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Artificial intelligence (AI) could have the potential to accurately classify mammograms according to the presence or 
absence of radiological signs of breast cancer, replacing or supplementing human readers (radiologists). The UK 
National Screening Committee’s assessments of the use of AI systems to examine screening mammograms continues 
to focus on maximising benefits and minimising harms to women screened, when deciding whether to recommend 
the implementation of AI into the Breast Screening Programme in the UK. Maintaining or improving programme 
specificity is important to minimise anxiety from false positive results. When considering cancer detection, AI test 
sensitivity alone is not sufficiently informative, and additional information on the spectrum of disease detected and 
interval cancers is crucial to better understand the benefits and harms of screening. Although large retrospective 
studies might provide useful evidence by directly comparing test accuracy and spectrum of disease detected between 
different AI systems and by population subgroup, most retrospective studies are biased due to differential verification 
(ie, the use of different reference standards to verify the target condition among study participants). Enriched, 
multiple-reader, multiple-case, test set laboratory studies are also biased due to the laboratory effect (ie, radiologists’ 
performance in retrospective, laboratory, observer studies is substantially different to their performance in a clinical 
environment). Therefore, assessment of the effect of incorporating any AI system into the breast screening pathway 
in prospective studies is required as it will provide key evidence for the effect of the interaction of medical staff with 
AI, and the impact on women’s outcomes.

Introduction
In the UK, breast cancer screening is offered to women 
aged 50–70 years every 3 years, with two mammograms 
taken of each breast. Mammograms are examined 
separately by two experts to decide whether to recall 
women for further tests. These experts are breast radio­
logists, radiography-advanced practitioners, or clinicians 
with specialist training to examine mammograms—
henceforth, for brevity, referred to as radiologists. In case 
of disagreement, a third radiologist arbitrates. Cancer is 
diagnosed via histopathology after biopsy. In the USA, 
single-reader mammography (ie, one radiologist’s 
interpretation) is offered every 1 or 2 years, and, in most 
of Europe, two-reader mammography is offered every 
2 years.1

Artificial intelligence (AI) is a computer system that 
can analyse complex data and recognise patterns.2 AI-
based technologies could potentially have a role in almost 
every stage of the breast screening pathway. This Health 
Policy paper considers AI systems that examine 
screening mammograms for signs of cancer. How AI 
systems are proposed to be used and how radiologists 
interact with these systems are very important aspects to 
consider in the evaluation, because it is the combination 
of experts and AI in clinical practice that will determine 
overall accuracy and women’s outcomes (figure 1). AI has 
the potential to improve the quality of care by detecting 
cancers missed by current practice, reduce shortage of 
radiologists, and reduce delays in decision making that 
might have detrimental effects on women’s lives.3 
However, AI might have the opposite effect, depending 
on the accuracy of AI systems and how radiologists 
interact with them.

The use of computers to interpret breast imaging is not 
novel. In the USA, computer-aided detection (a 
technology designed to reduce the risk of missing 
pathologies of interest, which assists radiologists in the 
interpretation of mammograms by marking specific 
areas of images that might seem atypical) was imple—
mented into mammographic practice after US Food and 
Drug Administration approval in 1998, and insurance 
reimbursement in 2002.4 This implementation occurred 
despite evidence of clinical benefits being derived from 
retrospective studies, which were not replicated in real-
life situations.4–6 Renewed interest in automated 
interpretation of mammograms follows the development 
and promotion of algorithms that are based on deep 
learning, where the AI system learns complex asso—
ciations in the data, which are mathematically modelled 
by use of artificial neural networks.7 A computer 
processes hundreds of thousands of images and contin­
uously learns to classify images by analysing artificial 
neural networks. These networks are layers of mathe­
matical operations, which the computer learns on its 
own, in a structured way, so that multiple layers can be 
analysed and combined, similar to how the human brain 
operates.8,9 The key difference between computer-aided 
detection and deep learning is that deep learning does 
not need to be explicitly programmed by a person, but 
trains using its own network until it can correctly classify 
images unaided.

A 2021 review examining the accuracy of AI systems 
for the detection of breast cancer in mammography 
screening concluded that the current evidence is a long 
way from having the quality and quantity required for the 
implementation of AI systems into clinical practice.10 
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Previous research has sought to compare national 
approaches to screening evidence synthesis and policy 
making.11–13 In this Health Policy paper, we describe the 
considerations and evidence required to allow judgement 
on whether to recommend the implementation of AI 
into the UK National Health Service (NHS) Breast 
Screening Programme. In particular, we focus on the 
potential key outcomes that require investigation and the 
study designs needed to investigate them.

Goals of AI in breast screening
The UK National Screening Committee (NSC) is 
responsible for advising the four UK Governments on 
changes to screening programmes. There is consensus 
among the UK NSC,14 the National Institute of Health 
and Care Excellence,15 the US and Canadian Preventive 
Services Task Force,16 and the Australian Medical 
Services Advisory Committee17 that medical policy 
decisions should be driven by patient and public health 
outcomes, and that test accuracy alone is insufficient. 
These views are supported by existing methodological 
literature on test evaluation.18–20 The UK NSC has 
received much interest from manufacturers, researchers, 
and other stakeholders to assess the potential for AI to 
examine mammograms in the NHS Breast Screening 
Programme because of developments in the technology. 
Any proposed change to breast screening should be 
acceptable to women invited for screening and should 

improve their health outcomes. The goals of AI in the 
NHS Breast Screening Programme should therefore be 
considered in this context. An independent review 
estimated that breast screening in the UK prevents 
1300 deaths from breast cancer annually but also risks 
harming around 4000 women with overdiagnosis—the 
unnecessary diagnosis and treatment for cancer that 
would never have become symptomatic in a woman’s 
lifetime.21 Additionally, 70 000 women could also 
experience anxiety because of false positive results 
(ie, when a screening mammogram shows suspicious 
findings but further tests show no cancer).21,22

Breast cancer screening could be improved by reducing 
mortality, treatment-related morbidity, false positive 
recalls, overdiagnosis, or by maintaining current clinical 
outcomes with clear, additional advantages over the 
current screening programme, such as logistic 
efficiencies, increases in workforce capacity, or cost 
reduction. The effect of AI on some of these health 
outcomes, such as mortality, is unlikely to be measurable 
directly in a study, because of the sample size requirement 
and cost of such a study. We discuss approaches to 
overcome these issues, while maintaining focus on the 
benefits and harms to women screened for breast cancer.

Key outcomes to measure
The outcomes of interest to the UK NSC relate to the 
benefits and harms of breast cancer screening. 

Figure 1: Selection of potential roles of AI in screening pathway
Red boxes indicate instances where AI replaces radiologists completely or could have a strong direct influence on radiologists’ behaviour, such as providing prompts on the mammograms with the aim 
of assisting the radiologist. Yellow boxes denote instances where AI could have an indirect effect on radiologists’ behaviour, for example by removing straightforward, normal mammograms and hence 
increasing cancer prevalence and average case difficulty in the mammograms examined by the radiologist. Green boxes indicate no influence of AI. In the AI prescreening role, in addition to the 
scenario shown, an additional scenario (not shown) exists where AI can be used to triage low-risk examinations to a single radiologist for review, and moderate-risk or high-risk examinations to two 
radiologists for independent review. AI=artificial intelligence. 0=recommendation not to recall for further tests. R=recommendation to recall for further tests because there are indications of cancer. *AI 
is used as radiologist’s aid to support the decision of the second radiologist, but it could equally be used to support the decision of the first radiologist or arbitration, or both. †Some centres opt for 
arbitration decision if patients are recalled by both radiologists, to reduce recall rate.
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Consideration is given to the overall (net) effect of any 
proposed change across different benefits and harms, 
taking into account how many people are affected by 
each benefit or harm, and the nature and magnitude of 
the effect. Assessment methods and measured outcomes 
depend on the magnitude and type of proposed change.14 
Changes to tests can cause a wide range of downstream 
consequences, such as an increase in the number of 
women with false positive results being referred for 
further testing, which in turn causes unnecessary anxiety 
in women, delays in workflow, and reduced capacity by 
staffing additional assessment clinics.19 Here, we suggest 
some potential outcomes of clinical significance in breast 
screening that can be used in studies, but exact outcomes 
chosen in any evidence review will depend on the nature 
of the proposed change.

Evidence of test accuracy is an important step in 
evaluation. Test accuracy of AI systems used in any new 
proposed pathway (figure 1) informs about the ability of 
these systems to correctly identify women with cancer 
(sensitivity) and without cancer (specificity). Specificity is 
a key outcome because small changes in specificity might 
have a large effect on the number of false positive recalls 
in a population screening programme, with each recall 
causing harm to the woman screened and a financial and 
workforce cost to the NHS.23 The specificity of the NHS 
Breast Screening Programme is higher than 96%.24

Sensitivity is a more complex outcome to interpret. 
Women who have breast cancer detected at screening 
might receive mortality or morbidity benefit, or 
overdiagnosis harm, or they might neither benefit, nor 
be harmed by detection of cancer at screening because 
they would have had the same outcomes after 
symptomatic detection. Therefore, the types of cancer 
detected (ie, spectrum of disease) are as important as the 
number of cancers detected, as they are both linked to 
the benefits and harms of screening.20,25 For example, 
early detection of grade 3 cancer has been linked to 
mortality benefit,26 whereas detection of low-grade ductal 
carcinoma in situ might be linked to harm from 
overdiagnosis and overtreatment.21 An AI system able to 
detect the same types or more aggressive types of cancer 
with similar sensitivity to a radiologist is preferable to an 
AI system with higher sensitivity that detects extra 
patients who are, however, predominantly diagnosed 
with low-grade ductal carcinoma in situ. Avoiding drift 
towards detection of less clinically significant cancer will 
result in AI systems that are more likely to improve the 
balance between benefits and harms.

Reduction in numbers of cancers detected 
symptomatically between screening rounds (ie, interval 
cancers) is another key outcome, because these cancers 
tend to be more aggressive, higher grade, and with 
poorer prognosis than cancers detected at screening, and 
might benefit from more sensitive screening tests 
leading to earlier detection.27 By definition, interval 
cancers are not associated with harm from overdiagnosis 

at screening. Similarly, information about the number of 
cancers and spectrum of disease detected symptomatically 
in the years after screening or detected at subsequent 
screening rounds could be important. For example, the 
mechanism by which breast screening might reduce 
mortality and morbidity is through a stage shift, in which 
cancer is detected at an earlier stage than the stage of 
cancer found if there had been no screening.28 Therefore, 
if an AI system was substantially more sensitive than 
current practice, evidence about whether that extra 
detection of patients with cancer at screening led to fewer 
symptomatic cancers or fewer late-stage cancers would 
be important.

Study designs to assess test accuracy
Studies to assess the accuracy of AI systems can be 
retrospective or prospective, with a range of study designs 
(figure 2, table). Studies of most interest to inform test 
accuracy for breast screening are comparative, directly 
comparing AI with other AI and radiologists within the 
same study, because these direct comparisons are not 
affected by between-study differences that introduce 
bias. Analyses at clinically relevant thresholds are more 
useful than area under the receiver operating 
characteristic (ROC) curve, because the shape of the 
ROC curve and the area under it do not affect clinical 
outcomes; only the test accuracy at the threshold used in 
practice is relevant to women’s outcomes at screening.29

Large retrospective, test accuracy studies are an 
important step of the assessment process.30 These studies 
use test sets of mammograms with known outcomes (ie, 
reference standard), against which AI systems can be 
assessed. The reference standard is established by use of 
retrospective clinical data (eg, biopsy results) from 
screening databases. Such databases enable direct 
comparison of several different AI systems on the same 
mammograms, with either the decision of the original 
radiologist made as part of clinical practice (retrospective, 
comparative, test accuracy studies) or the decisions of 
multiple radiologists outside of clinical practice, under 
laboratory conditions (enriched, multiple-reader, 
multiple-case, test set laboratory studies). In this paper, 
we focus on retrospective, comparative, test accuracy 
studies because the accuracy of radiologists to read test 
sets in the laboratory is not generalisable to clinical 
practice (ie, the laboratory effect).31

Large test sets can be established at relatively low cost 
and should use external validation in either consecutive 
or randomly selected mammograms; these test sets 
should also be generalisable to the UK screening 
population. Very large retrospective studies of 
consecutively enrolled women attending their breast 
screening can be undertaken: electronic health records 
can provide data from further testing of women with 
positive screening results and allow long-term sympto­
matic follow-up of women with negative screening 
results during the screening interval (ie, 3 years). The 
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large sample size of these studies allows for tight 
confidence intervals around specificity estimates 
required for population screening, determination of the 
spectrum of disease detected (when concordance with 
radiologists is high), and estimation of accuracy in 
population subgroups. Accuracy of AI by population 
subgroup, such as age or ethnicity, is important for 
assessing the effect of AI on inequality, which could be 
an issue because, if AI systems have been trained in one 
ethnic group (eg, White people), they might be less 
accurate in other ethnic groups.32

Retrospective studies cannot quantify the overall effect 
on accuracy or interval cancers when AI is integrated 
into the screening pathway, because they cannot measure 
the effect of AI when it is incorporated into the workflow 
with radiologists. Furthermore, retrospective studies 
might not correctly establish test accuracy or the 
spectrum of disease detected if concordance between AI 
and radiologists is low or if AI has substantially higher 
sensitivity. These issues arise because test sets are subject 
to verification bias, which occurs when two different 
reference standards for the outcome are used to verify 
the disease of interest in different groups of patients. The 
first reference standard is diagnosis of cancer at 
assessment, and the second reference standard is 

follow-up and diagnosis of cancer at symptomatic 
(interval) presentation or next screen. Women recalled 
for further tests by the original radiologists have both 
standards applied as they could be diagnosed with cancer 
either at assessment or at follow-up. Women not recalled 
for further tests by the original radiologist receive either 
no reference standard (partial verification) or only the 
second reference standard of follow-up to subsequent 
cancer (differential verification), which is less likely to 
detect cancer when present.33

Verification bias is introduced when women are 
recalled for further tests on the basis of the radiologist’s 
decision, because cancer, if present, is more likely to be 
found in patients receiving follow-up tests after recall 
from screening, than in patients who are not recalled for 
further tests and, instead, simply receive follow-up when 
cancer presents symptomatically (second reference 
standard). This is because some cancers detected at 
screening follow-up tests would never result in symptoms 
or might present symptomatically only after the follow-
up period of the study. Therefore, women with positive 
AI screening results who are not recalled by the original 
radiologists (ie, defined as negative in the test sets) 
cannot be characterised; the AI results might be true 
positive with unknown disease spectrum, which 

Figure 2: Four comparative study designs used to assess accuracy of AI and radiologists in breast screening
Solid arrows indicate uninterrupted follow-up to determine whether women develop interval cancer. Dashed arrows denote that, although follow-up of women to 
interval cancer is possible, the absolute number of interval cancers in women with negative AI screening results will be underestimated, because follow-up to interval 
cancers is truncated when cancer is detected at screening by the radiologist comparator test. Decisions are either to recall women for further tests (+) or not (–). 
AI=artificial intelligence. OR=original radiologist. R=radiologist. *AIp denotes the decision of the new screening pathway that uses AI, rather than the decision of the AI 
system alone. The two retrospective study designs can only measure accuracy of the AI system in isolation. Prospective, comparative, test accuracy studies can 
measure accuracy of AI alone or the new screening pathway that uses AI, whereas prospective, test-treat, randomised controlled trials evaluate the new screening 
pathway that uses AI.
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therefore might be clinically significant or overdiagnosed 
cancer, or false positive. This verification bias is reduced 
by including interval cancers and cancers detected at next 
screening, but it cannot be removed entirely because not 

all cancers diagnosed by radiologists at screening would 
be detected in the interval or at the next screen. For 
example, overdiagnosed cancer might never appear 
symptomatically, and cancers detected by the AI system 

Value relative to other design options Limitations and biases relative to other design options

Enriched, multiple-reader, multiple-case, test set laboratory study

AI systems applied to test set of 
mammograms with known outcomes from 
screening (ie, reference standard). The 
reference standard is established by use of 
retrospective data (eg, biopsy and follow-up 
results) from screening databases. The test 
set is usually enriched with extra patients 
with cancer to enable estimation of 
sensitivity in smaller test sets. The 
comparator is independent radiologists, who 
are invited to read mammograms outside 
clinical practice. The decisions of AI and 
independent radiologists are compared with 
the reference standard. 

Quick to complete. Can directly compare the 
performance of multiple AI systems on the same 
images, or AI as radiologist's aid. Introduces less 
incorporation bias than retrospective, comparative, 
test accuracy study because both AI and 
independent radiologists do not form part of the 
reference standard, as they have neither been used 
in the original decision of whether to recall for 
further tests, nor used in deciding which further 
tests to do or for identifying the location of 
anomalies for biopsy. Relatively rapid to perform 
compared with other study designs because 
enrichment provides adequate numbers of patients 
with cancer.

Biased by the laboratory effect: accuracy of independent radiologists in these studies 
cannot be generalised to clinical practice because of differences existing between 
laboratory and clinical practice in reading conditions and prevalence of cancer. Low 
generalisability to clinical practice. Pronounced selection and spectrum biases possible, if 
selection of women and enrichment are not on a consecutive or random basis. Temporal 
separation usually needed between AI-aided and unaided reads, to diminish recall bias. 
Cannot assess and compare the effect of decisions of AI with those of radiologists on 
clinically significant outcomes, because of the difficulty in extrapolating the complete 
pathway change (ie, using AI) in clinical practice, where prevalence of cancer is lower, from 
the single decision taken in a laboratory environment.

Retrospective, comparative, test accuracy study

AI systems applied to test set of 
mammograms with known outcomes from 
screening (ie, reference standard). The 
reference standard is established by use of 
retrospective data (eg, biopsy and follow-up 
results) from screening databases. The AI is 
compared with the reference standard and 
with the original decisions of radiologists 
made in clinical practice.

Quick to complete. Good starting point for 
estimating accuracy of AI. Can directly compare the 
performance of multiple AI systems on the same 
images. Not subject to the laboratory effect.

Prone to partial verification bias when women who are not recalled by the
original radiologist do not receive any follow-up to check if they have cancer (they
do not receive any further tests such as a biopsy [the reference standard], and they are not 
followed up to check for symptomatic presentation of cancer [interval cancer]). Prone to 
differential verification bias when women receive different reference standards depending 
on whether they were recalled for further tests by the original radiologist. If they were 
recalled, they receive follow-up tests such as biopsy, whereas, if they were not recalled, they 
are simply followed up to record subsequent cancers (future symptomatically detected 
cancers [interval cancers] or next-round screen detected cancers). Women who were 
recalled for further tests are more likely to have cancer detected, if present. Prone to 
incorporation bias, which occurs when results of the radiologist index test form part of the 
reference standard. Presence of differential verification bias and incorporation bias results 
in uncertainty on true status of women with positive results from AI but negative results 
from original radiologist. Cannot assess complex interaction between AI and radiologists; 
for example, although it is often assumed that radiologists will recall women who receive 
AI positive results, in clinical practice they might override AI decisions depending on how AI 
is implemented. Cannot assess and compare the effect of decisions of AI with those of 
radiologists on clinically significant outcomes.

Prospective, comparative, test accuracy study

Mammograms of women examined via both 
the original and new screening pathways 
(without and with AI). If women receive 
positive screening results from either 
pathway, they are recalled for further 
tests (eg, taking a biopsy where clinically 
indicated). The reference standard 
corresponds to further tests (including 
biopsy) in women recalled by either AI or 
radiologists, and it might also include longer-
term follow-up to symptomatically detected 
cancer (interval cancer) or to cancer detected 
at next screening. 

Least biased method for measuring accuracy. 
Reduces or removes partial and differential 
verification biases because women with positive 
results from both AI and radiologists receive the 
same reference standard. Reduces or removes 
incorporation bias only if follow-up tests are 
blinded to the type of index tests (eg, by changing 
AI’s and radiologist’s annotations of images to the 
same appearance). Can assess the interaction 
between AI and radiologists.

Low prevalence of anomalies in screening means many women are required to achieve 
adequate study power, increasing study time. Comparing the performance of multiple AI 
systems in this study design is likely to be more logistically challenging than in 
retrospective study designs. Cannot accurately measure the effect of implementing the AI 
test on interval cancers, because uninterrupted follow-up is not possible since women are 
recalled for further tests by other index tests (eg, either by the radiologist or other AI 
systems that are used as comparator in the study). 

Prospective, test-treat, randomised controlled trial

Women randomly allocated to either the 
original (standard) pathway or the new, 
proposed screening pathway that 
incorporates AI. Follow-up of women to 
symptomatic (interval) cancer or to cancer 
detected at subsequent screening rounds.

Least biased method for measuring impact on 
women's outcomes. Women’s clinical trajectory 
reflects exactly what would happen in clinical 
practice with and without AI (depending on which 
group they are randomly allocated to). Can measure 
the effect of the new pathway on the number of 
interval cancers and other clinically relevant 
outcomes. Can assess the interaction between AI 
and radiologists.

Low prevalence of anomalies in screening means many women are required to achieve 
adequate study power, increasing study time. Mammograms of different women are 
examined with different tests, so no direct comparison of test accuracy on the same 
women is possible, which greatly increases the numbers needed to achieve adequate study 
power. Inefficient method for measuring accuracy.

Designs are listed in order of complexity, from least to greatest. AI=artificial intelligence.  

Table: Summary of test accuracy study designs considered by the UK National Screening Committee and their contribution to overall evidence
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but missed by the original radiologists might also be 
missed by the radiologist at the next screen.

Although retrospective studies do not provide sufficient 
evidence to implement AI systems into screening 
pathways, they can be useful as a starting point to 
establish whether a prospective study integrating AI into 
the screening pathway is worth investing in, and to 
optimise the tests and the screening pathway required 
for the study. Additionally, despite being subject to the 
previously described biases (partial verification and 
differential verification), large, consecutive, retrospective 
studies can provide other useful information, such as 
accuracy in population subgroups (eg, ethnicity), for 
which prospective studies might be underpowered.

Prospective, comparative, test accuracy studies can 
measure test accuracy when concordance between AI 
and radiologists is low, or sensitivity differs between 
them. In these instances, women are referred for further 
tests if either radiologists or AI systems suggest recall. 
Prospective, comparative, test accuracy studies cannot 
measure the effect that AI would have on interval cancers 
or clinical outcomes, because women with negative AI 
screening results are not always followed up 
uninterrupted to clinical outcomes—they might receive 
further tests based on the radiologist’s decision, 
preventing interval cancers from occurring.

Prospective, comparative, test accuracy studies can be 
used to measure accuracy of the whole testing pathway 
with AI integrated in clinical practice, and compare it 
with the accuracy of the pathway without AI. By contrast, 
retrospective studies can only assess the accuracy of 
single AI reads (ie, interpretations) of mammograms 
and not the whole testing pathway. Accuracy of the AI 
testing pathway in breast screening practice is 
substantially different to that of a single read and depends 
on how the radiologists interact with AI systems. Figure 1 
indicates some mechanisms through which the AI 
system could affect the behaviour and accuracy of 
radiologists. For example, an AI system that supports the 
radiologist’s decision by highlighting suspicious areas 
has a direct effect on accuracy. Replacing the second 
reader with an AI system can affect decisions made by 
arbitration, and change the behaviour of the radiologist 
examining mammograms. Direct comparisons, although 
more challenging to implement, remain important for 
prospective studies, because they enable comparison of 
accuracy between the original screening pathway, in 
which mammograms are examined by radiologists only, 
and the new screening pathway, in which AI is 
incorporated, to assess the differences in their 
performances.

Study designs to assess test impact
The key question for the UK NSC is the effect of the AI 
system on women’s outcomes, as part of the balance 
between benefits and harms of screening. This question 
is not answered by test accuracy alone; rather it 

necessitates information on clinically meaningful 
outcomes and their proxies, such as stage shift of cancer, 
characteristics of cancer detected, and subsequent 
development of interval cancers. The effects of the 
change to the whole testing pathway when AI is 
incorporated should be measured, rather than the AI test 
alone. These wider effects could include effects on the 
radiologist’s behaviour and the workflow. Downstream 
outcomes and broader implications require prospective 
assessment; this requirement is increasingly recognised 
internationally in the field of AI in health care or 
medicine.34,35

The least biased study designs for measuring impact on 
women's outcomes are prospective, test-treat, randomised 
controlled trials that randomly allocate women to the 
original pathway (two radiologists plus arbitration) or the 
new proposed pathway, with follow-up of women to 
clinically significant outcomes. These studies avoid the 
need to link together evidence from different studies, and 
thus minimise the risk of bias associated with differences 
among studies in a linked chain of evidence.25 In the UK, 
very large pragmatic, randomised controlled trials of AI 
systems can be undertaken, in which the trial 
randomisation and outcome collection are integrated into 
the existing reporting practices and software of the NHS 
Breast Screening Programme. The homogeneity of the 
screening pathway, quality assurance, reporting stand­
ards, and screening software across the UK makes this 
possible. Such trials have been used previously in the UK 
to investigate other variations to breast screening, such as 
the extension of the breast screening age range 
(NCT01081288) or an intervention to reduce radiologists’ 
fatigue.36 These larger trials, which included 1·2–6 million 
participants, are examples of studies that can provide 
power to detect more clinically meaningful outcomes.

Quasi-experimental studies, such as prospective cohort 
studies, and implementation evaluations can provide 
additional information about the test’s fit with, and its 
effect on, the testing pathway; however, considerations of 
these study designs are beyond the scope of this Health 
Policy paper.

Any study should also be considered for likelihood of 
generalisability to the UK, including characteristics of 
women screened, radiologists (eg, accuracy and recall 
threshold of radiologists differ substantially between 
the UK and USA37), and digital mammography and 
broader software and hardware systems. Although the 
principles of test assessment, which underpin the 
approach we have underlined in this Health Policy paper, 
apply to all countries, variations in current practice, 
decision-making structures, and broader health-care and 
societal differences will probably lead to international 
differences in approach to assessment.

Conclusions
The UK NSC’s assessments of the use of AI systems to 
examine screening mammograms will continue to focus 
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on any changes to the balance between benefits and 
harms of breast cancer screening. Although retrospective 
studies have an important role in early-stage assessment, 
they also have biases and limitations; therefore, pros­
pective studies are required to assess the effect of 
incorporating any AI system into the breast screening 
pathway.
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