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Multi-agent Robotic System (MARS) for UAV-UGV Path Planning and 1 

Automatic Sensory Data Collection in Cluttered Environments 2 
 3 

ABSTRACT: There has been growing interest in increasing the application of robotic 4 

and automation technologies for building indoor inspection. However, the previous 5 

research on indoor robotic applications was limited to a single type of unmanned 6 

aerial/ground vehicle (UAV/UGV), each of which has certain limitations and 7 

constraints. Besides, the robotic systems suffer from inefficient control within cluttered 8 

indoor environments containing many obstacles. This paper presents a multi-agent 9 

robotic system (MARS) for automatic UAV-UGV path planning and indoor navigation 10 

to automate sensory data collection. The proposed MARS consists of a new system 11 

architecture that defines the attributes and data requirements for UAV and UGV indoor 12 

path planning. To improve indoor navigation in cluttered environments, an enhanced 13 

shunting short-term memory model is established to optimize the trajectory of 14 

UAV/UGV for data collection. Assessment of indoor navigation is conducted with a 15 

simulation-based approach and LiDAR SLAM. A mediating agent, which harnesses a 16 

control algorithm and information exchange mechanism, is proposed to interoperate 17 

UAV and UGV for automated data collection. The proposed new MARS is examined 18 

in experiments, in which a single UAV, dual UAVs, and combined UAV-UGV are 19 

tested in a research laboratory. The result indicates that the MARS can support 20 

automated path planning and indoor navigation for 2D imagery and 3D point cloud data 21 

collection. 22 
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1. INTRODUCTION 27 

Facilities management plays an important role in maintaining the functionality of 28 

buildings [1, 2]. In practice, indoor inspection needs to be carried out regularly to avoid 29 

late identification of building defects, resulting in potential safety issues and economic 30 

loss [3]. Images and 3D point clouds are common data sources for indoor inspection. 31 

However, traditional data collection for indoor inspection relies on human inspectors, 32 

which is labor-intensive, time-demanding, and error-prone. Nowadays, automation and 33 

robotic technologies have gained attention due to their potential to reduce the workforce 34 

and time required to complete inspection tasks. Automation and robotic technologies 35 

with advanced sensing devices were applied for detecting and monitoring occupancy 36 

[4], floor cleaning [5, 6], fault detection and diagnosis [7], indoor air monitoring [8, 9], 37 

facility inspection [3], and construction site data collection [10, 11]. Early applications 38 

of robots focused on unmanned ground vehicles (UGV). The UGV-based approach 39 

provides greater efficiency and flexibility than manual solutions; however, UGVs are 40 

susceptible to obstacles in the inspection process [12]. Researchers have explored 41 

building-related inspection using unmanned aerial vehicles (UAV) to address this 42 

problem. Although UAVs are more agile and have better views than UGVs, they suffer 43 

from smaller payloads and shorter operational time [13]. Recently, there have been 44 

increasing amounts of studies on multi-robot systems, especially heterogeneous UAV-45 

UGV systems, because the two types of robots can complement each other, improving 46 

the overall performance of the inspection [14]. 47 

Although multi-robot systems with UAV and/or UGV have been applied for 48 

various inspection tasks, there are still some limitations. First, automatic UAV-UGV 49 

systems are still lacking for indoor applications. In many studies, either UAV or UGV 50 

is controlled manually to move along a predefined path [15-17], which is not flexible 51 

enough for indoor navigation. It is necessary to develop new methods for UAV-UGV 52 

systems to navigate efficiently and automatically [10]. Secondly, conventional UAV-53 

UGV systems may not be directly applicable to indoor environments. UGV may 54 

encounter obstacles, occlusions, or discrepant floor levels that prevent it from travelling 55 

into specified areas. In this case, UAVs can fly over the obstacles and move into the 56 

areas inaccessible by UGV. Thus, a collaboration between heterogeneous kinds of UGV 57 

and UAV devices can supplement each other for inspection in cluttered environments. 58 

This is evident in some previous studies wherein the view of the UGV is confined due 59 

to obstacles, and the UGV cannot navigate efficiently, which impacts the accuracy of 60 
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collected data. UAV applications can assist the navigation of UGV by providing more 61 

accurate geometric information of the surrounding environment [18-20]. Furthermore, 62 

smaller-sized UAVs are often used indoors due to the confined space and safety 63 

considerations. Due to the small payload of lightweight UAVs, the sensor is usually a 64 

built-in camera, which can collect images and video clips. Using UAV alone might not 65 

be sufficient to carry larger scanning and sensing devices for managing the 66 

environmental data [10]. Developing a UAV-UGV system to leverage the strength of 67 

different robots for automated data collection is necessary. 68 

This study aims to develop a multi-agent robotic system (MARS) for automating 69 

the collection of sensory data (such as images, video clips, and 3D point clouds) in 70 

cluttered environments. Firstly, a new architecture of MARS is developed for 71 

UAV/UGV indoor navigation and automated data collection. Following this, an 72 

enhanced shunting short-term memory (SSTM) model is developed to optimize path 73 

planning. Provided the optimized plan, UAV/UGV indoor navigation is assessed using 74 

simulation and LiDAR-based approaches. A coordinating control algorithm is proposed 75 

to promote the UAV-UGV coordination, including an information exchange 76 

mechanism. Finally, simulation and field experiments are conducted to demonstrate the 77 

feasibility and performance of the proposed MARS. 78 

The main contributions of this paper are threefold. (1) A new system architecture 79 

of MARS is developed for automated sensory data collection in cluttered environments. 80 

Based on defined attributes and data requirement, functional modules for UAV, UGV, 81 

and mediating agent and their communication is constructed. UAV and UGV can 82 

exchange information via mediating agents for indoor navigation and sensory data 83 

collection (such as imagery data and point clouds) with this new system architecture. 84 

(2) An enhanced SSTM model is formulated to optimize the navigation path of 85 

UAV/UGV. This enhanced SSTM model can address multi-robot navigation issues by 86 

importing an inhibitory term resulting from robots. The computational complexity of 87 

this proposed method is not sensitive to the grid map size, so this method is 88 

advantageous over other conventional methods, especially in the cases where a larger 89 

grid size is used. (3) a coordinating control algorithm is proposed to enhance the 90 

coordination between UAV and UGV. UGV can request UAV’s assistance by sending 91 

messages to the mediating agent when it encounters obstacles based on the information 92 

exchange mechanism defined by the coordinating control algorithm. After receiving the 93 
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commands from the mediating agent, UAV resolves the request by performing the 94 

corresponding task. 95 

The rest of the paper is structured as follows. Section 2 reviews previous studies. 96 

Section 3 explains the proposed MARS system architecture and algorithms for 97 

UAV/UGV path planning and visual data collection. Section 4 presents simulation and 98 

experiment for multi-robot control with a single UAV, dual UAVs, and a combined 99 

UAV-UGV. Section 5 concludes the whole paper and discusses future work. 100 

 101 

2. LITERATURE REVIEW 102 

2.1. UGV for Indoor Applications 103 

Rea and Ottaviano [21] developed a robotic inspection system using a hybrid 104 

structure of tracks and legs, where tracks were used to navigate, and legs were used to 105 

overpass obstacles. Various sensors were installed on the robotic platform to collect 106 

environmental data. The robotic platform was teleoperated by an inspector and provided 107 

limited support to automated inspection. Mantha et al. [22] tried to collect ambient data 108 

using a mobile ground robot that navigated based on fiducial markers. Compared with 109 

conventional data collection methods based on fixed stationary sensor networks, their 110 

approach is more effective and economical even though the system cannot actively 111 

avoid obstacles. Kim et al. [23] presented a new approach based on Robot Operating 112 

System (ROS) and Building Information Modeling (BIM), which assisted a robot in 113 

planning construction wall painting tasks. The authors have used BIM information and 114 

painting schedule to generate detailed elemental motions (e.g., grasping, moving, etc.) 115 

for the robot, which were then converted into control commands. The commands were 116 

finally sent to the robot through ROS to control the robot to perform the painting task. 117 

Yan et al. [7, 24] leveraged real-time heating ventilation air-conditioning operational 118 

data and generative adversarial network and practised automated fault detection and 119 

diagnosis (FDD) with robotic platforms. The fully automated FDD approach 120 

outperforms existing conventional heating ventilation air-conditioning FDD that uses 121 

semi-automated or supervised learning. However, previous relevant studies are mostly 122 

conducted in laboratory or simulation tests; a more practical approach verified in 123 

physical environments is needed. Besides, UGVs are inefficient when deployed in 124 

cluttered environments because UGVs (normally wheeled robots) can hardly access 125 

areas containing many obstacles and barriers [11]. 126 

 127 
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2.2. UAV for Data Collection 128 

To address the above issue, researchers have explored the application of UAVs in 129 

data collection within cluttered environments. For instance, Bolourian and Hammad 130 

[24] studied potential defect inspection for bridges using a UAV equipped with LiDAR. 131 

The authors have improved the inspection efficiency by optimizing the UAV’s flight 132 

path, which was achieved by combining genetic algorithm and A* algorithm. Song et 133 

al. [25] proposed an automated approach for integrating LiDAR scanning and UAV. A 134 

set of waypoints were generated using greedy algorithm based on an occupancy map 135 

created using BIM data. The UAV moved to the waypoints for inspection using genetic 136 

algorithm and A* algorithm. Khosiawan and Nielsen [26] developed a UAV system 137 

with a scheduler for indoor monitoring and inspection. With the map, UAV status, and 138 

task information as the inputs, the scheduler can build an order of task execution for the 139 

UAV to navigate and inspect the environment in a time-optimized and anti-collision 140 

manner. Guerrero and Bestaoui [27] investigated structure inspection using UAVs, 141 

considering the influence of wind and energy limitations. They employed the genetic 142 

algorithm for path planning to minimize the time and energy required to complete the 143 

inspection. González et al. [28] tried to perform contact inspection using a LiDAR-144 

equipped UAV. To improve the inspection efficiency, the authors have developed an 145 

iterative algorithm to plan the flight path of UAVs based on a voxel-based map. 146 

Likewise, Freimuth and Konig [29] performed construction inspections using UAV and 147 

BIM information. In this study, the inspection planner selected the expected inspection 148 

locations, followed by a UAV flying to the inspection locations using the A* algorithm. 149 

Although UAVs are more advantageous than UGVs in terms of agility and view, they 150 

have limitations such as smaller payload, shorter operational time, and safety issues. 151 

 152 

2.3. UAV-UGV Collaborative Data Collection 153 

Nowadays, multi-robot systems, which combine the strength of UAVs and UGVs, 154 

are gaining attention for data collection and other applications. Lakas et al. [30] 155 

developed a unified UAV-UGV framework for collecting data in the disaster-rescue 156 

scenario. In this system, UAV took ground images and created a map by recognizing 157 

road and obstruction features in the image data. The UGV navigated within the indoor 158 

environment based on the map information using the A* algorithm while collecting 159 

data for rescue tasks. Kim et al. [31] developed a UAV-UGV system for geometric data 160 

collection and 3D visualization, in which a UAV was deployed to collect images of a 161 
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construction site to build its gradient-based map. The optimal stationary scanning 162 

positions were calculated with the gradient-based map, followed by the UGV 163 

navigating to these positions for collecting required data. Christie et al. [32] used a 164 

UAV and a UGV to estimate and confirm the locations of radiation sources. In their 165 

research, the UAV’s task was to find the positions of radiation sources by flying over 166 

the area. Based on the position information, the UGV equipped with LiDAR promptly 167 

computed its movement path to determine the trajectory for radiation data collection. 168 

Kim et al. [33] developed a UAV-assisted automated framework for data collection in 169 

a cluttered environment. A UAV was first deployed to obtain an initial 3D map 170 

containing preliminary geometry information about a cluttered site. This map was then 171 

used to find the optimal scanning points by simulation. Finally, using the potential 172 

vector field method, the UGV moved to these scanning points to collect data for 3D 173 

mapping. Cantieri et al. [34] investigated power pylons using a cooperative UAV-UGV 174 

system, in which UGV served as a carrier of UAV to save battery while the UAV was 175 

used to perform the inspection tasks. The systems proposed in the previous relevant 176 

studies applied to outdoor environments require more research efforts on indoor 177 

applications.  178 

In this sense, Michael et al. [15, 16] developed a UAV-UGV platform to 179 

cooperatively map the interior of a damaged building in the event of an earthquake. 180 

Firstly, a UGV was teleoperated to navigate and map the multi-floor environment. The 181 

operator controlled a UAV to perform the mapping when the UGV was inaccessible to 182 

a specified area. Their method increases the mapping efficiency and eliminates the risk 183 

of humans getting injured, but their system is still manually controlled. Mueggler et al. 184 

[17] demonstrated the collaboration of UAV and UGV in an indoor disaster scenario. 185 

A UAV took ground images at a predefined location based on a lawn-mower pattern, 186 

covering all areas. These images were then processed to create a map for the navigation 187 

of a UGV. The UGV navigated using the A* algorithm to collect information for a 188 

rescue mission. Although their system is effective and robust in a mock-up disaster 189 

scenario, the authors did not consider common and practical obstacles for UAV 190 

navigation. Harik et al. [35] developed a decentralised interactive architecture for UAV-191 

UGV cooperation. With a broader view, UAVs can guide UGV’s movement by 192 

scanning and providing images of the area around UGV. UGV navigated to the 193 

waypoints predefined by a human operator for data collection and inspection tasks. 194 

However, the drawback of their approach is that the system needs more human 195 
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intervention. Qin et al. [36] designed a novel integrated vehicular system using 196 

collaborative UAVs and UGVs for exploration, mapping, and navigation in a GPS-197 

denied environment. UGV performed a preliminary exploration using a view planning 198 

algorithm and produced a coarse map used as a fundamental model and a navigation 199 

reference for UAV. Then the UAV performed a fine complementary mapping using a 200 

tilting 2D laser module. The system has better environment perception and exploration 201 

efficiency, but its coordination scheme is not applicable for indoor data collection. 202 

Asadi et al. [10] developed an integrated UAV-UGV system to collect data at 203 

construction sites. By using a rapidly exploring random tree algorithm, a UGV 204 

navigated within a construction site while collecting data at the lower level. A blimp 205 

followed the UGV using a marker tracking technique while scanning the space at the 206 

upper level out of the UGV’s view. Their developed system is automated, which is more 207 

efficient than the semi-automated ones, but their system is suitable for outdoor 208 

environment or spacious indoor environment, and not applicable for confined and 209 

cluttered indoor spaces because their UGV is designed for outdoor application [11] and 210 

their blimp is large. Besides, it does not consider obstacles for UAV navigation. 211 
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3. METHODOLOGY 212 

Fig. 1 shows a schematic diagram of the proposed MARS. It starts by establishing 213 

(1) the system architecture, followed by (2) automated path planning and (3) indoor 214 

navigation and control. In Step 1, the system architecture defines the necessary 215 

attributes and data requirements for UAV/UGV and their connection with different 216 

sensing devices. A grid map is constructed to represent indoor spaces' geometric and 217 

obstacle features, then processed for path planning. In this study, path planning 218 

harnesses an enhanced SSTM model to generate the optimal movement trajectories for 219 

UAV and UGV in cluttered environments. Provided the optimized paths, Step 3 220 

continues to verify the feasibility of the movement paths of UAV and UGV amid indoor 221 

navigation. Simulation-based approach and 2D LiDAR SLAM are leveraged to test the 222 

automated indoor navigation of UAV and UGV, respectively before real control is 223 

deployed for inspection. To accommodate the dynamic interaction between UAV and 224 

UGV, a mediating agent is developed and resolve the potential conflict and promote 225 

coordination for sensory data collection. The mediating agent encompasses a control 226 

algorithm and information exchange mechanism to interoperate UAV and UGV toward 227 

automated sensory data collection. The data collected by UAV/UGV are directly 228 

transmitted to and stored in the mediating agent for indoor applications. The 229 

methodology details are presented in the following sub-sections. 230 
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 231 

Fig. 1 Methodology framework of the proposed MARS 232 

 233 

3.1. System Architecture of MARS 234 

Fig. 2 illustrates the system architecture of MARS, which consists of three parts, 235 

namely UAV, UGV, and mediating agents connected via Wi-Fi. For UAV, its built-in 236 

camera collects the imagery data and video clips sent via a micro-controller to the 237 

display module in the mediating agent. Here, the mediating agent refers to a computing 238 

device that receives messages and processes the collected sensory data from UAV/UGV. 239 

Since UAV is subjected to a smaller payload, LiDAR can be hardly applied for its 240 
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indoor localization and navigation. As such, a navigation module is developed in the 241 

micro-controller to compute and optimize the flight path of the UAV. Path planning 242 

optimization is conducted by an enhanced SSTM model for indoor navigation. The 243 

microcontroller then commands the UAV motor speed and propeller direction. 244 

For UGV, there are two separate pipelines. In the first pipeline, UGV leverages a 245 

2D LiDAR to scan and acquire 2D layout/geometry information of the surrounding 246 

environment. The layout information is sent to a mapping module wherein a 2D 247 

occupancy map (with a 5cm grid size) is generated. Provided the 2D occupancy map, 248 

the navigation module leverages SSTM to compute and optimize the path of UGV and 249 

then sends commands to control the UGV speed and movement. RGB-D images and 250 

camera poses are collected in the second pipeline by a scanning sensor fed into the 251 

RGB-D synchronization module (installed in a Jetson NX processor) to synchronize the 252 

imagery data into a single message. The message is sent to an RTABMAP module in 253 

the mediating agent to reconstruct the 3D point clouds of the indoor scene. 254 

The mediating agent contains three modules: RTABMAP, coordinating algorithm, 255 

and display modules. First, the display module displays the imagery data and video 256 

streams from UAV. RTABMAP module is used to reconstruct the 3D point clouds 257 

using the RGB-D information collected by UGV. The mediating agent harnesses a 258 

coordinating algorithm to interoperate multiple UAV and UGV devices for data 259 

collection to improve inspection efficiency. For example, when UGV encounters an 260 

obstacle which prevents it from completing the data collection, its navigation module 261 

can communicate with the mediating agent by exchanging the target information and 262 

requesting the engagement of other devices in MARS (such as UAVs) for assistance. 263 

Details of the UGV, UAV and mediating agents are discussed in the following 264 

subsections.  265 

 266 
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 267 

Fig. 2 System architecture for the proposed MARS 268 

 269 

3.2. Automated UAV-UGV Path Planning 270 

3.2.1. UAV and UGV  271 

Fig. 3 displays the UAV and UGV used in this study. As shown in Fig. 3 (a), the 272 

UAV is a lightweight quadcopter including a built-in camera, four propellers, and an 273 

open-source micro-controller which supports aerial imagery collection. Such a 274 

lightweight quadcopter can reduce several safety issues and risks, such as flying into 275 

people, furniture, ceilings, or other objects. The micro-controller embeds with a Wi-Fi 276 

module that enables sending information remotely to the mediating agent. The camera 277 

can capture 5MP imagery data or live video clips sent to the mediating agent for storage. 278 

The open-source micro-controller is responsible for computational tasks (such as path 279 

planning) and supports the new application for algorithmic control of UAVs. 280 

  
(a) UAV (b) UGV 

Fig. 3 UAV and UGV used in this study 281 

 As shown in Fig. 3 (b), the UGV is a wheeled mobile robot with a Jetson NX 282 

processor, a control board, and multiple sensing devices for data collection. The Jetson 283 
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NX processor first executes the path planning optimization and determines the optimal 284 

path, which is sent to the low-level control board to move the UGV around indoor 285 

spaces. Sensing devices include a 2D LiDAR that acquires the space layout information 286 

for 2D mapping and indoor navigation. In addition, a scanning sensor is used to collect 287 

RGB-D images and camera poses for generating 3D point clouds and reconstructing 288 

the 3D scene. Specifically, the Jetson NX processor is used to exchange RGB-D 289 

information with the mediating agent (via Wi-Fi) for generating the 3D point clouds. 290 

Fig. 4 illustrates the 3D point cloud reconstruction process using RTABMAP. 291 

RTABMAP has been integrated into the Robot Operating System (ROS), where data 292 

processing units are presented in the form of nodes. RTABMAP-based 3D 293 

reconstruction involves five nodes: sensor, RGB-D synchronization, RGB-D odometry, 294 

rtabmap, and rtabmapviz. The sensor node controls the scanning sensor to collect RGB-295 

D images for the surrounding environment and camera poses, then synchronized in the 296 

RGB-D synchronization node. Following this, the synchronized data is sent via Jetson 297 

NX processor to the RGB-D odometry node (in the mediating agent), where odometry 298 

data are derived by computing the transformation between two consecutive RGB-D 299 

image pairs using the RANSAC approach. Then, the Rtabmap node takes RGB-D 300 

images, camera poses, and odometry data to produce 3D point clouds using RTABMAP 301 

with the aid of an incremental appearance-based loop closure detector. Finally, the 3D 302 

point clouds, RGB-D images, and odometry data are integrated into the rtabmapviz 303 

node for 3D scene visualization. The main task of the UGV is to collect imagery data 304 

and point clouds in most areas, because UGV can be equipped with more sensors and 305 

works for a longer time. In addition, the UGV can serve as a carrier/platform for the 306 

UAV. 307 

 Fig. 5 shows the connection between UAV, UGV, sensing devices, and the 308 

mediating agent in this study. UAV and UGV are connected to the mediating agent via 309 

Wi-Fi created by a router. The sensing devices, motors, and miscellaneous processors 310 

(i.e., micro-controller, low-level control board, and Jetson NX) are connected via USB 311 

and I/O cables. 312 
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 313 

Fig. 4 3D point cloud scene reconstruction process using RTABMAP 314 

 315 

 316 

Fig. 5 Connection between UGV, UAV and sensing devices 317 

 318 

3.2.2. Path Planning Optimization 319 

 To enhance the efficiency of data collection in cluttered environments, efficient 320 

indoor navigation is necessary. Therefore, indoor path planning optimization is a central 321 

task. This paper develops an enhanced SSTM model to generate the optimal paths for 322 

UAV and UGV movement without colliding with obstacles and other devices that work 323 

in the same environment [37]. The original SSTM model is inspired by Hodgkin and 324 

Huxley’s study on the dynamics of voltage across the membrane [38], Grossberg’s 325 

shunting model [39], and the neural network dynamics model for path planning 326 

proposed by Glasius et al. [40]. The application of the SSTM model is built on the 327 

construction of neural network architecture, as shown in Fig. 6. The whole neural 328 

network represents a finite-dimensional (F-D) configuration space Θ of a robot. For 329 
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example, Θ can refer to a 2-D Cartesian workspace for a point robot that moves in a 330 

2-D space. For a point robot that navigates in a 3-D space, Θ stands for the 3-D 331 

Cartesian workspace. The location of one neuron in the network, denoted by a vector 332 

𝑝!𝜖𝑅" , is one element in Θ. Each neuron can interact with its neighboring neurons 333 

locally. The range in which this interaction can occur is called the neurons' receptive 334 

field in the neurophysiology [41]. Since it was first proposed, the SSTM model has 335 

been applied to various path planning research [42-44]. 336 

 337 

 338 

Fig. 6 Schematic diagram of the neural network in SSTM 339 

 340 

According to [45], the dynamics of 𝑖!" neuron are modeled mathematically by a 341 

shunting equation, as shown in Eq. (1) below: 342 

𝑑𝑥!
𝑑𝑡 = −𝐴𝑥! + (𝐵 − 𝑥!) /[𝐼!]# +3𝜔!$5𝑥$6

#
%

$&'

7 − (𝐷 + 𝑥!)[𝐼!]( (1) 

wherein 𝑥! denotes the neural activity of 𝑖)* neuron; 𝑥$ denotes the neural activity 343 

of the neighboring neurons of 𝑖)* neuron; 𝑘 denotes the number of the neighboring 344 

neurons; 𝐴, 	𝐵		and −𝐷 are the passive decay rate, upper and lower bounds of the 345 

neural activity, respectively. 𝐴, 	𝐵 and 𝐷 are all positive constants. 𝜔!$ denotes the 346 

connection weight between 𝑖)*  and 𝑗)*  neurons; [𝐼!]# + ∑ 𝜔!$5𝑥$6
#%

$&' 	and [𝐼!]( 347 

are the excitatory and inhibitory inputs for 𝑖)* neuron.	𝜔!$ is defined as follows: 348 

𝜔!$ = 𝑓@A𝑑!$AB (2) 

wherein 𝑑!$ 	represents the Euclidean distance between 𝑖)*  and 𝑗)*  neurons and is 349 

calculated as 𝑝! − 𝑝$.   350 
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Considering that 𝑖)* neuron can only be influenced by its neighboring neurons 351 

within the receptive field, function 𝑓(𝑎) has the property of decreasing monotonically 352 

and can be defined as follows.  353 

𝑓(𝑎) = D			
𝜇
𝑎
, 		𝑖𝑓	0 < 𝑎 < 𝑟+

0, 								𝑖𝑓	𝑎 ≥ 𝑟+
 (3) 

wherein 𝑟+ refers to the distance of the receptive field, which has a positive value and 354 

𝜇 is a positive constant according to the specific cases. 355 

 The excitatory input results from the target and lateral connections among neurons, 356 

while the inhibitory input results from the obstacles only. Functions [𝑎]# and [𝑎]( 357 

can be defined as follows: 358 

J
[𝑎]( = 𝑚𝑎𝑥{−𝑎, 0}
[𝑎]# = 𝑚𝑎𝑥{𝑎, 0}  (4) 

 𝐼! is defined as shown in Eq. (5): 359 

𝐼! = D
𝐸, 		𝑖𝑓	𝑖𝑡	𝑖𝑠	𝑎	𝑡𝑎𝑟𝑔𝑒𝑡

−𝐸, 		𝑖𝑓	𝑖𝑡	𝑖𝑠	𝑎𝑛	𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒
0, 																𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (5) 

wherein 𝐸  is a very large positive constant, 𝐸 ≫ 𝐵 . Based on the SSTM model 360 

defined in Eq. (1), the positive neural activity can propagate over the whole neural 361 

network through local interaction. The negative neural activity stays locally at the 362 

neurons representing obstacles. By such a definition, a robot is globally attracted to the 363 

target, while the obstacles have a local effect to expel the robot [46]. 364 

 The dynamic activity landscape of the neural network then produces a navigation 365 

path for the robot according to the deepest gradient ascent. Assuming the location of 366 

the neuron in which the robot lies currently as 𝑝,, the location of the neuron that the 367 

robot would move toward can be derived as follows: 368 

𝑝-./) ← 𝑥0!"#$ = max
$&',2,	…,	%

^𝑥$_ (6) 

wherein 𝑝-./)  denotes the next position (neuron) where a robot chooses to move 369 

toward; 𝑥0!"#$ denotes the neural activity of the next position (neuron); 𝑥$ denotes 370 

the neural activity of the neighboring neurons of the current position (neuron); 𝑘 is the 371 

number of the neighboring neurons. Based on Eq. (6), the robot keeps moving from the 372 

current position to the next position until it reaches the target.  373 

 However, the original SSTM model cannot ensure collaborative motion for 374 

multiple robots and prevent one robot from running into other devices, especially in 375 

cluttered environments. This issue is illustrated in in Fig. 7 (a), where Robots 1 and 2 376 
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are present in red and blue neurons respectively. Assuming that the three yellow 377 

neurons between Robots 1 and 2 are closer to the target, the neural activity for these 378 

yellow neurons would be relatively larger according to the formulation of the original 379 

SSTM. In such a case, Robots 1 and 2 have large possibilities to simultaneously move 380 

to the same yellow neuron, resulting in collision. To deal with this issue, our enhanced 381 

SSTM introduces an inhibitory term ∑ 𝜔̀!$𝐶$5
$&'  to cater for the impact from multiple 382 

devices, as follows. 383 

𝑑𝑥!
𝑑𝑡 = −𝐴𝑥! + (𝐵 − 𝑥!) /[𝐼!]# +3𝜔!$5𝑥$6

#
%

$&'

7

− (𝐷 + 𝑥!) /[𝐼!]( +3𝜔̀!$𝐶$

5

$&'

7 

(7) 

wherein 𝑥$ denotes the neural activity of the neighboring neurons of 𝑖)* neuron; 𝑚 384 

is the number of the neighboring neurons representing robots (which is called robot 385 

neuron in this paper); 𝐶$ denotes the negative impact rate by 𝑗)* robot neuron, which 386 

is a negative constant; 𝜔̀!$  denotes the connection weight between 𝑖)*  neuron and 387 

𝑗)* robot neuron.	𝜔̀!$ and 𝐼! are defined as shown in Eqs. (8) and (9) below: 388 

𝜔̀!$ = 𝛽𝜔 (8) 

 389 

𝐼! =

⎩
⎨

⎧
𝐸, 		𝑖𝑓	𝑖𝑡	𝑖𝑠	𝑎	𝑡𝑎𝑟𝑔𝑒𝑡

−𝐸, 		𝑖𝑓	𝑖𝑡	𝑖𝑠	𝑎𝑛	𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒
𝐶, 								𝑖𝑓	𝑖𝑡	𝑖𝑠	𝑎	𝑟𝑜𝑏𝑜𝑡
0, 																𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (9) 

in which 𝛽  is a positive constant, 𝛽 ∈ [0,1] . 𝐸  and 𝐶  are very large positive 390 

constants, 𝐸 ≫ 𝐵  and 𝐶 ≫ 𝐵 . The neural activity of each neuron is updated 391 

according to Eq. (10) by the first-order approximation equation of Taylor’s theorem: 392 

𝑥!(𝑡 + ∆𝑡) = 𝑥!(𝑡) +
𝑑𝑥!(𝑡)
𝑑𝑡 ∙ ∆𝑡 (10) 

in which 𝑥!(𝑡)  is the neural activity of 𝑖)*  neuron at time 𝑡 ; ∆𝑡  is the interval 393 

between two consecutive updates. 394 
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(a) Original SSTM Model (b) Enhanced SSTM Model 

Fig. 7 Illustration of robotic motions before and after using the enhanced SSTM 395 

 396 

As shown in Fig. 7 (b), based on the enhanced SSTM, Robot 1 and Robot 2 have 397 

negative impacts on the yellow neurons, which reduces their neural activities. This 398 

indicates that Robot 1 would have a higher possibility or priority to move to the other 399 

five neighboring neurons (highlighted by red arrows) rather than the yellow neurons. 400 

Similarly, Robot 2 has less possibility for moving into the yellow neurons, which is 401 

illustrated by blue arrows. As a result, the potential collision between multiple devices 402 

can be resolved. 403 

The enhanced SSTM model addresses local connections between the neighboring 404 

neurons, so that the computational complexity and time depend linearly on the neural 405 

network size. As such, the enhanced SSTM does not require a computationally 406 

demanding learning process in practices. It can be more conveniently leveraged to 407 

promptly optimize the path planning and control the UGV/UAV for data collection in 408 

cluttered environments. In addition, our enhanced SSTM can demonstrate better 409 

performance over conventional methods, because it is less sensitive to the grid map size. 410 

Specifically, a finer grid is often used to generate more accurate paths in cluttered 411 

environments, indicating that the grid map size can be larger. In this study, only 2-D 412 

Cartesian workspace is considered, and one neuron in the neural network corresponds 413 

to one position on 2D planar space. The grid map is designed based on 2D planar space 414 

so that the neural network size is equal to the grid map size. As a result, the 415 

computational time depends on the grid map size, which can be represented by 𝑂(𝑛) 416 

and 𝑛  is the grid map size. Increases in the grid map size does not substantially 417 

increase the computation time, which is the strength of the SSTM for indoor path 418 

planning and navigation. Furthermore, the optimized path based on the enhanced SSTM 419 

represents the global optimum, which is another advantage as compared with Dijkstra 420 
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and A* Algorithms that may be constrained in local optimum. 421 

 422 

3.3. Indoor Navigation and Control 423 

3.3.1. UAV/UGV Indoor Navigation 424 

Provided the path planning, this section continues to explain the UAV-UGV 425 

navigation and control. For UAV, the indoor space needs to be modeled as a grid map 426 

for assessing the feasibility of the optimized flight path. Fig. 8 shows the procedure of 427 

modeling the indoor space. Firstly, 3D mapping is conducted based on the configuration 428 

of the indoor space. Secondly, the 3D mapping is converted into a 2D grid map 429 

assuming that UAV is operated at the same height level within the indoor space. Finally, 430 

an occupancy map can be built by assigning obstacle features to the 2D grid map. To 431 

achieve better obstacle avoidance, this study defines the size of a grid to be larger than 432 

that of UAV. In the 2D occupancy map, an occupied grid highlighted in black represents 433 

an obstacle. Fig. 8 demonstrates how to decide an occupied grid. A grid that is occupied 434 

partially or entirely by an obstacle is treated as a fully occupied grid to facilitate the 435 

computation. Regarding the flight pattern of UAV on the grid map, UAV can move 436 

only from the center of one grid to the center of the adjacent grid (see Fig. 9). UAV is 437 

not allowed to stop on the edge or boundary of any grid cells. Besides, it can only move 438 

in eight directions, namely up, down, left, right, up-right, up-left, down-right, and 439 

down-left. By running a UAV simulation based on the optimized path from the 440 

enhanced SSTM, the feasibility of the flight trajectory can be verified. 441 
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 442 

Fig. 8 Procedure of modeling indoor spaces for UAV 443 

 444 

Fig. 9 Flight pattern of UAV on the grid map 445 

 446 

Fig. 10 shows the assessment of indoor navigation for UGV by a LiDAR-based 447 

approach in ROS. The first step is to build an occupancy map of the indoor environment 448 

using 2D LiDAR and SLAM algorithm. Point clouds from 2D LiDAR are collected and 449 

registered first using an iterative closest point algorithm. Then, the SLAM algorithm 450 

estimates the UGV pose and obstacle location by matching the 2D point clouds. At the 451 

same time, one or more loop closures may be identified and established during the UGV 452 

movement. The SLAM algorithm utilizes the loop closure information to update the 453 

occupancy map (with 5cm grid size). Provided the occupancy map, the enhanced SSTM 454 
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computes the optimal movement path for UGV. Adaptive Monte Carlo localization 455 

algorithm is used to generate the positioning information for UGV. Based on the 456 

movement path and positioning information, UGV can navigate from the starting point 457 

to the target.  458 

 459 

 460 

Fig. 10 UGV navigation with 2D LiDAR SLAM 461 

 462 

3.3.2. Coordinating Control Algorithms 463 

 After the optimized path for UAV/UGV are tested and verified, the logical 464 

routines for UAV and UGV can be formulated to support automated control. As shown 465 

in Fig. 11, to accommodate the dynamic interaction and conflicts between UAV and 466 

UGV, the mediating agent harnesses a coordinating control algorithm to resolve the 467 

potential conflict and promote coordination between UAV and UGV for sensory data 468 

collection. The core of the mediating agent lies in the efficient control algorithm that is 469 

constructed to define the information exchange mechanism including message type, 470 

sender, receiver, timestamp to guarantee the seamless data exchange amongst UAV and 471 

UGV. As such, it interacts with UAV/UGV to obtain necessary information such as 472 

indoor scenes, obstacles, and data collection tasks. With the provided information, the 473 

mediating agent intends to coordinate UAV and UGV iteratively by generating a set of 474 

logical sequences and decision routines. Such a logical sequence can be executed for 475 

controlling the UAV and UGV in the physical environment. 476 



21 
 

 477 

Fig. 11 Coordinating control and information exchange for UAV and UGV 478 

 479 

 The mediating agent communicates with UAV/UGV by employing the SOCKET 480 

interface which contains two types of communication protocols, i.e., Transmission 481 

Control Protocol (TCP) and User Datagram Protocol (UDP). TCP is more reliable and 482 

accurate in term of data transmission, so it is used to send control-related information 483 

or receive the information from UAV/UGV. UDP requires less time to process packets, 484 

and makes more efficient use of bandwidth, thereby it is used to receive sensing data 485 

such as imagery data and video clips. Such a configuration can achieve the best trade-486 

off between the efficiency and reliability of data transfer. 487 

A generic form of the message is constructed as messageType (sender & receiver) 488 

and messageContents, where messgeType and messageContents are specific to the stage 489 

of the coordination process. The sender and receiver correspond to the index of the 490 

agent that sends and receives the message, respectively. Fig. 12 (a) demonstrates the 491 

information exchange mechanism in the control algorithm. In general, UAV and UGV 492 

perform different tasks because of their distinct characteristics. The mediating agent 493 

serves as the central authority to coordinate UAV and UGV iteratively to perform 494 

complicated tasks. Fig. 12 (b) shows information exchange process in the proposed 495 

MARS. The information exchange includes five major steps. 496 

i. First, mediating agent receives affair (𝑄) from a UGV. In this context, the 497 

UGV is the message sender and initiates the resolution process by sending 498 

the affair message (such as facing an obstacle) to the mediating agent. 499 

ii. Upon receiving the affair message, the mediating agent starts announcing 500 

the affair (𝑄) and seeking other devices such as UAVs for assistance and 501 
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resolution of the affair encountered by UGV. 502 

iii. UAVs send messages regarding their current positions (𝑃!) to the mediating 503 

agent. According to the affair (𝑄) and the current positions of UAVs (𝑃!), 504 

the mediating agent weighs their availabilities and eligibilities (𝑊!). 505 

iv. The mediating agent prioritizes UAVs based on the nature of the affair and 506 

position information. Afterwards, the mediating agent announces an award 507 

message to the selected UAV with the highest priority. 508 

v. The selected UAV helps resolve the affair (e.g., replace UGV to continue 509 

the inspection task). On receiving the award message, the selected UAV 510 

continues to complete its current inspection task. Upon the completion of 511 

the current inspection, UAV then re-optimizes its path planning to assist the 512 

UGV for inspection. The coordination terminates when the selected UAV 513 

finishes the new task. 514 

 515 

(a) 
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(b) 

 

 
Fig. 12 Information exchange mechanism for the coordination algorithms 516 

 517 

Fig. 13 shows the pseudo-code that explains the logical sequence for path planning 518 

of a single UAV taking account of the information exchange with a mediating agent. 519 

The algorithm requires a starting point, a target position, and an initial number of time 520 

steps for calculating the initial neural activity. To begin with, the neural network is 521 

constructed and initialized according to the grid map of an indoor space, in which the 522 

neural activity of the target neuron is assigned as one, whereas other neurons are set as 523 

zero. Before the UAV flies, the neural activities are promptly updated to generate a 524 

larger gradient for neurons near the starting point. This is because neurons near the 525 

starting point are usually far from the target and have neural activities of zero. Therefore 526 

their neural activities require multiple updates to generate a larger gradient for the UAV 527 

to determine its movement. A larger gradient of neural activities helps UAVs to 528 

navigate more easily. With a grid map represented by different neural activities, UAV 529 

starts to move around the indoor space to collect the imagery data. 530 

The UAV progressively checks the position of the current neuron, and if its current 531 

neuron reaches the target, the inspection task is completed. Otherwise, UAV attempts 532 
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to find and move to the next neuron with the largest neural activity by exploring and 533 

comparing the value of its current neuron with neighboring neurons. After UAV arrives 534 

its next neuron, the neural network is updated. This process iterates until the UAV 535 

arrives at the target. During its flying process, the built-in camera of UAV records the 536 

condition of surrounding facilities and indoor spaces by taking images or video clips, 537 

which are sent to the mediating agent through UDP. 538 

When it receives an affair message from the mediating agent, the UAV reports its 539 

current position (𝑃! ). Based on the current grid map (𝐺6 ) and target position 𝑃) =540 

(𝑥) , 𝑦)), the mediating agent weighs the current position of UAV (𝑃!) and its eligibilities 541 

(𝜔!), which are used to assign the new inspection task. After UAV completes the current 542 

inspection, the UAV can leverage the new grid map (𝐺6′) and target 𝑃)′ to generate 543 

the new waypoints (using enhanced SSTM) and compute the corresponding neural 544 

network for navigation. The control algorithm for dual UAVs is similar to that of a 545 

single UAV, except that there are two starting points, two targets, and two neural 546 

networks. Updates of neural activities are performed according to the enhanced SSTM 547 

model in this paper to avoid potential collision in cluttered environments. Fig. 14 548 

describes the pseudo-code for dual UAVs, which explains its procedures explicitly. 549 

 550 

Algorithm 1 Pseudo-code for Path Planning of UAV 
1 This algorithm aims for path planning of a single UAV 
2 Procedure: 
3 Input: Starting position (𝑥7, 𝑦7) 
4 Input: Target: (𝑥) , 𝑦)) 
5 Set: The initial number of time steps each of which is time interval ∆𝑡 
6 Initialize: Neural network 
7 repeat 
8  for Each time step do 
9   Update the neural activities of the neural network 
10  end for 
11 until it reaches the predefined initial number 
12 UAV starts to work from the starting position 
13 for UAV do 
14  Obtain its current neuron 
15  if its current neuron is NOT the target then 
16   Compare the neural activities of its neighboring neurons 
17   Find the neuron with the largest neural activity 
18   Move to that neuron while taking videos of the environment 
19   Update the neural activities of the neural network 
20  end if 
21  if receiving affair(s) message 𝑄 from the mediating agent then 
22   Report the updated position (𝑥! , 𝑦!) 
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23  end if 
24  if receiving an award announcement from the mediating agent then 
25   if it finishes its current task then 
26    Start to perform the task allocated by the mediating agent 
27   else  
28    Stores the task allocated by the mediating agent 
29   end if 
30  end if 

Fig. 13 Proposed SSTM algorithm for path planning of UAV considering the 551 

information exchange with the mediating agent 552 

 553 

Algorithm 2 Pseudo-code for Dual UAVs Path Planning 
1 This algorithm aims to coordinate two UAVs in a sense that they can navigate 

without colliding with obstacles and the other UAV 
2 Procedure: 
3 Input: Starting position (𝑥7', 𝑦7'), (𝑥72, 𝑦72) 
4 Input: Target: (𝑥)', 𝑦)'), (𝑥)2, 𝑦)2) 
5 Set: The initial number of time steps each of which is time interval ∆𝑡 
6 Initialize: Neural network 
7 for Each UAV do 
8  repeat 
9   for Each time step do 
10    Update the neural activities of the whole neural network 
11   end for 
12  until it reaches the predefined initial number 
13 end for 
14 UAV starts to work from the starting position 
15 for Each UAV do 
16  Obtain its current neuron 
17  if its current neuron is NOT the target then 
18   Compare the neural activities of its neighboring neurons 
19   Find the neuron with the largest neural activity 
20   Move to that neuron while taking videos of the environment 
21   Update the neural activities of the neural network 
22  end if 
23 end for 

Fig. 14 Proposed SSTM algorithm considering the coordination of dual UAVs 554 

 555 

4. EXPERIMENT  556 

4.1. Experimental Environment 557 

To elaborate the proposed MARS, field experiments are conducted on the 558 

construction technology laboratory at National University of Singapore. Fig. 15 shows 559 

the 3D model, layout plan, picture, and occupancy map of the laboratory. Three 560 



26 
 

different scenarios are tested separately, which are single UAV, dual UAVs, and 561 

combined UAV-UGV for data collection.  562 

  
(a) 3D model (b) Layout plan 

  
(c) Real scene (d) Occupancy map 

Fig. 15 Overview of the Construction Technology Laboratory 563 

 564 

4.2. Indoor Navigation for Single UAV 565 

 The UAV used in the experiment is DJI Robomaster TT. The overall size of the 566 

grip map for UAV is four meters (width) and ten meters (length). The size of each grid 567 

is set as one meter. Such a grid map reduces the computational time required for 568 

simulation while achieving satisfactory accuracy of path planning. The neural network 569 

is constructed as a 4×10 grid, where the neural activities for all the grids are assigned 570 

as zero except that the target is set as one. Parameters of the enhanced SSTM model are 571 



27 
 

defined for path planning optimization (i.e., 𝐴 = 20, 𝐵 = 1, 𝐷 = 1; 𝜇 = 0.7, 𝛽 = 1 572 

for lateral connection; 𝐸 = 50 for external inputs; 𝐶 = 20 for added inhibitory term; 573 

and ∆𝑡 = 0.01 for the interval of updating). The simulation result is shown in Fig. 16. 574 

The blue grids are free spaces where the UAV can move freely. The dark, light blue 575 

and red grids represent obstacles, starting position, and target, respectively. There are 576 

three alternative shortest paths from the starting position to the target without collision, 577 

which are denoted as Paths 1, 2, and 3 in Fig. 16. While all the three paths are the 578 

optimum, Path 1 is selected as the navigation trajectory for the UAV to move to the 579 

target. 580 

To demonstrate the feasibility of indoor navigation, a field experiment is conducted. 581 

Fig. 17 shows the flight trajectory of UAV (highlighted by a red polyline in the 3D 582 

model) and the real-time imagery data and video clips collected by the UAV. The UAV 583 

automatically flies from the starting position to the target and avoid all the obstacles in 584 

compliant with the optimized Path 1 (in Fig. 16), which is derived from the enhanced 585 

SSTM. The results indicate that the proposed MARS can satisfactorily generate an 586 

optimal flight path for UAV to move and collect imagery data within a cluttered 587 

environment which contains many obstacles. 588 

 589 

 590 

Fig. 16 Path planning for a single UAV 591 
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 592 

Fig. 17 Indoor navigation and data collection of a single UAV 593 

 594 

4.3 Indoor Navigation for Dual UAVs 595 

 In the second experiment, dual UAVs are tested on an 8×20 grid map and the grid 596 

size are 50×50 cm. Based on the created grid map, the neural network is constructed 597 

with the same configuration containing 8×20 neurons. The parameters of the enhanced 598 

SSTM are defined to support path planning of dual UAVs (i.e.,	𝐴 = 50, 𝐵 = 1, 𝐷 =599 

1; 𝜇 = 0.7, 𝛽 = 1 for lateral connection; 𝐸 = 100 for external inputs; 𝐶 = 20 for 600 
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added inhibitory term; and ∆𝑡 = 0.01 for interval of updating). To verify that our 601 

enhanced SSTM has advantages for multi-robot path planning, another simulation using 602 

the original SSTM model is carried out. Fig. 18 (a) and Fig. 18 (b) show the path 603 

planning results using original and enhanced SSTM models, respectively.   604 

As shown in Fig. 18 (a), the two UAVs may collide during t5-t7 when UAV1 flies 605 

from (4, 4) to (5, 5) and UAV2 flies from (5, 4) to (4, 5). Since the UAVs fly at 606 

the same height level, they have a high possibility to collide with each other. The same 607 

problem occurs when UAV1 flies from (5, 5)  to (4, 6)  while UAV2 flies from 608 

(4, 5) to (5, 6). The results indicate that the original SSTM model cannot guarantee a 609 

safe indoor path planning and navigation for multiple devices in cluttered environments. 610 

Fig. 18 (b) shows the results generated from the enhanced SSTM. UAV1 moves from 611 

its starting position 	(0, 0)  to the target 	(6, 18) , following its optimized trajectory 612 

highlighted in yellow polyline. UAV2 starts from (3, 0) and follows an alternative 613 

trajectory (green polyline) to the target (7, 19). Both UAVs do not run into obstacles 614 

in the laboratory. In the 2D grid map, their flight paths are overlapped at coordinates 615 

(5, 7), (2, 11), (2, 13), (2, 14), (2, 15), (3, 16), (4, 17), and (5, 18). However, 616 

these do not imply any collisions because UAV1 and UAV2 arrive on these positions 617 

at different time steps, as shown in the table of Fig. 18 (b). The comparative analysis 618 

also proves that our proposed mathematical formulation to SSTM model is necessary 619 

and useful to cater for multi-robot indoor navigation.  620 

 621 
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(a) 

                 

(b) 

 
Fig. 18 Path planning for dual UAVs using (a) original and (b) enhanced SSTM  622 

 623 

Field experiment is conducted to illustrate the feasibility of UAVs indoor 624 

navigation, Fig. 19 shows the flight trajectories of two UAVs (highlighted by red and 625 
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yellow polylines in the 3D model) and the real-time imagery data and video clips 626 

collected by the UAVs. The UAVs fly from the starting positions to the corresponding 627 

targets in compliance with the optimized Paths (in Fig. 18) without colliding with any 628 

obstacles. The results indicate that the proposed MARS can simultaneously generate 629 

two optimal flight paths for collecting UAV imagery data in cluttered environments. 630 

 631 

 632 

Fig. 19 Indoor navigation and data collection of dual UAVs  633 
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4.4 Indoor Navigation for Combined UAV-UGV 634 

The third experiment tests the application of the proposed MARS for controlling 635 

UAV and UGV. In this experiment, the UGV is equipped with a 2D LiDAR, a scanning 636 

sensor and a platform to carry the UAV. Path planning optimization is performed using 637 

enhanced SSTM. The UGV first moves from its starting position on the corridor into 638 

the research laboratory. In this process, the UGV takes RGB-D images and generates 639 

3D point clouds using RTABMAP. Fig. 20 shows the real-time 3D reconstructed scene 640 

of the corridor and a portion of the laboratory when UGV moves along its optimized 641 

path and collects imagery data. To test multi-robot collaboration, a chair is placed at 642 

the laboratory entrance, which prevents the UGV from entering the room (see position 643 

3 in Fig. 21). In such a situation, the UGV communicates with the mediating agent and 644 

reports an affair requesting the UAV to continue scanning within the laboratory. The 645 

mediating agent sends the current grid map (𝐺6) and target position 𝑃) = (𝑥) , 𝑦)) to 646 

the UAV to conduct path planning optimization, which supports the UAV to 647 

automatically flies within the laboratory for collecting image data. Fig. 21 shows the 648 

UAV’s flight trajectory (highlighted by a red polyline), and the real-time imagery data 649 

and video clips collected by the UAV. The above process is automatic without human 650 

intervention. The experimental result shows that the proposed new MARS can 651 

potentially support coordination between UAV-UGV toward more automated sensory 652 

data collection. Besides, different forms of information such as images and 3D point 653 

clouds can be collected using MARS.  654 

 655 

 656 

Fig. 20 3D reconstructed scene of the construction research laboratory  657 
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 658 

Fig. 21 Indoor navigation and data collection using combined UAV-UGV 659 

 660 

5. CONCLUSIONS 661 

 This paper presents a new MARS to automate indoor sensory data collection in 662 

cluttered environments. The proposed MARS consists of a new system architecture 663 
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which defines the attributes and data requirements to support UAV-UGV path planning 664 

and indoor navigation. The connection between UAV, UGV, sensing devices, and 665 

mediating agents is established. An enhanced SSTM model is proposed to optimize 666 

UAV-UGV path planning toward more efficient data collection. The feasibility of path 667 

planning for UAV and UGV is verified using simulation and LiDAR-based approaches, 668 

respectively. A coordinating control algorithm, including an information exchange 669 

mechanism, is developed to resolve the potential conflict and promote coordination 670 

between UAV and UGV for automated data collection. Finally, three field experiments 671 

are conducted to verify and demonstrate the performance of the proposed MARS. The 672 

experiment results show that imagery data and 3D point clouds can be collected using 673 

the proposed MARS, which is one of the advantages compared to just using UAV/UGV. 674 

This study provides new insights into automated sensory data collection in 675 

cluttered environments. Firstly, it is possible to construct a UAV-UGV system for 676 

automatic data collection in a cluttered indoor environment. Secondly, multiple types 677 

of sensory data can be collected using a UAV-UGV system, which is beneficial for 678 

facility management. Thirdly, a UAV-UGV system can process the collected data in 679 

real-time using a low computational complex platform, which is helpful for real-time 680 

facility inspection. The present study is one of the early attempts to introduce MARS 681 

into indoor navigation of UAV/UGV for automated data collection, but it shows the 682 

potential for revolutionizing data collection and indoor inspection. 683 

However, this study has certain limitations. The positioning of UAVs relies on the 684 

onboard visual positioning system, which is less accurate. In addition, 2D navigation 685 

with the assumption of a fixed UAV flying height is considered in indoor navigation. 686 

Future work for this study shall include integrating advanced localization techniques, 687 

such as visual SLAM, into the MARS for more accurate indoor localization. 688 

Furthermore, different kinds of robotic devices equipped with various sensors will be 689 

leveraged in the future. Algorithms dealing with 3D cooperative navigation shall be 690 

developed to use different robots for indoor inspection.  691 
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