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Abstract

Background and Objectives
We examined the association between the disease-modifying drugs (DMDs) for multiple
sclerosis (MS) and survival in a multiregion population-based study.

Methods

We accessed multiple administrative health databases from 4 Canadian provinces. Persons with
MS were identified and followed from the most recent of the first MS or demyelinating event or
January 1, 1996 (index date), until death, emigration, or December 31, 2017. Association
between the first-generation and second-generation DMDs and all-cause mortality was ex-
amined using stratified Cox proportional hazard models, reported as adjusted hazard ratios
(aHRs). Timing of DMD initiation was explored, with findings reported at 2, S, or 10 years
postindex date, representing very early, early, or late initiation.

Results

We identified 35,894 persons with MS; 72% were female. The mean age at index date was 44.5
years (SD = 13.6). The total person-years of follow-up while DMD-exposed was 89,180, and
total person-years while unexposed was 342,217. Compared with no exposure, exposure to any
DMD or to any first-generation DMD was associated with a 26% lower hazard of mortality
(both aHRs 0.74; 95% CI 0.56-0.98), while any second-generation DMD exposure was as-
sociated with a 33% lower hazard (aHR 0.67; 95% CI 0.46-0.98). Earlier DMD initiation (beta-
interferon or glatiramer acetate vs no exposure) was associated with a significant mortality effect
(p < 0.05), while later initiation was not (95% Cls included 1). However, the survival advantage
with earlier initiation diminished over time, no longer reaching statistical significance at 15 years
postindex date.

Discussion
Our study demonstrates an association between the DMDs for MS and improved survival in the
real-world setting.
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Glossary

aHR = adjusted hazard ratio; DMD = disease-modifying drug; ICD-9/10 = International Classification of Diseases, 9th/10th
Revision; MS = multiple sclerosis; NPV = negative predictive value.

Multiple sclerosis (MS) is a chronic immune-mediated dis-
ease affecting the CNS. Survival is negatively affected by MS,
with life expectancy typically reduced by approximately 6-14
years compared with the general population."* While im-
provements in life expectancy have been observed in persons
with MS over time, these have generally mirrored the im-
provements seen in the general population.'™

Whether the rapid uptake and use of the disease-modifying
drugs (DMDs) to treat MS has improved survival remains
poorly understood. This is in part because the safety and
efficacy of the DMDs for MS are typically examined in ran-
domized clinical trials conducted over 2-3 years; a time frame
insufficiently long to ascertain a potential impact on survival.®
Although investigators of 1 clinical trial (of beta-interferon)
tried to provide a longer-term estimate of the potential effects
of DMD on mortality,6 several study design-related concerns
were raised.” Thus, while randomized clinical trials are con-
strained in measuring the long-term effects of DMD treat-
ments on survival, studies using real-world data can fill this
knowledge gap.® A recent nested case-control study showed
that persons treated with beta-interferon for more than 3
years had a survival advantage over nontreated persons with
MS.” Whether other DMDs provide similar survival advan-
tages is unknown. Furthermore, although evidence suggests that
early DMD initiation may benefit disability-related outcomes, '
the long-term effects on survival remain uncertain.”"*

We examined the effects of DMD exposure on survival in a
MS population by using linked administrative health data
collected over 20 years.

Methods

Data Sources

We used a multiregion, population-based observational study
design. We accessed multiple administrative health data sets
from 4 provinces, comprising approximately 25% of Canada’s
population (British Columbia, Saskatchewan, Manitoba, and
Nova Scotia)."® Each provincial government delivers health-
care services to more than 98% of the population.'*"® The
administrative data were linked for each person within each
province and included provincial health insurance registries';
providing demographics (sex, birthdates, residency status,
place of residency [first 3-digit postal codes], and for Sas-
katchewan and Manitoba, death dates); physician visits; and
hospitalizations,”**" including diagnostic codes (International
Classification of Diseases [ICD]-9/10). Thus, all diagnostic
codes were based on either a physician visit (and represent
claims/billing data) or a hospitalization and were assigned at
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discharge based on the most likely reason(s) for that hospi-
talization (as determined by the attending physician[s]). Vital
statistics provided death dates in British Columbia®® and
Nova Scotia, and prescription data captured information on
all prescriptions filled (dates, quantity, and/or number of days
supplied) at outpatient and community pharmacies in British
Columbia,*® Saskatchewan, and Manitoba. Records of DMD
use in Nova Scotia including start and stop dates were pro-
vided by the Dalhousie MS Research Unit database.

Study Population

We used an algorithm to identify MS cases. The algorithm has
been validated and used across multiple Canadian provinces
and required >3 MS-specific physician visits and/or hospi-
talizations with an ICD-9/10 340/G3S5 code or a prescription
filled for a MS DMD ever, in any combination.>**® The index
date (representing the start of follow-up) was the most recent
of the first MS or related demyelinating disease diagnostic
code or MS DMD prescription filled (eTable 1, links.lww.
com/NXI/A729); the person’s 18th birthday; or January 1,
1996 (British Columbia), April 1, 1996 (Manitoba), January
1, 1997 (Saskatchewan), or January 1, 1998 (Nova Scotia).
These dates represent the first date of prescription data
availability within each province and the first full calendar or
fiscal year that the MS DMDs became available through each
provincial government’s universal health insurance plan. Most
persons would not have been exposed a DMD before the index
date apart from a very small number of persons that may have
been randomized to receive a DMD as part of a clinical trial.>®

The study end date was the earlier of death, cancellation of
health insurance plan, December 31, 2017 (British Columbia,
Manitoba, and Nova Scotia), or March 31, 2018 (Saskatchewan).

One year of residency preindex date was required to de-
termine cohort characteristics at index date. These included
age, calendar year (categorized as 1996-1999, 2000-2005,
2006-2011, or 2012-2017/18), sex, socioeconomic status
(measured by neighborhood income quintiles based on
each person’s postal code),” and comorbidity status (using
a modified Charlson Comorbidity Index, excluding
hemiplegia/paraplegia to avoid misclassifying MS-related
symptoms as comorbidity).””**

Outcome and Exposure
The primary outcome was all-cause mortality (i.e., death be-
cause of any cause).

Exposure to a DMD was defined as >6 months (180 days) of
cumulative use for beta-interferon and glatiramer acetate and
3 months (90 days) of cumulative use for natalizumab,
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fingolimod, dimethyl fumarate, and teriflunomide. The du-
ration of DMD exposure was measured using the days sup-
plied (available in British Columbia and Manitoba), the
quantity dispensed (Saskatchewan), or the start and stop
dates (available in Nova Scotia). Gaps in DMD supply of <30
days were allowed.”® For alemtuzumab and ocrelizumab, ex-
posure was defined after 3 months (90 days) had elapsed from
the date of first prescription filled or, for Nova Scotia, from the
documented start date. These exposure definitions were
guided by the minimum length of time required to yield a
clinical response.”**** DMD exposure status was updated over
time (i.e., was treated as time-varying), and a person could reach
the definition for exposure to 1 or more individual DMDs (e.g,,
due to switching therapy) during the study period. Once the
definition for exposure was reached, a person was considered
“exposed” to that DMD until that person’s study end date;
before that, a person was considered unexposed (i.e., had either
no or very minimal exposure) to that DMD.

We assessed DMD use, primarily as exposure to any DMD
(the alternative being no/minimal exposure) and then by
generation: first (beta-interferon and glatiramer acetate) and
second (natalizumab, fingolimod, dimethyl fumarate, teri-
flunomide, alemtuzumab, and ocrelizumab). Second, as an
exploratory approach, the DMDs were also assessed based on
3 groups according to expected efficacy: lower (beta-
interferon, glatiramer acetate, and teriflunomide), moderate
(fingolimod and dimethyl fumarate), and higher (natalizu-
mab, alemtuzumab, and ocrelizumab).>**° Finally, and when
feasible, individual DMDs were examined, as guided by an a
priori power calculation. Specifically, using a 2-tailed test with
a 5% probability of a type I error, we anticipated having a
minimum power of 80% to detect a hazard ratio for mortality
of 0.7-0.8 for beta-interferon, glatiramer acetate, and di-
methyl fumarate relative to no exposure.

Statistical Analyses

Cohort characteristics were described, using counts and
proportions for categorical and means and SDs for continuous
variables. Crude mortality rates per 1,000 person-years of
follow-up were also reported. We examined the effects of
DMD exposure on all-cause mortality using a multivariable
stratified Cox proportional hazard model (stratified by cal-
endar year at the index date, thus allowing for a different
baseline hazard function for each strata and accounting for
different patterns of healthcare use over time). Exposure to a
DMD (any DMD, then by generation, relative presumed ef-
ficacy and individual DMD) was included as a time-varying
covariate. All models were adjusted for characteristics at index
date, including age, Charlson Comorbidity Index (categorical;
0, 1, 2, >3), sex, and socioeconomic status. Analyses were
conducted separately in each province, with results combined
using random-effects meta-analyses. Findings were reported
as adjusted hazard ratios (aHRs) and 95% Cls.

The proportional hazards assumptions were examined by an
interaction term between covariates and log(follow-up), with
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follow-up defined as the time from the index date to study
end. Assumptions were not met for the first-generation
DMDs—beta-interferon and glatiramer acetate, indicating
that the hazard ratios for these varied over time. As this was
worthy of further exploration, we examined the effects of the
timing of first exposure (i.e., when the minimum cumulative
exposure threshold was reached, as defined earlier) to each of
these DMDs individually, then combined as any first-
generation DMD. This was performed by including 2 in-
teraction terms between DMD exposure status and log(time
from the index date to first DMD exposure) and log(follow-
up). Findings were reported by timing of first DMD exposure
(at 2, S, and 10 years postindex, representing very early, early,
and late initiation) and duration of follow-up (at 2, S, 10, and
1S years). The other covariates that did not meet the pro-
portional hazards assumptions (i.e, age and Charlson
Comorbidity Index), and their interaction terms with
log(follow-up), were also included in the model.

Complementary analyses were conducted in the largest
province, British Columbia, including (1) sex-specific analy-
ses, using an interaction term between sex and DMD expo-
sure; (2) an ‘intention-to-treat’ analysis, whereby DMD
exposure was defined as >1 day; and (3) a dose-response as-
sessment for each of the first-generation DMDs—beta-
interferon and glatiramer acetate, categorized as no/minimal
exposure (<6 months), shorter (6 months-3 years), and longer
exposure (>3 years). Findings were reported at 3, 5, and 10 years
of follow-up for beta-interferon as the hazard ratio for this varied
over time (e.g, proportional hazards assumption was not met).

Statistical analyses were performed using SAS software ver-
sion 9.4 and R version 4.0.2.

Standard Protocol Approvals, Registrations,
and Patient Consents

This study was registered with ClinicalTrials.gov
(NCT04472975), and approvals were obtained from the
Research Ethics Boards at the University of British Columbia
and University of Saskatchewan (harmonized ethics: #H18-
00407), University of Manitoba (#HS21764), and Nova
Scotia Health Authority (#1023555).

Data Availability

As we are not the data custodians, we are not authorized to
make the data available. With the appropriate approvals, the
data may be accessed through the Population Data British
Columbia, Saskatchewan Health Quality Council, Manitoba
Centre for Health Policy, and Health Data Nova Scotia of
Dalhousie University.

Results

We identified 35,894 persons with MS across the 4 provinces,
of whom 25,777 (72%) were female (Table 1). The mean age
(SD) at the index date was 44.5 (13.6) years, and 22% (n =
7,872) had at least 1 comorbidity. Over one-quarter met the
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Table 1 Characteristics of the Multiple Sclerosis Study
Population From 4 Canadian Provinces

(1996-2017/18)

Table 1 Characteristics of the Multiple Sclerosis Study
Population From 4 Canadian Provinces
(1996-2017/18) (continued)

Overall cohort

Overall cohort

Characteristics (n = 35,894) Characteristics (n = 35,894)
Sex, n (%) Any higher efficacy DMD (natalizumab, 766 (2.1)
alemtuzumab, ocrelizumab)
Female 25,777 (71.8)
No DMD exposure® 26,422 (73.6)
Male 10,117 (28.2)
Person-years of follow-up: total 431,397
Age at index date, y, mean (SD) 44.5 (13.6)
Person-years of follow-up after first
Socioeconomic status,? n (%) exposure to
1 (lowest income quintile) 6,429 (17.9) Any DMD 89,180
2 6,916 (19.3) Any first-generation DMD 86,025
3 8,074 (22.5) Beta-interferon® 66,149
4 7,384 (20.6) Glatiramer acetate 28,731
5 (highest income quintile) 7,091 (19.8) Any second-generation DMD 9,492
Charlson Comorbidity Index,® n (%) Natalizumab 2,780
0 28,022 (78.1) Fingolimod 1,980
1 5,588 (15.6) Dimethyl fumarate 3,927
2 1,479 (4.1) Teriflunomide 1,580
23 805(2.2) Alemtuzumab 293
Calendar year at index date, n (%) Ocrelizumab <6
1996-1999 16,498 (46.0) Any lower efficacy DMD (beta-interferon, 86,668
glatiramer acetate, teriflunomide)
2000-2005 7,198 (20.1)
Any moderate efficacy DMD (fingolimod, 5,745
2006-2011 6,456 (18.0) dimethyl fumarate)
2012-2018 5,742 (16.0) Any higher efficacy DMD (natalizumab, 3,018
alemtuzumab, ocrelizumab)
No. of individuals exposed® to a DMD,
during follow-up,® n (%) No DMD exposure 342,217
Any DMD 9,472 (26.4)
Abbreviation: DMD = disease-modifying drug.
Any first-generation DMD® 8,156 (22.7) As per data privacy and access agreements, small cell sizes (<6 individuals
within any group) are suppressed.
- £ 2 Socioeconomic status closest to the index date (measured as neighbor-
Beta-interferon >813(16.2) hood income quintiles based on postal code of the person’s residence). If
_ socioeconomic status was not available (n = 841), then it was assigned as
Glatiramer acetate 3,373 (9.4) quintile 3.
X R > Comorbidity was measured using the Charlson Comorbidity Index (based
Any second-generation DMD 3,306 (9.2) on physician and hospital-derived diagnoses recorded in the year preindex
date, excluding hemiplegia/paraplegia).
Natalizumab 544 (1.5) ¢Defined as at least 6-month cumulative exposure to beta-interferon or
glatiramer acetate; 3-month cumulative exposure to natalizumab, fingoli-
Fingolimod 682 (1.9) mod, dimethyl fumarate, or teriflunomide; or 3 months from the date of first
prescription filled for alemtuzumab and ocrelizumab.
Dimethyl fumarate 1,558 (4.3) d'FoIIow—up was fro'm the index date until the earligst of death,'emigra—
tion from the province, or December 31, 2017 (British Columbia, Man-
Teriflunomide 890 (2.5) IdtgPeei' and Nova Scotia), or March 31, 2018 (Saskatchewan) [study end
¢Some people met the minimum cumulative exposure for >1 DMD;
Alemtuzumab 262(0.7) hence, the sum of the individual first-generation or second-generation
N DMDs exceeds the sum of any first-generation or second-generation
Ocrelizumab <6 (<0.1) DMD.
f All beta-interferon products were considered as one class.
Any lower efficacy DMD (beta-interferon, 8,538 (23.8) & Defined as no exposure or less than 6-month contiguous exposure to beta-
glatiramer acetate, teriflunomide) interferon and glatiramer acetate; less than 3-month contiguous exposure
to natalizumab, fingolimod, dimethyl fumarate, or teriflunomide; or less
Any moderate efficacy DMD (fingolimod, 2,146 (6.0) than 3 months from the date of first prescription filled for alemtuzumab and

dimethyl fumarate)

ocrelizumab.
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definition for minimum cumulative exposure to a DMD
during follow-up and were considered exposed. The most
common DMD used was beta-interferon (16%) followed by
glatiramer acetate (9%). The total person-years of follow-up
between the index date and study end was 89,180 while ex-
posed to a DMD and 342,217 while unexposed.

Overall, we observed 6,374 deaths because of any cause, with
524 of those who died being exposed to at least 1 DMD at any
point during the study. Relative to no/minimal exposure, any
DMD was associated with a 26% (aHR 0.74; 95% CI
0.56-0.98) lower hazard of mortality (Figure 1). The findings
remained the same when restricted to any first-generation
DMD (vs no/minimal exposure), and a 33% lower mortality
was observed for the second-generation DMDs (aHR 0.67;
95% C10.46-0.98). Although a lower hazard of mortality was
also generally observed when DMD exposure (vs no/minimal
exposure) was assessed by relative efficacy (lower, moderate,
or higher) or by individual DMD (beta-interferon, glatiramer
acetate, and dimethyl fumarate), not all findings reached
statistical significance in these smaller subgroups. The
strengths of association were largely similar in these sub-
groups except for the higher efficacy DMDs where few deaths
occurred (n = 10) resulting in wide confidence intervals.
Similarly, few deaths were observed with dimethyl fumarate
(n = 14), also resulting in wide confidence intervals.

When the time-varying effects of the first-generation DMDs
were explored, “very early,” “early,” or “late” initiation, relative

to no/minimal exposure, were each associated with a statis-
tically significant lower hazard of mortality (Figure 2).
However, regardless of when a first-generation DMD was
started, none of the hazard ratios were statistically significant
at 15 years of follow-up. A similar diminishing effect was
observed when beta-interferon and glatiramer acetate were
assessed separately. For example, very early initiation (i.e., first
exposure at year 2 postindex date) was associated with a
62%-63% lower hazard of mortality at 2 years of follow-up
(i.e., close to DMD initiation), decreasing to 44%-45% at S
years of follow-up (ie., 3 years after first exposure), and
24%-28% at 10 years of follow-up (i.e., 8 years after first
exposure), the latter of which reached significance for glatir-
amer acetate only. At 15 years of follow-up, this diminished
even further, to a 9%-13% lower hazard of mortality. Al-
though ‘late’ initiation (i.e., first exposure at year 10 postindex
date) of beta-interferon and glatiramer acetate was also as-
sociated with a lower hazard, findings did not reach signifi-
cance (95% ClIs included 1). Of note (and as expected), the
number of people at risk of the outcome decreased over time
as the duration of follow-up increased (Table 2).

Complementary Analyses

The direction of findings was similar between the sexes
(Figure 3). Some hazard ratios for mortality were lower for
male patients than female patients, although the p values for
the interaction term between sex and DMD exposure were
>0.2. Findings from the “intention-to-treat” analyses (per-
formed in British Columbia) were also consistent with that

Figure 1 DMD Use for Multiple Sclerosis and Hazard of All-Cause Mortality

Adjusted Crude Crude rate
DMD exposure status hazard ratio  hazard ratio per 1,000
(time-varying covariate) (95% ClI) (95% CI) person-years®
Unexposed Reference Reference 17.09
Any DMD —a— 0.74(0.56,0.98) 0.33(0.24-0.45) 5.88
Any first-generation DMD — . 0.74 (0.56, 0.98) 0.34(0.25-0.47) 5.89
Any second-generation DMD —&—— 0.67 (0.46,0.98) 0.37(0.25-0.53) 2.95
Any lower efficacy DMD —— 0.74(0.56,0.98) 0.34(0.24-0.46) 5.88
Any moderate efficacy DMD — 0.73(0.44,1.20) 0.40(0.25-0.66) 2.79
Any higher efficacy DMD = /4 — 1.14(0.20, 6.53) 0.64 (0.14-3.02) 3.31
Beta-interferon® — 0.81(0.60, 1.09) 0.39(0.29-0.53) 6.29
Glatiramer acetate —— 0.76 (0.57,1.01) 0.38(0.28-0.51) 5.12
Dimethyl fumarate - 0.89(0.43,1.86) 0.52(0.30-0.88) 3.57
' ' O.IOO 0.‘50 1.00 1 .:50 2.60 6.:50 I ‘ ‘ '

Adjusted hazard ratio?
Favors exposure

Favors no exposure

<

»

?Results from each of the 4 provinces were adjusted for sex, age, Charlson Comorbidity Index, and socioeconomic status at index date, and exposure to other
DMDs (by generation, efficacy, or individual DMD) as a time-varying covariate, and were then combined using random-effects meta-analyses. All beta-
interferon products were considered as one class. “Person-years of follow-up for the calculation of crude rate were as per Table 1. Lower efficacy DMDs: beta-
interferon, glatiramer acetate, and teriflunomide; moderate: fingolimod and dimethyl fumarate; higher: natalizumab, alemtuzumab, and ocrelizumab. DMD

= disease-modifying drug.
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Figure 2 The Association Between Exposure to a First-Generation DMD and All-Cause Mortality by Timing of Drug Initiation
(Very Early, Early, or Late) and Duration of Follow-Up

Timing of DMD initiation Adjusted
and duration of follow-up hazard ratio (95% ClI)
Very early DMD initiation
First-generation DMD
2-year follow-up —— 0.35(0.21, 0.57)
5-year follow-up —a— 0.52 (0.39, 0.69)
10-year follow-up —— 0.70 (0.53, 0.93)
15-year follow-up i, 0.84 (0.60, 1.19)
Beta-interferon®
2-year follow-up —— 0.37(0.21, 0.65)
5-year follow-up — 0.56 (0.41, 0.76)
10-year follow-up _ 0.76 (0.56, 1.03)
15-year follow-up $- 0.91 (0.62, 1.34)
Glatiramer acetate
2-year follow-up A 0.38(0.17, 0.84)
5-year follow-up —'- 0.55 (0.33, 0.91)
10-year follow-up - 0.72 (0.52, 0.99)
15-year follow-up —k—T— 0.87(0.68, 1.10)
Early DMD initiation
First-generation DMD
5-year follow-up —— 0.49 (0.37, 0.65)
10-year follow-up _ 0.67 (0.49, 0.90)
15-year follow-up 0.79 (0.55, 1.15)
Beta-interferon®
5-year follow-up — 0.53(0.38, 0.75)
10-year follow-up 0.73(0.52, 1.02)
15-year follow-up 0.86 (0.57, 1.31)
Glatiramer acetate
5-year follow-up 0.51(0.29, 0.92)
10-year follow-up 0.68 (0.47, 1.00)
15-year follow-up — 0.83(0.62, 1.09)
Late DMD initiation
First-generation DMD
10-year follow-up —— 0.65 (0.47, 0.90)
15-year follow-up - - 0.77 (0.52, 1.14)
Beta-interferon®
10-year follow-up <& 0.71 (0.48, 1.05)
15-year follow-up & 0.84 (0.53, 1.33)
Glatiramer acetate
10-year follow-up A 0.66 (0.42, 1.05)
15-year follow-up ~'- 0.80(0.56, 1.15)
I T T T T
0.00 0.50 1.00 1.50 2.00

Adjusted hazard ratio®

Favors exposure

<
<

Favors no exposure

>
>

“Results from each of the 4 provinces were adjusted for sex, age, Charlson Comorbidity Index, and socioeconomic status at index date, and exposure to other
DMDs (by generation or individual DMD) as a time-varying covariate, and were then combined using random-effects meta-analyses. Interactions between
DMD exposure and log(time from the index date to first DMD exposure) and log(follow-up) were included. Covariates that did not meet the proportional
hazards assumptions (i.e., age and Charlson Comorbidity Index) and their interaction terms with log(follow-up) were also included in the model. Reference
category: unexposed. PAll beta-interferon products were considered as one class. Bold indicates p < 0.05. Very early, early, or late DMD initiation = minimum
cumulative DMD exposure reached atyear 2, 5, or 10 from the index date, respectively. Follow-up was defined as the period from the index date to study end
and reported at 2, 5, 10, and 15 years of follow-up. DMD = disease-modifying drug.

province’s main findings (Figure 4). The proportion of the
DMD-exposed population based on the “at least 1 day” cri-
terion in the intention-to-treat analysis was approximately 3%
higher than the proportion of the DMD-exposed population
included in the main analyses (which used the “minimum
cumulative DMD exposure” criterion) (data not shown).

For the dose-response assessment, and relative to no/minimal
exposure (<6 months), a shorter exposure to glatiramer ace-
tate (6 months-3 years) was not associated with a lower
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hazard of mortality (aHR 1.07; 95% CI 0.74-1.54), and while
a longer exposure (>3 years) was, by 23%, this failed to reach
statistical significance (aHR 0.77; 95% CI 0.51-1.17)
(Figure S). For beta-interferon, both shorter and longer ex-
posures (vs no/minimal exposure) were associated with a
lower hazard of mortality, but this changed over time. For
example, at S years of follow-up, shorter exposure times
(ranging from 6 months to 3 years) were associated with a
42% (HR 0.58; 95% CI 0.39-0.84) lower hazard of mortality.
This increased to a 78% (HR 0.22; 95% CI 0.11-0.46) lower
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Figure 3 DMD Use for Multiple Sclerosis and Hazard of All-Cause Mortality by Sex

Adjusted  Crude rate
D_MD exposure status hazard ratio per 1,000
(time-varying covariate) (95% Cl) person-years
Unexposed
Female Reference 13.12
Male Reference 23.69
Any DMD
Female —— 0.82(0.70, 0.98) 5.39
Male —a— 0.75(0.59, 0.95) 7.58
Any first-
generation DMD
Female _ 0.84(0.71, 1.00) 5.50
Male —— 0.70 (0.54, 0.90) 7.30
Any second-
generation DMD ?Results shown are based on the largest prov-
Female 0.59(0.28, 1.25) 217 ince (British Columbia) and were adjusted for
Male - 1.11(0.52, 2.37) 577 age, Charlson Comorbidity Index, and socio-
: D : economic status atindex date, and exposure to
other DMDs (by generation or individual DMD)
Beta-interferon® as a time-varying covariate. Hazard ratios were
estimated by introducing interaction terms
Female —— 0.82(0.68, 0.98) 5.68 between sex and DMD exposure variables.
Male - 0.69 (0.52, 0.90) 7.31 Findings are not shown when a small number
. of deaths (<6) occurred in a subgroup, as per
Glatiramer acetate privacy and data access requirements (i.e., for
Female I 1.03(0.74, 1.43) 5.25 dimethyl fumarate by sex or by the DMD effi-
cacy groupings). PAll beta-interferon products
Male 1.03(0.63,1.70) 748 were considered as one class. p Values for the
interaction term between sex and exposure to
o‘bo O.‘SO 1"00 1"50 2.60 2"50 3be (1) any DMD = 0.50; (2) any ﬂrst—generatlon
DMD = 0.23; (3) any second-generation DMD =
Adjusted hazard ratio? 0.24; (4) beta-interferon = 0.29; (5) glatiramer
Favors exposure Favors no exposure acetate = 0.99. lBoId indicates p < 0.05. DMD =
< > disease-modifying drug.

(at years 2 or S postindex date) of beta-interferon or glatir-
amer acetate was associated with a significant reduction in
mortality risk, but this survival advantage diminished after a
longer follow-up period. The one previous study to examine
this issue was unable to determine whether initiation of beta-
interferon within S years of MS onset was advantageous due
to the modest number of persons who were early initiators.”
Despite the emphasis on starting DMD treatment early to
maximize “brain health,”***” the effects of early treatment on
mortality for persons with MS were previously unknown.
Early initiation of a DMD has been associated with better
clinical outcomes, such as lower risk of disease activity and
progression, as well as a lower chance of drawing on a
government-funded disability pension.'®'®> Our observation
that the apparent effect of DMD treatment on mortality de-
creased as the duration of follow-up since first exposure to
beta-interferon or glatiramer acetate increased concurs with
the known clinical effects of these drugs.*®*® Specifically,
while short-term efficacy on relapse risk has been demon-
strated, this seems to diminish with time,” and a Cochrane
review concluded that the anti-inflammatory effects of beta-
interferon did not prevent permanent disability once the
progressive phase was established.*” A diminishing effect of
DMD treatment over time also concurs with the natural
history of MS relapses which reduce in frequency as disease
duration increases.*' It is also plausible that, over time, the
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DMDs have less impact on survival in older persons with MS
because death may occur due to accumulating frailty from
other causes. However, our observation might also be partly
explained by other factors, for example, over time, as more
people die, the number of people at risk of the outcome will
naturally decrease (resulting in a smaller sample size as the
duration of follow-up increases; Table 2). Although we in-
cluded calendar year at the index date in all of our models, it
remains possible that other factors may have influenced our
observations, such as disease duration®* or changes in MS
appearance or severity over time because of changes in case
ascertainment, recognition, and diagnosis of MS.*

When we explored the association between DMD exposure
and survival by relative efficacy of the drug (vs no exposure), a
lower hazard of mortality was generally observed. However,
only a modest number of deaths occurred among those ex-
posed to a higher efficacy DMD, resulting in wide confidence
interval. A study, published in 2021, of 1,000 DMD-treated
persons with secondary progressive MS reported that high-
efficacy DMDs (e.g, fingolimod, mitoxantrone, and natalizumab)
were more effective than low-efficacy DMDs (beta-interferon,
glatiramer acetate, and teriflunomide) in reducing relapses among
persons with active disease.”> However, no significant differences
were observed between high-efficacy and low-efficacy DMDs and
the risk of disability progression.

September 2022 Neurology.org/NN


http://neurology.org/nn

Figure 4 Exposure to at Least 1 Day of a DMD for Multiple Sclerosis and Hazard of All-Cause Mortality (Intention-to-Treat

Analysis)
Adjusted Crude rate
DMD exposure status hazard ratio per 1,000
(tlme-varylng covarlate) (95% CI) person-years
Unexposed Reference 16.23
Any DMD —— 0.83(0.73, 0.95) 5.99
Any first-
generation DMD — 0.84 (0.73, 0.96) 6.01
Any second-
generation DMD 0.68 (0.41, 1.15) 2.85
Any lower
efficacy DMD —— 0.84 (0.74, 0.96) 6.03
Any moderate
efficacy DMD 0.69 (0.34, 1.40) 2.58
Any higher
efficacy DMD . 0.82(0.37, 1.85) 327
Beta-interferon® —i— 0.84 (0.73, 0.97) 6.32
Glatiramer acetate T 0.97 (0.76, 1.25) 5.20
Dimethyl
fumarate 1.03(0.51,2.10) 403 @Results shown are based on the largest prov-
ince (British Columbia) and were adjusted for
age, sex, Charlson Comorbidity Index, and so-
; ; ’ y i cioeconomic status at index date, and expo-
0.00 0.50 1.00 150 2.00 250 3.00 sure to other DMDs (by generation, efficacy, or

Adjusted hazard ratio?

Favors exposure Favors no exposure

A
v

individual DMD) as a time-varying covariate.
PAll beta-interferon products were considered
as one class. Bold indicates p < 0.05. DMD =
disease-modifying drug.

Studies of mortality in MS require a substantial follow-up
period because MS is typically not a rapidly fatal disease.'™
Thus, the MS DMDs approved more recently or reserved as
second-line or third-line therapies had yet to accrue sufficient
time on the market or uptake in the MS population for their
impact on survival to be assessed. For example, although we
estimated that our sample size was sufficient to explore the
mortality outcomes for dimethyl fumarate, the actual number
of deaths in this subgroup was lower than anticipated. In
addition, there is potential for residual confounding, as with all
observational studies. However, we were able to adjust for
several important characteristics including age, sex, socio-
economic status, and comorbidity in all models and used a
multivariable stratified Cox proportional model (stratified by
calendar year at the index date, thus accounting for different
patterns of healthcare use over time). Nonetheless, we were
not able to account for factors not captured in the adminis-
trative health data, such as lifestyle (e.g, alcohol intake,
smoking status, and physical activity), race/ethnicity, or the
MS disease duration, phenotype, or disability level. We also
recognize that accurately determining an individual’s MS
disease duration is inherently challenging. This is especially
true given the recent observations that the disease may be
present 5-10 years (or more) before classical onset of MS.**

Neurology.org/NN

Owing to the nature of our data, we were not able to infer
causality for the identified associations. While we cannot
preclude confounding by indication, whereby individuals with
more active or severe disease are more likely to start drug, this
would imply that our findings are a conservative estimate of
the survival benefits of DMDs. It is also possible that a person
stopping a DMD because of lack of response or serious ad-
verse event before they reached the definition of exposed
would have been assigned to the “unexposed” group. None-
theless, our complementary intention-to-treat analyses yiel-
ded findings which were consistent with the main analyses.
Furthermore, although our complementary “dose-response”
analyses showed an association between longer DMD expo-
sures and survival benefit, and was adjusted for comorbidity
burden, we cannot preclude “healthy user bias,” whereby
people who used a DMD for a longer period of time may be
healthier and at lower risk of mortality. Although we did not
assess these factors in detail, including DMD treatment ad-
herence, previous studies have shown that adherence to DMD
is generally quite high in the MS population."®* We did not
explore the specific causes of death because its distribution
can be influenced by differences in coding practices, in-
terpretation, and recording among physicians.' The very small
event rates by various specific causes of death would also have
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Figure 5 Beta-Interferon and Glatiramer Acetate for the Treatment of Multiple Sclerosis and Hazard of All-Cause Mortality:
Dose-Response Assessments by Duration of Exposure

DMD exposure duration Adjusted
(and years of follow-up for hazard ratio
beta-interferon only) (95% Cl)
Beta-interferon®
Shorter exposure
3-year follow-up —a— 0.38(0.22, 0.66)
5-year follow-up —_—l— 0.58 (0.39, 0.84)
10-year follow-up —— 1.02 (0.82, 1.26)
LEseE SRpaste Cumulative exposure was modeled as 3 levels:
BEr exp no/minimal exposure (<6 months [reference
3year follow-up  — 0.14 (0.05, 0.38) category]), shorter exposure (6 months-3
years), and longer exposure (>3 years). 2,641
5-year follow-up ———— 0.22(0.11, 0.46) people reached the definition of a shorter ex-
posure to beta-interferon, and 1,498 people
10-year follow-up —— 0.44(0.32, 0.60) reached the definition of a longer exposure.
1,239 people reached the definition of a
shorter exposure to glatiramer acetate, and
. 536 people reached the definition of a longer
Glatiramer acetate exposure. ?Results shown are based on the
h X largest province (British Columbia) and were
Shorter exposure ) 1.07(0.74,1.54) adjusted for age, sex, Charlson Comorbidity
. Index, and socioeconomic status at index date,
Longer exposure 0.77(0.51,1.17) and exposure to other individual DMDs as a
time-varying covariate. Because the pro-
portional hazards assumption for beta-in-
terferon was not met, hazard ratios were
estimated by introducing interaction terms
0.00 0.50 1.00 150 2.00 between beta-interferon exposure and log(-

Adjusted hazard ratio®
Favors exposure

Favors no exposure

follow-up), with follow-up defined as the period
from the index date to study end. PAll beta-
interferon products were considered as one

> class. DMD = disease-modifying drug.

hindered the generation of reliable estimates.” The Charlson
Comorbidity Index is an assessment tool designed to predict
long-term mortality,** and we used this in our study to
measure, and adjust for, comorbidity burden. This comor-
bidity index includes significant comorbidities that are asso-
ciated with survival, such as congestive heart failure,
myocardial infarction, diabetes, and vascular disease (pe-
ripheral and cerebrovascular).

Our study included a large MS population with nearly 36,000
persons and access to objectively collected linked adminis-
trative health data which minimizes selection bias. The MS
population was identified using a validated case definition of
MS which had been successfully applied in the Canadian
provinces included in our study.'”***”** The positive pre-
dictive value was 80.5%, and the negative predictive value
(NPV) was 75.5% among a population of persons with >1
claim for any demyelinating disease.”* The NPV would be
>99% when applied to the general population where more
than 98% of individuals have no claims for demyelinating
disease. Our access to comprehensive mortality data also in-
cluded a sizable number of deaths captured over a long follow-
up period of up to 22 years. Each provincial government
delivers healthcare services to virtually all residents in each
province (aside from those covered by the federal government
[<2% of the population] such as the milita.ry).lé_18
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Furthermore, access to provincial prescription data within a
universal healthcare setting captured all prescription filled,
largely unaffected by an individual’s ability to pay. Thus, the
proportion of persons exposed to a DMD in our study is likely
to be a representative population estimate.”> We also dem-
onstrated a consistent effect of DMD exposure on mortality
for male patients and female patients. Interestingly, some
hazard ratios were lower for male patients than female pa-
tients, indicating a possible survival advantage among male
patients which deserves further examination. Others have
highlighted the need for more studies on the potential sex
differences in response to DMD treatment.*’

In conclusion, we found in our study that exposure to any
DMD, or any first-generation or second-generation DMD was
associated with a lower hazard of mortality compared with no
exposure. Furthermore, earlier initiation of beta-interferon or
glatiramer acetate was associated with improved survival, al-
though the advantage diminished with longer follow-up. Al-
though it is not feasible to examine survival in MS in the
setting of a randomized controlled trial, population-based
observational studies provide insights into the survival bene-
fits offered by MS therapies in clinical practice. Our study
provides real-world evidence of an association between the
DMDs used to treat MS and a survival benefit. The use of all-
cause mortality to study the net effects of DMD safety and
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effectiveness/eflicacy represents an important long-term
outcome measure in persons with MS." The findings pro-
vide additional insights that could inform decision-making by
clinicians and people living with MS surrounding the use of
the DMDs. Further work is needed to assess whether the
survival benefit extends to other individual DMDs and over
even more extended periods.
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