
Distributed Computing
https://doi.org/10.1007/s00446-021-00391-w

Optimal distributed covering algorithms

Ran Ben-Basat1 · Guy Even2 · Ken-ichi Kawarabayashi3 · Gregory Schwartzman4

Received: 11 November 2019 / Accepted: 7 March 2021
© The Author(s) 2021

Abstract
We present a time-optimal deterministic distributed algorithm for approximating a minimum weight vertex cover in hyper-
graphs of rank f . This problem is equivalent to the Minimum Weight Set Cover problem in which the frequency of every
element is bounded by f . The approximation factor of our algorithm is ( f + ε). Let Δ denote the maximum degree in the
hypergraph. Our algorithm runs in the congestmodel and requires O(logΔ/ log logΔ) rounds, for constants ε ∈ (0, 1] and
f ∈ N

+. This is the first distributed algorithm for this problem whose running time does not depend on the vertex weights
nor the number of vertices. Thus adding another member to the exclusive family of provably optimal distributed algorithms.
For constant values of f and ε, our algorithm improves over the ( f + ε)-approximation algorithm of Kuhn et al. (SODA,
2006)whose running time is O(logΔ + logW ), where W is the ratio between the largest and smallest vertex weights in the
graph. Our algorithm also achieves an f -approximation for the problem in O( f log n) rounds, improving over the classical
result of Khuller et al. (J Algorithms, 1994) that achieves a running time of O( f log2 n). Finally, for weighted vertex cover
( f = 2) our algorithm achieves a deterministic running time of O(log n), matching the randomized previously best result
of Koufogiannakis and Young (Distrib Comput, 2011). We also show that integer covering-programs can be reduced to the
MinimumWeight Set Cover problem in the distributed setting. This allows us to achieve an ( f �log2(M)+1�+ε)-approximate
integral solution in

O

(
(1 + f / log n) ·

(
logΔ

log logΔ
+ ( f · logM)1.01 · log ε−1 · (logΔ)0.01

))

rounds, where f bounds the number of variables in a constraint, Δ bounds the number of constraints a variable appears in,
and M = max {1, �1/amin�}, where amin is the smallest normalized constraint coefficient.

Keywords Distributed algorithms · Approximation algorithms · Vertex cover · Set cover

Supported by the Zuckerman Institute, the Technion Hiroshi Fujiwara
Cyber Security Research center, the Israel Cyber Directorate, and by
JSPS Kakenhi Grant Number JP19K20216 and JP18H05291.

B Ran Ben-Basat
r.benbasat@cs.ucl.ac.uk

Guy Even
guy@eng.tau.ac.il

Ken-ichi Kawarabayashi
k_keniti@nii.ac.jp

Gregory Schwartzman
greg@jaist.ac.jp

1 University College London (UCL), London, UK

2 Tel Aviv University, Tel Aviv-Yafo, Israel

3 National Institute of Informatics, Chiyoda City, Japan

4 JAIST, Ishikawa, Japan

1 Introduction

In theMinimumWeight Hypergraph Vertex Cover (mwhvc)
problem, we are given a hypergraph G = (V , E)with vertex
weights w : V → {1, . . . ,W }.1 The goal is to find a mini-
mum weight cover U ⊆ V such that ∀e ∈ E : e∩U 	= ∅. In
this paper we develop a distributed approximation algorithm
for mwhvc in the congest model. The approximation ratio
is f +ε, where f denotes the rank of the hypergraph (i.e., f is
an upper bound on the size of every hyperedge). Themwhvc
problem is a generalization of the Minimum Weight Vertex
Cover (mwvc) problem (inwhich f = 2). Themwhvc prob-
lem is also equivalent to the Minimum Weight Set Cover
Problem (the rank f of the hypergraph corresponds to the

1 Let n � |V |. We assume that |E | = nO(1) and W = nO(1).

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00446-021-00391-w&domain=pdf


R. Ben-Basat et al.

maximum frequency of an element). Both of these problems
are among the classical NP-hard problems presented in [14].

We consider the following distributed setting for the
mwhvc problem. The communication network is a bipar-
tite graph H(E∪V , {{e, v} | v ∈ e}).We refer to the network
vertices as nodes and network edges as links. The nodes of the
network are the hypergraph vertices on one side and hyper-
edges on the other side. There is a network link between
vertex v ∈ V and hyperedge e ∈ E iff v ∈ e. The compu-
tation is performed in synchronous rounds, where messages
are sent between neighbors in the communication network.
As for message size, we consider the congestmodel where
message sizes are bounded to O(log |V |). This is more
restrictive than the local model where message sizes are
unbounded.

1.1 Related work

We survey previous results for mwhvc and mwvc. A com-
prehensive list of previous results appears in Tables 1 and
2.

VertexCover.The understanding of the round complexity
for distributed mwvc has been established in two papers: a
lower bound in [19] and amatching upper bound in [4]. LetΔ
denote themaximumvertex degree in the graphG. The lower
bound states that any distributed constant-factor approxi-
mation algorithm requires Ω(logΔ/ log logΔ) rounds to
terminate. This lower bound holds for every constant approx-
imation ratio, for unweighted graphs and even if the mes-
sage lengths are not bounded (i.e., LOCAL model) [19].
The matching upper bound is a (2 + ε)-approximation
distributed algorithm in the congest model, for every
ε = Ω(log logΔ/ logΔ).2 In [16] an O(log n)-round 2-
approximation randomized algorithm for weighted graphs
in the congest model is given. We note that [16] was the
first to achieve this running time with no dependence on
W , the maximum weight of the nodes. Recently, Ben-Basat
et al. [6] showed an O(OPT 2 log OPT ) rounds algorithm
for computing the minimal (unweighted) vertex cover and a
O(OPT ) rounds for a (2 + ε)-approximation. Here, OPT
is the size of the smallest cover and thus these algorithms are
adequate when a small solution exists.

Hypergraph Weighted Vertex Cover. For constant val-
ues of f , Astrand et al. [2] present an f -approximation
algorithm for anonymous networks whose running time is
O(Δ2 + Δ · log∗ W ). Khuller et al. [15] provide a solution
that runs in O( f · log ε−1 · log n) rounds in the congest
model for any ε > 0 and achieves an ( f +ε)-approximation.
Setting ε = 1/W (recall that W = poly(n)) results in a f -
approximation in O( f log2 n)-rounds. For constant ε and f

2 Recently, the range of ε forwhich the runtime is optimalwas improved
to Ω(log−c Δ) for any c = O(1) [5].

values, Kuhn et al. [17,18] present an ( f +ε)-approximation
algorithm that terminates in O(logΔ + logW ) rounds.

For the Minimum Cardinality (i.e., unweighted) Vertex
Cover inHypergraphsProblem, the lower boundwas recently
matched by [9] with an ( f + ε)-approximation algorithm
in the congest model. The round complexity in [9] is

O
(
f /ε · log( f ·Δ)

log log( f ·Δ)

)
, which is optimal for constant f and

ε. The algorithm in [9] and its analysis is a deterministic ver-
sion of the randomized maximal independent set algorithm
of [10].

1.2 Our contributions

In this paper, we present a deterministic distributed ( f + ε)-
approximation algorithm for minimum weight vertex cover
in f -rank hypergraphs, which completes in

O

(
(1 + f / log n) ·

(
logΔ

log logΔ
+

( f · logM)1.01 · log ε−1 · (logΔ)0.01
))

rounds in the congest model. For any constants ε ∈
(0, 1) and f ∈ N

+ this implies a running time of
O(logΔ/ log logΔ), which is optimal according to [19].
This is the first distributed algorithm for this problem whose
round complexity does not depend on the node weights nor
the number of vertices.

Our algorithm is one of a handful of distributed approx-
imation algorithms for local problems which are provably
optimal [3,4,7–9,11]. Among these are the classic Cole-
Vishkin algorithm [8] for 3-coloring a ring, the more recent
results of [3] and [4] for mwvc and Maximum Matching,
and the result of [9] for Minimum Cardinality Hypergraph
Vertex Cover.

Our algorithm also achieves a deterministic
f -approximation for the problem in O( f log n) rounds.
This improves over the best known deterministic result for
hypergraphs O( f log2 n) [15] and matches the best known
randomized results for weighted vertex cover ( f = 2) of
O(log n)-rounds [16].

We also show that general covering Integer Linear Pro-
grams (ILPs) can be reduced to mwhvc in the distributed
setting. That is, LP constraints can be translated into hyper-
edges such that a cover for the hyperedges satisfies all
covering constraints. This allows us to achieve an

O

(
(1 + f / log n) ·

(
logΔ

log logΔ
+

( f · logM)1.01 · log ε−1 · (logΔ)0.01
))

123



Optimal distributed covering algorithms

Table 1 Previous distributed algorithms for mwvc

Det. Weighted Approximation Time Algorithm

Yes No 3 O(Δ) [21]

Yes No 2 O(Δ2) [1]

Yes Yes 2 O(1) for Δ ≤ 3 [1]

Yes Yes 2 O(Δ + log∗ n) [20]

Yes Yes 2 O(Δ + log∗ W ) [2]

Yes Yes 2 O(log2 n) [15]

Yes Yes 2 O(log n logΔ/ log2 logΔ) [5]

No Yes 2 O(log n) [12,16]

Yes Yes 2 O(log n) This work

Yes Yes 2 + ε O(ε−4 log(W · Δ)) [13,18]

Yes Yes 2 + ε O(log ε−1 log n) [15]

Yes Yes 2 + ε O(ε−1 logΔ/ log logΔ) [4]

Yes Yes 2 + ε O
(

logΔ
log logΔ

+ log ε−1 logΔ

log2 logΔ

)
[5]

Yes Yes 2 + ε O
(

logΔ
log logΔ

+ log ε−1 · (logΔ)0.001
)

This work

Yes Yes 2 + log logΔ
c·logΔ

O(logΔ/ log logΔ) [4], ∀c = O(1)

Yes Yes 2 + (logΔ)−c O(logΔ/ log logΔ) [5], ∀c = O(1)

Yes Yes 2 + 2−c·(logΔ)0.99 O(logΔ/log logΔ) This work, ∀c = O(1)

In the table, n = |V | and ε ∈ (0, 1). Some of the algorithms hold only for the unweighted case and some are randomized. For randomized algorithms
the running times hold in expectation or with high probability

Table 2 Previous distributed algorithms for mwhvc

Weighted Approximation Time Algorithm

Yes f O
(
f 2Δ2 + f Δ log∗ W

)
[2]

Yes f O
(
f log2 n

)
[15]

Yes f O ( f log n) This work

No f + ε O
(
ε−1 · f · log( f Δ)

log log( f Δ)

)
[9]3

Yes f + ε O ( f · log( f /ε) · log n) [15]

Yes f + ε O
(
ε−4 · f 4 · log f · log(W · Δ)

)
[18]

Yes f + ε O
(
f · log( f /ε) · (logΔ)0.001 + logΔ

log logΔ

)
This work

No f + 1/c O (logΔ/log logΔ) [9], ∀ f , c = O(1)

Yes f + 2−c·(logΔ)0.99 O (logΔ/log logΔ) This work, ∀ f , c = O(1)

In the table, n = |V | and ε ∈ (0, 1). All algorithms are deterministic. Note that [9] holds only for unweighted hypergraphs. The authors state their
result for an f (1 + ε)-approximation which removes the f factor from the runtime

rounds ( f �log2(M)+1�+ε)-approximate integral solution,
where f bounds the number of variables in a constraint, Δ

bounds the number of constraints a variable appears in, and
M = max {1, �1/amin�}, where amin is the smallest normal-
ized constraint coefficient.

1.3 Tools and techniques

The Primal-Dual schema. The Primal-Dual approach intro-
duces, for every hyperedge e ∈ E , a dual variable denoted
by δ(e). The dual edge packing constraints are ∀v ∈

V ,
∑

v∈e δ(e) ≤ w(v). If for some β ∈ [0, 1) it holds that∑
v∈e δ(e) ≥ (1 − β) · w(v), we say the node v is β-tight.

Let β = ε/( f + ε). For every feasible dual solution, the
weight of the set of β-tight vertices is at most ( f + ε) times
the weight of an optimal (fractional) solution. The algorithm
terminates when the set of β-tight edges constitutes a vertex
cover.
The fractional LP relaxation of mwhvc is defined as follows.

minimize:
∑
v∈V

w(v) · x(v) (P)

123



R. Ben-Basat et al.

subject to:∑
v∈e

x(v) ≥ 1, ∀e ∈ E; x(v) ≥ 0, ∀v ∈ V

The dual LP is an Edge Packing problem defined as follows:

maximize:
∑
e∈E

δ(e) (D)

subject to:∑
e�v

δ(e) ≤ w(v), ∀v ∈ V ; δ(e) ≥ 0, ∀e ∈ E

The following claim is used for proving the approximation
ratio of the mwhvc algorithm.

Claim 1 Let opt denote the value of an optimal fractional
solution of the primal LP (P). Let {δ(e)}e∈E denote a feasible
solution of the dual LP (D). Let ε ∈ (0, 1) andβ � ε/( f +ε).
Define the β-tight vertices by Tε � {v ∈ V | ∑

e�v δ(e) ≥
(1 − β) · w(v)}.

Then w(Tε) ≤ ( f + ε) · opt.
Proof

w(Tε) =
∑
v∈Tε

w(v) ≤ 1

1 − β
·
⎛
⎝∑

v∈Tε

∑
e�v

δ(e)

⎞
⎠

≤ f

1 − β

∑
e∈E

δ(e) ≤ ( f + ε) · opt.

The last transition follows from f /(1 − β) = f + ε and by
weak duality. The claim follows. ��

The challenge.Whendesigning a Primal-Dual distributed
algorithm, the main challenge is in controlling the rate at
which we increase the dual variables. On the one hand, we
must grow them rapidly to reduce the number of communica-
tion rounds. On the other hand, we may not violate the edge
packing constraints. This is tricky in the distributed environ-
ments as we have to coordinate between nodes. For example,
the result of [4] does not generalize to hypergraphs, as hyper-
edges require the coordination of more than two nodes in
order to increment edge variables.

Our algorithm. The algorithm proceeds in iterations,
each of which requires a constant number of communica-
tion rounds.We initialize the dual variables in a “safe”way so
that feasibility is guaranteed.We refer to the additive increase
of the dual variable δ(e) as bid(e). Similarly to [5] (where
bids are called deals), we use levels to measure the progress
made by a vertex. Whenever the level of a vertex increases, it
sends amessage about it to all incident edges, whichmultiply
(decrease) their bids by 0.5. Intuitively, the level of a vertex
equals the logarithm of its uncovered portion. Formally, we

define the level of a vertex v as �(v) �
⌊
log w(v)

w(v)−∑
e�v δ(e)

⌋
.

That is, the initial level of v is 0 and it is increased as the
dual variables of the edges incident to v grow. The level of a
vertex never reaches z � �logβ−1� as this implies that it isβ-
tight and entered the cover. Loosely speaking, the algorithm
increases the increments bid(e) exponentially (multiplication
by α) provided that no vertex v ∈ e is (0.5�(v)/α)-tight with
respect to the bids of the previous iteration. Here, α ≥ 2 is a
positive parameter that we determine later. This is achieved
by checking if all the vertices in e can increase the dual
variables by an α factor while staying at the current level.
Namely, each vertex either sends a “raise” message, that sig-
nals that an α-factor increase in the dual variables of all its
adjacent edges would keep it in its current level, or a “stuck”
message otherwise. bid(e) is then increased only if all the
edge’s vertices sent a “raise” message. The analysis builds
on two observations: (1) The number of times that the incre-
ment bid(e) is multiplied by α is bounded by logα Δ. (2) The
number of iterations in which bid(e) is not multiplied by α is
bounded by O( f ·z ·α). Loosely speaking, each such iteration
means that for at least one vertex v ∈ e the sum of bids is at
least an 1/(2α)-fraction of its slack. Therefore, after at most
O(α) such iterations that vertex will level up. Since there are
z levels per vertex and f vertices in e, we have that the num-
ber of such iterations is at most O( f · z · α). Hence the total
number of iterations is bounded by O(logα Δ + f · z · α).

Integer linear programs (ILPs). We show distributed
reductions that allowus to compute an ( f +ε)-approximation
for general covering integer linear programs (ILPs). To that
end, we first show that any Zero-One covering program
(where all variables are binary) can be translated into a set
cover instance in which the vertex degree is bounded by 2 f

times the bound on the number of constraints each ILP vari-
able appears in.We then generalize to arbitrary covering ILPs
by replacing each variablewithmultiple vertices in the hyper-
graph, such that the value associated with the ILP variable
will be the weighted sum of the vertices in the cover.

2 Problem formulation

Let G = (V , E) denote a hypergraph. Vertices in V are
equipped with positive integer weights w(v). For a subset
U ⊆ V , let w(U ) �

∑
v∈U w(v). Let E(U ) denote the set

of hyperedges that are incident to some vertex in U (i.e.,
E(U ) � {e ∈ E | e ∩U 	= ∅}).
The Minimum Weight Hypergraph Vertex Cover Problem
(mwhvc) is equivalent to the Weighted Set Cover Problem
and is defined as follows.

Consider a set system (X ,U), where X denotes a set of
elements and U = {U1, . . . ,Um} denotes a collection of
subsets of X . The reduction from the set system (X ,U) to
a hypergraph G = (V , E) proceeds as follows. The set of
vertices is V � {u1, . . . , um} (one vertex ui per subset Ui ).

123



Optimal distributed covering algorithms

The set of edges is E � {ex }x∈X (one hyperedge ex per
element x), where ex � {ui : x ∈ Ui }. The weight of vertex
ui equals the weight of the subset Ui .

We now detail the setting for computing a distributed ( f +
ε)-approximation of the problem.

Input. The input is a hypergraph G = (V , E) with non-
negative vertex weights w : V → N

+ and an approximation
ratio parameter ε ∈ (0, 1]. We denote the number of vertices
by n, the rank of G by f (i.e., each hyperedge contains at
most f vertices), and the maximum degree of G by Δ (i.e.,
each vertex belongs to at most Δ edges).

Assumption 1 We assume that (i)Vertex weights are poly-
nomial in n � |V | so that sending a vertex weight requires
O(log n) bits. (ii)Vertex degrees are polynomial in n (i.e.,
|E(v)| = nO(1)) so that sending a vertex degree requires
O(log n) bits. Since |E(v)| ≤ n f , this assumption trivially
holds for constant f . (iii)The maximum degree is at least
3 so that log logΔ > 0. (iv)All vertices know f (or an
estimate f̂ = Θ( f )). For getting an f - (but not for an
f + ε)−approximation, the vertices also need to know n
and W . For simplicity, we assume that Δ is known, but later
discuss how to remove this assumption.

Output. The nodes compute a vertex cover C ⊆ V .
Namely, for every hyperedge e ∈ E , the intersection e∩C is
not empty. The set C is maintained locally in the sense that
every vertex v knows whether it belongs to C or not.

Communication Network. The communication network
N (E∪V , {{e, v} | v ∈ e}) is a bipartite graph. There are two
types of nodes in the network: servers and clients. The set
of servers is V (the vertex set of G) and the set of clients is
E (the hyperedges in G). There is a link (v, e) from server
v ∈ V to a client e ∈ E if v ∈ e. We note that the degree of
the clients is bounded by f and the degree of the servers is
bounded by Δ.

Notation.

– We say that an edge e is covered by C if e ∩ C 	= ∅.
– Let E(v) � {e ∈ E | v ∈ e} denote the set of hyperedges
that contain v.

– For every vertex v, the algorithm maintains a subset
E ′(v) ⊆ E(v) that consists of the uncovered hyperedges
in E(v) (i.e., E ′(v) = {e ∈ E(v) | e ∩ C = ∅}).

Invariants. Throughout its execution, as we prove in the
analysis in Sect. 4.1, the algorithm maintains the following
invariants at the end of each iteration:

– The level of each vertexwhich did not terminate correctly

measures its tightness, i.e., �(v) =
⌊
log w(v)

w(v)−∑
e�v δ(e)

⌋
.

– The dual variables constitute a feasible edge pack-
ing. Namely,

∑
e∈E(v)

δi (e) ≤ w(v) for every vertex v ∈ V ,

δi (e) ≥ 0 for every edge e ∈ E .

3 Distributed approximation algorithm for
MWHVC

3.1 Parameters and variables

– The algorithm computes an ( f +ε)-approximationwhere
ε ∈ (0, 1]. The parameter β is defined by β � ε/( f +ε),
where f is the rank of the hypergraph.

– Each vertex v is assigned a level �(v) which is a nonneg-
ative integer.

– We denote the dual variables at the end of iteration i by
δi (e) (see Sect. 1.3 for a description of the dual edge
packing linear program). The amount by which δi (e) is
increased in iteration i is denoted by bidi (e). Namely,
δi (e) = ∑

j≤i bid j (e).
– The parameter α ≥ 2 determines the factor bywhich bids
are multiplied. We determine its value in the analysis in
the following section.

3.2 AlgorithmMWHVC

1. Initialization. Set C ← ∅. For every vertex v, set level
�(v) ← 0 and uncovered edges E ′(v) ← E(v).

2. Iteration i = 0. Every edge e collects the weight w(v)

and degree |E(v)| from every vertex v ∈ e, and sets:
bid(e) = 0.5 ·minv∈e{w(v)/|E(v)|}. The value bid(e)
is sent to every v ∈ e. The dual variable is set to δ(e) ←
bid(e).

3. For i = 1 to ∞ do:
(a) Check β-tightness. For every v /∈ C , if

∑
e∈E(v) δ(e) ≥

(1 − β)w(v), then v joins the cover C , sends a mes-
sage to every e ∈ E ′(v) that e is covered, and vertex v

terminates.
(b) For every uncovered edge e, if e receives a message that

it is covered, then it tells all its vertices that e is covered
and terminates.

(c) For every vertex v /∈ C , if it receives a message from e
that e is covered, then E ′(v) ← E ′(v) \ {e}. If E ′(v) =
∅, then v terminates (without joining the cover).

(d) Increment levels and scale bids. For every active (that
has not terminated) vertex3:

While
∑

e∈E(v) δ(e) > w(v)(1 − 0.5�(v)+1) do
(i) �(v) ← �(v) + 1

3 For simplicity of the description, we assume in step 3(d)ii that every
v ∈ e decides whether bid(e) is halved. In a distributed setting, bid(e) is
halved if there exists a vertex v ∈ e that requests such a halving. The dis-
tributed implementation of this step is further discussed in Appendix A.

123



R. Ben-Basat et al.

(ii) For every e ∈ E ′(v): bid(e) ← 0.5 · bid(e)
(e) For every active vertex, if

∑
e∈E ′(v) bid(e) ≤ 1

α
·

0.5�(v)+1 ·w(v), then send the message “raise” to every
e ∈ E ′(v); otherwise, send themessage “stuck” to every
e ∈ E ′(v).

(f) For every uncovered edge e, if all incoming messages
are “raise”, set bid(e) ← α · bid(e).

(g) Send bid(e) to every v ∈ e (so it can track δ(e)).

*Termination. Every vertex v terminates when either v ∈
C or every edge e ∈ E(v) is covered (i.e., E ′(v) = ∅).
Every edge e terminates when it is covered (i.e., e∩C 	=
∅). We say that the algorithm has terminated if all the
vertices and edges have terminated.
*Execution in congest. See Section A in the Appendix
for a discussion of how Algorithm mwhvc is executed
in the congest model.

4 Algorithm analysis

In this section, we analyze the approximation ratio and the
running time of the algorithm. Throughout the analysis, we
attach an index i to the variables bidi (e), δi (e) and �i (v).
The indexed variable refers to its value at the end of the i’th
iteration.

4.1 Feasibility and approximation ratio

The following invariants are satisfied throughout the execu-
tion of the algorithm. In the following claim we bound the
sum of the bids of edges incident to a vertex.

Claim 2 If v /∈ C at the end of iteration i , then

∑
e∈E ′(v)

bid i (e) ≤ 0.5�i (v)+1 · w(v).

Proof The proof is by induction on i . For i = 0, the
claim holds because �0(v) = 0 and bid0(e) ≤ 0.5 ·
w(v)/|E(v)|. The induction step, for i ≥ 1, considers two
cases. (A) If v sends a “raise” message in iteration i , then
Step 3e implies that

∑
e∈E ′(v) bidi (e) ≤ 0.5�(v)+1 · w(v), as

required. (B) Suppose v sends a “stuck” message in iter-
ation i . By Step 3d, bidi (e) ≤ 0.5�i (v)−�i−1(v) · bidi−1(e)
for every e ∈ E ′(v). The induction hypothesis states that∑

e∈E ′(v) bidi−1(e) ≤ 0.5�i−1(v)+1 ·w(v). The claim follows
by combining these inequalities. ��
If an edge e is covered in iteration j , then e terminates and
δi (e) is not set for i ≥ j . In this case, we define δi (e) =
δ j−1(e), namely, the last value assigned to a dual variable.

Claim 3 For every i ≥ 1 and every a vertex v that has not
terminated the following inequality holds:

w(v)(1 − 0.5�i (v))≤
∑
e∈E(v)

δi−1(e)≤(1 − 0.5�i (v)+1) · w(v) .

(1)

In addition
the dual variables δi (e) constitute a feasible edge pack-

ing. Namely,

∑
e∈E(v)

δi (e) ≤ w(v) for every vertex v ∈ V , (2)

δi (e) ≥ 0 for every edge e ∈ E . (3)

Proof We prove the claim by induction on the iteration
number i . To simplify the proof, we reformulate the state-
ment of the feasibility of the dual variables to i − 1, i.e.,∑

e∈E(v) δi−1(e) ≤ w(v) and δi−1(e) ≥ 0.We first prove the
induction basis for i = 1.

Proof of Eq. 1 for i = 1. Fix a vertex v. At the end of
iteration 0, �0(v) = 0 and 0 < bid0(e) ≤ w(v)/(2|E(v)|),
for every e ∈ E(v). Hence 0 <

∑
e∈E(v) bid0(e) ≤ w(v)/2.

Because δ0(e) = bid0(e), the condition in Step 3d does not
hold, and �1(v) = �0(v) = 0. We conclude that Eq. 1 holds
for i = 1.

Proof of feasibility of δ0(e) (Eq. (2) and (3)) for i = 1.
Non-negativity follows from the fact that δ0(e) = bid0(e) >

0. The packing constraint for vertex v is satisfied because∑
e∈E(v) bid0(e) ≤ w(v)/2. This completes the proof of the

induction basis.
We now prove the induction step assuming that Eq. 1 holds
for δi−1.

Proof of Eq. 1 for i > 1. Since v is not in the cover it
is also not β-tight. Step 3d in iteration i increases �(v) until
Eq. 1 holds for i .

Proof of feasibility of δi−1(e) (Eq. (2) and (3)) for
i > 1. Consider a vertex v. If v joins C in iteration
i − 1, then δi−1 = δi−2, and the packing constraint of
v holds by the induction hypothesis. Otherwise, then by
δi−1(e) = δi−2(e) + bidi−1(e), Claim 2, and the induction
hypothesis for Eq. 1, we have

∑
e∈E(v)

δi−1(e) =
∑

e∈E(v)

(δi−2(e) + bidi−1(e))

≤
(
1 − 0.5�i−1(v)+1 + 0.5�i−1(v)+1

)
· w(v) = w(v) .

��
Let opt denote the cost of an optimal (fractional) weighted
vertex cover of G.

Corollary 1 Upon termination, the approximation ratio of
Algorithm mwhvc is f + ε.

123



Optimal distributed covering algorithms

Proof Throughout the algorithm, the set C consists of β-
tight vertices. By Claim 1, w(C) ≤ ( f + ε) · opt. Upon
termination, C constitutes a vertex cover (as an edge only
terminate once covered), and the corollary follows. ��

4.2 Communication rounds analysis

In this section, we prove that the number of communication
rounds of Algorithm mwhvc is bounded by (where γ > 0 is
a constant, e.g., γ = 0.001)

O

(
f · log( f /ε) + logΔ

γ · log logΔ

+min
{
logΔ, f · log( f /ε) · (logΔ)γ

})
.

It suffices to bound the number of iterations because each
iteration consists of a constant number of communication
rounds.
Let z � �log2 1

β
�. Note that z = O (log( f /ε)).

Claim 4 The level of every vertex is always less than z.

Proof Assume that �i (v) ≥ z. By Eq. 1,
∑

e∈E(v) δi−1(e) ≥
w(v) · (1 − 2−z) ≥ (1 − β) · w(v). This implies that v is
β-tight and joins the cover in Line 3a before �i (v) reaches z.

��

4.2.1 Raise or stuck iterations

Definition 1 (e-raise and v-stuck iterations) An iteration i ≥
1 is an e-raise iteration if in Line 3f we multiplied bid(e)
by α. An iteration i ≥ 1 is a v-stuck iteration if v sent the
message “stuck” in iteration i .

Note that if iteration i is a v-stuck iteration and v ∈ e, then
bidi (e) ≤ bidi−1(e) and i is not an e-raise iteration.
We bound the number of e-raise iterations as follows.

Lemma 1 The number of e-raise iterations is bounded by
logα(Δ · 2 f ·z).

Proof Let v∗ denote a vertex with minimum normalized
weight in e (that is, v∗ ∈ argminv∈e{w(v)/|E(v)|}). The first
bid satisfies bid0(e) = 0.5 ·w(v∗)/|E(v∗)| ≥ 0.5 ·w(v∗)/Δ.
By Claim 2, bidi (e) ≤ 0.5 · w(v∗). The bid is multiplied by
α in each e-raise iteration and is halved at most f · z times.
The bound on the number of halvings holds because the num-
ber of vertices in the edge is bounded by f , and each vertex
halves the bid each time its level is incremented. The lemma
follows. ��
We bound the number of v-stuck iterations as follows.

Lemma 2 For every vertex v and level �(v), the number of
v-stuck iterations is bounded by α.

Proof Notice that when v reached the level �(v), we
had

∑
e∈E(v) δ(e) ≥ w(v)(1 − 0.5�(v)). The number

of v-stuck iterations is then bounded by the number of
times it can send a “stuck” message without reaching∑

e∈E(v) δ(e) > w(v)(1 − 0.5�(v)+1). Indeed, once this
inequality holds, the level of v is incremented. Every stuck
iteration implies, by Line 3e, that

∑
e∈E ′(v) bid(e) > 1

α
·

0.5�(v)+1 · w(v). Therefore, we can bound the number of

iteration by w(v)(1−0.5�(v)+1)−w(v)(1−0.5�(v))
1
α
·0.5�(v)+1·w(v)

= α. ��

4.2.2 Bound on the number of rounds

Theorem 1 For every α ≥ 2, the number of iterations of
Algorithm mwhvc is

O
(
logα(Δ · 2 f ·z) + f · z · α

)
= O

(
logα Δ + f · log( f /ε) · α

)
.

Proof Fix an edge e. We bound the number of iterations until
e is covered. Every iteration is either an e-raise iteration or a
v-stuck iteration for some v ∈ e. Since e contains at most f
vertices,we conclude that the number of iterations is bounded
by the number of e-raise iterations plus the sum over v ∈ e of
the number of v-stuck iterations. The theorem follows from
Lemmas 1 and 2 . ��

In Theorem 2 we assume that all the vertices know the
maximum degreeΔ and thatΔ ≥ 3. The assumption that the
maximal degree Δ is known to all vertices is not required.
Instead, each hyperedge e can compute a local maximum
degree Δ(e), where Δ(e) � maxu∈e |E(u)|. The local max-
imum degree Δ(e) can be used instead of Δ to define local
value of the multiplier α = α(e). Let T ( f ,Δ, ε) denote the
round complexity of Algorithm mwhvc. By setting α appro-
priately, we bound the running time as follows.

Theorem 2 4 Let γ > 0 denote a constant and set

α =
{
max

(
2, logΔ

f ·log( f /ε)·log logΔ

)
if logΔ

f ·log( f /ε)·log logΔ
≥ (logΔ)γ/2

2 otherwise.

Then, the round complexity of Algorithmmwhvc satisfies:

T ( f ,Δ, ε) = O

(
f · log( f /ε) + logΔ

log logΔ

+min
{
logΔ, f · log( f /ε) · (logΔ)γ

})
.

Proof We prove the theorem using a case analysis.Case α =
logΔ

f ·log( f /ε)·log logΔ
≥ 2 and α ≥ (logΔ)γ/2.

4 The statement of the theorem is asymptotic (in Δ). This means that
for every constant γ , it holds that either logγ /2 Δ ≥ log logΔ or Δ is
bounded by a constant (determined by γ ) in which case expressions
involving Δ can be omitted from the asymptotic expression.

123



R. Ben-Basat et al.

This means that the runtime is bounded by O
(
logα Δ +

f · log( f /ε) · α
) = O

(
logΔ

log logΔ

)
.

Case α = 2 and 2 >
logΔ

f ·log( f /ε)·log logΔ
≥ (logΔ)γ/2.

Notice that in this case 2 > (logΔ)γ/2 which implies
that Δ is constant. Therefore, the round complexity of our
algorithm is bounded by

O (logΔ + f · log( f /ε)) = O ( f · log( f /ε)) .

Case logΔ
f ·log( f /ε)·log logΔ

< (logΔ)γ/2.
This implies that

logΔ ≤min
{
logΔ, f · log( f /ε) · (logΔ)γ/2 · log logΔ

}

= O
(
min

{
logΔ, f · log( f /ε) · (logΔ)γ

})
.

Therefore, since α = 2 in this case, the runtime is bounded
by

O (logΔ + f · log( f /ε))
= O

(
f · log( f /ε) + min

{
logΔ, f · log( f /ε) · (logΔ)γ

})
.

��
Let W � maxv w(v). By setting ε = 1/(nW ), we conclude
the following result for an f -approximation (recall that the
vertex degrees and weights are polynomial in n):

Corollary 2 Algorithmmwhvc computes an f -approximation
in O( f log n) rounds.

Additionally, we get the following range of parameters for
which the round complexity is optimal:

Corollary 3 Let f = O
(
(logΔ)0.99

)
and ε = (logΔ)−O(1).

Then, Algorithmmwhvc computes an ( f +ε)-approximation

in O
(

logΔ
log logΔ

)
rounds.

For f = O(1) we also get an extension of range of parame-
ters for which the round complexity is optimal. This exten-
sion is almost exponential compared to the ε = (logΔ)−O(1)

of [5].

Corollary 4 Let f = O(1) and ε = 2−O
(
(logΔ)0.99

)
. Then

our algorithm computes an ( f + ε)-approximation and ter-

minates in O
(

logΔ
log logΔ

)
rounds.

5 Approximation of covering ILPs

In this section, we present a reduction from solving covering
integer linear programs (ILPs) to mwhvc. This reduction
implies that one can distributively compute approximate

solutions to covering ILPs using a distributed algorithm for
mwhvc.

Notation.LetN denote the set of natural numbers, includ-
ing 0. Let A denote a realm×nmatrix, b ∈ R

n , andw ∈ R
n .

Let LP(A,b,w) denote the linear program min wT · x sub-
ject to A · x ≥ b and x ≥ 0. Let I L P(A,b,w) denote the
integer linear program min wT · x subject to A · x ≥ b and
x ∈ N

n .

Definition 2 The linear program LP(A,b,w) and integer
linear program I L P(A,b,w) are covering programs if all
the components in A,b,w are non-negative.

5.1 Distributed setting

We denote the number of rows of the matrix A by m and the
number of columns by n. Let f (A) (resp., Δ(A)) denote the
maximumnumber of nonzero entries in a row (resp., column)
of A.

Given a covering ILP, I L P(A,b,w), the communica-
tion network N (I L P) over which the ILP is solved is the
bipartite graph N = (X × C, E), where: X = {x j } j∈[n],
C = {ci }i∈[m], and E = {(x j , ci ) | Ai, j 	= 0}. We refer to
the nodes in X as variable nodes, and to those in C as con-
straint nodes. Note that the maximum degree of a constraint
node is f (A) and the maximum degree of a variable node is
Δ(A).

We assume that the local input of every variable node
x j consists of w j and the j’th column of A (i.e., Ai, j , for
i ∈ [m]). Every constraint vertex ci is given the value of bi as
its local input.We assume that these inputs can be represented
by O(log(nm)) bits. In ( f + 1) rounds, every variable node
v j can learn all the components in the rows i of A such that
Ai, j 	= 0 as well as the component bi .

5.2 Zero-one covering programs

The special case in which a variable may be assigned only
the values 0 or 1 is called a zero-one program. We denote
the zero-one covering ILP induced by a matrix A and vec-
tors b and w by ZO(A,b, z). Every instance of the mwhvc
problem is a zero-one program in which the matrix A is the
incidence matrix of the hypergraph. The following lemma
deals with the converse reduction.

Lemma 3 Every feasible zero-one covering program ZO(A,

b,w) can be reduced to an mwhvc instance with rank f ′ <

f (A) and degree Δ′ < 2 f (A) · Δ(A).

Proof Let Ai denote the i’th row of thematrix A. For a subset
S ⊆ [n], let IS denote the indicator vector of S. Let x ∈
{0, 1}n and let σi � { j ∈ [n] | Ai, j 	= 0}. Feasibility implies
that Ai · Iσi ≥ bi , for every row i . Let Si denote the set of
all subsets S ⊂ [n] such that the indicator vector IS does not

123



Optimal distributed covering algorithms

satisfy the i’th constraint, i.e., Ai · IS < bi The i’th constraint
is not satisfied, i.e., Ai ·x < bi , if and if only there exists a set
S ∈ Si such that x = IS . Hence, Ai ·x < bi if and only if the
truth value of the following DNF formula is true: ϕi (x) �∨

S∈Si

∧
j∈σi\S not(x j ). ByDeMorgan’s law,weobtain that

not(ϕi (x)) is equivalent to a monotone CNF formula ψi (x)
such that ψi (x) has less than 2 f (A) clauses, each of which
has length less than f (A). We now construct the hypergraph
H for the mwhvc instance as follows. For every row i and
every S ∈ Si , add the hyperedge ei,S = σi \ Si . (Feasibility
implies that ei,S is not empty.) Given a vertex cover C of
the hypergraph, every hyperedge is stabbed by C , and hence
IC satisfies all the formulae ψi (x), where i ∈ [m]. Hence,
Ai · IC ≥ bi , for every i . The converse direction holds as
well, and the lemma follows. ��

How does N (I L P) (a bipartite graph withm+n vertices)
simulate the execution of mwhvc over the hypergraph H?
Each variable node x j simulates all hyperedges ei,S , where
j ∈ σi and S ∈ Si . First, the variable nodes exchange their
weights with the variables nodes they share a constraint with
in O( f (A)) rounds – first every x j broadcasts its ownweight
and then each ci sends all neighbors the weights it received.
At each iteration, the variable node sends a raise/stuck mes-
sage and whether its level was incremented. 5 Notice that
the number of rounds required for each such iteration is
O(1 + f (A)/ log n) (i.e., constant for f (A) = O(log n)).
Each edge node ci then broadcasts to all vertices two f (A)-
bit messages that indicate two subsets of vertices of the edge:
those that sent a raise message (the complement sent a stuck
message) and those that incremented their level. Each vari-
able node x j knows how to update its bid with every ei,S for
which j ∈ σi and S ∈ Si .

We summarize the complexity of the distributed algorithm
for solving a zero-one covering program.

Claim 5 Denoting by T ( f ,Δ, ε) is the running time of
Algorithm mwhvc, There exists a distributed congest
algorithm for computing an ( f + ε)-approximate solu-
tion for zero-one covering programs with running time of
O((1 + f (A)/ log n)·T ( f (A), 2 f (A) · Δ(A), ε)).

5.3 Reduction of covering ILPs to zero-one covering

Consider the covering ILP I L P(A,b,w). We present a
reduction of the ILP to a zero-one covering program.

Definition 3 DefineM(A,b)�max j maxi
{

bi
Ai, j

| Ai, j 	=0
}
.

We abbreviate and write M for M(A,b) when the context is
clear.

5 One needs to modify the mwhvc algorithm slightly so that, in each
iteration, the level of every vertex is increased by at most 1. We defer
the details to the full version.

Proposition 1 Limitingx to the box [0, M]n does not increase
the optimal value of the ILP.

Claim 6 Every covering ILP, I L P(A,b,w), can be approxi-
mated by a zero-one covering program ZO(A′,b,w′), where
f (A′) ≤ f (A) · �log2(M) + 1� and Δ(A′) = Δ(A).

Proof Let B = �log2 M�. Limiting each variable x j by
M means that we can replace x j by B zero-one variables{
x j,�

}B−1
�=0 that correspond to the binary representation of x j ,

i.e., x j = ∑B−1
�=0 2� · x j,�. This replacement means that the

dimensions of thematrix A′ arem×n′, where n′ = n ·B. The
j’th column A( j) of A is replaced by B columns, indexed 0
to B − 1, where the �’th column equals 2� · A( j). The vector
w′ is obtained by duplicating and scaling the entries of w in
the same fashion. ��
Combining Claims 5 and 6 , we obtain the following result.

Theorem 3 There exists a distributed congest algorithm for
computing an ( f (A′) + ε) = ( f (A) · �log2(M) + 1� + ε)-
approximate solution for covering integer linear programs
I L P(A,b,w) with running time of O((1 + f (A)/ log n)·
T ( f (A) · logM, 2 f (A) · M · Δ(A), ε)), where T ( f ,Δ, ε) is
the running time of Algorithm mwhvc.6

Proof Let fHVC , fZO , f I L P denote the ranks of the hyper-
graph vertex cover instance, zero-one covering program, and
ILP, respectively. We use the same notation for maximum
degrees. The reduction of zero-one programs to mwhvc
in Lemma 3 implies that fHVC ≤ fZO and ΔHVC ≤
2 fZO ·ΔZO . The reduction of covering ILPs to zero-one pro-
grams in Claim 6 implies that fZO ≤ f I L P · (1 + logM)

and ΔZO ≤ ΔI L P . The composition of the reductions gives
fHVC ≤ f I L P · (1 + logM) and ΔHVC ≤ 2 f I L P ·(1+logM) ·
ΔI L P = 2 f I L P · 2M · ΔI L P . ��

After some simplifications, the running time of the result-
ing algorithm for ( f ·�log2(M)+1�+ε)-approximate integer
covering linear programs is

O ((1 + f / log n)

·
(

logΔ

log logΔ
+ ( f · logM)1.01 · log ε−1 · (logΔ)0.01

))

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material

6 In the conference version of this paper, the theorem mistakenly claim
that an ( f + ε) approximation is achieved.

123



R. Ben-Basat et al.

in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

A adaptation to the CONGESTmodel

We need to show that the message lengths in Algorithm
mwhvc are O(log n).

1. In round 0, every vertex v sends its weight w(v) and
degree |E(v)| to every hyperedge in e ∈ E(v).We assume
that theweights anddegrees are polynomial inn, hence the
length of the binary representations of w(v) and |E(v)| is
O(log n). Every hyperedge e sends back to every v ∈ e the
pair (w(ve), |E(ve)|), where ve has the smallest normal-
ized weight, i.e., ve = argminv∈e{w(v)/|E(v)|}. Every
vertex v ∈ e locally computes bid0(e) = w(ve)/(2 ·
|E(ve)|) and δ0(e) = bid0(e).

2. In round i ≥ 1, every vertex sendsmessages.Messages of
the sort: “e is covered”, “raise”, or “stuck” require only a
constant number of bits. the increment of v’s level needs
to be sent to the edges in e(v). these increments require
o(log z) = o(log n) bits.

3. Every edge e sends to every v ∈ e the number of times that
bid(e) is halved in this iteration. This message is O(log z)
bits long.

4. Every edge sends the final bid to the vertices. Instead of
sending the value of the bid, the edge can send a single
bit indicating whether the bid was multiplied by α.

5. Finally, if α = α(e) is set locally based on the local max-
imum degree maxv∈e |E(v)|, then every vertex v sends
its degree to all the edges e ∈ E(v). The local maximum
degree for e is sent to every vertex v ∈ V , and this param-
eter is used to compute α(e) locally.

B algorithmwith at most one level increment
per iteration

We propose to do a single change that will ensure that no
vertex levels up more than once per iteration. To that end, we
modify Line 3f of our mwhvc algorithm to

– For every uncovered edge e, if all incomingmessages are
“raise” bid(e) ← α · bid(e). Send bid(e) to every v ∈ e,
who updates δ(e) ← δ(e) + bid(e)/2.

That is, the algorithm remains intact except that the dual
variables δ(e) are raised by bid(e)/2 rather than by bid(e).

Intuitively, this guarantees that a vertex’s slack does not
reduce by more than 50% in each iteration and therefore
its level may increase by at most one. We revisit the proof
of 3, and, specifically, the Proof of feasibility of δi−1(e) for
i > 1.

Proof of feasibility of δi−1(e) for i > 1.Consider a vertex
v. If v joins C in iteration i − 1, then δi−1 = δi−2, and the
packing constraint of v holds by the induction hypothesis. If
v /∈ C , then by δi−1(e) = δi−2(e) + bidi−1(e)/2, Claim 2,
and the induction hypothesis for Eq. 1, we have

∑
e∈E(v)

δi−1(e) =
∑

e∈E(v)

(δi−2(e) + bidi−1(v)/2)

≤
(
1 − 0.5�i−1(v)+1 + 0.5�i−1(v)+2

)

·w(v) =
(
1 − 0.5(�i−1(v)+1)+1

)
· w(v) .

(4)

��
As evident by Eq. 4, the vertex v’s level may increase by

at most once in each iteration.

Corollary 5 For any iteration i ≥ 1 and vertex v: �i (v) ≤
�i−1(v) + 1.

We note that the change to the algorithm does not affect the
correctness of claims 2, 3, 4 and Lemma 1. Lemma 2 changes
slightly, as there can now be twice asmany v-stuck iterations:

Lemma 4 For every vertex v and level �(v), the number of
v-stuck iterations is bounded by 2α.

Proof Notice that when v reached the level �(v), we
had

∑
e∈E(v) δ(e) ≥ w(v)(1 − 0.5�(v)). The number

of v-stuck iterations is then bounded by the number of
times it can send a “stuck” message without reaching∑

e∈E(v) δ(e) > w(v)(1 − 0.5�(v)+1). Indeed, once this
inequality holds, the level of v is incremented. Every stuck
iteration implies, by Line 3e, that

∑
e∈E ′(v) bid(e) > 1

α
·

0.5�(v)+1 · w(v). Therefore, we can bound the number of

iteration by w(v)(1−0.5�(v)+1)−w(v)(1−0.5�(v))
1
α
·0.5�(v)+1·w(v)/2

= 2α. ��

We conclude that the algorithm remains correct and its
asymptotic complexity does not change.

References

1. Astrand, M., Floréen, P., Polishchuk, V., Rybicki, J., Suomela, J.,
Uitto, J.: A local 2-approximation algorithm for the vertex cover
problem. In: DISC (2009)

2. Astrand, M., Suomela, J.: Fast distributed approximation algo-
rithms for vertex cover and set cover in anonymous networks. In:
SPAA (2010)

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Optimal distributed covering algorithms

3. Bar-Yehuda, R., Censor-Hillel, K., Ghaffari, M., Schwartzman, G.:
Distributed approximation of maximum independent set and max-
imum matching. In: ACM, PODC (2017)

4. Bar-Yehuda, R., Censor-Hillel, K., Schwartzman, G.: A distributed
(2 + ε)- approximation for vertex cover in o(logΔ/εloglogΔ)

rounds. J. ACM (2017)
5. Bar-Yehuda, R., Censor-Hillel, K., Schwartzman, G.: A distributed

(2 + ε)- approximation for vertex cover in o(logΔ/εloglogΔ)

rounds. J. ACM (2017)
6. Ben-Basat, R., Even, G., Kawarabayashi, K.-I., Schwartzman, G.:

A Deterministic distributed 2-approximation for weighted vertex
cover in O(log n logΔ/ log2 logΔ) rounds. In: SIROCCO (2018)

7. Chang, Y., Kopelowitz, T., Pettie, S.: An exponential separation
between randomized and deterministic complexity in the LOCAL
model. In: FOCS (2016)

8. Cole, R., Vishkin, U.: Deterministic coin tossing with applications
to optimal parallel list ranking. Inf Control (1986)

9. Even, G., Ghaffari, M., Medina, M.: Distributed set cover approx-
imation: primal-dual with optimal locality. In: DISC (2018)

10. Ghaffari,M.: An improved distributed algorithm formaximal inde-
pendent set. Soc. Ind. Appl. Math. SODA (2016)

11. Ghaffari, M., Su, H.: Distributed degree splitting, edge coloring,
and orientations. In: SODA (2017)

12. Grandoni, F., Könemann, J., Panconesi, A.: Distributed weighted
vertex cover via maximal matchings. ACM Trans. Algorithms
(2008)

13. Hochbaum, D.S.: Approximation algorithms for the set covering
and vertex cover problems. SIAM J. Comput. (1982)

14. Karp, R.M.: Reducibility among combinatorial problems. In:
Proceedings of a symposiumon theComplexity of Computer Com-
putations (1972)

15. Khuller, S., Vishkin, U., Young, N.E.: A primal-dual parallel
approximation technique applied toweighted set and vertex covers.
J. Algorithms (1994)

16. Koufogiannakis, C., Young, N.E.: Distributed algorithms for cov-
ering, packing andmaximumweightedmatching. Distrib. Comput.
(2011)

17. Kuhn, F.: The price of locality: exploring the complexity of dis-
tributed coordination primitives. PhD thesis, ETH Zurich (2005)

18. Kuhn, F., Moscibroda, T.,Wattenhofer, R.: The price of being near-
sighted. In: SODA (2006)

19. Kuhn, F., Moscibroda, T., Wattenhofer, R.: Local computation:
Lower and upper bounds. J. ACM (2016)

20. Panconesi, A., Rizzi, R.: Some simple distributed algorithms for
sparse networks. Distrib. Comput. (2001)

21. Polishchuk, V., Suomela, J.: A simple local 3-approximation algo-
rithm for vertex cover. Inf. Process. Lett. (2009)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123


	Optimal distributed covering algorithms
	Abstract
	1 Introduction
	1.1 Related work
	1.2 Our contributions
	1.3 Tools and techniques

	2 Problem formulation
	3 Distributed approximation algorithm for MWHVC
	3.1 Parameters and variables
	3.2 Algorithm MWHVC

	4 Algorithm analysis
	4.1 Feasibility and approximation ratio
	4.2 Communication rounds analysis
	4.2.1 Raise or stuck iterations
	4.2.2 Bound on the number of rounds


	5 Approximation of covering ILPs
	5.1 Distributed setting
	5.2 Zero-one covering programs
	5.3 Reduction of covering ILPs to zero-one covering

	A adaptation to the CONGEST model
	B algorithm with at most one level increment per iteration
	References




