the (non-metric) cluster picture associated to T to be X(T') = (£, R).
We may also define a metric on 3 in the following way. If v,w € V(T') then,
for all 1 < i < M(v) and 1 < j < M(w), we define d;,, = d(v,m) and
(80,0, Swy) = ds, , + ds
containing both s,; and s, ;, and where d(v,w) is the length of the shortest

— 2d(s, ;ns,,;)» Where §,; A 5y, ; is the smallest cluster

w,j

path between v and w. Define the (metric) cluster picture associated to T to
be X(T) = (R, %, d).

Remark 5.1.10. Again, as in Remark 5.1.7, this construction agrees with
that in [DDMM17, Construction 4.15] (after allowing for the difference in

convention between edge lengths of BY trees and open quotient BY trees).

Proposition 5.1.11. Let T be an open quotient BY tree, then X(T) is of
polynomial type. Similarly, let (R,%,d) be a cluster picture of polynomial
type, with dg > 0. Then T(X) is an open quotient BY tree.

Proof. Theorem 5.1.19 proves that X(7') is of polynomial type, and Theorem
5.1.20 proves that T'(X) is an open quotient BY tree, in the sense of Definition
4.1.3. O

Before we move on to discussing the details of this proof, let us first show
that the construction above works as we would hope and recovers the starting

cluster picture or open quotient BY tree.

Proposition 5.1.12. Let T be a metric open quotient BY tree, then
T(X(T)) = T. Similarly, let (R,X) be the cluster picture of polynomial
type with dg > 0, then X(T'(X)) = 3.

Proof. First let us prove that, for a cluster picture ¥ of polynomial type,
(T (X)) =2 X. Certainly ¥ and X(7") have isomorphic clusters. To see this note
that for every Galois orbit of clusters X, T'(3) has a vertex vx with multiplicity
M(vx) = |X|. So, X(T'(X)) has precisely | X| clusters s, ;, 1 <i < |X|, arising

from vx.
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Let X’ be an orbit of proper clusters with X’ < X, then by definition we
must have precisely ”XT/” clusters in X’ that are children of any s € X. Note
that every proper child of s will lie in such an orbit. X’ gives rise to a vertex
vxs, coloured yellow if X’ is iibereven and blue otherwise, in 7'(X) which is
adjacent to vy. The edge between them is coloured blue if X’ is odd and
yellow otherwise. By construction, all edges incident to vy, except the unique
edge on the path between vy and m (when X = R this will be the open edge),
arise in this way. That is, orbits X’ < X each contribute a vertex vy, which
correspond to precisely the vertices v € V(I'(X)) which are adjacent to vy,

with v < vy, i.e. v < vyx. Each such vertex gives rise to | X’| clusters

! ,U/
Svyri = U RY M U - U R. M) -

Dyt Bviomn)

v/ =0,
blue

Note that, since s, ; = (J RY

( _1) M (v') +1 U e U R M(v') s we can erte

v '<’UX M(vx) ]\/I(Ux)
blue
(
v’ v’ -
U U R(;l) M) U---u R, My | X tbereven,
Vxr <vx Ulij“ M(vx) J\l(vX)
blue
Suxi =
VX v’ v’ :
R*U U U R M U--UR ) | otherwise.
Uy <vx v <'u /5 M(vx) M(vx)
\ blue

Note that the set {(z - 1)]\]\4/[((:2) +1,(i — 1)]\]\44((;}2) +2,... ,i]\]‘f((:g)} can be bro-

ken up in the following way:

M(vyr) M(v')

M(vy) M) M('U,) M(U’) .
U u = 03703y + 0~ Dy 7}

So, if X is iibereven, we have that

Syxi = l l S5 My, U US$ M(vy/)
’ vy (i—1) gy +1 v /zTX
V1 <VX X M(vx) XM (vy)

and otherwise we have

Sy i = RXU U 5

Vxr <UX

v U---Us M(v
vyr,(i—1) (( );))—&-1 Vxr, 1M<(v)§))




5.1. Open Quotient BY Trees Associated to Cluster Pictures 111

Therefore, the only proper children of s,,; arise from X’ < X and are

M(v /)_&
for1 <k< M(v’;) =X

L\ M(vy)
UX/,(l—l) M(v))((,) k

The only other possible children of s, ; will be singletons. Suppose that
X is an orbit of iibereven clusters. So every s € X has only even children.
There are no elements of R contained in s, ; that aren’t also contained in

another cluster in X(7'(X)), that is s,, ; has no singletons.

Otherwise, X is an orbit of non-tibereven clusters, so vy is coloured blue.
The singletons of s, ; are precisely the elements of the set R;*, as defined in
Construction 5.1.9. That is, s, ; has precisely |R;*| = s(vx, T (X)) singletons.
By definition, for s € X, #{odd children of s} € {2g4(s) + 1, 2gss(s) + 2}. If
X is an even orbit, then we must have #{odd children of s} = 2¢g(s) + 2. In
T'(X) the edge incident to vx which lies on the path between vy and m must
therefore be coloured yellow. Let X’ be an orbit of odd clusters with X’ < X,
then by definition we must have precisely ”XT/‘ clusters in X’ that are children
of any s € X. Note that every proper odd child of s will lie in such an orbit.
X' gives rise to a vertex vy: in T(X) which is adjacent to vy, and the edge
between them is coloured blue. By construction, all blue edges incident to vy

arise in this way. So,

2¢ss(8) + 2 = #{odd children of s},

= #{proper odd children of s} + #{singletons of s},
M
— Z () + #{singletons of s}.
M (vx)
e€V(L(2)p)

incident to vy

So, s has s(vx, T (X)) singletons, that is the same number of singletons as each
Syy.i has. A similar argument follows when s is odd, bearing in mind that in
this situation #{odd children of s} = 2g(s) + 1, however the edge incident
to vx, lying between vy and m is now coloured blue. So again, we get that s

and s, ; have the same number of singletons.

So far we have shown that there is a one-to-one correspondence between
the proper children of s and s, ;, and, if X is not iibereven, the singletons of
Sy, i 1t remains to show that |s| = |s,, ;|, their children have the same sizes,
9ss(8) = ges(S0x 1) and ds = ds, _ .

It follows, by an inductive argument starting at the leaves of T'(X), that
every cluster s, ; has the same size as the clusters in X. Since this argument
works for all orbits of clusters in ¥, we also have that every proper child of s

corresponds to a child of s, ; of the same size. It then also follows that gs(s) =
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Gss(5vy.i)- Again, an inductive argument starting at the leaves of T'(X) gives us
an isomorphism between the non-metric versions of the two cluster pictures X
and ¥(Z'(X)). Finally, by construction, we have ds, , = d(vx,m) = dx = ds.
Now let us prove that, for a metric open quotient BY tree T', T'(X(7)) =2 T.
This can be proved in a similar way. However, one can also note that if
T(X(T)) 2 T then, by construction of 3, X(T(X(T))) 2 X(T'). We will see
later in Theorem 5.1.19 that X(7) is a cluster picture of polynomial type,
so this would contradict the first part of this proof since we should have

E(Z(X(T))) = X(T). Therefore, T(X(T)) =T O
So indeed the constructions of T'(¥) and X(7T) act as we hoped.

Remark 5.1.13. Note that if v € V(T) has either degree 1, or degree 2 and
both incident edges have equal multiplicity, then each of the clusters arising
from v, in the construction of X(7"), have either no proper child, or exactly
one proper child respectively. In these cases the only possible non-trivial orbits
that can occur are completely determined by the number of singletons each
cluster s, ; has, and M (v) (the size of the orbit of s, ; itself). In all other cases
the construction of ¥(T) results in more than one proper child of each of s, ;.
In this case, the size of the orbits of children is determined by M (v) and the
maximal multiplicity of edges incident to v. We will discuss in more detail
below that, by [Bis19, Theorem 1.3], for a hyperelliptic curve C all children
of a cluster s € X, except for possibly one child, must be in orbits of the
same size. So, any singletons of s,; (except for possibly one lone singleton)
must lie in orbits of the same size. Indeed, we saw in Proposition 4.1.17 that
lem(denom(d(v, m)), M (v)) divides M (v)s(v,T) or M(v)(s(v,T) — 1), which
corresponds to the case when all singletons are in orbits of the same size, and

the case where there is one singleton in a smaller orbit.

An open quotient BY tree corresponds to the cluster picture of a hyper-
elliptic curve with tame reduction, if and only if it corresponds to a cluster
picture of polynomial type. So, for an open quotient BY tree T', we need X(7T')
to be of polynomial type over K. The following hypothesis and theorem from
[Bis19] provide a useful way to check if a cluster picture is of polynomial type.
For a hyperelliptic curve C, by [Bis19, Theorem 1.3], all children of a cluster
5 € Y, except for possibly one child must be in orbits of the same size. Here
we make this more precise by restating this result, along with the following

notation and definition, from [Bis19).

Notation 5.1.14. For a cluster s, we denote by G, the stabiliser of s under
the Galois group G.
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Definition 5.1.15. For a cluster picture (R, X) an orphan of a cluster s € X

is a unique fixed child of s under the action of G,

One can also replace the Galois group by a subgroup of Sym(R) for an

abstract definition of orphans as follows.

Definition 5.1.16. Let (R, 3, d) be a metric cluster picture and h € Sym(R)
which induces an automorphism of ¥. Write H = (h). Then an orphan (with
respect to H ) of a cluster s € X is a child " of s such that § is fixed under the

stabiliser Stabg(s) of s, and s’ is unique in this respect.

Hypothesis H. Let (R, %, d) be a cluster picture. Then we say ¥ satisfies
Hypothesis H if there exists a h € Sym(R) which induces an automorphism of
Y such that, if we write H = (h):

e The orbits of non-orphan children of a proper cluster s all have length
equal to denom(ds[H : Staby(s)]) under Staby(s);

o Let R#s € X then
[H : Stabg(s)] = lemgcydenom(dy),
where for a cluster s’ 2 s,

1 if the child of ' containing s is an orphan,

* p—
G
dy  else.

Remark 5.1.17. The above conditions imply that |H| = lem,exds (where the
lem runs over all proper clusters). This gives a useful preliminary criterion to

check if a cluster picture satisfies Hypothesis H. [Bis19, Remark 2.3]

Theorem 5.1.18 ([Bis19, Theorem 2.4]). Let (3, R,d) be a cluster picture
and suppose that p > |R|. Then ¥ is of polynomial type over K if and only if
> satisfies Hypothesis H.

We will now prove that for an open quotient BY tree 7', X(7T') is of poly-
nomial type. The approach is to construct an action on X(7") that satisfies
Hypothesis H.

Theorem 5.1.19. Let T be an open quotient BY tree, then X(T) is of poly-
nomial type over K (for p sufficiently large).
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Proof. We wish to construct an action of a cyclic group H on the clusters
in (7). Recall, as described in Construction 5.1.9, each vertex v € V(T
contributes M (v) proper clusters s,1, .. .,5, am(), €ach containing s(v) single-
tons of X(7"). To make life easier for the sake of this proof, we note that we
can relabel the clusters in 3(7") inductively as follows: Label the one proper
cluster arising from vy as s,,. For any vertex v € V(T') assume proper clus-
ters arising from v have been labeled s,, 7 (s,), ..., ~1(s,). We also write
oMW (5,) = s, giving us an action of degree M (v) on the set of clusters arising
from v. Assume further, that these clusters have been labeled in such a way
that for any v,v" € V(T) with v' < v, 0(s,/) is contained in ¢7(s,) if and only
if the coset o’Staby (s,/) = o (™)) is contained in ¢’Staby(s,) = o7 (cM®)),

where ¢ has order lem,cy ()M (v) and H = (o). Note that such a labeling is
M(v')
M (v)
ters arising from o’ that are contained in any given cluster arising from v (of

clus-

indeed possible as by construction if v' < v then there are precisely

which there are M (v) such clusters).

For any v € V(T) write s(v) = s(v,T") and let d = denom(d(v, m)), where
m is the marked point of 7. Recall that every cluster arising from v has s(v)

singletons, and : )
lem(d, M (v
W | S(U) or (S(U) — 1)

If % | s(v) then let us relabel the s(v)M (v) singletons arising from v

* 5() M (v)

lem(d, M (v))’

Ty O(Toi), - - ,alcm(d’M(”))_l(rv,i), for1 <i<

in such a way that o'(r,,) is contained in o?(s,) if and only if the coset
o'Staby (r, ) = o (oM ) g contained in 07Staby(s,) = 07 (™)), Note
that this means there are precisely s(v) singletons arising from v in each of

0’(s,) for 0 < j < M(v) — 1 (where s, = 0°(s,)). Otherwise, if % \
(s(v)—1), then let us relabel (s(v) —1)M (v) of the s(v) M (v) singletons arising

from v as

(s(v) = HM(v)
lem(d, M (v)) ’

Tais O(Tui), o 0 EMED=I 0 N for 1 < <
and the remaining M (v) singletons arsing from v as
Ty ooy MO,

in such a way that o'(r,,) is contained in o?(s,) if and only if the coset

o'Staby (r, ) = ot (o' m@M )Y i5 contained in 07Staby(s,) = o7 (cM®)) and
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o'(r,) is contained in 07 (s,) if and only if s = j (where o¥ is the identity map).
Note that this means there are precisely s(v) singletons arising from v in each
of 07 (s,) for 0 < j < M(v) — 1. In either situation, it is clear that if r € o'(s,)
then ¢®)(r) is also, and no lower powers of o will satisfy this so labeling in

this way is indeed consistent with us having Stab(c(s,)) = (cM®)).

It is immediate, after relabeling in this way, that ¢ is an automorphism
of X(T"), and a bijection on R.

In order to verify Hypothesis H, we need to check that the orbits
of non-orphan children of a proper cluster o’(s,) all have length equal to
denom(d,is,)[H : Staby(o'(s,))]) under Stabg(c'(s,)) = (c™®)), where
dyis,y = d(v,m). To do this let us calculate the orbit sizes of children of

o'(s,) under oM®),

Again, let us write d = denom(d,i(s,)) = denom(d(v,m)). Let v" < v
be a vertex which is adjacent to v. Recall from Definitions 4.1.3 and 4.1.13

that M(v") = M(v), or M(v') = lem(d, M(v)). It is easy to read off this

new labeling that, under o™ %((7;/)). So,

if M(v') = lem(d, M(v)) then under o™®) clusters 07(s,) have orbit size

%. If instead, M (v') = M (v) then the orbit of ¢7(s,) under o™

has size 1. It remains to consider the orbit sizes of the singletons of o'(s,).
M (v)

), clusters ¢7(s,) have orbit size

Similarly, from the labeling it follows that under o any root o7 (r, ) has

orbit size lcm%’(ﬂf)@)). If lcm%’g)

o7 (r,) have orbit size 1 under o), Note that

@) | (s(v)—1), then the remaining roots labeled,

lem(d, M(v)) _ dlem(d, M(v))
M) dM(v)
_
~ ged(M(v),d)’
= denom(dyi(s,) M (v)),

= denom(dyi(s,)[H : Staby (o' (s,))]).

By Definition 4.1.3 (iii) either every v =< v incident to v has multiplic-
ity lem(d, M(v)), or all but one v/ =< v incident to v has multiplicity

lem(d, M (v)) # M (v) and the other one has multiplicity M (v). Furthermore,
if every v < v incident to v has multiplicity lem(d, M (v)) then %
can divide s(v) or s(v) — 1, otherwise if there exists a v < v adjacent

to v with multiplicity M(v') = M(v) # lem(d, M(v)), then =) di-

vides s(v), by Definition 4.1.3 (iv). So, in either case every child of o(s,)
has orbit size denom(dyi(s,)[H : Staby(c'(s,))]) under Staby(c'(s,)), except
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possibly for one child which is fixed by Stab(c%(s,)) (in which case this
child is an orphan by definition). So, every non-orphan child has orbit size
denom(d,i(s,)[H : Staby(0'(s,))]) under Stabg (o' (s,))
It remains to prove the second part of Hypothesis H. That is, that for
R#seX,
[H : Stabpy(s)] = lemgcydenom(dy, ),

where for a cluster §' 2 s,

1 if the child of 8’ containing s is an orphan,
? dy otherwise.

We will prove this by induction, but first let us note the following.
By the previous part of this proof we know that if v < v are adja-
cent vertices, then v’ gives rise to an orphan of o7(s,) if and only if
M(v'") = M(v) # lem(denom(d(v, m)), M(v)), and otherwise we have M (v') =
lem(denom(d(v, m)), M (v)). Recall that [H : Stabg(c?(s,))] = M(v).

For the base case let us assume that v = wvy. So, o'(s,) < R. Note
that M(v') = M(vg) # lem(denom(d(vg, m)), M(vg)) if and only if o(s,/) is
an orphan of R, and otherwise M (v') = lem(denom(d(vy, m)), M(vg)). By
definition M (vg) = 1, d(vg,m) = dg. So, M(v') = 1 # denom(dg) if 5, =
0'(sy) is an orphan of R, and otherwise M(v') = denom(dg). Therefore
[H : Staby (0" (s,))] = denom(d).

For the inductive step let v < v be adjacent vertices and assume that
for every 1 < j < M(v), [H : Staby(07(s,))] = lemyi(s,)cydenom(ds)).
Let o'(s,) be a child of ¢(s,). If o%(s,) is an orphan of ¢7(s,) then
M) = M(v) # lem(denom(dyics,)), M(v)), otherwise we have M(v') =
lem(denom(dyis,)), M(v)). Therefore

[H : Staby (0 (sy))] = M(v) 0'(s,) orphan of o7(s,),

lem(denom(dyis,)), M(v)) otherwise.

lemi (s, )cordenom(dy ) o'(s,) orphan of ¢7(s,),

lem(denom(dyis,)), lemys,)cordenom(dy))  otherwise.

This can be simplified to [H : Stabg (0" (s,))] = lemyi(s ,)csdenom(dy) which
concludes our proof. In particular, we have shown that for an open quotient

BY tree T', ¥(T') satisfies Hypothesis H and is therefore of polynomial type. [
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Now let us prove that, when X is a cluster picture of polynomial type,

T'(X) is an open quotient BY tree.

Theorem 5.1.20. Let (R, X, d) be a cluster picture of polynomial type, with
dr > 0. Then the open quotient BY tree T(X) associated to ¥ is an open
quotient BY tree in the sense of Definition 4.1.3.

Proof. Since ¥ is of polynomial type there exists a square free polynomial
f € KJz] whose splitting field is tamely ramified, such that R is the set of
roots of f in K. By Theorem 5.1.18, provided p is sufficiently large, 3 satisfies
Hypothesis H. In particular H can be taken to be the Galois group G of the
splitting field of f (see the proof of Theorem 2.4 in [Bis19, p. 5]). Let’s go
through the criteria in Definition 4.1.3 and check they are all satisfied.

(i) By Construction 5.1.5 a vertex in 7'(X) is coloured yellow if and only if it
arose from an orbit of iibereven clusters, say X. Since every such s € X
is even, the edge from the vertex arising from the orbit of P(s) to vy
(or the open edge if X = {R}) will be coloured yellow. All other edges
incident to vy arise from orbits X’ < X. That is, they arise from the
orbits X’ of even children. Therefore all incident edges must be yellow.

Finally by Definition 2.1.14 every such vy has genus 0.

(ii) Let vy be any vertex in T'(3), corresponding to an orbit X of clusters in
Y. Let P(X) be the orbit of the parents of clusters in X. Then for any
orbit X’ < X we have that |X'| > |X|. By construction, the edge from
vp(x) to vx has multiplicity | X|, whereas the edge from vx to the vertex
vx arising from the Galois orbit X’ of §' has multiplicity | X’|. So, the

path from m to any vertex in 7'(X) has increasing multiplicities.

(iii) Let X be an orbit of clusters in ¥. Then, by construction, d(vx,m) =
dx. Hypothesis H says that, for any cluster s € X, |X| = [G : G¢] =
lemgcydenom(dy ), where d}, is defined in Hypothesis H. So, for 5, < s €
X we have that

G : Gy, ], if s9 is an orphan,
lem([G : Gs,],denom(ds,)), otherwise.

G : G, =

Since the edge from vs, to vp(,) always has multiplicity | X| =[G : Gs,],
and s; can have at most one orphan we can conclude that either one or

two edges adjacent to vs, have multiplicity | X| = [G : G, ] and all others
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have multiplicity lem(| X |, denom(ds,)). Furthermore, the top cluster R

is always in a trivial Galois orbit, so M (e) = 1.

(iv) Blue vertices in T'(X) are in one-to-one correspondence with orbits of
non-iibereven proper clusters in 3. So, let s € ¥ be a non-iibereven
cluster with Galois orbit X. Note that

denom(d;)
ged(denom(ds,), | X1)’
_ lem(denom(ds), | X|)
X ’

denom(ds| X|) =

We now consider the following cases separately:

o If s is odd and has no orphan proper children then the edge
from vx to vpx) (or the open edge ¢ if s = R) is blue, of
multiplicity |X|, and all other incident edges have multiplicity
lem(|X |, denom(ds)) > | X|. Since s is odd we have from Definition
2.1.14 that |5] = 2¢(s)+1. By [Bis19, Theorem 1.3 (iii)], the length
of orbits of non-orphan children of s under G, is denom(ds|X|).
Under the assumption that s has no proper orphaned children, all
proper odd children must be in orbits of size denom(ds|X|) under
Gs, that is denom(ds|X|) | #{odd proper children of s}. Since s
has no orphan proper children, s will have either one orphan sin-
gleton, or no orphans at all. These two possibilities correspond to
denom(ds|X|) | (|Ssing| —1) or denom(ds|X|) | |Ssing| respectively. By
definition, |§| = #{odd proper children of s} + |ssne| = 2¢ss(5) + 1,
so denom(ds| X |) | 29ss(s) + 1 or denom(ds| X|) | 2gss(8).

e If s is even and has no orphan proper children then a similar result
follows, the only difference is that |§| = 2¢g(s) + 2. The outcome is
that denom(ds| X|) | 2gss(s) + 2 or denom(ds|X|) | 29ss(s) + 1, if s

has no orphans,; or if s has an orphaned singleton respectively.

e If s is odd and has an orphaned proper child, then all single-
tons of § must be non-orphans. That is, all singletons and all
but one proper child are in orbits of size denom(ds|X]). So
denom(ds|X|) | |Ssing|- If the orphan is even then we have that
denom(ds|X|) | #{ odd proper children of s}, otherwise the orphan
is odd and denom(d,| X|) | #{ odd proper children of s} —1. There-
fore denom(ds|X|) | 2¢ss(s) + 1 if the orphan is even (i.e. there is

one blue and one yellow edge of multiplicity | X| incident to vy ), or
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denom(ds| X|) | 2¢ss(s) if the orphan is odd (i.e. there are two blue
edges of multiplicity | X| incident to vy).

e Similarly, is s is even and has a proper orphan, one can show that
denom(ds| X|) | 2gss(s) + 2 if the orphan is even (i.e. there are two
yellow edges of multiplicity | X| incident to vy), or denom(ds| X]|) |
2¢s(s) + 1 if the orphan is odd (i.e. there is one blue and one yellow
edge of multiplicity | X| incident to vx).

(v) Let X be an orbit of non-iibereven proper clusters such that every s € X
has genus 0, that is vx € V(Z(X)) is blue and g(vy) = 0. Then, since
5] € {29ss(5) + 1,2gs5(s) + 2}, every s € X has either one or two odd
children. As s is a proper cluster, s must have at least 2 children. If s
is even then the edge from vp(xy to vx (or the open edge if X = {R} is
yellow and we are done. Otherwise s is odd and s has exactly one odd
child. So, s must have at least one even child also (so as to have at least 2
children). Even children are always proper and give rise to yellow edges.

So, every genus 0, blue vertex in 7'(X) has at least one yellow edge.

(vi) Let X be an orbit of proper clusters in 3, and let s € X. Then by
Definition 2.1.14 we know that g(vx) = gss(s) is such that |§] € {2g.(s)+
1,2¢s(s) + 2}. If s is even then |§| = 2¢gs(s) + 2 and the edge from vy

to vp(x) (or the open edge if s = R) is yellow, so

M
29ss(s) + 2 = |s| > #{ odd proper children of s} = Z Mgei'
v

e, blue edge
incident to v

If instead s is odd then |§] = 2¢s(s) + 1 and the edge from vx to vp(x)
(or the open edge if s = R) is blue, so

M (e)
M(v)’

2¢ss(s) + 1 = |5] > #{odd proper children of s} = —1 + Z

e, blue edge
incident to v

4

where the ‘—1" accounts for the edge from vx to vp(x) being blue but

not corresponding to an odd child of s.

Therefore, T'(X) is indeed an open quotient BY tree. It follows immediately
from the above work that 7°(X) is in fact a metric open quotient BY tree in
the sense of Definition 4.1.13. O

This concludes the proof of Theorem 5.1.2 and allows us to easily translate

work on open quotient BY trees to work on cluster pictures, and vice versa.
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The goal is to use the equivalence relation we constructed on open quotient BY
trees to study reduction types of tame hyperelliptic curves. It is worth noting
that, now we have this one-to-one correspondence, an equivalence relation on
open quotient BY trees will induce an equivalence relation on cluster pictures
of polynomial type. It is only now that the equivalence relation and canonical
representative of classes of open quotient BY trees becomes practically useful

for us.

5.2 The Bruhat-Tits Tree

In the next few sections we build towards proving two things:

e Given cluster pictures of polynomial type with sets of roots R and R’
and associated open quotient BY trees T" and T” respectively, if T and

T" are equivalent then there is a Mobius transformation taking R to R'.

e Conversely, given any Mobius transformation v, and any cluster picture

3’ of polynomial type with roots R, let

{o(r) | r € R} \ {oo} if R is even,
{(r) |r e RU{oo}} \ {oo} if R is odd,

R =

then the cluster picture of polynomial type, ¥’ with roots R’, is such
that the open quotient BY trees T'(X) and T'(X') are equivalent.

This will get us part of the way to being able to classify reduction types
of hyperelliptic curves. However, note that just because there is a Mobius
transformation between R and R’ this does not mean that C' and C’ are
necessarily isomorphic. It is important to check how Mobius transformations
affect the leading coefficients. This is dealt with in Section 6.3.

Roughly, our approach will be to embed open quotient BY trees and their
cores as subgraphs of the Bruhat-Tits tree. We will then study the effect that
applying Mobius transformations has on the Bruhat-Tits tree. We will prove
in Section 5.3 that the data needed to construct the canonical representative
is unchanged by Mobius transformations, that is cores are preserved, up to
isomorphism, and marked points are integer distances apart. Thus, apply-
ing Mobius transformations results in equivalent open quotient BY trees. In
practice, for an open quotient BY tree T', we actually embed what looks like
q (T, but where edge lengths remain unchanged, into the Bruhat-Tits tree.
Let us start by defining the Bruhat-Tits tree.
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5.2.1 Discs and the Bruhat-Tits Tree

There are several different descriptions of the Bruhat-Tits tree in literature
such as in [Bra08, §3] and [Casl4]. Here we are interested in the definition
where vertices are taken to be discs and the edge set is given by maximal
inclusions.

In [DDMM18], discs were defined to have elements in K. For our purposes
it is enough to instead take elements in a finite extension L/K. So, we define
a disc of L/K to be a subset

D.q,:={z € L|vg(x—2)>d},

with 2z € L and d € Q. Here d is an invariant of the disc, the depth, denoted
dp. If a disc D has depth dp and z € D is any element of the disc, then
D = D, 4,. For that reason we call any z € D a centre of D. In practice,
we will take L = K(R) where R is a set of roots of a square free polynomial

f € K|[z] whose splitting field is tamely ramified.
Definition 5.2.1. A disc is integral if it has centre in K and integer depth.

Definition 5.2.2. If s C R is a proper cluster in (R, X, d) then we call the
unique smallest disc of K(R)/K cutting out s the defining disc of s, denoted
D(s). It is useful to note that, by definition, for any proper cluster s, the disc
D(s) has depth ds and any root r € s can be taken to be a centre.

Definition 5.2.3. Let R be the set of roots of a square free polynomial f(x)
defined over K with tamely ramified splitting field. We define the Bruhat-Tits
tree of K(R) to be the graph whose vertices are discs

D=D,;:={re K(R) | vk(x — z) > d}

with z € K(R) and d € §Z, where b = [K(R) : K], and whose edges are given
by maximal inclusions. We denote this by Jx ). We can give Tk (z) a metric
by taking the length of an edge between a disc D and a maximal sub-disc
D' C D to be dpr — dp. In particular this means that every edge of Jx(r) has
length %

Example 5.2.4. In simple cases it is much easier to visualise the Bruhat-Tits
tree. For instance if we look over Q, then .7, is a p + l-regular tree. For
example, the maximal proper subdiscs of Oq, = Z, = Dy are precisely the
disjoint discs Dy, D11,...,Dp—1,1. There is also a unique maximal disc in

which Z, is properly contained, namely Dy _;. These observations hold for
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arbitrary discs D, 4, that is there are exactly p + 1 edges incident to each
vertex. It is unfortunately not so straightforward when the residue field is
algebraically closed and in general, for our purposes, the Bruhat-Tits tree is
not a p + l-regular tree. However, this example should help illustrate the

general idea.

Remark 5.2.5. The boundary of the Bruhat-Tits tree describes P'(K(R)) =
K(R) U {oo}. One can see this by noting that any infinite descending chain
of discs converges to a unique number whose terms in its p-adic expansion
are determined by these discs. All strictly increasing sequences of discs differ
by finitely many vertices, and are therefore said to be equivalent. Under this
equivalence relation, this equivalence class of strictly increasing chains of discs

corresponds to a single point, which we call the point at infinity.

5.2.2 Visualising Open Quotient BY Trees and Their
Cores Using the Bruhat-Tits Tree

Here we describe how we can make a simple construction of a subtree of the
Bruhat-Tits tree which allows us to visualise open quotient BY trees and their
cores as objects arising directly from Jg (). First let us discuss the construc-

tion for open quotient BY trees, before moving on to look at their cores.

Construction 5.2.6. Let f € K[z]| be a square free polynomial with tamely
ramified splitting field with set of roots R in K, such that dg > 0. Using R

we can construct a tree as a subtree of . = Jx ) as follows:

e For every pair of roots r, 7" € R link r and " by the unique path between
them in &

e link the point at infinity (as defined in Remark 5.2.5) to each root r € R
e take the vertex set to be all vertices of .7 of degree > 3 on these paths

e link vertices by an edge if they are linked by a path in .7 and are adjacent
(i.e. no other vertex of our tree that is under construction lies on the
path between them in .77) and let this edge length be equal to the length
of the path between them in 7.

e additionally adjoin one open edge at the closest vertex to infinity. Note
that by construction the closest point, on the union of the vertices and
edges defined above, to infinity is unique since .7 is a tree, and will be a

vertex of our subtree.
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e label the point arising from the disc D, ¢ by m. This will be a point
on the open edge, or the unique vertex incident to the open edge, since
dr >0,s0r € D, for all r € R.

Label the tree constructed from 7 in this way .7 (f/K). We define a colouring,
blue or yellow, on the vertices and edges as follows. Starting at the leaves and
working towards the unique vertex vz incident to the open edge, we can colour
the tree in the following way. Colour every leaf blue, and colour the unique
edge incident to it blue if there are an odd number of roots in R contained in
the disc and yellow otherwise. Continuing in this way up every branch to vg
we colour a vertex v once every edge and vertex below it has been coloured.
We colour v blue if there is a root contained in this disc that is not contained
in any of the vertices below it or if there is an edge incident to v that has
already been coloured blue, otherwise we colour v yellow. We then colour the
unique edge incident to the v that lies on the path between v and v (or the
open edge if v = vg) blue if there are an odd number of roots contained in it,
and yellow otherwise. The genus of a vertex v is defined to be g(v) = 0 if v is

yellow, and

#{rcv|DrAr)Dvforallr’ € R} +degss/i, (v) — 2
— 5 :

g(v)

where D(r Ar’) is the smallest disc containing both r and /, and 7 (f/K), is
the blue part of 7 (f/K). That is, we can calculate the genus of v when v is
blue from the number of roots contained in the disc v, and the number of blue

edges incident to v.

Example 5.2.7. Consider the polynomial f(z) = (2 —v/7+7)(x—7—7)(z+
VT+ D)@+ VT =7 ((x—1)° =7 (z — 8)(z — 2)(z — 3) over K = Q. This

has set of roots
R={VT+T VT =7, —VT+7,—T =775 +1,G7% + 1,275 + 1,8,2,3},

where (3 is a third root of unity. Following Construction 5.2.6 we can con-
struct the subtree 7 (f/k) of Jk(r) as pictured in Figure 5.4, where we have
also shown the paths to the roots with dashed lines. We can see that the
vertices have been taken to be the vertices of .7 of degree > 3 on the paths
between the roots in R and the point at infinity. We now continue to follow
Construction 5.2.6 to give a colouring to this tree, and genera to its vertices.
For example D, 7 contains 3 roots of R and is a leaf thus we colour it blue

and its unique incident edge blue. Similarly, D s, and D_, 5 are leaves so we
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X
@grs+1 8

Figure 5.4: A subtree 7 (f/k) of  constructed by considering the paths between
the roots in R, and oo.

g0 @90
m 0 C .
9 g0
@
g0
——01

3

Figure 5.5: 7 (f/K) with colouring and genera.

colour them blue and the edges incident to them yellow. We then can colour
D7,% and the edge between it and Og. Since D?,% does not have any edges
incident to it already coloured blue, and no root is a child of it, we colour D, 1

and the edge to Ok yellow. We can also assign genera to the vertices. For

example g <D77%> = 0 since it is coloured yellow, and g (DL%) = H=2 =1

Continuing to follow Construction 5.2.6 in this way we give a colouring to all

of 7(f/K), and genera to all its vertices, as shown in Figure 5.5.

Before the following construction it is useful to note that, by Lemma B.1
in [DDMM18], if a disc D is fixed by Gk then D has a rational centre, that is

there exists some z € K such that z is a centre of D.

Construction 5.2.8. Let 7 (f/K) be as in Construction 5.2.6. Note that the
Galois orbits of elements of R induces orbits on the vertices of Jx(z). So we
have a Galois action on the entire Bruhat-Tits tree. Galois preserves .7 (f/K),

hence acting on it by automorphisms that preserves the colouring and genera.
Write ¢(7(f/K)) for the quotient of 7 (f/K), with colouring and genera.

Example 5.2.9. Let f, K, and 7 (f/K) be as in Example 5.2.7. Then the
quotient of 7 (f/K) is
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g0,M1 - g0,M2
@ @

(T (/)= @

g0, M1
goO,M1  g1,M1

Note that this is in fact isomorphic to T'(X), where X is the cluster picture

associated to the set of roots of f. This leads us onto the following proposition.

Proposition 5.2.10. Let (R, %, d) be a cluster picture of polynomial type aris-
ing from f € K|x| (square free with tamely ramified splitting field). Then the
open quotient BY tree T'(X) is isomorphic to the tree (. (f/K)). This iso-
morphism preserves colouring, multiplicities of edges and vertices, the genera

of vertices, and distances.

Proof. Denote by S the subtree of .7 created by the unique embedded paths
between r and »’ for all pairs of roots r,7’ € R, as well as the path between
oo and some r € R. First, let us show that the vertices of ¢(.7(f/K)) are in
one-to-one correspondence with the vertices of T'. By definition, it is clear that
for a root r € R, the only discs containing r are those that lie on the infinite
path between oo and r. Furthermore, again by definition, as we move towards
r the discs are smaller. So, for any two roots r,r’ € R if we let D be the disc
on the path between r and " which is closest to infinity, then D is the smallest
disc containing both r and r’. So, certainly a vertex D in S of degree > 3 will
correspond to a proper cluster in X, that is there exists some proper cluster
s € ¥ such that D = D(s). It remains to show that every proper cluster in X
can be seen as a degree > 3 vertex in S in this way.

Let s be a proper cluster in ¥. By definition of being proper, any such
s has at least two children. So, let 51 and sy be children of s, where |s;| > 1.
As we discussed in Remark 5.2.5, two roots r; and ro both lie in a disc if and
only if the corresponding terms in their expansions are the same. Roots in s,
and s, have distinct next terms, so the path from D(s) to any root r; € s;
must lie on a completely separate branch from the path from D(s) to any root
r9 € §5. The path to infinity in S from D(s) consists of discs which contain
D(s), so D(s) has degree > 3 in S. So the proper clusters of ¥ are in one
to one correspondence with the vertices of our tree 7 (f/K). The action on
the vertices of S is precisely the action of G on their corresponding clusters.
After taking the quotient by the action of G we get ¢(.7(f/K)). Namely we
have shown that the vertices of ¢(.7(f/K)) are in one-to-one correspondence
with orbits of such clusters. So, vertices in 7" (as defined in Definition D.6 in
[DDMM]18]) are in one-to-one correspondence with G orbits of such degree
> 3 discs in S, i.e. vertices of ¢(T(f/K)).
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To see that the edge set is the same and there is an isomorphism is now
not hard. By construction, vertices (i.e. discs) in 7 are joined by an edge if
one is maximally contained in the other. So two discs D(s) and D(s'), where
s and &' are proper clusters, are connected by an edge if and only if, either
s’ < s, 5 <. The lengths of edges equal §(s’,s) by construction of .7. The
marked point of .7 (f/K) is, by construction, distance dg along the open edge
of 7(f/K). Taking the quotient by the action of Gk as one would expect
(constructed explicitly in Construction 5.2.15) yields the result we are looking
for.

Finally, now that we have this relation between the vertices of .7 (f/K)
and specific proper clusters of X, it is straightforward to see that ¢(7 (f/K))
has the same colouring and genera as described by Construction 5.1.5. In
particular, it is easy to see that, in 7 (f/K), a vertex is coloured yellow if it
corresponds to an iibereven cluster, and blue otherwise. If v" and v are adjacent
vertices of 7 (f/K) with v’ a disc that is contained in the disc v, then they
arise from clusters s’ and s respectively with ' < s, and the edge between v
and v’ is coloured yellow if §’ is even, and blue otherwise. Finally the open edge
of 7(f/K) is coloured yellow if R is even, and blue otherwise. Similarly, it is
easy to then see that the genus of a vertex v € V(7 (f/K)) is the semistable
genus of its corresponding cluster. This is because blue edges correspond to
proper odd children, with the exception of an additional blue edge incident
to v if v corresponds to an odd cluster, and it is clear that the number of
singletons is the same. So, after taking the quotient we get that ¢(.7(f/K))

and T are isomorphic and the colouring and genera are preserved. O

Remark 5.2.11. Note that Construction 5.2.8 is similar to the quotient of the
open BY tree in Construction 4.2.2. For semistable curves we can think of open
quotient BY trees and open BY trees interchangeably as the only difference
between these two trees is that the open quotient BY tree has an additional
marked point along the open edge, whose distance along the open edge gives
us dg. So, for a hyperelliptic curve C' : y? = f(x) over K with L/K such
that C is semistable over L, .7 (f/L) can be thought of as the open BY tree
associated to X(C'/L). We constructed a quotient of .7 (f/L) in Construction
4.2.2. We can also note that .7 (f/L) is isomorphic to .7 (f/K) but all lengths
of edges have been scaled by [L : K] since .7 (f/L) takes its lengths from the
normalised valuation over L, vy, whereas .7 (f/K) takes its lengths from the
normalised valuation over K, vx. From noting this it is clear that the quotient
we construct in Construction 5.2.8 gives a tree which is isomorphic to the open
quotient BY tree of ¥X(C/K).
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We can prove a very similar result for the cores of open quotient BY trees.

Let us first make some similar constructions.

Construction 5.2.12. Let f € K|z| be a square free polynomial with tamely
ramified splitting field and set of roots R in K, such that dg > 0. Using R

we can construct a tree from .7 = i (z) as follows:

e For every pair of roots r, 7’ € R link r and ' by the unique path between
them in 7;

e If R is odd link the point at infinity (as defined in Remark 5.2.5) to each
root € R by the unique path between them in .7;

e Take the vertex set to be all vertices of .7 of degree > 3 on these paths;

e Link vertices by an edge if they are linked by a path in .7 and no other
vertex lies on this path. Let this edge length be equal to the length of
the path between them in 7.

Label the tree constructed from .7 in this way 7 (f/K). Furthermore, note
that 7 (f/K) is a subtree of 7 (f/K), so the same colouring, blue or yellow,
can be given to all vertices and edges, and the same genera can be given to

every vertex.

Remark 5.2.13. Note that an alternative way of viewing this colouring on
F(f/K) is to note that an edge will be coloured blue if there are an odd
number of elements in R* on either side of the edge, and yellow if there are

an even number on either side of the edge, where

R if R is even,
RU{oco} if R is odd.

Rt =

Note that Rt will always be even, so we only need check the number of ele-
ments of RT lying on one side as the number on the other side will have the
same parity. Furthermore, after colouring all edges in this manner, if all edges
surrounding a vertex are coloured yellow and the vertex is not the closest ver-
tex to any element of R then the vertex gets coloured yellow. Otherwise a
vertex is coloured blue.

The genera can then be read off the colouring of the edges, vertices, and
the number of roots for which any given vertex is the closest vertex.

In fact, it is helpful to note that all of the above is completely determined

by the number of elements of R each vertex is the closest vertex to.
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Example 5.2.14. Consider the polynomial f(z) = (z — 1)(z® — 7°)(z — 7 —
)z — 7+ 7%) over K = Q. Let (3 be a third root of unity. Following
Construction 5.2.6 we can construct the subtree 7 (f/k) of Fic(r) as pictured
in Figure 5.4, where we have also shown the paths to the roots with dashed
lines and the disc Ok. Note that in this example D(R) = O, however this

O[\' cR
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T+ 7T-7 73 (373 432 3 1

Figure 5.6: The subtree .7 (f/k) of 7 constructed by considering the paths be-
tween the roots in R*.

only has degree 2 on the union of all the paths between elements of R* so is
not a vertex of .7 (f/K). We can then give a colouring to all of .7 (f/K), and

genera to all its vertices, as shown in Figure 5.7.

2
gl 5 g0 g0
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o—e L
Figure 5.7: J(f /K) with colouring and genera.

In order to view the core of an open quotient BY tree as arising from the
Bruhat-Tits tree we construct a quotient in a very similar way to Construction
5.2.8. The only slight complication is that one minor adjustment is sometimes
needed to deal with the vertex set in the case where X(C/K) is a union of
two clusters that are swapped by Galois. This is due to a modification in the
vertex set of cores of open quotient BY trees in comparison to cores of open
BY trees, as discussed in Remark 4.3.8, to ensure that cores of open quotient

BY trees always have a vertex of multiplicity 1.

Construction 5.2.15 (¢(.7(f/K))). Let (R, X, d) be a cluster picture of poly-
nomial type arising from f € K[z] (square free with tamely ramified splitting
field), and let .7 (f/K) be as defined in Construction 5.2.12. As in Construc-
tion 5.2.8, we have an action of Gal(K(R)/K) on the vertices of Jk ). Note
that this action is the same as the action on clusters, i.e. if 5,8 € ¥ are in the

same Galois orbit, then so are the vertices D(s) and D(s") of Jx ). We can
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use this action to define a quotient of 7 (f/K), in the way one would expect,
which we will denote ¢(.7 (f/K)).
In particular, we define the vertex and edge sets of ¢(.7 (f/K)) as follows:

e For every Galois orbit of vertices X in V(.7 (f/K)) we define one vertex
vx of ¢(Z(f/K)), and write q(v) = vx for all v € X.

e If X and X' are two distinct Galois orbits of vertices of .7 (f/K)
and there exist vertices v,v' € V(7 (f/K)) in X and X’ respectively,
such that [v,v'] € E(Z(f/K)), then we define an edge [vy,vx/] of
¢(T(f/K)), and write q([v,v']) = [vx,vx] for all [v,v] € BE(Z(f/K))
with v € X and v’ € X',

e If there exist two vertices v,v' € V(7 (f/K)) with v and v/ in the same
Galois orbit X, and e = [v,v] € E(Z(f/K)), then we must have that
X = {v,v'} is their Galois orbit. Label the midpoint of e, m(e). Add
one additional vertex to V(¢(.Z (f/K))) and label it v,,(). Then add an
edge to ¢(7(f/K)) between vy and Um(e). Write g(m(e)) = Vpy(e).-

All other points on J (f/K) are mapped by ¢ as one would expect.

Define a multiplicity function M : V(¢(Z(f/K))) U E(¢(Z (f/K))) —
Z~q to be the number of vertices or edges in the preimage of ¢, except in the
case when v and v are in an orbit and there is an edge e between them. In
this case we define M ([m(e),vx]) = 2 and M (vp()) = 1. That M(vx) =2 in
this exceptional case follows from above.

We define genera of vertices v € V(q¢(.7 (f/K))) to be equal to the genera
of vertices in the preimage, i.e. if v € V(Z(f/K))) is such that ¢(v') = v
then we define g(v) = g(v’). Note that since all vertices in the preimage of v
are in a Galois orbit, they must have equal genera, so this is well defined. In
the exceptional case that v € V(¢(.7(f/K))) is such that v = vy, for some
e € E(7(f/K)), we define g(v) = 0.

Finally, we can colour edges and vertices in ¢(.7 (f/K)) according to the
colouring of their preimage, where if v € V(q(.7 (f/K))) is such that v = v, ()
for some e € E(7(f/K)) we colour v the same colour as e. Again, this is well
defined.

Construction 5.2.16. We can define a metric on ¢(.7(f/K)) as follows. If
P, P’ are points on ¢(.7(f/K)) then we define d(P, P') = min{d(Q, Q') | Q €
¢ Y(P), Q" € ¢ '(P')}. Recall that an edge e € E(q(.7(f/K))) is either of the
form e = [g(v), ¢(v')] where ¢’ = [v,v'] € E(Z(f/K)) (in which case we write
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e = q(¢)), or of the form e = [¢(v),g(m(e’))] where m(e’) is the mid point
of an edge € = [v,v'] € E(Z(f/K)) where v and v/ are in the same Galois
orbit (in which case we write e = q([v, m(€")]) = q([v",m(e’)])). Note that this
gives us that the length I(e) of an edge e € FE(¢(F(f/K))) is l(e) = I(€) if
e =q(e), or l(e) = @ if e = q([v,m(e")]) = q([v',m(€’)]), where ¢ = [v,7],

and v and v’ are in the same Galois orbit.

Example 5.2.17. Consider the polynomial f(z) = 2% —212% — 191122 — 23667
over Q¥, with roots Cé?g + 77 and Qg?g — 73 fori = 0,2,4, 5 = 1,3,5 and
(3 a third root of unity. We can see how .7 (f/K) is constructed in Figure
5.8. Note that D(R) = D, 1 only has degree 2 on the union of all the paths
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Figure 5.8: The subtree .7 (f/k) of 7 constructed by considering the paths be-
tween the roots in R*.

between elements of R* = R so is not a vertex of .7 (f/K). We can then colour

j(f/K), and assign genera to its vertices, as shown in Figure 5.9. Taking the

2
gl 3 g1
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Figure 5.9: .7 (f/K) with colouring and genera.

quotient of 7 (f/K) as described in Construction 5.2.15 to obtain ¢(.7 (f/K)),
and giving ¢(.7(f/K)) the metric described in Construction 5.2.16 gives the

tree shown in Figure 5.10.

1
go,M1 5 g1,M2

Figure 5.10: ¢(.7(f/K)) with colouring and genera.

Theorem 5.2.18. Let f € K[k] be a square free polynomial with tamely ram-
ified splitting field and set of roots R in K, with dr > 0. Let T be the core of
the of the open quotient BY tree T = T(X). Then q(F(f/K)), as defined in
Construction 5.2.15, is isomorphic to T. Distances, genera, multiplicities and

colouring are preserved under this isomorphism.
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Proof. The approach here is very similar to that of Proposition 5.2.10. Denote
by S the subtree of 7 created by the unique embedded paths between r and
r’ for all pairs of roots r,r’ € R, as well as the path between oo and some
r € Rif R is odd. First, let us show that the vertices of ¢(.7(f/K)) are in
one-to-one correspondence with the vertices of 7'. By definition, it is clear that
for a root r € R, the only discs containing r are those that lie on the infinite
path between oo and r. Furthermore, again by definition, as we move towards
r the discs are smaller. So, for any two roots r,r’ € R if we let D be the disc
on the path between r and " which is closest to infinity, then D is the smallest
disc containing both r and 7’. So, certainly a vertex D in S of degree > 3 will
correspond to a proper cluster in ¥, that is there exists some proper cluster
s € X such that D = D(s). However, not every proper cluster in ¥ can be
seen as a degree > 3 vertex in S in this way. We need to check which proper

clusters these degree > 3 vertices in .S correspond to.

Suppose that R is even. Then if a vertex D(s) has degree > 3 in S then
there are at least two roots lying in the cluster s (since the degree indicates
that s has deg(v) — 1 proper children). Note that if R has a child s of size
2g + 1, then there exists a root r € R such that R = s U {r}. So, for any root
r’" € s the path from D(R) to r’ passes through D(s), and has no common discs
other than D(R) with the path from D(R) to r. That is, D(R) has degree 2
in S. Similarly, if R is a union of two proper clusters then D(R) has degree 2
in S since there exist children 5,8 < R with all roots lying in either s or §". It
remains to show that for all other proper clusters s € ¥, D(s) has degree 3 in
S. By definition of being proper, any such s has at least two children. So, let
s1 and sy be children of s, where |s;] > 1. As we discussed in Remark 5.2.5,
two roots r; and 75 both lie in a disc if and only if the corresponding terms
in their expansions are the same. Roots in s; and s, have distinct next terms,
so the path from D(s) to any root r; € s; must lie on a completely separate
branch from the path from D(s) to any root ry € s5. Note that, since either
5 # R or if s = R then s is not a union of two clusters, there exists a root
r € R\ s1Usy. Again, r will have a different expansion to roots in s; U s,
regardless of whether » € s or r ¢ 5. So, D(s) has degree > 3in S, and D(s) is
a vertex of 7 (f/K). The Gg-action on the vertices of S is precisely the action
on their corresponding clusters. After taking the quotient by the action of G
we get ¢(.7(f/K)). Namely we have shown that the vertices of ¢(.7(f/K))
are in one-to-one correspondence with orbits of such clusters. So, vertices in 7'
(as defined in Definition D.6 in [DDMM18]) are in one-to-one correspondence
with G orbits of such degree > 3 discs in S, i.e. vertices of ¢(Z7(f/K)).
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Suppose instead that R is odd. Note that for any root r € R the path
between r and oo passes through D(R). Furthermore R has at least 2 children,
so as above there are at least two distinct branches from D(R) to roots in R.
So, D(R) always has at least degree 3 with one edge incident to it on the path
to infinity and at least two edges incident on paths to roots. All other proper
clusters in ¥ correspond to vertices of S of degree > 3 just as in the proof of
the R even case. So, by the same justification as in the R even case, when R
is odd vertices of ¢(.7(f/K)) are in one to one correspondence with G orbits
of such proper clusters in ¥, which, by Definition D.6 in [DDMM18]), are in
one to one correspondence with vertices of T.

To see that the edge set is the same and there is an isomorphism is now
not hard. By construction, vertices (i.e. discs) in 7 are joined by an edge if
one is maximally contained in the other. So two discs D(s) and D(s’), where
s and &' are proper clusters (where if either s or §' equals R then it is not a
union of two clusters), are connected by an edge if and only if either ' < s,
ors <&, or R =sUs with R even. The lengths of edges equal §(s',s) by
construction of 7. Taking the quotient by the action of G as one would
expect (constructed explicitly in Construction 5.2.15) yields the result we are
looking for and gives us an isomorphism.

Finally, we can use Proposition 5.2.10 to give us that the colouring and

genera are preserved by this isomorphism. O

Example 5.2.19. Let f/K be as in Example 5.2.17. The open quotient BY

tree T" associated to f is as follows:

1
m . go,M17 g1,M2
T =

Indeed, ¢(.7 (f/K)), shown in Figure 5.10, is isomorphic to the core of T'.

Notation 5.2.20. Following Theorem 5.2.18, it now makes sense to use the
notation ¢~ '(T) = Z(f/K), after noting that ¢~ (¢(7 (f/K))) = Z(f/K),

1 is given explicitly in Construction 4.3.12. We will also introduce

where ¢~
similar notation for T', namely we will write ¢=*(T') = 7 (f/K), taking ¢~ *(T')
as given explicitly in Construction 4.2.2. Note that, as mentioned in Remark
4.2.4, when referring to ¢~'(T) and ¢~'(T) we are now referring to these as
metric quotient BY trees. In particular, for an edge e € E(T') we define the

length of each ¢~'(e); to be

g (e)i) = Ie)
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Similarly in 7', except for an exceptional edge between ¢~ (v/); and ¢~ (v/),,
which we give length 2(e), where e is the edge between v’ and the exceptional
vertex in T which gives rise to this edge.

Later, in Section 6.1 we will see a different metric on ¢~ (") and ¢~ (7).

Remark 5.2.21. Note that we are only able to view T itself on Jx(x) if every
vertex of T has multiplicity 1, that is 7" = T. Note that this is the case if
and only if ¥ has no non-trivial Galois orbits of proper clusters. Likewise, we
can only view T itself on Tk (r) if every vertex of T has multiplicity 1, that is
T' = T. Again, since only multiplicity 1 vertices and edges are ever removed
when passing from 7' to the core T, this is the case if and only if ¥ has no

non-trivial Galois orbits of proper clusters.

Proposition 5.2.22. Let f € K|x] be a square free polynomial with tamely
ramified splitting field and set of roots R in K. Let ¥ be the cluster picture
and T = T(X) the associated open quotient BY tree. Label the marked point
of T by m. Let B be as in Construction 4.5.1. Then the discs of the form
D, q with z € K and d € Z on Jk ) correspond to points m' on B which are

integer distance from m.

Proof. By Theorem 5.2.10, ¢(.7(f/K)) is isomorphic to 7. So, we can think
of ¢q(F(f/K))* as being T, thus lying on B. When we “undo the quotient”
we get 7 (f/K), lying on the Bruhat-Tit tree Ty (). As (T (f/K))" is the
multiplicity 1 component of ¢(7(f/K)) we have an isomorphism between
q(7(f/K))" and 7 (f/K)'. Similarly, since B has only multiplicity 1 compo-
nents we can picture B as lying on part of the Bruhat-Tits tree which is Galois
invariant. By construction of .7 (f/K), the marked point arises from a shift
of D,.oby 2z € K, ie. D, o Thus any point m/, an integer distance from
m on B, corresponds to a point on J ) which is fixed by Gk and integer
distance from D, o. Certainly any disc D, 4 with z € K and d € Z will be
integer distance from D, o in .7. Conversely if a disc is integer distance from
D, o then it must have an integer depth, and by [DDMM18, Lemma B.1], any
disc which is fixed by Gk has a centre in K. So, any point on B which is an
integer distance from D, o when viewed on the Bruhat-Tits tree must be an
integral disc. Therefore, the discs D, 4 with z € K and d € Z correspond to

such points m/'. |

These result allow us to work with the Bruhat-Tits tree in place of quotient
BY trees and points which are integer distance from the marked point. As such,

we will work explicitly with discs in the following section.
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5.3 Invariance under Mobius Transformations

Our aim is to classify reduction types of tame hyperelliptic curves. To do this
we want to show that the canonical representative of the equivalence class of
open quotient BY trees is model invariant. That is, choosing a different model
for a hyperelliptic curve does not change the canonical representative.

To do this we need to study the effect of Mdbius transformations on open
quotient BY trees. In this section we will verify that applying a Mobius trans-
formation results in an equivalent open quotient BY tree. In Section 5.4, we
will show that given any cluster picture X of polynomial type arising from
f € Klz|, and any 7" ~ T(X), there exists an f' € K|[z] isomorphic to f
(obtained by applying a Mdbius transformation) with open quotient BY tree
isomorphic to 7”. Recall that we gave a complete description of the equiva-
lence class of open quotient BY trees in 4.6.4. We are now able to study open
quotient BY trees via the Bruhat-Tits tree. So, let us now investigate how
Mobius transformations act on the discs that form the vertices of J ().

Let ¢ be a Mobius transformation defined over K, that is

az+b

o(2) = ot d with a,b,c,d € K,

where ad — bc # 0. Then ¢ can be expressed as a composition of simple
transformations, namely shifts, scalings, or inversions. These simple trans-
formations are themselves Mobius transformations, in particular they are as

follows:
e Scaling: ¢(z) = az,

e Shift: ¢(z) =z + b,

e Inversion: ¢(z) = 1.

As such, it is enough for us to discuss what effect applying these simple M&bius
transformations has on the Bruhat-Tits tree Jx(R), and as a result on cores
and canonical representatives of open quotient BY trees. We will discuss each

of these simple transformations separately.

5.3.1 Scaling

Here we consider the effect of Mobius transformations of the form

¢(2)=az 0#ac€K.
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Let f € Klz| be square free with tamely ramified splitting field, set of
roots R, cluster picture ¥, and open quotient BY tree T' = T'(X(f/K)) with
marked point m. Firstly, it is important to note that scaling all roots in ‘R by
an integer n, that is applying ¢(z) = 7"z to R, simply increases the depth of
all proper clusters in ¥ by n. So, as briefly mentioned at the start of Section
4.1, without loss of generality, we can assume that dgz > 0. In particular, for a
hyperelliptic curve C'/ K this translates into us assuming that we have chosen
a model for C' with dr > 0.

Lemma 5.3.1. Consider a Mébius transformation ¢(z) = az, defined over K,
with 0 # a € K. Let f € Kl[z]| be square free with tamely ramified splitting
field, and set of roots R. Let ' € K[x] have set of roots R' = {¢(r) | r € R}.
Then j(f/K) = 7(]”/[() and the genera and colouring are preserved by this

isomorphism.

Proof. Every non-zero element of K can be written as 7"u where n € Z and
uw is a unit. It is clear that scaling by a unit simply rotates discs around,
preserving adjacency. So, assume that a = 7" for some n € Z. It is clear
that ¢ is an isomorphism of Jxx) and for any o, € P'(K(R)) the line
between o and 8 in Jk(g) is mapped entirely to the line between 7"« and
3. Since R’ = {¢(r) | r € R}, regardless of the parity of R, we include the
path to co in construction of Z(f'/K) from i) if and only if we did so
for 7 (f/K). The point of 7 (f/K) which is closest to co is mapped to the
point of .7 (f'/K) which is closest to infinity. Distances are clearly preserved
so 7 (f/K)= T (f/K).

Furthermore, a disc forming a vertex of 7 (f/K) which is closest to an
element o € P'(K(R)) is mapped to the vertex of .7 (f'/K) which is closest
to ¢(a). So, by Remark 5.2.13, the colouring and genera and preserved. [

5.3.2 Shift

Now let us consider the effect of Mobius transformations of the form
¢(z)=z+b, 0#beK.

This case can be proved similarly to the case of scaling. That is, a shift is an

isomorphism on Jx(r), and preserves distances and Galois orbits of roots.

Lemma 5.3.2. Consider the Mdbius transformation ¢(z) = z+0b, defined over
K, with0#0be K. Let f € K[z]| be square free with tamely ramified splitting
field, and set of roots R. Let " € K[x] have set of roots R' = {¢(r) | r € R}.
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Then T (f/K) = F(f'/K) and the genera and colouring are preserved by this

1somorphism.

Proof. Let f' € K|[z] have set of roots R’ and cluster picture ¥’, with asso-
ciated open quotient BY tree T". The proof that .7 (f/K) and .7 (f'/K) are
isomorphic, and the colouring and genera are preserves follows similarly to

when we applied a scaling above in Lemma 5.3.1. ]

5.3.3 Inversion

Note that if we apply z — % to a disc D which contains 0, its image is not a disc
since elements of D closer to 0 get mapped closer to co. We are therefore unable
to apply this Mobius transformation directly to the vertices of the Bruhat-Tits
tree Jx(r) as we did for scalings and shifts. It would however, be useful if we
were able to do something like this. So, we make a slight modification to how
we think of vertices of Jx(g). This will enable us to apply z % directly to
vertices. It is for this reason that dealing with inversion will take significantly
more work than was required for scalings and shifts. If a disc D contains 0

then we can take 0 as a centre and write
D={reK(R)|vk(x)>dp}.

Applying z — 1 gives the set {z € K(R) | vk(z) < —dp}, which is not a disc.

If instead we associate an annulus A to D defined by
A= AO,dD = {ZL’ S K(R) | UK(z) = dD},

then we can redefine .7 to be the tree with these annuli in the place of any
disc with 0 as a centre. We say that Ag 4, is an annulus of radius dp centred
at 0. It is then easy to see that any such annulus A is mapped to another

annulus

AT = Ao gy ={y € K(R) | vk(y) = —dp}-

Note that the discs that we have replaced with annuli are precisely the vertices
between 0 and oo in Jk (). So, annuli are mapped to annuli and it remains
to check that all remaining discs get mapped to discs under z > % Let D be
a disc with centre @ € K(R), radius dp, and suppose that 0 ¢ D. We must

have dp > vk («), else 0 would lie in D. So,

D={x€ K(R)|vk(zr —«a)>dp},
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and any element x € D can be written as x = a + p"u where u € Ok and

r > dp. If we invert an element z of D we get

1
a+pru’
1 1
al+pua’

=a '(1+pua ),

8=

=a (1 —puat+...),

=a ' —puai+. ..,

where we have replaced (1 + p"ua~1)~! by its binomial expansion. So,

v (1 - l) — o(=plua?) = r — 20(a) + v(u) > dp — 20(a).

i o

The converse is also true, and proved similarly. We can conclude from this
that € D if and only if £ € D~', where D! is the disc

D = e K®) o (v~ 1) 2 dp — 20(@)}.

We will talk about both ways of viewing the vertices of Jk r) interchange-
ably, but will often refer to this alternative description using annuli as the
modified Bruhat-Tits tree. With this new way of viewing of the Bruhat-Tits
tree we can safely apply z +— % to vertices of T (r).

Let f € Klz| be square free with tamely ramified splitting field, set of
roots R, cluster picture ¥, and open quotient BY tree T'= T'(3(f/K)) with
marked point m. Recall that, by Construction 5.2.12, the vertices of .7 (f/K)
are precisely the meeting points of triples of distinct elements of R if R is even,
or of RU {oo} if R is odd. In order to prove that the Mébius map ¢ : z — %
preserves the core 7 (f/K) we will prove the following:

e Adjacent vertices of .7 (f/K) are mapped to adjacent vertices by ¢.

Moreover distances between vertices are preserved.
e For r € R any disc sufficiently close to r is mapped to a disc close to %

e If r and 7’ are two distinct roots in R then the unique path between

them in J(r) is mapped to the unique path between % and %

e Consequently, for any three roots «, 3, v the unique triple intersection

point between them in Jk ) is mapped to the unique triple intersection
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point of i, %, and

2|~

e Finally, we will conclude that the Mobius map z +— % is an isomorphism

on I (f/K) which preserves genera, colouring and Galois orbits.

Lemma 5.3.3. Let v; and vy be two vertices of the modified Bruhat-Tits tree
described above. That is, they are either a disc of the form {x € K(R) |
v(zx —a) > n}, where o # 0 and n > v(a), or an annulus of the form {x €
K(R) | v(x) = n}. Then vy and vy are adjacent in T () if and only if their

images under ¢ : z — % are also adjacent.

Proof. Suppose that v; and vy are both discs, D and D, respectively. Since
they are adjacent, one must be maximally contained in the other, so without
loss of generality we can assume that D, is maximally contained in D;. Let
«a be a centre of Dy, then we can also choose o to be a centre of D; since

a € Dy C Dy. Since Dy and D are adjacent, we must have that dp, = dp, — %,

where b = [K(R) : K]. So, if we write dp, = n, we have
Dy ={z € K |v(x —a)>n},

_ 1
DQ:{:L'EKM(QE—a)zn—l—E},
and since 0 ¢ Dy, Dy we have that n > v(«). Write
-1 1 -1 1
Dl = yEK(R)|§ED1 ,andD2 = yEK(R)|§ED2 .

We want to show that D;' and D,' are both discs and one is maximally

contained in the other. We have already shown above that

ot ={ye k1o (v- 1) 2 do - 2@},
Dy = {ue kR) [v(y-1) = do, ~ o)}

So, both D' and D;' have é as a centre, and dD;1 = dD;1 — %, which
by construction of Jx ) means that Dy ! is maximally contained in D;!, in
particular D;' and D, are adjacent.

Suppose instead that v; and vy are both annuli, A; and A, respectively.

Since A; and A, are adjacent we can assume without loss of generality that
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A, is maximally contained in A; and

Ay ={x € K(R) | v(x) =n},

AQ:{xEK(R)M(x):nvL%},

for some n € Z. Write A;' = {y e K(R) | i € AZ}. Then, by above, we have

AT ={y e K(R) | v(y) = —n},

a5 ={ye K® o) =-n- |
If we consider the discs corresponding to A;' and A,', we see that
the disc {y€ K(R)|v(y) > —n} is maximally contained in the disc
{y e K(R)|v(y) > —n—1}. So we have that A7' and A;" are adjacent.
Finally we need to consider when one of v; and v, is a disc and the other
is an annulus. Without loss of generality we can assume that v, is an annulus
Ay and vy is a disc Dy, Write 4 = {z € K(R) | v(z) = n}. Then A
corresponds to a disc D; with centre 0 which we can write as D; = {z €
K(R) | v(z) > n}. Note that, since vy is a disc D, we must have that
0 ¢ D,. Under our assumption that v; and v, are adjacent, we must have
that either D; is maximally contained in D, or D, is maximally contained
in D;. However 0 € Dy and 0 ¢ D5, so we must have that D, is maximally
contained in D;. Pick a € K(R) to be a centre of Dy, that is Dy = {x €
K(R) | v(x —a) > n+ 3}. Then a could also be chosen as a centre of Dy
giving D1 = {z € K(R) | v(zr — «) > n}. Since 0 € D; we must have that

v(a) = n. Defining A;' and D, as before we get

AT ={y € K(R) |v(y) = —n},

Dyl = {yeK(R)\v(y—l) 2n+1—20(a):—n+1}.
o) b b

Write Dyt = {y e K(R)|v (y — i) > —n}, the disc corresponding to the
annulus A;'. Then D;! is maximally contained in D;', since their depths
differ by 3, and the centre X of Dy " has v (1) = —n so lies in D;' and can
therefore also be chosen to be a centre of D;'. So A;! and D; ' are adjacent.
Note that, since ¢ is self inverse, the converse is also immediately true.

So v; and v, are adjacent in J () if and only if their images under ¢ : z — %

are also adjacent. O
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Lemma 5.3.4. Let v; and vy be two vertices in Tx(r) and let vt and vyt be

their images under ¢ : z — 1. Then d(vi,v) = d(vi ", vy ") in Txr).

Proof. Let v = wy,ws, ..., wy, w11 = vo be the unique path of vertices of
Tk (r) between vy and vy. Then w; and w;4, are adjacent for all 1 <¢ < n and
distance % from each other. So, the distance between vy and v, is . Let w; !
be the image of w; under ¢. By Lemma 5.3.3, for 1 <4, < n, w; ' and wj_1 are
adjacent if and only if w; and w; are. That is, w, L and wj_l are adjacent if and
only if i = j £ 1. So we obtain a path v;" = wi',wy ', ... w, w1 = vy,

Y n

which does not contain any backtrackings, between v; ' and v, . In particular,

Uand vy is also 2. [

the distance between vy b

For the next lemma we will use the following notation to talk about discs

or annuli being closer to elements of P'(K(R)) than others.

Notation 5.3.5. Take a € K(R) and let Dy and D, be two discs containing
a then we say that D, is closer to o than Dy if dp, > dp,. If D; and D,
contain 0, and so the corresponding vertices in the modified Bruhat-Tits tree
are annuli, A; and A, respectively, then we say that A, is closer to o than A;.

In this case, we also say that A; is closer to oo than A,.

Lemma 5.3.6. Let a € PY(K(R)) = K(R) U {oo}. If a # 0,00 then let D,
and Dy be two discs containing o with Dy closer to o than Dy, and dp, >
v(a). Write Di' and Dy' for the images of Dy and Dy under the Mébius
transformation ¢ : z — % as in the proof of Lemma 5.3.3. Then both D;' and
D3 are discs containing é, and in particular D7 and D3* are vertices of the
modified Bruhat-Tits tree. Moreover, Dy is closer to é than D! is.

If a € {0,00} then let Dy and Do be two discs centred at 0 with Ay and
Aqy their corresponding annuli and vertices of the modified Bruhat-Tits tree.
Suppose that Ay is closer to o than Ay and let A7 and A" be the images of

Ay and Ay under ¢ respectively. Then both AT' and A;' are annuli centred at

1_

5 00 and + = 0.
o0

0 and A" is closer to X than AT' is, where

Proof. Let a € K(R) U {oo} = PY(K(R)) be any point on the boundary of
the Bruhat-Tits tree. If @ # 0,00 then subsequent discs containing « are
DDy 1 D Dan DDy py1 O, where b= [K(R) : K], and

Doy ={r € K |v(z—a)>n}.

If n > v(a) then 0 ¢ D,,, so D, is a vertex of the modified Bruhat-Tits



5.3. Invariance under Mobius Transformations 141

tree. Write D;}l for the image of D, , under ¢. As above, we get that

D;,zz{yefm(y—é) > - 20(a)}.

Note that, since n > v(), n — 2v(a) > —n, we have that 0 ¢ D_ . So, D},
is also a vertex of the modified Bruhat-Tits tree. It is clear that D}, contains

é, and that as n — oo, D, , gets closer to o whilst Dg}z gets closer to é

If € {0,00} then we must instead consider annuli arising from discs
Dy, namely the vertices along the path from oo to 0 are the annuli
...,Ao’n_%,Ao’n,A(),nJr%,... for n € Z, where Ay, = {z € K | v(z) = n},

and the larger n is the closer Ay, is to 0 and the closer Ay, is to . O

Lemma 5.3.7. Let o, 8 € PY(K(R)) be distinct. Then the unique embedded
path between o and B in T (r) is mapped to the unique embedded path between
1

~ and % in Tx(r) under the Mobius transformation ¢ : z — %, where % =00

andé =0.

Proof. First, we will find two vertices v; and v, that lie on the path between «
and [ with vy closer to a than v, is, and vy closer to 8 than vy is, where their
images v; ' and v, ! under ¢ lie on the path between é and % with vy ! closer
to é than v, ! is, and v, ' closer to % than v; ! is. Furthermore v; and v, will
be such that every vertex between v; and o maps to a vertex between vy and

é, and every vertex between v, and 3 maps to a vertex between v, ' and %

If a, 5 ¢ {0,00} then we define the wedge of @ and § just as we did in
cluster pictures, namely D({a} A {f}) is the smallest disc containing both «
and (. Write vang for the vertex of gy corresponding to D({a} A {5}). So,
Vanp is either a disc or an annulus. Vertices lying between v,ns and o or 8 are
either discs themselves, or annuli corresponding to discs, that contain a or 3

respectively.

Let us now concentrate on «, as the same argument can then be applied
to 5. By construction, dpaja(sy = v( — B) > min{v(a),v(8)}. So, a
vertex lying strictly between v,ss and « is either a disc of the form D,,
where n > v(aw — ) if 0 ¢ D, ,,, or an annulus corresponding to such a disc
if 0 € D,,,. Taking n > v(«) gives that 0 ¢ D, ,,, so D, is a vertex of the
modified Bruhat-Tits tree. So let n > max{v(a),v(a— 5)}. By Lemma 5.3.6,
these discs map to discs containing é under ¢. Moreover, Lemma 5.3.6 also

gives that the closer D, , is to «, the closer its image under ¢ is to i Recall
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that the image of D, , is

Do = e K@) (- 1) = n-20(a)

«

p({i}n{3}) —wermiv(u-1) 2 a5 - vl - oo

Discs which are strictly contained in D({1} A {%}) and which contain 1 are

Since v (l - %) =v(a — f) —v(a) —v(B), we can write

of the form

ek |v(y-1)zmh

«

where m > v(a — ) — v(a) — v(B). Recall that we have assumed that n >
max{v(a),v(a — B)}. Now note that:

o If () > v(B): then v(a — B) = v(B), so v(a — ) +v(a) —v(B) = v(a).
Therefore, since n > v(a) = v(a — ) + v(a) — v(B), we get that

n—2v(a)>v(a—6)—v(a)—v(ﬂ):v(é—%).

o If v(5) > v(w): then v(a — ) = v(w), so v(ia — ) + v(a) —v(B) =
2v(a) —v(B) < v(a). Since n > v(a), we get that
1 1

n—2v(a)>U(a—ﬁ)—v(a)—v(ﬁ):v(a—g).

o If v(a) = v(B): then v(a — B) +v(a) — v(B) = v(aw — ). So, since
n > v(a — f), we get that

n—2v(a)>U(a—ﬁ)—v(a)—v(ﬁ):v(é—%).

So, in all cases, our assumption that n > max{v(a),v(a — B)} gives that

n—2v(a) > v <é — %) . In particular, D}, lies between D({;} A {5}) and
%, and the greater the value of n, the closer D, is to a and the closer D;,}l
is to é As already mentioned, the same argument can be applied to . So,
when o, € K(R) \ {0}, taking vy = D,,, and vy = Dg,, for any fixed
n > max{v(a),v(a — B)} and m > max{v(8),v(a — )} has the desired

properties.
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It remains to find such vertices v; and v, when either « = 0 and 8 €
K(R)\{0},a =00 and g € K(R)\ {0}, or « =0 and 5 = oc.

Ifa=0and g€ K(R)\ {0} then v(a — B) = v(B), so D({a} A{5}) has
depth v(5) and can be written

D({a} A {B}) = {z € K(R) | v(x) > v(A)}.
The corresponding vertex on the modified Bruhat-Tits tree is the annulus
A={re K(R)|v(z) =v(B)}
Under ¢, the image of A is
AT ={z € K(R) | v(z) = —v(B)},

which corresponds to a disc, say D!, where D™' = {z € K(R) | v(z) >
—v(3)}. Clearly % lies in D!, so A~ is on the path between 1 = 0o and %
Likewise for any annulus Ay, with n > v(8). So, we can take v; = A. Note

that discs containing % are in one-to-one correspondence with vertices on the

1
B
and lies on the path between  and 0. As above, discs of this form get mapped

path between + and co. Any disc of the form Dg,,, where n > v(f), is a vertex
to discs containing % with Dg}l getting closer to % the larger n is. So, take
vy = Dg,, for some fixed n > v(f).

If «a =ocand g € K(R)\ {0} then similarly to above we can take v; = A

and v, = D where

A={z e K(R)|v(x)=v(p)},
D={xe K(R) |v(x— ) =n},

for some fixed n > v(f). Note that this works since any annulus closer to oo
than A is will map to an annulus closer to 0 than A~! is, and any disc closer
to § than D is will map to a disc (that does not contain 0) closer to % than
D~ is under ¢.

Finally, if « = 0 and § = oo then the path between o and 3 has vertices
which are precisely the set of annuli centred at 0. Take v; = A to be any such
annulus and vy = Aj to be the unique annulus adjacent to v; which is closer
to co than A, is. By Lemma 5.3.6 A7 and A;' are both annuli centred at 0,
and lie on the path between 0 and oo with A" closer to 0 than A" is to 0.

In all cases v; and vy lie on the path between o and  and are such that
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v;! and vy ! lie on the path between é and %, and vertices which are closer to
a (resp. ) than vy (resp. vg) is, get mapped to vertices which are closer to i
(resp. %) than vy ! (resp. v;') is. Now by Lemma 5.3.3 adjacency is preserved
so we get the path from v; to « (resp. vs to 3) maps to the path from v;! to
é (resp. vy ' to %3) and the path between v; and v, maps to the path between
vy and vy '. Moreover, this gives us that ¢ is an isomorphism between the
path from « to $ and the path from é and %, this is because if the image had
any backtrackings this would contradict the path selected from « to § being

the shortest path. O

Corollary 5.3.8. Let f € Klz| be square free with tamely ramified splitting
field and set of roots R in K. Take 1,75 € R to be distinct roots of f(z).
Then the unique path between r1 and ry in Jx(r) gets mapped to the unique
path between % and % under the Mobius map ¢ : z +—> %, where r—lz = o0 if
r; = 0. Furthermore, for any root r € R the unique path between r and oo gets

mapped to the unique path between % and 0.
Proof. Follows as a direct consequence of Lemma 5.3.7 O]

Lemma 5.3.9. Let f € K[z] be square free with tamely ramified splitting field
and set of roots R in K. Take r,s,t to be distinct, with r,s,t € R if R is
even, and r,s,t € RU{oo} if R is odd. Write ¢ for the unique point that lies
on all three the paths between r and s, r and t, and s and t. Then c is mapped
to the unique point, ¢=*, that lies on all three of the embedded paths between %

1

and £, L and X

, cand L and ¥ under ¢ - 2 — L, where = 0o and L = 0.
s’ r t s t z e’}

0

Proof. Recall that c is either a disc or an annulus and its image under ¢ is as

described earlier in this section and denoted by ¢~!. By Lemma 5.3.7, since c

lies on all three of the paths between r and s, r and ¢, and s and ¢, ¢! lies on
1

all three of the paths between % and %, + and %, and % and % That is, ¢! is

the unique intersection point of all three paths. O
We now have enough to prove that .7 (f/K) is invariant under the Mobius

transformation z — %

Lemma 5.3.10. Consider the Mébius transformation ¢(z) = %, defined over
K. Let f € K[x] be square free with tamely ramified splitting field and set of
roots R in K. Let f' € K|x| have set of roots R', where R' = {¢(r) | r €
R} \ {oc} if R is even, and R' = {¢(r) | r € RU{oo}} \ {o0} if R is odd.
Then ﬁ(f/K) >~ Z(f'/K) and the genera and colouring are preserved by this

1somorphism.
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Proof. Recall that the vertices of .7 (f/K) are precisely the triple intersection
points of three distinct elements of R if R is even, and of elements of RU {co}
if R is odd. Similarly, vertices of 7 (f'/K) are the vertices of Fxx) which are
triple intersection points of three distinct elements of R’ if R’ is even and of
R U {oo} if R is odd.

Suppose that R is even. Then R’ = { | r € R}\{oo}. So R’ is even if and
only if 0 ¢ R, in which case oo ¢ {1 | r € R} so we can write R' = {1 | r € R}.
If R is odd then oo € {2 | 7 € R} so we have that R'U{oc} = {2 | 7 € R}. By
Lemma 5.3.9, the intersection point in k() of every triple of elements in R
gets mapped to the intersection point of the corresponding triple of elements
in {1 | » € R}. Therefore, we have an isomorphism between the vertices
of 7(f/K) and Z(f'/K). Since adjacency is preserved by Lemma 5.3.3,
and distance is preserved by Lemma 5.3.4, we have an isomorphism between
F(f/K) and Z(f'/K) that preserves distances. It remains to show that
the genera of vertices and colouring of the edges and vertices are preserved.
However, by Lemma 5.3.7, a vertex of .7 (f/K) which is closest to an element
o € PY(K(R)) is mapped to the vertex of .7 (f'/K) which is closest to ¢(a).
So, it follows by Remark 5.2.13, that the colouring and genera are preserved.

]

5.3.4 Cores and Canonical Representatives are Model

Invariant

All three of our discussions about simple M6bius transformations lead us to

the following result.

Proposition 5.3.11. Let ¢ be any Mobius transformation, defined over K.
Let f € K[z]| be square free with tamely ramified splitting field and set of roots
R in K. Let f' € K[z] have set of roots R', where R' = {¢(r) | r € R}\{oo} if
R is even, and R = {¢(r) | r € RU{oo}}\{oo} if R is odd. Then T (f/K) =

j(f’/K) and the genera and colouring are preserved by this isomorphism.

Proof. Any Mobius transformation can be broken down into simple Mobius
transformations, namely scalings, shifts, and inversions. The result follows
from Lemmas 5.3.1, 5.3.2, and 5.3.10. ]

Recall that, if dg,dr, > 0, Construction 5.2.15 and Theorem 5.2.18 give
us a description of how to obtain 7' and 7" from Tk (r)- In particular we take
the quotients of .7 (f/K) and .7 (f'/K) by their induced Galois actions.

Lemma 5.3.12. If r and v’ are in the same Galois orbit then ¢(r) and ¢(r')

are in the same orbit as each other also, for any Mobius transformation ¢.
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Proof. Let ¢(z) = %Is be a Mobius transformation. Write G = (o). Suppose
that v’ = o(r). Since a,b,c,d € K it is clear that ¢(o(r)) = ¢(r') = % —
ia = 7 (571) = o(9(r) m

So, as a direct consequence of this and Proposition 5.3.11 we get the

following theorem.

Theorem 5.3.13. Let f € Klx| be square free with tamely ramified splitting
field and set of roots R in K such that dr > 0. Let T be the open quotient
BY tree associated to f. Take ¢ to be any Mdbius transformation, defined over
K, such that dgr > 0, where R' = {¢(r) | r € R} \ {oo} if R is even, and
R ={¢o(r) | r€e RU{oo}}\{oo} if R is odd. Let f" € K|x] have set of roots
R’ and let T' be the open quotient BY tree associated to f'. Then T =T and

the genera and colouring are preserved by this isomorphism.

Proof. By Lemma 5.3.12, applying ¢ does not change the Galois orbits. So,
the quotient described in Construction 5.2.15 gives that ¢(.7(f/K)) and
q(ﬁ (f'/K)) are isomorphic trees and their colouring, genera, multiplicities

and distances are all preserved by this isomorphism. By Theorem 5.2.18, since
dr.dr > 0, q(F(f/K)) = T and o(F(f'/K)) = T =

Recall that two open quotient BY trees 7" and 7" are equivalent if and
only if their canonical representatives are isomorphic. That is their cores T
and T" are isomorphic, and on the extended trees as described in Construction
4.5.1 their marked points are integer distance from each other (although not
every tree satisfying this will be equivalent to 7" and 7”). Recall also that we
discussed in Proposition 5.2.22 how these marked points will always correspond
to integral discs D, 4 with 2 € K and d € Z. So, it is important to show that
under any Mobius transformation vertices of the modified Bruhat-Tits tree
corresponding to discs of the form D, 4 with o € K and d € Z get mapped to

vertices corresponding to discs of the same form.

Proposition 5.3.14. Let D be an integral disc, that is, a disc of the form
Dy, with « € K and d € Z. Then D (or its corresponding annulus) is
mapped to an integral disc (or its corresponding annulus) under any Mébius

transformation ¢ defined over K.
Proof. Suppose that ¢(z) = % We noted at the start of the discussion about

inversion that a disc D, 0 ¢ D is mapped to

D = e KR) v (y- 1) 2 do - 20}

ZD
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Likewise, if 0 € D then the corresponding annulus A is mapped to
AT ={y € K(R) | v(y) = —dp}.

It is therefore easy to see that any integral disc (or its corresponding annulus)
is mapped to an integral disc (or its corresponding annulus) under z — % We
can similarly apply shifts and scalings to discs and it is easy to show that they

also send integral discs to integral discs. ]

It is important to note that whilst the vertex that the marked point arises
from on the Bruhat-Tits tree might be mapped to a different vertex under a
Mobius transformation this does not mean that the marked point has moved
in the sense of Theorem 4.6.4. This is because the marked point needs to have
moved relative to the core of the open quotient BY tree and when we visualise
this on the Bruhat-Tits tree, the whole core may also be moved by the Mobius
map, for instance under the map z — z + . Likewise, just because the vertex
of the Bruhat-Tits tree which corresponds to the marked point is fixed by a
Mobius map, this does not mean that the marked point has not moved in the
sense of Theorem 4.6.4. For instance under the map z — % it D,,o = Ok.
As such we always need to be careful what we mean when we say the marked
point has moved. The default assumption is that we are speaking in the sense
of Theorem 4.6.4.

Finally, we are able to conclude and prove that the canonical representa-

tive is invariant under Mobius transformations.

Theorem 5.3.15. Let f € Klx| be square free with tamely ramified splitting
field and set of roots R in K such that dg > 0. Write T for the open quotient
BY tree associated to f. Take a Mdbius transformation ¢(z), defined over
K, such that dgr > 0, where R' = {¢(r) | r € R} \ {oc0} if R is even, and
R = {o(r) | r € RU{oo}} \ {oo} if R is odd. Let f' € Kl[z| have set of
roots R’ and let T' be the open quotient BY tree of f'. Then T and T’ are

equivalent.

Proof. By Lemma 5.3.13 T = T’ and their colouring, genera, multiplicities
and distances are all preserved by this isomorphism. Write m and m’ for the
marked points of T and T” respectively. By Proposition 5.3.14 m and m’ are
integer distance apart. It follows that if there is a unique closest integral disc
D to the centre ¢ of T then there is a unique closest integral disc D’ to the
centre ¢ of T". Similarly, if there are two closest discs to ¢, then there are such

discs for ¢. We will deal with the former situation however, as the case when
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there are two closest integral discs follows similarly. It remains to prove that
the open edge is added to T in the same way as it is to 77. If D lies on T*
(when viewed on .77) then we are done much like in the proof of Theorem 4.6.8.
So, suppose this is not the case. Recall that we can visualise B and B’, the
extended trees of T" and 7" respectively on 7. Note that shifts and scalings
clearly have no effect on whether green edges are added or not, since they do
not change the colouring of the open edge, nor move its positioning relative to
T. Tt is not hard to show that when D does not lie on 7', whether or not D is
coloured green on the extended tree B is entirely determined by the number
of elements of R* each vertex of T is closest to, and the denominator of the
distance of each vertex to the marked point. Both of these are unchanged
by Mobius transformation (since lines are mapped to lines and adjacency is
preserved - proved in the lemmas earlier in this section). Therefore, D lies on
a green part of B if and only if D’ lies on a green part of B’.

This is the only information we need to calculate their canonical repre-
sentative, so this shows that their canonical representatives are isomorphic.

Namely T and T” are equivalent. O

We translate this into the setting of hyperelliptic curves in Section 6.1.

5.4 Mobius Maps Between Equivalent Open
Quotient BY Trees

Here, to complete our classification, we study how one can find a Mobius map
between any two equivalent open quotient BY trees. This is formally stated

as follows.

Theorem 5.4.1. Let f € Klx| be square free with tamely ramified splitting
field and set of roots R in K such that dg > 0. Write ¥ for the cluster picture,
and T for the open quotient BY tree associated to f. Let T' be an open quotient
BY tree equivalent to T'. Then there exists a Mobius transformation ¢ over K
such that for

{7r) | r € R} \ {00} if R is even,
{7Hr) | r e RU{oo}}\ {00} f R is odd,

R =

the associated cluster picture X' = (X', R',d') has di, > 0 and T'(X') = T".

The rough method for proving this result is as follows. Visualise ¢~!(T')

on the Bruhat-Tits tree Jx ) via our usual method described in Section 5.2.
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Since T" and 7" are equivalent open quotient BY trees they have isomorphic
cores. S0, we can visualise the preimage q_l(T ") of the core of T" as lying in
¢ *(T), and think of it as a subtree of (). By definition T’ is a subtree
of T' so we can use this to visualise ¢7'(7”) and thus the marked point m’ of
T" (recall m’ has multiplicity 1 so there is precisely one point in the preimage
gt (m’) of m/, so we think of this as also being labelled m’) as lying on Jk r)

overlapping ¢~1(T) at the preimage of their cores.

Example 5.4.2. Consider the polynomial f(x) = (z — 1)(2® — 7°)(x — 7 —
7)(x — 7+ 7%) over K = QY. Let T be the open quotient BY tree associated
to f/K. In Example 5.2.14 we found .7 (f/k), as pictured in Figure 5.4. We
can similarly view ¢~ '(T) on 7 by constructing 7 (f/K). Note that in this
case T' = T, so in fact T = ¢ Y(T) = J(f/K). This is pictured in Figure
5.11 below, where (3 is a third root of unity. Let 7" be the following open

Figure 5.11: T = ¢~! = 7(f/k) visualised on the Bruhat-Tits tree.

quotient BY tree:

2
m' gO,M1 gO,M1 7 g1,M1

T = @
Similarly, ¢=*(7") = T" so we can visualise 7" as lying on the Bruhat-Tits tree
by overlapping 7" and T along their core, as shown in Figure 5.12 below.
2 ,
@
g1,M1  g0O,M1 g0,M1

Figure 5.12: TUT".

We will show that m’ corresponds to a vertex of Jx () which is an integral

disc. Denote this disc by D,y = D, ,, for some o € K and n € Z. We can map
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D, to the ring of integers Ok (r) by applying a shift and scaling. Depending on
the case, we make an assumption about whether or not a root lies at 0, possibly
by applying a further shift. We can then apply an inversion so that, roughly
speaking, all vertices (i.e. discs corresponding to vertices of ¢~ 1(T) after the
shifts and scalings above have been applied) get mapped to discs that lie inside
the image of the ring of integers, or get mapped to annuli corresponding to
such discs. That is, the images of all other vertices get mapped to vertices

hanging below the image of the ring of integers.

Example 5.4.3. Continuing with Example 5.4.2, we can consider m’ as cor-

responding to the disc D7, a vertex of T. This is shown in Figure 5.13.

OK g0, M1
Dy
D’?,Q.gO,Ml N
// \\ | \\
/ m" ’ : N N
X X D0,2></ X % T x
THTT-T 73 (4T3 (373 1

Figure 5.13: T UT’ on the Bruhat-Tits tree.

To map D,y = D7 to Ok we first shift by 7 so it becomes centred at

0, and then scale by 72. That is we can apply the transformation z 37;27

to the set of roots R of f. This maps R to the set {1,—1,7% — %,(37% —
3 3

%, C:%?% — %, % — %} We can apply z — %, and denote the resulting set by R'.
3

When viewed on .7 the open quotient BY tree afforded by Construction 5.2.6
is indeed isomorphic to 7”. This is shown pictorially in Figure 5.14.

m

gO,Ml//.OK
,
//
Vi /
o/ D
P gomM1 8L/ 71
/ / /
// , / 2
o b D
// // / ‘gl'M¥ N _77%
/
’ / , 70N
, p
, / / s 1 N
, / ’ e 1 N
X % X X X X
1 -1 72 72 72 72

— 5 5 5
=T 737 (a73-7 275-7

Figure 5.14: Open subtree of .7 arising from R’, isomorphic to T”.
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The process will differ slightly depending on the coloring of the open edges
of both T"and T". Note that at different points in this proof we will have to be
careful about which description of the Bruhat-Tits tree we use, be that either
the standard definition or the modified definition to include annuli. This is
not something to worry about as we are able to use them interchangeably but
it is a subtlety that we need to be aware of in order to complete the proof. In
particular, whenever we are performing a shift or scaling we use the standard
definition, but when we perform an inversion we need to make use of the
modified definition.

Proof of Theorem 5.4.1. Let m and m’ be the marked points of T" and T
respectively. By definition of T and 7" being equivalent, their cores T and 1"
are isomorphic. Note that, since dg,dr > 0, by Theorems 5.2.10 and 5.2.18,
WTK) 2T, (T(f/K) 2T, o(F(f/K)) 2T, and o(F(f'/K)) = T
So, we are instead able to use notation such as ¢~!(T') in the place of 7 (f/K),
as defined in Notation 5.2.20. Recall, by Remark 5.2.21, that if ¥ has a
non-trivial Galois orbit of proper clusters then we cannot visualise 7' and T
themselves as lying on the Bruhat-Tits tree, but instead ¢~ *(T) and ¢~*(T).
Since T and T" are isomorphic it is clear from Construction 5.2.15 that ¢=*(T)
and ¢~1(T") are also. Note that ¢~*(T") can also then be visualised as lying on
the Bruhat-Tits tree, by overlapping ¢~ (7)) at ¢~ (7). It is important to note
that in this visualisation the open edge of ¢~ (T will be thought of as going
off to the point at infinity of Jj (g, whereas it is likely that the open edge of
q }(T") will instead need to be thought of as going off to some element of K on
the boundary of the Bruhat-Tits tree Jx ). The image of any multiplicity 1
point under ¢~! has size 1, so we are able to think of T as lying on ¢~!(T") and
therefore as lying on Jk(g). In particular, as stated in Proposition 5.2.22, m’
corresponds to a vertex of gy which is a disc with centre in K and integer
depth (or equivalently an annulus corresponding to a such disc if we are using
the modified Bruhat-Tits tree). For now let us take the standard description
of the Bruhat-Tits tree where all vertices are discs, and let us denote the disc
which m’ corresponds to as D, = D,, where « is some element of K and
n € 7Z. Applying the shift ¢; : z — z — a to K(R), maps D, to the disc
Dy ,,. Further applying the scaling ¢ : z — 7"z maps Dy, to the ring of
integers of K(R), namely Dy,. We proved above in Proposition 5.3.11 that
Mobius transformations are isomorphisms on ¢~ (7). So, under ¢, o ¢y when
we restrict to q‘l(T) this is an isomorphism, and D,, is mapped to the ring

of integers of K(R). So we can assume without loss of generality that o = 0
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and dp _, = 0.
We now subdivide into three different cases depending on what must be
removed from T” to obtain 7" = T'. Recall, by Proposition 4.3.9, that to obtain

the core we either:
(a) delete just the open edge,

(b) delete the open edge and view the vertex it was attached to as a point

on an edge,

(c) or delete the open edge along with a genus 0 blue vertex and a closed

blue edge.

So, in order to know which Mobius transformations to apply, we must consider

what case T” is in.

(al) Suppose first that T’ is obtained from T” by simply deleting the open
edge and that 7" has a yellow open edge. That is, we are in case (Al)
or (E1) of Theorem 4.6.4. After shifting further by some y € Ok we can
assume that all elements of D,y MR lie in Ok (g) and are units, that is
every r € R such that r € D,,, has v(r) = 0. All other roots r ¢ D,y will
have valuation dp Ay < 0. We now make a shift and consider the mod-
ified Bruhat-Tits tree instead of the standard definition. As such we now
need to consider the annulus corresponding to D,,, which we will denote
Ay = Aop. As discussed earlier, the Mobius transformation ¢z : z — %
is an isomorphism on ¢~'(T). Furthermore, the image of A,, under ¢
is itself. Let us denote R’ = {¢(r) | r € R}, where ¢ = ¢3 0 ¢ 0 ¢;.
Let f' € KJ[z] have roots R’. All roots ' € R’ have images with non-
negative valuation, that is they lie in D,,, so we are now able to apply
Construction 5.2.6. Linking up all our roots as in Construction 5.2.6
we certainly obtain a tree which is isomorphic to ¢~ *(7"), since linking
all the vertices without the additional edge certainly gives us q_l(T ) as
premiages of cores under ¢ (and therefore cores themselves) are invariant
under Mébius transformation, and the marked point arises from Og ),
namely where D,,, was mapped to by the inversion. Distances are un-
changed under M6bius maps, so the marked point is certainly the correct
distance along the open edge. The colouring is also as required since the
colouring of the core remains unchanged by the Mobius transformations,
and the colouring of the open edge comes from the size of R, which is

even so coloured yellow. By Lemma 5.3.12 the Galois orbits of roots
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remain unchanged. So, after taking the quotient, we have that f’ has

open quotient BY tree isomorphic to 7" as required.

(a2) Suppose now that 77 is obtained from 7" by simply deleting the open edge

but in this case the open edge is coloured blue. In this situation, when

considered in B (the full extended tree of 7" as defined in Construction

4.5.1), we have the following cases:

(i)

(i)

(iii)

Theorem 4.6.4 case (A2): m/ is a blue vertex of T = T" with

29(m’) +2 > Z M(e),

e€E(T) blue,
incident to m/’

and if g(m’) = 0 then m’ has at least one yellow incident edge in 7.

Theorem 4.6.4 case (C2): m' lies on a green part of B and the
open edge of T" is attached at the vertex v, € V(T) which is closest
to m' in B. Note that v. is coloured blue. We also have that
denom(d(v,m)) t s(v,T), or g(vg) = 0 and there is exactly one
closed edge incident to vy, which is blue of multiplicity 1 and v, is
the unique vertex adjacent to vy in T', or v. = vy and the open edge

of T is blue.

Theorem 4.6.4 case (E2): m’ does not lie on T, and in B m/ is
not coloured green. The open edge of T” is attached at the vertex
v. € V(T) which is closest to m’ in B and v, is blue with

2g(ve) +2 > Z M{e),

e€E(T) blue,

incident to v,
and if g(v.) = 0 then wv. has at least one yellow incident
edge in 7. Furthermore, if #{incident blue edges to v, in T} #
#{incident blue edges to v, in 7'} then d(m’,v.) € Z.

We will consider each of these cases separately.

(i)

Recall that s(m/,T) = 2g(m’) + 2 — Y cen(r) blue, M (€). In case (i)

incident to m/’

29(m')+2> Y M(e).

e€E(T) blue,
incident to m’

we have

Recall also that we need to also consider what edges must be re-
moved from 7' to obtain T'. So, if #{e € F(T) blue incident to m'} =
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#{e € E(T) blue incident to m'} we have that s(m’,T) > 0. By
construction, d(m,m’) € Z which means all singletons in D,, are
fixed by Gk, that is there exists at least one root s € R with
s € Dy in ¢ H(T) C Jk(r) which is fixed by Gk, i.e. such that
s € Ok, and {s} is a child of the cluster corresponding to D,, in
Y. As before, we are able to assume that D, = Dyo. All 7 € D,
have v(r) > 0, so, v(s) > 0. If v(s) > 0 we can apply a shift by
some element of K, such as z — 2z — 1, so we can assume without
loss of generality that v(s) = 0, that is s is a unit. Shifting by s
we can assume that s = 0. Now since s is a child of the cluster
corresponding to D, we have that v(s —r) = 0 for all other roots
r € Dy, in particular, v(r) = 0. So, all other roots in D, are units.
Finally we apply @3 : z — L and take R’ = {¢35'(r) | € R} \ {o0}
if R is even and R’ = {¢5'(r) | r € RU{o0}} \ {00} if R is odd.
In either situation under our assumption that s = 0 is a root we
get that R’ is odd. So, if f’ has roots R’ then its associated open

quotient BY tree is isomorphic to T".

If instead
#{e € E(T}) incident to m'} # #{e € E(T}) incident to m'},

then m’ must have had a blue edge deleted from it when passing
from T to T. In particular either T has a blue open edge attached
to T at m/, or to obtain T from T we delete “yellow open edge —
blue genus 0 multiplicity 1 vertex — blue closed edge” from m/. In
the first instance a simple scaling of z — 7"z with n = —dgr gives
the desired result. In the second instance, there exists some s € R
with s ¢ D, all other r € R lie in D,,,. Certainly s is fixed by
Gk, and therefore lies in K. We can assume, after possibly scaling,
that D(R) = Dy, so s € Ok. Shifting by s we can assume that s
is in fact 0. The shift z — 2z — s does not change that D(R) = Dy,
so we have that, for all r € D, v(r) = v(r —s) = dg = 0. So we
can assume without loss of generality that s = 0 and all elements of
R\ {s} are units. We now apply ¢3 : z — % and, since R is even,
take R’ = {¢5'(r) | 7 € R} \ {oo} if R is even. In particular this
gives that R' = {1 | r # 0 € R} and R’ is odd. Note that since
v(r) = 0 for all » € R\ {s} we have that v (£ — %) = v(r — ).

So, similarly to before, if f’ has roots R’ then its associated open



5.4. Mobius Maps Between Equivalent Open Quotient BY 'Trees 155

(if)

quotient BY tree isomorphic to 7".

Recall that in this case m’ is on a green part of B and the open
edge of T" is attached at the closest vertex v. to m’ in B. As above,
denom(d(v.,m)) 1 s(v.,T), or v. = vy and the open edge of T' is
blue, or v, is a unique vertex incident to vy with g(vg) = 0 and

there is exactly one incident closed edge to vy in 7" which is blue.

First let us suppose that denom(d(v.,m)) 1 s(v.,T), and we are
not also in either of the other two situations. That is (because
M (v.) = 1) there exists some root s € R that is fixed by Gk and is
a child of the cluster associated to the disc v,, that is s € K. Note
that since denom(d(v.,m)) t s(v.) we must have d(v.,m) ¢ Z and
all other singletons of v, are in non-trivial G orbits. m’ must not
contain any roots that lie in proper children of v, (else there would
be a vertex v' corresponding to a proper child of v, with m/ lying on
the path between v" and v, i.e. m’ would lie on the core so could not
lie on a green part of B). Since m’ is fixed by Gk we can choose
D, to contain s € K. Note that, D,, cannot contain a second
root of R since D, C D, C R so if s # r € D,, either r lies in a
proper child of D, (which we have already mentioned above cannot
happen) or {r} A {s} = D,., both of which give contradictions. In
particular, under the transformations we made above that saw us
move D, to Dyo (in the more general setting, before we entered
this specific case) we also move s to 0. So, we can assume without
loss of generality that D,,, = Do and that s = 0 is a root in
R. Now for all roots r € R\ {0}, the cluster {r} A {0} contains
the cluster D,,, and therefore has depth dga10y < 0. Furthermore,
v(r) = v(r—s) = dgyaqoy, so v(r) < 0 for all r € R\ {0}. Finally we
can apply ¢ : z — < and find that all roots r € R\ {0} are mapped
to elements of Dy, which is the image of D,,,. Take R’ = {¢3(r) |
r € R}\ {oo} if Ris even and R’ = {¢5'(r) | r € RU{o0}}\ {00}
if R is odd. In either situation, under our assumption that s = 0
is a root, we get that R’ is odd. So, if f’ has roots R’ then its

associated open quotient BY tree isomorphic to 7.

Suppose instead that v. = vy and the open edge of T" is blue. Note
that it is also possible that denom(d(v., m)) t s(v., T'), in which case
there will be two green edges attached to v. in blue. If we lie on

the green edge arising from the fact that denom(d(v., m)) 1 s(ve, T),
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(iii)

then v, will lie on the path between m and m’. This situation is
handled in the paragraph above. Otherwise, a simple scaling gives

the desired result.

Suppose instead that g(vg) = 0, there is exactly one closed edge
incident to vy in 7', which is blue and has multiplicity 1, and v, is
the unique vertex adjacent to vy in 7. Note that, by Proposition
4.3.9, vy and the unique closed blue edge incident to vy gets removed
(along with the open edge of T') when passing from T, furthermore
the open edge of T must be yellow. Note that again, it is possible
that denom(d(v.,m)) 1 s(v.,T) and v, lies on the path between
m and m’. The first paragraph deals with this situation. So let’s
assume that v, is not on the path between m and m/'. Since g(vy) =
0, we have that s(vg, T) = 1 and d(m,vy) € Z. Let us call the one
singleton of D(wvy), s. Note that s is fixed by G, therefore lies in
K. The only children of s(vg) are the one proper odd child, and {s}.
All roots in R \ {s} lie in the disc corresponding to vj = v.. Note
that D(s(vg)) has integer radius and the centre can be chosen to be
s. So, after a shift and scaling we can assume that D(s(vy)) = Doy
and s = 0. Since {s} < s(vg) we have that for all r € R\ {s}
{r} AN{s} = s(vy). In particular, we have that v(r) = v(r —s) =
dipngsy = 0. After inversion we get R' = {1 | r € R} \ {oo}.
Note that D(s(vg)) = Dy is fixed by this transformation, and the
image of D(s(v.)) is contained in Dyo. However, since s = 0 is
sent to infinity, the image of D(s(v.)) is now the smallest cluster
containing all roots in R’, which is odd. So far, our transformations
result in an open quotient BY tree with core T, and blue open edge
attached to T as v., with marked point distance d(v,v.) along the

open edge. Scaling further by d(m’,vy) gives the desired result.

rd(m’ o) +d(m,m’)
admog) -

Note that this gives the total scaling to be

The final situation that can happen in this case is that m’ does not
lie on T, and in B, m’ is not coloured green. As stated above, the

open edge of T" is attached at the vertex v. € V(T') which is closest

to m’ in B. So, vj = v, and have that v{ is blue with

29(vp) +2> > M(e).
e€E(T) blue,
incident to v,

Furthermore, if g(vj) = 0 then v{ has at least one yellow in-
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cident edge in T, and if #{incident blue edges to vy in T}
#{incident blue edges to vj in 7"} then d(m/, vf) € Z.

First, suppose that
#{e € E(T,) incident to vy} = #{e € E(T}) incident to vy}.

That is there exists a blue edge incident to v} in 7" that gets deleted
when passing to the core. We know v lies on the core, so there
are two possibilities. Either vy = v{ and the open edge of T is
coloured blue, or to obtain T from T we attach “open edge —
genus 0 multiplicity 1 blue vertex — closed blue edge” to vj. In the
first instance a simple scaling will give the desired result. In the
second instance, much as in one situation of the previous case (ii),
there is precisely one root of R, say s which does not lie in the disc
associated to vj. Furthermore, since m’ is not green, m’ must lie on
an open black edge attached to v, thus d(m,v)) € Z. Without loss
of generality we can assume that s = 0 and the disc associated to
vo is Dy. All other roots r € R\ {0} will then have v(r) = 0, and
an inversion (followed perhaps by a scaling) gives the desired result

as in previous cases.

Suppose instead that
#{e € E(T,) incident to v,} # #{e € E(T}) incident to v},

so we also have that d(m’,v}) € Z. Similarly to in case (a2)(ii), we
can assume that D, = Dy and, after perhaps shifting further by
some y € Ok, we can also assume that some s € R is such that
s =0 € Dy,y. Every r € D, \ {0} must be a unit and all other
roots r ¢ D, have v(r) < 0. Applying z — < and taking R = {2 |
r € R} \ {oo} if Ris even, and R' = {2 | r € RU {oo}} \ {oo} if
R is odd gives the desired result.

(b) Next, let us suppose that 7" is obtained from 7" by removing the open
edge and viewing v, as a point on an edge. Note that in this situation
the open edge of T" is always coloured yellow. We have the following

cases:

(i) Theorem 4.6.4 case (B1): m/ lies on an edge e of T' (NB: it may be
a vertex of B but not of T) Then T is obtained from T by creating
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(i)

a genus 0, multiplicity 1 vertex at m/, the same colour as the edge

e, and adding an open yellow edge at m’.

Theorem 4.6.4 case (D1): m’ does not lie on T, m/ is not green,
and the closest point P on T to m’ is not a vertex of T. Then 7" is
obtained from T creating a genus 0, multiplicity 1 vertex at P on T
to m/, coloured the same as the edge P lies on in T and attaching

an open yellow edge here.

Note that, by construction of B, in case (ii) the point P must be an

integer distance from m/. In particular, (ii) can be obtained from (i) by

a simple scaling z +— ¢

(Pm) 2. For this reason we will not address (ii)

here as it will follow from our proof of (i).

(i)

Suppose that m’ lies on an edge e of T and that T" is obtained from
T by creating a genus 0, multiplicity 1 vertex at m’, coloured the
same as e, and adding an open yellow edge at m’. Certainly D,
can be chosen so that at least one root s € R lies in D,,,. As in
some of the previous cases, we can assume that D,,, = Dy and all
roots in D,, are units. All roots outside of D,,» must have negative

valuation, since if 7 ¢ D,,, then
v(r) = v(r = 0) = dyya < dp,, =0.

Taking v — % gives the desired result.

(¢) Finally, let us suppose that 7" is obtained from 7" by removing “open

edge — genus 0 mult 1 blue vertex — closed blue edge”. In this situ-

ation, when considered in B (the full extended tree of 7" as defined in

Construction 4.5.1), we have the following cases:

(i)

(i)

Theorem 4.6.4 case (C1): m/ does not lie on 7" and m’ lies on a green
part of B. In this case we can create a blue genus 0, multiplicity 1
vertex vj) which is attached to the vertex of T which is closest to m/
in B via a blue multiplicity 1 closed edge, and add a yellow open

edge at vy.

Theorem 4.6.4 case (E3): m’ does not lie on T and is not coloured

green in B, and the closest point on T to m/ is a vertex v, € V(T
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where v, is blue,

2g(ve) +2 > Z M(e),

e€E(T) blue,

incident to ve
and if g(v.) = 0 then m’ has at least one incident yellow edge in
T. Finally, we require that if #{incident blue edges to v, in T} #
#{incident blue edges to v. in 7"} then d(m',v.) € Z. In this case
we can create a blue genus 0, multiplicity 1 vertex v which is at-
tached to v. via a blue multiplicity 1 closed edge, and add a yellow

open edge at v}, insuring that d(m’,v}) € Z.

Again we will consider both of these cases separately.

(i) Suppose that m' does not lie on T, m’ is green, and T’ is created

from T by adding to T in the following way. Let v, denote that
vertex in V(T') which is closest to m’ in B. Create a new genus 0,
multiplicity 1 vertex v, such that v] lies between v. and m’ in B,
and v} is an integer distance from m’. To obtain 1", attach v} to T
at v, via a closed blue edge and add an open yellow edge at v, with
the distances between v(, v., and m’ as they are in B. Note that,

by Construction 4.5.1 at least one of the following hold:

e v. = vg and the open edge of T is blue,

e 1) (the unique vertex incident to the open edge in T') is blue of
genus 0 and there is exactly one closed edge incident to vy in T’
(the edge to v.), and this edge is blue and has multiplicity 1,

e or v, is such that denom(d(v., m)) { s(ve, T').

Let us first suppose that denom(d(v.,m)) 1 s(v.,T) and D, C
Dy,y. That is, as in case (ii) in the previous situation, because
M (v.) = 1 there exists some root s € R that is fixed by Gk and is
a child of the cluster associated to the disc in J% () corresponding to
ve. That is, s € K. Again, we have that d(v.,m) ¢ Z and all other
singletons of v, are in non-trivial Galois orbits. Note that D,,,, must
not contain any roots that lie in proper children of v and D,,» must
contain exactly one root of v, else this would contradict v. being the
closest vertex on T to m’. Under the usual transformations we can
assume without loss of generality that D,,, = Dy, and s = 0. All
other roots r € R\ {s} have v(r) = v(r — s) = dpyagsy < dp,, = 0.
Let d = d(m/,v}) and note that d € Z>o. Note that d(m’,v}), i.e.
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the distance to m’ along the open edge of 7" can be achieved by a
simple scaling at the end. As such, we will assume for simplicity
that d(m',v) = 0 and correct this at the end by a simple scaling
if this is not the case. We now make a shift by a unit, say 1,
z +— z+ 1 so that s = 1 is a unit, and all other roots have had
their valuations unchanged by this shift. Note that under this shift
Dy is fixed, that is D,, remains in the same place. Inversion,
z+ 1 and taking taking R’ = {1 | r € R} \ {oo} if R is even and
R'={|reRU{oo}}\{oo} if R is odd, now gives us the desired
result. To see this note that D,, is mapped to itself, i.e. Dy, all
roots are mapped to roots in Dy (since v(1) = —v(r)) and finally
1 — 1, whilst all other roots r get mapped to roots with positive
valuation, meaning v(1 — 1) = 0, in particular {1} A {1} = Dy, so
this is a vertex of the resulting open quotient BY tree. That the
correct colouring is given is clear since R’ is even regardless of the

parity of R.

Now let us suppose that D, O D, and vy is blue, of genus 0,
multiplicity 1, has exactly one closed incident edge in T', and this
edge is blue and has multiplicity 1. Note that vy will get removed
when passing from 7' to 7" and that the unique vertex incident to
v in T will be v,. In particular this means that to get from T to
T we must have to add “open edge — genus 0 multiplicity 1 blue
vertex — closed blue edge” to v.. If d(vg,v.) = d(v},v.) then we
can apply a simple scaling to get the desired result. So, let us sup-
pose that d(vg,v.) # d(vg,v.). Let us also suppose for now that
d(vg, v.) < d(v),v.). By construction, the disc corresponding to vy
contains all roots r € R. So, given m’ is on the open edge of T,
r € D, for all r € R. All but one root in R lies in the disc cor-
responding to v.. Let us denote the unique element of R that does
lie in D(s(v.)) by s. After a shift and a scaling we can assume that
D(s(vg)) = Dgp, and s = 0. Since {s} < D(s(vp)), we have that
v(r) = v(r —s) = dgsyaqry = 0. Scaling by d(vo, vg), that is applying
z = =4v0v0) 2 scales the roots in R\ {s} but leaves s = 0 fixed.
Note that every r € R\ {s} is mapped to something with valuation
—d(vo, vy) We can now shift by a unit, say 1, z — z + 1 so that all
r € R are still mapped to elements with valuation —d(vo, v}), and
s is mapped to a unit. Inversion, followed by a scaling z — 7%vo™")

so that m’ is the correct distance along the open edge, now gives the
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(i)

desired result. If instead d(vog,v.) > d(v],v.) then, we instead note
that taking a different marked point lying at v satisfies the required
conditions for (c)(ii), with #f{incident blue edges to v. in T} #
#{incident blue edges to v. in 7"}. So, we refer to this part of the
proof instead. Taking v to be the marked point in the proof of
(c)(ii) (where it is labeled m'), and then performing a simple scal-

ing of magnitude d(vg, m’) at the end gives the desired result.

Suppose instead that D,,, O D, and vy = v. and the open edge of
T is blue. Then we can scale and then shift all roots » € R so that
v(r) = 0 and dg = d(v.,v}). Inverting and then scaling if necessary

gives the desired result.

Suppose now that m’ does not lie on T, is not coloured green in B,

and the closest vertex of T to m/ is v, wWhere v, is blue,

29(ve) +2> ) Me),

e€E(T) blue,

incident to v,
and if g(v.) = 0 then m' has at least one incident yellow edge
in 7. Finally we have that, if #{incident blue edges to v, in T'} #
#{incident blue edges to v. in 7"} then d(m/,v.) € Z. To obtain T”
we create a blue genus 0, multiplicity 1 vertex v{, which is attached
to v. via a blue multiplicity 1 closed edge, and add a yellow open
edge at v}, so that d(v), m’) € Z.

First let us suppose that
#{e € E(T}) incident to v.} = #{e € F(T}) incident to v.}.

So, there are two possibilities, either v, = vy and the open edge of
T is coloured blue, or to obtain T from T add “open edge — genus
0 multiplicity 1 blue vertex — closed blue edge” to v.. In the first
instance, as above we can assume that all roots are units (perhaps
after a shift) and that D,,, = Dy before inverting which gives us
the desired result. To see this just note that, since D,,, = Dy and
all roots in R are units, inversion has no effect on the distances
between these roots but does introduce an additional root at 0. In
the second instance, m’ lies on a black open edge which is attached
at v.. There is precisely one root, say s € R that is not in the

disc associated to v.. Taking m” to be a disc on the open edge
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of T with d(m,m') = d(m,m") and adding “open edge — genus 0
multiplicity 1 blue vertex — closed blue edge” to v, with m” as the
marked point results in exactly the same picture 7’. However, in
this situation m” is green and we lie in a case previously discussed

so we can apply the same result.

Suppose instead that

#{e € E(T}) incident to v.} # #{e € F(T}) incident to v.}.

In particular, this means that no blue edge is removed from v, when
passing from 7" to T', that is:

#{e € E(T}) incident to v.} # #{e € E(T}) incident to v,}.

So, in T, s(v., T) > 0 and there exists at least one singleton in the
cluster corresponding to v.. Furthermore, under our requirement

that in this case d(m’,v.) € Z, all children of s(v.) are fixed by
Gk. So, in T, v. contains a root, say s € R which lies in no
other clusters and is fixed by Galois, i.e. s € K. Note that in this
situation, either v. = vy, in which case the open edge € of T must
be coloured yellow, or v. # g, in which case D, C D(s(v.)). In
the first instance, note that, since d(v.,m) € Z, v. has an open
black edge attached to it in B. We can assume that m’ lies on this
open black edge rather than on the open edge of T. The reason
we can assume this is because we are only looking for f’ with BY
tree isomorphic to 7" and the combinatorial construction of 7" does
not mind where we picked our m’ to be as long as the distance
from v, is correct and m’ satisfies any conditions required to be
able to create T' from T. So, since every edge and vertex in B
has multiplicity 1 (or no multiplicity assigned i.e. multiplicity 1),
we can consider B as lying on the Bruhat-Tits tree in such a way
that m’ contains s and D,y C D(s(v.)). So regardless of whether
Ve = vp or not, we can assume that D, C D(s(v.)) and s € D,,.
Since Dy € D({s} A{r}) for all r € R\ {s} we must have that all
other roots r # s do not lie in D,,,,. As in many other cases, we can
assume that D, = Dy and s = 0, therefore v(r) < 0 for all r # s.
Shifting by a unit we can assume that s is instead a unit. Inversion

then gives the desired result.
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Chapter 6

Curves and Open Quotient BY
Trees

6.1 Results for Hyperelliptic Curves

For simplicity, the preceding sections stated results in more generality than we
require. Given we are concerned with classification of hyperelliptic curves, we
now want to pull results from earlier sections, stating them for hyperelliptic

curves rather than general open quotient BY trees or cluster pictures.

Definition 6.1.1. Let C : y?> = f(x) be a hyperelliptic curve over K with tame
reduction. Then f is a square free polynomial in K[z| with tamely ramified
splitting field and the cluster picture ¢,k is of polynomial type. As such, we
define the open quotient BY tree associated to C over K to be T(3¢/k).

Open quotient BY trees have been carefully constructed with this in mind.
In particular they have been constructed to be quotients of open BY trees, in
the sense of Definition 2.2.3, hence their name. This is something we are now

able to study, after constructing a sensible metric on ¢~ (7).

Construction 6.1.2. Here we make the comments in Remark 4.2.4 more
formal. If 7" is the metric open quotient BY tree associated to a hyperelliptic
curve C/K and L/K is such that C'/L is semistable, then we can define a
metric associated to L/K on ¢~'(T). In particular, for an edge ¢ € E(T) we
define the length of each ¢~'(e); to be

[L: K]l(e) if e is blue,

(g (e)i) = oL : Ki(e) if e is yellow.

Writing 7" = ¢~ '(T), this gives that for any edge ¢’ € E(T"),

(')
L:K
la(e) = { A
2[L:K]

if €’ is blue,

if €’ is yellow.
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Proposition 6.1.3. Let C'/K be a hyperelliptic curve with tame reduction, and
let L/K be a field extension such that C' is semistable over L. Let T be the
open quotient BY tree associated to C' /K, then ¢~ (T) (with the metric defined
in Construction 0.1.2) is isomorphic to the metric open BY tree associated to
C/L.

Proof. We already proved in Theorem 4.2.6 that ¢~!(T) is an open BY tree. It
is not hard to see from the construction that every proper cluster in ¢/ g con-
tributes one vertex to ¢~(T), which is coloured yellow if the cluster is iibereven
and blue otherwise. Proper clusters in X¢/k are in one-to-one correspondence
with proper clusters in X¢/p. Likewise, it is not hard to see that the edge
set, colouring of edges, and genera of vertices are as required. So certainly the
non-metric version of this statement is true. To see that the metrics are the
same it is enough to note that when we take a field extension, the effect on the
depths is that they are multiplied by the degree of the extension. Taking into
account the convention for yellow edges in BY trees to have length 26,, rather

than ¢;, gives us that the metrics are indeed the same. O]

Remark 6.1.4. If 7" is a metric closed quotient BY tree, then we can define
the lengths of edges just as in Construction 6.1.2, except for an exceptional

edge between ¢~'(v'); and ¢~1(v')3, which we give length

2[L : K]i(e) if e is blue,

g~ (v)1,q (v)2]) = A[L : Ki(e) if e is yellow,

where e is the edge between v' and the exceptional vertex in 7" which gives

rise to this edge.

We can use our equivalence relation on open quotient BY trees to study
hyperelliptic curves. In particular, the work in Sections 5.3 and 5.4 gives us
the following two results. Firstly, for a hyperelliptic curve C'/ K one can find an
isomorphic hyperelliptic curve with any given open quotient BY tree equivalent
to that of C'. Stated more formally:

Theorem 6.1.5. Let C' : y? = f(x) be a hyperelliptic curve with cluster picture
Y, dr > 0, and open quotient BY tree T. Let T be an open quotient BY tree
equivalent to T, then there is a K-isomorphic curve C'/K with cluster picture
Y, and drr > 0 such that T(X") = T".

This follows as a direct result of Theorem 5.4.1 along with the following

remark.
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Remark 6.1.6. Suppose that C : y*> = f(z) is a hyperelliptic curve. Just as

stated in the proof of Proposition 14.6 in [DDMM18|, for a Mébius transfor-

az+b

ozri with a,b,¢,d € K, a change of variables of the form

mation ¥(z) =

ar’ + b Y

Tw+d YT (ca’ + d)9+!
gives a model for C'/K of the form y? = f/(2’). The set of roots of f'(z') is
precisely R’ = {7 1(r) | r € R} \ {oo} if R is even and R’ = {47 (r) | r €
R U{oo}} \ {oo} if R is odd.

So, we can take C’'/K to be the model afforded by making the appropriate
change of coordinates for the Mobius transformations in the proof of Theorem
5.4.1. Writing ¥’ for the cluster picture of C' /K, gives T'(¥') = T" as required.

Conversely, we can find a Mobius map between any two equivalent open
quotient BY trees. This is formally stated below in Theorem 6.1.5. It is worth
noting that this a generalisation of [DDMM18, Corollary 14.7].

Theorem 6.1.7. Let C' be a hyperelliptic curve over K, with set of roots R
such that dr > 0, and open quotient BY tree T'. Take a Mdbius transformation
¢(z) such that dgr > 0, where R = {o(r) | r € R} \ {oo} if R is even, and
R ={o(r) | r € RU{oo}} \ {co} if R is odd. Let C'/K be a hyperelliptic
curve with set of roots R' and let T' be the open quotient BY tree of C'/K.

Then T and T' are equivalent.

This follows directly from Theorem 5.3.15 by writing C' : y* = f(z) and
C" : y* = g(z), and applying Theorem 5.3.15 to f and g. It is worth noting
that if we wish to work with curves with negative top cluster depths, then
a simple scaling (at either end of the process) will allow us to work with a
model with non-negative top cluster instead and thus apply Theorem 5.3.15.
What this shows us is, the canonical representative of an open quotient BY
trees associated to a hyperelliptic curve is model invariant. That is, choos-
ing a different model for a hyperelliptic curve does not change the canonical

representative.

6.2 Genus

It would be useful, in order to produce a usable classification, to have a formula
for the genus of a quotient BY tree. In particular, if T" is an open quotient BY
tree, we would like the genus of T" to equal the genus of a hyperelliptic curve

with cluster picture X(7'). This will give a way of listing all open quotient
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BY trees corresponding to hyperelliptic curves of a given genus. To do this we

return to the semistable situation, and examine what is known there.

Definition 6.2.1 ([DDMM17, Definition 3.23]). For a closed or open BY tree
T, the genus of T is

g(T) = #{connected components of T} — 1 + Z g(v).
veV(T)

There are several useful propositions in [DDMM17] that tell us how the
genus of a BY tree relates to that of a hyperelliptic curve (with semistable
reduction). In particular, by [DDMM17, Proposition 4.17], for an open BY
tree T, g(T) = g(X(T)). Conversely, by [DDMM17, Proposition 4.19], if
is a cluster picture then g(X) = g(T'(X)). Note that if ¥ is a cluster picture
of polynomial type, and is the cluster picture of a hyperelliptic curve, say C,
then g(3) = ¢(C). Other useful results include [DDMM17, Proposition 5.7]
which gives that if 7' is an open BY tree with core T, then g(T') = g(T). We
can use quotients of BY trees to easily obtain similar results for open quotient
BY trees and hyperelliptic curves with tame reduction. We define the genus

of quotient BY tree as follows.

Definition 6.2.2. Let 7" be a (closed or open) quotient BY tree and let
By, ..., B, be the connected components of T,. Then the genus of T" is

g(T) = (Z min ){M@)}) —14+ > g0)M(@).

- wEV(BZ‘
= veV(T)

It is worth noting the following:

Proposition 6.2.3. For an open quotient BY tree T, g(T) = g(T).

Proof. By Proposition 4.3.9, the only vertices removed when passing to the
core of an open quotient BY tree are of genus 0, so the last part of the genus
formula is clearly unaltered. It remains to show that the first term in the
formula remains unchanged when passing from 7" to T'.

Suppose first that vy is yellow. Then the open edge € must be yellow and,
by Proposition 4.3.9, we know that no blue vertex or edge is deleted when
passing from T to 7. So we are done.

Suppose instead that vy is blue. Deleting the open edge, regardless of
the colouring, does not have any effect on the genus formula. Let B; be the

connected component of 7j, which contains vy. Recall that M(vy) = 1. By
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Proposition 4.3.9, we know that vy gets deleted (along with a closed blue
multiplicity 1 edge) if g(vg) = 0 and it has only one incident closed edge,
which is blue of multiplicity 1. If instead g(vg) = 0 and vy has exactly two
closed incident edges, both coloured the same as vy and of multiplicity 1, then
vp is viewed as a point on an edge. In each of these cases vy has an incident
closed blue edge of multiplicity 1, that is there exists some blue, multiplicity
1 vertex v € V(T') that lies in B;. Neither of these two situations leaves By
disconnected after removing vy (be that deleting vy along with a closed edge
or viewing vy as a point on an edge). All other connected components of Tj,
remain untouched. In particular, the connected components of T}, are B} and
By, ..., By, where B] C By and mingeyp){M(w)} = min,eyp){M(w)} =
1. O

Corollary 6.2.4. Suppose T' ~T" are two equivalent open quotient BY trees,
then g(T) = g(T").

Proof. Since T and T" are equivalent, T2 T". The result follows. n

The remainder of this section is dedicated to proving that this definition

does what we want, in particular proving the following two propositions.

Proposition 6.2.5. Let T' be an open quotient BY tree with open edge €, and
associated cluster picture X(T) = (R, X). Then

29(T) +2 ife is yellow,
29(T)+ 1 if e is blue.

IR| =

In particular, g(T) = g(X) = g(C), where C' is a hyperelliptic curve with

cluster picture 3.

Proposition 6.2.6. If X is a cluster picture, with associated open quotient
BY tree T(X), then g(X) = g(T(X)).

The idea behind the proofs of these propositions is simple; for a hyperel-
liptic curve C' with cluster picture Y, the genus is unaffected by taking a field
extension. Extending the field to obtain a semistable hyperelliptic curve C’
enables us to see that g(C) = ¢g(7") where 7" is the open BY tree associated
to C'. The genus of T" is phrased in terms of the connected components of
(T"), and the genus of vertices of 7. These can be rephrased in terms of T
using the quotient map from 7" to T'. This allows us to prove that the formula

defined above indeed gives ¢(T") = g(X) = ¢g(C). For the converse, we use that
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if T is an open quotient BY tree then we can construct a BY tree 7" such that
T is the “quotient” of T”.

Lemma 6.2.7. Let T be an open quotient BY tree, and T' = ¢~ *(T') as defined
in Construction 4.2.2. Let B be a connected component of Ty, then there exist

miny,ey gy M (v) connected components in (T"), which map to B under q.

Proof. Let u € V(B) be the vertex closest to the open edge of 7. Note that u is
necessarily unique in this way since 7T is a tree. By definition of T" being an open
quotient BY tree, multiplicities decrease as we head towards the open edge.
Thus, min,ey gy M (v) = M(u). By construction, u gives M (u) vertices in T,
and every vertex v < u gives % vertices < ¢ !(u); for each 1 < i < M(u).
Again, by construction, there are no edges in 7" between ¢! (u); and ¢~ *(u);,
therefore, there are precisely min,cy(p) M(v) connected components in (17),

which map to B under gq. O

Proof of Proposition 6.2.5. Let T be an open quotient BY tree with open edge
e and associated cluster picture X(7') = (R, ¥). By Theorem 5.1.19 we know
that X(7") is of polynomial type, that is there exists some hyperelliptic curve
C/K with tame reduction such that X¢/x = (7). Let L/K be a field ex-
tension such that C'/L is semistable. Note that the genus of C' is not changed
by extending the field. Then, by Proposition 6.1.3, 77 = ¢~ *(T') is the open
BY tree associated to X¢/, = (R',%'). So, ¥(T") = X¢/1, and, by [DDMM17,
Proposition 4.17], we have that

29(T") 4+ 2 if e is yellow,
29(T")+ 1 if e is blue.

|R| =

In particular, g(T7") = 9(X¢/1) = 9(C) = 9(X¢/k). By definition

9(T) = (Z min ){M(w)}> 1+ Y gw)M(v),

eV (B;
wev( veV(T)

=1

and by Lemma 6.2.7 and Construction 4.2.2 we can conclude that

1=

9(T) = (Z min ){M(w)}> 1+ Y g(0)M(v),

1 veV(T)

= #{connected components of T, } — 1 + Z g(v'),
VeV (TY)

= g(T").
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Since the number of roots is unaltered by extending the field we have that
|R'| = |R]. O

Proof of Proposition 6.2.6. This follows by a similar argument to the proof of
Proposition 6.2.5, and evoking Proposition 4.19 from [DDMM17]. ]

6.3 Leading coefficient

It remains to discuss how the valuation of the leading coefficient can change
under Mobius transformation. This will allow us to give a relation between the
leading coefficients of two hyperelliptic curves with equivalent open quotient
BY trees, which ensures that they have the same reduction type. We will prove

the following theorem:

Theorem 6.3.1. Let C : y*> = f(x) and C' : y*> = f'(x) be hyperelliptic
curves of genus g over K, with open quotient BY trees T = T (3¢/k) and
T' =T (Xcr/k). Suppose that the sets of roots R and R' of f and f" respectively
are such that dg,dgr: > 0. Write cy and cp for the leading coefficients of f
and f'. Then the dual graphs of the special fibres of the minimal SNC models

of C and C' are isomorphic if T and T' are equivalent and:

e when g is even: if

o (aise( £)) - o (aise( L)) = 20+ D020 D) mod a2 1)

Cr Cyr
then v(cy) = v(cp) mod 2, else v(cy) # v(cp) mod 2
e when g is odd: then

o (1)) o ()

2(2g+ 1)

=v(cs) —v(cp) mod 2

If either dr,dr: < 0 then note that a simple scaling gives us a change of
model, and will allow us to transform the cluster picture into something with
non-negative top cluster depth. We will discuss how such a transformation
affects the leading coefficient later. Piecing this together with the theorem
above will allow us to handle changes in leading coefficients regardless of what
the value of the top cluster depths are.

For any given hyperelliptic curve C'//K, our main use of this theorem
is to allow us to select an appropriate leading coefficient to go along with

our canonical representative of T'(¥¢/k), ensuring the reduction type of our
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canonical representative and this leading coefficient is the same as that of
C'/K. Before we prove Theorem 6.3.1, let us look at a relation between the

discriminants of isomorphic hyperelliptic curves due to [Liu96].

6.3.1 Leading Coefficient and Discriminants
We define the discriminant of a hyperelliptic curve as in [DDMMI18] and
[Liu96].

Definition 6.3.2. Let C : y> = f(x) be a hyperelliptic curve of genus g over
K. The discriminant Ag of C'is

1
Ao = 16gc§g+2disc (—f(x)) .
Cy

Let y* = f(x) and ¢y = f'(2’) be two equations for a hyperelliptic curve
C/K with discriminants A and A’ respectively. By [Liu96, §2], we have that

there exist substitutions

ar’ +b B ey’
ca+d YT (

Tr = _—_—
cx! +d)9tt’

where

c

b
(a d) € GLy(K), ec K",

Furthermore, we obtain the following relation between their discriminants:
A = Ae™ 294D (qd — pe) 2o+ D o+ (6.1)

Remark 6.3.3. In [Liu96] there is an additional term, H(z') € K|[x], in the y-
coordinate substitution, but we omit this here since we take all our hyperelliptic

curves to be of the form y* = f(z).

This relation between A and A’ provides us with an easy way to check
whether two hyperelliptic curves are isomorphic. Note that isomorphic curves
will always have the same reduction type, however the converse is not true
and just because two curves have the same reduction type does not mean that
they are isomorphic. Reduction types are a more crude classification than
isomorphism classes of curves. This is important to note as it is a subtlety
that means our theorems need to be worded carefully. The following example

llustrates this.

Example 6.3.4. Consider the two hyperelliptic curves C : y* = f(x) and
C" : y* = pf(x) over Qp', where f(z) = z(2? — p*)(xz — 1)((z — 1)% = p°).
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Both C' and €’ have Namikawa-Ueno type III-IIT*-1. However, C' and C’ are
not isomorphic. This can be easily seen by checking how their discriminants
compare. By [Liu96, §2] we know that if C' and C” are isomorphic then their
respective discriminants A and A’ will differ by a 20" and 30" power. That
is, there exist some a,b,c,d € K and e € K* with ad — bc # 0 such that
A" = Ae?(ad — be)®°. However, if we compare their discriminants, we have
A = 163disc(f(z)) and A" = 162p10disc(:’%(x)) = p'%A. That is, we do not
satisfy the discriminant condition that isomorphic curves must satisfy. So C
and C’ are not isomorphic even though the dual graphs of the special fibres of

their minimal regular models are isomorphic.

To prove Theorem 6.3.1, we will make use of the effect that applying
Mobius transformations has on the discriminant of a curve. So, before we

proceed to the proof let us first prove a short lemma.

Lemma 6.3.5. Let C' be a hyperelliptic curve and ¢ be a Mobius transfor-

mation with ¢(z) = Zjis Suppose that C" is the curve obtained from C by a

change of coordinates

ar’ +b Y

a+d U (ca’ + d)9+t

Then we have the following relationships between the valuations of the discrim-

inants of C and C" when ¢ is a scaling, shift or inversion:
(1) If o(z) = az then v(Acr) = v(Ac) —v(a)2(9+1)(2g+1) mod 4(2g+1).
(i1) If ¢(z) = 2z + b then v(Ac) = v(A¢) mod 4(2g9 + 1).

(iti) If ¢p(z) = L then v(Acr) = v(A¢) mod 4(2g +1).

Proof. This follows directly from relation (6.1). O

It is also helpful to note the following from [DDMM18, Theorem 16.2]:

Lemma 6.3.6. Let C : y? = f(x) be a hyperelliptic curve of genus g over K,

and let 3 be the associated cluster picture. Then

oA = le)a 2+ Y d (\5\2 zw).
s proper s'<s

Remark 6.3.7. Note that [DDMM18, Theorem 16.2] also then gives us that

() S (o)

5 proper
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that is, if two hyperelliptic curves C : y* = f(z) and C’ : = ) have
isomorphic cluster pictures then, v (disc (%f)) =0 <dISC (%f’))
2 _

= f(z) and
C":y* = f'(x), with associated open quotient BY trees T' and T” respectively,

will have v (disc (%f)) =0 (disc <$f’>> if T and T" are isomorphic. It is

however useful to formally rephrase Lemma 6.3.6 in terms of open quotient BY

It is clear from this remark that two hyperelliptic curves C' :

trees. Recall in Construction 5.1.9 we defined a partial order on the vertices
of T by setting v" < v if v lies on the embedded path from m to v, where m
is the marked point of T.

Definition 6.3.8. For a vertex v of an open quotient BY tree, we define |v| to

be the size of each of the clusters s, 1, 6,2, ... $, pm(v) as defined in Construction

5.1.9. That is,
;o M)
lv| = g s(v', T) (o)

v'<v

Lemma 6.3.9. Let C : y? = f(x) be a hyperelliptic curve of genus g over K,
and let T be the associated open quotient BY tree. Then

o(Ae) = vle)(dg +2) + ZM (W > [P <v,T>),

’UEV v'<v

=v(cr)(d4g +2) + Z M (w)oy[v] (Jv] = 1),

veV(T)

where 6, = length(e,), the length of the edge incident to v lying on the embedded
path between v and m, and v' < v if V' is adjacent to v with v' < v. If v = vy,

the unique vertex incident to the open edge, then we take d,, = d(vy, m).

Proof. Every vertex v contributes M (v) clusters, s, 1, . .. §, am(v), €ach of size |v|

and depth d(v, m), to the associated cluster picture. A child v’ of v contributes
M(v')
M (v)
cluster s, ; that do not arise in this way are singletons. Each s, ; has precisely

proper children of s,; for each 1 < i < M(v). The only children of a

s(v,T) singletons. Putting all of this information into Lemma 6.3.6 we get
the first formula. To see that the second formula holds we note by [BBB*20,
Theorem 15.1] that

v(Ac) = v(e))(4g+2)+ Y &ls|(Is| - 1),

5§ proper

where if s = R we take dg = dg. O

We now proceed to prove Theorem 6.3.1.
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Proof of Theorem 6.3.1. Since C': y* = f(x) and C" : y* = f’(x) have equiva-

lent open quotient BY trees 7" and 7", we know by Theorem 6.1.5 that there

az’+b _ y'
cx’+d? Y= (cx’+d)9+1

C :y? = f(x) yields a hyperelliptic curve C” : y?> = f’(x) with open quotient

is some substitution of the form x = that when put in to
BY tree isomorphic to T”. Certainly the special fibres of the minimal SNC
models of C' and C” are isomorphic, since C' and C” are isomorphic. Since
C" and C” have isomorphic open quotient BY trees they must have isomor-
phic cluster pictures. By Theorem 9.2.3 ([FN20, Theorem 7.12]), the cluster
picture and the valuation of the leading coefficient of the defining polynomial
completely determine the structure of the special fibre of the minimal SNC
model. Furthermore, since we can always make a change of variables y = ey
which is an isomorphism and will send v(cy) — v(cy) —2v(e), the parity of the
valuation of leading coefficient is actually all that influences the special fibre.
As such, if v(cy) = v(cpr) mod 2 then we must have that C” has special fibre
isomorphic to that of C” and therefore to that of C'. It remains to work out
what effect the Mobius transformations we describe in the proof of Theorem
6.1.5 have on the valuation of the leading coefficient. This will give us condi-
tions for when v(cyr) = v(cs) mod 2 and when v(cpr) # v(cy) mod 2, thus
allowing us to take v(cp) = v(cpr) mod 2 and ensuring that C' and C” have
isomorphic special fibres.

Since we can always perform such a substitution y = ey’, we can assume
that v(cs),v(cpr) € {0,1}. Since C' and C” are isomorphic, we have the fol-

lowing relation between their discriminants, A and A", due to [Liu96]:

A" = A6_4(29+1)(ad _ bc)2(9+1)(29+1).

Taking valuations we get that
v(A") = v(A) — 4(2g + 1)v(e) + 2(g + 1)(2g + 1)v(ad — be).

Note that by Theorem 6.1.5 to go from C to C” we make a series of scalings,
shifts and inversions. The total scaling is always z — az, where v(a) = n and
n = +d(m,m’) = d(m,m’) mod 2Z (if we denote the open quotient BY tree
of C” by T" with marked point m” then T” = T’ so d(m,m’) = d(m,m")).
By Lemma 6.3.5, shifts and inversions have no effect on the valuation of the

discriminant mod 4(2¢g 4+ 1). As such, we obtain the following relation between

A and A”:

v(A") =v(A) +d(m,m")2(g+1)(2g+ 1) mod 4(2¢g + 1).
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In fact, since 2d(m, m")2(g +1)(29g +1) =0 mod 4(2g + 1), we have
[0(A") —v(A)] = d(m,m")2(g +1)(29 + 1) mod 4(2g + 1).
Suppose that
v(disc (f7>) - v(disc (%)) = d(m,m')2(g+ 1)(2g +1) mod 4(2g + 1).

By Remark 6.3.7, v (disc <c—;f’)) =0 (disc (%f”)), therefore

V(A") —v(A) =2(2g9 + 1) (v(epr) — v(ey)) + v(disc (%)) - v(dise (%)) :
So, [v(A") —v(A)| = d(m,m")2(g+ 1)(29g + 1) mod 4(2g + 1) if and only if
2(29+ 1)(v(cpr) —v(cs)) =0 mod 4(29 + 1),

which is the case if and only if v(cyr) = v(cy) mod 2. So, in this case, if
v(ep) = v(cy) mod 2 this certainly results in C' and C” having isomorphic

special fibres. Similarly, if instead

v(disc (%)) — v(disc (%)) Zd(m,m)2(g+1)(29+1) mod 4(2¢9 + 1),

then if v(cp) # v(cy) mod 2, C' and C” have isomorphic special fibres.
Note that when g is odd this simplifies slightly since then

d(m,m)2(g+1)(2g+1) =0 mod 4(2g + 1),

regardless of the parity of d(m,m’). So, in fact the distance between m and
m' does not play a role in ensuring which parity of v(cy) will certainly give

isomorphic special fibres. We can simply check whether
v(disc(#f’)) - v(disc(%f)) =0 mod 4(29 + 1),

and if it is we know that if v(cp) = v(cr) mod 2 the special fibres will be
isomorphic, otherwise if v(cp) # v(cy) mod 2 the special fibres will be iso-

morphic. O

6.4 Minimal Discriminant
Recall that the definition of the centre of the core of an open quotient BY tree

T is the minimising vertex or midpoint of an edge of the weight function ¢ as
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defined in Definition 4.4.1.

In the semistable situation, by [BBB120, §18], the open BY tree created
by adding an open yellow edge at the centre, ¢, of T has minimal discriminant,
that is a minimal Weierstrass model of C' has this associated open BY tree.
Note that, technically, in [BBB"20, §18] they work with closed, rather than
open, BY trees. However, by [BBB*20, Remark 18.9] we can instead consider
the open BY tree obtained from 7" by adding an open yellow edge at its centre.
In this section we discuss whether we are able to draw a similar conclusion for
our more general setting. Unfortunately, as one may recall from Construction
4.5.5, it is not always possible to attach an open edge at the centre ¢ of T if C'
is not semistable. Instead, we choose a marked point m’ to be as close to the
centre as possible, which is integer distance from the marked point m of T'.
We remarked earlier, that in the case when denom(d(m, ¢)) = 2, there is not a
unique choice of point closest to ¢ integer distance from m, as there will be two
choices for m’ each distance % from c. The centre minimises the discriminant
in the semistable case, so it would be nice if one of the two points either side
of the centre (not necessarily the closest point to the centre) would minimise
the discriminant in the non-semistable case. We will discuss and prove what

we can of this in this section.

Conjecture 6.4.1. let C : y?> = f(z) and C' : y?> = f'(x) be two semistable
hyperelliptic curves over K, with equivalent open quotient BY trees T and T’
respectively, such that their core is obtained from each of them by removing
their open edges, and possibly viewing vy or v, (the unique vertices incident
to the open edges of T and T' respectively) as points on an edge. Let ¢ be the

centre of their core T. If vo lies on the embedded path between v, and c, then
. 1 : 1 pr
v (dlSC (af(x)>> <w (dlSC (C—f,f (w)))

We do not prove all of this here but we are able to prove the following.
Suppose that the centre ¢ of T is a vertex, and ¢ is integer distance from the
marked point m. Recall that ¢7'(c) is the centre of qfl\(?) and note that
taking a ramified extension only multiplies all depths in the cluster picture
by the degree of the extension, so all this does is scale the discriminants so
won’t change where the minimum is attained. If the canonical representative
T* of the equivalence class of T' (i.e. the open quotient BY tree obtained by
adding an open yellow edge at ¢ and taking ¢ to be the marked point) did not
give the minimal discriminant then this would contradict that the canonical
representative of ¢~}(T') (i.e. the open BY tree obtained by adding an open

yellow edge at ¢~'(c)) has minimal discriminant.
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In all other situations we conjecture that the minimal discriminant is
obtained by attaching an open yellow edge at one of the two choices of marked
point either side of the centre. Suppose that this conjecture holds. It would
be convenient if we were able to further specify that the minimal discriminant
would always arise from the choice of marked point which is closest to the
centre (if such a unique choice existed). Unfortunately it is more messy than
this. Even if Conjecture 6.4.1 were true, in order to find which of these two
trees results in the minimum discriminant the easiest thing to do is simply
calculate both. Of course, which tree gives the minimal discriminant will also
depend on the original choice of model and leading coefficient. Let’s finish by
illustrating this with some examples which demonstrate that lots of different

things may happen.

Example 6.4.2. Let C': y* = f(z) = ((x—p)° —p)((x+p)* —p)(2* —p*) /Q)
for p > 5, then the cluster picture associated to C' has an orbit X of three
twins with depth dx = 1, an additional twin t with depth di = 1 and top
cluster R with depth dgr = % So, C' has open quotient BY tree T" as follows:

Ut

@ g0 M1
m M1
@]
VR
® go M3
vx

Figure 6.1: Open quotient BY tree T associated to C

The core of T' is obtained by simply removing the open edge. We can calculate
that ¢(vg) = 2 and @(v) = 6, so min,cy 1) G(v) = ¢(vr) giving that vg is
the centre of 7. Note that d(m,vg) = 3,
points for an equivalent open quotient BY tree are distance

so the two closest possible marked

1
3

marked point distance % from the centre results in 7. The other option results

and % Taking a

in the following equivalent open quotient BY tree T":

m' () g0,M1 M1 g0 M3
@ o )
V1 (%] VU3

Figure 6.2: Open quotient BY tree T’

Let C" : y* = f'(z) be a hyperelliptic curve, isomorphic to C with open quotient
BY tree T" as given by Theorem 6.1.5. We can calculate the discriminants of

C and C’ from their leading coefficients and open quotient BY trees. First
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note that |vg| = |v1| = 8, |vx| = |v| = |vs| = 2, and |vs| = 6, so
gise () ) = 52 M@)o Jul(le] - 1)
v | disc [ — = V)0, |V|(|v] — 1),
Cf
veV(T)
g7 20020
3 3 3 7
— 24,
1
o(ase (7)) = X Mkl -
r veV(T")
p p
=0+3-2.2+2.6-5
Torgrety ’
— 24

By Theorem 6.3.1, we can assume that v(cp) = 0. So, v(A¢) = v(Aer) = 24.
Assuming Conjecture 6.4.1 is true, this gives v(AB") = 24.

Example 6.4.3. Let C': y* = f(z) = z(2°—p) /Q) for p > 7, then the cluster

picture associated to C' has just one proper cluster R with depth dgx = . So,

1
5
C has open quotient BY tree T" as follows:

m g2,M1
@

UR

Figure 6.3: Open quotient BY tree T associated to C

The core of T is obtained by simply removing the open edge. There is only
one vertex of T, namely vg, so it follows that this is the centre. Note that
d(m,vgr) = £, so the two closest possible marked points for an equivalent open
quotient BY tree are distance % and %. Taking a marked point distance % from
the centre results in 7. The other option results in the following equivalent

open quotient BY tree T":

4
m' . g0,M1 T g2,M1

U1 U2

Figure 6.4: Open quotient BY tree T’

Let C" : y* = f'(z) be a hyperelliptic curve, isomorphic to C with open quotient
BY tree T" as given by Theorem 6.1.5. We can calculate the discriminants of

C and C’ from their leading coefficients and open quotient BY trees. First
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note that |vg| = |v1| = 6, and |ve| =5, so
1
ofaise (7)) = 3 Mrpl(el - )
f veV(T)
1
o(ase (7)) = X Mkl -1
f veV(T)
= 16.
Note that by Theorem 6.3.1, since
!/
v <disc (f>> —v (disc (f>> =-10=30=2(g+1)(2g+1)d(m,m’) mod 20,
Cf Cf/

we can assume that v(cg) = 0. So, we get v(A¢) = 6 and v(Acr) = 16. Assuming
Conjecture 6.4.1 is true, this gives v(AZM) = 6.

Example 6.4.4. Let C' : y*> = f(z) = z(2® — p*) /QU for p > 7, then
the cluster picture associated to C' has just one proper cluster R with depth

dr = % So, C' has open quotient BY tree T" as follows:

m - g2,M1
@

UR

Figure 6.5: Open quotient BY tree T associated to C

The core of T is obtained by simply removing the open edge. There is only
one vertex of T, namely vg, so it follows that this is the centre. Note that
d(m,vg) = %, so the two closest possible marked points for an equivalent open
quotient BY tree are distance % and % Taking a marked point distance % from
the centre results in 7. The other option results in the following equivalent

open quotient BY tree T":

3
m . g0,M1 & g2,M1
U1 U2

Figure 6.6: Open quotient BY tree T’

Let C" : y* = f'(z) be a hyperelliptic curve, isomorphic to C with open quotient
BY tree T" as given by Theorem 6.1.5. We can calculate the discriminants of

C and C’ from their leading coefficients and open quotient BY trees. First
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note that |vg| = |v1| = 6, and |ve| =5, so
1
; (disc (C_ f)) = Y M@ Jol(le]l - 1),
f veV(T)
— 12,
1
v (disc (;f')) = > M(@)d,|o[(jo] - 1),
I veV (T’)
=12.

Note that by Theorem 6.3.1, since

v <disc (lef)> —v <disc <lelf/>) =0#£30=2(g+1)(2g+1)d(m,m’) mod 20,
we can assume that v(cy) = 1. So, we get v(A¢) = 12, and v(A¢r) = (4g + 2) +
12 = 22. Assuming Conjecture 6.4.1 is true, this gives v(AB™) = 12. Note that
here, unlike if we had done the same in the previous example, if we instead took
C : y? = pf(z) then we would have v(cp) = 0 which would give us v(Ag) = 22
and v(Acr) = 12. So v(A%B") = 12 again, however in this instance the minimal
discriminant is attained by the open quotient BY tree with marked point being the

second closest integral disc to the centre rather than the closest.

Example 6.4.5. Let C : % = f(z)/Qy" for p > 7 be a genus 5 hyperelliptic
curve such that f has leading coefficient ¢; and roots 4p3/2 + (ip'/3, C§p6/5, 0,
for 0 <i <2 0<j <4, (3 a third root of unity, and (5 a fifth root of unity.
The cluster picture associated to C' has an orbit X of three twins s1, 5o, and
s3 with depth dx = %, a cluster s4 of size 6 with depth d; = g and top cluster
R with depth dr = % So, C' has open quotient BY tree T' as follows:

Vs,

@ 92 M1
m M1
O
A4
VR
@ go M3
(2'¢

Figure 6.7: Open quotient BY tree T associated to C

The core of T' is obtained by simply removing the open edge. We can calculate
that ¢(vgr) = 6 and @(vs,) = 6, so min,cy(71)¢(v) is attained at both vg
and v,, giving that the midpoint of the edge between them is the centre c of

T. Note that d(m,c) = %, so the two closest possible marked points for an
23

equivalent open quotient BY tree are distance %2 and %. Taking a marked

point distance % from the centre results in 7. The other option results in the
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following equivalent open quotient BY tree T":

V4
® g92M1
m M1
S)Dl U2 U3
(@) @
M1 go M3

Figure 6.8: Open quotient BY tree T”

Let C' : y* = f'(x) be a hyperelliptic curve, isomorphic to C' with open
quotient BY tree T" as given by Theorem 6.1.5. As in previous examples, we
can calculate the discriminants of C' and C” from their leading coefficients and

open quotient BY trees. First note that

o (1)) = 3 Mpl(ol -

€ veV(T)
=7,
o(ase (7)) = X Mkl -
f VeV (T")
— 37,

Note that by Theorem 6.3.1, we can assume that v(cy) = v(cf) mod 2. So,
regardless of the valuation of ¢y, T" will always give a smaller discriminant than
T. In particular, assuming Conjecture 6.4.1, we get v(AZ™) = 37 if v(cy) =0
mod 2, and v(AB™) =49+ 2+ 37 =55 if v(c;) =1 mod 2.
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Chapter 7

Background - Models of Curves

We now turn our attention to studying models of hyperelliptic curves. Recall
that our goal is to show that the structure of the minimal SNC model of a tame
hyperelliptic curve is completely determined by the cluster picture and leading
coefficient of the defining polynomial. We begin with a brief introduction to

models, and some important background work.

7.1 Models

Let C' be a hyperelliptic curve over K. If you want to study C/K then the
idea is to do this by reducing, as much as possible, any questions you might
have to ones over k. In this way one can often reduce questions to a finite
computation. The key method for moving from K to k is given by the theory

of models.

Formally, a model of C'/K is a scheme 2 /O, of finite type, flat and

proper over O, equipped with an isomorphism
X XOg K — C.

We refer to 2" X, K as the generic fibre of C' and define its special fibre to
be the k-scheme 2, = 2 xo, k.

Roughly, finite type means there are finitely many equations and variables.
Flatness ensures that the resulting reduction retains information about C' such
as being connected, having dimension 1 and having arithmetic genus equal to
the genus of C. Properness ensures projectivity of the reduction and the
existence of a reduction map on points.

Less formally, we can think of a model in the following way. Spec(Ok)
consists of just two points: the maximal ideal m, and the ideal (0). So, a
scheme over Ok consists of a fibre above each of these two points, the generic
fibre over (0) and the special fibre over m. This is a model of C' if the generic
fibre “looks like” C', and the special fibre is a way of studying the curve over

k. Pictorially, this looks something like Figure 7.1
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special fibre generic fibre

C <

Spec(Ok) m (0)

1%

C

Figure 7.1: Model of C/K

Example 7.1.1. Take E : y*> = 2® + p over Q,. The simplest model of E
is to take the generic fibre to be E/Q, itself, and simply reduce E modulo p
to obtain the special fibre. This is called a Weierstrass model and for F is

pictured in Figure 7.2.

Figure 7.2: Weierstrass model of £/Q,

It won't always be the case that a special fibre can be described by just
one irreducible equation. There may be several equations each describing a

component which intersect the other components.

Example 7.1.2. For instance, if we consider the curve C'/Qj : y* = 52° + 2% +
15, the reduction mod 5 is C'/F5 : y* = 22. This is equivalent to (y—x)(y+z) =

0. So, the reduction is the union of two lines y = z and y = —x.

It is also possible to get a repeated factor when we reduce. Although this
does not add to the solutions, it is important to distinguish between when 2,
is defined by f(z,y) = 0 and when it is defined by f(z,y)* = 0.
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Example 7.1.3. Let C/Qs be defined by y? + 2zy = 523 — 22 + 15. The
reduction mod 5 is C'/F5 : y? + 22y = —2?, equivalently (y + 2)? = 0. So we
can see that the line y=-x appears in the defining equation of the special fibre

with multiplicity 2.

y=-x

These examples demonstrate how models are a way of visualising a curve
over K and k. As such, the defining equation needs coefficients in O, else
we are unable to “reduce mod p”. So, essentially we can think of a model as
being a choice of equation with coefficients in Ok (or equivalently a choice
of substitution which yields such an equation). Therefore, there are many
possible models of any given curve. We need a way of specifying which of
these models is the “best” to look at. There are several different ways one
could do this, but here we choose to specify a “best” model as being regular.
Roughly this means that we ask that the tangent space has the “correct”

dimension. More formally this is defined as follows.

Definition 7.1.4. A scheme 2 is reqular at v € 2 if

. .oom
dim Oy , = dimy, —;,
X
where m,, is the maximal ideal of the local ring Oy, at z € X. Otherwise, 2~

is singular at x. We say a model 2 is regular if the underlying scheme 2~ is.

Note that, since we are only concerned with models of curves, in all of our

cases Z can be thought of as a surface and is 2 dimensional, so dim Oy, = 2.

Example 7.1.5. Consider C : 4> = 23+ 5" n > 1 over Q5. Take 2 to be
the model with generic fibre C' and special fibre C/F,. The only potentially
singular point on the special fibre is the point corresponding to the maximal
ideal m = (z,y,5). To check if 2 is regular it suffices to check regularity at
this point. If n =1 then 5 = y? — 2, s0o 5 € m? = (x,y,5)?. Therefore

(z,9,5)

(g, B me{ny) =2,

. m .
dimp, i dimp,

and 2 is regular. If n > 1,5 ¢ m?, so dim -5 > 3 and 2" is singular at m.

We say a regular model 2" for C' is minimal if for every other regular

model % for C, the map between their generic fibres corresponding to the
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identity on C' extends to a morphism % — 2. In other words, a regular
model 2 is minimal if 2~ cannot be obtained by blowing up a point on another
regular model. Every hyperelliptic curve has a (unique minimal) regular model.
This is a good reason to choose to ask that our models be regular.

Another advantage of regular models is that there is an intersection pairing
on the irreducible components of the special fibre. Let £~ be a regular model.

If Fy, ..., E, are the irreducible components of 2~ with multiplicities m; then:
o > mE;-E;=0foralll<j<r,

e £,-E; > 0fori # j, and E; - E; = FE? < 0 (the latter is the self

intersection number of E;).

It is possible to blow down a component in a regular model if and only if it
is isomorphic to P} with self intersection -1. (Castelnuovo’s Criterion, [Liu02,
Theorem 9.3.8])

Strict normal crossing (SNC) models are models which are regular as
schemes and whose special fibre 2}, is an SNC divisor - that is, a curve over
k whose worst singularities are normal crossings i.e. the singularities “locally”
look like the union of two axes (possibly with multiplicity). Note that we
do not insist that the irreducible components themselves are smooth. For
a given curve, there is a unique SNC model 2™ which is minimal in the
sense that any map of SNC models 2™ — 2" is an isomorphism ([Liu02,
Proposition 9.3.36]).

Another class of models that are of particular interest to us are semistable
models. These are SNC models which have a reduced special fibre. Curves
which have a semistable model are said to have semistable reduction. The
minimal SNC models of such curves can be calculated explicitly from the
cluster picture, this is done in [DDMM18§].

We now collate some facts about models from [Lor90], [CES03], and
[DDMM]18] for the convenience of the reader. Similar techniques concerning

quotients of models are also used in [Hall0].

7.1.1 Chains of Rational Curves

Chains of rational curves are central to our descriptions of SNC models. The
following definition explains what we mean by a chain of rational curves and
defines the three main types of chains we are interested in: tails, linking chains

and crossed tails.
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Definition 7.1.6. Let 2~ be a SNC model of a hyperelliptic curve defined
over K. Suppose that Fy, ..., E) are smooth irreducible rational components

of Zy. A divisor C = U?:1 E; is a chain of rational curves if
(i) (Bi-Eipq)=1foralll <i< Xand (E;- E;) =0for j #i+1,
(ii) (B Zi\C) =1,

(i) (E;- 23 \C) =0 fori # 1, \,

where (F - F) is the usual intersection pairing defined on regular models. If
(Ex- 2\ C) =0 then C is a tail. If (Ey- 2 \ C) = 1 then C is a linking chain.
We say a chain of rational curves C = szl E; is a loop if C is a linking
chain such that F; and E) both intersect the same component of W\C
Furthermore, if (Ey- 2 \ C) = 2 then C is a crossed tail if Ey intersects two
rational components of 2} \ C, say EY. , and E5,, such that (E},, - E)) =1
and (B, - 2\ E\) = 0. We call the components Ey., the crosses of C.

[lustrations of the definitions of tails, linking chains, loops, and crossed
tails are shown in Figures 1.3 and 1.4 in Section 1.

Blowing down a component E results in a regular model if and only if
it is rational and has self intersection —1 (Castelnuovo’s Criterion, [Liu02,
Theorem 9.3.8]). However, blowing down a general rational component of .2,
of self intersection —1 will not necessarily produce an SNC model. For example
the resulting model obtained by blowing down the component of multiplicity 3
in the minimal SNC model of an elliptic curve of Kodaira type IV is no longer

an SNC model. This is shown in Figure 7.3 below.

1
1
HLE
[ — 1

(2) Spemasll\i;'i grf;gg;?e minimal (b) Special fibre of the minimal
’ regular model.

Figure 7.3: Elliptic curve of Kodaira Type IV.

After blowing down a component of a chain of rational curves of self-
intersection —1, the special fibre is still an SNC divisor. Therefore, we will be
interested in blowing down all such components. If a chain of rational curves

cannot be blown down any further, we call it minimal.

Definition 7.1.7. A chain of rational curves C = |\, E; is minimal if (E; -

E;) < =2 for every i.
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7.1.2 Quotients of Models

This section collates several results from [Lor90] and [CES03] concerning taking
quotient of models. Let C' be a hyperelliptic curve over K and let L/K be
a tame field extension of degree e such that C = C x g L is semistable over
L. Note that the cluster picture of C/L is the same as the cluster picture of
C'/K, except all the depths have been multiplied by e. Since k is algebraically
closed, the extension L/K is totally tamely ramified, hence L/ K is Galois with
Gal(L/K) cyclic.

Let % be the minimal semistable model of C1/Op, so % is a reduced,
SNC divisor of . Any ¢ € Gal(L/K) induces a unique automorphism of
% of the same degree which makes the following diagram commute [Lor90,
p. 136]:

y —2s X
L
O, —— O

Although a slight abuse of notation, we will also refer to this automor-
phism on % as o, and define G = (0 : # — %) where o generates Gal(L/K).
The model %, as well as the automorphism induced on the special fibre, will
be given more explicitly in Section 7.1.3.

Since % is projective, the quotient 2 = %' /G given by q : # — % can
be constructed by glueing together the rings of invariants of G-invariant affine
open sets of #. The resulting scheme Z°/Ok is a model of C/ K. Furthermore,
since 2 is a normal scheme, its singularities are closed points lying on the
special fibre 2. The following proposition, from [Lor90, p. 137], gives the

multiplicities of the components of Z.

Proposition 7.1.8. Let Y C % be an irreducible component of %.. Then
Z =q(Y) is a component of % of multiplicity e/|Stab(Y')|, where Stab(Y) is

the pointwise stabiliser of Y.

Blowing up a singularity on %, results in a chain of rational curves, as in
Definition 7.1.6. It is well known (e.g. [Lor90, Fact V], [Lip78]) that blowing
up the singularities on 2, and blowing down all rational components in chains
with self intersection -1 results in a minimal SNC model.

The singularities on %} are tame cyclic quotient singularities, and there is
a precise description of the chain of rational curves that arises after resolving
them. We will prove in Proposition 8.1.11 that singularities z € %, which lie
on precisely one irreducible component of 2, are tame cyclic quotient singu-

larities. The definition is as follows:
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Definition 7.1.9. Let S be a scheme over Ok and let s € S be a closed point.

The point s is a tame cyclic quotient singularity if there exists
— a positive integer m > 1 which is invertible in &,
— aunit r € (Z/mZ)*,
— integers my; > 0 and my > 0 satisfying m; = —rms mod m

such that (55\5 is isomorphic to the subalgebra of p,,-invariants in
E[ty,ta]/(t7"t5? — 7k) under the action t; — (pti,ta — (ta. We call

the pair (m,r) the tame cyclic quotient invariants of s.

The following theorem, [CES03, Theorem 2.4.1], tells us how to resolve

tame cyclic quotient singularities.

Theorem 7.1.10. Let S be a flat, proper, normal curve over Ok with smooth
generic fibre. Suppose s € Sy is a tame cyclic quotient singularity with tame
cyclic quotient invariants (m,r), as in Definition 7.1.9 above.

Consider the Hirzebruch-Jung continued fraction expansion of ** given by

m 1
’

where b; > 2 for all 1 < i < \. Then the minimal reqular resolution of s is a

chain of rational curves U?Zl E; such that E; has self intersection —b;.

Remark 7.1.11. Note that in [CES03] the E; are labeled in the opposite
order. Instead we use the same labeling of the components in our chain as in

both [Dok18] and [Lor90].

7.1.3 Semistable Models

A critical step in the proof of the main theorem in Chapter 9 will be extending
the field so that C' has semistable reduction. The following theorem, a criterion
for C' to have semistable reduction in terms of the cluster picture of C, allows

us to do just that. First we need the following definition:

Definition 7.1.12. For a proper cluster s € 3¢ define v = vg(cr) +
ZT‘ER dspr-

Theorem 7.1.13 (The Semistability Criterion). Let C' : y* = f(z) be a hy-
perelliptic curve, and let R be the set of roots of f(x) in K. Then C has

semistable reduction over L if and only if
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(1) the extension L(R)/L has ramification degree at most 2,
(ii) every proper cluster of X¢yr is G invariant,

(iii) every principal cluster s € ¥¢yp, has dy € Z and v, € 2.

Once the field K has been extended so that C' has semistable reduction
over L, there is a very explicit description of the special fibre of # in terms of
the cluster picture of C'/L in [DDMM18, Theorem 8.5]. For this we need some

definitions. Write e = [L : K. To simplify some invariants, we assume that
3
singular irreducible components. This will be sufficient for our purposes since

all clusters s € Yo /k have ed; > 3, since a cluster s with ed, = % introduces
these invariants are used to describe the explicit automorphism on % and
we can always extend our field so that the minimal semistable model has no
singular components, i.e. all components are smooth. Note that the valuation
on K is normalised with respect to K, such that the valuation of a uniformiser

T of L is UK<7TL)I%.

Definition 7.1.14. For 0 € Gg let

by

mod m.

Oos)-
For all other clusters s set €,(c) = 0. We write ¢; without reference to any

o € Gal(L/K) for ¢5(0), 0 € Gal(L/K) a generator. [DDMM18, Definition 8.2]

Remark 7.1.15. By [DDMM18, Theorem 8.7], the quantity e;(c) = —1 if
and only if o swaps the two points at infinity of I's ;. When k£ = k, €, =

(—1)v=—l"lde gince

Vg = Vg (cf H(zﬁ* — 7’)) + st*.

ré¢s* res*

Remark 7.1.16. Our definition of \; differs slightly from that in [DDMM18].
In [DDMM18] ), is defined to be % —d, Es’<5,6,/>% L%J, and a second quantity
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Il
5’<5L 2

X is defined to be B—d; )

of the special fibre. Given our assumption that every cluster in ¥/, has

|. This is to account for singular components

relative depth > %, when we calculate these for C'/L we find that A\s = Xs, SO

for simplicity we do not write the tilde.

Definition 7.1.17. Let s € Y¢/k be a principal cluster. Define ¢, € £* by

cy 25— T

(cy) (25—1)
WZK o rés A

mod m.

Cy =

These definitions are key for the description of the minimal SNC model of
C'. In the interest of brevity, we will not restate [DDMM18, Theorem 8.5] here,
which is a simplification of Theorem 1.3.6 to the case of semistable reduction,
and also gives the action of Gal(K /K) on the minimal SNC model. However,
we recommend that the reader familiarise themselves with this theorem as it is
helpful for understanding the case when C' does not have semistable reduction.
The main idea is that principal non-iibereven (resp. iibereven) clusters each
have one (resp. two) components associated to them, and components of
parents and odd (resp. even) children are linked by one (resp. two) chain(s)
of rational curves. The Galois action on components is induced by the Galois
action on clusters, and the two components (resp. two linking chains) of an

tibereven cluster (resp. even child) s are swapped precisely when €, = —1.

7.2 Models of Curves via Newton polytopes

In this section we describe a method from [Dok18] for calculating a SNC model
of a curve C'/K which is A,-regular. The notion of A,-regularity, given in
[Dok18, Definition 3.9], applies to more general smooth projective curves. Here
we restrict to the case where C' has a nested cluster picture (as defined in
Definition 2.1.15), and note that this condition implies A,-regularity. The

results are applied in Section 8.2.

7.2.1 Newton polytopes

Here we briefly collate the key definitions regarding Newton polytopes neces-

sary for this thesis. We begin with the definition of a Newton polytope.

Definition 7.2.1. Let G(z,y) = v* — f(z) =Y a;;z'y’ be the defining equa-
tion of a hyperelliptic curve C' over K. The Newton polytopes of C over K and
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Ok respectively are:

A(C) = convex hull {(4,7) | a;; # 0} C R?,
A,(C) = lower convex hull {(4, j, vk (a;;)) | aij # 0} C R* x R.

Above every point P € A(C) there is exactly one point (P,vk(P)) €
A, (C). This defines a piecewise affine function va(cy : A(C) — R. When there
is no risk of confusion, we may sometimes write A = A(C'), and A, = A,(C)
and the pair (A, va) determines A,. [Dok18, § 3]

Definition 7.2.2. Under the homeomorphic projection A, — A, the images
of the 1 and 2 dimensional open faces of A, are called v-edges, and v-faces
respectively. Note that a v-edge (often denoted L) is homeomorphic to an

open interval, and a v-face (often denoted F') is homeomorphic to an open disc

(see [Dok18, Definition 3.1]).
Notation 7.2.3. For a v-edge L and a v-face I’ we write
L(Z)=LNZ* F(Z)=FnNZ AZ)=(A°)NZ?*

and L(Z), F(Z), A(Z) to include points on the boundary. We use subscripts to
restrict to the set of points P with vg(P) in a given set, for instance F(Z)z =
{P € F(Z)|va(P) € Z}.

Definition 7.2.4. The denominator 9§, for every v-face or v-edge A is defined
to be the common denominator of va(P) for P € A\(Z). For two alternate, but

equivalent, definitions see [Dok18, Notation 3.2].

Remark 7.2.5. We shall see that the denominator of a v-face or v-edge A,
in some sense, tells us the multiplicity of the component or chain of the SNC
model arising from A. Roughly, for a v-face F', d is the multiplicity of the
component I'p, and for a v-edge L, ¢, is the minimum multiplicity appearing

in the chain of rational curves arising from L.

We distinguish between v-edges which lie on precisely one or two v-faces
of the Newton polytope, the former giving rise to tails and the latter to linking

chains.

Definition 7.2.6. A v-edge L is inner if it is on the boundary of two v-faces.

Otherwise, if L is only on the boundary of one v-face, L is outer.



7.2. Models of Curves via Newton polytopes 191

7.2.2 Calculating a Model

Before we begin, we give a few constants related to v-faces and v-edges which

will be necessary for our description.

Definition 7.2.7. Let L be a v-edge on the boundary of a v-face F. Write
L* = L{py = the unique affine function 7* — 7, with L*|; = 0, and L*|p > 0.

Definition 7.2.8. Let L be a v-edge. If L is inner it bounds two v-faces, say
Fy and F,. If L is outer it bounds one v-face, say F;. Choose Py, P, € Z* with

Lipy(Fo) =0, and L (Pr) = 1. The slopes sk sk] at L are

Sf = (5L(’01<P1) — Ul(P0)>, and 85 =

dp(va(Pr) — vo(Fy)) for L inner,
|st —1] for L outer,

where v; is the unique affine function Z? — Q that agrees with va on Fj.

Theorem 7.2.9. Suppose C' : y*> = f(z) is a nested hyperelliptic curve over K.
Then there exists a reqular model Ca /Ok of C /K with strict normal crossings.

Its special fibre is as follows:

(1) Every v-face F of A gives a complete smooth curve I'r/k of multiplicity
dr and genus |F(Z)yz].

(1) For every v-edge L with slopes [s{, s¥| pick &+ € Q such that

mo My my _ Mitl .
sh="2 s 5. > 25 A gL
dy  dy dy — dy

m;  Mi4q

= 1.

i dipa

(7.1)
Then L gives |L(Z)z| — 1 chains of rational curves of length X from T'p,
to I'g, (if L is outer these chains are tails of I'p ) with multiplicities
dpdy,...,0rdy. [Dok18, Theorem 3.15]

Remark 7.2.10. In Theorem 7.2.9 (i), A = 0 indicates that I'r, and I'p,
intersect |L(Z)z| — 1 times in the inner case, and that L contributes no tails

in the outer case.

Remark 7.2.11. An explicit equation for I'r is given in [Dokl18, Defini-
tion 3.7], where it is denoted by X . However this is more information than
necessary for our situation so we do not give this description here. A de-
scription of a similar object X, is also given in [Dok18, Definition 3.7], and
in Theorem 3.13 of [Dok18] the number of rational chains that a v-edge L
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gives rise to is described in terms of | X (k)|. However, it is straightforward to
show that in our case, | X (k)| = |L(Z)z| — 1, noting that in our situation k is

algebraically closed so k = k, so we omit this description also.

Remark 7.2.12. To see that the sequences in Theorem 7.2.9 exist, take all
numbers in [s%, s1] N Q of denominator < max{denom(s’), denom(s%)} in de-
creasing order. This is essentially a Farey series, so satisfies the determinant
condition in (7.1). One can then repeatedly remove, in any order, terms of the
form
a a+c c a C

ey el R AR ey TR

where (a+c) and (b+d) are coprime, until no longer possible. This corresponds
to blowing down P's of self intersection -1 (see Remark 3.16 in [Dok18]). The

resulting minimal sequence is unique (else this would contradict uniqueness of

minimal SNC model), and still satisfies the determinant condition. If (s, s¥)N
Z={N,...,N +a} # () this minimal sequence has the form

m m m m

sh="2s > PSS Ngpas s N> s s S L (7.9)
do dp dy drt1

with dp,...,d, strictly decreasing and di,...,d,,; strictly increasing. If

(sk,s¥)NZ = 0 this minimal sequence has the form

L mo my My Mx+1 L

ST =——> > — > > =S5, 7.3

b do d— diy drt1 2 (7:3)

with dy, ..., d; strictly decreasing, d;.1, ..., dy; strictly increasing, and d; > 1

for all 1 < i < X\. Notice that shifting either s& or sl by an integer does not

change the denominators d;, that appear in this sequence. If so > 0 (else shift

by an integer), the numbers N > ’g—ll > > Tg;—:ll are the approximants of the
Hirzebruch-Jung continued fraction expansion of s, similarly for ’;—g > >

‘7% > N + a consider the expansion of 1 — sk [Dok18, Remark 3.15]

7.2.3 Sloped Chains

The following definition allows us to talk about different parts of chains of

rational curves arising from v-edges in the Newton polytope of C.

Definition 7.2.13. Let ¢;,t, € Q and p € N. Pick m;, d; as in Theorem 7.2.9;
that is, such that

mo mq my mMy+1 m;  Myiaq
ity = =2 > = > > 2 s AT S
do dq dy drt1

= puty, and

% di+1
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with dy > --->djand d; < --- < dyyq, for some 0 <[ < A+ 1.

Let A ={i|1<i< Xandd; = 1}. If A is non-empty, let ay be
the minimal element of A and let a; be the maximal element of A. Suppose
C= Ulf\zl E; is a chain of rational curves where F; has multiplicity pud;. Then
C is a sloped chain of rational curves with parameters (t, t1, 1) and we split C

into three sections. If A # () we define the following:
(i) By U---U E4 -1, the downhill section,
(ii) EuyU---U E,,, the level section,
(iii) Eu 41U -+ U E), the uphill section.
If instead A = () we define:
(i) EyU---U Ey, the downhill section,
(i) Ejpq1U---U E)\, the uphill section,

and there is no level section.

We define the length of each section to be the number of E; contained in
it, and each section is allowed to have length 0. For instance, the level section
has length 0 if and only if A = (), and the downbhill section has length 0 if and
only if 1 € A.

Remark 7.2.14. A tail is a sloped chain with level section of length 1 and no
uphill section. Therefore any tail can be given by just two parameters, namely

t1 and p (since to = = |ut; — 1]). We will often refer to a tail as a tail with

1
“w
parameters (¢1, ). It follows from Remark 7.2.12 that a tail with parameters
(t1, 1) has the same multiplicities as the tail obtained by resolving a tame

cyclic quotient singularity with tame cyclic quotient invariants ** =1 — put;.

Remark 7.2.15. All of our chains of rational curves, be they tails, linking
chains or crossed tails, are sloped chains. For example, a linking chain in a
semistable model will consist of only a level section, since all components have
multiplicity 1. Both tails and crossed tails in a minimal SNC model will have

no uphill section.
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Chapter 8

Base Case and Linking Chains

8.1 Tame Potentially Good Reduction

In this section we calculate the minimal SNC model of a hyperelliptic curve
C'/K with genus g = g(C) > 1 which has tame potentially good reduction.
That is, there exists a field extension L/K of degree e such that e and p are
coprime, and C' has a smooth model over Op. In order to calculate this model,
we assume that L is the minimal such extension.

The minimal SNC model of a hyperelliptic curve has a rather straightfor-
ward description: it consists of a central component with some tails (in the
sense of Definition 7.1.6) whose multiplicities can be explicitly described using
the results of Section 7.1.2. Since C' has tame potentially good reduction, by
[DDMM18, Theorem 1.8(3)] we can assume (possibly after a M&bius trans-
form) that the cluster picture of C' over K consists of a single proper cluster
5. We will discuss this in more detail shortly, but first we note the following:
The size and depth of the unique proper cluster s, as well as the valuation of
the leading coeflicient ¢y will be sufficient to calculate the (dual graph with
multiplicity of the) minimal SNC model of C over K.

Theorem 8.1.1. Let C' be hyperelliptic curve over K with tame potentially
good reduction. Then the special fibre Z of the minimal SNC model Z  of
C/K consists of a component I =T's i, the central component, of multiplicity

e. Furthermore, if e > 1 the following tails intersect the central component I':

Name | Number Condition
T 1 s odd
T 2 s even and vk(cy) even
T 1 s even, e > 2 and vi(cy) odd
Ty | |5 ¢ = 2b,
g — 1 bs | |5], A\s € Z and e > 2
T 2 bs | |s| and \s € Z
T0,0) 1 b 1 |5|
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Remark 8.1.2. The genus of the central component can be calculated using

Riemann Hurwitz, and we prove an explicit formula for it in Proposition 8.1.24.

We now expand slightly on our assumption above that ¥,k has a unique
proper cluster. Since C' has tame potentially good reduction, by [DDMM18,
Theorem 1.8(3)] we know that X x has no proper clusters of size < 2g + 1.
We can assume that Yo,k consists of a single proper cluster s since, if ¢/
has clusters of size 2g + 1 and of size 2g + 2 then, by applying an appropriate
choice of Mobius transformation we can obtain a cluster picture with just one
proper cluster. After an appropriate shift of the affine line we can assume
further that s is centered around 0 and that C'is given by one of the following

two equations:

y? = cy H (x —u,m®), or y®=cpx H (z — u,m%),
0#reR 0#reR

if bs | |s| or bs 1 |s| respectively, where the u, € K are units.
We will proceed in the manner of Section 7.1.2. Let ¢ be the smooth
Weierstrass model of C' over L. This is in general obtained by a substitution

vy =7 %z, y, = 7y and will be given by the equation

yr =crr H (zr —u,), or y;=cprry H (xp — up),
0#£reR 0#reR

if b | |s| or b1 |s| respectively, and where ¢ = %

Let ¢ : & — % be the quotient map induced by the action of Gal(L/K).
We will explicitly describe the singular points of 2, show that they are tame
cyclic quotient singularities in the sense of Definition 7.1.9, and give their tame
cyclic quotient invariants in Proposition 8.1.11. Theorem 7.1.10 then tells us
the self intersection numbers of the rational curves in the tails obtained by
resolving the tame cyclic quotient singularities. After using intersection theory,
this allows us to describe the special fibre of the minimal SNC model 2~ of

C/K in full.

8.1.1 The Automorphism and its Orbits

To describe the singularities on 2, we must first explicitly describe the Galois
automorphism on the unique component I'y , = I' C %, of the special fibre of
the smooth Weierstrass model of C' over L. The following fact from [Lor90,
Fact IV p. 139] describes the singularities of % in terms of the quotient ¢ :
Y — Z.
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Proposition 8.1.3. Let 2y, ..., z; be the ramification points of the morphism

q:T — 2. Then {z,...,zq} is precisely the set of singular points of %.

Furthermore, the ramification points of ¢ correspond to points whose

preimage is an orbit of size strictly less than e.

Definition 8.1.4. Let X be an orbit of points of %;. If | X| < e, we say that

X is a small orbit.

So, describing the singular points of %} is equivalent to describing the
small orbits of Gal(L/K). In order to list these orbits, we simplify some

cluster invariants from 7.1.12 and 7.1.14.

Lemma 8.1.5. Let C/K be a hyperelliptic curve with tame potentially good

reduction and unique proper cluster s. Then:

ve _ Jslds + vie(cy)

2 2 y € = <_1)vk(cf)

Vs = |8|ds + vic(cr), A =

Y

and any o € Gal(K/K) induces on the special fibre

els

UlF : (xsays) — (X(U)edgme(U) ys)7

where x4, Ys are coordinates on the special fibre.

Proof. Definitions 7.1.12 and 7.1.14 and [DDMM18, Theorem 8.5]. O

Since x(0)®% and x(0)* are non-zero and k is algebraically closed, the
only points which can lie in orbits of size strictly less than e are points at
infinity, or points where x; = 0 or y; = 0. This gives four cases which we
will take care to distinguish between, as it will make it easier to describe the
minimal SNC model for a general cluster picture. With this in mind we make

the following definitions:

Definition 8.1.6. We split the small orbits that can occur into the following
types.

e 0o0-orbits: orbits on the point(s) at infinity of I',
e (ys; = 0)-orbits: orbits on images in I' of non-zero roots (i.e. the @),
e (z; = 0)-orbits: orbits on the points (0,%+/¢rz) € I,

e (0,0)-orbits: the orbit on the point (0,0) € T'.
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The following lemmas describe in which situations we see these small

orbits. We will assume e > 1 since no small orbits occur when e = 1.

Lemma 8.1.7. If deg(f) is odd then there is a single co-orbit consisting of a
single point. If deg(f) is even and vi(cs) € 2Z then there are two co-orbits
each of size 1. If deg(f) is even, vk(cs) & 27 and e > 2 then there is a single

oco-orbit of size 2.

Proof. Let us = 1/x5,vs = ys/z¢™! denote the coordinates at infinity of
I'. The curve I' has a single point at infinity (us,vs) = (0,0) if deg(f) is
odd, and two points at infinity (us,vs) = (0,£+/¢rr) if deg(f) is even. In
the latter case, Lemma 8.1.5 gives the action at infinity o : (0,+/¢r) —
(0, x(o)¢P==lgtDde) | /7). Therefore, when deg(f) is even, the points at infin-
ity are swapped if and only if x(0)* = —1 for some o € Gal(L/K). This is
the case if and only if vk (cs) is odd. In this case, the orbit at infinity has size

2 and is only a small orbit if e > 2. [

Lemma 8.1.8. If f(0) = 0 then there is a single (0,0)-orbit consisting of a
single point. Otherwise f(0) # 0, and if A\s € Z then there are two (zs = 0)-
orbits of size 1, else \s &€ 7 and, if e > 2 then, there is a single (xs = 0)-orbit

of size 2.

Proof. If f(0) = 0 then {(0,0)} € I is the unique (0, 0)-orbit. If f(0) # 0 then
(0,%£+/crr) € I', and these points are swapped by some element of the Galois
group (see Lemma 8.1.5) if and only if s ¢ Z. If A\; & Z then the orbit has

size 2 hence it is only a small orbit if e > 2. O]

Lemma 8.1.9. FEither e = by or e = 2b,, where b, is the denominator of d.
In particular e = 2bs if and only if bsvs & 27.

Proof. By Theorem 7.1.13, e is the minimal integer such that ed, € Z and
ev, € 27. Since ed; € Z, we can deduce that b; | e. Since 2bsvs € 27, e = by
or ¢ = 2b,. We can check that the other conditions of Theorem 7.1.13 are

satisfied over a field extension of degree e. O]

Lemma 8.1.10. If e > b, then there are % (ys = 0)-orbits if b | |s|, or ‘ﬁl;l
(ys = 0)-orbits if b 1 |s].

Proof. The non-zero points with y, = 0 are of the form (¢/,, 0) for ¢, a primitive
bt root of unity. The (y, = 0)-orbits have size b, so if e = b, then the (y; = 0)-

orbits are not small orbits. O
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These lemmas allow us to fully describe how many singularities %, has.
The following proposition tells us that they are tame cyclic quotient singular-
ities in the sense of Definition 7.1.9. Theorem 7.1.10 then allows us to resolve

these singularities.

Proposition 8.1.11. Let z € % be a singularity which is the image of a
Galois orbit Y C %.. Then z is a tame cyclic quotient singularity. In addition,

with motation as in Definition 7.1.9, ™ = £ where 1 <17 < e and r mod e is

given in the following table:

Orbit Type r mod e Condition
00 eXs —e(g(C) + 1)d, s odd
00 —ed,|Y | s even
Ys =0 eXs|Y None
s =0 eds|Y'| None
(0,0) el None

Proof. Recall that for z to be a tame cyclic quotient singularity, there must
exist m > 1 invertible in k, a unit r € (Z/mZ)* and integers m; > 0 and
my > 0 such that my = —rme mod m, and such that O, is equal to the
subalgebra of p,,-invariants in k[t1, to] /(¢]"'t5"* — 7k ) under the action ¢; +—
Cmt1, ta — () to. We will show that m = |7€| = |Stab(Y)|, m; = e, my =0 and
will explicitly calculate 7.

Let Y C %, be a small orbit and let @) € Y. Then O, is the subalgebra
of pu-invariants of Oy ¢ under the action of Stab(Y'), where m = |Stab(Y)].
This follows from the definition of 2 as the quotient of % under the action
of Gal(L/K), which for a generator o € Gal(L/K) sends
0 Ys — X(0)Ys.

o:mp+— x(o)rL, 0z X(U)Edﬁxﬁ,

To prove that z is a tame cyclic quotient singularity we must calculate Oy (.

First, suppose Y is a (ys = 0) or a (0,0)-orbit, and write @ = (zg,0).
Then Oy q is generated by 77, zs — xg and ys. However, since z, — rg = uy?
for a unit v € Oy g, O ¢ is generated by 7 and y,. Therefore, Oy o =
k[rrn,ys]/(m¢ — k), and O, is the subalgebra of y,,-invariants of this under
the action 77+ Cumr, Ys — (s where G, = x (o) generates Stab(Y) (as
Gal(L/K) is cyclic). Let r be such that 0 < r < m and r = e\|Y| mod m.
Then to prove z is a tame cyclic quotient singularity all that is left to show is
that r is a unit in (Z/mZ)* and that e = 0 mod m. The second is clear, and
for the first note that since (], also generates Stab(Y), it must be a primitive
h

m*™ root of unity hence r must be a unit.
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If Y is an (zs = 0)-orbit, then @) = (0,%,/¢rz). By a similar argument to

above, Oy o = k[, z5]/(7; —7k) and Oy, is the subalgebra of y,, invariants

e

gl and r is such that

under the action 7y — (7, s — (s, Where m =
0<r<mandr=eds|Y| mod m.
If Y is an oo orbit, then we can calculate m,r, m; and mqy explicitly by

going to the chart at infinity. m

Corollary 8.1.12. IfY is a (ys = 0)-orbit which gives rise to a tame cyclic
quotient singularity z € %, then the tame cyclic quotient invariants (m,r) of

z are such that % = 2.

Proof. The orbit Y is a (ys = 0)-orbit hence has size b;. Lemma 8.1.9 tells us
that, |Y| < e if and only if e = 2b,. In this case e\|Y| = 2b; - % - bs = biv,.
Since b; = § and by, is an odd integer, this gives eA;|Y| = § mod e, hence
m = 2. H

r

8.1.2 Tails

Resolving singularities as in Section 8.1.1 results in tails. These are chains of
rational curves intersecting the central component once and intersecting the
rest of the special fibre nowhere else. It is useful to distinguish between tails

based on the type of orbit they arise from.

Definition 8.1.13. Define the following tails based on the type of singularity
of Z;. they arise from:

e oo-tail: arising from the blow up of a singularity of Z; which arose from an

oo-orbit,

e (ys = 0)-tail: arising from the blow up of a singularity of 2% which arose

from an orbit of non-zero roots,

e (z; = 0)-tail: arising from the blow up of a singularity of 2 which arose

from an orbit on the points (0, £,/¢r.1),

e (0,0)-tail: arising from the blow up of a singularity of 2} which arose from
the point (0, 0).

Remark 8.1.14. The tails defined in Definition 8.1.13 are the only tails that
can possibly occur in 2. This is because any tail must arise from a singularity
of %, which lies on just one component, namely a singularity which arises from

one of the small orbits discussed in Section 8.1.1.
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Proof of Theorem 8.1.1. The central component I" is the image of the unique
component of %, under ¢. Since blowing up points on I' does not affect its
multiplicity, this has multiplicity e, by Proposition 7.1.8. The description of
the tails follows from Lemmas 8.1.7, 8.1.8, and 8.1.10, since the tails are in a
bijective correspondence with the orbits of points of %, of size strictly less than
e. We must check that I' really appears in the minimal SNC model. Suppose

I' is exceptional. Then ¢(I') = 0 and Riemann-Hurwitz says

Therefore there must be at least three ramification points, so I' intersects at
least three tails. O

Remark 8.1.15. The method for calculating the multiplicities of the rational
curves in these tails is described in Theorem 7.1.10 using the tame cyclic

quotient invariants given in Proposition 8.1.11.

Remark 8.1.16. The central component I' is the only component of 2}, which
may have non-zero genus. Its genus, g(I'), can be calculated via the Riemann-
Hurwitz formula. An even more explicit calculation of g(I') in terms of the

Newton polytope is given in Proposition 8.1.24.

8.1.3 Relation to Newton polytopes

Up to this point, this section has described the minimal SNC model of a hy-
perelliptic curve C'/ K with tame potentially good reduction using the methods
from Section 7.1.2. However, such a hyperelliptic curve has a nested cluster
picture so we can also calculate the minimal SNC model using Newton poly-
topes and the techniques described in Section 7.2. By the uniqueness of the
minimal SNC model, these two methods will give the same result: for the
reader’s sanity, in this section we will show that this is indeed the case. Recall
that without loss of generality we can assume that C'/ K with tame potentially

good reduction is given by one of the following two equations:

v’ =cy H — u, ), if b | |s],
0#reR
v’ = cpx H T — u,me), if b 1 |s.
0#reR

The Newton polytope of C' is shown in Figure 8.1a if b; | |s|, and in Figure
8.1b if bs 1 |s|. In each case there is exactly one v-face of A,(C'), which we
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shall label F'. Therefore, by Theorem 7.2.9, the minimal SNC model consists

of a central component I'y = ', and possibly tails arising from the three outer

v-edges of F.
0 0
(0,2) (0,2)
o Il, o h, o
Vs vk (cr) Vs — ds vi(cf)
(a) 0 & R. (b) If 0 € R.

Figure 8.1: A,(C) of a hyperelliptic curve C' with tame potential good reduction.

Lemma 8.1.17. The multiplicity of I's = I'r is dp; that is 0p = e.

Proof. We will first show that e | dp, and then that dr | e. Note that,
in both Newton polytopes in Figure 8.1, the valuation map is given by the
affine function va(x,y) = vs — dsz — 2. Since e is such that ed, € Z and
evs € 27, we have eva(x,y) = evs — edsw — ey € Z. As p is the common
denominator of all va(z,y) for x,y € A, this gives that 0z | e. Note that
O (va(n —1,0) —va(n,0)) = dpds € Z, and dp (va(1,0) —va(l,1)) = dp% €
Z. By minimality of e, this implies e | dp. O

Lemma 8.1.18. The oo-tails arise from the outer v-edge of A,(C) between
(0,2) and (|s],0).

Proof. We will first check that this v-edge gives the correct number of co-tails,
and then calculate the slope to check that the multiplicities of the components
are the same.

Let us call this v-edge L. By Theorem 7.2.9 then L contributes |L(Z)z| —1
tails to the SNC model. Since the points (0,2), (]s|,0) € L(Z)z, it contributes
two tails if and only if P = (';—‘, 1) € L(Z)y. If 5 is odd then P ¢ LNZ2, hence
L contributes one tail. If s is even then va(P) = @, hence P € L(Z)z if and
only if vi (cf) € 2Z. Therefore L contributes one tail if s is even and v (cy) is
odd, and two tails if s and vk (cs) are even. This agrees with Theorem 8.1.1.

A quick calculation tells us that 0, = 2 if and only if s is even and
vi(cr) ¢ 2Z, and that 0, = 1 otherwise. Therefore, §;, = |Y|, where Y
is the orbit at infinity. The unique surjective affine function which is zero
on L and non-negative on F'is Li.(x,y) = 2|s| — 2z — |s|y if s is odd, and
Ly (z,y) = |s] — x — |s|y if s is even. Therefore, s¥' = (g + 1)ds — A5 if & is

odd, and s¥ = —d,|Y| if s is even. Since the multiplicities of the components
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of a tail are the Hirzebruch-Jung approximants of the slopes, we are done after
comparing the slopes to the table in Proposition 8.1.3.
If e = 2 (when s is even and vk(cy) is odd) has s; € Z, so the associated

tail is empty, which agrees with the table in Theorem 8.1.1. O

Lemma 8.1.19. In both cases, when 0 € R and when 0 ¢ R, the (y, = 0)-tails
arise from the outer v-edge of A,(C) on the x-axis. Also, if bs | |s| then the
(x5 = 0)-tails arise from the v-edge between (0,0) and (0,2). Else the (0,0)-tail
arises from the v-edge between (1,0) and (0,2).

Proof. This follows after a similar calculation to Lemma 8.1.18. Denote this
v-edge by L. We will check that |L(Z)z| = ||8sing|/bs] and that sF = —\.b,.
Then, by comparing to the tables in Proposition 8.1.3 and Theorem 8.1.1, we
will done.

First let us calculate |L(Z)z|. The valuation on the z-axis is given by
va(z,0) = vs — dsx. Since v; € Z, we have that va(x,0) € Z if and only if
bs | z. From this we see that |L(Z)z| = ||Ssing|/bs |-

Now, 0, = bs, the size of any (ys = 0)-orbit, and the unique surjective
affine function which is zero on L and non-negative on F' is L’(F)(x,y) = .
Therefore,

st =67 (va(1,0) —va(0,0)) = —beAs.

Observe that this gives rise to a non-empty tail if and only if s¥ ¢ Z, which

occurs if and only if e = 2b;. O

8.1.4 Curves Associated to Principal Clusters

To conclude this section, we drop the requirement for C'/ K to have tame poten-
tially good reduction. We will describe a hyperelliptic curve with potentially
good reduction which we associate to a principal cluster s € X¢ with gg(s) > 0.
This new curve, which we will denote by Cj, will be invaluable in describing
the components of the minimal SNC model of C'/K which are associated to
s € Y¢. For s € ¥/ with ge(s) > 0, the cluster picture 3z of C;/K will be
such that the singletons in >; correspond to odd children of s and the even
children of s are in effect discarded. The leading coefficient of C;/K is chosen
so that everything behaves well, and allows us to make the comparisons we
wish between the minimal SNC model of C'/K and the minimal SNC model
of C5/K. This can be formally described as follows:

Definition 8.1.20. Let C'/K be a hyperelliptic curve, not necessarily with
tame potentially good reduction. Let s € Y¢/x be a principal cluster with
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gss(s) > 0 such that s is fixed by Gg. Suppose furthermore that o(zy) = 2o
for any 0 € Gg, §' € ¥¢/k. We define another hyperelliptic curve Cs/K by

Cs 9y = cy, H(m — %,), where ¢y, = ¢ I_I(z5 —r).
0E€S rés
Write 35/ x = 35 = X(C3/K) for the cluster picture of C5/K, and 25 for the
minimal SNC model of C;/K. The special fibre of the minimal SNC model of
(s is denoted Z;j, and the central component is denoted I's. We also write
R: for the set of all roots of ¢y, []
and \; = Ag,.

oci(T — 2,), and define d; = dg,, v; = vg,,

Remark 8.1.21. Let % be the minimal semistable model of C over Oy, for
some L/K such that C/L is semistable. Let s be a principal cluster with
gss(s) > 0. If we reduce C; mod m, we obtain I's 1, the component of %
corresponding to s (see [DDMM18, Theorem 8.5] for the equation of I's ). In
addition, cy, has been carefully chosen so that d; = ds, vs = v5 and A\; = As.
In particular, the automorphisms induced by Galois on I'y ;, and I'; ;, are the

same.

Definition 8.1.22. For a principal, Galois-invariant cluster s, define e; to
be the minimum integer such that e;d; € Z and e;v, € 27Z. Furthermore, if
gss(5) > 0 define g(s) to be the genus of I's and if g(s) = 0 define g(s) = 0.
We call g(s) the genus of s.

Remark 8.1.23. By the Semistability Criterion [DDMM18, Theorem 1.8], if
s is not iibereven then e; is the minimum integer such that C; has semistable
reduction over a field extension L/K of degree e;. In particular, the central
component ['; of 23, has multiplicity e, and genus g(s). If e, = 1 then

gss(5) = g(s), but the converse is not necessarily true.

Proposition 8.1.24. If g.(s) > 0, the genus g(s) is given by

93] | X € Z,
g(s) = g%_fs) +31 X €Z,bs even,
0 A\ & 7, b, odd.

Proof. By Theorem 7.2.9, we know ¢(s) is given by |F'(Z)z|. This is the number
of interior points with integer valuation of the unique face F' of the Newton

polytope of C;. By examining Figure 8.1, we see that all interior points are
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of the form (z,1) with 1 < 2 < g«(s). For such points, va(z,1) = A\s — dsz.
Therefore,

When \; € Z this is therefore equal to

{o:1< 2 < guls)ibe |2} = Vs;f)J .

When \; € Z, this is equal to

1
Hx:l <z < gs(s),2ds € §Z\Z}'

When A\; € Z and b, is odd this set is always empty, and when \; & Z and b,

is even it has size LQQZ—EE) + %J . O

Lemma 8.1.25. Let C be a hyperelliptic curve and let 5 € Yo/ be a principal
cluster which is fixed by Galois. Let L be an extension such that C' is semistable

over L, and let o generate Gal(L/K). Then o|r,, : I'sp — I's 1 has degree es.

esds

Proof. The map olr, , is given by (5, ys) — (x(0)%% x4, x(0)*ys). The result

follows as e, by definition, is the minimal integer such that esds, esA\s € Z. [

8.2 Calculating Linking Chains
The minimal SNC model of a general hyperelliptic curve C'/K can roughly

be described as follows. Each principal cluster of ¥ has one or two central
components, and some tails associated to it. These central components are
linked by chains of rational curves. Section 8.1 will allow us to describe these
central components and tails, while this section will be used to describe these
linking chains. This includes describing any loops. We will also see the simplest
example of the general philosophy that the components of the special fibre of
the minimal SNC model of C'/ K associated to a principal cluster s “look like”
the special fibre of the minimal SNC model of C;/K.

Throughout the rest of this section we will take C'/ K to be a hyperelliptic
curve such that X/ g consists of exactly two proper clusters: a proper cluster

s and a unique proper child s’ < s. This is pictured in Figure 8.2. Note that

Figure 8.2: Cluster picture with parent s and one unique proper child s with no
proper children of its own.
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dy > ds and |s| > |s|. If C is such that s is even and |s| = |§'| + 1 then C'/K
has potentially good reduction, this case is covered in Section 8.1. To avoid
this case we will assume that if s is even then |s| > |s'| + 2. Since hyperelliptic
curves of this type are nested we can directly apply the methods from [Dok18].
Before we apply Theorem 7.2.9, we need to understand the Newton polytope
of C/K.

8.2.1 The Newton polytope
Without loss of generality, we can assume that the defining equation of C'//K

will be either
dy
y? =cs H (z — u,m3) H (1’ — U > : (8.1)
reR\s’ res’
or

v =cpr [ (—wnf) TT (v —ure). (82)

reR\s’ 0#res’

where the w, are units. If C' has defining equation (8.1), then vy = vi(cy) +
(Is| — |s'|)ds + |8'|ds, and the Newton polytope A,(C) of C' will be as shown
in Figure 8.3a. If instead C' has defining equation (8.2), the Newton polytope

will be as shown in Figure 8.3b.

(|s],0)

(1,0)
Vgt Vgt — ‘5/|d5/ UK(Cf) Vgt — dg Vg — ‘5/|ds’ UK(Cf)

(a) if C has defining equation (8.1) (b) if C has defining equation (8.2)

Figure 8.3: Newton polytope A,(C) of C.

Lemma 8.2.1. Let C' have Newton polytope as in Figure 8.3a. Then there is
an isomorphism ¢ : Fy — Ay (C5), from the closure of the v-face marked F
to the Newton polytope of Cs (whose only v-face we label F5), shown in Figure
8.4. In particular v preserves valuations and 6p, = 0p,. In this sense we say
that Fy corresponds to the cluster s. Similarly the v-face Fy in Figure 8.3a

corresponds to s'.

Proof of Lemma 8.2.1. Let us compare the v-face F; in Figure 8.3a to the
Newton polytope, A,(Cs), of Cs. This is given in Figure 8.4a if §' is even, and
given in Figure 8.4b if & is odd.
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Vgt — ‘5/‘d5’ UK(cf)

(a) if s’ is even (b) if s" is odd

Figure 8.4: Newton polytope A,(Cs), where C is given by (8.1) or (8.2).

If s’ is even we can define

_ ’5’
@D : Fl —>AU(O§) : (‘Tay) = (w_T( _y)7y .
It is easy to show that this is an isomorphism, and that the valuations are

preserved. Similarly if " is odd we can define

6B 8 s ) o (2= B =),y
which is also an isomorphism that preserves the valuations. In particular, in
both cases we have 0, = 0p,, and if v; is the unique affine function agreeing
with va(c) on F, then vi(x,y) = va, (¥ (z,y)), where va, = vacy).-
Similarly, we can see that the v-face F, in Figure 8.3a corresponds to s’
by considering the Newton polytope A,(C;) of Cy. This is shown in Figure

5
8.5.

(0,0) ® ® (|5'],0)

vy = vic(cr) + (s — |s'])ds + || ds ver — |8'|dy

Figure 8.5: Newton polytope A,(Cy) of Cy, where C is given by (8.1).

We see that the map
By = A(Cy) : (2,) = (z,y)

is an isomorphism that preserves the valuations, that is va(z,y) = va(c,) (2, ),
and 0g, = 0p., where v, is the unique affine function agreeing with va(c) on
F. ]

We can make a similar comparison of the v-faces of the Newton polytope
in Figure 8.3b.
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Lemma 8.2.2. Let C' have Newton polytope as in Figure 8.3b. Then the v-
face marked Fy in Figure 8.3b corresponds to the cluster s. That is there is
a valuation preserving isomorphism between Fy and A,(C;), and dp, = Op.,
where Fs is the unique v-face of A,(Cs). Similarly the v-face marked Fy on
the Newton polytope in Figure 8.3b corresponds to the cluster s'.

Proof. Again, we can see that the v-face marked F; on the Newton polytope
in Figure 8.3b corresponds to the cluster s by looking at the Newton polytope
of (5. This is shown in Figure 8.4a if s’ is even, and in Figure 8.4b if ¢ is
odd. Take v to be exactly as in the proof of Lemma 8.2.1 in both the s’ even
and s’ odd cases. This gives us an isomorphism between F; and A, (C) which
preserves the valuations. We can also see that dp, = dp..

Similarly we can see that the v-face marked F3; on the Newton polytope
in Figure 8.3b corresponds to the cluster s’ by looking at the Newton polytope
of C;. This is shown in Figure 8.6.

0

(0,2)
(1,0) @ ® (|s'|,0)
ve — dy = vic(cr) + (I8 = [s])ds + (|s'| = 1)d vy — |8'|dy

Figure 8.6: Newton polytope A,(Cy) of Cy, where C is given by (8.2).

The affine map F» — A,(C5) : (2,y) — (2,y) is an isomorphism which

preserves the valuations, and we can see that 0p, = dp-. O

8.2.2 Structure of the SNC Model

The following theorem describes the structure of the special fibre of the mini-
mal SNC model for hyperelliptic curves whose cluster picture looks like Figure
8.2.

Theorem 8.2.3. Let C/K be a hyperelliptic curve with cluster picture as in
Figure 8.2. If s is principal, then the special fibre of the minimal SNC model
has a component s ;¢ arising from s with multiplicity es and genus g(s). If s’
is principal then there is a component 'y i arising from s of multiplicity ey
and genus g(s'). These are linked by sloped chain(s) of rational curves with

parameters (t; — 0,t1, p), which are described in the following table:
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Name | From | To | t; ) 1 Conditions
Lq o Iy Lo | =Xs | 0s/2 | 1 s principal, §' odd, principal
:5, I, |y | —d, Oy 1| s and s’ principal, §' even, e = 1
Ly I, | Iy | —ds Oyt 1| s and s’ principal, s' even, e; = 1
L,y Iy, |y | —ds Oy 2 | s and s’ principal, s even, ey = —1
Ly I, Iy | —ds | 20 1 s principal, §' twin, ey = 1
Ty I, - | —ds | 0e + 3] 2 s principal, §' twin, g = —1
Ly Iy | Ty | —dy| 20y |1 s cotwin, vg(cs) € 27
Ty Iy - | —ds | de + 3] 2 s cotwin, vk (cy) & 27

The chains where the “To” column has been left empty are crossed tails with
crosses of multiplicity 1. If s is principal and e; > 1 then 'y has the following

tails with parameters (t1, p):

Name | Number t 1 Condition

T 1 (g(s)+1)ds — X | 1 s odd

T 2 —d, 1 s even and €; = 1

Too 1 —d, 2 | 5 even, ¢, = —1 and e; > 2
Tyo=0 | |Ssing|/bs s bs es = 2b,

If §' is principal and ey > 1 then I'y has the following tails with parameters
(tla N) :

Name |  Number t 14 Condition

Ty—o | LIsgingl/bs] | =As | by ey = 2by

T..—o 1 —dy | 2 | by | |5], \s € Z and ey > 2
T 2 —dy | 1 by | |5'], N\ € Z
T0,0) 1 A | 1 by 1 |§']

Remark 8.2.4. For this particular type of hyperelliptic curve, s will be prin-
cipal unless it is a cotwin (i.e. if |s'| = 2¢(C')), and s" will be principal unless
it is a twin. Since we have assumed that g > 2, these cases cannot coincide.

Note that neither s nor s’ can be iibereven in this case.

Remark 8.2.5. Suppose s is principal. In 2} we can see most of the compo-
nents of 25;. The central component I'; will have the same multiplicity and
genus as [z, and will have almost the same tails. The only difference being
that one or two of the tails (the (0, 0)-tail in the case §' is odd and the (z5 = 0)-
tail(s) otherwise) will instead form either part of a linking chain between T’
and I'y (in the case §' principal); or a loop or a crossed tail associated to s’

(in the case where s’ is a twin). We will say that the downhill section of the
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linking chain corresponds to this tail. If the linking chain, loop or crossed tail
in 2} has a non-trivial level section, then all the components of the tails in
A, appear in the linking chain(s) in 2. If the level section has length zero
then some of the lower multiplicity components do not appear - we expand on
this in Section 8.2.3.

Similarly, if s’ is principal, we see most of the components of gy n 2.
In this case, I'y has the same tails as I'; except that the infinity tail(s) of the
latter are absorbed into the linking chain(s) Lsy (or the loop or crossed tail
arising from s if it is a cotwin). In this case, we say that the uphill section
of the linking chain corresponds to the infinity tail in %k We shall see that

this is a phenomenon which generalises to the main theorems in Section 9.

Remark 8.2.6. The length of the level section of a linking chain, loop or
crossed tail C C 2% (that is, the number of P's with multiplicity ) is equal
to [(u(ty — &), uty) NZ|. Let # be the minimal regular model of C' over L,
q: % — Z be the quotient by Gal(L/K) and ¢ : 2~ — Z the resolution of
singularities. Then any irreducible component F in the level section of C is not
an exceptional divisor - that is to say, it is the image of y components of %
which are permuted by Gal(L/K). This can be seen by looking at the explicit
automorphisms on the components of % given in [DDMM18, Theorem 6.2].

Example 8.2.7. Consider the hyperelliptic curve C : y* = (2? — p)(a® — p°)

over K = Q), for p > 5. The special fibre of the minimal SNC model of C//K
can be seen in Figure 8.7. The central components I'y and 'y are labeled and

shown in bold.

s 12| 4 .
@oe9:00 H 1
3 1 |
2 1\1\ 3
(a) X¢

(b) Special fibre

Figure 8.7: Cluster picture and special fibre of the minimal SNC model of C.

If we consider the curves C; and C; and the special fibres of their minimal

SNC models we find that they are as pictured in Figure 8.8 below. We can see

12]1] 4 11]1] 3
I I I

(a) where Cs : y? = x(2? — p). (b) where C : y* = p(z® — p°).

Figure 8.8: The special fibres of the minimal SNC models of C; and C;

that all the components in both Figures 8.8a and 8.8b also appear in the special
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fibre of the minimal SNC model of C'. They are glued together along one of
their multiplicity one components which forms the linking chain in Figure 8.7.
This provides a visualisation of what we mean when we say the tails of I’y
and that
some of these tails form part of the linking chains of the special fibre of the
minimal SNC model of C.

correspond to those of I's, the tails of I'y correspond to those of I';,

Before proving Theorem 8.2.3, we will first prove the following lemmas.

Lemma 8.2.8. If s is principal then the special fibre has an irreducible com-
ponent U's = T'r, of multiplicity es and genus g(s). If §' is principal then there

is a component I's, = ', of multiplicity ey and genus g(s').
Proof. Follows from Lemmas 8.2.1 and 8.2.2. O

Remark 8.2.9. Lemma 8.2.8 further proves that dp = e; and dp, = ey since,

by Theorem 7.2.9, I', has multiplicity dp,.

Lemma 8.2.10. If s is principal and e; > 1, the following tails of I's arise
from outer v-edges of the v-face Fy in Figure 8.3, with conditions as in Theorem
8.2.3:

(1) oo-tail(s) arising from the v-edge connecting (0,2) and (|s|,0),
(i1) (ys = 0)-tail(s) arising from the v-edge connecting (|§'|,0) and (|s|,0).

Proof. This is a consequence of our discussion above, relating F to the Newton
polytope of (5. The conditions in Theorem 8.2.3 for the tails to occur follow

since €, = (—1)vx (), O

Lemma 8.2.11. If s is principal and ey > 1, the following tails of Ty arise
from outer v-edges of the v-face Fy in Figure 8.3, with conditions as in Theorem
8.2.3:

(1) if by | |8'], (zs = 0)-tail(s) arise from the v-edge connecting (0,0) and
(0,2),

(i1) if by 1 ||, a (0,0)-tail arises from the v-edge connecting (1,0) and (0,2),

(iii) in both cases, (ys = 0)-tail(s) arise from the v-edge intersecting the x-

axis.

Proof. This is a consequence of our discussion above, relating F» to the Newton
polytope of Cz. The conditions in Theorem 8.2.3 for these tails to occur follow

. et
since ey = (—1)%~1'lds, O
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In order to find the lengths of the level sections of the linking chains, we
must calculate the slopes of the unique inner v-edge L, adjacent to both v-faces
Fy and F5 in Figure 8.3.

Lemma 8.2.12. If s is odd st = —)\;, and sk = —\; — % Else st =—6.d,,

2
and st = —6pdy.

Proof. Suppose s’ is odd. Then the only points in L(Z) are the endpoints (0, 2)
and (|s'|,0), so 6, = 1. The unique function L}, : Z* — Z such that L}, 0

and L,

P

P 0 is given by

Ly (2,y) = 22+ |3'ly — 2Is'].

To calculate s{ and s we need Py and Py such that L}, (Py) = 0 and L}, (P;) =
1. We will take Py = (|s’[,0) and P, = <‘5/|T+1, 1). The unique affine function

which agrees with va on F} is defined by vi(z,y) = vs — dsx — %y. Therefore,

sy = 0,(v1(P1) — ni(Ry)),

sl+1
:Vﬁ_d5| |2 —§—V5+d5|5,|7
-1
_ (gl |
2 2
= -\
The calculations for sf and s’ even are similar. ]

Proof of Theorem 8.2.3. Recall that e, is the minimum integer such that e,d; €
Z,and e;v; € 27. If e; = 1 then ds, A\s € Z, hence the slopes of the outer v-edges
of F} are integers and I'y has no tails. If e; > 1 then Lemma 8.2.10 describes
the tails of I'y. Similarly if e, = 1 then I'y has no tails and if e, > 1 then
Lemma 8.2.11 describes the tails of I'y;. The statement on the parameters of
the tails and the linking chain follows from Remark 7.2.12 and the calculation
of the slopes in Lemma 8.2.12. The multiplicity of the level section is §;, where
L is the inner v-edge between F; and F5.

The two cases left to worry about are when s is a twin or when s is a
cotwin. We will only argue the case where s’ is a twin, as the case where s is a
cotwin is proved similarly. Recall from Remark 7.1.15 that ey = (—1)%~l¥'lds,
So, €4 = 1 if and only if va((|s'],0)) = ve — |§'|ds € 27Z.

Suppose that e = 1. Since va(0,2) = 0 € 27Z and |§'| = 2 we have that
(=1,1) = (1,1) € 2%, and wa(1,1) € Z. So, |L(Z)z| = 3 and by Theorem 7.2.9
there are two linking chains from I'y to the component I'p, arising from the
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v-face Fy of A,(C) in Figure 8.3. The component ', is exceptional by [Dok18,
Proposition 5.2] and the linking chains between I's and I'p, are minimal. After
blowing down I'p,, this results in a loop from I's to itself.

Suppose instead that, ¢, = —1. Then there is a single chain of rational
curves from I'y to I'g,, and I'p, has two other rational curves intersecting it
transversely (which arise from the v-edge connecting (0,0) and (0, 2)). There-
fore, ', is not exceptional and must appear in the minimal SNC model. This
means, if we consider I'p, as a component of the level section, that this chain

of rational curves is a crossed tail. O

8.2.3 Small Distances

Let s; and s, be the principal clusters such that there is a linking chain C C
Zy from I's, to I's,. If C has level section of length greater than 0, it is
straightforward to compare the multiplicities of C to those of the corresponding
tails (see Remark 8.2.5). All of the multiplicities of the corresponding tails
appear in the uphill and downhill sections of C. However, if the level section
is empty and the downhill section of C corresponds to a tail, say 77, then not
all of the multiplicities of 7y C Z§ , appear in the downhill section of C. The
situation is similar if the uphill section corresponds to a tail, say 7, C 24 4.
We shall show that in this case, 7; and 73 “meet” at a component of second
least common multiplicity. In other words, if we consider a chain of rational
curves C’ such that C’' has level section of length 1, and whose downhill and
uphill sections correspond to 7; and 7 respectively, then we “cut out” a section
of C' to obtain C.

Example 8.2.13. Consider the hyperelliptic curves given by 3? = (2% —p)(2°—
p2+10n)

Figure 8.9. The level section of the linking chain between 'z and I'y has length

over K = Q)" for p > 7 and n € Z>o, with cluster pictures shown in

R

(000002+10n0000]
5

N

Figure 8.9: Cluster picture X¢ of C : y? = (z* — p) (25 — p?+10n).
n. Figure 8.10 shows the special fibres of the minimal SNC models for both
when n = 1, and the small distance case (when n = 0). Here we can see
that when n = 1 the uphill and downhill sections of the linking chain have a
common multiplicity greater than 1, namely 3, and that to obtain the n = 0
case we remove the dashed section of the linking chain and glue back along

the multiplicity 3 components.
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‘23 MQ I I 10!5!2
| 3
Nt I —
LRSI anE
(b) n =0 case.

(a) n=1 case.

Figure 8.10: Example of “cutting out” a section of linking chain to obtain the
small distance case.

Let us solidify this with a precise statement.

Theorem 8.2.14. Let C = Ug\zl E; be a sloped chain of rational curves with
parameters (ta,ty, i), as in Definition 7.2.13. Suppose that C has level section
length O and [uto, uty] C (0,1). Suppose E; has multiplicity p;; the downhill
section comprises E; for 1 < 1@ < [, for some |l € Z with 1 < [ < X; and
all remaining components form the uphill section. Write py = denom(ut;)
and piy+1 = denom(uty). Let T; = U;\i1 Fi(j) for j = 1,2 be tails (with T;
possibly empty, in which case \j = 0), where Ty has parameters (t1, 1) and Ts
has parameters <;% — to, ). Let Fi(j) have multiplicity uz(»j) (and write uéj) =
denom(ut;)), and let [; < max(1, ;) be mazimal such that ul(ll) = Nz(f)- Then

L=1 =X—1, ui:ul(-l) for0<i<ly andu/\ﬂ_i:ugg) for 0 <@ <ls.

Remark 8.2.15. Let C be as in Theorem 8.2.14. Since the level section of C
is empty, it must be the case that (uts, ut1) NZ = 0. Therefore, after shifting
pte and pt; by an integer if necessary, we may insist that [uto, ut;] C [0, 1].
If uty € Z (hence T3 is empty) then it is immediate from Remark 7.2.12 that
A=A —1and y; = ,uZ(l) for 1 < ¢ < A, since the multiplicities come from
the same sequence of fractions. A similar conclusion applies if ut; € Z. So
we are able to assume without loss of generality that uto, ut; € Z, hence our

assumption in Theorem 8.2.14 that [uts, uti] C (0, 1).

Roughly, Theorem 8.2.14, states that when there is no level section, rather
than seeing all of the multiplicities of the tails which the uphill and downhill
sections correspond to, the two tails “meet” at the component of minimal
shared multiplicity greater than u. Before we prove this theorem, let us prove

a couple of lemmas.

Lemma 8.2.16. Let q1,q2 € Q with [q1,q2] NZ = 0. Then there is a unique
fraction with minimal denominator in the set [q1,q] N Q, when written with

coprime numerator and denominator.
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Proof. Suppose not, and suppose 71,72 € [q1, g2]NQ with r; < ry can be written

m;
d

set [q1, ¢2)NQ. We will show that there exists a rational number r lying between

r; = ™ with m;, d coprime and d the minimal denominator of elements in the

ry and ro of denominator < d.
Write r; = Tzz&d__lﬁ), and consider the set S = [my(d — 1), ma(d — 1)] N Z.
Since my > my and my,my € Z, |S| > d and there must exist a multiple of

d in S. That is, there exists m € Z such that md € S. Since m; and d are

coprime, we have m; < md < msy. Therefore,

ml(d—1)< md <m2(d—1):>T< m_o_
dd—1) ~dd—1) ~ d(d—1) hd—1

which contradicts the minimality of d. O]

Lemma 8.2.17. With notation as in Theorem 8.2.14, there exists some [; <
Aj, for 3 =1,2, such that ,ul(ll) = ul(j).

Proof. Write s; = ut;. Recall that we assumed that, [sq, s1] C (0, 1), so [s2,s1]N
7Z = 0. Let 2 be the unique fraction of minimal denominator in [ss, 51], which
exists by Lemma 8.2.16. Then if

mo my mx Mi+1
S1=fit = — > — > ... > 2 > AF
dO dl d}\ d)\+1

= pty = S,

is the reduced sequence giving rise to the linking chain C, as in Remark 7.2.12,
where (m;,d;) =1,dy > --->d;and d; < -+ < dyyq for some 1 <1 <\ we
must have that d; = d.

Consider the following two reduced sequences:

(1) (1) (1) (1)

My my my M4l
pho=ay >y T oy T
0 1 A1 A1+1
UG m® @
dO dl d)\g d>\2+1

These give rise to the multiplicities ul(-j) =u- dgj) for 1 <i<)\;,j=1,20f
the tails 7;. We will show that there exist 0 <[y <A +1and 0 <ly < Ay +1
with d\”) = d = d”.

We will first prove that dl(ll) = d for some l; € Z. Since [sq,s1] C (0,1), we
have that sy > |s1] = 0. So, some fraction of denominator d, say %, appears
in the full sequence of fractions in [|s1], s1] N Q of denominator less than or

equal to max{dy, dyy1}. To obtain a reduced sequence, we remove all terms of
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the form
>a>a+c>c> — >a>c>
b b+d d b~ d~
as in Remark 7.2.12. We can only remove “7 if there exists some ¢ € Q with

denom(q) < d and s; > g > . No such ¢ can exists since d is the minimal

denominator of any element of [sy, 1] NQ. Therefore, " cannot be removed in

the reduction process and so must appear in the reduced sequence. Therefore
there exists 0 < [; < A + 1 such that dgll) = d. Proving that there exits
0 <ly < Ay 4+ 1 such that dl(ll) =d= dl(j) is done similarly. O

We can now prove Theorem 8.2.14.

Proof of Theorem 8.2.14. The fractions ’ZZ—OO, 7;—11, cee %l in the reduced sequence

depend only on the elements of [s, Tg—l’] of denominator less than or equal

(1) (1)

to max(dy, dy,1), as do the fractions %, o % = 7%t This proves that
1

d,gl) = d; hence u; = ugl) for 0 < ¢ < [ly. Similarly d§2) = dx;1-; hence
fra1—i = u?) for 0 <14 <l,. It remains to show maximality of /; and 5.

2 1

In addition to this, dg) = dg) < d (recall % is the unique fraction with

Suppose there is some rq, 79 such that \; > r; > [; and ,u%

)
least denominator in [sy,s1] N Q). Therefore ¢ = 1 — 2 € (s1,1] and
ds)
(1)
G = % € [0,s2). Let ¢ be the unique rational with least denominator
T1

)

d in [q1, ). By uniqueness, d’ < dﬁ < d. Therefore, ¢' € (s1,q2) or (qi, S2).

Suppose for now that ¢’ € (s1,¢2), and consider again the reduced sequence

2) (2) (2) (2)

m m
1—Ht2:%>%>-“>%> ()\2§+1:_1
do dl d)\2 d/\2+1

However 1 — ¢, cannot appear in this reduced sequence since a fraction with
smaller denominator, 1 — ¢/, appears to the left of it in the non-reduced se-
quence. So, at some step in the reduction process 1 — ¢ would have been
removed. Therefore, ¢ & (s1,¢2). Similarly, one can show that ¢ & (qi, s2).

This is a contradiction. So no such r; and ry exist. O
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Chapter 9

Hyperelliptic Curves with Tame

Reduction

The previous chapter looked at the minimal SNC models of specific cases
of hyperelliptic curves. In this chapter, we state our main theorems in full
generality. Theorem 9.2.3 gives the structure of the special fibre of the minimal
SNC model, and Theorems 9.3.1 and 9.3.2 give more explicit descriptions of

multiplicities and genera of components appearing in the special fibre.

9.1 Orbits of Clusters

First we need to extend some definitions. The definitions in Section 2.1 come
from [DDMM18], where everything is semistable, so do not deal with orbits
of clusters. Here we make some new definitions which extend the preexisting
ones to orbits. First let us recall Definitions 5.1.3 and 5.1.4.

Definition 9.1.1 (Definition 5.1.3). Let X be a Galois orbit of clusters. Then
X is dbereven if for all s € X, s is iibereven. Define an orbit X to be odd,
even, and principal similarly.

Definition 9.1.2 (Definition 5.1.4). An orbit X’ is a child of X, written
X' < X if for every s € X’ there exists some s € X such that s’ < s. Define
0x' = 0y for some s’ € X'.

Definition 9.1.3. Let X be an orbit of clusters. Define Kx/K to be the field
extension of K of degree |X|. By Lemma 2.1.16, Kx /K is the minimal field
extension over which for any s € X, o € Gal(K/Kx) we have o(s) = 5.

Definition 9.1.4. For X be Galois orbit of clusters, with some s € X, define

dx ax _ ds, Vx =VUs, Ax =N, gss(X) =0ss(s), and exy =¢

_0x _ x|
bx ’

There are well defined, i.e they do not depend on the choice of s € X.
Definition 9.1.5. Let X be a principal orbit of clusters with g« (X) > 0 and

fix some s € X. Define C's to be the curve (5 over Kx. Denote the minimal
SNC model of C/Kx by Z%/Ok,, and the central component by I' ¢ /k.
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Remark 9.1.6. The curve C's depends on a choice of s € X, but the com-
binatorial description of the special fibre of the minimal SNC model will not.

Since this is what we need C; for, we do not need to worry about this.

Definition 9.1.7. Let X be a principal orbit of clusters. Define ex € Z~g to
be minimal such that ex|X|ds € Z and ex|X|v; € 2Z for all s € X. Define
g(X) = g(s) for s € X over Kx, where ¢(s) is as defined in Definition 8.1.22.

Remark 9.1.8. Analogously to Lemma 8.1.25, the curve C'y /K x is semistable
over an extension L/Kx of degree ex and the quotient map I's , — I's x, has

degree ex for s € X.

9.2 Special Fibre of the Minimal SNC Model

We state here the first of our main theorems. Roughly this tells us that the
cluster picture, the leading coefficient of f, and the action of Gg on the cluster
picture is enough to calculate the structure of the minimal SNC model, along

with the multiplicities and genera of the components.

Theorem 9.2.1. Let K be a complete discretely valued field with algebraically
closed residue field of characteristic p > 2. Let C : y* = f(x) be a hyperelliptic
curve over K with tame reduction and cluster picture Xc . Then the dual
graph, with genus and multiplicity, of the special fibre of the minimal SNC
model of C'/K is completely determined by ¢/ (with depths), the valuation
of the leading coefficient vk (cy) of f, and the action of Gg.

Remark 9.2.2. If K does not have algebraically closed residue field, then
the Frobenius action on the dual graph is determined by this data, as well as
the values of ex(Frob) for each orbits of clusters X. We will not discuss this
further here, but one can refer to [FN20].

The proof of this will follow from the theorems proved in the rest of this
section, and we make this more precise later. First we split Theorem 9.2.1 into
several smaller theorems. The first tells us which components appear in the
special fibre of the minimal SNC model. Roughly, there is a central component
for every orbit of principal non-iibereven clusters, one or two central compo-
nents for every orbit of principal tibereven clusters, and a chain of rational
curves associated to each orbit of twins. These central components are linked
by chains of rational curves, and certain central components will also have tails
intersecting them. The following theorem gives us the structure of the special
fibre but is missing important details such as multiplicities, genera and lengths

of these chains. These remaining details will be discussed in Theorem 9.3.2.
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Theorem 9.2.3 (Structure of SNC model). Let K be a complete discretely
valued field with algebraically closed residue field of characteristic p > 2. Let
C/K be a hyperelliptic curve with tame reduction. Then the special fibre of its
minimal SNC' model is structured as follows. Fvery principal Galois orbit of
clusters X contributes one central component I'x, unless X 1is ubereven with
ex = 1, in which case X contributes two central components I'y and T'y.
These central components are linked by chains of rational curves, or are
intersected transversely by a crossed tail in the following ways (where, for any

orbit Y, we write Iy, =Ty =Ty if Y is not tbereven):

Name | From | To Condition

Lxx | I's |I'x X' < X both principal, X' odd

L}’X, It | Th | X' < X both principal, X' even with exr =1

Lyx | T'x |Tx | X' <X both principal, X" even with ex: =1

Lxx | I's |I'x | X' <X both principal, X' even with exr = —1
Lx Iy | TE | X principal, X' < X orbit of twins, ex: = 1

Tx: I'x - | X principal, X' < X orbit of twins, exr = —1

Note that any chain where the “To” column has been left blank is a crossed tail.

If R is not principal then we also get the following chains of rational curves:

Name | From | To Condition
L, r, | T, § <R, s a cotwin, §' < s child of size 2g, €5 = 1
T, I, - 5 <R, s a cotwin, ' < s child of size 2g, e = —1
Lr | R a cotwin, s < R principal of size 2g, €, = 1
Tr I - R a cotwin, s < R principal of size 2g, €, = —1
Lo s, | Ts, | Ty, R = s, U sy, with s; both principal, odd and stable
Tx I'y - R =81 Usy, X = {s1, 82} principal, odd orbit
lem rr i R = s, Usy, 5; stable, principal and even, €, = 1
Lgo, | Tg | T4 R =51 U s, s; stable, principal and even, €, =1
Le sy | T'sy | T, R = s1 Usq, s; stable, principal and even, €, = —1
T I} - R =81 Usy, X = {s1, 82} principal and even, €, = 1
Ty I'y - R =81 Usy, X = {s1, 82} principal and even, €5, = 1
Tx I'y - | R =151 Usy, X ={s1, s2} principal and even, €;, = —1
Ly r; | T R =sUt, s principal and even, t a twin, ¢ =1
T I's - R =sUt, s principal and even, t a twin, ¢ = —1

Finally, a central component I'x 1is intersected transversally by some tails if

and only if ex > 1. These are explicitly described in Theorem 9.3.2.
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Remark 9.2.4. At no point do we give explicit equations for the central com-
ponents F)i(. However, these can be calculated using the method laid out in this
thesis. In particular, one can take the explicit equations given in [DDMM18,
Theorem 8.5] for the components F:L in the semistable model of C'/L and the
Galois action on these components, and apply [DD18, Theorem 1.1].

Before we prove this, let us prove a couple of results. Recall that L is a
field over which C' has semistable reduction and that I's ;, is the component

associated to a cluster s in the special fibre of the minimal semistable model
% of C' over L.

Lemma 9.2.5. Let s be a principal cluster with g(s) = 0.

(i) If s = R and s is not ibereven (resp. tbereven) then I's  (resp. each of

[t and T, ;) intersects at least two other components.

(i) If s # R and s is not dbereven (resp. tbereven) then s, (resp. each of

IS, and T, ) intersects at least three other components.

Proof. (i) Let s = R and suppose s is not iibereven. Since gg(s) = 0, s can
have at most two odd children and in particular at most two singletons. Since,
g(C) > 2, we have |s| > 5. If |s| is odd then s must have an even child s" and,
by [DDMM18, Theorem 8.5], I's 1, is intersected by the two linking chains to
Iy 1. Since s is principal, s cannot be the union of two odd clusters. So, if |s]
is even then s has an even child and we are done by [DDMM18, Theorem 8.5].

If s = R is iibereven then every child of s is even. In particular, there are
at least two even children s; and s,. So, each of F;%L intersects L;kl and Li
(the linking chains to the children).

(ii) Let s # R and suppose s is not iibereven. Since s is principal, we
know |s| > 3. Therefore, s must have at least one proper child s’. Suppose
that P(s) is principal. If s’ < s is even then I's , intersects the linking chain
to I'p(s),z, and the two linking chains to I'y ;. Otherwise s must be the union
of two odd clusters, hence s is even. In this case there are two linking chains
to I'ps),r and one to I'y ;. A similar argument works if s is iibereven. If
P(s) = R = sU s, is not principal, the argument is similar, but linking chains

to I'p(s),r, are replaced by linking chains to I, 1. O

Proposition 9.2.6. Let % be the semistable model of C/L and % the image
under the quotient map. Let Z  be the SNC model obtained by resolving the
singularities of Z such that all rational chains are minimal. Let X be a prin-

cipal orbit of clusters. Let I'x x € Zj be the image of I's ;, for some s € X
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under the quotient by Gal(L/K). Thenif g(U'x k) =0 and Ux k- I'xx) = —1,
I'x k intersects at least three other components of the special fibre (i.e. blowing

down I x i would not result in an SNC model).
Proof. [FN20, Proposition 7.15]. O
We are now able to prove our structure theorem (Theorem 9.2.3).

Proof of Theorem 9.2.3. First let us find which central components appear.
Over L, by [DDMM18, Theorem 8.5], we know there is a component for every
principal, non-iibereven cluster, and we know the action of Gal(L/K) on these
central components is the same as the action on the clusters. After taking the
quotient by Gal(L/K), we get a component for every orbit of principal, non
tibereven clusters. Similarly over L, by [DDMM]18, Theorem 8.5|, we know
there are two components for every tibereven cluster s. These are swapped by
Galois if and only if ¢, = —1. Taking the quotient gives us two components
for an iibereven orbit X if ex = 1 and a single component if ex = —1. We
call these components the central components. Showing which linking chains
appear is done similarly, using information given in [DDMM18, Theorem 8.5].

To ensure these central components do in fact appear in the minimal SNC
model, we must check that they cannot be blown down. Any central component
I'x x € Zj is the image of I'y ;, € %, for some s € X. A central component
I'x i can only be blown down if g(I'x k) = 0, and (I'x x-I'x x) = —1. However,
by Proposition 9.2.6, any central component I'x  with ¢(I'x k) = 0 and (I'x k-
I'x k) = —1 intersects at least three other components of the special fibre.
Therefore, if I'x x were to be blown down, 2} would no longer be an SNC

divisor. So I'x x appears in the special fibre of the minimal SNC model. [

Remark 9.2.7. A linking chain can have length 0, and indicates an intersec-
tion between central components (when X’ < X both principal) or a singular

central component (when X is principal and X’ < X is an orbit of twins).

9.3 Explicit Description of the Special Fibre

Theorem 9.2.3 describes the structure of the special fibre, but says nothing
about the multiplicity or genera of the components. The following theorems
fill in these details. The first focuses on the central components, and the second

describes the chains of rational curves present in the special fibre.

Theorem 9.3.1 (Central Components). Let K and C/K be as in Theorem
9.2.3. Let X be an orbit of clusters in ¢ k. Then T'x has multiplicity | X |ex
and genus g(X). Note that if X is ibereven then I'x has genus 0.
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Proof. Let X be a principal, orbit, and choose some s € X. Recall that
K x is the minimal field extension of K such that the clusters of X are fixed
by Gal(K/Kx), and L is the minimal field extension of K such that C is
semistable over L. The image I's i, of I's after taking the quotient by
Gal(L/Kx) has multiplicity ey, since the action on I'y ;, has multiplicity ex
(by Lemma 8.1.25). There are | X| such components, which are permuted by
Gal(Kx/K) in the minimal SNC model of C/Kx. So, I'x has multiplicity
| X|ex by [Lor90, Fact IV].

To find the genus of the central components, note that (since genus cannot
increase by taking the quotient) if g(I's ) = 0 then g(I'x x) = 0. So let us
assume that g(I's ,) > 0. In this case, as mentioned in Remark 8.1.21, I'; 1 is
isomorphic to the special fibre of the smooth model of C; over L. Furthermore,
the action on I'y 1, is the same as the action on I'; ;. Hence, the genus of I's

is g(X), and also the genus of I'x k. O]

Theorem 9.3.2 (Description of Chains). Let K and C/K be as in Theorem
9.2.3. Let X be a principal orbit of clusters. Choose some s € X of depth d;
with denominator bs. If ex > 1, then the central component(s) associated to X
are intersected transversely by the following sloped tails with parameters (i1, 1)

(writing Tx =T% =Ty if X is not ibereven):

Name | From | Number 1 " Condition
T I'x 1 (g+Ddr -2z | 1 | X={R}, R odd
T= rs 2 —dr 1 | X={R}, R even, eg =1
T I'x 1 —dr 2 | X ={R}, R even, eg > 2,
er = —1
Ty | Tx | | B2l —Ax bx | |sing] > 2, and ex > by /|X]|
T,.—0 | TI'x 1 —dx 2|X| | X has no stable child, \x &
Z, ex > 2, and either
9ss(X) > 0 or X is tbereven
Ty o | I'y 2 —dx IX| | X has no stable child, \x €

Z, and either gss(X) > 0 or

X s tbereven

Too | T'x 1 —A\x |X| | [X has an orphan single-
ton/, or [gss(X) = 0, X s
not ubereven and X has no
proper stable odd child]

Furthermore, regardless of whether ex > 1 or not, for X' < X an orbit of
clusters, the central components are intersected by the following sloped chains

of rational curves with parameters (t; — §,t1, p):
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Name | ) 1 Condition
Lxx | =Ax | 0x/2 | |X'| X', X principal, X' odd
L;X, —dyx dx | X| X', X principal, X' even, exr =1
Lyx | —dx dx: | X'| X, X principal, X" even, exr = 1
Lxx | —dx dxr 2| X7| X', X principal, X' even, exr = —1
Lx | —dx 20/ | X X principal, X' orbit of twins, exr = 1
Tx: | —dx | Ox + ﬁ 2| X’| | X principal, X' orbit of twins, exr = —1

If R is not principal we get additional sloped chains with parameters (t, —

0,t1, 1) as follows:

Name t1 0 Condition
L, —0, 204/ 5 < R cotwin, §' < s child of
size 2g, v(cy) € 27
T, —0q Ogr + l% 5 < R cotwin, s < s child of
size 2g, v(cy) ¢ 27
Ly —dr 20, R a cotwin, s < R child of size
29, vi(cy) € 2Z
Tr —dg ds + i R a cotwin, s < R child of size
29, vk (cy) € 27
Lsy sy | (9(s1) + 1)ds, — A, | 36(51,52) R = s1 L ss, 5; principal, odd,
Tx (g(s1) + 1)ds, — Asy %5(51,52) R = s1Us9, X = {51,892} prin-
cipal, odd orbit
;52 ds, d(s1,52) R = s1Uss, 5; principal, even,
€, =1
o159 ds, d(s1,52) R = s1Uss, 5; principal, even,
€, = 1
L, s, ds, d(s1,52) R = s1Uss, 5; principal, even,
€, = —1
L ds, d(s1,52) R = s1Usy, X = {s1,52} prin-
cipal, even orbit, and €;, = 1
Ly ds, 0(s1,82) R =s1Usy, X = {51,520} prin-
cipal, even orbit, and e;; = 1
Tx ds, d(s1,52) + i R = s1Use, X = {51,582} prin-
cipal, even orbit, and €;; = —1
Ly ds 20(s, t) R = sUt, s principal even, t
twin, g =1
Ti dy d(s,t) + l% R = sUt, s principal even, t
twin, €g = —1

Finally, the crosses of any crossed tail have multiplicity & .
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Proof. Postponed to Section 9.4. O

Remark 9.3.3. If there is any confusion over which central components link-
ing chains or tails intersect, the reader is urged to refer back to the tables in
Theorem 9.2.3. This information has been omitted from the tables in Theorem

9.3.2 due to spatial concerns.

Remark 9.3.4. Let X be a principal orbit of clusters in ¥¢/x. As in Remark
8.2.5, we compare the rational chains intersecting a central component 'y €
A to the tails in the special fibre of the minimal SNC model 2. The
central component I'y € 2}, will have the same genus as the central component
I's € 2%, and the multiplicity is multiplied by |X]. It will have the same
tails (with all multiplicities multiplied by |X|) except these tails will make up

part of the linking chains intersecting I"y in the following cases:

e If X # R and P(X) is principal, an oo-tail in 2 %.x Will form the uphill

section of one of the linking chains Llﬁ( X)X

o If X < R and R is not principal, then any oo-tail in 3&”)?7,? will form the
uphill section of a chain: the linking chain between I'y, and I's, if R = 51 Us5
and X = {s;}; the crossed tail if R = s, Usy and X = {s1,82}; and the loop

or crossed tail arising from R if R is a cotwin,

o If X' < X # R and X is not principal (that is, X’ must have size 2g, and
X has size 2g + 1), then any oo-tail in 2%; , will form the uphill section of

a loop or crossed tail arising from X,

e a (y; = 0)-tail will form the downhill section of a linking chain Ly x- if there

exists some X’ < X, a non-trivial orbit of odd, principal children,

e a (z; = 0)-tail will form the downhill section of a linking chain L)ig + if there

exists some {s'} = X’ < X, a stable even child,

a (0,0)-tail will form the downhill section of a linking chain Lx x- if there

exists some {s'} = X’ < X, a unique stable odd child,

where again, all multiplicities are multiplied by |X]|.

9.4 Proof of Theorem 9.3.2

To prove Theorem 9.3.2, we will proceed by induction on two things: the
number of proper clusters in ¥¢/k, and the degree e = [L : K] of the minimal

extension L/K such that C'/L is semistable. The base cases for these are
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when ¢/ consists of a single proper cluster (which is covered in Section
8.1, in particular Theorem 8.1.1 and Proposition 8.1.11), and when C' has
semistable reduction over K ie. e = 1 (which is covered in Section 7.1.3).
For our inductive hypothesis, suppose that for any hyperelliptic curve where
the number of proper clusters in its cluster picture is strictly less than that
of C/K, or the degree of an extension needed such that it is semistable is
strictly less than that of C, we can completely determine the special fibre of

its minimal SNC model.

9.4.1 Principal Top Cluster
We start by assuming that the top cluster R is principal, and that it has a

Galois invariant proper child s. We will calculate the tails of F;; ; and, if
s is principal, F;%K. We will also calculate the linking chain(s) (or the chain
arising from s if s is a twin) between them. This will be done by comparing
the linking chain(s) to those in the special fibre of the minimal SNC model
of another hyperelliptic curve over K, which we will call C™*". We will write
Cmev : y? = f7%(z), and denote the set of roots of f™% over K by R"".
The curve C™V/K is chosen so that Yemew/x has a unique proper cluster
"W £ RV enabling us to apply the results of Section 8.2. We will then use
induction to deduce the components of the model arising from the subclusters

of s. Finally, we will remove the assumption that s is Galois invariant.

Lemma 9.4.1. Let R be principal and suppose that ex > 1. The tails of the

central component(s) associated to R are as described in Theorem 9.5.2.

Proof. First suppose that R is not tibereven. Let % be the semistable model
of C/L and consider I'g ;, € #. The stabiliser of R has order eg. Under the
quotient map, a Galois orbit 7" of points of I'g ;, gives rise to a singularity on
'z k lying on precisely one component of 2 if and only if |T'| < eg and the
points of T lie on I'g ;, and no other components of %.

Suppose that g(I'z, 1) = 0. There are only two orbits with size less than ex,
which after an appropriate shift we can assume are at xrg = 0 and zz = oo.
The point at oo certainly lies on no other component of % by [DDMMIS,
Propositions 5.5,5.20], so I'g_x will always have oco-tails. By [DDMM18, Propo-
sition 5.20], the point xx = 0 lies on no other component of %4 if and only
if R has no stable proper odd child. This is because if s < R is a stable odd
child then Ly, intersects I'g 1, at g = 0, however no other linking chain to a
child will ever intersect I'g 1, at g = 0. Therefore I'g ;¢ will have a (0, 0)-tail
if and only if it has no stable proper odd child. The description of the tails

follows.
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Suppose instead that g(I'g 1) > 0. The orbits of points on I'g 1, of size less
than e are the same as the small orbits of points on Lz ps which are described
in Lemmas 8.1.7 - 8.1.10. To complete the description, we must calculate when
these small orbits are intersection points with other components. We do this
using the explicit description of the components of % given in [DDMMIS,
Proposition 5.20] and how they glue in [DDMM18, Proposition 5.5]. From
this, we can deduce that the points at co never lie on a component other than
I'z.1, (ys = 0)-orbits are intersection points if and only if § has a non-trivial
orbit of proper odd children, (z; = 0)-orbits are intersection points if and only
if s has a stable even child, and the (0, 0)-orbit is an intersection point if and
only if R has a proper stable odd child.

Now suppose R is iibereven. Then each F%’ ; has two orbits of size less
than e, {rg = 0} and {xg = oo}. The points at oo do not lie on any other
components of %.. The points at 0 lie on no other component of % if and
only if R has no stable child. So, F%K has a (z; = 0)-tail if and only if R
does not have a stable child. The description of the tails follows. O

Lemma 9.4.2. Let s <R be a principal, Galois invariant cluster with e; > 1.
Then the tails intersecting the central component(s) associated to s are as
described in Theorem 9.3.2.

Proof. The proof is similar to that of the previous lemma, noting that all of
the orbits at infinity are the intersection points of F;EL and the linking chain

between F%’ ; and FS%L. O

Following is a technical lemma allowing us to compare the chain(s) ap-

pearing between I'g x and I'y x to those of a simpler curve C"°V.

Lemma 9.4.3. Let 51,89 be two Galois invariant principal clusters (resp. a
principal cluster and a twin) such that either so < s1, or R = 1 U s is not
principal. Then any linking chain between thK and F;E’K (resp. the chain of
rational curves arising from so intersecting F;—LLK) is determined entirely by A,

mod Z, the parity of |s3|, ds,, and when R is not principal dg.

Proof. Assume that both s; are principal, Galois invariant clusters. From Sec-
tion 7.1.2, we know that a linking chain between th 5 and Fi’ i 1s completely
determined by the length and number of linking chains between th ;, and F:; L
the order of the action of Gal(L/K) on any individual component of a link-
ing chain between Fjil’ ; and Fi . and the nature of the singularities at the
intersection points of components after taking the quotient. By [DDMMI18,

Theorem 8.5], there is one linking chain, say C, between Fsih ; and Fi , if 5o
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is odd and two linking chains, say C* and C~, if s5 is even. We will write
C =C" = C if 55 is odd. Furthermore, by [DDMM18, Theorem 8.5], the
length of C* is determined by d(s1,52), which is given in terms of d,, and d,,
(and dg in the case where R = s; U 5 is not principal).

Let P be an intersection point of components E, By € {Ts, 1, Us,.1., CE},
and og, the induced Gg action on E; for a generator o € Gal(L/K). Suppose
0%, and 0%2, generate the stabilisers of P in F; and Ej respectively. Then

q(P) is a tame cyclic quotient singularity with parameters

n = ged(o(0%,).0(0%,)).  m1 = oo/, my=o(ol,)/n,

dptd,
% $9 €ven,
n
and r = ¢ \_ay,
E E
;2 2 5 Odd,

where for 7 € Gal(L/K), o(7) is the order of 7. In other words, the tame
cyclic quotient singularity is determined entirely by the automorphisms on
the FE; and the parity of s5. Therefore, since the automorphisms on F; are
determined entirely by the invariants in the statement of the theorem (by
[DDMM18, Theorem 6.2]), we are done. The case where s5 is a twin follows

similarly. O

For the following lemma we first need some notation. Recall that a child
of s € X/ is stable if has the same stabiliser as 5. Let 5' denote the set of
stable children of s, and ™ denote the set of unstable children of s. Note that

here the superscripts ‘f” and ‘nf’ stand for ‘fixed” and ‘not fixed’ respectively.

Lemma 9.4.4. Let C'/K be a hyperelliptic curve with R principal, and let
5 < R be a Galois invariant proper child. We can construct a hyperelliptic
curve, C™V, such that the cluster picture Ycmew of C™Y consists of two proper
clusters §"V < RV, where |s| = |s""| mod 2,dr = drnew,ds = dgnew and
AR — ARnew, A\sg — Agnew € Z.

Proof. Let C™" be the hyperelliptic curve over K defined by C™V : ¢? =
ctfrfs, where

I @—2) (RUs)\ s| >2,
fr= 4 PeeR
ﬂ'l?\RldR H (x — z¢) otherwise,
57#5' <R
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(I - =) 5 > 2,
0ER
£, = H(m — 2) H (x — 2z¢) 5] <1 and [s™| even,
oest 5/ egnf
[[—2) J] @—2)(x+2) [5] <1and [s"] odd.
o€st s/ €onf

It is clear that X¢, ., /k consists of proper two clusters which we will call R*"

new new

and §"°V, where R, consists of the roots of fr - fs, and "V consists of the

roots of fs. It follows that §"V < R""Y. It remains to check how the cluster

new

invariants of R"" and s"°“ compare to those of R and s. Since any root
in a cluster can be taken as its center, it is immediate that dg = dgnew and
ds = dgnew. By comparing deg(f;) to |s| we see that |s| = [§"Y| mod 2.

It remains to check that A\g — Agnew, Ay — Agnew € Z. Let us begin with the
first. By construction, §"" is odd if and only if s is. Therefore, if |(RUs)\s| > 2

it follows that Agnew = Ag. Else,
2(Agsew = Ar) = vic(cs) + [Rldr + R\ Rldr — vic(cs) — [R|dr = 2|R \ Rldr.

If dr € Z, then clearly Agnew — Ag € Z. Otherwise, dg & Z. By Lemma 2.1.16,
the children of R must lie in orbits of size bg > 1. Therefore, all even children
are in orbits of size bg, since s < R is fixed so all other children have orbit
sizes br. Hence, \7% \ 7%|d73 € Z, and S0 Agnew — A € Z. It can be checked
similarly that Agnew — Ay € Z. O

By the above lemmas and Theorem 8.2.3, we have proved the statements
in Theorem 9.2.3 about the linking chain(s) between I'y, and I'z ;. where
5 < R is a Galois invariant proper child.

We now turn our focus to the components of 2} which arise from s and
its subclusters. In order to do this, we construct another new hyperelliptic

curve, which we shall call C’, given by

C' oyt = H(J: — 1), where ¢} = ¢f H(25 —r). (9.1)

rES rés

Note that C” is also semistable over L, and let % be the semistable model of
C" over L. Comparing the cluster pictures of C’ and C, we see that the cluster
picture Y appears within the cluster picture ¢ of C'. This is illustrated in
Figure 9.1. In particular, s and all of its subclusters in ¥ are drawn in solid
black in Figure 9.1a. These are exactly the clusters that make up ¢, also

shown in solid black.
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oo (b) Cluster picture X¢v.
(a) Cluster picture X¢.

Figure 9.1: Comparison of the cluster pictures of C' and C’

The leading coefficient of C’ has been chosen so that the corresponding
clusters in X and X have the same size modulo 2, and the same cluster
invariants modulo Z (as in the theorem statement above). Therefore, there is
a closed immersion %,/ — % which commutes with the action of Gg. The
existence of this immersion is illustrated in Figure 9.2. It is possible to see
this explicitly by calculating the equations of the components of % and using
the Galois action on these components given in [DDMM18, Theorem 8.5].

Therefore, this immersion also commutes with the quotient by Gal(L/K).

| (b) Special fibre %/, of the minimal SNC

/
(a) Special fibre %4, of the minimal SNC model of C/L.
model of C'/L.

Figure 9.2: Comparison of the special fibres of the minimal SNC models of C' and
C/

After taking this quotient by Gal(L/K), and performing any appropriate
blow ups and blow downs, we obtain a closed immersion m — %, where
Z" is the minimal SNC model of C"/K and T, is the set of infinity tails of
Z,. We remove the infinity tails since in the small distance case (see Section
8.2.3) the whole tails do not appear in 2. By our inductive hypothesis (since
the number of proper clusters in ¢ is strictly less than that in 3¢ ), we can
calculate 2. This gives us a full description of the components of 2} which
arise from the subclusters of s.

Finally let us remove the assumption that s is G invariant. Let X <R
be a non-trivial orbit of children. Extend K by degree | X| to the field Kx, the
minimal extension such that each cluster in X is fixed by Gal(K /Kx). By our
inductive hypothesis (since C'/Kx needs an extension of degree strictly less
than C/K does in order to have semistable reduction), we can calculate the
minimal SNC model of C' over Kx, which we denote Z%. Since each cluster of

X is fixed by Gal(L/Kx), there is a divisor D, corresponding to every cluster
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s € X and all of the subclusters of 5. Let Dx = (J,.x Ds be the union of
these divisors. Since Gal(Kx/K) simply permutes these divisors, after taking
the quotient by Gal(Kx/K), the image of Dx consists of precisely the same
components as D, for some s € X, but with all the multiplicities multiplied

by | X|. See Figure 9.3 for an illustration. This concludes the proof when R is

principal.
!
ST o
%
Ds, Ds, Ds; D, quotient q(Dx)
~_

Figure 9.3: Divisors D,,, where X = {s;...,5;}, are permuted by Gal(Kx/K).
After taking the quotient the image of Dx = Ui:l D,, consists of the
components of D, but where a component of multiplicity m in Dy,
now has multiplicity |X|m.

9.4.2 Not Principal Top Cluster

Now suppose that R is not principal. If R is a cotwin, then the contribution
to the special fibre of the minimal SNC model from R can be deduced using
Remark 8.2.5 and Lemmas 9.4.3 and 9.4.4. The contribution of § < R, the
child of size 2¢g, can be calculated by induction using a curve C’ as in (9.1)
above.

If R is not principal and not a cotwin then R is even and the union of
two children. In this case, we will write R = s; Ll 55. Here the s; are either
fixed or swapped by Gg. We will deal with the case when the s; are swapped
at the end of this section, so for now suppose that both s; are fixed by Gg.
Let us also suppose for now that both s; and so are proper clusters. We will
deal with the case when one of s; has size 1 shortly. The first of these lemmas
shows that there is a Mobius transform taking a certain class of curves with

R not principal to the curves we studied in Section 8.2.

Lemma 9.4.5. Let C/K be a hyperelliptic curve with cluster picture Ycyk,
and set of roots R.

(i) Let s € Yco/k be a cluster with centre z,. Write every root r € s as
r = zs+ 1, where vi(ry) > ds. Then there exists at most one r € s such
that v () > ds.

(11) If R = 51 Usy with dr > 0, where s, and so are both fized by Gal(L/K),

have no proper children, and zs, = 0. Then the Mobius transform 1 :
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ro— % takes C' to a new curve Cy; which has cluster picture ¥y =
{RM = 51,M;52,M}; with S1,M = {% -0 75 r e 51}, So M = {% e 52},
ds, ,, = —ds, and ds, ,, = ds, — 2dr.

Proof. (i) Suppose there are two roots r and 7’ such that vg (), vi(r},) > ds.
Then ds = vg(r — ") = vg(rp — ry,) > min(vg (), v (ry,)) > ds.

(i) Since z,, = 0, we have that vk (r) = ds, for any 0 # r € s;. Note also
that, vk (zs,) = dgr, hence vk (r) = dg for any r € s,. The statement then

follows from the fact that vy (% — i) =vg(x —y) — vg(x) — vK(y). []

Remark 9.4.6. Note that &, ,, = 05, + Jsy, A1y, = Asy — (9(8) + 1)ds and
)\52 — /\52,M = (|31| — |SQ|)d’R € 27.

The next lemma is analogous to Lemma 9.4.4, it gives us the existence of
some new curve, which we will again call C"*" to which we can apply Lemma
9.4.5. This will allow us to calculate the linking chain(s) between I'Y and I'Z,

by using Lemma 9.4.3.

Lemma 9.4.7. Let R = s, Ussy with s; both fized by Galois. Then there exists
a hyperelliptic curve C™ : y? = 2V (z) whose set of roots of f™°V we denote
by R, such that R"Y = s}V U s5°Y, where sV has no proper children,
|si| — |57 € 2Z, ds; = dgnew and As; — Agnew € Z fori =1,2.

Proof. For ¢ = 1,2 define

(

[T -2 9(Ts,.) > 0,
0E€S;
f = H (27 - ZO) H (,CL’ - Zs’) g(ngjL) = (0 and ]Efi“f] even,
l 0es;” seqnt
[Tz —2) [ @ 2)(@+2) g.)=0and [§"] odd.
\Uegif 5'€£:Enf

Let [ = c;fs, fsy, 50 O™V 1 y? = ¢;fo, fs,- Proving this satisfies the condi-

tions in the statement of this lemma is similar to the proof of Lemma 9.4.4. [

So, if R is not principal and is a union of two proper clusters s; which
are fixed by G then, by Lemma 9.4.7, Lemma 9.4.3, and Lemma 9.4.5, we
know now the linking chain(s) between I'Z and I's. We can calculate the
components associated to s; and its subclusters by induction, constructing a
curve as in (9.1). Therefore this gives us the full special fibre of the minimal
SNC model of C/K when R = s; Ll 85 is not principal and the s; are fixed by

Galois.
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Suppose now that R is even with R = s U {r}, that is s < R is a cotwin.
Then, by Theorem 5.4.1 and 6.3.1, there exists an isomorphic curve C’ whose
cluster picture is isomorphic to s and whose leading coefficient is the same as
C. The result then follows from the case when the top cluster is a cotwin.

It remains to consider the case when R = s, Ll 55 is not principal and the
s; are swapped by Galois. This is solved by extending the field K to Kx, an
extension of degree two. Here, C'/Kx has a non principal top cluster R' =
s/ LIsh, where the s, are both proper clusters, and are fixed by Gal(K/Kx). So
we can apply the above lemmas to find the special fibre of the minimal SNC
model of C'/Kx. Taking the quotient by Gal(Kx/K), which we know how to
do by Section 7.1.2, gives the special fibre of the minimal SNC model of C'/K.

This completes the cases when R is not principal.

Proof of Theorem 9.2.1. Combining the results proved in the rest of this sec-

tion proves this. O

Recall that in Section 1 we assumed that R was principal, and gave some
examples. We conclude with a couple of additional examples of when R is not
principal. Let K = Q).

Example 9.4.8. Consider the hyperelliptic curve

Ciy? = ((2® = p) +p") ((x = 1) = p)

over K. Note that t; and t; are swapped by Gg and denote their orbit by X.
This is a hyperelliptic curve of Namikawa-Ueno type II_4 as in [NU73, p. 183].
Note that s is iibereven and e¢; = 1, hence s gives rise to two components; X
is an orbit of twins with ex = 1, so gives rise to a linking chain, and R is a
cotwin (Definition 2.1.8) so gives rise to a linking chain. Also e, = 2 so Ff are
both intersected by tails.

Ly,
11
S

©09:093| @93 r ry
3 )i—3 ¢ 1‘ 2 2! 1‘ ¢

2 0 9

(a) Cluster picture X¢ - Lx

(b) Special fibre of the minimal SNC model

of C/K.

Figure 9.4: C:y? = (2 —p)? +pH)((z — 1)? — p?) over K = Q-
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Example 9.4.9. Let p > 5 and C/K be the hyperelliptic curve given by
C:y*=x(2®—p) ((z —1)° - p°).

This curve has Namikawa-Ueno type IV — III—0 as in [NU73, p. 167]. Observe
that R is not principal so gives rise to a linking chain between I'y, and I,.
Note that the special fibre here is the same as in Example 8.2.7, and there is

in fact a Mobius transform between the two curves.

11 2| 4
51 S9 1 - Fsl
(@9,609;] r
2 3J0 1[1] 3 ’
(a) Cluster picture X¢/k. (b) Special fibre of the minimal SNC model
of C/K.

Figure 9.5: C:y? = x(2? — p)((z — 1)® — p?) over K = Q-



233

Appendix A

Appendix

A.1 Naming Convention

For our classifications, we introduce a naming convention for open quotient
BY trees. A naming convention for open BY trees is proposed in [DDMM17,
§8.1]. We extend this here.

Notation A.1.1. Let T be an open quotient BY tree with open edge ¢, and

vp the unique vertex incident to the open edge. For the edges we use:

blue edge
yellow edge
“ds d edge of length d

For the vertices we use:

U yellow vertex
0,1,2,... blue vertex of multiplicity 1 and genus 0,1,2, ...
oM 1M oM blue vertex of multiplicity M > 1 and genus 0,1,2,...
y g

As a topological space, T" decomposes into the disjoint union
T={c}U{vUtyU---Ut, UTyU---UTy,

where the ¢; are open trees consisting of an open yellow edge, say of length
d;, and a genus 0 blue vertex of any multiplicity say m,;, and the 7} are the
remaining connected components of 7'\ {€,v9}. To define a naming convention

or “Type” T we inductively define

Type(T') = Type(e) Type(vo)d,)m.....[dmn Type(T1) . . . Type(T),

where Type(e) and Type(vy) is the notation for the edge ¢ and the vertex v,
as above, and when m; = 1, [d;]™ is simplified to d;. To avoid any possible

ambiguity, when N > 0 and 7T is not the full tree we are interested in, we
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bracket everything after the notation for the open edge and write

Type(T) = Type(e)(Type(vo) .. fa.mn Type(Th) . .. Type(T)).

In the non-metric case, the subscripts [d;]™ are simply placeholders to

record the number of genus 0 leaves, rather than lengths.

A.2 Genus 2 Classification

The following table presents the canonical representatives for the equivalence
classes of metric open quotient BY trees of genus 2, alongside their associated
cluster picture, Namikawa-Ueno type, special fibre of the minimal SNC model,

and type name as introduced above.

T*, X(T7) Namikawa-Ueno type 2
m g2 M1 I0,0,0 if U(Cf) < 27,
o o2
@90009,
02 50— if v(cy) & 2Z i i i 2 % %1'
II 2 | |
m o g2Mi1 71
® I
@eoeoo9:
2

(S

T if v(cy) € 2Z

o T

XXX
9 IV if v(cy) ¢ 2Z (6
3 T,
2 2
IX-2 if
n o g2 2if v(cy) € 22 =
. T T T
@oeoo09. :
Q0999 DL V14 if u(cs) ¢ 2Z

2

=
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T+, 35(T%) Namikawa-Ueno type 2
. 5
n o gemi IX-4 if v(cy) € 2Z IR
® P
@eo009:
_ VII-2 if v(cy) ¢ 2Z {10
12 2 K s‘ 8 ¢
[* Mo
Vif € 27 2
m g2 M1 ! U(cf) 4 1 1 6
@
000000 .
@eeseo9. it o(c;) ¢ 27 .
) 5|4 54
! 2 EILTREETIR
m gOMl%gZMl VI 1 Ll
o——o 2lz|3 _2+
@090
0
0 0 % 2
1 VII if v(er) € 27
m o goM1 7 g2 M1 (cr) | !4 4F <
@90009:0
€299 Vi iz —
25 %7
00-12 i | 1,

1
m goM1 5 g2 M1
o—0

VIIL-1 if v(c;) € 27Z

@e009:0
20 IX-3if v(cy) ¢ 2Z s
00-12 _ZJr :_;.LLT:_L
2 IX-1if 27,
m . goM1z g2M1 1 U(Cf) S | _F _rz )

0

[S1\]

00%2

VIII-3 if v(cy) ¢ 27
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T*, X(T%) Namikawa-Ueno type 2
n>0 N
*—©0
m  gOM1 glM2 g1

(n+ %n+ ]

1
2)1
2

210-77/

n=0 n4—

m goM1 glM2

(n + 171, + 1)%

2I5-n

N

2IV-n

(n+1)

2IV*-n

2[1I-n

m goM1  glM2
(=3, 699, )

1
2

. 2
11 0-n+% 1

2[1I*-n

1

n=0
> 4z
"%

m goM1  glM2

(n + %n + %]%

0pys 12

Nl=

21I-n

n+1)

12
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T+, 35(T%) Namikawa-Ueno type 2
nz= 0 ?’l+E
6 L2 e -—HZ
m  gOM1 glM2 2 u\_;’——/
(n+§n+§]1 2ll*n : fo 6| 8 *
2 12
. 2
! 0 ‘nid 1
n>0 3 ) 3

1, if v(cy) € 2Z

. 6 e e 6
i Ulype 1T} if v(cy) ¢ 27 ) ,‘lms "
2
n>0 .
m g1 M1 goM1 11_0_0 ifn= 1, U(Cf) € 27
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